人教版2020年高考数学仿真模拟试题 文1新人教版

合集下载

(人教版)2020年高三数学模拟试卷及参考答案

(人教版)2020年高三数学模拟试卷及参考答案

(人教版)2020年高三数学模拟试卷及参考答案一、选择题(5×10=50分)1.已知集合{10}{lg(1)}M x x N x y x =+>==-,,则M N =I ( ) A .{11}x x -<< B .{1}x x > C .{11}x x -≤< D .{1}x x ≥-2.等比数列{}n a 中,44a =,则26a a ⋅等于( ) A .4 B .8 C .16D .323.已知:1231,:(3)0p x q x x -<-<-<, 则p 是q 的什么条件( )A .必要不充分B .充分不必要C .充要D .既不充分也不必要4.若点(cos ,sin )P αα在直线2y x =-上,则sin 22cos2αα+=( ) A .145- B .75- C .2-D .455.圆0222=++x y x 和0422=-+y y x 的公共弦所在直线方程为( ) A .02=-y x B .02=+y x C .02=-y x D .02=+y x 6. 已知函数()22xf x =-,则函数()y f x =的图象可能是( )7.函数()3cos 2sin 2f x x x =-的单调减区间为( )A .2[,]63k k ππππ++,k Z ∈ B .7[,]1212k k ππππ--,k Z ∈C .7[2,2]1212k k ππππ--,k Z ∈D .5[,]1212k k ππππ-+,k Z ∈8.设11321log 2,log 3,()2a b c ===0.3,则( )A .c b a <<B .b c a <<C .a c b <<D .c a b <<9.在复平面内,复数211)i (i-+对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10.已知某几何体的三视图如右图所示, 则该几何体的体积是( )A .21 B .61 C . 121 D . 181二、填空题(5×5=25分)11.向量b a ,的夹角为120°,|5|,3||,1||b a b a -==则= 12.不等式0)1)(3(1<+--x x x 的解集为13.已知圆C 的圆心是直线01=+-y x 与x 轴的交点,且圆C与直线03=++y x 相切.则圆C 的方程为14.已知0,0x y >>,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是______15.已知向量(,1)x =-a ,(3,)y =b ,其中x 随机选自集合{1,1,3}-,y 随机选自集合{1,3},那么⊥a b 的概率是_____.三、解答题(75分)16.设集合A ={x |x 2<4},B ={x |1<4x +3}(1)求集合B A I(2)若不等式022<++b ax x 的解集为B ,求a ,b 的值17.已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中(0,)2πθ∈(1)求θsin 和θcos 的值(2)求函数x x x f sin 22cos )(+=的值域18. 将一颗均匀的四面分别标有1,2,3,4点的正四面体骰子先后抛掷2次,观察向上的点数,求:(1)两数之和为5的概率;(2)以第一次向上点数为横坐标x ,第二次向上的点数为纵坐标y 的点(),x y在区域Ω:0020x y x y >⎧⎪>⎨⎪-->⎩内的概率.19.已知数列{}n a 的前n 项和为22n n nS +=, (1)求数列{}n a 的通项公式 (2)求数列1{}n n a x -的前n 项和(其中0x >)20.如图,正三棱柱111C B A ABC -中,D AA AB ,3,21==为B C 1的中点,P 为AB 边上的动点.(1)当点P 为AB 边上的中点,证明DP //平面11A ACC (2)若,3PB AP =求三棱锥CDP B -的体积.21.若椭圆1C :)20( 14222<<=+b by x 的离心率等于23,抛物线2C :)0( 22>=p py x 的焦点在椭圆的顶点上。

上海市2020〖人教版〗高考数学模拟试卷文科

上海市2020〖人教版〗高考数学模拟试卷文科

上海市2020年〖人教版〗高考数学模拟试卷文科创作人:百里安娜创作日期:202X.04.01审核人:北堂王会创作单位:明德智语学校一、填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.(4分)设全集U=R,若集合A={1,2,3,4},B={x|2≤x≤3},则A∩B=.2.(4分)函数f(x)=1﹣3sin2x的最小正周期为.3.(4分)若复数z满足3z+=1+i,其中i是虚数单位,则z=.4.(4分)设f﹣1(x)为f(x)=的反函数,则f﹣1(2)=.5.(4分)若线性方程组的增广矩阵为解为,则c1﹣c2=.6.(4分)若正三棱柱的所有棱长均为a,且其体积为16,则a=.7.(4分)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=.8.(4分)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为.9.(4分)若x,y满足,则目标函数z=x+2y的最大值为.10.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).11.(4分)在(2x+)6的二项式中,常数项等于(结果用数值表示).12.(4分)已知双曲线C1、C2的顶点重合,C1的方程为﹣y2=1,若C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,则C2的方程为.13.(4分)已知平面向量、、满足⊥,且||,||,||}={1,2,3},则|++|的最大值是.14.(4分)已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f (x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥2,m∈N*),则m的最小值为.二、选择题(本大题共4小题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.15.(5分)设z1、z2∈C,则“z1、z2均为实数”是“z1﹣z2是实数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(5分)下列不等式中,与不等式<2解集相同的是()A.(x+8)(x2+2x+3)<2B.x+8<2(x2+2x+3)C.<D.>17.(5分)已知点A的坐标为(4,1),将OA绕坐标原点O 逆时针旋转至OB,则点B的纵坐标为()A. B. C. D.18.(5分)设 P n(x n,y n)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()A.﹣1B.﹣C.1D.2三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,圆锥的顶点为P,底面圆为O,底面的一条直径为AB,C为半圆弧的中点,E为劣弧的中点,已知PO=2,OA=1,求三棱锥P﹣AOC的体积,并求异面直线PA和OE所成角的大小.20.(14分)已知函数f(x)=ax2+,其中a为常数(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;(2)若a∈(1,3),判断函数f(x)在[1,2]上的单调性,并说明理由.21.(14分)如图,O,P,Q三地有直道相通,OP=3千米,PQ=4千米,OQ=5千米,现甲、乙两警员同时从O地出发匀速前往Q 地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是OQ,速度为5千米/小时,乙的路线是OPQ,速度为8千米/小时,乙到达Q地后在原地等待.设t=t1时乙到达P地,t=t2时乙到达Q地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米,当t1≤t≤t2时,求f(t)的表达式,并判断f(t)在[t1,t2]上的最大值是否超过3?说明理由.22.(16分)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别与椭圆交于点A、B和C、D,记△AOC的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=|;(2)设l1:y=kx,,S=,求k的值;(3)设l1与l2的斜率之积为m,求m的值,使得无论l1和l2如何变动,面积S保持不变.23.(18分)已知数列{a n}与{b n}满足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)若b n=3n+5,且a1=1,求{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a n0≥a n(n∈N*),求证:{b n}的第n0项是最大项;(3)设a1=3λ<0,b n=λn(n∈N*),求λ的取值范围,使得对任意m,n∈N*,a n≠0,且.参考答案与试题解析一、填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.(4分)设全集U=R,若集合A={1,2,3,4},B={x|2≤x≤3},则A∩B={2,3}.【分析】由A与B,找出两集合的交集即可.【解答】解:∵全集U=R,A={1,2,3,4},B={x|2≤x≤3},∴A∩B={2,3},故答案为:{2,3}【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(4分)函数f(x)=1﹣3sin2x的最小正周期为π .【分析】由条件利用半角公式化简函数的解析式,再利用余弦函数的周期性求得函数的最小正周期.【解答】解:∵函数f(x)=1﹣3sin2x=1﹣3=﹣+cos2x,∴函数的最小正周期为=π,故答案为:π.【点评】本题主要考查半角公式的应用,余弦函数的周期性,属于基础题.3.(4分)若复数z满足3z+=1+i,其中i是虚数单位,则z=.【分析】设z=a+bi,则=a﹣bi(a,b∈R),利用复数的运算法则、复数相等即可得出.【解答】解:设z=a+bi,则=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.【点评】本题考查了复数的运算法则、复数相等,属于基础题.4.(4分)设f﹣1(x)为f(x)=的反函数,则f﹣1(2)= ﹣.【分析】由原函数解析式把x用含有y的代数式表示,x,y互换求出原函数的反函数,则f﹣1(2)可求.【解答】解:由y=f(x)=,得,x,y互换可得,,即f﹣1(x)=.∴.故答案为:.【点评】本题考查了函数的反函数的求法,是基础的计算题.5.(4分)若线性方程组的增广矩阵为解为,则c1﹣c2= 16 .【分析】根据增广矩阵的定义得到,是方程组的解,解方程组即可.【解答】解:由题意知,是方程组的解,即,则c1﹣c2=21﹣5=16,故答案为:16.【点评】本题主要考查增广矩阵的求解,根据条件建立方程组关系是解决本题的关键.6.(4分)若正三棱柱的所有棱长均为a,且其体积为16,则a= 4 .【分析】由题意可得(•a•a•sin60°)•a=16,由此求得a的值.【解答】解:由题意可得,正棱柱的底面是变长等于a的等边三角形,面积为•a•a•sin60°,正棱柱的高为a,∴(•a•a•sin60°)•a=16,∴a=4,故答案为:4.【点评】本题主要考查正棱柱的定义以及体积公式,属于基础题.7.(4分)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p= 2 .【分析】利用抛物线的顶点到焦点的距离最小,即可得出结论.【解答】解:因为抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,所以=1,所以p=2.故答案为:2.【点评】本题考查抛物线的方程与性质,考查学生的计算能力,比较基础.8.(4分)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为2 .【分析】利用对数的运算性质化为指数类型方程,解出并验证即可.【解答】解:∵log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2,∴log2(9x﹣1﹣5)=log2[4×(3x﹣1﹣2)],∴9x﹣1﹣5=4(3x﹣1﹣2),化为(3x)2﹣12•3x+27=0,因式分解为:(3x﹣3)(3x﹣9)=0,∴3x=3,3x=9,解得x=1或2.经过验证:x=1不满足条件,舍去.∴x=2.故答案为:2.【点评】本题考查了对数的运算性质及指数运算性质及其方程的解法,考查了计算能力,属于基础题.9.(4分)若x,y满足,则目标函数z=x+2y的最大值为3 .【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+2y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点B时,直线y=﹣x+z的截距最大,此时z最大.由,解得,即B(1,1),代入目标函数z=x+2y得z=2×1+1=3故答案为:3.【点评】本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法.10.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为120 (结果用数值表示).【分析】根据题意,运用排除法分析,先在9名老师中选取5人,参加义务献血,由组合数公式可得其选法数目,再排除其中只有女教师的情况;即可得答案.【解答】解:根据题意,报名的有3名男老师和6名女教师,共9名老师,在9名老师中选取5人,参加义务献血,有C95=126种;其中只有女教师的有C65=6种情况;则男、女教师都有的选取方式的种数为126﹣6=120种;故答案为:120.【点评】本题考查排列、组合的运用,本题适宜用排除法(间接法),可以避免分类讨论,简化计算.11.(4分)在(2x+)6的二项式中,常数项等于 240 (结果用数值表示).【分析】写出二项展开式的通项,由x的指数为0求得r值,则答案可求.【解答】解:由(2x+)6,得=.由6﹣3r=0,得r=2.∴常数项等于.故答案为:240.【点评】本题考查了二项式系数的性质,关键是对二项展开式通项的记忆与运用,是基础题.12.(4分)已知双曲线C1、C2的顶点重合,C1的方程为﹣y2=1,若C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,则C2的方程为.【分析】求出C1的一条渐近线的斜率,可得C2的一条渐近线的斜率,利用双曲线C1、C2的顶点重合,可得C2的方程.【解答】解:C1的方程为﹣y2=1,一条渐近线的方程为y=,因为C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,所以C2的一条渐近线的方程为y=x,因为双曲线C1、C2的顶点重合,所以C2的方程为.故答案为:.【点评】本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.13.(4分)已知平面向量、、满足⊥,且||,||,||}={1,2,3},则|++|的最大值是 3+.【分析】分别以所在的直线为x,y轴建立直角坐标系,分类讨论:当{||,||}={1,2},||=3,设,则x2+y2=9,则++=(1+x,2+y),有||=的最大值,其几何意义是圆x2+y2=9上点(x,y)与定点(﹣1,﹣2)的距离的最大值;其他情况同理,然后求出各种情况的最大值进行比较即可.【解答】解:分别以所在的直线为x,y轴建立直角坐标系,①当{||,||}={1,2},||=3,则,设,则x2+y2=9,∴++=(1+x,2+y),∴||=的最大值,其几何意义是圆x2+y2=9上点(x,y)与定点(﹣1,﹣2)的距离的最大值为=3+;②且{||,||}={1,3},||=2,则,x2+y2=4,∴++=(1+x,3+y)∴||=的最大值,其几何意义是圆x2+y2=4上点(x,y)与定点(﹣1,﹣3)的距离的最大值为2+=2+,③{||,||}={2,3},||=1,则,设,则x2+y2=1∴++=(2+x,3+y)∴||=的最大值,其几何意义是在圆x2+y2=1上取点(x,y)与定点(﹣2,﹣3)的距离的最大值为1+=1+∵,故|++|的最大值为3+.故答案为:3+【点评】本题主要考查了向量的模的求解,解题的关键是圆的性质的应用:在圆外取一点,使得其到圆上点的距离的最大值:r+d (r为该圆的半径,d为该点与圆心的距离).14.(4分)已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f (x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥2,m∈N*),则m的最小值为 8 .【分析】由正弦函数的有界性可得,对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,然后作图可得满足条件的最小m值.【解答】解:∵y=sinx对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,考虑0≤x1<x2<…<x m≤6π,|f(x1)﹣f(x2)|+|f(x2)﹣f (x3)|+…+|f(x m﹣1)﹣f(x m)|=12,按下图取值即可满足条件,∴m的最小值为8.故答案为:8.【点评】本题考查正弦函数的图象和性质,考查分析问题和解决问题的能力,考查数学转化思想方法,正确理解对任意x i,x j (i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max ﹣f(x)min=2是解答该题的关键,是难题.二、选择题(本大题共4小题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.15.(5分)设z1、z2∈C,则“z1、z2均为实数”是“z1﹣z2是实数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】根据充分条件和必要条件的定义结合复数的有关概念进行判断即可.【解答】解:若z1、z2均为实数,则z1﹣z2是实数,即充分性成立,当z1=i,z2=i,满足z1﹣z2=0是实数,但z1、z2均为实数不成立,即必要性不成立,故“z1、z2均为实数”是“z1﹣z2是实数”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,根据复数的有关概念是解决本题的关键.16.(5分)下列不等式中,与不等式<2解集相同的是()A.(x+8)(x2+2x+3)<2B.x+8<2(x2+2x+3)C.<D.>【分析】根据x2+2x+3=(x+1)2+2>0,可得不等式<2,等价于x+8<2(x2+2x+3),从而得出结论.【解答】解:由于x2+2x+3=(x+1)2+2>0,不等式<2,等价于x+8<2(x2+2x+3),故选:B.【点评】本题主要考查不等式的基本性质的应用,体现了等价转化的数学思想,属于基础题.17.(5分)已知点A的坐标为(4,1),将OA绕坐标原点O 逆时针旋转至OB,则点B的纵坐标为()A. B. C. D.【分析】根据三角函数的定义,求出∠xOA的三角函数值,利用两角和差的正弦公式进行求解即可.【解答】解:∵点 A的坐标为(4,1),∴设∠xOA=θ,则sinθ==,cosθ==,将OA绕坐标原点O逆时针旋转至OB,则OB的倾斜角为θ+,则|OB|=|OA|=,则点B的纵坐标为y=|OB|sin(θ+)=7(sinθcos+cosθsin)=7(×+)=+6=,故选:D.【点评】本题主要考查三角函数值的计算,根据三角函数的定义以及两角和差的正弦公式是解决本题的关键.18.(5分)设 P n(x n,y n)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()A.﹣1B.﹣C.1D.2【分析】当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无限靠近(1,1),利用圆的切线的斜率、斜率计算公式即可得出.【解答】解:当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无限靠近(1,1),而可看作点P n(x n,y n)与(1,1)连线的斜率,其值会无限接近圆x2+y2=2在点(1,1)处的切线的斜率,其斜率为﹣1.∴=﹣1.故选:A.【点评】本题考查了极限思想、圆的切线的斜率、斜率计算公式,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,圆锥的顶点为P,底面圆为O,底面的一条直径为AB,C为半圆弧的中点,E为劣弧的中点,已知PO=2,OA=1,求三棱锥P﹣AOC的体积,并求异面直线PA和OE所成角的大小.【分析】由条件便知PO为三棱锥P﹣AOC的高,底面积S△AOC又容易得到,从而带入棱锥的体积公式即可得到该三棱锥的体积.根据条件能够得到OE∥AC,从而找到异面直线PA,OE所成角为∠PAC,可取AC中点H,连接PH,便得到PH⊥AC,从而可在Rt△PAH中求出cos∠PAC,从而得到∠PAC.【解答】解:∵PO=2,OA=1,OC⊥AB;∴;E为劣弧的中点;∴∠BOE=45°,又∠ACO=45°;∴OE∥AC;∴∠PAC便是异面直线PA和OE所成角;在△ACP中,AC=,;如图,取AC中点H,连接PH,则PH⊥AC,AH=;∴在Rt△PAH中,cos∠PAH=;∴异面直线PA与OE所成角的大小为arccos.【点评】考查圆锥的定义,圆锥的高和母线,等弧所对的圆心角相等,能判断两直线平行,以及异面直线所成角的定义及找法、求法,能用反三角函数表示角.20.(14分)已知函数f(x)=ax2+,其中a为常数(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;(2)若a∈(1,3),判断函数f(x)在[1,2]上的单调性,并说明理由.【分析】(1)根据函数的奇偶性的定义即可判断,需要分类讨论;(2)根据导数和函数的单调性的关系即可判断.【解答】解:(1)当a=0时,f(x)=,显然为奇函数,当a≠0时,f(1)=a+1,f(﹣1)=a﹣1,f(1)≠f(﹣1),且f(1)+f(﹣1)≠0,所以此时f(x)为非奇非偶函数.(2)∵a∈(1,3),f(x)=ax2+,∴f′(x)=2ax﹣=,∵a∈(1,3),x∈[1,2],∴ax>1,∴ax3>1,∴2ax3﹣1>0,∴f′(x)>0,∴函数f(x)在[1,2]上的单调递增.【点评】本题考查了函数的奇偶性和单调性,属于基础题.21.(14分)如图,O,P,Q三地有直道相通,OP=3千米,PQ=4千米,OQ=5千米,现甲、乙两警员同时从O地出发匀速前往Q 地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是OQ,速度为5千米/小时,乙的路线是OPQ,速度为8千米/小时,乙到达Q地后在原地等待.设t=t1时乙到达P地,t=t2时乙到达Q地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米,当t1≤t≤t2时,求f(t)的表达式,并判断f(t)在[t1,t2]上的最大值是否超过3?说明理由.【分析】(1)用OP长度除以乙的速度即可求得t1=,当乙到达P点时,可设甲到达A点,连接AP,放在△AOP中根据余弦定理即可求得AP,也就得出f(t1);(2)求出t2=,设t,且t小时后甲到达B地,而乙到达C地,并连接BC,能够用t表示出BQ,CQ,并且知道cos,这样根据余弦定理即可求出BC,即f(t),然后求该函数的最大值,看是否超过3即可.【解答】解:(1)根据条件知,设此时甲到达A点,并连接AP,如图所示,则OA=;∴在△OAP中由余弦定理得,f(t1)=AP==(千米);(2)可以求得,设t小时后,且,甲到达了B点,乙到达了C点,如图所示:则BQ=5﹣5t,CQ=7﹣8t;∴在△BCQ中由余弦定理得,f(t)=BC==;即f(t)=,;设g(t)=25t2﹣42t+18,,g(t)的对称轴为t=;且;即g(t)的最大值为,则此时f(t)取最大值;即f(t)在[t1,t2]上的最大值不超过3.【点评】考查余弦定理的应用,以及二次函数在闭区间上最值的求法.22.(16分)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别与椭圆交于点A、B和C、D,记△AOC的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=|;(2)设l1:y=kx,,S=,求k的值;(3)设l1与l2的斜率之积为m,求m的值,使得无论l1和l2如何变动,面积S保持不变.【分析】(1)依题意,直线l1的方程为y=x,利用点到直线间的距离公式可求得点C到直线l1的距离d=,再利用|AB|=2|AO|=2,可证得S=|AB|d=|x1y2﹣x2y1|;(2)由(1)得:S=|x1y2﹣x2y1|=×|x1﹣y1|=,进而得到答案;(3)方法一:设直线l1的斜率为k,则直线l1的方程为y=kx,联立方程组,消去y解得x=±,可求得x1、x2、y1、y2,利用S=|x1y2﹣x2y1|=•,设=c(常数),整理得:k4﹣2mk2+m2=c2[2k4+(1+4m2)k2+2m2],由于左右两边恒成立,可得,此时S=;方法二:设直线l1、l2的斜率分别为、,则=m,则mx1x2=﹣y1y2,变形整理,利用A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,可求得面积S的值.【解答】解:(1)依题意,直线l1的方程为y=x,由点到直线间的距离公式得:点C到直线l1的距离d==,因为|AB|=2|AO|=2,所以S=|AB|d=|x1y2﹣x2y1|;(2)由(1)A(x1,y1),C(x2,y2),S=|x1y2﹣x2y1|=×|x1﹣y1|=.所以|x1﹣y1|=,由x12+2y12=1,解得A(,﹣)或(,﹣)或(﹣,)或(﹣,),由k=,得k=﹣1或﹣;(3)方法一:设直线l1的斜率为k,则直线l2的斜率为,直线l1的方程为y=kx,联立方程组,消去y解得x=±,根据对称性,设x1=,则y1=,同理可得x2=,y2=,所以S=|x1y2﹣x2y1|=•,设=c(常数),所以(m﹣k2)2=c2(1+2k2)(k2+2m2),整理得:k4﹣2mk2+m2=c2[2k4+(1+4m2)k2+2m2],由于左右两边恒成立,所以只能是,所以,此时S=,综上所述,m=﹣,S=.方法二:设直线l1、l2的斜率分别为、,则=m,所以mx1x2=y1y2,∴m2==mx1x2y1y2,∵A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,∴()()=+4+2(+)=1,即(+4m)x1x2y1y2+2(+)=1,所以+﹣2x1x2y1y2=(x1y2﹣x2y1)2=[1﹣(4m+)x1x2y1y2]﹣2x1x2y1y2=﹣(2m++2)x1x2y1y2,是常数,所以|x1y2﹣x2y1|是常数,所以令2m++2=0即可,所以,m=﹣,S=.综上所述,m=﹣,S=.【点评】本题考查直线与圆锥曲线的综合应用,考查方程思想、等价转化思想与综合运算能力,属于难题.23.(18分)已知数列{a n}与{b n}满足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)若b n=3n+5,且a1=1,求{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a n0≥a n(n∈N*),求证:{b n}的第n0项是最大项;(3)设a1=3λ<0,b n=λn(n∈N*),求λ的取值范围,使得对任意m,n∈N*,a n≠0,且.【分析】(1)把b n=3n+5代入已知递推式可得a n+1﹣a n=6,由此得到{a n}是等差数列,则a n可求;(2)由a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1,结合递推式累加得到a n=2b n+a1﹣2b1,求得,进一步得到得答案;(3)由(2)可得,然后分﹣1<λ<0,λ=﹣1,λ<﹣1三种情况求得a n的最大值M和最小值m,再由∈()列式求得λ的范围.【解答】(1)解:∵a n+1﹣a n=2(b n+1﹣b n),b n=3n+5,∴a n+1﹣a n=2(b n+1﹣b n)=2(3n+8﹣3n﹣5)=6,∴{a n}是等差数列,首项为a1=1,公差为6,则a n=1+(n﹣1)×6=6n﹣5;(2)∵a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2(b n﹣b n﹣1)+2(b n﹣1﹣b n﹣2)+…+2(b2﹣b1)+a1=2b n+a1﹣2b1,∴,∴.∴数列{b n}的第n0项是最大项;(3)由(2)可得,①当﹣1<λ<0时,单调递减,有最大值;单调递增,有最小值m=a1=3λ<0,∴的最小值为,最大值为,则,解得.∴λ∈().②当λ=﹣1时,a2n=1,a2n﹣1=﹣3,∴M=3,m=﹣1,不满足条件.③当λ<﹣1时,当n→+∞时,a2n→+∞,无最大值;当n→+∞时,a2n﹣1→﹣∞,无最小值.综上所述,λ∈(﹣,0)时满足条件.【点评】本题考查了数列递推式,考查了等差关系的确定,考查了数列的函数特性,训练了累加法求数列的通项公式,对(3)的求解运用了极限思想方法,是中档题创作人:百里安娜创作日期:202X.04.01审核人:北堂王会创作单位:明德智语学校。

