六个常用分布的数学期望和方差

合集下载

常见分布的数学期望和方差

常见分布的数学期望和方差

E( X
2)
n k0
k 2Ckn
pkqnk
n
np
k 1
k
(k
(n 1)! 1)!(n
k )!
p k 1q n k
n np (k
k 1
1) (k
(n 1)! 1)!(n
k )!
pk1q nk
n k 1
(k
(n 1)! 1)!(n
k )!
pk1q nk
np[(n 1) p 1],
EX 2 4 ,试求 a 和 b( a b ).
解 DX EX 2 (EX )2 3 ;
ab 2
(b a)2 12
EX 1, DX 3

a b 2, b a 6 ;
a 2, b 4 .
因此 X 在区间[2,4] 上均匀分布.
21
第21页
例3 假设随机变量 X 和 Y 相互独立,且都在区间(0,1) 上 均匀分布,试求随机变量 Z X Y 的数学期望.
0.90 .
12
第12页
二、常见持续型分布旳数学盼望和方差
1. 均匀分布 X ~ U (a, b) .
1
f
(
x)
b
a
,
a xb
0 , 其它
b1
E( X ) xf ( x)dx x dx
a ba
1 b2 a2 a b .
ba 2
2
13
第13页
二、常见持续型分布旳数学盼望和方差
望 与
指数 分布
f
(
x)
e x
0,
,
x0 else
( 0)
p
npab 2 1源自pqnpq(b a)2 12 1

常用分布的数学期望及方差

常用分布的数学期望及方差

方差的性质
方差具有可加性
对于两个独立的随机变量X和Y,有Var(X+Y) = Var(X) + Var(Y)。
方差具有对称性
对于一个常数a和随机变量X,有Var(aX) = |a|^2 * Var(X)。
方差具有非负性
对于随机变量X,有Var(X) >= 0,其中 Var(X) = 0当且仅当X是一个常数。
05 数学期望与方差的应用
在统计学中的应用
描述性统计
数学期望和方差用于描述一组数据的中心趋势和 离散程度,帮助我们了解数据的基本特征。
参数估计
通过样本数据的数学期望和方差,可以对总体参 数进行估计,如均值和方差的无偏估计。
假设检验
在假设检验中,数学期望和方差用于构建检验统 计量,判断原假设是否成立。
常见分布的数学期望
均匀分布的数学期望为
$E(X) = frac{a+b}{2}$,其中a和b是均匀分布的下限和上 限。
柯西分布的数学期望为
$E(X) = frac{pi}{beta} sinh(frac{1}{beta})$,其中β是柯西 分布的参数。
拉普拉斯分布的数学期望为
$E(X) = frac{beta}{pi} tan(frac{pi}{beta})$,其中β是拉普 拉斯分布的参数。
03
泊松分布
正态分布是一种常见的连续型随机变量 分布,其方差记作σ²。正态分布的方差 描述了随机变量取值的分散程度。
二项分布是一种离散型随机变量分布, 用于描述在n次独立重复的伯努利试验 中成功的次数。其方差记作σ²,且σ² = np(1-p),其中n是试验次数,p是单次 试验成功的概率。
泊松分布是一种离散型随机变量分布, 用于描述在一段时间内随机事件发生的 次数。其方差记作σ²,且σ² = λ,其中 λ是随机事件发生的平均速率。

六个常用分布的数学期望和方差

六个常用分布的数学期望和方差


12
若随机变量X~U( a , b ),则
ab
(b a)2
E(X)
, D( X )
2
12
五.指数分布
随机变量X服从参数为λ的指数分布,其概率密度为:
f
(
x)
1
θ
e
x θ
0
x0 x0
E(X )
xf ( x)dx
x
1
e
x θ
dx
x
( x)de θ
0
θ
0

x)e
x
x
e dx
X X1 X2 Xn
E( X ) E( X1 ) E( X 2 ) E( X n ) np
D( X ) D( X1 ) D( X 2 ) D( X n ) np(1 p)
即: 若随机变量X~B( n , p ),则
E( X ) np,D( X ) np(1 p)
E[3( X 2 1)] 3E( X 2 ) 3
3{D( X ) [E( X )]2 } 3 33
例2.已知X和Y相互独立,且X在区间(1,5)上服从
均匀分布, Y ~ N (1,求9)(1, ) (X,Y)的联合概率密度;(2)
E(3X 4Y 2) , D(3X 4Y 2)
E( X ) xf ( x)dx
b
x
1
dx
a ba
1 x2 b
ba 2 a
ab 2
E( X 2 ) b x 2
1
b3 a3 dx
a 2 ab b2
a ba
3(b a)
3
D( X )
E( X 2 ) [E( X )]2

六个常用分布的数学期望和方差

六个常用分布的数学期望和方差
2
例1.已知 X ~ (3) , Y 2 X 1 , 求E (Y ) , D(Y ) , E[3( X 2 1)] 解:X ~ (3) , 则 E ( X ) 3 , D( X ) 3
E (Y ) E ( 2 X 1) 2 E ( X ) 1 5
D(Y ) D( 2 X 1) 4 D( X ) 12



xf ( x )dx

b
x
1 ba
dx
a

1 ba
x
2
b

ab 2
2 a
E( X )
2

b
x
2
1 ba
dx
b a
3
3
a
3(b a )
a ab b
2 2

a ab b
2
2
3
a 2ab b
2 2
D( X ) E ( X ) [ E ( X )]
即: 若随机变量X~B( n , p ),则
E ( X ) np,D( X ) np(1 p)
三.泊松分布
随机变量
P{ X k }
X ~ ( ) ,其分布律为:
λ e
k λ
,
k 0,1,2, ,
k!
E( X )
k
k 0

e
k

e

k!
(k 1)!

xf ( x )dx




x
1 2

e
dx (令 t
t
2
x

01分布的期望和方差

01分布的期望和方差

01分布的期望和方差
01分布的期望和方差是:期望p方差p(1-p),二项分布期望np,方差np (1-p)。

一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。

图形特点:
对于固定的n以及p,当k增加时,概率P{X=k}先是随之增加直至达到最大值,随后单调减少。

可以证明,一般的二项分布也具有这一性质,且: 当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值。

当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。

[x]为取整函数,即为不超过x的最大整数。

01分布的期望和方差是:期望p方差p(1-p),二项分布期望np,方差np(1-p)。

一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。

图形特点:
对于固定的n以及p,当k增加时,概率P{X=k}先是随之增加直至达到最大值,随后单调减少。

可以证明,一般的二项分布也具有这一性质,且: 当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值。

当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。

[x]为取整函数,即为不超过x的最大整数。

数学期望和方差

数学期望和方差
第四章
数学期望和方差
第四章 数学期望和方差
分布函数能够完整地描述随机变量的统计特 性,但在实际问题中,随机变量的分布函数较 难确定,而它的一些数字特征较易确定.并且 在很多实际问题中,只需知道随机变量的某些 数字特征也就够了.
另一方面,对于一些常用的重要分布,如二 项分布、泊松分布、指数分布、正态分布等, 只要知道了它们的某些数字特征,就能完全确 定其具体的分布.
8 8
9 10 11 12 7 15 10 10 50
则这 50 个零件的平均直径为
8 8 9 7 1015 1110 1210 50 10.14cm
第四章
数学期望和方差
换个角度看,从这50个零件中任取一个,它 的尺寸为随机变量X , 则X 的概率分布为 X P 8

x
| x| 但 | x | f ( x ) dx dx 发散. 2 (1 x )
它的数学期望不存在.
注:虽然f(x)是偶函数,但不能用定理1.1.
第四章
数学期望和方差
§4.2 数学期望的性质
设已知随机变量X的分布,我们需要计算的不 是X的数学期望, 而是X的某个函数的数学期望, 比如说g(X)的数学期望. 那么应该如何计算呢? 更一般的,已知随机向量(X1 , X2 …,Xn ) 的联合分布, Y= g(X1, X2 …,Xn ) 是 (X1 , X2 …,Xn ) 的函数, 需要计算Y 的数学期 望,应该如何计算呢? 我们下面就来处理这个 问题.
8 50
12
9
7 50
10
15 50
12
11
10 50
12
10 50
则这 50 个零件的平均直径为

分布列期望方差知识

分布列期望方差知识

离散型随机变量的分布列、数学期望、方差一. 离散型随机变量:若随机变量可能的取值可以按一定次序一一列出,这样的随机变量叫做离散型随机变量;若随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型随机变量。

二. 离散型随机变量的分布列、数学期望、方差 1. 设离散型随机变量ξ可能的取值为12,,,,i x x x ,ξ取每一个值()1,2,i x i =的概率为i p ,列表如下:叫做随机变量ξ的概率分布,简称分布列。

有如下性质: (1)()011,2,i p i ≤≤=(2)121i p p p ++++=2.数学期望:1122i i E x p x p x p ξ=++++叫做离散型随机变量ξ的数学期望,简称期望。

反映离散型随机变量ξ取值的平均水平。

若a b ηξ=+,则E aE b ηξ=+。

3.方差:()()()2221122i i D x E p x E p x E p ξξξξ=-+-++-+叫做离散型随机变量ξ的方叫做离散型随机变量ξ的标准差,记作σξ 若a b ηξ=+,则2D a D ηξ=。

方差反映随机变量ξ的取值与平均值的离散情况。

即稳定性。

三.几个典型的分布1.二项分布:n 次独立重复试验中,事件A 发生的次数(),B n p ξ,p 是一次试验A 发生的概率,设1q p =-。

则()()()();,0,1,,k k n kn n P k b k n p P k C p q k n ξ-=====2、几何分布:独立重复试验中事件A 第一次发生时的试验次数ξ服从几何分布,p 是一次试验A 发生的概率,设1q p =-。

()()11,2,k P k q p k ξ-===期望1E p ξ=,方差2q D pξ=。

3.两点分布:一次实验中,事件A 发生记为1,不发生记为0,p 是一次试验A 发生的概率,设1q p =-。

则期望E p ξ=,方差D pq ξ=。

练习1.已知随机变量(),B n p ξ,且6,3E D ξξ==,则()1;,b n p = .2.若随机变量ξ的分布列是:()()1,3P m P n a ξξ====.且2E ξ=,则D ξ的最小值是 .3.若随机变量ξ满足()(),P k g k p ξ==,2D ξ=,21ηξ=-,则E η= ,D η= 。

