【精品高考数学】2020年高三数学(山东专用)-第10练-计数原理、概率、随机变量及其分布列+答案
2020年高三数学复习 单元检测卷十 计数原理
单元检测卷十 计数原理(B)考生注意:1.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.2.本次考试时间45分钟,满分80分. 3.请在密封线内作答,保持试卷清洁完整.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若A 5m =2A 3m ,则m 的值为( )A .5B .3C .6D .7 2.在某次运动会中,要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有( )A .36种B .12种C .18种D .48种 3.高三(1)班需要安排毕业晚会的4个音乐节目、2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是( )A .800B .5 400C .4 320D .3 600 4.甲组有5名男同学,3名女同学,乙组有6名男同学,2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A .150种B .180种C .300种D .345种 5.某班级要从4名男生、2名女生中选派4人参加某社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A .14B .24C .28D .48 6.⎝⎛⎭⎫x 2-2x 35的展开式中的常数项为( ) A .80 B .-80 C .40 D .-40 7.从10种不同的作物中选出6种放入6个不同的瓶子中展出,如果甲、乙两种作物不能放入第1号瓶内,那么不同的放法共有( )A .C 210A 48种B .C 18A 59种 C .C 19A 59种D .C 18A 58种8.5名男生与2名女生排成一排照相,如果男生甲必须站在中间,2名女生必须相邻,那么符合条件的排法共有( )A .48种B .192种C .240种D .288种9.已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8等于( ) A .-180 B .180 C .45 D .-45 10.⎝⎛⎭⎫x +1x +25展开式中x 2的系数为( ) A .120 B .80 C .20 D .45 11.(1-x )(1+x )5展开式中x 2项的系数是( )A .4B .5C .8D .12 12.如图,用四种不同的颜色给图中的A ,B ,C ,D ,E ,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,而且四种不同的颜色要全部用完,则不同的涂色方法共有( )A .144种B .216种C .264种D .360种 二、填空题(本题共4小题,每小题5分,共20分.把答案填在题中横线上)13.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种.(用数字作答) 14.在(x -2)5(2+y )4的展开式中,x 3y 2的系数为________.15.若二项式⎝⎛⎭⎫x 2-2x n 的展开式中二项式系数的和是64,则展开式中的常数项为________.16.在上海高考改革方案中,要求每位高中生必须在物理、化学、生物、政治、历史、地理6门学科(3门理科学科,3门文科学科)中选择3门学科参加等级考试,小丁同学理科成绩较好,决定至少选择两门理科学科,那么小丁同学的选科方案有________种.参考答案1.答案 A解析 根据题意,若A 5m =2A 3m ,则有m (m -1)(m -2)(m -3)(m -4)=2×m (m -1)(m -2), 即(m -3)(m -4)=2, 解得m =5. 2.答案 A解析 分两类:若小张或小赵入选,则有选法C 12C 12A 33=24(种);若小张、小赵都入选,则有选法A 22A 23=12(种),共有选法36种.3.答案 D解析 先排4个音乐节目和1个曲艺节目共有A 55种排法,再从5个节目的6个空中隔空插入两个不同的舞蹈节目有A 26种排法,∴共有A 55·A 26=3 600(种)排法,故选D.4.答案 D解析 分两类:(1) 甲组中选出一名女生有C 15C 13C 26=225(种)选法; (2)乙组中选出一名女生有C 25C 16C 12=120(种)选法.共有345种选法.故选D.5.答案 A解析 方法一 4人中至少有1名女生包括1女3男及2女2男两种情况,故不同的选派方案种数为C 12·C 34+C 22·C 24=14.故选A.方法二 从4男2女中选4人共有C 46种选法,4名都是男生的选法有C 44种, 故至少有1名女生的选派方案种数为C 46-C 44=15-1=14.故选A.6.答案 C解析 因为展开式的通项公式为T k +1=C k 5(x 2)5-k ·⎝⎛⎭⎫-2x 3k =(-2)k C k 5x 10-5k,令10-5k =0,解得k =2,所以⎝⎛⎭⎫x 2-2x 35的展开式中的常数项为(-2)2C 25=40,故选C. 7.答案 B解析 因为甲乙两种种子不能放入第1号瓶内,所以1号瓶要从另外的8种种子中选一个展出,有C 18种结果,因为后面的问题是从9种不同的作物种子中选出5种放入5个不同的瓶子中展出, 实际上是从9个元素中选5个排列,共有A 59种结果,根据分步乘法计数原理知共有C 18A 59种结果,故选B.8.答案 B解析 甲站好中间的位置,两名女生必须相邻,有四种选法,两个女生可以交换位置,剩下的四个男生站在剩下的四个位置,有4!种排法,所以2×4×4!=192(种).故选B. 9.答案 B解析 因为(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,所以[2-(1-x )]10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,所以a 8=C 81022(-1)8=180.10.答案 A解析 原式可化为⎣⎡⎦⎤⎝⎛⎭⎫x +1x +25,其展开式中可出现x 2项的只有C 35⎝⎛⎭⎫x +1x 223与C 15⎝⎛⎭⎫x +1x 421两项,所以其展开式中x 2项分别为C 35C 02x 2⎝⎛⎭⎫1x 023=80x 2,C 15C 14x 3·⎝⎛⎭⎫1x 121=40x 2,则x 2项为120x 2. 11.答案 B解析 (1-x )(1+x )5=(1-x )(1+5x +10x 2+10x 3+5x 4+x 5),其中可以出现x 2项的有1×10x 2和-x ×5x ,其它的项相乘不能出现平方项,故展开式中x 2项的系数是10-5=5, 故选B. 12.答案 B解析 由题意,4种颜色都用到,先给A ,B ,C 三点涂色,有A 34种涂法,再给D ,E ,F 涂色,因为D ,E ,F 中必有一点用到第4种颜色,有C 13种涂法,所以另外两点用到A ,B ,C 三点所用颜色中的两种,有C 23种涂法,由分步乘法计数原理得A 34C 13C 23=216(种).答案 3613.解析 可分两步解决.第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法.第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:①先选学习委员有4种选法,②选体育委员有3种选法. 由分步乘法计数原理可得, 不同的选法共有3×4×3=36(种). 14.答案 480解析 (x -2)5(2+y )4的展开式中,x 3y 2的系数为C 25·(-2)2·C 24·()22=480. 15.答案 240解析 由已知得到2n =64,所以n =6,所以展开式的通项为T k +1=C k 6(x 2)6-k ⎝⎛⎭⎫-2x k =C k 6(-2)k x 12-3k, 令12-3k =0,得到k =4,所以展开式中的常数项为T 5=C 46(-2)4=240.16.答案 10解析选择两门理科学科,一门文科学科,有C23C13=9(种);选择三门理科学科,有1种,故共有10种.。