2020年新教材高考数学模拟考试卷 新课标 人教版

2020年新教材高考数学模拟考试卷 新课标 人教版

2020年新教材高考数学模拟考试卷(试卷总分150分 考试时间120分钟)第Ⅰ卷(选择题 共60分)一、选择题:(共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的)。

1、设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A ∩(C U B )等于( )A 、{2}B 、{2,3}C 、{3}D 、{1,3}2、已知P 和q 是两个命题,如果P 是q 的充分不必要条件,那么⌝P 是⌝q 的( )A 、必要不充分条件B 、充分不必要条件C 、充分必要条件D 、既不充分也不必要条件 3、已知f (x )=10-x,则f -1(100)=( )A 、-2B 、-21 C 、21D 、2 4、已知圆042:22=+-+y x y x C ,则过原点且与圆C 相切的直线方程为( )A 、x y 2-=B 、x y 21-= C 、x y 21= D 、x y 2= 5、把函数x x y sin 3cos -=图象向左平移m 个单位(m>0),所得的图象关于y 轴对称,则有m 的最小值是( ) A 、6π B 、3πC 、32πD 、65π6、已知等差数列()n a 的公差<0,若1024264=+⋅=⋅n a a a a ,则该数列的前n 项和n s 的最大值为( )A 、50B 、45C 、40D 、357、已知双曲线的焦点在y 轴上,两条渐近线方程为x y 2=则双曲线的离心率e 等于( ) A 、5 B 、5 C 、25 D 、45 8、在△OAB 中,OD b OB a OA ,,==是AB 边上的高,若λ=,则实数λ等于( )A 、()2ba ab a --⋅ B 、()2ba b a a --⋅ C 、()b a a b a --⋅ D 、()ba b a a --⋅ 9、已知平面βα, 分别过两条互相垂直的异面直线l ,m ,则下列情况:(1)a ∥β; (2)α⊥β;(3)l ∥β;(4)m ⊥α中,可能成立的有( ) A 、1种 B 、2种 C 、3种 D 、4种10、当x ∈[0,2]时,函数3)1(4)(2--+=x a ax x f 在2=x 时取得最大值,则a 的取值范围是( ) A 、[),21+∞-B 、[),0+∞C 、[),1+∞D 、[),32+∞ 11、设函数⎩⎨⎧≥+-<+=),1(,3),1(,1)(x x x x x f 使得1)(≥x f 的自变量x 的取值范围是( )A 、]2,1[]2,(Y --∞B 、)2,0()2,(Y --∞C 、]2,0[]2,(Y --∞D 、),2[]0,2[+∞-Y 12、在正方体ABCD —1111D C B A 中,M 是棱D 1D 的中点,O 是底面ABCD 的中心,P 是棱11B A 上任意一点,则直线OP 与直线AM 所成角的大小等于( ) A 、ο45 B 、ο90 C 、ο60 D 、不能确定第Ⅱ卷(非选择题,共90分)二、填空题:(共4小题,每小题4分,满分16分,请把答案填写在题中横线上)。

2020高考最新仿真模拟数学科试题(全国Ⅰ卷)及答案——文科

2020高考最新仿真模拟数学科试题(全国Ⅰ卷)及答案——文科

2020高考仿真模拟数学试题(全国Ⅰ卷)——文科(考试时间:120分钟 试卷满分:150分)第I 卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M ={y |x +y =1,x ∈R },N ={y |x ﹣y =1,x ∈R },则M ∩N =( ) A .(1,0)B .{(1,0)}C .{0}D .R2.若复数z 满足(1+i )z =|√3−i |,则z =( ) A .√2iB .−√2iC .1﹣iD .√2−√2i3.对任意实数x ,y ,定义运算x ⊗y ={x ,x −y ≤0y ,x −y >0,设a =ln24,b =ln39,c =ln416,则(b ⊗c )⊗a 的值是( ) A .aB .bC .cD .不能确定4.已知x ,y 的取值如下表所示,若y 与x 线性相关,则y =b ^x +a ^过定点( )x 0 1 3 4 y2.2 4.3 4.8 6.7A .(1.5,4)B .(2,4.5)C .(1.5,4.5)D .(2,4)5.函数y =x 2e |x|+1(其中e 为自然对数的底)的图象大致是( )A .B .C .D .6.《庄子.天下篇》中有一句话:“一尺之棰,日取其半,万世不竭”.如果经过n 天,该木锤剩余的长度为a n (尺),则a n 与n 的关系为( ) A .a n =12nB .a n =1−12nC .a n =1nD .a n =1−1n7.已知向量a →=(1,2),b →=(﹣2,1),c →=(x ,y ),若(a →+b →)⊥c →,则b →在c →上的投影为( ) A .±√102B .±√105C .−√102D .−√1058.阅读如图所示的程序框图,运行相应的程序,若输出的S 为1112,则判断框中填写的内容可以是( )A .n <5B .n <6C .n ≤6D .n <99.一段1米长的绳子,将其截为3段,问这三段可以组成三角形的概率是( ) A .14B .12C .18D .1310.已知三棱锥A ﹣BCD 中,BC ⊥CD ,AB =AD =√2,BC =1,CD =√3,则该三棱锥的外接球的体积为( ) A .4π3B .8π3C .8√2π3D .36π11.已知F 1,F 2是椭圆C :x 2a +y 2b =1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为√36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A .23B .12C .13D .1412.已知关于x 的方程[f (x )]2﹣kf (x )+1=0恰有四个不同的实数根,则当函数f (x )=x 2e x时,实数k 的取值范围是( ) A .(﹣∞,﹣2)∪(2,+∞)B .(4e +e 24,+∞)C.(8e,2)D.(2,4e+e24)第II卷二、填空题:本题共4小题,每小题5分,共20分。

2020届高考数学模拟考试试卷及答案(文科)(一)

2020届高考数学模拟考试试卷及答案(文科)(一)

