2014全国大学生数学建模竞赛A题论文设计
2014数学建模国赛A题
1.3 桌脚边缘线的数学描述---曲线参数方程 在图 3 中,由几何关系可知,建立曲线参数方程如下:
xi ai a1 Li cos i yi 26.25 2.5i zi Li sin i
又根据:
(7)
L sin 1 2 tan i L cos 1 (ai a1 ) 2 2 2 cos i sin i 1
ci ( Li 2) 2 (ai a1 ) 2 Li (ai a1 ) cos 1
(5)
式中 ci 表示钢筋与第 i 根木条(0, ai )之间的距离。 则桌腿木条开槽长度的函数表达式(程序见附录)为:
d i ci (b ai )
(6)
经计算得出第一象限内所有木条与其开槽长度关系(见表 1)如下: 木条编号 槽长(cm) 木条编号 槽长(cm) A1 0 A6 20.77 A2 5.02 A7 23.05 A3 9.90 A8 24.73 A4 14.21 A9 25.82 A5 17.84 A10 26.37
二、 问题分析
(1).折叠桌以铰链连接,外形由直纹曲面构成。通过反复研究折叠桌的动态视频, 分析出折叠桌的运动特性,我们采用几何投影法,化三维运动为二维运动,简化模型。 同时,为了便于分析几何关系,我们仅对单组木条中最长与最短两根木条进行探究。并 通过 Solidwoks 软件绘画其几何关系图。根据各木条之间的连动原理推导出所有木条间 的关系,建立曲线参数方程表示折叠桌整体的动态变化过程。最后计算出折叠桌的设计 加工参数,并通过函数式和三维曲线图描述桌角边缘线。 (2).通过分析题目要求,我们初步建立优化模型。然后,我们通过对稳固性的三大 影响因素(结构重心、结构支撑面、结构形状)分析计算,对原模型进行多目标规一化 处理。确定出单一的目标函数,通过 Matlab 软件进行优化求解。然后,依次讨论其他 约束条件对结果进行优化,得到最优解函数。带入相关参数求解题目所求条件下的最优 加工参数。 (3).分析得出问题三属于问题二的一般化扩展,在客户给定折叠高度、桌面边缘线 的形状和桌面直径的要求下,对问题二中模型进行改进,转换。求解出符合要求的平板 材料的形状尺寸和其实可行的最优设计加工参数。然后,由所得模型再求解出其他几种 桌子。并画出其动态变化图。
2014数学建模国赛A题教程
承诺书
我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参 赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下 载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网 上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
在模型优化中,我们考虑了在桌面上均匀分布的力的情况,通过建立空间力系的平
衡模型,在临界条件下(桌子支撑腿受到指向桌内的摩擦力取最大值),由理论力学知
识推导出桌面上均匀分布的力 F 与 角、钢筋位置之间的函数式。计算得出桌子的稳定
性与钢筋位置无关,桌子在这种受力情况下的稳定性只与支撑腿与竖直方向的夹角有
2. 提出问题
(1). 给定长方形平板尺寸为 120 cm × 50 cm × 3 cm,每根木条宽 2.5 cm, 连接桌腿木条的钢筋固定在桌腿最外侧木条的中心位置,折叠后桌子的高度为 53 cm。 试建立模型描述此折叠桌的动态变化过程,在此基础上给出此折叠桌的设计加工参数 (例如,桌腿木条开槽的长度等)和桌脚边缘线的数学描述。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展 示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从 A/B/C/D 中选择一项填写):
B
我们的报名参赛队号为(8 位数字组成的编号):
27006025
所属学校(请填写完整的全名):
长安大学
二、 问题分析
(1).折叠桌以铰链连接,外形由直纹曲面构成。通过反复研究折叠桌的动态视频, 分析出折叠桌的运动特性,我们采用几何投影法,化三维运动为二维运动,简化模型。 同时,为了便于分析几何关系,我们仅对单组木条中最长与最短两根木条进行探究。并 通过 Solidwoks 软件绘画其几何关系图。根据各木条之间的连动原理推导出所有木条间 的关系,建立曲线参数方程表示折叠桌整体的动态变化过程。最后计算出折叠桌的设计 加工参数,并通过函数式和三维曲线图描述桌角边缘线。
2014年全国大学生数学建模优秀论文