多项分布的数学期望、协方差阵、特征函数及母函数

多项分布的数学期望、协方差阵、特征函数及母函数

多项分布的数学期望、协方差阵、特征函数及母函数多项分布的数学期望、协方差阵、特征函数及母函数 1一、定义与性质设 X 为随机变量, I 是一个包含 0 的 ( 有限或无限的 ) 开区间,对任意t ∈ I ,期望 E e t x 存在设X为随机变量,I是一个包含0的(有限或无限的)开区间,对任意t∈I,期望Ee^{tx}存在设X为随机变量,I是一个包含0的(有限或无限的)开区间,对任意t∈I,期望Eetx存在则称函数M X ( t ) = E ( e t X ) = ∫ − ∞ + ∞ e t x d F ( x ) , t ∈ I 为 X 的矩母函数则称函数M_{X}(t)=E(e^{tX})=\int_{-\infin}^{+\infin}e^{tx}dF(x),t∈I为X的矩母函数则称函数MX(t)=E(etX)=∫−∞+∞etxdF(x),t∈I为X的矩母函数设 X 为任意随机变量,称函数φ X ( t ) = E ( e i t X ) = ∫ − ∞ + ∞ e i t x d F ( x ) 为 X 的特征函数设X为任意随机变量,称函数\varphi_{X}(t)=E(e^{itX})=\int_{-\infin}^{+\infin}e^{itx}dF(x)为X的特征函数设X为任意随机变量,称函数φX(t)=E(eitX)=∫−∞+∞eitxdF(x)为X 的特征函数一个随机变量的矩母函数不一定存在,但是特征函数一定存在。