2020届高考数学模拟考试试卷及答案(一)(文科)一、选择题:本大题共12个小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i是虚数单位,复数为纯虚数,则实数a的值为()A.1 B.﹣1 C.D.﹣22.集合A={0,1,2,3,4},B={x|(x+2)(x﹣1)≤0},则A∩B=()A.{0,1,2,3,4}B.{0,1,2,3}C.{0,1,2}D.{0,1}3.已知向量=(1,2),=(﹣2,m),若∥,则|2+3|等于()A.B.C.D.4.设a1=2,数列{1+a n}是以3为公比的等比数列,则a4=()A.80 B.81 C.54 D.535.若某几何体的三视图(单位:cm)如图所示,其中左视图是一个边长为2的正三角形,则这个几何体的体积是()A.2cm2B.cm3C.3cm3D.3cm36.执行如图所示的程序框图,若输出i的值是9,则判断框中的横线上可以填入的最大整数是()A.4 B.8 C.12 D.167.已知l,m,n为三条不同直线,α,β,γ为三个不同平面,则下列判断正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n∥β,α⊥β,则m⊥nC.若α∩β=l,m∥α,m∥β,则m∥lD.若α∩β=m,α∩γ=n,l⊥m,l⊥n,则l⊥α8.已知θ∈(0,),则y═的最小值为()A.6 B.10 C.12 D.169.已知变量x,y满足,则的取值范围为()A.[0,]B.[0,+∞)C.(﹣∞,]D.[﹣,0]10.已知直线l:y=kx与椭圆C:交于A、B两点,其中右焦点F的坐标为(c,0),且AF与BF垂直,则椭圆C的离心率的取值范围为()A.B.C.D.11.对于实数a、b,定义运算“⊗”:a⊗b=,设f(x)=(2x ﹣3)⊗(x﹣3),且关于x的方程f(x)=k(k∈R)恰有三个互不相同的实根x1、x2、x3,则x1•x2•x3取值范围为()A.(0,3)B.(﹣1,0)C.(﹣∞,0)D.(﹣3,0)12.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)≤f(x),对任意的正数a、b,若a<b,则必有()A.af(a)≤bf(b)B.af(a)≥bf(b)C.af(b)≤bf(a)D.af(b)≥bf(a)二.填空题:本大题共4小题;每小题5分,共20分.13.圆(x+2)2+(y﹣2)2=2的圆心到直线x﹣y+3=0的距离等于.14.已知函数y=sin(ωx+φ)(ω>0,0<φ≤)的部分图象如示,则φ的值为.15.定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x﹣2)=f (x+2),且x∈=(﹣2,0)时,f(x)=2x+,则f17.已知等差数列{a n}满足:a3=7,a5+a7=26.{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.18.已知函数f(x)=﹣2sin2x+2sinxcosx+1(Ⅰ)求f(x)的最小正周期及对称中心(Ⅱ)若x∈[﹣,],求f(x)的最大值和最小值.19.某流感病研究中心对温差与甲型H1N1病毒感染数之间的相关关系进行研究,他们每天将实验室放入数量相同的甲型H1N1病毒和100只白鼠,然后分别记录了4月1日至4月5日每天昼夜温差与实验室里100只白鼠的感染数,得到如下资料:日期4月1日4月2日4月3日4月4日4月5日温差101311127感染数2332242917(1)求这5天的平均感染数;(2)从4月1日至4月5日中任取2天,记感染数分别为x,y用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)视为同一事件,并求|x﹣y|≤3或|x﹣y|≥9的概率.20.如图,已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(I)求证:BC⊥平面APC;(Ⅱ)若BC=3,AB=10,求点B到平面DCM的距离.21.已知椭圆C: +=1(a>b>0),圆Q:(x﹣2)2+(y﹣)2=2的圆心Q在椭圆C上,点P(0,)到椭圆C的右焦点的距离为.(1)求椭圆C的方程;(2)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.22.已知函数f(x)=,(e=2.71828…是自然对数的底数).(1)求f(x)的单调区间;(2)设g(x)=xf'(x),其中f'(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2.参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i是虚数单位,复数为纯虚数,则实数a的值为()A.1 B.﹣1 C.D.﹣2【考点】A5:复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简,再由实部为0且虚部不为0求得a值.【解答】解:∵=为纯虚数,∴,解得:a=1.故选:A.2.集合A={0,1,2,3,4},B={x|(x+2)(x﹣1)≤0},则A∩B=()A.{0,1,2,3,4}B.{0,1,2,3}C.{0,1,2}D.{0,1}【考点】1E:交集及其运算.【分析】求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:由B中不等式解得:﹣2≤x≤1,即B=[﹣2,1],∵A={0,1,2,3,4},∴A∩B={0,1},3.已知向量=(1,2),=(﹣2,m),若∥,则|2+3|等于()A.B.C.D.【考点】9R:平面向量数量积的运算.【分析】根据∥,算出=(﹣2,﹣4),从而得出=(﹣4,﹣8),最后根据向量模的计算公式,可算出的值.【解答】解:∵且∥,∴1×m=2×(﹣2),可得m=﹣4由此可得,∴2+3=(﹣4,﹣8),得==4故选:B4.设a1=2,数列{1+a n}是以3为公比的等比数列,则a4=()A.80 B.81 C.54 D.53【考点】8G:等比数列的性质;8H:数列递推式.【分析】先利用数列{1+a n}是以3为公比的等比数列以及a1=2,求出数列{1+a n}的通项,再把n=4代入即可求出结论.【解答】解:因为数列{1+a n}是以3为公比的等比数列,且a1=2所以其首项为1+a1=3.其通项为:1+a n=(1+a1)×3n﹣1=3n.当n=4时,1+a4=34=81.∴a4=80.5.若某几何体的三视图(单位:cm)如图所示,其中左视图是一个边长为2的正三角形,则这个几何体的体积是()A.2cm2B.cm3C.3cm3D.3cm3【考点】L!:由三视图求面积、体积.【分析】由几何体的三视图得到原几何体的底面积与高,进而得到该几何体的体积.【解答】解:由几何体的三视图可知,该几何体为底面是直角梯形,高为的四棱锥,其中直角梯形两底长分别为1和2,高是2.故这个几何体的体积是×[(1+2)×2]×=(cm3).故选:B.6.执行如图所示的程序框图,若输出i的值是9,则判断框中的横线上可以填入的最大整数是()A.4 B.8 C.12 D.16【考点】EF:程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的S,i的值,当S=16,i=9时,不满足条件,退出循环,输出i的值为9,则判断框中的横线上可以填入的最大整数为:16【解答】解:模拟执行程序框图,可得i=1S=0满足条件,S=1,i=3满足条件,S=4,i=5满足条件,S=9,i=7满足条件,S=16,i=9由题意,此时,不满足条件,退出循环,输出i的值为9,则判断框中的横线上可以填入的最大整数为:16,故选:D.7.已知l,m,n为三条不同直线,α,β,γ为三个不同平面,则下列判断正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n∥β,α⊥β,则m⊥nC.若α∩β=l,m∥α,m∥β,则m∥lD.若α∩β=m,α∩γ=n,l⊥m,l⊥n,则l⊥α【考点】LP:空间中直线与平面之间的位置关系.【分析】根据常见几何体模型举出反例,或者证明结论.【解答】解:(A)若m∥α,n∥α,则m与n可能平行,可能相交,也可能异面,故A错误;(B)在正方体ABCD﹣A′B′C′D′中,设平面ABCD为平面α,平面CDD′C′为平面β,直线BB′为直线m,直线A′B为直线n,则m⊥α,n∥β,α⊥β,但直线A′B与BB′不垂直,故B错误.(C)设过m的平面γ与α交于a,过m的平面θ与β交于b,∵m∥α,m⊂γ,α∩γ=a,∴m∥a,同理可得:m∥b.∴a∥b,∵b⊂β,a⊄β,∴a∥β,∵α∩β=l,a⊂α,∴a∥l,∴l∥m.故C正确.(D)在正方体ABCD﹣A′B′C′D′中,设平面ABCD为平面α,平面ABB′A′为平面β,平面CDD′C′为平面γ,则α∩β=AB,α∩γ=CD,BC⊥AB,BC⊥CD,但BC⊂平面ABCD,故D 错误.故选:C.8.已知θ∈(0,),则y═的最小值为()A.6 B.10 C.12 D.16【考点】HW:三角函数的最值.【分析】y==()(cos2θ+sin2θ),由此利用基本不等式能求出y=的最小值.【解答】解:∵θ∈(0,),∴sin2θ,cos2θ∈(0,1),∴y==()(cos2θ+sin2θ)=1+9+≥10+2=16.当且仅当=时,取等号,∴y=的最小值为16.故选:D.9.已知变量x,y满足,则的取值范围为()A.[0,]B.[0,+∞)C.(﹣∞,]D.[﹣,0]【考点】7C:简单线性规划.【分析】画出约束条件的可行域,利用所求表达式的几何意义求解即可.【解答】解:不等式表示的平面区域为如图所示△ABC,设Q(3,0)平面区域内动点P(x,y),则=kPQ,当P为点A时斜率最大,A(0,0),C(0,2).当P为点C时斜率最小,所以∈[﹣,0].故选:D.10.已知直线l:y=kx与椭圆C:交于A、B两点,其中右焦点F的坐标为(c,0),且AF与BF垂直,则椭圆C的离心率的取值范围为()A.B.C.D.【考点】K4:椭圆的简单性质.【分析】由AF与BF垂直,运用直角三角形斜边的中线即为斜边的一半,再由椭圆的性质可得c>b,结合离心率公式和a,b,c的关系,即可得到所求范围.【解答】解:由AF与BF垂直,运用直角三角形斜边的中线即为斜边的一半,可得||OA|=|OF|=c,由|OA|>b,即c>b,可得c2>b2=a2﹣c2,即有c2>a2,可得<e<1.故选:C.11.对于实数a、b,定义运算“⊗”:a⊗b=,设f(x)=(2x ﹣3)⊗(x﹣3),且关于x的方程f(x)=k(k∈R)恰有三个互不相同的实根x1、x2、x3,则x1•x2•x3取值范围为()A.(0,3)B.(﹣1,0)C.(﹣∞,0)D.(﹣3,0)【考点】3O:函数的图象;53:函数的零点与方程根的关系.【分析】根据定义求出f(x)解析式,画出图象,判断即可.【解答】解:∵a⊗b=,∴f(x)=(2x﹣3)⊗(x﹣3)=,其图象如下图所示:由图可得:x1=﹣k,x2•x3=k,故x1•x2•x3=﹣k2,k∈(0,3),∴x1•x2•x3∈(﹣3,0),故选:D.12.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)≤f(x),对任意的正数a、b,若a<b,则必有()A.af(a)≤bf(b)B.af(a)≥bf(b)C.af(b)≤bf(a)D.af(b)≥bf(a)【考点】6A:函数的单调性与导数的关系.【分析】由已知条件判断出f′(x)≤0,据导函数的符号与函数单调性的关系判断出f(x)的单调性,利用单调性判断出f(a)与f(b)的关系,利用不等式的性质得到结论.【解答】解:∵f(x)是定义在(0,+∞)上的非负可导函数且满足xf′(x)≤f(x),令F(x)=,则F′(x)=,∵xf′(x)﹣f(x)≤0∴F′(x)≤0,∴F(x)=在(0,+∞)上单调递减或常函数∵对任意的正数a、b,a<b∴≥,∵任意的正数a、b,a<b,∴af(b)≤bf(a)故选:C.二.填空题:本大题共4小题;每小题5分,共20分.13.圆(x+2)2+(y﹣2)2=2的圆心到直线x﹣y+3=0的距离等于.【考点】J9:直线与圆的位置关系.【分析】求出圆的圆心坐标,利用点到直线的距离公式求解即可.【解答】解:圆(x+2)2+(y﹣2)2=2的圆心(﹣2,2),圆(x+2)2+(y﹣2)2=2的圆心到直线x﹣y+3=0的距离d==.故答案为:.14.已知函数y=sin(ωx+φ)(ω>0,0<φ≤)的部分图象如示,则φ的值为.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先利用函数图象,计算函数的周期,再利用周期计算公式计算ω的值,最后将点(,0)代入,结合φ的范围,求φ值即可【解答】解:由图可知T=2()=π,∴ω==2∴y=sin(2x+φ)代入(,0),得sin(+φ)=0∴+φ=π+2kπ,k∈Z∵0<φ≤∴φ=故答案为15.定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x﹣2)=f(x+2),且x∈=(﹣2,0)时,f(x)=2x+,则f=f(1)=﹣f(1),代入函数的表达式求出函数值即可.【解答】解:∵定义在R上的函数f(x)满足f(﹣x)=﹣f(x),∴函数f(x)为奇函数,又∵f(x﹣2)=f(x+2),∴函数f(x)为周期为4是周期函数,∴f=f(1)=﹣f(﹣1)=﹣2﹣1﹣=﹣1,故答案为:﹣1.16.已知△ABC的三边长成公差为2的等差数列,且最大角的正弦值为,则这个三角形最小值的正弦值是.【考点】8F:等差数列的性质.【分析】设三角形的三边分别为a、b、c,且a>b>c>0,设公差为d=2,求出a=c+4和b=c+2,由边角关系和条件求出sinA,求出A=60°或120°,再判断A的值,利用余弦定理能求出三边长,由余弦定理和平方关系求出这个三角形最小值的正弦值.【解答】解:不妨设三角形的三边分别为a、b、c,且a>b>c>0,设公差为d=2,三个角分别为、A、B、C,则a﹣b=b﹣c=2,可得b=c+2,a=c+4,∴A>B>C,∵最大角的正弦值为,∴sinA=,由A∈(0°,180°)得,A=60°或120°,当A=60°时,∵A>B>C,∴A+B+C<180°,不成立;即A=120°,则cosA===,化简得,解得c=3,∴b=c+2=5,a=c+4=7,∴cosC===,又C∈(0°,180°),则sinC==,∴这个三角形最小值的正弦值是,故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}满足:a3=7,a5+a7=26.{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.【考点】8E:数列的求和;84:等差数列的通项公式;85:等差数列的前n项和.【分析】(Ⅰ)设等差数列{a n}的公差为d,由于a3=7,a5+a7=26,可得,解得a1,d,利用等差数列的通项公式及其前n项和公式即可得出.(Ⅱ)由(I)可得b n==,利用“裂项求和”即可得出.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,∵a3=7,a5+a7=26,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1;S n==n2+2n.(Ⅱ)===,∴T n===.18.已知函数f(x)=﹣2sin2x+2sinxcosx+1(Ⅰ)求f(x)的最小正周期及对称中心(Ⅱ)若x∈[﹣,],求f(x)的最大值和最小值.【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(1)利用二倍角以及辅助角公式基本公式将函数化为y=Asin (ωx+φ)的形式,即可求周期和对称中心.(2)x∈[﹣,]时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的取值最大和最小值.【解答】解:(1)函数f(x)=﹣2sin2x+2sinxcosx+1,化简可得:f(x)=cos2x﹣1+sin2x+1=sin2x+cos2x=2sin(2x+).∴f(x)的最小正周期T=,由2x+=kπ(k∈Z)可得对称中心的横坐标为x=kπ∴对称中心(kπ,0),(k∈Z).(2)当x∈[﹣,]时,2x+∈[,]当2x+=时,函数f(x)取得最小值为.当2x+=时,函数f(x)取得最大值为2×1=2.19.某流感病研究中心对温差与甲型H1N1病毒感染数之间的相关关系进行研究,他们每天将实验室放入数量相同的甲型H1N1病毒和100只白鼠,然后分别记录了4月1日至4月5日每天昼夜温差与实验室里100只白鼠的感染数,得到如下资料:日期4月1日4月2日4月3日4月4日4月5日温差101311127感染数2332242917(1)求这5天的平均感染数;(2)从4月1日至4月5日中任取2天,记感染数分别为x,y用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)视为同一事件,并求|x﹣y|≤3或|x﹣y|≥9的概率.【考点】CC:列举法计算基本事件数及事件发生的概率.【分析】(1)由已知利用平均数公式能求出这5天的平均感染数.(2)利用列举法求出基本事件总数n=10,设满足|x﹣y|≥9的事件为A,设满足|x﹣y|≤3的事件为B,利用列举法能求出|x﹣y|≤3或|x﹣y|≥9的概率.【解答】解:(1)由题意这5天的平均感染数为:.(2)(x,y)的取值情况有:(23,32),(23,24),(23,29),(23,17),(32,24),(32,29),(32,17),(24,29),(24,17),(29,17),基本事件总数n=10,设满足|x﹣y|≥9的事件为A,则事件A包含的基本事件为:(23,32),(32,17),(29,17),共有m=3个,∴P(A)=,设满足|x﹣y|≤3的事件为B,由事件B包含的基本事件为(23,24),(32,29),共有m′=2个,∴P(B)=,∴|x﹣y|≤3或|x﹣y|≥9的概率P=P(A)+P(B)=.20.如图,已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(I)求证:BC⊥平面APC;(Ⅱ)若BC=3,AB=10,求点B到平面DCM的距离.【考点】LW:直线与平面垂直的判定;MK:点、线、面间的距离计算.【分析】(I)根据正三角形三线合一,可得MD⊥PB,利用三角形中位线定理及空间直线夹角的定义可得AP⊥PB,由线面垂直的判定定理可得AP⊥平面PBC,即AP⊥BC,再由AC⊥BC结合线面垂直的判定定理可得BC⊥平面APC;(Ⅱ)记点B到平面MDC的距离为h,则有V M﹣BCD=V B﹣MDC.分别求出MD长,及△BCD和△MDC面积,利用等积法可得答案.【解答】证明:(Ⅰ)如图,∵△PMB为正三角形,且D为PB的中点,∴MD⊥PB.又∵M为AB的中点,D为PB的中点,∴MD∥AP,∴AP⊥PB.又已知AP⊥PC,PB∩PC=P,PB,PC⊂平面PBC∴AP⊥平面PBC,∴AP⊥BC,又∵AC⊥BC,AC∩AP=A,∴BC⊥平面APC,…解:(Ⅱ)记点B到平面MDC的距离为h,则有V M﹣BCD=V B﹣MDC.∵AB=10,∴MB=PB=5,又BC=3,BC⊥PC,∴PC=4,∴.又,∴.在△PBC中,,又∵MD⊥DC,∴,∴∴即点B到平面DCM的距离为.…21.已知椭圆C: +=1(a>b>0),圆Q:(x﹣2)2+(y﹣)2=2的圆心Q在椭圆C上,点P(0,)到椭圆C的右焦点的距离为.(1)求椭圆C的方程;(2)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.【考点】K4:椭圆的简单性质.【分析】(1)求得圆Q的圆心,代入椭圆方程,运用两点的距离公式,解方程可得a,b的值,进而得到椭圆方程;(2)讨论两直线的斜率不存在和为0,求得三角形MAB的面积为4;设直线y=kx+,代入圆Q的方程,运用韦达定理和中点坐标公式可得M的坐标,求得MP的长,再由直线AB的方程为y=﹣x+,代入椭圆方程,运用韦达定理和弦长公式,由三角形的面积公式,化简整理,由换元法,结合函数的单调性,可得面积的范围.【解答】解:(1)圆Q:(x﹣2)2+(y﹣)2=2的圆心为(2,),代入椭圆方程可得+=1,由点P(0,)到椭圆C的右焦点的距离为,即有=,解得c=2,即a2﹣b2=4,解得a=2,b=2,即有椭圆的方程为+=1;(2)当直线l2:y=,代入圆的方程可得x=2±,可得M的坐标为(2,),又|AB|=4,可得△MAB的面积为×2×4=4;设直线y=kx+,代入圆Q的方程可得,(1+k2)x2﹣4x+2=0,可得中点M(,),|MP|==,设直线AB的方程为y=﹣x+,代入椭圆方程,可得:(2+k2)x2﹣4kx﹣4k2=0,设(x1,y1),B(x2,y2),可得x1+x2=,x1x2=,则|AB|=•=•,可得△MAB的面积为S=•••=4,设t=4+k2(5>t>4),可得==<=1,可得S<4,且S>4=综上可得,△MAB的面积的取值范围是(,4].22.已知函数f(x)=,(e=2.71828…是自然对数的底数).(1)求f(x)的单调区间;(2)设g(x)=xf'(x),其中f'(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2.【考点】6B:利用导数研究函数的单调性;6K:导数在最大值、最小值问题中的应用.【分析】(1)求导数,利用导数的正负,求f(x)的单调区间;(2)g(x)=(1﹣x﹣xlnx),x∈(0,+∞).由h(x)=1﹣x﹣xlnx,确定当x∈(0,+∞)时,h(x)≤h(e﹣2)=1+e﹣2.当x∈(0,+∞)时,0<<1,即可证明结论.【解答】解:(1)求导数得f′(x)=(1﹣x﹣xlnx),x∈(0,+∞),令h(x)=1﹣x﹣xlnx,x∈(0,+∞),当x∈(0,1)时,h(x)>0;当x∈(1,+∞)时,h(x)<0.又e x>0,所以x∈(0,1)时,f′(x)>0;x∈(1,+∞)时,f′(x)<0.因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).证明:(2)因为g(x)=xf′(x).所以g(x)=(1﹣x﹣xlnx),x∈(0,+∞).由h(x)=1﹣x﹣xlnx,求导得h′(x)=﹣lnx﹣2=﹣(lnx﹣lne﹣2),所以当x∈(0,e﹣2)时,h′(x)>0,函数h(x)单调递增;当x∈(e﹣2,+∞)时,h′(x)<0,函数h(x)单调递减.所以当x∈(0,+∞)时,h(x)≤h(e﹣2)=1+e﹣2.又当x∈(0,+∞)时,0<<1,所以当x∈(0,+∞)时,h(x)<1+e﹣2,即g(x)<1+e﹣2.综上所述,对任意x>0,g(x)<1+e﹣2。