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):C我们的参赛报名号为(如果赛区设置报名号的话):20030002所属学校(请填写完整的全名):广西机电职业技术学院参赛队员(打印并签名) :1. 李宪周2. 周永强3. 周光华指导教师或指导教师组负责人(打印并签名):数模组日期: 2014 年 9 月15 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):生猪养殖产的经营管理摘要国家物价局相关负责人介绍,肉禽类产品价格之所以上升势头快,原因有三:一是养殖成本剧增;二是市场需求的逐步攀升;三是肉禽类价格的周期性波动实乃正常情况。
养殖者希望能在投资不断增大的情况下获取最大经济效益,而消费者则希望能以最实惠的价格购买到优质的放心肉,于是本文的模型概念也就应运而生了。
本文主要建立生猪养殖场应该通过怎样的经营管理方式以达到最大利润化的模型。
以10000头猪来限制猪场的数量而展开的对三个问题的求解问题。
针对问题一,对每头母猪每年平均产仔量的要求必须要满足达到或超过盈亏平衡点的求解,我们通过对可查数据进行的查询和对未知数据进行的假设,最后运用盈亏平衡点的求解公式,所以要达到或超过盈亏平衡点,每头母猪每年平均产仔量约达到9头。
2014年数学建模A题-省一等奖
关键词:软着陆、SQP算法、轨道优化、景象匹配
1
一
1.1 问题的背景
问题重述
中国是继美国、前苏联之后的第三个能使卫星登上月球实现软着陆的国家。因此, 嫦娥三号如何实现软着陆以及能否成功成为外界关注的焦点。北京时间 12 月 10 日晚, 嫦娥三号已经成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一 次轨道调整。在实施软着陆之前,嫦娥三号还将在这条近月点高度约 15 公里、远月点 高度约 100 公里的椭圆轨道上继续飞行。 嫦娥三号着陆地点选在较为平坦的虹湾区。但由于月球地形的不确定性,最终“落 月”地点的选择仍存在一定难度。但嫦娥三号的预定着陆点为 19.51W,44.12N,海拔为 -2641m。在大约距离月球 15 公里时,反推发动机就要点火工作;到离月球 100 米时, 卫星将暂时处于悬停状态,此时它已不受地球上工程人员的控制,因卫星上携带的着陆 器具有很高智能,它会自动选择一块平整的地方降下去,并在离月球表面 4 米的时候关 闭推进器,卫星呈自由落体降落,确保软着陆成功。为了确保探测器能够成功在月球表 面实现软着陆,需要认真设计降落过程中探测器的发动机的控制方案,使“嫦娥 3 号” 能够顺利完成科研任务,得到最大化的应用。由于月球上没有大气,嫦娥三号无法依靠 降落伞着陆,只能靠变推力发动机,才能完成中途修正、近月制动、动力下降、悬停段 等软着陆任务。 这将是中国航天器首次在地外天体的软着陆和巡视勘探, 同时也是 1976 年后人类探测器首次的落月探测。 嫦娥三号在着陆准备轨道上的运行质量为 2.4t, 其安装在下部的主减速发动机能够 产生 1500N 到 7500N 的可调节推力。在给定主减速发动机的推力方向后,能够自动通过 多个发动机的脉冲组合实现各种姿态的调整控制。 要保证准确地在月球预定区域内实现 软着陆,关键问题是着陆轨道与控制策略的设计。其着陆轨道设计的基本要求:着陆准 备轨道为近月点 15km,远月点 100km 的椭圆形轨道;着陆轨道为从近月点至着陆点,其 软着陆过程共分为 6 个阶段,要求满足每个阶段在关键点所处的状态;尽量减少软着陆 过程的燃料消耗。 1.2 提出问题 根据上述的叙述以及基本要求,提出以下三个问题: (1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与 方向。
2014全国大学生数学建模竞赛A题题目及参考答案_
2014全国大学生数学建模竞赛A题题目及参考答案_ 2011高教社杯全国大学生数学建模竞赛题目,请先阅读“全国大学生数学建模竞赛论文格式规范”,A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息,有了这些信息,如何建立模型解决问题,DJHFSJKDHFKDSJKFHSJKDFHJKDSHFDJKSFHJKDSHFJKDSHFJK题目 A题城市表层土壤重金属污染分析摘要,本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。
2014高教社杯全国大学生数学建模竞赛A题_共26页
2014 高教社杯全国大学生数学建模竞赛
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):
嫦娥三号软着陆轨道设计与控制策略 摘要
本文针对嫦娥三号软着陆轨道设计与控制策略问题,通过提取题目中的信 息,利用拱点的概念、B 样条函数逼近的统计定位方法、非线性规划问题及哈 密尔顿函数为理论基础进行了完整的建模工作。首先,通过建立坐标系结合物 理学运动公式求解出了近月点与远月点的位置及相应的速度;在此基础上,利 用 B 样条函数逼近的方法确定了嫦娥三号的着陆轨;最后通过分解着陆过程并 利用非线性规划问题及哈密尔顿函数确定着陆阶段的最优控制策。
参赛队员 (打印并签名) :1.
2.
3.