核按钮(新课标)高考数学一轮复习第十章计数原理、概率、随机变量及其分布10.1分类加法计数原理与分步
3.两个计数原理的区别 分类加法计数原理和分步乘法计数原理解决的都是有关做一件事的不 同方法的种数问题,区别在于:分类加法计数原理针对的是“分类”问题, 其中各种方法______________,用其中______________都可以做完这件事; 分步乘法计数原理针对的是“分步”问题,各个步骤中的方法 ______________,只有______________才算做完这件事. 4.两个计数原理解决计数问题时的方法 最重要的是在开始计算之前要进行仔细分析——是需要分类还是需要 分步. (1)分类要做到“______________”.分类后再分别对每一类进行计数, 最后用分类加法计数原理求和,得到总数. (2)分步要做到“______________”,即完成了所有步骤,恰好完成任务, 当然步与步之间要______________,分步后再计算每一步的方法数,最后 根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.
(2)分两步:先选教师,共 3 种选法,再选学生,共 6+8=14 种选法.由分步乘法计数原理知总选法数为 3×14=42(种).
(3)老师、男同学、女同学各一人可分三步,每步方法数依次为 3、6、8 种.由分步乘法计数原理知选法数为 3×6×8=144(种).
第十六页,共25页。
类型二 两个原理的综合应用
第十五页,共25页。
有一项活动需在 3 名老师,6 名男同学和 8 名女同学中选 人参加.
(1)若只需一人参加,有多少种不同选法? (2)若需一名老师,一名学生参加,有多少种不同选法? (3)若需老师、男同学、女同学各一人参加,有多少种不同选法?
解:(1)只需一人参加,可按老师、男同学、女同学分三类,各 自有 3、6、8 种选法,总选法数为 3+6+8=17(种).
2020年高考数学山东卷 试题详解
2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =()A.{x |2<x ≤3} B.{x |2≤x ≤3} C.{x |1≤x <4} D.{x |1<x <4}【答案】C【解析】[1,3](2,4)[1,4)A B ==U U ,故选C.2.2i12i-=+()A.1B.−1C.iD.−i【答案】D 【解析】2(2)(12)512(12)(12)5i i i ii i i i ----===-++-,故选D.3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种【答案】C【解析】首先从6名同学中选1名去甲场馆,方法数有16C ;然后从其余5名同学中选2名去乙场馆,方法数有25C ;最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选C4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为()A.20° B.40° C.50° D.90°【答案】B【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD ,根据线面垂直的定义可得AB m ⊥..∵40,//AOC m CD ∠=︒,∴40OAG AOC ∠=∠=︒,∵90OAG GAE BAE GAE ∠+∠=∠+∠=︒,∴40BAE OAG ∠=∠=︒,∴晷针与点A 处的水平面所成角40BAE ∠=︒.故选B.5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%【答案】C【解析】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅,则()0.6P A =,()0.82P B =,()0.96P A B +=,∴()P A B ⋅=()()()P A P B P A B +-+0.60.820.960.46=+-=∴该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选C.6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天【答案】B【解析】∵0 3.28R =,6T =,01R rT =+,∴ 3.2810.386r -==,∴()0.38rt t I t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,则10.38()0.382t t t e e +=,∴10.382t e =,∴10.38ln 2t =,∴1ln 20.691.80.380.38t =≈≈天.故选B.7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是()A.()2,6- B.(6,2)- C.(2,4)- D.(4,6)-【答案】A【解析】AB的模为2,根据正六边形的特征,可得AP 在AB方向上的投影的取值范围是(1,3)-,结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB方向上的投影的乘积,∴AP AB⋅的取值范围是()2,6-,故选A.8.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A.[)1,1][3,-+∞B.3,1][,[01]--C.[1,0][1,)-+∞ D.[1,0][1,3]- 【答案】D【解析】∵定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,∴()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,∴当(,2)(0,2)x ∈-∞- 时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,∴由(10)xf x -≥可得:021012x x x <⎧⎨-≤-≤-≥⎩或或001212x x x >⎧⎨≤-≤-≤-⎩或或0x =解得10x -≤≤或13x ≤≤,∴满足(10)xf x -≥的x 的取值范围是[1,0][1,3]- ,故选D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知曲线22:1C mx ny +=.()A.若m >n >0,则C 是椭圆,其焦点在y 轴上B.若m =n >0,则CC.若mn <0,则C是双曲线,其渐近线方程为y =D.若m =0,n >0,则C 是两条直线【答案】ACD【解析】对于A,若0m n >>,则221mx ny +=可化为22111x y m n+=,∵0m n >>,∴11m n<,即曲线C 表示焦点在y 轴上的椭圆,故A正确;对于B,若0m n =>,则221mx ny +=可化为221x y n+=,此时曲线C 表示圆心在原点,半径为nn的圆,故B 不正确;对于C,若0mn <,则221mx ny +=可化为22111x y m n+=,此时曲线C 表示双曲线,由220mx ny +=可得y =,故C 正确;对于D,若0,0m n =>,则221mx ny +=可化为21y n=,y n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确;综上,ACD 正确.10.