2020 高考模拟冲刺卷全国卷I 数学(文科)(仿真卷)含答案

2020 高考模拟冲刺卷全国卷I 数学(文科)(仿真卷)含答案

7.执行如图F2-2所示的程序框图,则输出的结果是
A. 6
B. 7
C. 8
、丿
2 A.
y(y-m) "(O, B. 卢
C. 10
。1
D. 1 -
8.
函数f(x)
=

�;[ 在[飞式上的图像大致为
、丿
三 三三
B
c
D
图 Fl-5
9.已知椭圆�+f, =1Ca>b>O)的右顶点为A,左、右焦点分别为F 1 (—c,O),F,(c,O),且B (—a,a),C(—a,—a),
若 过A,B,C三点的圆与直线x =—生 相切,则此椭圆的离心率为
cl
A1
Al之上
一一可/' B
C
r','',','
-/ -
二 尸二 ,',',',',
'-----一一一一,
'
'
e



)
图Fl-3
图 Fl-4
A. 心@
B. 心@
C. CZ)@
D. @@)
2x —y"(O,
7.已知实数 x,y满足{2x+y多0, 若z =3x+y的最大值为5,则正实数 m 的值为
D. {2}
2. 如果复数— 12+——2bii-(其中 1 为虚数单位,b 为实数)的实部和虚部互为相反数,那么 b 等于

A. — 6
B
2 -3
2 C. 3-
2 D.
3.某课外小组为了了解什么样的活动最能促进同学们进行垃圾分类,随机对该校同学进行 问卷调查,根据调查 结

2020年全国统一高考文科数学模拟试卷(新课标I)含答案解析

2020年全国统一高考文科数学模拟试卷(新课标I)含答案解析

2020年全国统一高考数学模拟试卷(文科)(新课标I)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,93.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.211.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=_______.14.已知向量,且,则=_______.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为_______.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是_______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.2020年全国统一高考数学模拟试卷(文科)(新课标I)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.【考点】Venn图表达集合的关系及运算.【分析】结合已知条件即可求解.观察Venn图,得出图中阴影部分表示的集合,【解答】解:∵全集U={1,2,3,4,5,6},集合A={1,2,4},∴(∁A)={3,5,6},∵B={1,3,5},∴B∩(∁A)={3,5}.故选:B.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,9【考点】极差、方差与标准差.【分析】由平均数和方差的性质得数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数为,方差为32•σ2.【解答】解:∵x1,x2,x3,…,x n的平均数为5,∴=5,∴+1=3×5+1=16,∵x1,x2,x3,…,x n的方差为2,∴3x1+1,3x2+1,3x3+1,…,3x n+1的方差是32×2=18.故选:C.3.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合双曲线的定义进行判断即可.【解答】解:若曲线mx2﹣(m﹣2)y2=1为双曲线,则对应的标准方程为,则>0,即m(m﹣2)>0,解得m>2或m<0,故“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的充分不必要条件,故选:A4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里【考点】等比数列的前n项和.【分析】由题意可知此人每天走的步数构成为公比的等比数列,由求和公式可得首项,可得答案.【解答】解:由题意可知此人每天走的步数构成为公比的等比数列,由题意和等比数列的求和公式可得=378,解得a1=192,∴第此人二天走192×=96步故选:C5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.【考点】双曲线的简单性质.【分析】设双曲线的方程为﹣=1(a,b>0),求得渐近线方程,由题意可得=,运用点到直线的距离公式,解方程可得a=4,b=6,进而得到双曲线的方程.【解答】解:设双曲线的方程为﹣=1(a,b>0),可得渐近线方程为y=±x,由题意可得=,设一个焦点为(c,0),可得=6,可得c=2,即a2+b2=52,解得a=4,b=9,则双曲线的方程为﹣=1.故选:D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.【考点】函数的图象;利用导数研究函数的单调性.【分析】求导y′=cosx,从而可得y=x2g(x)=x2cosx,从而判断.【解答】解:∵y=sinx,∴y′=cosx,由导数的几何意义知,g(x)=cosx,故y=x2g(x)=x2cosx,故函数y=x2g(x)是偶函数,故排除A,D;又∵当x=0时,y=0,故排除C,故选B.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}【考点】程序框图.【分析】由框图知程序功能是计算并输出y=的值,由题意分类讨论即可得解.【解答】解:由框图知程序功能是计算并输出y=的值,当x>0时,令x2﹣x=2,解得x=2或﹣1(舍去);当x<0时,令x2+x=2,解得x=﹣2或1(舍去);故输入的值构成的集合是:{﹣2,2}.故选:D.8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)【考点】直线与圆相交的性质.【分析】由题意知,圆心在直线上,解出b,再利用圆的半径大于0,解出a<2,从而利用不等式的性质求出a﹣b的取值范围.【解答】解:∵圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,∴圆心(1,﹣3)在直线y=x+2b上,故﹣3=1+2b,∴b=﹣2.对于圆x2+y2﹣2x+6y+5a=0,有4+36﹣20a>0,∴a<2,a﹣b=a+2<4,故选A.9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.【考点】解三角形.【分析】分别过C,D作AB的垂线DE,CF,则通过计算可得四边形DEFC为矩形,于是CD=EF=AB﹣AE+BF.【解答】解:过D作DE⊥AB于E,过C作CF⊥AB交AB延长线于F,则DE∥CF,∠CBF=60°.DE=ADsinA==,CF=BCsin∠CBF=()×=.∴四边形DEFC是矩形.∴CD=EF=AB﹣AE+BF.∵AE=ADcosA==,BF=BCcos∠CBF=()×=.∴CD=1﹣+=.故选:A.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.2【考点】简单线性规划.【分析】由约束条件作出可行域,分类化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,当x≥0时,可行域为四边形OACD及其内部区域,A点是目标函数取得最大值的点;当x≤0时,可行域为三角形OAB及其内部区域,A点是目标函数取得最大值的点.∴z=y﹣2|x|的最大值为2.故选:D.11.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π【考点】由三视图求面积、体积.【分析】由三视图知该几何体为棱锥,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为,即可求出此四面体的外接球的体积.【解答】解:由三视图知该几何体为棱锥S﹣ABD,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为所以四面体的外接球的体积=4.故选:C.12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]【考点】函数单调性的判断与证明.【分析】为去绝对值号,讨论a:(1)a<0时,根据指数函数和增函数的定义便可判断函数在[,3]上单调递增,从而需满足g(﹣)≥0,这样可得到﹣1≤a <0;(2)a=0时,显然满足条件;(3)a>0时,得到f(x)=,并可判断x=时取等号,从而需满足,可解出该不等式,最后便可得出实数a的取值范围.【解答】解:(1)当a<0时,函数在上单调递增;∴;∴﹣1≤a<0;(2)当a=0时,f(x)=2x+1在上单调递增;(3)当a>0时,,当且仅当,即x=时等号成立;∴要使f(x)在[]上单调递增,则;即0<a≤1;综上得,实数a的取值范围为[﹣1,1].故选B.二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=2﹣i.【考点】复数代数形式的混合运算.【分析】直接由复数求模公式化简复数z,则答案可求.【解答】解:由=,则=2﹣i.故答案为:2﹣i.14.已知向量,且,则=5.【考点】平面向量数量积的坐标表示、模、夹角.【分析】根据平面向量的坐标运算与数量积运算,求出x的值,再求的值.【解答】解:向量,且,∴•=x﹣2=0,解得x=2,∴﹣2=(﹣3,4);==5.故答案为:5.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为2.【考点】抛物线的简单性质.【分析】利用抛物线的定义,求出P的坐标,然后求出三角形的面积.【解答】解:由抛物线定义,|PF|=x P+1=5,所以x P=4,|y P|=4,所以,△PFO的面积S==.故答案为:2.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是4.【考点】正弦函数的图象.【分析】由题意可得,本题即求函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,数形结合得出结论.【解答】解:满足的x的个数n,即为函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,如图所示,存在k∈(﹣∞,0),使得n取到最大值4,故答案为:4.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.【考点】线性回归方程.【分析】(I)根据表格数据计算;(II)采用独立检验方法列联表计算K2,与6.635比较大小得出结论;(III)根据绝收比例可以看出采用分层抽样比较合理.【解答】解:(1)调查的500处种植点中共有120处空气质量差,其中不绝收的共有110处,∴空气质量差的A作物种植点中,不绝收的种植点所占的比例.(2)列联表如下:收绝收合计南区160 40 200北区270 30 300合计430 70 500∴K2=≈9.967.∵9.967>6.635,∴有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关“.(3)由(2)的结论可知该市A作物的种植点是否绝收与所在地域有关,因此在调查时,先确定该市南北种植比例,再把种植区分南北两层采用分层抽样比采用简单随机抽样方法好.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.【考点】平面与平面垂直的判定;异面直线及其所成的角.【分析】(1)根据题意,得△ABE是正三角形,∠AEB=60°,等腰△CDE中∠CED==30°,所以∠AED=90°,得到DE⊥AE,结合DE⊥AA1,得DE⊥平面A1AE,从而得到平面A1AE ⊥平面平面A1DE.(2)取BB1的中点F,连接EF、AF,连接B1C.证出EF∥A1D,可得∠AEF(或其补角)是异面直线AE与A1D所成的角.利用勾股定理和三角形中位线定理,算出△AEF各边的长,再用余弦定理可算出异面直线AE与A1D所成角的余弦值.【解答】解:(1)依题意,BE=EC=BC=AB=CD…,∴△ABE是正三角形,∠AEB=60°…,又∵△CDE中,∠CED=∠CDE==30°…∴∠AED=180°﹣∠CED﹣∠AEB=90°,即DE⊥AE…,∵AA1⊥平面ABCD,DE⊆平面ABCD,∴DE⊥AA1.…,∵AA1∩AE=A,∴DE⊥平面A1AE…,∵DE⊆平面A1DE,∴平面A1AE⊥平面A1DE.….(2)取BB1的中点F,连接EF、AF,连接B1C,…∵△BB1C中,EF是中位线,∴EF∥B1C∵A1B1∥AB∥CD,A1B1=AB=CD,∴四边形ABCD是平行四边形,可得B1C∥A1D∴EF∥A1D…,可得∠AEF(或其补角)是异面直线AE与A1D所成的角….∵△CDE中,DE=CD==A1E=,AE=AB=1∴A1A=,由此可得BF=,AF=EF==…,∴cos∠AEF==,即异面直线AE与A1D所成角的余弦值为…19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(Ⅰ)讨论可判断出数列{a n}是以1为首项,λ+2为公比的等比数列,从而结合8a2=3a1+a3+13可得λ2﹣4λ+4=0,从而解得;(Ⅱ)化简可得b n=,从而可得T n=1+++…+,T n=+++…+,利用错位相减法求其前n项和即可.【解答】解:(Ⅰ)∵a n+1=(λ+1)S n+1,+1,∴当n≥2时,a n=(λ+1)S n﹣1∴a n+1﹣a n=(λ+1)a n,即a n+1=(λ+2)a n,又∵λ≠﹣2,∴数列{a n}是以1为首项,λ+2为公比的等比数列,故a2=λ+2,a3=(λ+2)2,∵3a1,4a2,a3+13成等差数列,∴8a2=3a1+a3+13,代入化简可得,λ2﹣4λ+4=0,故λ=2,故a n=4n﹣1;(Ⅱ)∵a n b n=log4a n+1=n,∴b n=,故T n=1+++…+,T n=+++…+,故T n=1+++…+﹣=(1﹣)﹣,故T n=﹣.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.【考点】直线与圆的位置关系.【分析】(Ⅰ)求出圆M和圆N的圆心及半径,设圆P的圆心为P(x,y),半径为R.由圆P与圆M外切并与圆N内切,得到曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),由此能求出C的方程.(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由此利用根的判别式、韦达定理,结合已知条件能求出存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.【解答】解:(Ⅰ)圆M:(x+1)2+y2=1的圆心为M(﹣1,0),半径r1=1,圆N的圆心N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.∵圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+r1+r2﹣R=r1+r2=4.…由椭圆的定义可知,曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),∴C的方程为.…(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.设R(x1,y1),S(x2,y2)联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由韦达定理有①,其中△>0恒成立,…由∠OTS=∠OTR(由题意TS,TR的斜率存在),故k TS+k TR=0,即②,由R,S两点在直线y=k(x﹣1)上,故y1=k(x1﹣1),y2=k(x2﹣1),代入②得,即有2x1x2﹣(t+1)(x1+x2)+2t=0③…将①代入③即有:④,要使得④与k的取值无关,当且仅当“t=4“时成立,综上所述存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.…21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f(1),f′(1),代入切线方程即可;(Ⅱ)求出k的值,令g(x)=(x2+x)f'(x),问题等价于,根据函数的单调性证明即可.【解答】解:(Ⅰ)由得,x∈(0,+∞),所以曲线y=f(x)在点(1,f(1))处的切线斜率为:,而f(1)=,故切线方程是:y﹣=﹣(x﹣1),即:x+ey﹣3=0;(Ⅱ)证明:若f′(1)=0,解得:k=1,令g(x)=(x2+x)f'(x),所以,x∈(0,+∞),因此,对任意x>0,g(x)<e﹣2+1,等价于,由h(x)=1﹣x﹣xlnx,x∈(0,∞),得h'(x)=﹣lnx﹣2,x∈(0,+∞),因此,当x∈(0,e﹣2)时,h'(x)>0,h(x)单调递增;x∈(e﹣2,+∞)时,h'(x)<0,h(x)单调递减,所以h(x)的最大值为h(e﹣2)=e﹣2+1,故1﹣x﹣xlnx≤e﹣2+1,设φ(x)=e x﹣(x+1),∵φ'(x)=e x﹣1,所以x∈(0,+∞)时,φ'(x)>0,φ(x)单调递增,φ(x)>φ(0)=0,故x∈(0,+∞)时,φ(x)=e x﹣(x+1)>0,即,所以.因此,对任意x>0,恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.【考点】相似三角形的性质;与圆有关的比例线段.【分析】(1)通过证明△AME∽△ONE,即可推出结果.(2)利用(1)的结论,设OE=x,求解x,然后在直角三角形中求解即可.【解答】(1)证明:∵M、N分别是AF、AB的中点.∴∠AME=∠ONE=90°,又∵∠E=∠E,∴△AME∽△ONE,∴,∴OE•ME=NE•AE.(2)设OE=x,(x>0),∵BE==,∴NE=2,AE=3,又∵OM=,∴x=2,即:(x﹣4)(2x+9)=0,∵x>0,∴x=4,即OE=4,则在Rt△ONE中,cos∠E===∴∠E=30°.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)令x﹣2=cosα,y﹣3=sinα即可得出曲线C的参数方程,直线l过原点,且斜率为tanθ,利用点斜式方程写出直线l的方程;(2)解方程组求出A,B坐标,得到AB,则P到AB的最大距离为C到AB的距离与圆C 的半径的和.【解答】解:(1)令x﹣2=cosα,y﹣3=sinα,则x=2+cosα,y=3+sinα,∴曲线C的参数方程为(α为参数).直线l的斜率k=tanθ=1,∴直线l的直角坐标方程为y=x.(2)解方程组得或.设A(2,2),B(3,3).则|AB|==.∵圆C的圆心为C(2,3),半径r=1,∴C到直线AB的距离为=.∴P到直线AB 的最大距离d=+1.∴△PAB面积的最大值为=.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.【考点】绝对值不等式的解法.【分析】(Ⅰ)将k=4代入g(x),通过讨论x的范围,求出不等式的解集即可;(Ⅱ)问题等价于∀x∈[1,2],x+3≥2k恒成立,根据x的范围求出k的范围即可.【解答】解:(Ⅰ)k=4时,f(x)+g(x)<9,即|x﹣3|+|x﹣4|<9,即或或,解得:﹣1<x<3或3≤x≤4或4<x<8,故原不等式的解集是{x|﹣1<x<8};(Ⅱ)∵k∵≥2且x∈[1,2],∴x﹣3<0,x﹣k<0,∴f(x)=|x﹣3|=3﹣x,g(x)=|x﹣k|=k﹣x,则∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,等价于∀x∈[1,2],x+3≥2k恒成立,∴4≥2k,即k≤2,又∵k≥2,∴k=2.2020年9月9日。