指导教师或指导教师组负责人 (打印并签名):
(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上
内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖
资格。)
日期: 2014 年 9 月 15 日
赛区评阅编号(由赛区组委会评阅前进行编号):
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开 展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从 A/B/C/D 中选择一项填写):
A
我们的报名参赛队号为(8 位数字组成的编号):
07033001
所属学校(请填写完整的全名):吉林师范大学博达学院
针对问题二,采用 B 样条函数逼近的运动学统计定位方法确定了在着陆弧 段上任意时刻的位置方程,从而刻画出了嫦娥三号的着陆轨道,并用 matlab 对轨 迹进行了模拟。在 6 个阶段的最优控制策略上,先通过直角坐标系得出质心的运 动方程,再通过对 6 个阶段初始条件和终端状态的分解,利用非线性规划问题 求解哈密尔顿函数,得出性能指标(耗燃量)的最小值为:382.6531kg,从而确 定了最优控制策略。
2014年全国数学建模a题解析
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要嫦娥三号卫星着陆器实现了我国首次地外天体软着陆任务。
要保证准确的在月球预定区域内实现软着陆轨道与控制策略的设计。
问题一运用活力公式[1]来建立速度模型,利用matlab软件代入数值计算出。
所求速度33⨯⨯(=1.692210m/s,=1.613910m/s)v v远近采用轨道六根数[2]来建立近月点,远月点位置的模型。
轨道根数是六个确定椭圆轨道的物理量,也是联系赤道直角坐标与轨道极坐标重要夹角的关系。
通过着陆点的位置求出轨道根数各个值的数据,从而确定近月点,远月点的位置,坐标分别为(19.51W 27.88N 15KM),(160.49 27.885S 100KM)E。
2014全国大学生数学建模论文
§2
一、问题的总分析
问题的分析
本文的重点是研究嫦娥三号软着陆的轨道设计与最优控制问题, 通过对其在 着陆准备轨道运行情况和着陆过程进行研究,基于天体运行理论和现代控制理 论,并结合 MATLAB 软件编程确定最佳着陆点,从而建立椭圆轨道瞬时速度模型、 相对运动模型、 极坐标动力学模型和耗燃最优制导模型等一系列模型,从而完成 了对各个着陆阶段的轨道设计, 并给出了最优控制策略,并对所得结果进行了误 差分析和敏感度分析。建立问题动力流程图:
1
§1 问题的重述
一、背景知识 在中国的古老传说中, 月亮上有个叫嫦娥的姑娘和一只美丽的玉兔。 在 2013 年 12 月-14 日晚,这个传说终于变成了“现实”。嫦娥三号是中国国家航天局嫦 娥工程第二阶段的登月探测器,包括着陆器和玉兔号月球车。2013 年 12 月 2 日 1 时 30 分, 嫦娥三号”探测器由长征三号乙运载火箭从西昌卫星发射中心发射, 首次实现月球软着陆和月面巡视勘察。12 月 10 日成功降轨。12 月 15 日晚, 正 在月球上开展科学探测工作的嫦娥三号着陆器和巡视器进行互成像实验, 两器”” 顺利互拍, 嫦娥三号任务取得圆满成功。 这是中国航天器首次 “降临” 地外天体, 中国也成为世界上第三个在月球上成功实施软着陆的国家。 月球软着陆的轨道设计和制导技术,是月球探测工程中的一个关键性技术, 更是将来进行航天员登月, 建立月球基地不可缺少的一个环节。相关研究早在上 世纪五六十年代就已经开始。合成一段国内外已经有了比较成熟的研究方法。 王 明光、 罗建军等使用伪光谱方法将软着陆轨道优化问题转为一个约束参数优化问 题,然后采用乘子法处理约束条件,采用变尺度法求解处理后的参数优化问题, 此方法具有收敛速度快、对初始控制量不敏感、鲁棒性强的优点。朱建丰等将自 适应遗传算法与模拟退火算法相结合, 得到一种全局搜索能力和局部搜索能力均 较强的自适应模拟退火遗传算法,对月球软着陆轨迹进行优化后,能够搜索到比 较精确的全局最优轨迹。 二、要解决的问题 (1)根据嫦娥三号在着陆准备轨道上运行的状况,以及所给信息,确定着陆 准备轨道上近月点和远月点的位置, 以及在所求点上嫦娥三号相应速度的大小与 方向。 (2)将嫦娥三号整个的着陆过程划分为六个阶段,并确定其在每个阶段的着 陆轨道,以及最优控制策略。 (3)由于嫦娥三号着陆过程的复杂性和不确定性,必然会有误差,在此问要 求对于我们设计的着陆轨道和最优控制策略,做相应的误差分析和敏感性分析。
2014全国大学生数学建模比赛A题国一优秀论文
r ' dr d , r '' d 2 r d 2 dr h ' r dr dt 2r d r d r h2 2 1 r d r dt 2 ( 3 r ' 2 2 r '' ) d r r r
利用 2.10 式得
u '' u
h2
该方程给
r
1 h2 u 1 e cos( )
e 和 即两个新积分常数。 这是一圆锥曲线, 在一定条件下它表示椭圆, 中心 M (即坐标原点 O )在其一个焦点上。考虑实际应用的需要,这里首先讨论椭圆运 动的情况。既然是椭圆,可令 p a 1 e 2 h 2
2.38 km s
18.28 ~ 28.58
318.15
27.32 天
2
建立模型 一、问题一分析 1.1 嫦娥三号近月点与远月点状态分析