下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=()A.πsin(3x + B.πsin(2)3x - C.πcos(26x +)D.5πcos(2)6x -【答案】BC【解析】由函数图像可知22362T πππ=-=,则222T ππωπ===,排除A,当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈,解得()223k k ϕπ=+∈Z ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭.故选BC.11.已知a >0,b >0,且a +b =1,则()A.2212a b +≥B.122a b ->C.22log log 2a b +≥-D.≤【答案】ABD【解析】对于A,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确;对于B,211a b a -=->-,所以11222a b-->=,故B 正确;对于C,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭,当且仅当12a b ==时,等号成立,故C 不正确;对于D,因为2112a b =+≤++=,+≤,当且仅当12a b ==时,等号成立,故D 正确;故选ABD.12.信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑ ,定义X 的信息熵21()log ni i i H X p p ==-∑.()A.若n =1,则H (X )=0B.若n =2,则H (X )随着1p 的增大而增大C.若1(1,2,,)i p i n n== ,则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+= ,则H (X )≤H (Y )【答案】AC【解析】对于A,若1n =,则11,1i p ==,∴()()21log 10H X =-⨯=,∴A 正确.对于B,若2n =,则1,2i =,211p p =-,∴()()()121121X log 1log 1H p p p p =-⋅+-⋅-⎡⎤⎣⎦,当114p =时,()221133log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,当13p 4=时,()223311log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,两者相等,所以B 选项错误.对于C,若()11,2,,i p i n n== ,则()222111log log log H X n n nn n ⎛⎫=-⋅⨯=-= ⎪⎝⎭,则()H X 随着n 的增大而增大,所以C 选项正确.对于D,若2n m =,随机变量Y 的所有可能的取值为1,2,,m ,且()21j m j P Y j p p +-==+(1,2,,j m = ).()2222111log log mmi i i i i iH X p p p p ===-⋅=⋅∑∑122221222122121111log log log log m m m mp p p p p p p p --=⋅+⋅++⋅+⋅ .()H Y =()()12222121222111log log m m m m p p p p p p p p --+⋅++⋅+++()1211log m m m m p p p p ++++⋅+ 12221222111log log m m p p p p p p -=⋅+⋅+++212222211211log log m m m mp p p p p p --+⋅+⋅++由于()01,2,,2i p i m >= ,∴2111i i m i p p p +->+,∴222111log log i i m ip p p +->+,∴222111log log i i i i m ip p p p p +-⋅>⋅+,∴()()H X H Y >,∴D 选项错误.故选AC三、填空题:本题共4小题,每小题5分,共20分.13.的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点FAB的方程为1)y x =-,代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x ==∴12116|||||3|33AB x x =-=-=解法二:10036640∆=-=>,设1122(,),(,)A x y B x y ,则12103x x +=,过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为163.14.将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.【答案】232n n-【解析】∵数列{}21n -是以1为首项,以2为公差的等差数列,数列{}32n -是以1首项,以3为公差的等差数列,∴这两个数列的公共项所构成的新数列{}n a 是以1为首项,6为公差的等差数列,∴{}n a 的前n 项和为2(1)16322n n n n n -⋅+⋅=-,故答案为232n n -.15.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.【答案】542π+【解析】设==OB OA r ,由题意7AM AN ==,12EF =,∴5NF =,∵5AP =,∴45AGP ︒∠=,∵//BH DG ,∴45AHO ︒∠=,∵AG 与圆弧AB 相切于A 点,∴OA AG ⊥,即OAH △为等腰直角三角形;在直角OQD △中,252OQ r =-,272DQ r =-,∵3tan 5OQ ODC DQ ∠==,∴212522r r -=-,解得r =等腰直角OAH △的面积为1142S =⨯=;扇形AOB 的面积(2213324S ππ=⨯⨯=,∴阴影部分的面积为1215422S S ππ+-=+.故答案为542π+.16.已知直四棱柱ABCD –A1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为半径的球面与侧面BCC 1B 1的交线长为________.【答案】2.【解析】如图,取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,∵BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,∴△111D B C 为等边三角形,∴1D E =111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,∴1BB ⊥平面1111D C B A ,所以111BB B C ⊥,∵1111BB B C B = ,∴1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,,1D E =,∴||EP ===,∴侧面11B C CB 与球面的交线上的点到E ,∵||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧 FG,∵114B EF C EG π∠=∠=,∴2FEG π∠=,∴根据弧长公式可得 222FGπ==.答案为22π.四、解答题:本题共6小题,共70分。
(山东专用)新高考数学一轮复习 第十章 计数原理、概率、随机变量及其分布 10.1 分类加法计数原理
