茆诗松《概率论与数理统计教程》笔记和课后习题(含考研真题)详解(参数估计)【圣才出品】
茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第7~8章【圣才出品】
7 / 136
圣才电子书 十万种考研考证电子书、题库视频学习平台
sup p(x1,K , xn; )
2.假设检验的基本步骤
(1)建立假设;
(2)选择检验统计量,给出拒绝域形式;
注意:一个拒绝域 W 唯一确定一个检验法则,一个检验法则也唯一确定一个拒绝域.
(3)选择显著性水平
第一类错误:命题本为真,却由于随机性落入了拒绝域,而否定了命题.(弃真)
第二类错误:命题本为假,由于随机性落入了接受域,而接受了命题.(取伪)
3 / 136
圣才电子书 十万种考研考证电子书、题库视频学习平台
注:
xy
u1
xy
sx2
s
2 y
mn
4 / 136
圣才电子书
十万种考研考证电子书、题库视频学习平台
t1
sw
x
1 m
y
1 n
t2
xy
sx2
s
2 y
为零,即考察如下检验问题:
H0:μ=0 vs H1:μ≠0
即把双样本的检验问题转化为单样本 t 检验问题,这时检验的 t 统计量为
t2 d (sd n)
其中
1 n
d n i1 di
sd
n
1 1
n i 1
(di
1/ 2
d
)2
在给定显著性水平 α 下,该检验问题的拒绝域是:W1={|t2|≥t1-α/2(n-1)},这就是
1 / 136
圣才电子书 十万种考研考证电子书、题库视频学习平台
在拒绝域 W 内的概率称为该检验的势函数,记为 g(θ )=pθ (X∈W),θ ∈Θ=Θ0∪Θ1 ②显著性检验:对检验问题 H0:θ∈Θ0 vs H1:θ∈Θ1,如果一个检验满足对任意的 θ
茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解-第7~8章【圣才出品】
,xn;
)
0
2.分类数据的χ2 拟合优度检验
定理:在实际观测数与期望观测数相差不大的假定下,在 H0 成立时,对统计量
2
r i 1
(ni
npi0 )2 npi0
有 2
L 2 (r 1) 。
根据定理,采取显著性水平为α 的显著性检验:检验统计量为:
2
r i 1
(ni
npi0 )2 npi0
,拒绝域为W
{ 2
2 1
(r
1)} 。
五、正态性检验 1.W 检验 W 统计量
3 / 117
圣才电子书 十万种考研考证电子书、题库视频学习平台
W
n
(ai
i 1
a
)( x ( i )
x
)
2
n
n
(ai a )2 (x(i) x )2
i 1
i 1
拒绝域{W≤Wa}。
2.比率 p 的检验(见表 7-1-2)
表 7-1-2 比率 p 的检验
2 / 117
圣才电子书 十万种考研考证电子书、题库视频学习平台
四、似然比检验与分布拟合检验
1.似然比检验的思想
假设的似然比
sup p(x1,K ,xn; )
( x1,K
,xn
)
sup
p( x1,K
+(n)}。
7.2 课后习题详解
习题 7.1
1.设 x1,…,xn 是来自 N(μ,1)的样本,考虑如下假设检验问题
4 / 117
圣才电子书 十万种考研考证电子书、题库视频学习平台
H0:μ=2 vs H1:μ=3
若检验由拒绝域为 W {x 2.6}确定。
概率论与数理统计(茆诗松)第二版课后习题参考答案
第一章 随机事件与概率习题1.11. 写出下列随机试验的样本空间:(1)抛三枚硬币; (2)抛三颗骰子;(3)连续抛一枚硬币,直至出现正面为止;(4)口袋中有黑、白、红球各一个,从中任取两个球,先从中取出一个,放回后再取出一个; (5)口袋中有黑、白、红球各一个,从中任取两个球,先从中取出一个,不放回后再取出一个. 解:(1)Ω = {(0, 0, 0),(0, 0, 1),(0, 1, 0),(1, 0, 0),(0, 1, 1),(1, 0, 1),(1, 1, 1),(1, 1, 1)},其中出现正面记为1,出现反面记为0; (2)Ω = {(x 1 , x 2 , x 3):x 1 , x 2 , x 3 = 1, 2, 3, 4, 5, 6};(3)Ω = {(1),(0, 1),(0, 0, 1),(0, 0, 0, 1),…,(0, 0, …, 0, 1),…},其中出现正面记为1,出现反面记为0;(4)Ω = {BB ,BW ,BR ,WW ,WB ,WR ,RR ,RB ,RW},其中黑球记为B ,白球记为W ,红球记为R ; (5)Ω = {BW ,BR ,WB ,WR ,RB ,RW},其中黑球记为B ,白球记为W ,红球记为R .2. 先抛一枚硬币,若出现正面(记为Z ),则再掷一颗骰子,试验停止;若出现反面(记为F ),则再抛一枚硬币,试验停止.那么该试验的样本空间Ω是什么? 解:Ω = {Z1,Z2,Z3,Z4,Z5,Z6,FZ ,FF}. 3. 设A , B , C 为三事件,试表示下列事件:(1)A , B , C 都发生或都不发生; (2)A , B , C 中不多于一个发生; (3)A , B , C 中不多于两个发生; (4)A , B , C 中至少有两个发生. 解:(1)C B A ABC U ;(2)C B A C B A C B A C B A U U U ;(3)ABC 或C B A C B A C B A C B A BC A C B A C AB U U U U U U ; (4)ABC BC A C B A C AB U U U . 4. 指出下列事件等式成立的条件:(1)A ∪B = A ; (2)AB = A . 解:(1)当A ⊃ B 时,A ∪B = A ;(2)当A ⊂ B 时,AB = A .5. 设X 为随机变量,其样本空间为Ω = {0 ≤ X ≤ 2},记事件A = {0.5 < X ≤ 1},B = {0.25 ≤ X < 1.5},写出下列各事件:(1)B A ; (2)B A U ;(3)AB ; (4)B A U .