一个随机变量的矩母函数不一定存在,但是特征函数一定存在。

一个随机变量的矩母函数不一定存在,但是特征函数一定存在。

随机变量与特征函数存在一一对应的关系随机变量与特征函数存在一一对应的关系随机变量与特征函数存在一一对应的关系二、离散型随机变量的分布0、退化分布(Degenerate distribution)若 X 服从参数为 a 的退化分布,那么 f ( k ;a ) = { 1 , k = a 0 , k ≠ a 若X服从参数为a的退化分布,那么f(k;a)=\left\{\begin{matrix} 1,k=a \\ 0,k\neq a \end{matrix}\right. 若X服从参数为a的退化分布,那么f(k;a)={1,k=a0,k=a M ( t ) = e t a M(t)=e^{ta}M(t)=eta φ ( t ) = e i t a \varphi(t)=e^{ita}φ(t)=eita M ′ ( t ) = a e t a M'(t)=ae^{ta}M′(t)=aeta E X = M ′ ( 0 ) = a EX=M'(0)=aEX=M′(0)=a M ′ ′ ( t ) = a 2 e t a M''(t)=a^2e^{ta} M′′(t)=a2eta E X 2 = M ′ ′ ( 0 ) = a 2EX^2=M''(0)=a^2 EX2=M′′(0)=a2 D X = E X 2 − ( E X ) 2 = 0 DX=EX^2-(EX)^2=0 DX=EX2−(EX)2=01、离散型均匀分布(Discrete uniform distribution)若 X 服从离散型均匀分布 D U ( a , b ) , 则 X 分布函数为 F ( k ; a , b ) = ⌊ k ⌋− a + 1 b −a + 1 若X服从离散型均匀分布DU(a,b) ,则X分布函数为F(k;a,b)=\frac{\lfloor k\rfloor -a+1}{b-a+1} 若X服从离散型均匀分布DU(a,b),则X分布函数为F(k;a,b)=b−a+1⌊k⌋−a+1 则矩母函数M ( t ) = ∑ k = a b e t k P ( x = k ) 则矩母函数M(t)=\sum_{k=a}^{b} e^{tk}P(x=k) 则矩母函数M(t)=k=a∑betkP(x=k) = ( ∑ k = a b e t k ) 1 b − a + 1 =(\sum_{k=a}^{b} e^{tk})\frac{1}{b-a+1} =(k=a∑b etk)b−a+11 = e a t − e ( b + 1 ) t ( 1 − e t ) ( b − a + 1 ) =\frac{e^{at}-e^{(b+1)t}}{(1-e^{t})(b-a+1)} =(1−et)(b−a+1)eat−e(b+1)t 特征函数φ ( t ) = ∑k = a b e i t k P ( x = k ) 特征函数\varphi(t)=\sum_{k=a}^{b} e^{itk}P(x=k) 特征函数φ(t)=k=a∑beitkP(x=k) = ( ∑ k = a b e i t k ) 1 b −a + 1 =(\sum_{k=a}^{b} e^{itk})\frac{1}{b-a+1}=(k=a∑beitk)b−a+11 = e a i t − e ( b + 1 ) i t ( 1 − e i t ) ( b − a + 1 ) =\frac{e^{ait}-e^{(b+1)it}}{(1-e^{it})(b-a+1)}=(1−eit)(b−a+1)eait−e(b+1)it M ′ ( t ) = 1 b − a + 1 ( a e a t − ( b + 1 ) e ( b + 1 ) t ) ( 1 − e t ) + ( e a t − e ( b + 1 ) t ) e t ( e t − 1 ) 2M'(t)=\frac{1}{b-a+1}\frac{(ae^{at}-(b+1)e^{(b+1)t})(1-e^t)+(e^{at}-e^{(b+1)t})e^t}{(e^{t}-1)^{2}} M′(t)=b−a+11(et−1)2(aeat−(b+1)e(b+1)t)(1−et)+(eat−e(b+1)t)et t = 0 为M ′ ( t ) 的可去间断点,补充定义M ′ ( 0 ) = lim ⁡ t → 0 M ′ ( t ) t=0为M'(t)的可去间断点,补充定义M'(0)=\lim_{t\rightarrow0}M'(t) t=0为M′(t)的可去间断点,补充定义M′(0)=t→0limM′(t) E X = M ′ ( 0 ) = lim ⁡ t → 0 1 b − a + 1 ( a 2 e at − ( b + 1 ) 2 e ( b + 1 ) t ) ( 1 − e t ) + ( e at − e ( b + 1 ) t ) e t 2 ( e t − 1 ) e tEX=M'(0)=\lim_{t\rightarrow0}\frac{1}{b-a+1}\frac{(a^2e^{at}-(b+1)^2e^{(b+1)t})(1-e^t)+(e^{at}-e^{(b+1)t})e^t}{2(e^{t}-1)e^t}EX=M′(0)=t→0limb−a+112(et−1)et(a2eat−(b+1)2e(b+1)t)(1−et)+(eat−e(b+1)t) et = lim ⁡ t → 0 1 b − a + 1 ( a 2 e a t − ( b +1 )2 e ( b + 1 ) t ) ( e − t − 1 ) + ( e a t − e ( b + 1 ) t ) 2 ( e t − 1 )=\lim_{t\rightarrow0}\frac{1}{b-a+1}\frac{(a^2e^{at}-(b+1)^2e^{(b+1)t})(e^{-t}-1)+(e^{at}-e^{(b+1)t})}{2(e^{t}-1)} =t→0limb−a+112(et−1)(a2eat−(b+1)2e(b+1)t)(e−t−1)+(eat−e(b+1)t) = lim ⁡ t → 0 1 b − a + 1 ( a 3 e a t − ( b + 1 ) 3 e ( b + 1 ) t ) ( e − t − 1 ) − ( a 2 e a t −( b + 1 ) 2 e ( b + 1 ) t ) e − t + ( a e a t − ( b + 1 ) e ( b + 1 ) t ) 2 e t=\lim_{t\rightarrow0}\frac{1}{b-a+1}\frac{(a^3e^{at}-(b+1)^3e^{(b+1)t})(e^{-t}-1)-(a^2e^{at}-(b+1)^2e^{(b+1)t})e^{-t}+(ae^{at}-(b+1)e^{(b+1)t})}{2e^{t}} =t→0limb−a+112et(a3eat−(b+1)3e(b+1)t)(e−t−1)−(a2eat−(b+1)2e(b+1)t)e−t+(aeat−(b+1)e(b+1)t) = − a 2 + ( b + 1 ) 2 +a − (b + 1 ) 2 ( b − a + 1 ) =\frac{-a^2+(b+1)^2+a-(b+1)}{2(b-a+1)} =2(b−a+1)−a2+(b+1)2+a−(b+1) = − a 2 + ( b + 1 ) 2 2 ( b − a + 1 ) − 1 2 =\frac{-a^2+(b+1)^2}{2(b-a+1)}-\frac{1}{2}=2(b−a+1)−a2+(b+1)2−21 = ( b + 1 − a ) ( b + 1 +a ) 2 (b − a + 1 ) − 1 2 =\frac{(b+1-a)(b+1+a)}{2(b-a+1)}-\frac{1}{2}=2(b−a+1)(b+1−a)(b+1+a)−21 = b + 1 + a 2 − 1 2=\frac{b+1+a}{2}-\frac{1}{2} =2b+1+a−21 = b + a 2=\frac{b+a}{2} =2b+a 由于对M ′ ( t ) 求导得到M ′ ′ ( t ) ,再求M ′ ′ ( 0 ) 的方法比较繁琐,而我们只需要 t = 0 时 M 的二阶导数值,由于对M'(t)求导得到M''(t),再求M''(0)的方法比较繁琐,而我们只需要t=0时M的二阶导数值,由于对M′(t)求导得到M′′(t),再求M′′(0)的方法比较繁琐,而我们只需要t=0时M的二阶导数值,因此可以考虑使用 T a y l o r 公式计算M ′ ′ ( 0 ) 因此可以考虑使用Taylor公式计算M''(0) 因此可以考虑使用Taylor公式计算M′′(0) 令 1 − e t = u , t = 0 时 , u = 0 令1-e^t=u,t=0时,u=0 令1−et=u,t=0时,u=0 M ( t ) = e a t − e ( b + 1 ) t ( 1 − e t ) ( b − a + 1 )M(t)=\frac{e^{at}-e^{(b+1)t}}{(1-e^{t})(b-a+1)}M(t)=(1−et)(b−a+1)eat−e(b+1)t = 1 b − a + 1 u a −u b + 1 u =\frac{1}{b-a+1}\frac{u^a-u^{b+1}}{u}=b−a+11uua−ub+1 = 1 b − a + 1 1 + a 1 ! ( − u ) + a ( a − 1 ) 2 ! u 2 + a ( a − 1 ) ( a − 2 ) 3 ! ( − u 3 ) + o ( u 3 ) − 1 − b + 1 1 ! ( − u ) −( b + 1 ) b 2 ! u 2 − ( b + 1 ) b ( b − 1 ) 3 ! ( −u 3 ) − o ( u 3 ) u =\frac{1}{b-a+1}\frac{1+\frac{a}{1!}(-u)+\frac{a(a-1)}{2!}u^2+\frac{a(a-1)(a-2)}{3!}(-u^3)+o(u^3)-1-\frac{b+1}{1!}(-u)-\frac{(b+1)b}{2!}u^2-\frac{(b+1)b(b-1)}{3!}(-u^3)-o(u^3)}{u} =b−a+11u1+1!a (−u)+2!a(a−1)u2+3!a(a−1)(a−2)(−u3)+o(u3)−1−1!b+1(−u)−2!(b+1)bu2−3!(b+1)b(b−1) (−u3)−o(u3) = 1 b − a + 1 a 1 ! ( − u ) + a ( a −1 ) 2 ! u 2 + a ( a − 1 ) ( a − 2 ) 3 ! ( − u 3 ) + o ( u 3 ) − b + 1 1 ! ( − u ) − ( b + 1 ) b 2 ! u 2 − ( b + 1 ) b ( b − 1 ) 3 ! ( − u 3 ) u=\frac{1}{b-a+1}\frac{\frac{a}{1!}(-u)+\frac{a(a-1)}{2!}u^2+\frac{a(a-1)(a-2)}{3!}(-u^3)+o(u^3)-\frac{b+1}{1!}(-u)-\frac{(b+1)b}{2!}u^2-\frac{(b+1)b(b-1)}{3!}(-u^3)}{u} =b−a+11u1!a(−u)+2!a(a−1)u2+3!a(a−1)(a−2)(−u3)+o(u3)−1!b+1 (−u)−2!(b+1)bu2−3!(b+1)b(b−1)(−u3) = 1 b − a + 1 ( ( b + 1 − a ) + a ( a − 1 ) 2 ! u + a ( a − 1 ) ( a − 2 ) 3 ! ( − u 2 ) + o ( u 2 ) − ( b + 1 ) b2 ! u − ( b + 1 ) b ( b − 1 )3 ! ( − u 2 ) )=\frac{1}{b-a+1}((b+1-a)+\frac{a(a-1)}{2!}u+\frac{a(a-1)(a-2)}{3!}(-u^2)+o(u^2)-\frac{(b+1)b}{2!}u-\frac{(b+1)b(b-1)}{3!}(-u^2)) =b−a+11((b+1−a)+2!a(a−1)u+3!a(a−1)(a−2)(−u2)+o(u2)−2!(b+1)bu−3!(b+1)b(b−1)(−u2)) = 1 + a ( a − 1 ) − ( b + 1 ) b 2 ! ( b − a + 1 ) u + ( b +1 ) b ( b − 1 ) − a ( a − 1 ) ( a −2 )3 ! ( b −a + 1 ) u 2 + o ( u 2 ) =1+\frac{a(a-1)-(b+1)b}{2!(b-a+1)}u+\frac{(b+1)b(b-1)-a(a-1)(a-2)}{3!(b-a+1)}u^2+o(u^2) =1+2!(b−a+1)a(a−1)−(b+1)bu+3!(b−a+1)(b+1)b(b−1)−a(a−1)(a−2)u2+o(u2) 而 u = 1 − e t = − t − t 2 2 ! + o ( t 2 ) 而u=1-e^t=-t-\frac{t^2}{2!}+o(t^2) 而u=1−et=−t−2!t2+o(t2) 因此M ( t ) = 1 − a ( a − 1 ) − ( b + 1 ) b 2 ! ( b −a + 1 ) t − a ( a − 1 ) − (b + 1 ) b 2 ! ( b − a + 1 ) t 2 2 ! + ( b + 1 ) b ( b − 1 ) − a ( a − 1 ) ( a − 2 ) 3 ! ( b − a + 1 ) t 2 + o ( t 2 ) 因此M(t)=1-\frac{a(a-1)-(b+1)b}{2!(b-a+1)}t-\frac{a(a-1)-(b+1)b}{2!(b-a+1)}\frac{t^2}{2!}+\frac{(b+1)b(b-1)-a(a-1)(a-2)}{3!(b-a+1)}t^2+o(t^2) 因此M(t)=1−2!(b−a+1)a(a−1)−(b+1)bt−2!(b−a+1)a(a−1)−(b+1)b2!t2+3!(b−a+1)(b+1)b(b−1)−a(a−1)(a−2)t2+o(t2) 又因为M ( t ) = M ( 0 ) + M ′ ( 0 ) t + M ′ ′ ( 0 ) 2 ! t 2 + o ( t 2 ) 又因为M(t)=M(0)+M'(0)t+\frac{M''(0)}{2!}t^2+o(t^2) 又因为M(t)=M(0)+M′(0)t+2!M′′(0)t2+o(t2) 因此M ′ ( 0 ) = − a ( a − 1 ) − ( b + 1 ) b 2 ! ( b − a + 1 ) = a + b 2 因此M'(0)=-\frac{a(a-1)-(b+1)b}{2!