2020届高考数学仿真押题卷01 北京卷 文 新人教A版 精

2020届高考数学仿真押题卷01 北京卷 文 新人教A版 精

2020届高考数学仿真押题卷——北京卷(文1)第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)1.已知集合{}{}3,1,2,3,4A x x B =≥=,则A B I =A .{4}B .{3,4}C .{2,3,4}D .{1,2,3,4}2.设条件0:2>+a a p , 条件0:>a q ; 那么q p 是的A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件3. 数列{}n a 对任意*N n ∈ ,满足13n n a a +=+,且38a =,则10S 等于A .155B . 160C .172D .2404. 若b a b a >是任意实数,且、,则下列不等式成立的是 A .22b a > B .1<ab C .0)lg(>-b a D .b a )31()31(<5.已知一个空间几何体的三视图如图所示,其中正视图、侧视图都是由半圆和矩形组成,根据图中标出的尺寸 (单位:cm ),可得这个几何体的体积是A .πcm 3B .34πcm 3C .35πcm 3 D .2π cm 36. 已知3log ,2321==b a ,运算原理如右图所示, 则输出的值为A.22B.2C. 212-D. 212+结束输出ba 1+ 输出ab 1-否开始是输入b a 、ba >1 21俯视图1 217、已知ABC ∆中,,10,4,3===BC AC AB 则•等于 A .596-B. 215-C. 215D. 2968、如图AB 是长度为定值的平面α的斜线段,点A 为斜足,若点P 在平面α内运动,使得ABP ∆的面积为定值,则动点P 的轨迹是A.圆B.椭圆 C 一条直线 D 两条平行线第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分,共30分.)9.i-12= 10.一个正方形的内切圆半径为2,向该正方形内随机投一点P,点P 恰好落在圆内的概率是__________11.《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100mL (不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100mL (含80)以上时,属醉酒驾车。

2020年全国高考仿真模拟文科数学试卷(一)

2020年全国高考仿真模拟文科数学试卷(一)

2020年全国高考仿真模拟试卷(一)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U为实数集R,已知集合M={x|x2-4>0},N={x|x2-4x+3<0},则图中阴影部分所表示的集合为()A.{x|x<-2} B.{x|x>3}C.{x|1≤x≤2} D.{x|x≥3或x<-2}2.若复数z满足z2=-4,则|1+z|=()A.3 B. 3 C.5 D. 53.为了判断高中生选修理科是否与性别有关.现随机抽取50名学生,得到如下2×2列联表:理科文科合计男131023女72027合计203050根据表中数据,得到K2=50×(13×20-10×7)223×27×20×30≈4.844,若已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025,则认为选修理科与性别有关系出错的可能性约为() A.25% B.5% C.1% D.10%4.以下程序框图的功能是解方程12+22+…+n2=(n+1)(n+2),则输出的i为()A.3 B.4 C.5 D.65.已知f(x)=ln xx,其中e为自然对数的底数,则()A.f(2)>f(e)>f(3) B.f(3)>f(e)>f(2)C.f(e)>f(2)>f(3) D.f(e)>f(3)>f(2)6.公元前5世纪下半叶开奥斯地方的希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O为圆心的大圆直径为1,以AB为直径的半圆面积等于AO与BO所夹四分之一大圆的面积,由此可知,月牙形(图中阴影部分)区域的面积可以与一个正方形的面积相等.现在在两个圆所围成的区域内随机取一点,则该点来自于阴影所示月牙形区域的概率是( )A.13π B.12π+1 C.1π+1D.2π 7.已知等比数列{a n }的前n 项和为S n ,且a 1=12,a 2a 6=8(a 4-2),则S 2020=( )A .22019-12B .1-(21)2019C .22020-12D .1-(21)2020 8.将函数y =2sin ⎪⎭⎫ ⎝⎛+3πx cos ⎪⎭⎫ ⎝⎛+3πx 的图象向左平移φ(φ>0)个单位长度,所得图象对应的函数恰为奇函数,则φ的最小值为( )A.π12B.π6C.π4D.π3 9.设a =log 20182019,b =log 20192018,c =201812019,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a10.已知函数f (x )=x 3-2x +1+e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤2,则实数a 的取值范围是( )A.⎥⎦⎤⎢⎣⎡-23,1B.⎥⎦⎤⎢⎣⎡-1,23C.⎥⎦⎤⎢⎣⎡-21,1D.⎥⎦⎤⎢⎣⎡-1,2111.已知一圆锥的底面直径与母线长相等,一球体与该圆锥的所有母线和底面都相切,则球与圆锥的表面积之比为( )A.23B.49C.269D.82712.已知函数f (x )为R 上的奇函数,且图象关于点(2,0)对称,且当x ∈(0,2)时,f (x )=x 3,则函数f (x )在区间[2018,2021]上( )A .无最大值B .最大值为0C .最大值为1D .最大值为-1第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.已知单位向量e 1,e 2,且〈e 1,e 2〉=π3,若向量a =e 1-2e 2,则|a |=________.14.已知实数x ,y 满足⎩⎨⎧x -y +1≥0,3x -y -3≤0,x +y -1≥0,目标函数z =ax +y 的最大值M ∈[2,4],则实数a的取值范围为________.15.在《九章算术》中有称为“羡除”的五面体体积的求法.现有一个类似于“羡除”的有三条棱互相平行的五面体,其三视图如图所示,则该五面体的体积为________.16.对任一实数序列A ={a 1,a 2,a 3,…},定义新序列ΔA =(a 2-a 1,a 3-a 2,a 4-a 3,…),它的第n 项为a n +1-a n .假定序列Δ(ΔA )的所有项都是1,且a 12=a 22=0,则a 2=________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.某学校为培养学生的兴趣爱好,提高学生的综合素养,在高一年级开设各种形式的校本课程供学生选择(如书法讲座、诗歌鉴赏、奥赛讲座等).现统计了某班50名学生一周用在兴趣爱好方面的学习时间(单位:h)的数据,按照[0,2),[2,4),[4,6),[6,8),[8,10]分成五组,得到了如下的频率分布直方图.(1)求频率分布直方图中m 的值及该班学生一周用在兴趣爱好方面的平均学习时间; (2)从[4,6),[6,8)两组中按分层抽样的方法抽取6人,再从这6人中抽取2人,求恰有1人在[6,8)组中的概率.18.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且3ca cos B =tan A +tan B .(1)求角A 的大小;(2)设AD 为BC 边上的高,a =3,求AD 的取值范围.19.如图,等腰梯形ABCD 中,AB ∥CD ,AD =AB =BC =1,CD =2,E 为CD 的中点,以AE 为折痕把△ADE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:AE ⊥PB ;(2)当四棱锥P -ABCE 体积最大时,求点C 到平面P AB 的距离.20.已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,过焦点F 的直线交C 于A (x 1,y 1),B (x 2,y 2)两点,且y 1y 2=-4.(1)求抛物线C 的方程;(2)如图,点B 在准线l 上的投影为E ,D 是C 上一点,且AD ⊥EF ,求△ABD 面积的最小值及此时直线AD 的方程.21.已知函数f (x )=e x -x +a (其中a ∈R ,e 为自然对数的底数,e =2.71828……).(1)若f (x )≥0对任意的x ∈R 恒成立,求实数a 的取值范围;(2)设t 为整数,对于任意正整数n ,⎪⎭⎫ ⎝⎛n 1n +⎪⎭⎫ ⎝⎛n 2n +⎪⎭⎫ ⎝⎛n 3n +…+⎪⎭⎫⎝⎛n n n <t ,求t 的最小值.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时请写清题号.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线M 的参数方程为⎩⎨⎧x =1+cos φy =1+sin φ(φ为参数),过原点O 且倾斜角为α的直线l 交M 于A ,B 两点,以O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求l 和M 的极坐标方程;(2)当α∈]4,0(π时,求|OA |+|OB |的取值范围.23.选修4-5:不等式选讲已知函数f (x )=|x -5|.(1)解不等式:f (x )+f (x +2)≤3;(2)若a <0,求证:f (ax )-f (5a )≥af (x ).。

2020年高考文科数学模拟试题及答案(一).pdf

2020年高考文科数学模拟试题及答案(一).pdf

C. log 0.7 6 6 0. 7 0.7 6
D.
log 0. 7 6 0.7 6 6 0.7
7. 某学校美术室收藏有 6 幅国画,分别为人物、山水、花鸟各 2 幅,现从中随机抽取 2 幅进行展览,
则恰好抽到 2 幅不同种类的概率为
5
A.
6
4
B.
5
3
C.
4
2
D.
3
8. 下图虚线网格的最小正方形边长为 1,实线是某几何体的三视图,这个几何体的体积为(
0.001
10.828
19.(本试题满分 12 分)
如图,在四棱锥 P ABCD 中 , 底面 ABCD 为四边形, AC BD , BC CD , PB PD , 平面 PAC 平面
PBD , AC 2 3, PCA 30 , PC 4.
(1) 求证: PA 平面 ABCD ; (2) 若四边形 ABCD 中, BAD 120 , AB BC , M 为 PC 上
R ,使得
x
2 0
-
x0
1
0 ”的否定是 _________ .
4
14. 在区间( 0, 4)内任取一实数 t ,则 log 2(t 1) 1 的概率是 _____.
15. 已知 △ABC 中, AB
5 , AC
7,
ABC
2 ,则该三角形的面积是
________.
3
2
16.
已知双曲线
x2 C : a2
PM
一点,且满足
2 ,求三棱锥 M PBD 的体积
MC
20. (本试题满分 12 分)
已知椭圆 C : x2 a2
y2 b2
1(a b 0) 的左右焦点分别为 F1, F2 ,点 P 是椭圆 C 上的一点,若

2020年高考名校名师仿真模拟联考试题 (新课标全国卷)—文数试题及答案(01)

2020年高考名校名师仿真模拟联考试题 (新课标全国卷)—文数试题及答案(01)