月球探测器轨道运动按近似分析方法分为两个阶段:一个是以地球引力为主 的阶段; 另一个是以月球引力为主的阶段。两者以月球相对于地球的作用球半径 为 6.6 万公里的球面为分界。当航天器与月球的距离大于 6.6 万公里时,认为航 天器受到的力主要是地球引力, 并近似地认为航天器相对地球的轨道是开普勒轨 道。当航天器进入月球作用球时,认为航天器是相对于月球运动。如果将进入月 球作用球的速度换算成相对月球的速度,这个速度往往超过月球的脱离速度, 因 而航天器相对月球的轨道是双曲线。 两个阶段轨道连接起来就是月球探测器的轨 道。这种近似方法称为双二体问题。如果两个阶段的轨道都用航天器轨道摄动的 方法解出, 可以得到比较精确的轨道。月球探测器轨道依顺序可以分为停泊轨道 和过渡轨道,过渡轨道一直延伸到月球附近。 此后,不作机动飞行时便分为击中月 球轨道和绕飞轨道;作机动飞行时,可成为月球卫星轨道或在月球表面软着陆。
2014全国大学生数学建模竞赛A题论文解析
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题.我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出.我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性.如有违反竞赛规则的行为,将受到严肃处理.我们参赛选择的题号是(从A/B/C/D中选择一项填写)赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要本文针对嫦娥三号软着陆轨道设计与控制策略的实际问题,以理论力学(万有引力、开普勒定律、万能守恒定律等)和卫星力学知识为理论基础,结合微分方程和微元法,借助MATLAB软件解决了题目所要求解的问题。
针对问题(1),在合理的假设基础上,利用物理理论知识、解析几何知识和微元法,分析并求解出近月点和远月点的位置,即139.1097 。
再运用能量守恒定律和相关数据,计算出速度v(近月点的速度)1=1750.78/v(远月点的速度)=1669.77/m s,,最后利用曲线的切线m s,2方程,代入点(近月点与远月点)的坐标求值,计算出方向余弦即为相应的速度方向。
针对问题(2)关键词:模糊评判,聚类分析,流体交通量,排队论,多元非线性回归一、问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
2014全国数学建模A题一等奖论文
v2 = 526.94m / s 。即远月点的速度为 526.94 m / s .方向为水平方向。
图 3 着陆准备轨道环绕模拟
由于近月点和远月点分别是椭圆轨道的长半轴的两个端点, 且两点的连线经过月心 (图 3),因此由对称性可知远月点的位置为(19.51E,32.31S),高度为 100000 米。
360 = 30.301千米 / 度 2πR P 为纬度改变 1o 水平距离的改变量。 p=
根据能量守恒定律可知:
1 2 1 2 mv1 + mg ′h近 = mv 2 + mg ′h远 2 2 其中: v1 为近月点的速度; v2 为远月点的速度。
⑵模型的求解 在本题中由于我们无法确定任意时刻减速动力以及速度的大小及方向, 因此我们通 过假设简化模型,从而对问题进行求解。由于发动机推力主要是用于减少飞行器的横向 速度,同时克服由月球引力引起的径向速度,我们假设了嫦娥三号可以通过自身调节机 制使得自己在运动过程中竖直方向受恒力作用,方向向下,水平方向也受恒力作用,方 向与水平速度方向相反,初速度为 1700m/s。 因此我们可以将抛物线下降的过程分解成竖直方向匀加速,水平方向匀减速的运 动。(如图 1)由附件 2 可知,嫦娥三号在 3000m 时已经基本位于目标上方,所以我们 认为在 3000 米处水平速度近似为 0,57 m / s 为其竖直方向速度。
§3 模型的假设
1.由给出的附件月球的形状扁率为1/963.7256,数量级较小,假设月球为一个球体。 2.由于从近月点100km左右的高度降落到地球表面的时间比较对短,假设嫦娥三号不受 非球项、日月引力摄动等影响因素的影响。 3.假设月球引力场为平行定常引力场,嫦娥三号着陆轨道不受月球自转的影响。 4.假设月球表面海拔为零的球面势能为0。 5.假设嫦娥三号水平移动的距离近似为着陆划过月球表面弧度长度。 6.假设月球的重力加速度恒定,为 1 / 6 g 。
2014年全国数学建模大赛A题
2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的报名参赛队号为(8位数字组成的编号):25001113所属学校(请填写完整的全名):云南大学参赛队员(打印并签名) :1. 林博文2. 张竞文3. 方春晖指导教师或指导教师组负责人(打印并签名):李海燕(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:2014年9月15日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略优化摘 要 嫦娥三号是中国国家航天局嫦娥工程第二阶段的登月探测器,包括着陆器和玉兔号月球车。
嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。
2014年数学建模优秀论文
对黑匣子落水点的分析和预测摘要本文通过对飞机以及黑匣子受力情况进行分析,构建正交分解模型,得出飞机的坠落轨迹和黑匣子的落水点,及黑匣子在水中的移动情况。