解:(1)}5.11{}5.025.0{<<≤≤=X X B A U ;(2)Ω=≤≤=}20{X B A U ;(3)A X X AB =≤<≤≤=}21{}5.00{U ; (4)B X X B A =≤≤<≤=}25.1{}25.00{U U .6. 检查三件产品,只区分每件产品是合格品(记为0)与不合格品(记为1),设X 为三件产品中的不合格品数,指出下列事件所含的样本点:A =“X = 1”,B =“X > 2”,C =“X = 0”,D =“X = 4”.解:A = {(1, 0, 0),(0, 1, 0),(0, 0, 1)},B = {(1, 1, 1)},C = {(0, 0, 0)},D = ∅. 7. 试问下列命题是否成立?(1)A − (B − C ) = (A − B )∪C ;(2)若AB = ∅且C ⊂ A ,则BC = ∅; (3)(A ∪B ) − B = A ; (4)(A − B )∪B = A .解:(1)不成立,C B A AC B A AC B A C B A C B A C B A C B A U U U U )()()()(−≠−====−=−−;(2)成立,因C ⊂ A ,有BC ⊂ AB = ∅,故BC = ∅;(3)不成立,因A B A B A B B B A B B A B B A ≠−====−U U U )()(; (4)不成立,因A B A B B B A B B A B B A ≠===−U U U U U ))(()(. 8. 若事件ABC = ∅,是否一定有AB = ∅?解:不能得出此结论,如当C = ∅时,无论AB 为任何事件,都有ABC = ∅. 9. 请叙述下列事件的对立事件:(1)A =“掷两枚硬币,皆为正面”; (2)B =“射击三次,皆命中目标”;(3)C =“加工四个零件,至少有一个合格品”. 解:(1)=A “掷两枚硬币,至少有一个反面”;(2)=B “射击三次,至少有一次没有命中目标”; (3)=C “加工四个零件,皆为不合格品”. 10.证明下列事件的运算公式:(1)B A AB A U =; (2)B A A B A U U =.证:(1)A A B B A B A AB =Ω==)(U U ;(2)B A B A B A A A B A A U U U U U =Ω==)())((. 11.设F 为一事件域,若A n ∈F ,n = 1, 2, …,试证:(1)∅ ∈F ;(2)有限并∈=U ni i A 1F ,n ≥ 1;(3)有限交∈=I ni i A 1F ,n ≥ 1;(4)可列交∈+∞=I 1i i A F ;(5)差运算A 1 − A 2 ∈ F .证:(1)由事件域定义条件1,知 Ω ∈F ,再由定义条件2,可得∅∈Ω=F ;(2)在定义条件3中,取A n + 1 = A n + 2 = … = ∅,可得∈=∞==U U 11i i ni i A A F ;(3)由定义条件2,知∈n A A A ,,,21L F ,根据(2)小题结论,可得∈=U ni i A 1F ,再由定义条件2,知∈=U ni i A 1F ,即∈=I ni i A 1F ;(4)由定义条件2,知∈L L ,,,,21n A A A F ,根据定义条件3,可得∈∞=U 1i i A F ,再由定义条件2,知∈∞=U 1i i A F ,即∈∞=I 1i i A F ;(5)由定义条件2,知∈2A F ,根据(3)小题结论,可得∈21A A F ,即A 1 − A 2 ∈ F .习题1.21. 对于组合数⎟⎟⎠⎞⎜⎜⎝⎛r n ,证明:(1)⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛r n n r n ; (2)⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−−=⎟⎟⎠⎞⎜⎜⎝⎛r n r n r n 111; (3)nn n n n 210=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛L ; (4)12221−⋅=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n L ; (5)⎟⎟⎠⎞⎜⎜⎝⎛+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n b a b n a n b a n b a 0110L ,n = min{a , b }; (6)⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n 210222L . 证:(1)⎟⎟⎠⎞⎜⎜⎝⎛=−=−−−=⎟⎟⎠⎞⎜⎜⎝⎛−r n r r n n r n n r n n r n n !)!(!)]!([)!(!; (2)⎟⎟⎠⎞⎜⎜⎝⎛=−=−+−−=−−−+−−−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−−r n r n r n r n r r n r n r n r n r n r n r n r n )!(!!)]([)!(!)!1()!1(!)!1()!()!1()!1(111; (3)由二项式展开定理nn n n y n n y x n x n y x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+−L 110)(,令x = y = 1,得 nn n n n 210=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛L ; (4)当1 ≤ r ≤ n 时,⎟⎟⎠⎞⎜⎜⎝⎛−−=−⋅−−=−⋅−=−⋅=⎟⎟⎠⎞⎜⎜⎝⎛11)!()!1()!1()!()!1(!)!