2020年高考名校仿真模拟联考试题(新课标全国卷)文科数学(一)本试卷分必考和选考两部分.必考部分一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求的.1.已知集合2{|4410}U x x x =-+≥,{|20}B x x =-≥,则U B ð=A .(-∞,2)B .(-∞,2]C .(12,2)D .(-∞,12)U (12,2)2.已知3i2i ia b -=+(a ,b ∈R ),则复数i z a b =-在复平面内对应的点在A .第一象限B .第二象限C .第三象限D .第四象限 3.已知直线a ⊥平面α,则“直线b ∥平面α”是“b ⊥a ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.已知等差数列{}n a 的前19项和1957S =,则391011log ()a a a ++=A .9B .3C .2D .15.已知向量a =(2,3),b =(6,m ),且⊥a b ,则向量a 在+a b 方向上的投影为A.5 B.5- CD.6.在不等式组02010x y x y y -⎧⎪+-⎨⎪+⎩≥≤≥,所表示的平面区域内随机取一点P ,则点P 到直线l :1x =-的距离小于或等于1的概率为A .12 B .14 C .18 D .1167.已知321()(4)3f x x ax b x =++-(0a >,0b >)在1x =处取得极值,则21a b+的最小值为 AB.3+ C .3 D.8.执行如图所示的程序框图,输出S 的值为A .6732020 B .20196061 C .13 D .202060619.先将函数()f x 的图象向右平移25π个单位长度,再将所得函数图象上的所有点的横坐标缩短到原来的14,得到函数()sin()g x A x ωϕ=+(0A >,||2πϕ<)的图象.已知函数()g x 的部分图象如图所示,则函数()f x 的图象的对称轴方程是xA .245x k ππ=+,k ∈Z B .7410x k ππ=+,k ∈Z C .225x k ππ=+,k ∈Z D .725x k ππ=+,k ∈Z10.已知抛物线C :23x y =的焦点为F ,过点F 的直线l 交抛物线C 于A ,B 两点,其中点A 在第一象限,若弦AB 的长为4,则||||AF BF = A .1 B .2或12C .3D .3或1311.已知在四面体ABCD 中,2AB AD BC CD BD =====,平面ABD ⊥平面BDC ,则四面体ABCD 的外接球的表面积为A .203π B .6π C .223πD .8π 12.已知函数3211()62f x x bx cx =++的导函数()f x '是偶函数,若方程()ln 0f x x '-=在1[,]e e上有两个不相等的实数根,则实数c 的取值范围是 A .[2112e --,12-) B .[2112e --,12-]C .[2112e -,12-)D .[2112e -,12-]二、填空题:本题共4小题,每小题5分.13.曲线()sin()2f x x π=+在点(,())22P f ππ处的切线方程为 .14.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为 .侧视图15.已知数列{}n a 满足11230n n n n a a a a +++-=,且10a >,若数列{}n a 为递增数列,则1a 的取值范围为 .16.已知直线l:y b =+与圆M :22(1)2x y +-=相交于A ,B 两点,O 为坐标原点,当MAB ∆的面积取得最大值时,AOB ∆的面积为 . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且222222sin ()2sin sin ()A a b c aBC c b a c +-=-+-.(1)求角A 的大小;(2)若ABC ∆223cos c a C ab--=,求a 的值.18.(本小题满分12分)清华大学中学生标准学术能力诊断性测试分线上测试和线下测试两种方式进行,某学校从该校参加某次线下测试的考生中随机抽取了100名学生的成绩(单位:分),并按成绩分组,得到频率分布表如下:(1)请先求出频率分布表中①,②位置的数据,再完成频率分布直方图(用阴影表示);(2)为了让学生更出色,学校招生办决定从第4,5组中用分层抽样的方法抽取5名学生进行自主招生模拟面试,并从这5名学生中随机抽取2名学生接受考官M的面试,求第4组中恰好有1名学生接受考官M面试的概率.19.(本小题满分12分)如图,AB是半圆O的直径,点D是弧AB上的动点(不与A,B重合),ABC∆是AC=.∠=90°的直角三角形,且2BACAB=,4(1)将ABC∆沿AB翻折,使平面ABC与半圆O所在的平面垂直,求证:平面ACD⊥平面BCD;(2)将ABC∆沿AB翻折至点C到半圆O所在平面的距离为2的位置,求三棱锥-的体积取得最大值时点D到平面ABC的距离.C ABDABCA20.(本小题满分12分)已知直线l :1x ty =+过椭圆22221x y a b+=(0a b >>)的右焦点2F ,并交椭圆于A ,B两点,且||AB 的最小值为3. (1)求椭圆的标准方程;(2)若过AB 的中点M 且与直线l 垂直的直线1l 与y 轴交于点N ,求NAB ∆面积的最大值.21.(本小题满分12分)设函数(1)()ln 1a x f x x x -=-+(0a >). (1)试求函数()f x 的单调区间;(2)求证:1111ln(1)35721n n +>+++⋅⋅⋅++.选考部分请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4─4:坐标系与参数方程在平面直角坐标系xOy 中,曲线 1C 的参数方程为cos 1sin x t y t αα=⎧⎨=-+⎩,(t 为参数,0απ<≤),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为)4πρθ=-.(1)求曲线2C 的直角坐标方程,并指出其形状;(2)1C 与2C 相交于不同的两点A ,B ,点(0,1)N -,若114||||3NA NB +=,求1C 的参数方程中sin α的值.23.(本小题满分10分)选修4─5:不等式选讲已知函数()|||1|f x x a x =++-.(1)当3a =时,求不等式()9f x x +≥的解集;(2)若()|4|f x x -≤的解集包含[0,2],求实数a 的取值范围.2020年高考名校仿真模拟联考试题(新课标全国卷)文科数学(一)答案1.A 【解析】由24410x x -+≥,得x ∈R ,所以U =R .又{|20}{|2}B x x x x =-=≥≥,所以U B ð=(-∞,2).故选A .2.B 【解析】解法一 由已知得3i (2i)i 2i a b b -=+⋅=-+,由复数相等的充要条件可得23a b =-⎧⎨=-⎩,所以i 23i z a b =-=-+,所以复数23i z =-+在复平面内对应的点(2,3)-在第二象限.故选B .解法二 由3i2i i a b -=+得,22i 3i 3i 2i i a a b -=--=+,由复数相等的充要条件得23a b =-⎧⎨=-⎩,则复数23i z =-+,所以复数23i z =-+在复平面内对应的点(2,3)-在第二象限.故选B . 3.A 【解析】因为直线a ⊥平面α,直线b ∥平面α,所以b ⊥a ,所以充分性成立;由直线a ⊥平面α及b ⊥a 可以推得b ∥α或b ⊂α,所以必要性不成立.故选A . 4.C 【解析】通解 设等差数列{}n a 的首项为1a ,公差为d ,由题意得,1911919957S a d =+⨯=,∴11093a d a +==,∴910111039a a a a ++==,∴3910113log ()log 92a a a ++==.故选C . 优解 由等差数列的前n 项和公式及性质可得,119191019()19572a a S a +===,∴103a =,∴910111039a a a a ++==,∴3910113log ()log 92a a a ++==.故选C . 5.A 【解析】因为⊥a b ,所以1230m ⋅=+=a b ,解得4m =-,所以b =(6,-4),所以+a b =(8,-1),所以向量a 在⊥a b方向上的投影为()||5⋅+=+a a b a b . 6.C 【解析】先画出不等式组02010x y x y y -⎧⎪+-⎨⎪+⎩≥≤≥,所表示的平面区域,如图中ABC ∆及其内部所示,易求得(1,1)A --,(3,1)B -,(1,1)C ,则ABC ∆的面积为14242⨯⨯=.记直线1y =-与y 轴的交点为M ,作出直线l :1x =-,分析易知满足条件的点P 恰好落在三角形区域OAM 内(含边界),其面积为111122⨯⨯=,故点P 到直线l :1x =-的距离小于或等于1的概率为11248=,故选C .7.C 【解析】由321()(4)3f x x ax b x =++-(0a >,0b >),得2()24f x x ax b '=++-.由题意得2(1)1240f a b '=++-=,则23a b +=,所以21212121122()()(2)(5)333a b b a a b a b a b a b a b++=+⨯=++=++ 122(5)33b a a b+⨯=≥, 当且仅当22b a a b =,即1a b ==时,等号成立.故21a b+的最小值为3.故选C . 8.D 【解析】1i =,114a =⨯,114S =⨯;2i =,147a =⨯,111111(1)14473447S =+=-+-⨯⨯;…;2020i =,1(320202)(320201)a =⨯-⨯+,111111[(1)()()]3447320202320201S =-+-+⋅⋅⋅+-⨯-⨯+112020(1)33202016061=-=⨯+, 结束循环.此时输出20206061S =.故选D .9.D 【解析】通解 设()g x 的最小正周期为T ,由题意和题图可知2A =,942054T πππ=-=,∴T π=,∴2ω=,∴()2sin()g x x ωϕ=+. ∵()g x 的图象过点9(,2)20π,∴92102k ππϕπ+=+,k ∈Z , ∴225k πϕπ=-,k ∈Z .。

2020年高考数学仿真卷01(解析版)

2020年高考数学仿真卷01(解析版)