第一节分类加法计数原理与分步乘法计数原理课标要求考情分析1.理解分类加法计数原理和分步乘法计数原理.2.会用分类加法计数原理和分步乘法计数原理分析和解决一些简单的实际问题.1.两个计数原理一般不单独命题,常与排列、组合交汇考查.2.题型以选择题、填空题为主,要求相对较低.知识点两种计数原理基本形式一般形式区别分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任何一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第完成一件事需要n个步骤,做第1步有m1种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N =m1×m2×…×m n 种不同的方法1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成.(√)(4)如果完成一件事情有n个不同步骤,在每一步中都有若干种不同的方法m i(i=1,2,3,…,n),那么完成这件事共有m1m2m3…m n种方法.(√)(5)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)2.小题热身(1)从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法种数为(B)A.6B.5C.3D.2(2)已知某公园有4个门,从一个门进,另一个门出,则不同的走法共有(C)A.16种B.13种C.12种D.10种(3)小王有70元钱,现有面值分别为20元和30元的两种IC电话卡.若他至少买一张,则不同的买法共有(A)A.7种B.8种C.6种D.9种(4)一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不同(除交汇点O外)的游览线路有48种.(用数字作答)(5)如图,从A城到B城有3条路;从B城到D城有4条路;从A城到C城有4条路,从C城到D城有5条路,则某旅客从A城到D城共有32条不同的路线.解析:(1)“完成这件事”即选出1人当主持人,可分选女主持人和男主持人两类进行,分别有3种选法和2种选法,所以共有3+2=5种不同的选法.(3)要完成的“一件事”是“至少买一张IC电话卡”,分3类完成:买1张IC电话卡、买2张IC电话卡、买3张IC电话卡,而每一类都能独立完成“至少买一张IC电话卡”这件事.买1张IC电话卡有2种方法,买2张IC电话卡有3种方法,买3张IC电话卡有2种方法.不同的买法共有2+3+2=7(种).(4)根据题意,从点P处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有6种选法;参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有4种选法;参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任取一个,有2种选法.由分步乘法计数原理知,共有6×4×2=48(种)不同游览线路.(5)不同路线共有3×4+4×5=32(条).考点一分类加法计数原理的应用【例1】(1)已知椭圆x2a2+y2b2=1,若a∈{2,4,6,8},b∈{1,2,3,4,5,6,7,8},这样的椭圆有________个.()C.28 D.32(2)我们把中间位数上的数字最大,而两边依次减小的多位数称为“凸数”.如132,341等,那么由1,2,3,4,5可以组成无重复数字的三位“凸数”的个数是________.【解析】(1)解法1:若焦点在x轴上,则a>b,a=2时,有1个;a=4时,有3个;a=6时,有5个;a=8时,有7个,共有1+3+5+7=16个.若焦点在y轴上,则b>a,b=3时,有1个;b=4时,有1个;b=5时,有2个;b=6时,有2个;b=7时,有3个;b=8时,有3个.共有1+1+2+2+3+3=12个.故共有16+12=28个.解法2:a=b时有4种情况,故椭圆个数为4×8-4=28个.(2)根据“凸数”的特点,中间的数字只能是3,4,5,故分三类,第一类,当中间数字为“3”时,此时有2种(132,231);第二类,当中间数字为“4”时,从1,2,3中任取两个放在4的两边,故有6种;第三类,当中间数字为“5”时,从1,2,3,4中任取两个放在5的两边,故有12种;根据分类加法计数原理,得到由1,2,3,4,5可以组成无重复数字的三位“凸数”的个数是2+6+12=20.【答案】(1)C(2)20方法技巧(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏.(2)分类时,注意完成这件事的任何一种方法必须属于某一类,不能重复.1.图书馆的书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取1本书,则不同的取法共有(B) A.120种B.16种解析:书架上有3+5+8=16(本)书,则从中任取1本书,共有16种不同的取法.故选B.2.将编号为1,2,3,4的小球放入编号为1,2,3的盒子中,要求不允许有空盒子,且球与盒子的编号不能相同,则不同的放球方法有(B)A.16种B.12种C.9种D.6种解析:由题意可知,这四个小球有两个小球放在一个盒子中,当1号与2号小球放在同一盒子中时,有2种不同的放法;当1号与3号小球放在同一盒子中时,有2种不同的放法;当1号与4号小球放在同一盒子中时,有2种不同的放法;当2号与3号小球放在同一盒子中时,有2种不同的放法;当2号与4号小球放在同一盒子中时,有2种不同的放法;当3号与4号小球放在同一盒子中时,有2种不同的放法.因此,由分类加法计数原理可知,不同的放球方法共有12种.故选B.考点二分步乘法计数原理的应用【例2】(1)已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,则P可表示坐标平面上第二象限的点的个数为()A.6 B.12C.24 D.36(2)有6名同学报名参加三个智力项目,每项限报一人,三个项目都有人报,且每人至多参加一项,则共有________种不同的报名方法.【解析】(1)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种方法;第二步确定b,由于b>0,所以有2种方法.由分步乘法计数原理,得到第二象限的点的个数是3×2=6.(2)每项限报一个,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).【答案】(1)A(2)120方法技巧利用分步乘法计数原理解决问题的策略(1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足的两个条件:一是各步骤相互独立,互不干扰;二是步与步之间确保连续,逐步完成.1.如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A,B,C,D,E,F,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有63种.解析:因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.2.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成18个不同的二次函数,其中偶函数有6个(用数字作答).解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18(个)二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=6(个)偶函数.考点三两个计数原理的综合应用命题方向1计数问题【例3】高考结束后6名同学游览我市包括日月湖在内的6个景区,每名同学任选一个景区游览,则有且只有两名同学选择日月湖景区的方案有()A.A26×A45种B.A26×54种C.C26×A45种D.C26×54种【解析】根据题意,分2步进行分析:①先从6名同学中任选2人,去日月湖景区旅游,有C26种方案,②对于剩下的4名同学,每人都有5种选择,则这4人有5×5×5×5=54种方案,则有且只有两名同学选择日月湖景区的方案有C26×54种,故选D.