(b-a+1)}=\frac{a+b}{2} 因此M′(0)=−2!(b−a+1)a(a−1)−(b+1)b=2a+b E X = M ′( 0 ) = a + b 2 EX=M'(0)=\frac{a+b}{2} EX=M′(0)=2a+b 而M ′ ′ ( 0 ) = 2 ! ∗ ( − a ( a − 1 ) − ( b +1 ) b 4 ( b − a + 1 ) + ( b + 1 ) b ( b − 1 ) − a ( a − 1 ) ( a −2 )3 ! ( b − a + 1 ) ) 而M''(0)=2!*(-\frac{a(a-1)-(b+1)b}{4(b-a+1)}+\frac{(b+1)b(b-1)-a(a-1)(a-2)}{3!(b-a+1)}) 而M′′(0)=2!∗(−4(b−a+1)a(a−1)−(b+1)b+3!(b−a+1)(b+1)b(b−1)−a(a−1)(a−2)) = a + b 2 + ( b + 1 − a ) ( b 2 + a b − b + a 2 − 2 a ) 3 ( b − a + 1 ) =\frac{a+b}{2}+\frac{(b+1-a)(b^2+ab-b+a^2-2a)}{3(b-a+1)} =2a+b+3(b−a+1)(b+1−a)(b2+ab−b+a2−2a) = a + b 2 + b 2 + a b − b + a 2 − 2 a 3=\frac{a+b}{2}+\frac{b^2+ab-b+a^2-2a}{3} =2a+b+3b2+ab−b+a2−2a = 2 a 2 + 2 b 2 + 2 a b + b − a 6 =\frac{2a^2+2b^2+2ab+b-a}{6} =62a2+2b2+2ab+b−a D X = E X 2 − ( E X ) 2 = M ′ ′ ( 0 ) − ( E X ) 2DX=EX^2-(EX)^2=M''(0)-(EX)^2DX=EX2−(EX)2=M′′(0)−(EX)2 = 2 a 2 + 2 b 2 + 2 a b + b − a 6 − a 2 + 2 a b + b 2 4=\frac{2a^2+2b^2+2ab+b-a}{6}-\frac{a^2+2ab+b^2}{4}=62a2+2b2+2ab+b−a−4a2+2ab+b2 = ( b − a + 1 ) 2 − 1 12 =\frac{(b-a+1)^2-1}{12} =12(b−a+1)2−12、伯努利分布/两点分布(Bernoulli distribution)若 X 服从伯努利分布 B ( 1 , p ) , 则 X 满足 P ( x = 1 ) = p , P ( x = 0 ) = 1 − p = q 若X服从伯努利分布B(1,p) ,则X满足P(x=1)=p, P(x=0)=1-p=q 若X服从伯努利分布B(1,p),则X满足P(x=1)=p,P(x=0)=1−p=q M ( t ) = p e t + 1 − p M(t)=pe^{t}+1-p M(t)=pet+1−p φ ( t ) = p e i t + 1 − p \varphi(t)=pe^{it}+1-pφ(t)=peit+1−p M ′ ( t ) = p e t M'(t)=pe^{t}M′(t)=pet E X = M ′ ( 0 ) = p EX=M'(0)=p EX=M′(0)=pM ′ ′ ( t ) = p e t M''(t)=pe^{t} M′′(t)=pet E X 2 = M ′ ′ ( 0 ) = p EX^{2}=M''(0)=p EX2=M′′(0)=p D X = E X 2 − ( E X ) 2 = p ( 1 − p ) DX=EX^{2}-(EX)^{2}=p(1-p) DX=EX2−(EX)2=p(1−p)3、二项分布(Binomial distribution)若 X 服从二项分布 B ( n , p ) , 则 X 满足 f ( k ; n , p ) = P ( x = k ) = C n k p k ( 1 − p ) n − k ( n 为整数 ) 若X服从二项分布B(n,p) ,则X满足f(k;n,p)=P(x=k)=C_{n}^{k}p^k(1-p)^{n-k} (n为整数) 若X 服从二项分布B(n,p),则X满足f(k;n,p)=P(x=k)=Cnkpk(1−p)n−k(n为整数) 因为服从二项分布的变量可以看作 n 个独立相同的服从伯努利分布的变量之和因为服从二项分布的变量可以看作n个独立相同的服从伯努利分布的变量之和因为服从二项分布的变量可以看作n个独立相同的服从伯努利分布的变量之和因此M ( t ) = ( p e t + 1 − p ) n 因此M(t)=(pe^{t}+1-p)^{n} 因此M(t)=(pet+1−p)n φ ( t ) = ( p e i t + 1 − p ) n \varphi(t)=(pe^{it}+1-p)^{n}φ(t)=(peit+1−p)n M ′ ( t ) = n p ( p e t + 1 − p ) n − 1 e t M'(t)=np(pe^{t}+1-p)^{n-1}e^{t}M′(t)=np(pet+1−p)n−1et E X = M ′ ( 0 ) = n pEX=M'(0)=np EX=M′(0)=np M ′ ′ ( t ) = n ( n − 1 )p 2 ( p e t + 1 − p ) n − 2 e 2 t + n p ( p e t + 1 − p ) n − 1 e t M''(t)=n(n-1)p^{2}(pe^{t}+1-p)^{n-2}e^{2t}+np(pe^{t}+1-p)^{n-1}e^{t}M′′(t)=n(n−1)p2(pet+1−p)n−2e2t+np(pet+1−p)n−1et E X 2 = M ′ ′ ( 0 ) = n ( n − 1 ) p 2 + n pEX^{2}=M''(0)=n(n-1)p^{2}+np EX2=M′′(0)=n(n−1)p2+npD X =E X 2 − ( E X ) 2 = n p ( 1 − p ) DX=EX^{2}-(EX)^{2}=np(1-p) DX=EX2−(EX)2=np(1−p)4、几何分布(Geometric distribution)若 X 服从几何分布 G e ( p ) , 则 X 满足 f ( k ; p ) = P ( x = k ) = ( 1 − p ) k − 1 p ( k = 1 , 2 , 3...... ) 若X服从几何分布Ge(p), 则X满足f(k;p)=P(x=k)=(1-p)^{k-1}p (k=1,2,3......) 若X服从几何分布Ge(p),则X满足f(k;p)=P(x=k)=(1−p)k−1p(k=1,2,3......) M ( t ) = ∑ k = 1 ∞ ( 1 − p ) k − 1 p e t kM(t)=\sum_{k=1}^{\infin}(1-p)^{k-1}pe^{tk}M(t)=k=1∑∞(1−p)k−1petk = p e t ∑ k = 1 ∞ ( ( 1 − p ) e t ) k − 1 =pe^{t}\sum_{k=1}^{\infin}((1-p)e^t)^{k-1} =petk=1∑∞((1−p)et)k−1 = p e t 1 −( 1 − p ) e t =\frac{pe^{t}}{1-(1-p)e^{t}}=1−(1−p)etpet φ ( t ) = ∑ k = 1 ∞ ( 1 − p ) k −1 p e i t k \varphi(t)=\sum_{k=1}^{\infin}(1-p)^{k-1}pe^{itk} φ(t)=k=1∑∞(1−p)k−1peitk = p e i t ∑ k = 1 ∞ ( ( 1 − p ) e i t ) k − 1=pe^{it}\sum_{k=1}^{\infin}((1-p)e^{it})^{k-1}=peitk=1∑∞((1−p)eit)k−1 = p e i t 1 − ( 1 − p ) e i t =\frac{pe^{it}}{1-(1-p)e^{it}} =1−(1−p)eitpeit M ′ ( t ) = p e t ( 1 − ( 1 − p ) e t ) 2M'(t)=\frac{pe^t}{(1-(1-p)e^t)^2}M′(t)=(1−(1−p)et)2pet E X = M ′ ( 0 ) = 1 pEX=M'(0)=\frac{1}{p} EX=M′(0)=p1 M ′ ′ ( t ) = p e t ( e t − p e t + 1 ) ( 1 − ( 1 − p ) e t ) 3M''(t)=\frac{pe^t(e^t-pe^t+1)}{(1-(1-p)e^t)^3}M′′(t)=(1−(1−p)et)3pet(et−pet+1) E X 2 = M ′ ′( 0 ) = 2 − p p 2 EX^{2}=M''(0)=\frac{2-p}{p^2}EX2=M′′(0)=p22−p D X = E X 2 − ( E X ) 2 = 1 − p p 2 DX=EX^{2}-(EX)^{2}=\frac{1-p}{p^2}DX=EX2−(EX)2=p21−p5、负二项分布(Negative binomial distribution)若 X 服从负二项分布 N B ( r , p ) , 则 X 满足 f ( k ; r , p ) = ( k + r − 1 k ) p k ( 1 − p ) r , k = 0 , 1 , 2 , 3...... 若X服从负二项分布NB(r,p), 则X满足f(k;r,p)=\binom{k+r-1}{k}p^{k}(1-p)^{r} ,k=0,1,2,3...... 若X服从负二项分布NB(r,p),则X满足f(k;r,p)=(kk+r−1)pk(1−p)r,k=0,1,2,3...... ( r 可以为实数,此时的分布称为波利亚分布 ) (r可以为实数,此时的分布称为波利亚分布) (r可以为实数,此时的分布称为波利亚分布) M ( t ) = ∑ k = 0 ∞ ( k +r − 1 k ) p k ( 1 − p ) r e t kM(t)=\sum_{k=0}^{\infin}\binom{k+r-1}{k}p^k(1-p)^re^{tk} M(t)=k=0∑∞(kk+r−1)pk(1−p)retk = ∑ k = 0 ∞ ( − 1 ) k ( − r k ) p k ( 1 − p ) r e t k=\sum_{k=0}^{\infin}(-1)^k\binom{-r}{k}p^k(1-p)^re^{tk} =k=0∑∞(−1)k(k−r)pk(1−p)retk = ∑ k = 0 ∞ ( − p e t ) k ( − r k ) ( 1 − p ) r =\sum_{k=0}^{\infin}(-pe^t)^k\binom{-r}{k}(1-p)^r =k=0∑∞(−pet)k(k−r)(1−p)r = ( 1 − p ) r ∑ k = 0 ∞ ( − p e t ) k( − r k ) 1 − r − k =(1-p)^r\sum_{k=0}^{\infin}(-pe^t)^k\binom{-r}{k}1^{-r-k} =(1−p)rk=0∑∞(−pet)k(k−r)1−r−k = ( 1 − p ) r ( 1 − p e t ) −r =(1-p)^r(1-pe^t)^{-r} =(1−p)r(1−pet)−r φ ( t ) = ∑ k = 0 ∞ ( k + r − 1 k ) p k ( 1 − p ) r e i t k \varphi(t)=\sum_{k=0}^{\infin}\binom{k+r-1}{k}p^k(1-p)^re^{itk} φ(t)=k=0∑∞(kk+r−1)pk(1−p)reitk = ∑ k = 0 ∞ ( − 1 ) k ( − r k ) p k ( 1 − p ) r e i t k =\sum_{k=0}^{\infin}(-1)^k\binom{-r}{k}p^k(1-p)^re^{itk} =k=0∑∞(−1)k(k−r)pk(1−p)reitk = ∑ k = 0 ∞ ( − p e i t ) k ( − r k ) ( 1 − p ) r=\sum_{k=0}^{\infin}(-pe^{it})^k\binom{-r}{k}(1-p)^r=k=0∑∞(−peit)k(k−r)(1−p)r = ( 1 − p ) r ∑ k = 0 ∞ ( − p e i t ) k ( − r k ) 1 − r − k =(1-p)^r\sum_{k=0}^{\infin}(-pe^{it})^k\binom{-r}{k}1^{-r-k} =(1−p)rk=0∑∞(−peit)k(k−r)1−r−k = ( 1 − p ) r ( 1 − p e i t ) − r =(1-p)^r(1-pe^{it})^{-r}=(1−p)r(1−peit)−r M ′ ( t ) = ( 1 − p ) r ( − r ) ( 1 − p e t ) − r − 1 ( − p e t ) M'(t)=(1-p)^r(-r)(1-pe^{t})^{-r-1}(-pe^t)M′(t)=(1−p)r(−r)(1−pet)−r−1(−pet) = r p ( 1 −p ) r e t ( 1 − p e t ) − r − 1 =rp(1-p)^re^t(1-pe^t)^{-r-1} =rp(1−p)ret(1−pet)−r−1 E X = M ′( 0 ) = r p 1 − p EX=M'(0)=\frac{rp}{1-p}EX=M′(0)=1−prp M ′ ′ ( t ) = r p ( 1 − p ) r e t ( 1 − p e t ) − r − 1 + r p ( 1 − p ) r e t ( − r − 1 ) ( 1 − p e t ) − r − 2 ( − p e t )M''(t)=rp(1-p)^re^t(1-pe^t)^{-r-1}+rp(1-p)^re^t(-r-1)(1-pe^t)^{-r-2}(-pe^t)M′′(t)=rp(1−p)ret(1−pet)−r−1+rp(1−p)ret(−r−1) (1−pet)−r−2(−pet) E X 2 = r p ( 1 − p ) − 1 + r ( r + 1 ) p 2 ( 1 − p ) − 2 EX^2=rp(1-p)^{-1}+r(r+1)p^2(1-p)^{-2}EX2=rp(1−p)−1+r(r+1)p2(1−p)−2 = r p ( 1 − p ) + r ( r + 1 ) p 2 ( 1 − p ) 2 =\frac{rp(1-p)+r(r+1)p^2}{(1-p)^2} =(1−p)2rp(1−p)+r(r+1)p2 = r p + r 2 p 2 ( 1 − p ) 2 =\frac{rp+r^2p^2}{(1-p)^2}=(1−p)2rp+r2p2 D X = E X 2 − ( E X ) 2 = p r ( 1 −p ) 2 DX=EX^2-(EX)^2=\frac{pr}{(1-p)^2}DX=EX2−(EX)2=(1−p)2pr6、泊松分布(Poisson distribution)若 X 服从泊松分布P ( λ ) , 则 P ( X = k ) = e− λ λ k k ! , k = 0 , 1 , 2...... 