2020年高考数学仿真卷01(考试时间:120分钟 试卷满分:160分)数学I一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合}{2,1,0=A ,}{11<<-=x x B ,则=⋂B A ______. 【答案】{0}【解析】由交集的定义可知{0}.2.已知复数z 1=1-2i ,z 2=a +2i (其中i 为虚数单位,a ∈R ).若z 1z 2是纯虚数,则a 的值为______. 【答案】-4【解析】(1-2i)(a +2i)=a+4+(2-2a )i,因为z 1z 2是纯虚数,所以a=-4. 3. 如图的程序框图,运行相应的程序,输出S 的值为_______. 【答案】8【解析】按照程序框图运行程序,输入i=1,S=0 i=1不是偶数,则S=1,i=2<4,循环 i=2是偶数,则i=1,S=5,i=3<4,循环 i=3不是偶数,则S=8,i=4≥4,输出结果:S=8. 4.函数)67lg(2x x y -+=的定义域是_______. 【答案】(-1,7)【解析】由对数的意义知:7+6x -x 2>0,得x 2-6x -7<0知-1<x<7.5.若一组样本数据6,7,x ,8,9,10的平均数为8,则该组样本数据的方差为 . 【答案】35第3题图【解析】由平均数的定义得x =8,故方差为s 2=61[(6-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2+(10-8)2]=35. 6.从1,3,5,7这五个数中任取两个数,则这两个数之和是奇数的概率为_________. 【答案】53【解析】利用枚举法可知:从1,2,3,4,5这五个数中任取两个数共有10种基本事件,其中和为奇数包含6种基本事件,故概率为53. 7.已知双曲线22221(0,0)x y a b a b -=>>的渐近线与准线的一个交点坐标为(13) ,,则双曲线的焦距为 . 【答案】4【解析】由题意知:点(13) ,代入x aby =得a b 3=,又12=c a ,联立解得c=2,故2c=4. 8.等比数列{a n }的前n 项和为S n ,若4a 1,2a 2,a 3成等差数列,a 1=1,则S 7= . 【答案】127【解析】因为4a 1,2a 2,a 3成等差数列,a 1=1,所以4a 1+a 3=2a 2,即q=2,所以S 7=qq a --1)1(71=127.9.3,母线与底面所成角为3π,则圆锥的表面积是_______.【答案】3π【解析】Q 3,母线与底面所成角为3π,∴如图,设圆锥底面半径AO OB r ==,则母线长2l SA r ==,高3SO r =,213333V r r π∴==,解得1r =,2l SA ∴==,3SO =∴该圆锥的表面积为223S rl r πππππ=+=+=.10.函数223)1(x x x y +-=的最大值是______.【答案】41【解析】222111x x x x y +-•+=,令αtan =x ,则ααα2sin 412cos 2sin 21==y ,故41max=y . 11.已知函数3()3()f x x x c x =-+∈R ,若函数()f x 恰有一个零点,则实数c 的取值范围是________. 【答案】(,2)(2,)-∞-+∞U【解析】f ′(x )=3x 2﹣3=3(x ﹣1)(x +1), f '(x )>0⇒x >1或x <-1;f '(x )<0⇒-1<x <1,∴f (x )在(﹣∞,-1)和(1,+∞)上单增,在(-1,1)上单减,∴()()()12()12f x f c f x f c ==-+=-=+极小极大,,函数f (x )恰有一个零点,可得2c -+>0或2c +<0,解得c <-2或c 2>.可得c 的取值范围是(,2)(2,)-∞-+∞U .12.,10=若平面上点P 满足对于任意R t ∈,3≥-则•的最小值为______.【答案】-16,3≥-所以P 到AB 的距离为3.设AB 的中点为O ,则[][]1610)2(41)()(412222-≥-=--+=•,故•的最小值为-16. 13.已知2tan tan()43παα-=,则cos(2)4πα-的值是______.【解析】tan tantan 124tan tan tan tan 41tan 31tan tan 4παπαααααπαα--⎛⎫-=⋅=⋅= ⎪+⎝⎭+ 解得:1tan 3α=-或tan 2α=()cos 2cos 2cos sin 2sin cos 2sin 24442πππααααα⎛⎫-=+=+ ⎪⎝⎭()222222cos sin 2sin cos cos sin 2sin cos 22cos sin αααααααααα-+=-+=⨯+221tan 2tan 1tan ααα-+=+ 当1tan 3α=-时,12193cos 21421019πα--⎛⎫-=⨯= ⎪⎝⎭+当tan 2α=时,144cos 2421410πα-+⎛⎫-== ⎪+⎝⎭,综上所述,cos 2410πα⎛⎫-= ⎪⎝⎭. 14.设直线12,l l 分别是函数ln ,01()ln ,1x x f x x x -<<⎧=⎨>⎩图象上点12,P P 处的切线,1l 与2l 垂直相交于点P ,且1l 与2l 分别与y 轴相交于点,A B ,则PAB ∆的面积的取值范围是_______. 【答案】(0,1)【解析】由题意可知,12,P P 分别在分段函数的两段上设()111,P x y ,()222,P x y 且1201x x <<<()1,011,1x xf x x x⎧-<<⎪⎪∴⎨>'=⎪⎪⎩ 111l k x ∴=-,221l k x = 1212111l l k k x x ∴⋅=-⋅=-,即:121=x x 1l ∴方程为:()1111ln y x x x x =---;2l 方程为:()2221ln y x x x x =-+ ()10,1ln A x ∴-,()20,ln 1B x - ()12121ln ln 12ln 2AB x x x x ∴=---=-=联立12,l l 可得P 点横坐标为:12121222x x x x x x =++ 121211122212PAB S AB x x x x x x ∆∴=⋅==+++()10,1x ∈Q 且1y x x =+在()0,1上单调递减111112x x ∴+>+=01PAB S ∆∴<<,即PAB ∆的面积的取值范围为:()0,1. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在△ABC 中,a ,b ,c 分别为角A ,B ,C所对边的长,cos cos a B A =,cos A = (1)求角B 的值; (2)若a =△ABC 的面积.【解析】(1)在△ABC中,因为cos A =,0πA <<,所以sin A==因为cos cosa B A=,………………2分由正弦定理sin sina bA B=,得sin cos cosA B B A=.所以cos sinB B=.若cos=0B,则sin=0B,与22sin cos1B B+=矛盾,故cos0B≠.………………4分于是sintan1cosBBB==.又因为0πB<<,所以π4B=.………………6分(2)因为a=sin A=1)及正弦定理sin sina bA B==,………………8分所以b=又()()sin sinπsinC A B A B=--=+=sin cos cos sinA B A B+22==………………12分所以△ABC的面积为116sin22264S ab C++===.………………14分16.(本小题满分14分)如图,在三棱锥A-BCD中,E,F分别为棱BC,CD上的点,且BD∥平面AEF.(1)求证:EF∥平面ABD;(2)若BD⊥CD,AE⊥平面BCD,求证:平面AEF⊥平面ACD.【解析】(1)因为BD ∥平面AEF ,BD ⊂平面BCD ,平面AEF ∩平面BCD =EF ,………………4分所以BD ∥EF .因为BD ⊂平面ABD ,EF ⊄平面ABD ,所以EF ∥平面ABD .………………8分 (2)因为AE ⊥平面BCD ,CD ⊂平面BCD ,所以AE ⊥CD .………………10分因为BD ⊥CD ,BD ∥EF ,所以CD ⊥EF ,又AE ∩EF =E ,AE ⊂平面AEF ,EF ⊂平面AEF ,所以CD ⊥平面AEF .又CD ⊂平面ACD ,所以平面AEF ⊥平面ACD .………………14分17.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点()61 2,,其离心率等于22.(1)求椭圆E 的标准方程;(2)若A ,B 分别是椭圆E 的左,右顶点,动点M 满足MB ⊥AB ,且MA 交椭圆E 于点P ,求证:OP OM ⋅u u u r u u u u r 为定值.【解析】(1)由题得223121 2 a b c a ⎧⎪+=⎪⎨⎪=⎪⎩,,且222c a b =-,解得224 2 a b ⎧=⎪⎨=⎪⎩,,………………2分所以椭圆E 的方程为22142x y +=.………………4分(2)设0(2 )M y ,,11( )P x y ,, ABCFED(第16题)AOBPQMN(第18题)直线MA 的方程为0042y y y x =+,代入椭圆得()2222000140822y y y x x +++-=,………………6分由()201204828y x y --=+得()20120288y x y --=+,012088y y y =+,………………10分 所以()20002200288 (2 )88y y OP OM y y y --⎛⎫⋅=⋅ ⎪++⎝⎭u u u r u u u u r ,,()22002200488488y y y y --=+=++.………………14分 18.(本小题满分16分)如图,OM ,ON 是某景区的两条道路(宽度忽略不计,OM 为东西方向),Q 为景区内一景点,A 为道路OM 上一游客休息区.已知tan ∠MON =-3,OA =6(百米),Q 到直线OM ,ON 的距离分别为3(百米),6105(百米).现新修一条自A 经过Q 的有轨观光直路并延伸至道路ON 于点B ,并在B 处修建一游客休息区.(1)求有轨观光直路AB 的长;(2)已知在景点Q 的正北方6 百米的P 处有一大型组合音乐喷泉,喷泉表演一次的时长为9分钟.表演时,喷泉喷洒区域以P 为圆心,r 为半径变化,且t 分钟时,2r at =百米)(0≤t ≤9,0<a <1).当喷泉表演开始时,一观光车S (大小忽略不计)正从休息区B 沿(1)中的轨道BA 以2(百米/分钟)的速度开往休息区A ,问:观光车在行驶途中是否会被喷泉喷洒到,并说明理由.【解析】(1)以点O 为坐标原点,直线OM 为x 轴,建立平面直角坐标系.则由题设得A (6,0),直线ON 的方程为()()003 30y x Q x x =->,,. 03361010x +=03x =,所以()3 3Q ,. 故直线AQ 的方程为()6y x =--,………………4分由360y x x y =-⎧⎨+-=⎩,得39x y =-⎧⎨=⎩,,即()3 9B -,,故()2236992AB =--+答:水上旅游线AB 的长为92.………………6分(2)将喷泉记为圆P ,由题意可得P (3,9),生成t 分钟时,观光车在线段AB 上的点C 处,则BC =2t ,0≤t ≤9,所以C (-3+t ,9-t ). 若喷泉不会洒到观光车上,则PC 2>r 2对t ∈[0,9]恒成立,即PC 2=(6-t )2+t 2=2t 2-12t +36>4at , 当t =0时,上式成立,………………12分当t ∈(0,9]时,2a <t +18t -6,(t +18t -6)min =62-6,当且仅当t =32时取等号,因为a ∈(0,1),所以r <PC 恒成立,即喷泉的水流不会洒到观光车上. 答:喷泉的水流不会洒到观光车上.………………16分 19.(本小题满分16分)已知函数x xnmx x f ln )(--=,R n m ∈,. (1)若函数)(x f 在(2,f (2))处的切线与x -y=0平行,求实数n 的值;(2)试讨论函数)(x f 在区间[]+∞,1上的最大值;(3)若1=n 时,函数)(x f 恰有两个零点21,x x (210x x <<),求证:221>+x x . 【解析】(1)122)2(,)(22=-='-='n f x x n x f ,得n=6.………………4分 (2)n x x f n x x f x xxn x f <>'><'>-='时,时,0)(;0)(),0()(2,所以当 )(1x f n 时,≤在[]+∞,1上单调减,故n m y -=max ;当)(1x f n 时,>在[]n ,1上单调增,在),(+∞n 上单调减故n m y ln 1max --=.………………8分(3)函数)(x f 恰有两个零点21,x x (210x x <<),则0ln 1)(1111=--=x x mx x f ,0ln 1)(2222=--=x x mx x f ,可得2211ln 1ln 1x x x x m +=+=于是2112x x x x -=1212ln ln ln x x x x =-,令112>=x x t ,则11ln tx t t -=,tt t x ln 11-=,于是 )1(121+=+t x x x ,所以tt t t x x ln )ln 21(22221--=-+.………………12分 令t t t t h ln 21)(2--=,因为02)1()(22>-='t t t h ,所以)(t h 在),1(+∞上递增.又0)1()(,1=>>h t h t ,又 112>=x x t ,0ln >t ,又0ln ,1>>t t ,故221>+x x .………………16分 20.(本小题满分16分)已知数列{a n }前n 项和为S n ,数列{a n }的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列,且满足S 5=2a 4+a 5,a 9=a 3+a 4.(1)求数列{a n }的通项公式;(2)若a m a m +1=a m +2,求正整数m 的值;(3)是否存在正整数m ,使得122+m mS S 恰好为数列{a n }中的一项?若存在,求出所有满足条件的m 值,若不存在,说明理由.【解析】(1)设12531,,,,-k a a a a Λ的公差为d ,k a a a a 2642,,,Λ的公比为q ,则d a d d a a q q a a 41,1,291324+=+=+===由⎩⎨⎧==⇒⎩⎨⎧++=+=⇒⎩⎨⎧+=+=322421134439545q d q d a d a S a a a a a a S ,………………2分 所以⎪⎩⎪⎨⎧⋅=-为偶数为奇数n n n a n n ,32,12.………………4分 (2)若)(12*∈-=N k k m ,则1221321232)12(11-+=⋅⇒+=⋅⋅---k k k k k ,因为132-⋅k 为正整数,所以122-k 为正整数, 即1112=⇒=-k k ,此时3320≠⋅,不成立,舍去.………………6分若)(2*∈=N k k m ,则1312=⇒=+k k ,2=m ,成立, 综上,2=m .………………8分(3)若122-m m S S 为}{n a 中的一项,则122-m m S S为正整数, 因为)()(2242123112---+++++++=m m m a a a a a a S ΛΛ1313)13(22)121(211-+=--+-+=--m m m m m ,………………10分所以313)1(2321212212122≤-+--=+=----m m S a S S S m m m m m m , 故若122-m mS S 为}{n a 中的某一项,只能为321,,a a a .………………12分 ①若φ∈⇒=-+---m m m m 113)1(23212, ②2013213)1(2321212=⇒=-+⇒=-+----m m m m m m , ③11313)1(232212=⇒=⇒=-+---m m m m m ,………………15分 综上,1=m 或2=m .………………16分数学Ⅱ(附加题)(满分:40分考试时间:30分钟)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题........,并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵00a b ⎡⎤=⎢⎥⎣⎦M 的一个特征值λ=2,其对应的一个特征向量是11⎡⎤=⎢⎥⎣⎦α.求矩阵M 的另一个特征值以及它的逆矩阵.【解析】由题意,λ=2是矩阵M 的一个特征值,所以2=M αα,所以0112011a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,………………2分 所以2a b ==,………………4分由方程22()402f λλλλ-==-=-.所以2λ=或2λ=-,所以M 的另一个特征值-2.………………6分 又因为02240-⨯=-≠,所以矩阵M 的逆矩阵为1102102M -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.………………………10分 B .[选修4-4:坐标系与参数方程](本小题满分10分)已知直线l :⎩⎪⎨⎪⎧x =1+t ,y =-t (t 为参数)与圆C :⎩⎪⎨⎪⎧x =2cos θ,y =m +2sin θ(θ为参数)相交于A ,B 两点,m 为常数. (1)当m =0时,求线段AB 的长;(2)当圆C 上恰有三点到直线的距离为1时,求m 的值.【解析】(1)直线l :x +y -1=0,曲线C :x 2+y 2=4,………………2分圆心到直线的距离d =12,故AB =2r 2-d 2=14.………………4分(2)圆C 的直角坐标方程为x 2+(y -m )2=4,直线l :x +y -1=0,………………8分 由题意,知圆心到直线的距离d =|m -1|2=1,∴m =1± 2.………………10分C .[选修4-5:不等式选讲](本小题满分10分)已知()123,,0,x x x ∈+∞,且满足1231233x x x x x x ++=,证明:1223313x x x x x x ++≥. 【解析】因为()123,,0,x x x ∈+∞,1231233x x x x x x ++=,所以2331121113x x x x x x ++=,…………………3分又⋅++)(133221x x x x x x 2233112111(111)9x x x x x x ⎛⎫++++= ⎪⎝⎭≥,…………………8分所以1223313x x x x x x ++≥,当且仅当1231x x x ===时取等号.………………10分【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)将4名大学生随机安排到A ,B ,C ,D 四个公司实习. (1)求4名大学生恰好在四个不同公司的概率;(2)随机变量X 表示分到B 公司的学生的人数,求X 的分布列和数学期望E (X ). 【解析】(1)将4人安排四个公司中,共有44=256种不同放法.记“4个人恰好在四个不同的公司”为事件A ,事件A 共包含A 44=24个基本事件,所以4名大学生恰好在四个不同公司的概率P (A )=24256=332.…………………………4分(2)方法1:X 的可能取值为0,1,2,3,4,P (X =0)=3444=81256,P (X =1)=C 41×3344=2764, P (X =2)=C 42×3244=27128,P (X =3)=C 43×344=364,P (X =4)=C 444=1256.所以X 的分布列为: X 0 1 2 3 4 P812562764271283641256…………………………………………………………8分 所以X 的数学期望为:E (X )=0×81256+1×2764+2×27128+3×364+4×1256=1.………………10分23.(本小题满分10分)已知数列通项公式为,其中为常数,且,.等式,其中为实常数.(1)若,求的值;(2)若,且,求实数的值. 【解析】(1)比较可知; ………………2分{}n a 11n n a At Bn -=++,,A B t 1t >n N *∈()()()()1022020122022111x x b b x b x b x ++=+++++⋅⋅⋅++()0,1,2,,20i b i =⋅⋅⋅0,1A B ==1021n nn a b=∑1,0A B ==()1011212222n n nn ab =-=-∑t ()()()1010222211x x x ++=++=()()()24200121010101010111C C x C x C x ++++⋅⋅⋅++()()()22001220111b b x b x b x =+++++⋅⋅⋅++()210,1,2,,10nn b C n ==⋅⋅⋅而时,所以.………………4分设,也可以写成,相加得即,所以.………………6分(2)当时,,结合(1)中结论可知………………8分=,即因为关于t 的式子递增,所以关于t 的方程最多只有一解,而观察③可知,有一解t=2,综上可知:t=2. ………………10分0,1A B ==111n n a At Bn n -=++=+()10101010210101011111nn nn nn n n n a bn C nC C =====+=+∑∑∑∑T =10012101010101010101210n n nCC C C C ==⋅+⋅+⋅+⋅⋅⋅+⋅∑T T =102101010101010210C C C C ⋅+⋅⋅⋅+⋅+⋅+⋅102102T =⋅1052T =⋅10101010102101011152216143nnn nn n n a bnC C ====+=⋅+-=∑∑∑1,0A B ==1111n n n a At Bn t --=++=+10101012221010101111110(22)222(1)2n n nnn n n nnn n n n n n n ab a b b tC C =====--=-=+-∑∑∑∑∑101010101110111222[((1)1)21][(12)1](1)223122t t t t t +-+--+-=+-+--+=-101022(1)310t t t+--+=。

2020届全国1卷高考仿真模拟试卷文科数学含答案

2020届全国1卷高考仿真模拟试卷文科数学含答案
2020 届全国 1 卷高考仿真模拟试卷 文科数学
数学(文科)答案及解析
一、选择题
1. 【答案】C 【解析】因为 A {x | log2 x 3} {x | 0 x 8},B {0,1,2} , 所以 A B {1,2} ,所以 ðU ( A B) {0 ,3,4} .故选 C.
2 022 2 023 2 023
12.【答案】C
【解析】由题得 f (x) x2 2ax a ,由函数 f (x) 在 x1 ,x2
(x1 x2 ) 处的导数相等,得 x1 x2 2a , f (x1 x2 ) m 恒成立, m f (2a)(a 1) 恒成立, 令 g(a) f (2a) 1(2a)3 a(2a)2 a 2a 1
13.【答案】 380 9
【解析】设所抽取的这 100 名住户的年龄的中位数为 m ,
则有10 (0.005 0.015 0.020) ( m 40) 0.045 0.5 ,
解得 m 380 . 9
14. 【答案】 (- 3,- 47 ) 24
【解析】由题意得, f (x) 2x 2 .当 2x 2 3 时,

x
1 k
y
1 ,代入
y2
4x
,得
y2
4 k
y
4
0
.设
A(x1 ,y1),
B(x2 ,y2 ) ,则
y1 y2
4 ,所以
x1x2
y12 4
y22 4
( y1y2 )2 16
1 ,因
为 OA OB x1x2 y1y2 1 4 3 0 ,所以 AOB 为钝角,即
OAB 为钝角三角形.故选 B.
3 4 a3 2a2 1(a 1) ,则 g(a) 4a2 4a 4a(a 1) .

(完整版)2020年普通高等学校招生全国统一考试模拟卷(1)(文科数学含答案详解)

(完整版)2020年普通高等学校招生全国统一考试模拟卷(1)(文科数学含答案详解)


A. 5 2
B.5
C.3
D. 5
【答案】D
【解析】由题意可得: OA 4,3 , OB 1, 2 ,则:
OA tOB 4,3 t 1, 2 4 t,3 2t
4 t 2 3 2t 2
5t2 20t 25 ,
Sufferi 第 2 页, 共 6 页
s to o n 结合二次函数的性质可得,当 t 2 时, OA tOB 5 4 20 2 25 5 . l min y o 本题选择 D 选项.
16
31 D.
32
so 【答案】C
me 【解析】i 1 ,
thi (1) x 2x 1,i 2 , ng a (2) x 22x 11 4x 3,i 3, nd (3) x 24x 31 8x 7,i 4 ,
A. 4
B. 4
C. 1 3
1
D.
3
【答案】C
【解析】因为
cos
2
a tim A.
1 3
,
B.
1 3
,
C.
1 2
,
D.
1 2
,
e a 【答案】D nd 【解析】设 F1F2 2c ,令 PF1 t ,由题意可得: t c 2a2 , t c 2a1 ,
All th 据此可得:a1 a2
c
1
,则:
e1
1 e2
1 , e1
e2 , e2 1
2
n,
2
,因此选
A.
thin 9.如图为正方体 ABCD A1B1C1D1 ,动点 M 从 B1点出发,在正方体表面上沿逆时针方向
g a 运动一周后,再回到 B1 的运动过程中,点 M 与平面 A1DC1 的距离保持不变,运动的路程 x 与 nd l MA1 MC1 MD 之间满足函数关系 l f x ,则此函数图象大致是( )

2020年广东省高考数学调研仿真模拟考试卷一 新课标 人教版

2020年广东省高考数学调研仿真模拟考试卷一 新课标 人教版

2020年广东省高考数学调研仿真模拟考试卷一说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分。

考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至8页。

请把选择题答案填写在第Ⅰ卷后的答题卡上。

参考公式:如果事件A 、B 互斥,那么球的表面积公式P (A +B )=P (A )+P (B ) S = 4πR 2 如果事件A 、B 相互独立,那么其中R 表示球的半径 P (A ·B )=P (A )·P (B )球的体积公式如果事件A 在一次试验中发生的概率是P .334R V π=那么n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分,每小题给出的4个选项中,只有1项是符合题要求的) 1、已知条件p :1+x >2,条件q :5x -6>2x ,则p ⌝是q ⌝的(A )充分必要条件 (B )充分非必要条件(C )必要非充分条件 (D )既非充分又非必要条件2、从2020名学生中选取50名组成参观团,若采用下面的方法选取:先用简单随机抽样从2020人中剔除6人,再将剩下的2000人再按系统抽样的方法进行选取。