问题一要求在考虑空气气流影响的前提下,建立数学模型,描述飞机坠落轨迹并推测黑匣子的落水点。
本文对飞机失去动力后的全过程建立动力学方程:22d r m mg f dt=-+ 然后对动力学方程进行正交分解,在水平和竖直方向上分别进行分析,根据伯努利方程求得升力的计算公式,得出飞机在刚刚失去动力时,升力大于重力,所以飞机会先上升一段距离,随着水平速度的减小,升力也逐渐减小,然后飞机再下降,通过模拟计算可以得出当飞机坠落至失事点下10000m 时,飞机坠入海面,其飞行速度为515.994m s ,飞机向东北方向飞行了28697m 。
问题二要求建立数学模型,描述黑匣子在水中沉降过程轨迹,并指出它沉在海底的位置所在的区域范围。
由于不用考虑洋流,黑匣子所受到的力中仅有水的阻力是变化的,其重力和浮力始终保持恒定,根据黑匣子的移动速度,得出相应的阻力和加速度。
在不同的速度范围内,使用不同的阻力公式,计算出相应的移动距离并作出轨迹图。
发现在水平方向仅漂出161.095m ,速度几乎为零,因此黑匣子在I 区域内。
关键词 正交分解模拟计算 微分方程伯努利方程一、问题背景和重述1.1问题背景黑匣子是飞机专用的电子记录设备之一,里面装有飞行数据记录器和舱声录音器,它能记录各种飞行参数,供事故分析和飞机维修参考使用。
黑匣子记录的参数包括:飞机停止工作或失事坠毁前半小时的语音对话和两小时的飞行高度、速度、航向、爬升率、下降率、加速情况、耗油量、起落架放收、格林尼治时间、飞机系统工作状况和发动机工作参数等[1]作为飞机数据客观、真实、全面的记录者,它能把飞机停止工作或失事坠毁前半小时的有关技术参数和驾驶舱内的声音记录下来,它是飞机失事后查明事故原因的最可靠、最科学、最有效的手段。
2014年数学建模国家一等奖优秀论文
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的报名参赛队号为(8位数字组成的编号):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2014 年 9 月 15日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):创意平板折叠桌摘要目前住宅空间的紧张导致越来越多的折叠家具的出现。
某公司设计制作了一款折叠桌以满足市场需要。
以此折叠桌为背景提出了三个问题,本文运用几何知识、非线性约束优化模型等方法成功解决了这三个问题,得到了折叠桌动态过程的描述方程以及在给定条件下怎样选择最优设计加工参数,并针对任意形状的桌面边缘线等给出了我们的设计。
2014高教社杯全国大学生数学建模竞赛国一论文
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的报名参赛队号为(8位数字组成的编号):17247012所属学校(请填写完整的全名):武汉工程大学邮电与信息工程学院参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):摘要问题重述所谓月球软着陆,是指月球着陆器经地月转移到达月球附近后,在制动系统的作用下以很小的速度近乎垂直地降落到月面上。
因月球不像地球或火星的表面覆盖有大气,可以采用降落伞的方式降落,月球表面是绝对真空,降落伞无法使用,故采用边降落边用发动机反推,以减缓降落速度。
为实现嫦娥三号的软登陆,就需要对软着陆的准备轨道、着陆轨道、起始高度、速度、时间点等做准确分析,保证嫦娥三号在高速飞行的情况下,能准确地在月球预定区域内实现软着陆。
嫦娥三号要降轨进入预定的月面着陆准备轨道,必须着陆轨道进行设计。
其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段,要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。
2014全国大学生数学建模a题
2014高教社杯全国大学生数学建模竞赛a题摘要2013年嫦娥三号成功发射,标志着我国航天事业上的又一个里程碑,针对嫦娥三号软着陆问题,分别建立着陆前轨道准备模型和软着陆轨道模型,建立动力学方程,以燃料最省为目标进行求解。
问题一:在软着陆前准备轨道上利用开普勒定律、能量守恒定律以及卫星轨道的相关知识,利用牛顿迭代法分别确定了近月点和远月点的速度分别为 1.6925km/s、1.6142km/s,位置分别为(19.91W,20.96N),(160.49E,69.31S)。
问题二:在较为复杂的软着陆阶段,因为相对于月球的半径,嫦娥三号到月球的表面的距离太小,如果以月球中心建立坐标系会造成比较大的误差,因此选择在月球表面建立直角坐标系,在主减速阶段的类平抛面上建立相应的动力学模型,求出关键点的状态和并设计出相应的轨道,接下来通过利用灰度值阀值分割方法和螺旋搜索法对粗避障阶段和精避障阶段的地面地形进行相应的分析,找出安全点,然后调整嫦娥三号的方向以便安全降落,最后在落地时通过姿态发动机调整探测器的姿态,使之可以平稳的落到安全点上,在以上的各个阶段都可以以燃料最省为最优指标,从而建立非线性的最优规划的动力学模型,并基于该动力学模型可以对各个阶段的制导率进行优化设计由此就可以得到各个阶段的最优控制策略,问题三:最后针对所设计的轨道和各个阶段的控制策略进行了误差分析和灵敏度分析。
对系统误差和偶然误差都做了解释;通过灵敏度分析发现,嫦娥三号在近月点的位置对结果的影响最大。