【答案】 D命题方向2与几何有关的问题【例4】如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18 C.24D.36【解析】第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).【答案】 D命题方向3涂色问题【例5】如图一个地区分为五个行政区域,现给该地图着色,要求相邻区域不得使用同一种颜色,现有四种颜色可供选择,则不同的着色方法共有________种.(用数字作答)【解析】由题意可知,当选用三种颜色着色时,由分步乘法计数原理得,有C14C13C12=24(种)方法,当选用四种颜色着色时,由分步乘法计数原理得,有2C14C13C12C11=48(种)方法,再据分类加法计数原理可得有24+48=72(种)方法.【答案】72方法技巧利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.1.(方向1)将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同的放法共有(C)A.480种B.360种C.240种D.120种解析:根据题意,将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则必须有2个小球放入1个盒子,其余的小球各单独放入一个盒子,分2步进行分析:①先将5个小球分成4组,有C25=10种分法;②将分好的4组全排列,放入4个盒子,有A44=24种情况,则不同放法有10×24=240种.故选C.2.(方向2)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是(B)A.60 B.48C.36 D.24解析:长方体的6个表面构成的“平行线面组”的个数为6×6=36,另外含4个顶点的6个面(非表面)构成的“平行线面组”的个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.3.(方向3)用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有108种.解析:把区域分为三部分,第一部分1,5,9,有3种涂法.第二部分4,7,8,当5,7同色时,4,8各有2种涂法,共4种涂法;当5,7异色时,7有2种涂法,4,8均只有1种涂法,故第二部分共4+2=6种涂法.第三部分与第二部分一样,共6种涂法.由分步乘法计数原理,可得共有3×6×6=108种涂法.。
高考数学一轮复习计数原理与概率小题必刷题
对于A,事件M与N是可能同时发生的,故M与N不互斥,故A不正确; 对于 B,P(M)=36=12,故 B 正确; 对于C,事件M发生与否对事件N发生的概率没有影响,M与N相互独 立,故C正确; 对于 D,事件 M 发生的概率为 P(M)=21,事件 N 发生的概率为 P(N)=12, P(M∪N)=1-P( M )P( N )=1-12×12=34,故 D 不正确.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
根据题意,6种不同食物中,有1种适合放入中间 格,则中间格有1种放法, 十字格有四个位置,有3种适合放入十字格,所 以有一种放两个位置,共有3种放法,四角格有 4个位置,有2种适合放入四角格,可分为一种放 三个位置,一种放一个位置,有两种放法,或每种均放两个位置,有 一种放法,则四角格有3种放法,则有1×3×3=9(种)不同放法.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
∵患者通过飞沫传播被感染的概率为23, ∴患者不是通过飞沫传播被感染的概率为13, ∴甲、乙两患者都不是通过飞沫传播被感染的概率为13×13=19, 故甲、乙两患者至少有一人是通过飞沫传播被感染的概率为 1-19=89.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
现有6种不同食物(足够量),其中1种适合放入中间
格,3种适合放格全部放入食物,且每格只放一种,若同
时可以吃到这六种食物(不考虑位置),则不同的放
法种数为
A.108
B.36
√C.9
D.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2020年高考真题——数学(新高考全国卷Ⅰ 适用地区:山东)
2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1。
设集合A ={x |1≤x ≤3},B ={x |2〈x 〈4},则A ∪B =( ) A 。
{x |2<x ≤3} B. {x |2≤x ≤3} C 。
{x |1≤x <4} D 。
{x |1<x <4}【答案】C 【解析】 【分析】根据集合并集概念求解。
【详解】[1,3](2,4)[1,4)A B ==故选:C【点睛】本题考查集合并集,考查基本分析求解能力,属基础题。
2。
2i12i-=+( )A 。
1 B. −1 C 。
iD 。
−i【答案】D 【解析】 【分析】根据复数除法法则进行计算。
【详解】2(2)(12)512(12)(12)5i i i ii i i i ----===-++-故选:D【点睛】本题考查复数除法,考查基本分析求解能力,属基础题. 3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A. 120种 B. 90种 C. 60种 D. 30种【答案】C 【解析】 【分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解。
【详解】首先从6名同学中选1名去甲场馆,方法数有16C ;然后从其余5名同学中选2名去乙场馆,方法数有25C ;最后剩下的3名同学去丙场馆. 故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C【点睛】本小题主要考查分步计数原理和组合数的计算,属于基础题.4。
核按钮(新课标)高考数学一轮复习第十章计数原理、概率、随机变量及其分布10.3二项式定理课件理
+a3+a5+…+a2n-1)2=(a0+a2+a4+…+a2n-a1-a3-a5
-…-a2n-1)(a0+a2+a4+…+a2n+a1+a3+a5+…+a2n-1)
=f(-1)·f(1)=
22-12n·
22+12n=-122n=14
n
Hale Waihona Puke .故填14n.第十八页,共30页。
类型三 系数最大项问题
已知(3 x+x2)2n 的展开式的二项式系数和比(3x-1)n 的展开式的 二项式系数和大 992.
第十六页,共30页。
(1)(2015·合肥质检)若 x-3xn展开式的各项
系数的绝对值之和为 1 024,则展开式中 x 的一次项的系数为 ____________.
解:Tr+1=Crn( x)n-r-3xr=(-3)r·Crnxn-23r,
由题意知展开式的各项系数绝对值之和为 Cn0+|(-3)1C1n|+(-3)2C2n+…+|(-3)nCnn|=1 024, 故(1+3)n=1 024,解得 n=5,令5-23r=1,解得 r=1, 所以展开式中 x 的一次项的系数为(-3)1C15=-15. 故填-15.
D.29
解:∵(1+x)n 的展开式中第 4 项与第 8 项的二项式系数相等, ∴C3n=C7n,得 n=10,奇数项的二项式系数和与偶数项的二项式 系数和相等,即 C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1.
∴二项式(1+x)10 中奇数项的二项式系数和为 29.故选 D.