(!!r n n r n r n n r n r n r n r n rr n r , 故12111101221−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−++⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n n n n n n n n L L ; (5)因a ax a a x a a x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+L 10)1(,b b x b b x b b x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+L 10)1(, 两式相乘,其中x n 的系数为⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛0110b n a n b a n b a L ,另一方面ba b a b a x a b a x b a b a x x x ++⎟⎟⎠⎞⎜⎜⎝⎛+++⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+=+=++L 10)1()1()1(, 其中x n 的系数为⎟⎟⎠⎞⎜⎜⎝⎛+n b a ,即⎟⎟⎠⎞⎜⎜⎝⎛+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n b a b n a n b a n b a 0110L ; (6)在(5)小题结论中,取a = b = n ,有⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n n n n n 20110L , 再由(1)小题结论,知⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛r n n r n ,即⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n 210222L . 2. 抛三枚硬币,求至少出现一个正面的概率.解:样本点总数n = 23 = 8,事件“至少出现一个正面”的对立事件为“三个都是反面”,其所含样本点个数为1, 即事件“至少出现一个正面”所含样本点个数为k = 8 − 1 = 7,故所求概率为87)(=A P . 3. 任取两个正整数,求它们的和为偶数的概率. 解:将所有正整数看作两个类“偶数”、“奇数”,样本点总数n = 22 = 4,事件“两个都是偶数”所含样本点个数为1,事件“两个都是奇数”所含样本点个数也为1, 即事件A =“它们的和为偶数”所含样本点个数k = 2,故所求概率为2142)(==A P .4. 掷两枚骰子,求下列事件的概率:(1)点数之和为6; (2)点数之和不超过6; (3)至少有一个6点. 解:样本点总数n = 62 = 36.(1)事件A 1 =“点数之和为6”的样本点有 (1, 5), (2, 4), (3, 3), (4, 2), (5, 1),即个数k 1 = 5,故所求概率为365)(1=A P ;(2)事件A 2 =“点数之和不超过6”的样本点有(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1), 即个数k 2 = 15,故所求概率为1253615)(2==A P ;(3)事件A 3 =“至少有一个6点”的样本点有(1, 6), (6, 1), (2, 6), (6, 2), (3, 6), (6, 3), (4, 6), (6, 4), (5, 6), (6, 5), (6, 6), 即个数k 3 = 11,故所求概率为3611)(3=A P .5. 考虑一元二次方程x 2 + Bx + C = 0,其中B , C 分别是将一颗骰子接连掷两次先后出现的点数,求该方程有实根的概率p 和有重根的概率q . 解:样本点总数n = 62 = 36,事件A 1 =“该方程有实根”,即B 2 − 4C ≥ 0,样本点有(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (4, 4), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6),即个数k 1 = 19,故36191==n k p . 事件A 2 =“该方程有重根”,即B 2 − 4C = 0,样本点有(2, 1),(4, 4),即个数k 2 = 2,故1813622===n k q . 6. 从一副52张的扑克牌中任取4张,求下列事件的概率:(1)全是黑桃; (2)同花;(3)没有两张同一花色; (4)同色.解:样本点总数270725123449505152452=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)事件A 1 =“全是黑桃”所含样本点个数7151234101112134131=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=k , 故所求概率为0026.0270725715)(1==A P ;(2)事件A 2 =“同花”所含样本点个数2860123410111213441342=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛×=k , 故所求概率为0106.02707252860)(2==A P ;(3)事件A 3 =“没有两张同一花色”所含样本点个数k 3 = 13 × 13 × 13 × 13 = 28561,故所求概率为1055.027072528561)(3==A P ;(4)事件A 4 =“同色”所含样本点个数29900123423242526242624=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛×=k , 故所求概率为1104.027072529900)(4==A P .7. 