关键字牛顿迭代法,灰度值阀值分割,螺旋搜索法,灵敏度分析一、问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为 2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。
2014年数学建模A题
Z0 轴构成直角坐标系; 坐标系示意图及着陆器位置与推力矢关系下图所示.
图 1.2:软着陆坐标系定义与推力矢量空间关系 要考察着陆器在月心赤道惯性坐标系下的运动规律, 需要得到月心赤道惯性 系与月心惯性参考系之间的变换关系. 以降轨着陆为例, 两坐标系的关系如 图所示.
5
图 1.3:月心赤道惯性系与月心惯性参考系之关系
1
成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一次轨道 调整。在实施软着陆之前,嫦娥三号还将在这条近月点高度约 15 公里、远月点 高度约 100 公里的椭圆轨道上继续飞行。 期间, 将稳定飞行姿态, 对着陆敏感器、 着陆数据等再次确认,并对软着陆的起始高度、速度、时间点做最后准备。 根据其环月轨道以及着陆点, 我们对嫦娥三号软着陆贵高设计和控制策略问 题进行研究。 1.2、问题的意义 月球是离地球最近的天体, 成为空间探测的首选目标,月球探测将为继空间 站之后载人航天的下一步人类重返月球和建立月球基地提供依据, 对月球本身的 科学研究可以大大提高人类对宇宙的认识。 2.问题的重述 月球作为地球的唯一一颗天然卫星以及太阳系第五大卫星, 其神秘性以及丰 富的资源一直吸引着人类, 特别是近代以来地球多种资源的枯竭,以及人类文明 发展对资源的需求却与日俱增。 人类把目光投向了月球,但是若要对月球进行直 接的科学考察并开发利用月球资源就必须解决人类航天探测器的着陆以及月夜 生存等重大问题。 软着路即通过减速使航天器在接触地球或其他星球表面瞬时的 垂直速度降低到最小值从而实现安全着陆的技术。 软着陆的目的是保证航天员的 安全和航天器上的仪器设备完好无损,获得丰富的学科资料。2013 年 12 月 2 日 1 时 30 分,嫦娥三号成功成功发射,12 月 6 日抵达月球轨道,12 月 10 日成功 降轨,实现了嫦娥三号的软着路。嫦娥三号具体情况如下:着陆准备轨道上的运 行质量为 2.4 顿,主减速发动机可产生可调节推力 1500N 到 7500N,比冲为 2940m/s,预定着陆点为 19.51W,44.12N,海拔为-2641m。嫦娥三号在高速飞行 的情况下实现软着陆,关键问题是着陆轨道与控制策略的设计。基本要求是着陆 准备轨道为近月点 15km,远月点 100km 的椭圆形轨道;着陆轨道为从近月点至 着陆点, 其软着陆过程共分为 6 个阶段: 着陆准备轨道、 主减速段、 快速调整段、 粗避障段、精避障段、缓速下降阶段。在上述基础上确定着陆准备轨道近月点和 远月点的位置, 嫦娥三号相应速度的大小与方向,着陆轨道和在 6 个阶段的最优 控制策略, 并且设计着陆轨道和控制策略做相应的误差分析和敏感性分析已获得 最优解决方案。 根据上述的基本要求,请你们建立数学模型解决下面的问题: (1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的 大小与方向。 (2)确定嫦娥三号的着陆轨道和在 6 个阶段的最优控制策略。 (3) 对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。 3.问题的分析 问题一的分析: 该问题中要确定“嫦娥三号”在着陆准备中近月点和远月点的位置和相对应 的速度,那么我们需要明确卫星围绕月球的轨迹。在嫦娥三号着陆准备轨道中,
数学建模A2014
城市公共自行车租赁服务系统规划谭光涛摘要本论文主要讨论并解决了在西安市经开区公共自行车服务系统中自行车租赁点设计最优车辆分配方案、调度方案,确定新增租赁点数目、位置以及合适的放置车辆数目的有关问题。
建立相应的数学模型,来使得最优车辆分配方案、调度方案,确定新增租赁点数目、位置以及合适的放置车辆数目达到最合理化。
近年来,随着经济的发展,我国各级城市的机动车保有量都进入了持续高速增长时期,但由此所引发的道路拥堵、空气污染也引起了政府以及百姓的极大关注。
众所周知,建立快速、便捷的城市公共交通体系是解决这一问题的有效手段之一。
然而,居民居住地和交通站点通常都有一段距离,这段不远的距离以及现实存在的公共交通拥挤现象则使居民乘坐公共交通的意愿降低,公共自行车服务系统已被证明能够从一定程度上缓解这一现象。
公共自行车服务系统是指在某个区域内,隔一定距离规划出一些停放自行车的租赁点(如地铁出口、城市中心等人员密集的地方),一个租赁点放置一定数量的自行车,很多的自行车租赁点共同组成一个网络以形成一个服务系统,居民可以在任意租赁点租、还车辆,费用全免(某些城市收取少量的超时费用,但目的只是用来提高自行车的利用率,不以盈利为目的),根据租赁点自行车的使用频率,避免部分租赁点的自行车短缺或堆积现象发生,将通过调度专用车进行合理调度,以最大程度地满足居民对车辆需求,提高车辆利用率关键词:最短距离模型调度最优车辆分配方案目录一.问题重述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍31.基本假设﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍42.符号规定﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4二. 