第七页,共30页。
第十四页,共30页。
类型二 展开式的系数和问题
已知(1-2x)7=a0+a1x+a2x2+…+a7x7. 求:(1)a1+a2+…+a7; (2)a1+a3+a5+a7; (3)a0+a2+a4+a6;
【精品教学案】山东省济南市2020届高考数学一轮精品资料(计数原理5个课时全部)doc高中数学
【精品教学案】山东省济南市2020届高考数学一轮精品资料(计数原理5个课时全部)doc 高中数学1.把握分类计数原理与分步计数原理、并能用它分析和解决一些简单的应用咨询题.2.明白得排列的意义,把握排列数运算公式,并能用它解决一些简单的应用咨询题.3.明白得组合的意义,把握组合数运算公式和组合数性质,并能用它们解决一些简单的应用咨询题.排列与组合高考重点考察学生明白得咨询题、综合运用分类计数原理和分步计数原理分析咨询题和解决咨询题的能力及分类讨论思想.它是高中数学中从内容到方法都比较专门的一个组成部分,是进一步学习概率论的基础知识.由于这部分内容概念性强,抽象性强,思维方法新颖,同时解题过程中极易犯〝重复〞或〝遗漏〞的错误,而且结果数目较大,无法一一检验,因此学生要学好本节有一定的难度.解决该咨询题的关键是学习时要注意加深对概念的明白得,把握知识的内在联系和区不,严谨而周密地去摸索分析咨询题.二项式定理是进一步学习概率论和数理统计的基础知识,高考重点考查展开式及通项,难度与课本内容相当.另外利用二项式定理及二项式系数的性质解决一些较简单而有味的小题,在高考中也时有显现.第1课时 两个计数原理n 类方法,在第一类方法中有m 1种不同的方法,在第二类方法中有m 2种不同的方法,……,在第n 类方法中有m n 种不同的方法,那么完成这件事共有N = 种不同的方法.2.分步计数原理〔也称乘法原理〕:做一件情况,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做n 步有m n 种不同的方法,那么完成这件事共有N = 种不同的方法.3.解题方法:枚举法、插空法、隔板法.(2)、(3)班分不有学生48,50,52人(1) 从中选1人当学生代表的方法有多少种?(2) 从每班选1人组成演讲队的方法有多少种?(3) 从这150名学生中选4人参加学代会有多少种方法?(4) 从这150名学生中选4人参加数理化四个课外活动小组,共有多少种方法?解:〔1〕48+50+52=150种 〔2〕48×50×52=124800种 〔3〕4150C 〔4〕4150A 变式训练1:在直角坐标x-o -y 平面上,平行直线x=n ,〔n=0,1,2,3,4,5〕,y=n ,〔n=0,1,2,3,4,5〕,组成的图形中,矩形共有〔 〕A 、25个B 、36个C 、100个D 、225个解:在垂直于x 轴的6条直线中任意取2条,在垂直于y 轴的6条直线中任意取2条,如此的4 条直线相交便得到一个矩形,因此依照分步记数原理明白:得到的矩形共有22515152626=⨯=⋅C C 个, 应选D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10练-计数原理、概率、随机变量及其分布列一、单选题1.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A .3600种B .1440种C .4820种D .4800种2.从集合{A ,B ,C ,D ,E ,F }和{1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).则每排中字母C 和数字4,7至少出现两个的不同排法种数为( )A .85B .95C .2040D .2280 3.()()4121x x ++的展开式中3x 的系数为( )A .12B .14C .16D .204.某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD (边长为2个单位)的顶点A 处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为(1,2,,6)i i =⋅⋅⋅,则棋子就按逆时针方向行走i 个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A 处的所有不同走法共有( )A .22种B .24种C .25种D .27种5.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为( )A .15B .815C .35D .320 6.我国古代有着辉煌的数学研究成果.《周牌算经》、《九章算术》、《海岛算经》、《孙子算经》、……《缉古算经》等10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这l0部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是魏晋南北朝时期专著的概率为( ).A .1415B .115C .29D .7.已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1—p i ,i =1,2.若0<p 1<p 2<12,则( ) A .1E()ξ<2E()ξ,1D()ξ<2D()ξB .1E()ξ<2E()ξ,1D()ξ>2D()ξC .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ8.有甲、乙两个盒子,甲盒子里有1个红球,乙盒子里有3个红球和3个黑球,现从乙盒子里随机取出()*16,n n n N ≤≤∈个球放入甲盒子后,再从甲盒子里随机取一球,记取到的红球个数为ξ个,则随着()*16,n n n N ≤≤∈的增加,下列说法正确的是( )A .E ξ增加,D ξ增加B .E ξ增加,D ξ减小C .E ξ减小,D ξ增加D .E ξ减小,D ξ减小二、多选题9.设集合{2,3,4}M =,{1,2,3,4}N =,分别从集合M 和N 中随机取一个元素m 与n .记“点(,)P m n 落在直线x y k +=上”为事件()*38,k A k k N ≤≤∈,若事件k A 的概率最大,则k 的取值可能是( ) A .4 B .5C .6D .7 10.对于二项式()3*1n x n N x ⎛⎫+∈ ⎪⎝⎭,以下判断正确的有( )A .存在*n N ∈,展开式中有常数项;B .对任意*n N ∈,展开式中没有常数项;C .对任意*n N ∈,展开式中没有x 的一次项;D .存在*n N ∈,展开式中有x 的一次项.11.下列对各事件发生的概率判断正确的是( )A .某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该生在上学路上到第3个路口首次遇到红灯的概率为427 B .三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为25C .甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,从每袋中各任取一个球,则取到同色球的概率为12D .