则每人入选的概率是(A) 不全相等 (B) 均不相等 (C) 都相等且为 251003 (D) 都相等且为 1403、若P(2,-1)为圆(x -1)2+ y 2= 25的弦AB 的中点, 则弦AB 所在直线的方程是 (A) 2x + y -3 = 0 (B) x + y -1 = 0(C) x -y -3 = 0 (D) 2x -y -5 = 0 4、设10<<<a b ,则下列不等式成立的是 (A) 12<<b ab (B) 0log log 2121<<a b(C) 222<<ab(D) 12<<ab a5、设i , j 是平面直角坐标系中x 轴、y 轴正方向上的单位向量,且→ AB = 4i +2j , →AC =3i +4j ,则△ABC 的面积等于 (A)5(B) 5 (C) 10 (D) 156、已知函数y=x 2-2x+3在区间[0,m]上有最大值3,最小值2,则m 的取值范围是 (A) [1,+∞) (B) [0,2] (C) (-∞,2] (D) [1,2]7、已知θ 为第二象限角,sin (π -θ )= 2425 , 则 cos θ2的值为(A) 35(B) 45(C) ± 35(D) ± 458、设f (x )、g (x )是定义域为R 的恒大于零的可导函数,且f /(x )g (x )― f (x )g /(x )<0,则当a <x <b 时有(A) f (x ) g (x )> f (b ) g (b ) (B) f (x ) g (a )> f (a ) g (x ) (C) f (x ) g (b )> f (b ) g (x ) (D) f (x ) g (x )> f (a ) g (a ) 9、数列 {a n } 的前n 项和为S n ,下列几个命题:① 若{a n }是等比数列,且a m a n = a p a q (m,n,p,q ∈ N *),则m + n = p + q ; ② 若{a n }是等差数列,则S n ,S 2n -S n ,S 3n -S 2n 也成等差数列; ③ 若{a n }是等比数列,则S n ,S 2n -S n ,S 3n -S 2n 也成等比数列; ④ 若{a n }是等比数列,则数列{S n }可能是等差数列. 其中正确的命题序号是 (A) ②④ (B) ③④ (C) ①②③ (D) ①②③④ 10、已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P ∈ BC 1,Q ∈ BC ,则D 1P + PQ 的最小值是 (A) 2(B)3(C)22+ 1 (D)2第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上) 11、已知( a x-x2)n 的展开式中二项式系数之和为512,且展开式中x 3的系数为9,则n = _________,(3分) 常数a 的值为__________。

2020高考文科数学仿真模拟卷01(含解析)

2020高考文科数学仿真模拟卷01(含解析)

2020年4月开学摸底考(新课标卷)高三数学(文)(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 4.测试范围:高中全部内容.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.设全集U =R ,集合{}13A x x =-<<,{}21B x x x =≤-≥或,则()U AC B =( )A .{}11x x -<<B .{}23x x -<<C .{}23x x -≤<D .{}21x x x ≤->-或2.已知11abi i=-+-,其中,a b 是实数,则复数a bi -在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.设15log 6a =,0.216b ⎛⎫= ⎪⎝⎭,165c =,则( )A .a b c <<B .c b a <<C .c a b <<D .b a c <<4.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为( )A .94-B .94C .274D .274- 5.函数()()sin x xf x e ex -=+⋅的图象大致是( )A .B .C .D .6.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则该几何体的体积为( )A .23B .43C .83D .47.古希腊雅典学派算学家欧道克萨斯提出了“黄金分割”的理论,利用尺规作图可画出己知线段的黄金分割点,具体方法如下:(l )取线段AB =2,过点B 作AB 的垂线,并用圆规在垂线上截取BC =12AB ,连接AC ;(2)以C 为圆心,BC 为半径画弧,交AC 于点D ;(3)以A 为圆心,以AD 为半径画弧,交AB 于点E .则点E 即为线段AB 的黄金分割点.若在线段AB 上随机取一点F ,则使得BE ≤AF ≤AE 的概率约为( )(参)A .0.236B .0.382C .0.472D .0.6188.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为A .35B .20C .18D .99.甲,乙,丙,丁四名学生,仅有一人阅读了语文老师推荐的一篇文章.当它们被问到谁阅读了该篇文章时,甲说:“丙或丁阅读了”;乙说:“丙阅读了”;丙说:“甲和丁都没有阅读”;丁说:“乙阅读了”.假设这四名学生中只有两人说的是对的,那么读了该篇文章的学生是( ) A .甲B .乙C .丙D .丁10.已知函数2()35f x x x =-+,()ln g x ax x =-,若对(0,)x e ∀∈,12,(0,)x x e ∃∈且12x x ≠,使得()()(1,2)i f x g x i ==,则实数a 的取值范围是()A .16(,)e eB .746[,)e eC .741[,)e eD .7416(0,][,)e e e11.设函数π()sin 6f x x ⎛⎫=- ⎪⎝⎭,若对于任意5ππ,62α⎡⎤∈--⎢⎥⎣⎦,在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,则m 的最小值为A .π6B .π2 C .7π6D .π12.如图,过双曲线()2222:10,0x y C a b a b-=>>的右焦点F 作x 轴的垂线交C 于,A B 两点(A 在B 的上方),若,A B 到C 的一条渐近线的距离分别为12,d d ,且214d d =,则C的离心率为( )AB .54C .43二、填空题(本大题共4小题,每小题5分,共20分)13.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为___________.14.若,x y 满足20,40,0,x y x y y -+⎧⎪+-⎨⎪⎩,则2z y x =-的最小值为____________.15.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________.16.已知12,F F 是椭圆C :22221x y a b+=(0)a b >>的两个焦点,P 为椭圆C 上的一点,且121260,PF F F PF S ︒∆∠==,则b =______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)数列{}n a 满足11a =,()112n n n a a a +=+(*n N ∈).(1)求证:数列1n a ⎧⎫⎨⎬⎩⎭是等差数列;(2)若1223122311633n n a a a a a a a a a a +++++++>,求正整数n 的最小值. 18.(本小题满分12分)如图所示,AB 为圆O 的直径,点E ,F 在圆O 上,AB EF ,矩形ABCD 所在的平面和圆O 所在的平面互相垂直,且2AB =,1AD EF ==,60BAF ∠=︒. (1)求证:AF ⊥平面CBF ;(2)设FC 的中点为M ,求三棱锥M DAF -的体积1V 与多面体CD AFEB -的体积2V 之比的值.19.(本小题满分12分)基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率%y 进行了统计,结果如下表:(1)请用相关系数说明能否用线性回归模型拟合y 与月份代码x 之间的关系.如果能,请计算出y 关于x 的线性回归方程,如果不能,请说明理由;(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的A 型车和800元/辆的B 型车中选购一种,两款单车使用寿命频数如下表:车型 报废年限经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?参考数据:61()()35iii x x y y =--=∑,621()17.5ii x x =-=∑,621()76i i y y =-=∑36.5≈.参考公式:相关系数()()niix x y y r --=∑,121()()()ˆniii ni i x x y y bx x ==--=-∑∑,a y bx =-.20.(本小题满分12分)已知定点()30A -,,()3,0B ,直线AM 、BM 相交于点M ,且它们的斜率之积为19-,记动点M 的轨迹为曲线C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考数学仿真模拟试题本试卷共6页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的 签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破、弄皱。

不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}3,2,1=A ,{}Z x x x xB ∈<--=,0322 ,则=B A YA .{}2,1B .{}3,2,1,0C .[]2,1D .[]3,02.复数ii212-+的共轭复数的虚部是 A .53-B .53C .1-D .13.下列结论正确的是A .若直线⊥l 平面α,直线⊥l 平面β,且βα,不共面,则βα//B .若直线//l 平面α,直线//l 平面β,则βα//C .若两直线21l l 、与平面α所成的角相等,则21//l lD .若直线l 上两个不同的点B A 、到平面α的距离相等,则α//l 4.已知34cos sin =-αα,则=⎪⎭⎫ ⎝⎛-απ4cos 2A.91 B. 92 C. 94 D. 955.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于B A 、两点,AB 为C 的实轴长的2倍,则C 的离心率为A .3B .2C .3D .26.已知一几何体的三视图如图所示,俯视图由一个直角三角形与一个半圆组成,则该几何体的体积为 A .126+π B .246+π C .1212+π D .1224+π7.执行如图所示的程序框图,如果输入的4=N ,那么输出的=S A .4131211+++B .2341231211⨯⨯+⨯++C .514131211++++D .234512341231211⨯⨯⨯+⨯⨯+⨯++8.设等差数列{}n a 的前n 项和为n S ,若1516=-a S ,则=7SA .21B .22C .23D .24 9.若将函数⎪⎭⎫⎝⎛+=62sin 2πx y 的图像向左平移12π个单位长度,则平移后图象的对称轴为A .)(42Z k k x ∈+=ππ B .)(122Z k k x ∈+=ππC .)(4Z k k x ∈+=ππ D .)(12Z k k x ∈+=ππ10.若)lg(lg lg ,0,0b a b a b a +=+>>,则b a +的最小值为A .8B .6C .4D .2 11.在平面直角坐标系中,O 为原点,)0,3(,)3,0(,)0,1(C B A -,动点D 满足1=OB ++的取值范围是A .[]6,4B .[]119,119+- C .[]72,32D .[]17,17+-12.已知函数2)(x a x g -=(e e x e,1≤≤为自然对数的底数)与x x h ln 2)(=的图象上存在关于x 轴对称的点,则实数a 的取值范围是 A .⎥⎦⎤⎢⎣⎡+21,12eB .[]2,12-e C .⎥⎦⎤⎢⎣⎡-+2,2122e eD .[)∞+-,22e二、填空题:本题共4小题,每小题5分,共20分。

13.设y x ,满足约束条件,30101⎪⎩⎪⎨⎧≤≥-+≥+-x y x y x 则y x z 32-=的最小值是 .14.若⎪⎭⎫ ⎝⎛∈=2,4,532sin ππαα,则αππα2cos 4cos 242sin +⎪⎭⎫ ⎝⎛+的值为_____. 15.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为_____________.高二学生日均使用手机时间的频率分布直方图16.若函数)1,0(,1,35)2(1,12)(1≠>⎪⎪⎩⎪⎪⎨⎧>+-≤-⋅=-a a x x a x aa x f x ,当2121,x x R x x ≠∈,,时有0)]()()[(2121>--x f x f x x 恒成立,则a 的取值范围是 .三、解答题:共70分。

解答应写出文字说明,证明过程或演算步骤。

第17~21 题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:60分。

17.(12分)设数列{}n a 的前n 项和为n S ,满足)(2*N n n a S n n ∈+=.(1)证明:数列{}1-n a 为等比数列; (2)若11--=n n nn a a a b ,求n n b b b T +⋅⋅⋅++=21.18.(12分)某学校为了了解学生使用手机的情况,分别在高一和高二两个年级各随机抽取了100 名学生进行调查.下面是根据调查结果绘制的学生日均使用手机时间的频数分布表和频率 分布直方图,将使用手机时间不低于80分钟的学生称为“手机迷”.高一学生日均使用手机时间的频数分布表时间分组 频数 [0,20) 12 [20,40) 20 [40,60) 24 [60,80) 18 [80,100) 22 [100,120]4(1)将频率视为概率,估计哪个年级的学生是“手机迷”的概率大?请说明理由.(2)在高二的抽查中,已知随机抽到的女生共有55名,其中10名为“手机迷”.根据已知条件完成下面的2×2列联表,并据此资料你有多大的把握认为“手机迷”与性别有关?非手机迷 手机迷合计男 女 合计附:随机变量))()()(()(22d b c a d c b a bc ad n K ++++-=(其中d c b a n +++=为样本总量).参考数据)(02k K P ≥ 0.150 0.100 0.0500.0250k2.072 2.7063.841 5.02419.(12分)如图,在四棱锥ABCD P -中,⊥PD 面ABCD , DC AB //,AD AB ⊥,6=DC ,ο45,10,8=∠==PAD BC AD ,E 为PA 的中点.(1)求证://DE 面PBC ; (2)求三棱锥PBC E -的体积. 20.(12分)已知中心在原点,焦点在x 轴上的椭圆C 的离心率为21,且经过点)23,1(M ,过点)1,2(P 的直线l 与椭圆C 相交于不同的两点B A ,.(1)求椭圆C 的方程;(2)是否存在直线l ,满足PM PB PA =•? 若存在,求出直线l 的方程;若不存在,请说明理由.21.(12分)已知函数)(ln 2)1)(2()(R a x x a x f ∈---=.(1)若曲线x x f x g +=)()(上点))1(,1(g 处的切线过点)2,0(,求函数)(x g 的单调减区间;(2)若函数)(x f y =在⎪⎭⎫⎝⎛21,0上无零点,求a 的最小值.(二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的 第一题计分。

22.【选修44-:坐标系与参数方程】(10分)已知直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=+=t y t m x 2222(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为12sin 3cos 2222=+θρθρ,且曲线C 的左焦点F 在直线l 上.(1)若直线l 与曲线C 交于B A ,两点,求FB FA •的值; (2)求曲线C 的内接矩形的周长的最大值.23.【选修45-:不等式选讲】(10分)已知2)(,1)(2--=++-=a a a g a x x x f . (1)当3=a ,解关于x 的不等式2)()(+>a g x f ;(2)当[)1,a x -∈时恒有)()(a g x f ≤,求实数a 的取值范围.参考答案一、选择填空题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C A A C A B A B C D B13. -6 ; 14. 0 ; 15. - ; 16.三、解答题17(1)由令n=1则即解得...............................................1分当n2时,S n-1=2a n-1+n-1两式相减并由Sn-S n-1=an,可得a n=2a n-1-1 3分a n-1=2 (a n-1-1)。

5分所以{a n-1}是首项为-2公比2的等比数列 6分(2)由(1)知)a n=1-2n所以b n ==所以T n=1- 12分18. (1)由频数分布表可知,高一学生是“手机迷”的概率为..(2分)由频率分布直方图可知,高二学生是“手机迷”的概率为......(4分)因为P1>P2,所以高一年级的学生是“手机迷”的概率大............................(5分)(2)由频率分布直方图可知,在抽取的100人中,“手机迷”有(0.010+0.0025)×20×100=25(人),非手机迷有100﹣25=75(人)...................................................(6分)从而2×2列联表如下:非手机迷手机迷合计男30 15 45女45 10 55合计75 25 100(8分)将2×2列联表中的数据代入公式计算,得........(10分)因为3.030>2.706,所以有90%的把握认为“手机迷”与性别有关..................(12分)19. ((1)取的中点,连和,过点作,垂足为,∵,,∴,又,∴四边形为平行四边形,.......................................... ......(2分)∴,,在直角三角形中,∴,而分别为的中点,∴且,又,∴且,四边形为平行四边形,........................(4分)∴,平面,平面,∴平面......(6分)(2)由第(1)问得平面,则点和点到平面的距离相等,......(8分)∵,,∴,.....................................(10分)∴..............................(12分)20. (1)设椭圆的方程为,由题意得解得,,..........................................................(2分)故椭圆的方程为................................................(4分)(2)若存在直线满足条件,由题意可设直线的方程为,由得.因为直线与椭圆相交于不同的两点,设两点的坐标分别为,所以.整理得.解得.又,,.................................(6分)且,即,......................(7分)所以. 即.所以,解得.........(10分)所以.于是存在直线满足条件,其的方程为. .......................(12分)21. (1)∵,∴,∴,...(1分)又,∴,得......................................(2分)由,得,∴函数单调减区间为. ..............................................(4分)(2)因为在区间上恒成立不可能,故要使函数在上无零点,只要对任意的恒成立,即对恒成立. ...........................................(5分)令,则......................................(6分)再令则,............................................(7分)故在上为减函数,于是,.................(8分)从而,,于是在上为增函数,所以,..(10分)故要使恒成立,只要,综上,若函数在上无零点,则的最小值为................(12分)22.(1)由化曲线的普通方程为...1分则其左焦点为.则...............................................(2分)将直线的参数方程与曲线联立,得...............................................(3分)则..........................................(5分)(2)由曲线的方程为............................(6分)可设曲线上的定点,则以为顶点的内接矩形周长为..............(9分)因此该内接矩形周长的最大值为16..............................(10分)23.(1);(2).(1)时,,.化为解之得:或所求不等式解集为:...............(5分)(2),.或又,综上,实数的取值范围为:..................(10分)。

相关文档
最新文档