问题分析与模型建立﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4三.模型求解﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍12四.模型评价与推广﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍14五. 参考文献﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍15六. 附录﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍16一.重述问题西安市经开区公共自行车服务系统于2011年4月开始建设,到目前为止,已建成租赁点30个(附件1),自行车总量达到850辆。
2014全国大学生数学建模竞赛省一等奖论文
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的报名参赛队号为(8位数字组成的编号):13003018所属学校(请填写完整的全名):厦门理工学院参赛队员(打印并签名) :1. 刘得星2. 黄少红3. 陈明芳指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2014 年 09 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要本文针对“嫦娥三号软着陆轨道设计与控制策略”这一问题进行探讨,结合嫦娥三号探测器(下文简称探测器)软着陆过程的运动特性建立两大模型,并采用最优解方案对模型进行求解,得到最优控制方案条件下准备轨道和软着陆轨道的参数方程和相应的特征量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国大学生数学建模竞赛论文格式规●本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。
(全国评奖时,每个组别一、二等奖的总名额按每道题参赛队数的比例分配;但全国一等奖名额的一半将平均分配给本组别的每道题,另一半按每题论文数的比例分配。
)●论文用白色A4纸打印(单面、双面打印均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。
●论文第一页为承诺书,具体容和格式见本规第二页。
●论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体容和格式见本规第三页。
●论文题目、摘要和关键词写在论文第三页上(无需译成英文),并从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。
注意:摘要应该是一份简明扼要的详细摘要,请认真书写(但篇幅不能超过一页)。
●从第四页开始是论文正文(不要目录)。
论文不能有页眉或任何可能显示答题人身份和所在学校等的信息。
●论文应该思路清晰,表达简洁(正文尽量控制在20页以,附录页数不限)。
●引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。
正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。
参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:,出版年。
参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。
●在论文纸质版附录中,应提供参赛者实际使用的软件名称、命令和编写的全部计算机源程序(若有的话)。
同时,所有源程序文件必须放入论文电子版中备查。
论文及源程序电子版压缩在一个文件中,一般不要超过20MB,且应与纸质版同时提交。
(如果发现程序不能运行,或者运行结果与论文中报告的不一致,该论文可能会被认定为弄虚作假而被取消评奖资格。
)●本规中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。
●在不违反本规的前提下,各赛区可以对论文增加其他要求(如在本规要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等)。
●不符合本格式规的论文将被视为违反竞赛规则,无条件取消评奖资格。
●本规的解释权属于全国大学生数学建模竞赛组委会。
[注] 赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。
评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。
论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。
全国大学生数学建模竞赛组委会2014年8月26日修订2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的报名参赛队号为(8位数字组成的编号):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要1问题重述1.1背景嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为 2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。
嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域实现软着陆,关键问题是着陆轨道与控制策略的设计。
其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段(见附件2),要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。
1.2问题(1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。
(3)对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。
2基本假设3问题分析、模型的建立与求解3.1.1问题一分析对于问题一,需确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
文章中给定了着陆点坐标,该段中,将主要减速阶段(即从15km 到3km)作为制动段。
制动终点到达着陆点。
采用逆推的方法,通过着陆点坐标和建立的动力学方程,逆推出近月点的坐标以及速度的大小方向。
然后通过角动量守恒定理,算出远月点的速度。
着陆器距离月面相对较高, 且着陆器走过的月面距离比较长, 将月球视为平面建立模型会带来较大的偏差. 因此, 制动段有必要将月球视为球体来建立均匀球体下的三维软着陆模型. 制动段推进系统采用常值推力方式, 通过姿态控制来完成制动力方向的改变.3.1.2均匀球体三维动力学模型首先定义几个坐标系: 1)参考惯性坐标系OXrYrZr 原点O位于月球中心, Zr 轴由月心指向初始软着陆点, Xr轴位于环月轨道平面且指向前进方向, Yr轴与构成直角坐标系. 该坐标系仅用于软着陆下降轨迹和制导律设计中; 2)下降轨道参考坐标系ox0yz. 原点 o 位于着陆器质心, zo轴由月心指向着陆器质心为正, xo 轴位于当地水平面且指向着陆器前进方向,yo轴与xo和zo轴构成直角坐标系; 3)着陆器oxb ybzb体坐标系 . 原点 o 位于着陆器质心, xb轴在制动推力矢量延长线上, 沿推力方向为正,yb ,zb轴分别根据着陆器上仪器设备的安装而定, 并与xb轴构成直角坐标系. 坐标系示意图及着陆器位置与推力矢量关系如图 2 所示:.图1 软着陆坐标系定义与推力矢量空间关系图2(a)给出了上面各坐标系的示意和着陆器在坐标系中的位置, 图2(b)给出了F在下降轨道参考坐标系中的位置. 其中, α为在 XrYr平面的横向月心角;β为下降轨道平面的纵向月心角; 推力F与坐标系 ox0yz之间的2个推力方向角分别为推力方位角ψ和推力仰角θ, 他们定义为: 推力方位角绕正zo轴旋转为正, 推力仰角绕负 yo轴旋转为正.分别用U, V, W表示着陆器下降速度在坐标系ox0yz三轴上的分量,于是有若不考虑摄动影响且忽略月球自转, 同时引入质量方程, 可利用球坐标系与直角坐标系的关系最终得到下降轨道参考坐标系下的软着陆动力学模型=w, =V/rsinβ,=U/r=-+= - - (2)= - +下降轨道上分析可得α是个定值,则V应始终为0,则软着力动力方程可简化为=w, =U/r=- (3)=-F/(v e g e)运用MATLAB软件对上述方程组(3)进行求解,结果如下,m =2400 - (F*t)/(Isp*g)U =(pi*Isp*t)/900 - (pi*Isp)/2 + (Isp^2*M*pi*log(F*t - Isp*M))/(900*F) - (Isp^2*M*pi*log(450*F - Isp*M))/(900*F)W =Isp/2 - (Isp*t)/450 + (225*um)/ryue^2 - (t*um)/ryue^2 + (Isp^2*M*log(225*F - Isp*M))/(450*F) - (Isp^2*M*log(F*t - Isp*M))/(450*F) + 57/2r =int(((pi*Isp)/2 - (pi*Isp*t)/900 - (Isp^2*M*pi*log(F*t - Isp*M))/(900*F) + (Isp^2*M*pi*log(450*F -Isp*M))/(900*F))/((Isp*t^2)/900-t*((Isp^2*M*log(-Isp*M))/(450*F)+1700)+ (t^2*um)/(2*ryue^2) -(Isp^3*M^2*log(F*t-Isp*M))/(450*F^2)-(Isp^2*M*t)/(450*F)+(Isp^3*M^2*log(-Isp*M))/(450*2) + (Isp^2*M*t*log(F*t - Isp*M))/(450*F) - 15000), t)(注::dbeta为∆β,deta为β)程序见附件程序1.通过以上求解,我们发现完全求解软着陆的动力学方程组(2)有一定难度,并且解得的解析解不利于数值的求取和问题分析,主要表现在两方面:(1)求出的解无法进行积分,导致后面不能求出某一时刻的速度和位置;(2)积分求出的解,带入不同的初始值,解的差异很大,且都不符合事实依据。
但是以上求解的切向分速度U的结果比较符合事实和推理,且数值准确,容易运算分析,其图像如下图(3)所示,因此我们将动力学方法进行简化改进得方程组(3),进而求解。
图3 嫦娥三号着陆过程中分速度U、w随时间变化曲线由于我们可以求得各点的切向速度U(见附件程序2),有积分原理可知,对U进行积分就可得到该段弧长。