设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率是2912.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的45,女生喜欢抖音的人数占女生人数35,若有95%的把握认为是否喜欢抖音和性别有关则调查人数中男生可能有( )人附表:附:()()()()()22n ad bc K a b c d a c b d -=++++ A .25B .45C .60D .75三、填空题13.在2n x ⎫⎪⎭的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项等于_____. 14.安排,,,,,A B C D E F 六名义工照顾甲、乙、丙三位老人,每两位义工照顾一位老人.考虑到义工与老人住址距离问题,义工A 不安排照顾老人甲,义工B 不安排照顾老人乙,安排方法共有___________. 15.若有一个不透明的袋子内装有大小、质量相同的6个小球,其中红球有2个,白球有4个,每次取两个,取后放回,连续取三次,设随机变量ξ表示取出后都是白球的次数,则()E ξ=______ .16.设2018220180122018(1)ax x a x a a x a -=++++L ,若12320182320182018a a a a a +++⋯+=()0a ≠,则实数a =________.四、解答题17.武汉又称江城,是湖北省省会城市,被誉为中部地区中心城市,它不仅有着深厚的历史积淀与丰富的民俗文化,更有着众多名胜古迹与旅游景点,每年来武汉参观旅游的人数不胜数,其中黄鹤楼与东湖被称为两张名片为合理配置旅游资源,现对已游览黄鹤楼景点的游客进行随机问卷调查,若不游玩东湖记1分,若继续游玩东湖记2分,每位游客选择是否游览东湖景点的概率均为12,游客之间选择意愿相互独立.(1)从游客中随机抽取3人,记总得分为随机变量X,求X的分布列与数学期望;(2)(i)若从游客中随机抽取m人,记总分恰为m分的概率为m A,求数列{}m A的前10项和;(ⅱ)在对所有游客进行随机问卷调查过程中,记已调查过的累计得分恰为n分的概率为n B,探讨n B与1n B-之间的关系,并求数列{}n B的通项公式.18.某游戏棋盘上标有第0、1、2、L、100站,棋子开始位于第0站,选手抛掷均匀硬币进行游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第99站或第100站时,游戏结束.设游戏过程中棋子出现在第n 站的概率为n P .(1)当游戏开始时,若抛掷均匀硬币3次后,求棋子所走站数之和X 的分布列与数学期望;(2)证明:()()1111982n n n n P P P P n +--=--≤≤; (3)若最终棋子落在第99站,则记选手落败,若最终棋子落在第100站,则记选手获胜.请分析这个游戏是否公平.第10练-计数原理、概率、随机变量及其分布列一、单选题1.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A.3600种B.1440种C.4820种D.4800种【答案】A【解析】【分析】不相邻问题用插空法,先将除甲乙外的其他5人全排列,再将甲乙2人插入6个空中,即可. 【详解】第一步,先将除甲乙外的其他5人全排列,5554321120A=⨯⨯⨯⨯=种第二步,将甲乙2人插入6个空中,266530A=⨯=种则不同的排法种数是5256120303600A A=⨯=g种故选:A【点睛】本题考查排列问题,插空法是解决本题的关键.属于较易题.2.从集合{A,B,C,D,E,F}和{1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).则每排中字母C和数字4,7至少出现两个的不同排法种数为()A.85 B.95 C.2040 D.2280【答案】C【解析】【分析】根据题意,分2步进行分析:先在两个集合中选出4个元素,要求字母C和数字4,7至少出现两个,再将选出的4个元素全排列,即得解.【详解】根据题意,分2步进行分析:①,先在两个集合中选出4个元素,要求字母C和数字4,7至少出现两个,若字母C和数字4,7都出现,需要在字母A,B,D,E,F中选出1个字母,有5种选法,若字母C和数字4出现,需要在字母A,B,D,E,F中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若字母C和数字7出现,需要在字母A,B,D,E,F中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若数字4、7出现,需要在字母A ,B ,D ,E ,F 中选出2个字母,有C 52=10种选法,则有5+35+35+10=85种选法,②,将选出的4个元素全排列,有A 44=24种情况,则一共有85×24=2040种不同排法; 故选:C .【点睛】本题考查了排列组合综合,考查了学生综合分析,转化化归,分类讨论的能力,属于中档题.3.()()4121x x ++的展开式中3x 的系数为( )A .12B .14C .16D .20【答案】C【解析】【分析】将代数式变形为()()()()444121121x x x x x ++=+++,求出展开式的通项,利用x 的指数为3,求出参数值,然后代入展开式通项可求得3x 的系数.【详解】 ()()()()444121121x x x x x ++=+++Q ,展开式通项为1,444422r r k k r r k k r k T C x xC x C x C x +=+=+,令13r k =+=,得3r =,2k =,则展开式中3x 的系数为3244242616C C +=+⨯=.故选:C.【点睛】本题考查了二项展开式中指定项的系数问题,考查计算能力,是基础题.4.某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD (边长为2个单位)的顶点A 处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为(1,2,,6)i i =⋅⋅⋅,则棋子就按逆时针方向行走i 个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A 处的所有不同走法共有( )A .22种B .24种C .25种D .27种【答案】D【解析】分析:抛掷三次骰子后棋子恰好又回到点A 处的表示三次骰子的点数之和是8,16,列举出在点数中三个数字能够使得和为8,16的125;134;116;224;233;466;556,共有7种组合,利用分类计数原理能得到结果. 详解:由题意知正方形ABCD (边长为2个单位)的周长是8,抛掷三次骰子后棋子恰好又回到点A 处的表示三次骰子的点数之和是8,16,列举出在点数中三个数字能够使得和为8,16的有125;134;116;224;233;466;556,共有7种组合,前2种组合125;134,每种情况可以排列出336A =种结果,共有3322612A =⨯=种结果;116;224;233;466;556各有3种结果,共有5315⨯=种结果,根据分类计数原理知共有121527+=种结果,故选D.