若X服从泊松分布P(\lambda),则P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!},k=0,1,2...... 若X服从泊松分布P(λ),则P(X=k)=k!e−λλk,k=0,1,2...... M ( t ) = ∑k = 0 ∞ e − λ λ k k ! e t kM(t)=\sum_{k=0}^{\infin}\frac{e^{-\lambda}\lambda^k}{k!}e^{tk} M(t)=k=0∑∞k!e−λλketk = e − λ ∑ k = 0 ∞ ( λ e t ) k k ! =e^{-\lambda}\sum_{k=0}^{\infin}\frac{(\lambda e^t)^k}{k!} =e−λk=0∑∞k!(λe t)k = e − λ e λ e t =e^{-\lambda}e^{\lambda e^t} =e−λeλet= e λ ( e t − 1 ) =e^{\lambda (e^t-1)} =eλ(et−1) φ ( t ) = ∑ k = 0∞ e − λ λ k k ! e i t k\varphi(t)=\sum_{k=0}^{\infin}\frac{e^{-\lambda}\lambda^k}{k!}e^{itk} φ(t)=k=0∑∞k!e−λλk eitk = e − λ ∑ k = 0 ∞ ( λ e i t ) k k ! =e^{-\lambda}\sum_{k=0}^{\infin}\frac{(\lambdae^{it})^k}{k!} =e−λk=0∑∞k!(λe it)k = e − λ e λ e i t =e^{-\lambda}e^{\lambda e^{it}} =e−λeλeit = e λ ( e i t − 1 ) =e^{\lambda (e^{it}-1)} =eλ(eit−1) M ′ ( t ) = e λ ( e t − 1 ) λ e t M'(t)=e^{\lambda (e^t-1)}\lambda e^t M′(t)=eλ(et−1)λe t E X = M ′ ( 0 ) = λ EX=M'(0)=\lambda EX=M′(0)=λM ′ ′ ( t ) = e λ ( e t − 1 ) λ e t + e λ ( e t − 1 ) λ e tλ e t M''(t)=e^{\lambda (e^t-1)}\lambdae^t+e^{\lambda (e^t-1)}\lambda e^t\lambda e^tM′′(t)=eλ(et−1)λe t+eλ(et−1)λe tλe t E X 2 =M ′ ′ ( 0 ) = λ + λ 2EX^2=M''(0)=\lambda+\lambda^2 EX2=M′′(0)=λ+λ2 D X = E X 2 − ( E X ) 2 = λ DX=EX^2-(EX)^2=\lambdaDX=EX2−(EX)2=λ三、连续型随机变量的分布1、连续型均匀分布(Uniform distribution (continuous))若 X 服从连续型均匀分布 U ( a , b ) , 则 f( x ) = 1 b − a I [ a , b ] ( x ) 若X服从连续型均匀分布U(a,b),则f(x)=\frac{1}{b-a}I_{[a,b]}(x) 若X服从连续型均匀分布U(a,b),则f(x)=b−a1I[a,b](x) M ( t ) = ∫ a b 1 b − a e t x d x M(t)=\int_{a}^{b}\frac{1}{b-a}e^{tx}dx M(t)=∫abb−a1etxdx = 1 b − a ∫ a b e t x d x =\frac{1}{b-a}\int_{a}^{b}e^{tx}dx =b−a1∫abetxdx = 1 b − a ( 1 t e t x ∣ a b ) =\frac{1}{b-a}(\frac{1}{t}e^{tx}\mid_{a}^{b}) =b−a1(t1etx∣ab) = e t b − e t a t ( b − a ) =\frac{e^{tb}-e^{ta}}{t(b-a)} =t(b−a)etb−eta φ ( t ) = ∫ a b 1 b − a e i t x d x \varphi(t)=\int_{a}^{b}\frac{1}{b-a}e^{itx}dxφ(t)=∫abb−a1eitxdx = 1 b − a ∫ a b e i t x d x=\frac{1}{b-a}\int_{a}^{b}e^{itx}dx =b−a1∫abeitxdx = 1 b − a ( 1 i t e i t x ∣ a b ) =\frac{1}{b-a}(\frac{1}{it}e^{itx}\mid_{a}^{b}) =b−a1(it1eitx∣ab) = e i t b − e i t a i t ( b − a ) =\frac{e^{itb}-e^{ita}}{it(b-a)} =it(b−a)eitb−eita M ′ ( t ) = 1 b − a ( b e t b − a e t a ) t − ( e t b − e t a ) t 2 M'(t)=\frac{1}{b-a}\frac{(be^{tb}-ae^{ta})t-(e^{tb}-e^{ta})}{t^2} M′(t)=b−a1t2(betb−aeta)t−(etb−eta) t = 0 为M ′ ( t ) 的可去间断点,补充定义M ′ ( 0 ) = lim ⁡ t → 0 M ′ ( t ) t=0为M'(t)的可去间断点,补充定义M'(0)=\lim_{t\rightarrow0}M'(t) t=0为M′(t)的可去间断点,补充定义M′(0)=t→0limM′(t) E X = M ′ ( 0 ) = lim ⁡ t → 0 ( b e t b − a e t a ) + ( b 2 e t b − a 2 e t a ) t − ( b e t b − a e ta ) 2 t (b − a )EX=M'(0)=\lim_{t\rightarrow0}\frac{(be^{tb}-ae^{ta})+(b^2e^{tb}-a^2e^{ta})t-(be^{tb}-ae^{ta})}{2t(b-a)} EX=M′(0)=t→0lim2t(b−a)(betb−aeta)+(b2etb−a2eta)t−(betb−aeta) = lim ⁡ t → 0 ( b 2 e t b − a 2 e t a ) 2 ( b − a ) =\lim_{t\rightarrow0}\frac{(b^2e^{tb}-a^2e^{ta})}{2(b-a)} =t→0lim2(b−a)(b2etb−a2eta) = b 2 − a 2 2 ( b − a ) =\frac{b^2-a^2}{2(b-a)} =2(b−a)b2−a2 = a + b 2 =\frac{a+b}{2} =2a+b M ′ ′ ( t ) = 1 b − a ( ( b 2 e t b − a 2 e t a ) t + ( b e t b − a e t a ) −( b e t b − a e t a ) ) t − 2 ( ( b e t b − a e ta ) t − ( e tb − e t a ) ) t 3 M''(t)=\frac{1}{b-a}\frac{((b^2e^{tb}-a^2e^{ta})t+(be^{tb}-ae^{ta})-(be^{tb}-ae^{ta}))t-2((be^{tb}-ae^{ta})t-(e^{tb}-e^{ta}))}{t^3} M′′(t)=b−a1t3((b2etb−a2eta)t+(betb−aeta)−(betb−aeta))t−2((be tb−aeta)t−(etb−eta)) = 1 b − a t 2 ( b 2 e t b −a 2 e t a ) − 2 t (b e t b − a e t a ) + 2 ( e t b − e t a ) t 3 =\frac{1}{b-a}\frac{t^2(b^2e^{tb}-a^2e^{ta})-2t(be^{tb}-ae^{ta})+2(e^{tb}-e^{ta})}{t^3} =b−a1t3t2(b2etb−a2eta)−2t(betb−aeta)+2(etb−eta) t = 0 为M ′ ′ ( t ) 的可去间断点,补充定义M ′ ′ ( 0 ) = lim ⁡ t → 0 M ′ ′ ( t ) t=0为M''(t)的可去间断点,补充定义M''(0)=\lim_{t\rightarrow0}M''(t) t=0为M′′(t)的可去间断点,补充定义M′′(0)=t→0limM′′(t) E X 2 =M ′ ′ ( 0 ) = lim ⁡ t → 0 1 b − a t 2 ( b 3 e t b − a 3 e t a ) + 2 t ( b 2 e t b − a 2 e t a ) − 2 t ( b 2 e t b − a 2 e t a ) − 2 ( b e t b − a e t a ) + 2 ( b e t b − a e t a ) 3 t 2EX^2=M''(0)=\lim_{t\rightarrow0}\frac{1}{b-a}\frac{t^2(b^3e^{tb}-a^3e^{ta})+2t(b^2e^{tb}-a^2e^{ta})-2t(b^2e^{tb}-a^2e^{ta})-2(be^{tb}-ae^{ta})+2(be^{tb}-ae^{ta})}{3t^2}EX2=M′′(0)=t→0limb−a13t2t2(b3etb−a3eta)+2t(b2etb−a2eta)−2t(b2etb−a2eta)−2(betb−aeta)+2(betb−aeta) = 1 b − a lim ⁡ t → 0 t 2 ( b 3 e t b − a 3 e t a ) 3 t 2 =\frac{1}{b-a}\lim_{t\rightarrow0}\frac{t^2(b^3e^{tb}-a^3e^{ta})}{3t^2} =b−a1t→0lim3t2t2(b3etb−a3eta) = 1 b − a lim ⁡ t → 0 ( b 3 e t b − a 3 e t a ) 3=\frac{1}{b-a}\lim_{t\rightarrow0}\frac{(b^3e^{tb}-a^3e^{ta})}{3} =b−a1t→0lim3(b3etb−a3eta) = 1 b − a ( b 3 − a 3 ) 3 =\frac{1}{b-a}\frac{(b^3-a^3)}{3}=b−a13(b3−a3) = b 2 + a b + a 2 3=\frac{b^2+ab+a^2}{3} =3b2+ab+a2 D X = E X 2 − ( E X ) 2 = ( b − a ) 2 12 DX=EX^2-(EX)^2=\frac{(b-a)^2}{12} DX=EX2−(EX)2=12(b−a)22、指数分布(Exponential distribution)若 X 服从指数分布 E ( λ ) ,则 f ( x ) = λ e− λ x I [ 0 , + ∞ ) ( x ) 若X服从指数分布E(\lambda),则f(x)=\lambda e^{-\lambdax}I_{[0,+\infin)}(x) 若X服从指数分布E(λ),则f(x)=λe−λx I[0,+∞)(x) M ( t ) = ∫ 0 + ∞ λ e −λ x e t x d x M(t)=\int_{0}^{+\infin} \lambda e^{-\lambda x}e^{tx}dx M(t)=∫0+∞λe−λx etxdx = λ ∫ 0 + ∞ e ( t − λ ) x d x =\lambda \int_{0}^{+\infin} e^{(t-\lambda)x}dx =λ∫0+∞e(t−λ)xdx = λ t − λ ( e ( t − λ ) x ∣ 0 + ∞ ) =\frac{\lambda}{t-\lambda}(e^{(t-\lambda)x}\mid_{0}^{+\infin}) =t−λλ(e(t−λ)x∣0+∞) t < λ 时,M ( t ) = λ t − λ ( 0 − 1 ) t<\lambda时,M(t)=\frac{\lambda}{t-\lambda}(0-1) t<λ时,M(t)=t−λλ(0−1) = λ λ − t =\frac{\lambda}{\lambda-t} =λ−tλφ ( t ) = λ λ − i t \varphi(t)=\frac{\lambda}{\lambda-it}φ(t)=λ−itλM ′ ( t ) = λ ( λ − t ) 2M'(t)=\frac{\lambda}{(\lambda-t)^2} M′(t)=(λ−t)2λE X = M ′ ( 0 ) = 1 λ EX=M'(0)=\frac{1}{\lambda}EX=M′(0)=λ1 M ′ ′ ( t ) = 2 λ ( λ − t ) 3M''(t)=\frac{2\lambda}{(\lambda-t)^3}M′′(t)=(λ−t)32λ E X 2 = M ′ ′ ( 0 ) = 2 λ 2 EX^2=M''(0)=\frac{2}{\lambda^2} EX2=M′′(0)=λ22 D X = E X 2 − ( E X ) 2 = 1 λ 2 DX=EX^2-(EX)^2=\frac{1}{\lambda^2} DX=EX2−(EX)2=λ213、正态分布(Normal distribution)若 X 服从正态分布N ( μ , σ 2 ) , 则 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 若X服从正态分布N(\mu,\sigma^2),则f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} 