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.5.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为( )A .15B .815C .35D .320【答案】D【解析】【分析】“口香糖吃完时还剩2支香烟”即第四次取到的是口香糖且前三次有两次口香糖一次香烟,根据古典概型计算出其概率即可.【详解】由题:“口香糖吃完时还剩2支香烟”说明:第四次取到的是口香糖,前三次中恰有两次口香糖一次香烟,记香烟为123,,A A A ,口香糖为123,,B B B ,进行四次取物,基本事件总数为:6543360⨯⨯⨯=种事件“口香糖吃完时还剩2支香烟”前四次取物顺序分为以下三种情况:烟、糖、糖、糖:332118⨯⨯⨯=种糖、烟、糖、糖: 332118⨯⨯⨯=种糖、糖、烟、糖:323118⨯⨯⨯=种包含的基本事件个数为:54,所以,其概率为54336020= 故选:D【点睛】此题考查古典概型,解题关键在于弄清基本事件总数,和某一事件包含的基本事件个数,其本质在于计数原理的应用.6.我国古代有着辉煌的数学研究成果.《周牌算经》、《九章算术》、《海岛算经》、《孙子算经》、……《缉古算经》等10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这l0部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是魏晋南北朝时期专著的概率为( ).A .1415B .115C .29D . 【答案】A【解析】【分析】设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A ,可以求()P A ,运用公式()1()P A P A =-,求出()P A .【详解】设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A , 所以232101()=15C P A C =,因此114()1()=11515P A P A =--=,故本题选A. 【点睛】本题考查了求对立事件的概率问题,考查了运算能力.7.已知随机变量i ξ满足P (i ξ=1)=pi ,P (i ξ=0)=1—pi ,i=1,2.若0<p1<p2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξC .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ【答案】A【解析】∵1122(),()E p E p ξξ==,∴12()()E E ξξ<,∵111222()(1),()(1)D p p D p p ξξ=-=-,∴121212()()()(1)0D D p p p p ξξ-=---<,故选A .【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列,组合与概率知识求出X 取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量i ξ服从两点分布,由两点分布数学期望与方差的公式可得A 正确.8.有甲、乙两个盒子,甲盒子里有1个红球,乙盒子里有3个红球和3个黑球,现从乙盒子里随机取出()*16,n n n N ≤≤∈个球放入甲盒子后,再从甲盒子里随机取一球,记取到的红球个数为ξ个,则随着()*16,n n n N ≤≤∈的增加,下列说法正确的是( )A .E ξ增加,D ξ增加B .E ξ增加,D ξ减小C .E ξ减小,D ξ增加D .E ξ减小,D ξ减小 【答案】C【解析】 【分析】由题意可知,从乙盒子里随机取出n 个球,含有红球个数X 服从超几何分布,即()6,3,X H n :,可得出2n EX =,再从甲盒子里随机取一球,则ξ服从两点分布,所以()111222E P n ξξ===++,()1111222D P n ξξ=-==-+,从而可判断出E ξ和D ξ的增减性.【详解】由题意可知,从乙盒子里随机取出n 个球,含有红球个数X 服从超几何分布,即()6,3,X H n :,其中()336k n k nC C P X k C -==,其中k ∈N ,3k ≤且k n ≤,362n nEX ==. 故从甲盒中取球,相当于从含有12n+个红球的1n +个球中取一球,取到红球个数为ξ. 故()111211222n P n n ξ+===+++, 随机变量ξ服从两点分布,所以()111211222n E P n n ξξ+====+++,随着n 的增大,E ξ减小; ()1111222D P n ξξ=-==-+,随着n 的增大,D ξ增大.故选:C. 【点睛】本题考查超几何分布、两点分布,分布列与数学期望,考查推理能力与计算能力,属于难题.二、多选题9.设集合{2,3,4}M =,{1,2,3,4}N =,分别从集合M 和N 中随机取一个元素m 与n .记“点(,)P m n 落在直线x y k +=上”为事件()*38,k A k k N ≤≤∈,若事件k A 的概率最大,则k 的取值可能是( )A .4B .5C .6D .7【答案】BC 【解析】 【分析】先计算出基本事件的总数,再分别求出事件3A 、事件4A 、事件5A 、事件6A 、事件7A 、事件8A 所包含基本事件的个数及相应的概率即可. 【详解】由题意,点(,)P m n 的所有可能情况为(2,1)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(4,1)、(4,2)、(4,3)、(4,4),共12个基本事件,则事件3A :点(,)P m n 落在直线3x y +=包含其中(2,1)共1个基本事件,所以()3112P A =;事件4A :点(,)P m n 落在直线4x y +=包含其中(2,2)、(3,1)共2个基本事件,所以()416P A =;事件5A :点(,)P m n 落在直线5x y +=包含其中(2,3)、(3,2)、(4,1)共3个基本事件,所以()514P A =;事件6A :点(,)P m n 落在直线6x y +=包含其中(2,4)、(3,3)、(4,2)共3个基本事件,所以()614P A =;事件7A :点(,)P m n 落在直线7x y +=包含其中(3,4)、(4,3)共2个基本事件,所以()716P A =;事件8A :点(,)P m n 落在直线8x y +=包含其中(4,4)共1个基本事件,所以()8112P A =.综上可得,当5k =或6时,()()()56max 14k P A P A P A ===.故选:BC. 【点睛】本题主要考查古典概型的概率计算问题,关键是要分情况讨论,属中等难度题.10.对于二项式()3*1nx n N x ⎛⎫+∈ ⎪⎝⎭,以下判断正确的有( )A .存在*n N ∈,展开式中有常数项;B .对任意*n N ∈,展开式中没有常数项;C .对任意*n N ∈,展开式中没有x 的一次项;D .存在*n N ∈,展开式中有x 的一次项. 【答案】AD 【解析】 【分析】利用展开式的通项公式依次对选项进行分析,得到答案。