若X服从正态分布N(μ,σ2),则f(x)=2πσ1e−2σ2(x−μ)2 引理 1 :∫ − ∞ + ∞ e − t 2 2 d t = 2 π 引理1:\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2}}dt=\sqrt{2\pi} 引理1:∫−∞+∞e−2t2dt=2π证明:( ∫ − ∞ + ∞ e − t 2 2 d t ) 2 = ∫ − ∞ + ∞ ∫ − ∞ + ∞ e − x 2 + y 2 2 d x d y 证明:(\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2}}dt)^2=\int_{-\infin}^{+\infin}\int_{-\infin}^{+\infin}e^{-\frac{x^2+y^2}{2}}dxdy 证明:(∫−∞+∞e−2t2dt)2=∫−∞+∞∫−∞+∞e−2x2+y2dxdy = ∫ 0 2 π d θ ∫ 0 + ∞ e − r 2 2 r d r=\int_{0}^{2\pi}d\theta \int_{0}^{+\infin}e^{-\frac{r^2}{2}}rdr =∫02πdθ∫0+∞e−2r2rdr = 2 π ∫ 0 + ∞ e − r 2 2 r d r =2\pi \int_{0}^{+\infin}e^{-\frac{r^2}{2}}rdr =2π∫0+∞e−2r2rdr = 2 π ( − e −r 2 2 ∣0 + ∞ ) =2\pi (-e^{-\frac{r^2}{2}}\mid_{0}^{+\infin}) =2π(−e−2r2∣0+∞) = 2 π =2\pi =2π因此∫ − ∞ + ∞ e − t 2 2 d t = 2 π 因此\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2}}dt=\sqrt{2\pi} 因此∫−∞+∞e−2t2dt=2πM ( t ) = ∫ − ∞ + ∞ 1 2 π σ e − ( x − μ ) 2 2 σ 2 e t x d x M(t)=\int_{-\infin}^{+\infin}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}e^{tx}dx M(t)=∫−∞+∞2πσ1e−2σ2(x−μ)2etxdx = 1 2 π σ ∫ − ∞ + ∞ e −( x − μ ) 2 2 σ 2 + t x d x=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infin}^{+\infin}e^{-\frac{(x-\mu)^2}{2\sigma^2}+tx}dx =2πσ1∫−∞+∞e−2σ2(x−μ)2+txdx 令 w = x − μ σ 令w=\frac{x-\mu}{\sigma} 令w=σx−μ原式= 1 2 π ∫ − ∞ + ∞ e − w 2 2 + t ( w σ + μ ) d w 原式=\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+t(w\sigma+\mu)}dw 原式=2π1∫−∞+∞e−2w2+t(wσ+μ)dw = e μ t 1 2 π ∫ − ∞ + ∞ e − w 2 2 + t σ w d w =e^{\mut}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+t\sigma w}dw=eμt2π1∫−∞+∞e−2w2+tσw dw = e μ t 1 2 π ∫ − ∞ + ∞ e − ( w − t σ ) 2 − t 2 σ 2 2 d w =e^{\mut}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-t\sigma)^2-t^2\sigma^2}{2}}dw=eμt2π1∫−∞+∞e−2(w−tσ)2−t2σ2dw = e μ t + t 2 σ 2 2 1 2 π ∫ − ∞ + ∞ e − ( w − t σ ) 2 2 d w=e^{\mut+\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-t\sigma)^2}{2}}dw=eμt+2t2σ22π1∫−∞+∞e−2(w−tσ)2dw = e μ t + t 2 σ 2 2 1 2 π 2 π =e^{\mut+\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\sqrt{2\p i} =eμt+2t2σ22π12π= e μ t + t 2 σ 2 2 =e^{\mu t+\frac{t^2\sigma^2}{2}} =eμt+2t2σ2 φ ( t ) = ∫ − ∞ + ∞ 1 2 π σ e −( x − μ ) 2 2 σ 2 e i t x d x \varphi(t)=\int_{-\infin}^{+\infin}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}e^{itx}dx φ(t)=∫−∞+∞2πσ1e−2σ2(x−μ)2eitxdx = 1 2 π σ ∫ − ∞ + ∞ e − ( x − μ ) 2 2 σ 2 + i t x d x=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infin}^{+\infin}e^{-\frac{(x-\mu)^2}{2\sigma^2}+itx}dx=2πσ1∫−∞+∞e−2σ2(x−μ)2+itxdx 令 w = x − μ σ 令w=\frac{x-\mu}{\sigma} 令w=σx−μ原式= 1 2 π ∫ − ∞ + ∞ e − w 2 2 + i t ( w σ + μ ) d w 原式=\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+it(w\sigma+\mu)}dw 原式=2π1∫−∞+∞e−2w2+it(wσ+μ)dw = e i μ t 1 2 π ∫ −∞ + ∞ e − w 2 2 + i t σ w d w =e^{i\mut}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+it\sigma w}dw=e iμt2π1∫−∞+∞e−2w2+itσw dw = e i μ t 1 2 π ∫ − ∞ + ∞ e − ( w − i t σ ) 2 + t 2 σ 2 2 d w =e^{i\mut}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-it\sigma)^2+t^2\sigma^2}{2}}dw=e iμt2π1∫−∞+∞e−2(w−itσ)2+t2σ2dw = e i μ t − t 2 σ 2 2 1 2 π ∫ − ∞ + ∞ e − ( w − i t σ ) 2 2 d w =e^{i\mu t-\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-it\sigma)^2}{2}}dw=e iμt−2t2σ22π1∫−∞+∞e−2(w−itσ)2dw = e i μ t − t 2 σ 2 2 12 π 2 π =e^{i\mu t-\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\sqrt{2\pi} =e iμt−2t2σ22π12π= e i μ t − t 2 σ 2 2 =e^{i\mu t-\frac{t^2\sigma^2}{2}} =e iμt−2t2σ2 M ′ ( t ) = eμ t + t 2 σ 2 2 ( μ + σ 2 t ) M'(t)=e^{\mut+\frac{t^2\sigma^2}{2}}(\mu+\sigma^2t)M′(t)=eμt+2t2σ2(μ+σ2t) E X = M ′ ( 0 ) = μEX=M'(0)=\mu EX=M′(0)=μM ′ ′ ( t ) = e μ t + t 2 σ 2 2 ( μ + σ 2 t ) 2 + e μ t + t 2 σ 2 2 σ 2M''(t)=e^{\mut+\frac{t^2\sigma^2}{2}}(\mu+\sigma^2t)^2+e^{\mut+\frac{t^2\sigma^2}{2}}\sigma^2 M′′(t)=eμt+2t2σ2 (μ+σ2t)2+eμt+2t2σ2σ2 E X 2 = M ′ ′ ( 0 ) = μ 2 + σ 2 EX^2=M''(0)=\mu^2+\sigma^2 EX2=M′′(0)=μ2+σ2 D X = E X 2 − ( E X ) 2 = σ 2 DX=EX^2-(EX)^2=\sigma^2 DX=EX2−(EX)2=σ2 特别地 , X 服从标准正态分布 N ( 0 , 1 ) 时特别地,X服从标准正态分布N(0,1)时特别地,X服从标准正态分布N(0,1)时 M ( t )= e t 2 2 M(t)=e^{\frac{t^2}{2}} M(t)=e2t2 φ ( t ) = e − t 2 2 \varphi(t)=e^{-\frac{t^2}{2}} φ(t)=e−2t2 E X = 0 , D X = 1 EX=0,DX=1 EX=0,DX=14、伽马分布(Gamma distribution)若 X 服从伽马分布Γ ( α , β ) ( α , β > 0 ) , 则 f ( x ) = β α Γ ( α ) x α − 1 e − β x I( 0 , + ∞ ) ( x ) 若X服从伽马分布\Gamma(\alpha,\beta)(\alpha,\beta>0),则f(x)=\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}I_{(0,+\infin)}(x) 若X服从伽马分布Γ(α,β)(α,β>0),则f(x)=Γ(α)βαxα−1e−βx I(0,+∞)(x) 其中,Γ ( α ) = ∫ 0 + ∞ t α − 1 e − t d t , α > 0 其中,\Gamma(\alpha)=\int_{0}^{+\infin}t^{\alpha-1}e^{-t}dt,\alpha>0 其中,Γ(α)=∫0+∞tα−1e−tdt,α>0 指数分布 E ( λ ) 是伽马分布Γ ( 1 , λ ) , χ 2 分布χ n 2 是伽马分布Γ ( n 2 , 1 2 ) 指数分布E(\lambda)是伽马分布\Gamma(1,\lambda),\chi^2分布\chi^2_n是伽马分布\Gamma(\frac{n}{2},\frac{1}{2}) 指数分布E(λ)是伽马分布Γ(1,λ),χ2分布χn2是伽马分布Γ(2n,21) M ( t ) = ∫ 0 + ∞ β α Γ ( α ) x α −1 e − β x e t x d xM(t)=\int_{0}^{+\infin}\frac{\beta^\alpha}{\Gamma(\alp ha)}x^{\alpha-1}e^{-\beta x}e^{tx}dx M(t)=∫0+∞Γ(α)βαxα−1e−βx etxdx = ∫ 0 + ∞ β α Γ ( α ) x α − 1 e ( t − β ) x d x=\int_{0}^{+\infin}\frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1}e^{(t-\beta) x}dx =∫0+∞Γ(α)βαxα−1e(t−β)xdx = β α ∫ 0 + ∞ 1 Γ ( α ) x α− 1 e ( t − β ) x d x=\beta^\alpha\int_{0}^{+\infin}\frac{1}{\Gamma(\alpha) }x^{\alpha-1}e^{(t-\beta) x}dx =βα∫0+∞Γ(α)1xα−1e(t−β)xdx t < β 时,令v = ( β − t ) x ,原式= β α β − t ∫ 0 + ∞ 1 Γ ( α ) ( v β −t ) α − 1 e − v d v t<\beta时,令v=(\beta-t)x,原式=\frac{\beta^\alpha}{\beta-t}\int_{0}^{+\infin}\frac{1}{\Gamma(\alpha)}(\frac{v}{ \beta-t})^{\alpha-1}e^{-v}dv t<β时,令v=(β−t)x,原式=β−tβα∫0+∞Γ(α)1(β−tv)α−1e−vdv = ( β β − t ) α 1 Γ ( α ) ∫ 0 + ∞ v α − 1 e − v d v =(\frac{\beta}{\beta-t})^\alpha\frac{1}{\Gamma(\alpha)}\int_{0}^{+\infin}v^ {\alpha-1}e^{-v}dv =(β−tβ)αΓ(α)1∫0+∞vα−1e−vdv = ( β β − t ) α 1 Γ ( α ) Γ ( α ) =(\frac{\beta}{\beta-t})^\alpha\frac{1}{\Gamma(\alpha)}\Gamma(\alpha)=(β−tβ)αΓ(α)1Γ(α) = ( β β − t ) α=(\frac{\beta}{\beta-t})^\alpha =(β−tβ)αφ ( t ) = ( β β − i t ) α \varphi(t)=(\frac{\beta}{\beta-it})^\alpha φ(t)=(β−itβ)αM ′ ( t ) = β α ( β − t ) − α − 1 α M'(t)=\beta^\alpha(\beta-t)^{-\alpha-1}\alpha M′(t)=βα(β−t)−α−1α E X = M ′ ( 0 ) = α β EX=M'(0)=\frac{\alpha}{\beta}EX=M′(0)=βαM ′ ′ ( t ) = β α ( β − t ) − α − 2 α ( α + 1 ) M''(t)=\beta^\alpha(\beta-t)^{-\alpha-2}\alpha(\alpha+1)M′′(t)=βα(β−t)−α−2α(α+1) E X 2 = α ( α + 1 ) β 2 EX^2=\frac{\alpha(\alpha+1)}{\beta^2}EX2=β2α(α+1) D X = E X 2 − ( E X ) 2 = α β 2。

常见分布函数的期望和方差

常见分布函数的期望和方差

常见分布函数的期望和方差
六种常见分布的期望和方差:
1、0-1分布
已知随机变量X,其中P{X=1} = p,P{X=0} = 1-p,其中0 < p < 1,则成X 服从参数为p的0-1分布。

其中期望为E(X)= p,方差D(X)= p(1-p)。

2、二项分布
n次独立的伯努利实验(伯努利实验是指每次实验有两种结果,每种结果概率恒定,比如抛硬币)。

其中期望E(X)= np,方差D(X)= np(1-p)。

3、泊松分布
其概率函数为P{X=k}=λ^k/(k!e^λ) k=0,1,2…...k代表的是变量的值。

其中期望和方差均为λ。

4、均匀分布
若连续型随机变量X具有概率密度,则称X在(a,b)上服从均匀分布。

其中期望E(X)= (a+b)/ 2 ,方差D(X)= (b-a)^2 / 12。

5、正态分布
若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。

当μ= 0,σ= 1时的正态分布是标准正态分布。

其中期望是u,方差是σ的平方。

6、指数分布
若随机变量x服从参数为λ的指数分布,则记为X~E(λ)。

其中期望是E(X)=1/λ,方差是D(X)=1/λ。

大学概率论某些常用分布的数学期望与方差 (1)

大学概率论某些常用分布的数学期望与方差 (1)

vk ( X ) E( X k ).
若 X为离散随机变量, 则 vk ( X ) xik p(xi ).
i
若 X为连续随机变量,
则 vk ( X )
xk f (x)dx.

特别,一阶原点矩就是数学期望:v1( X ) E( X ).
概率论与数理统计教程(第四版)
目录
上一页 下一页
i
若 X 为连续随机变量,则
k (X )

[x

E(X
)]k
f
(x)dx.

概率论与数理统计教程(第四版)
目录
上一页 下一页
返回
结束
§3.6 原点矩与中心矩
一阶中心矩恒等于零: 1( X ) 0. 二阶中心矩就是方差: 2 ( X ) D( X ).
概率论与数理统计教程(第四版)
由组合数的性质可知
n1
n1
C C k
n1k
M 1 N M

C C C , k
( n1)k
n1
M 1 ( N 1)(M 1) N 1
k 0
k 0
所以有
E(X
)
M
Cn1 N 1
CnN

nM N
.
概率论与数理统计教程(第四版)
目录
上一页 下一页
返回
结束
§3.5 某些常用分布的数学期望与方差
返回
结束
§3.5 某些常用分布的数学期望与方差
均匀分布
设随机变量 X 在区间 a ,b 上服从均匀分布,则
E( X )
b x dx aba
a b. 2
均匀分布的数学期望正是随机变量分布区间的中点值.

概率论笔记(四)概率分布的下期望和方差的公式总结

概率论笔记(四)概率分布的下期望和方差的公式总结

概率论笔记(四)概率分布的下期望和方差的公式总结一:期望引入:1.1离散型随机变量的期望注:其实是在等概率的基础上引申来的,等概率下的权重都是1/N。

1.2连续型随机变量的期望注意:因为连续随机变量的一个点的概率是没有意义的,所以我们需要借用密度函数,如所示,这实际上是一个期望积累的过程。

1.3期望的性质注:其中第三个性质,可以把所有的X+Y的各种情况展开,最后得出的结果就是这样的。

二:随机变量函数(复合随机)的数学期望1.理解注:其实就是复合随机变量的期望,对于离散型,其主要是每个值增加了多少倍/减少了多少倍,但是概率不变,所以公式见上面;对于连续性随机变量,其实是一样的,每个点的概率没有变,所以就是变量本身的值发货所能了改变。

三:方差引入的意义:求每次相对于均值的波动:求波动的平方和:定义:注:其实就是对X-E(X)方,求均值其实就是方差,注意这里的均值也是加权平均,所以方差其实就是一种特殊的期望。

3.1离散型随机变量的方差3.2连续性随机变量的方差3.3方差的性质注:3)4)5)等性质可以套入定义中就可以得到,这里不多说;对于独立以及协方差见后;8)的证明如下四:协方差4.1定义注:与上一个变量相比,之前是一个变量移位平方,但这里是两个变量移位相乘。

4.2离散型二维随机变量的协方差4.3连续型二维随机变量的协方差4.4二维随机变量的协方差性质注:了解即可…4.5协方差矩阵五:相关系数所以:独立必不相关,但不相关不一定独立,因为这里的不相关指的是线性不相关,可能会有其他非线性关系,具体例子找到再补充-------。

参考链接:。

概率计算中的期望与方差计算

概率计算中的期望与方差计算

概率计算中的期望与方差计算概率计算是数学中的一个重要分支,广泛应用于各个领域,包括金融、统计学、物理学等。

在概率计算中,期望与方差是两个基本的概念和工具,用于描述随机变量的特征和分布。

本文将详细介绍期望与方差的计算方法及其应用。

一、期望的计算期望是随机变量的平均值,它可以理解为对随机变量进行大量重复实验后的平均结果。

期望的计算公式如下:E(X) = Σ[x * P(x)]其中,E(X)表示随机变量X的期望,x表示随机变量可能取到的值,P(x)表示该值发生的概率。

以掷骰子为例,假设骰子是均匀的,即各个面出现的概率相等。

骰子的期望可以通过以下计算得出:E(X) = 1 * 1/6 + 2 * 1/6 + 3 * 1/6 + 4 * 1/6 + 5 * 1/6 + 6 * 1/6 = 3.5这意味着在长期的掷骰子实验中,每次掷出的点数的平均值接近于3.5。

二、方差的计算方差衡量的是随机变量离其期望的平均偏离程度,用于描述随机变量的分散程度。

方差的计算公式如下:Var(X) = Σ[(x - E(X))^2 * P(x)]其中,Var(X)表示随机变量X的方差,x表示随机变量可能取到的值,E(X)表示随机变量X的期望,P(x)表示该值发生的概率。

继续以掷骰子为例,我们计算骰子的方差:Var(X) = [(1-3.5)^2 * 1/6] + [(2-3.5)^2 * 1/6] + [(3-3.5)^2 * 1/6] + [(4-3.5)^2 * 1/6] + [(5-3.5)^2 * 1/6] + [(6-3.5)^2 * 1/6] = 2.92从结果可以看出,骰子的结果相对稳定,方差较小。

三、期望与方差的应用期望和方差作为概率计算的基本工具,应用广泛。

以下是一些常见的应用场景:1. 金融领域:在金融建模中,期望和方差被广泛应用于资产收益的预测和风险评估。

投资者可以通过计算期望和方差来评估投资组合的预期收益和风险。

概率论中的期望与方差

概率论中的期望与方差

概率论中的期望与方差概率论是数学中的一个重要分支,研究随机现象的规律和性质。

在概率论中,期望和方差是两个重要的概念,它们用来描述随机变量的特征和分布。

本文将详细介绍概率论中的期望和方差,并探讨其应用。

一、期望期望是概率论中最基本的概念之一,用来描述随机变量的平均值。

对于离散型随机变量,期望的计算公式如下:E(X) = Σ(x * P(X=x))其中,E(X)表示随机变量X的期望,x表示随机变量X可能取到的值,P(X=x)表示随机变量X取到值x的概率。

对于连续型随机变量,期望的计算公式如下:E(X) = ∫(x * f(x))dx其中,E(X)表示随机变量X的期望,x表示随机变量X的取值范围,f(x)表示随机变量X的概率密度函数。

期望可以理解为随机变量在一次试验中的平均值,它可以用来描述随机变量的集中趋势。

例如,假设有一个骰子,它的六个面分别标有1到6的数字。

每个数字出现的概率相同,为1/6。

那么这个骰子的期望就是(1+2+3+4+5+6)/6=3.5。

这意味着在大量的投掷中,骰子的平均值趋近于3.5。

二、方差方差是概率论中用来描述随机变量离散程度的指标。

方差的计算公式如下:Var(X) = E((X-E(X))^2)其中,Var(X)表示随机变量X的方差,E(X)表示随机变量X的期望。

方差可以理解为随机变量与其期望之间的差异程度,它可以用来度量随机变量的波动性。

方差越大,表示随机变量的取值在期望附近波动的程度越大;方差越小,表示随机变量的取值相对稳定。

方差的平方根称为标准差,它是方差的一种常用度量方式。

标准差可以帮助我们判断数据的分散程度,通常来说,数据的标准差越大,表示数据的波动性越大。

三、应用期望和方差在概率论中有广泛的应用。

它们不仅可以用来描述随机变量的特征,还可以用来解决实际问题。

1. 随机变量的期望可以用来计算投资的预期回报。

假设某个投资项目有两个可能的结果,分别为正收益和负收益,每个结果发生的概率已知。

数学期望与方差的公式

数学期望与方差的公式

数学期望与方差的公式数学中,期望和方差是两个重要的概念。

它们是统计学和概率论中的核心概念,用于描述和衡量概率分布的特性和不确定性。

在本文中,我们将详细介绍数学中期望和方差的定义和计算公式,并对其性质和应用进行详细讨论。

首先,让我们从期望开始。

期望是概率分布的平均值,表示对概率分布的中心位置的度量。

对于一个离散随机变量X,其期望E(X)可以用以下公式来计算:E(X)=Σ(x*P(X=x))其中,x是随机变量X可能取的值,P(X=x)是X取值为x的概率。

对于一个连续随机变量X,其期望E(X)可以用以下公式来计算:E(X) = ∫(x * f(x))dx其中,f(x)是X的概率密度函数。

期望有很多重要的性质。

首先,期望是线性的,即对于常数a和b,E(aX+b)=aE(X)+b。

这意味着我们可以将常数系数从一个随机变量中提取出来。

此外,期望还满足E(c)=c,其中c是一个常数。

这意味着一个常数的期望就是它本身。

接下来,让我们来讨论方差。

方差衡量了随机变量偏离其期望值的程度。

对于一个离散随机变量X,其方差Var(X)可以用以下公式来计算:Var(X) = Σ((x - E(X))^2 * P(X = x))同样,对于一个连续随机变量X,其方差Var(X)可以用以下公式来计算:Var(X) = ∫((x - E(X))^2 * f(x))dx方差也有一些重要的性质。

首先,方差可以用来度量概率分布的离散程度。

方差越大,随机变量的取值就越分散。

其次,方差是非负的,即Var(X) ≥ 0,且只有当X是常数时,方差才为0。

最后,方差具有一个重要的线性性质,即对于常数a和b,Var(aX + b) = a^2 * Var(X)。

这意味着我们可以通过常数系数的平方来调整随机变量的方差。

除了期望和方差,还有一些其他的重要的概念与它们相关。

例如,协方差是用来度量两个随机变量之间线性关系的程度。

Cov(X,Y) = E((X - E(X)) * (Y - E(Y)))协方差的符号可以表明随机变量之间的关系是正相关还是负相关。

常见分布的数学期望和方差

常见分布的数学期望和方差

分布
k!

k 0,1,2,
pq
npq
学 期
均匀 分布
f (x)
1 b
a
,
a
x
b
0 , else
望 与
指数 分布
f
(
x)
e x
0,
,
x0 else
( 0)
ab 2 1
(b a)2 12 1
2
方 差
正态 分布
f (x)
1
e ,
(
x) 2 2
2
x
2
( 0)
2
例1
设X
~
N
(
1
,
2 1
E( X i ) p , D( X i ) p(1 p) ,
而 X= X1+X2+…+Xn , Xi 相互独立,
n
n
所以 E( X ) E( X i ) E( X i ) np .
i 1
i 1
n
n
D( X ) D( X i ) D( X i ) np(1 p) .
i 1
i 1
所以 D( X ) np(np p 1) (np)2 np(1 p) .
4
下面利用期望和方差的性质重新求二项分布的
数学期望和方差.
设 X ~ B ( n, p ),X表示n重伯努利试验中的成功次数.

1 X i 0
如第i次试验成功 如第i次试验失败
i=1,2,…,n

Xi
P
10
p 1 p
与 2X 的关系是则( ).
A.有相同的分布
B.数学期望相等
C.方差相等

六个常用分布的数学期望和方差

六个常用分布的数学期望和方差

0
θ
0

x)e
x
x
e dx
0
0
x
e
θ
0
E( X 2 )
x 2 f ( x)dx
x2
1
x

dx
0
θ
x
( x 2)de θ 0

x
2)e
x
x
2xe dx
0
0

ቤተ መጻሕፍቲ ባይዱ
2θx)de
x θ
0

2x)e
x
2
x
e dx
0
0
2
2
e
x
2θ 2, D( X ) E( X 2 ) [E( X )]2
X X1 X2 Xn
E( X ) E(X1 ) E(X 2 ) E(X n ) np
D( X ) D( X 1 ) D( X 2 ) D( X n ) np(1 p)
即: 若随机变量X~B( n , p ),则
E( X ) np,D( X ) np(1 p)
1
t2
( t )e 2 d t
t2
e 2 dt
2
2
D( X ) E{[ X E( X )]2 }
(x
)2
2
t2
t
2
e
2
dt
(令
t x )
2
1
( x )2
e 2 2 dx
2
2
2
t2
( t )de
2
2 2
t2
te 2
t 2
e 2 dt
2
2

【精选】泊松分布的数学期望与方差

【精选】泊松分布的数学期望与方差

【精选】泊松分布的数学期望与方差
泊松分布是一种常见的离散概率分布,用于描述单位时间或单位空间内随机事件的发生次数。

泊松分布的数学期望和方差可以通过其参数λ来计算。

泊松分布的数学期望为μ = λ,即平均每个单位时间或单位空
间内事件的平均发生次数等于λ。

例如,λ=2表示平均每个单
位时间或单位空间内发生2次事件。

泊松分布的方差为σ^2 = λ,即每个单位时间或单位空间内事
件的发生次数的方差等于λ。

方差表示随机变量的离散程度,
泊松分布的方差等于其数学期望。

如果泊松分布的参数λ较大,那么其数学期望和方差也会相应增加,整个分布会呈现出较大的中心趋势和较大的离散程度。

反之,如果λ较小,分布的中心趋势和离散程度也会相应减小。

泊松分布的数学期望和方差都与其参数λ有关,数学期望等于λ,方差也等于λ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 3 2
e
,
y ,
E (Y X和Y相互独立得:
f ( x, y ) f X ( x ) f Y ( y )
1 e 12 2 0
( y 1 ) 18
2
,
1 x 5 , y 其它
E ( 3 X 4Y 2) 3 E ( X ) 4 E (Y ) 2 3
D( 3 X 4Y 2) 9 D( X ) ( 4) 2 D(Y ) 156
E( X k ) p ,
D( X k ) p(1 p)
X Pk
0
1
1-p
p
X X1 X 2 X n
E ( X ) E ( X 1 ) E ( X 2 ) E ( X n ) np
D( X ) D( X 1 ) D( X 2 ) D( X n ) np(1 p)
k 1


k 1
e

e


2 E ( X ) E[ X ( X 1) X ] E[ X ( X 1)] E ( X )

k (k 1)
k 0

e
k


e
2

k!
(k 2)!
k 2


k 2
e
2

e
即: 若随机变量X~B( n , p ),则
E ( X ) np,D( X ) np(1 p)
三.泊松分布
随机变量
P{ X k }
X ~ ( ) ,其分布律为:
λ e
k λ
,
k 0,1,2, ,
k!
E( X )
k
k 0

e
k

e

k!
(k 1)!
P{ X k } C n p (1 p)
k k n k
,
k 1,2,, n
由二项分布定义可知,X是n重贝努利试验中事件A发
生的次数,且在每次试验中A发生的概率为p,设
Xk 1 0 A在第k次发生 A在第k次不发生 , k 1,2, , n
则Xk服从二点分布,其分布律为:
(5 1) 12
密度;(2) E ( 3 X 4Y 2) , D( 3 X 4Y 2)
解: X在区间(1,5)上服从均匀分布,
1 f X ( x) 4 0 1 x 5 其它
( y 1) 18
2
,
E( X ) D( X )
3
2

4 3
fY ( y )
2

D( X ) E ( X ) [ E ( X )]
2
2

即:
若随机变量X~π(λ),则
E ( X ) λ , D( X ) λ
四.均匀分布
设随机变量X在区间(a,b)上服从均匀分布,其概率
密度为
1 f ( x) b a 0

a xb 其它
,
E( X )

xf ( x )dx




x
1 2

e
dx (令 t
t
2
x



2


( t )e

t
2
2
dt

2


e
2
dt

D( X ) E{[ X E ( X )] }
2



(x )
2
1 2

( x ) 2
附: 几种重要随机变量的数学期望和方差
一.二点分布 二.二项分布 四.均匀分布 五.正态分布 六.指数分布
三.泊松分布
一.二点分布
若随机变量X服从二点分布,其分布律为:
X Pk 0 1-p 1
p
E( X ) p
E( X ) p
2
D( X ) p(1 p)
二.二项分布
随机变量X~B(n,p),其分布律为:
2

若随机变量X服从参数为λ的指数分布,则
E ( X ) θ,D( X ) θ
2
六.正态分布
随机变量 X ~ N ( , 2 ) ,其概率密度为:
f ( x) 1 2
( x ) 2
2 2
e
,
x
( x ) 2
2 2
E( X )
1


2
2
e
dx


2
2





t e
2

t
2
2
d t (令
t
2
t
x

2




2

2
2

( t )de
2
t 2 te 2 2



t
2

e
2
d t

2
2

2

若随机变量X~N(μ,σ2 ), 则
E ( X ) μ , D( X ) σ

0

( x )de
x) ( e
2

0
0
x



2 xe


dx
x
0



( 2θx)de
x

x θ
2x) ( e


0
2

e

dx
0
2 e
2

0
2 2θ , D( X ) E ( X 2 ) [ E ( X )]2 θ
2
例1.已知 X ~ (3) , Y 2 X 1 , 求E (Y ) , D(Y ) , E[3( X 2 1)] 解:X ~ (3) , 则 E ( X ) 3 , D( X ) 3
E (Y ) E ( 2 X 1) 2 E ( X ) 1 5
D(Y ) D( 2 X 1) 4 D( X ) 12



xf ( x )dx


x

x
1 θ
e
dx
x
0


( x)de

x θ
0
x) ( e

x


0



e

dx
e

0
θ
0
E( X )
2

2


x f ( x )dx
x θ
2


x
2
x
1 θ

x θ
e
dx
x
0


2 2

3
4

(b a ) 12
2
即 若随机变量X~U( a , b ),则
E( X )
ab 2
, D( X )
(b a ) 12
2
五.指数分布
随机变量X服从参数为λ的指数分布,其概率密度为:
1 x e θ f ( x) θ 0 x0 x0
x θ
E( X )



xf ( x )dx

b
x
1 ba
dx
a

1 ba
x
2
b

ab 2
2 a
E( X )
2

b
x
2
1 ba
dx
b a
3
3
a
3(b a )
a ab b
2 2

a ab b
2
2
3
a 2ab b
2 2
D( X ) E ( X ) [ E ( X )]
E[3( X 1)] 3 E ( X 2 ) 3
2
2 3{ D( X ) [ E ( X )] } 3 33
例2.已知X和Y相互独立,且X在区间(1,5)上服从
均匀分布, Y ~ N ( 1 , 9 ) , 求(1) (X,Y)的联合概率
Y ~ N (1, 9 ) ,
1 5 2
相关文档
最新文档