设9件产品中有2件不合格品.从中不返回地任取2个,求取出的2个中全是合格品、仅有一个合格品和没有合格品的概率各为多少?解:样本点总数36128929=××=⎟⎟⎠⎞⎜⎜⎝⎛=n , 事件A 1 =“全是合格品”所含样本点个数211267271=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为1273621)(1==A P ; 事件A 2 =“仅有一个合格品”所含样本点个数142712171=×=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为1873614)(2==A P ;事件A 3 =“没有合格品”所含样本点个数1223=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为361)(3=A P . 8. 口袋中有7个白球、3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:样本点总数4512910210=××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件A =“两个球颜色相同”所含样本点个数24122312672327=××+××=⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=k , 故所求概率为1584524)(==A P . 9. 甲口袋有5个白球、3个黑球,乙口袋有4个白球、6个黑球.从两个口袋中各任取一球,求取到的两个球颜色相同的概率. 解:样本点总数n = 8 × 10 = 80,事件A =“两个球颜色相同”所含样本点个数k = 5 × 4 + 3 × 6 = 38,故所求概率为40198038)(==A P .10.从n 个数1, 2, …, n 中任取2个,问其中一个小于k (1 < k < n ),另一个大于k 的概率是多少?解:样本点总数)1(212−=⎟⎟⎠⎞⎜⎜⎝⎛=n n n N , 事件A = “其中一个小于k ,另一个大于k ”所含样本点个数K = (k − 1)(n − k ), 故所求概率为)1())(1(2)(−−−=n n k n k A P .11.口袋中有10个球,分别标有号码1到10,现从中不返回地任取4个,记下取出球的号码,试求:(1)最小号码为5的概率; (2)最大号码为5的概率.解:样本点总数210123478910410=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n , (1)事件A 1 =“最小号码为5”所含样本点个数10123345351=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k , 故所求概率为21121010)(1==A P ; (2)事件A 2 =“最大号码为5”所含样本点个数4123234342=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为10522104)(2==A P . 12.掷三颗骰子,求以下事件的概率:(1)所得的最大点数小于等于5; (2)所得的最大点数等于5. 解:样本点总数n = 63 = 216,(1)事件A 1 =“所得的最大点数小于等于5”所含样本点个数k 1 = 53 = 125,故所求概率为216125)(1=A P ; (2)事件A 2 =“所得的最大点数等于5”所含样本点个数k 2 = 53 − 43 = 61,故所求概率为21661)(2=A P .13.把10本书任意地放在书架上,求其中指定的四本书放在一起的概率. 解:样本点总数n = 10!,事件A =“其中指定的四本书放在一起”所含样本点个数k = 4! × 7!,故所求概率为30189101234!10!7!4)(=×××××=×=A P . 14.n 个人随机地围一圆桌而坐,求甲乙两人相邻而坐的概率. 解:样本点总数N = (n − 1)!,事件A =“甲乙两人相邻而坐”所含样本点个数k = 2! × (n − 2)!,故所求概率为12)!1()!2(!2)(−=−−×=n n n A P . 15.同时掷5枚骰子,试证明:(1)P {每枚都不一样} = 0.0926; (2)P {一对} = 0.4630; (3)P {两对} = 0.2315;(4)P {三枚一样} = 0.1543(此题有误); (5)P {四枚一样} = 0.0193; (6)P {五枚一样} = 0.0008. 解:样本点总数n = 65 = 7776,(1)事件“每枚都不一样”所含样本点个数72023456561=××××==A k ,故P {每枚都不一样}0926.07776720==; (2)事件“一对”所含样本点个数3600345124563525162=××××××=⋅⋅=A C A k , 故P {一对}4630.077763600==; (3)事件“两对”所含样本点个数18004122312451256142325263=×××××××××=⋅⋅⋅=A C C C k ,故P {两对}2315.077761800==; (4)事件“三枚一样”所含样本点个数15005123345652235164=××××××=⋅⋅=C A k ,故P {三枚一样}1929.077761500==; 事件“三枚一样且另两枚不一样”所含样本点个数12004512334562535164=×××××××=⋅⋅=A C A k ,故P {三枚一样且另两枚不一样}1543.077761200==; (5)事件“四枚一样”所含样本点个数15051234234561545165=××××××××=⋅⋅=A C A k ,故P {四枚一样}0193.07776150==; (6)事件“五枚一样”所含样本点个数6161555166=×=⋅⋅=A C A k ,故P {五枚一样}0008.077766==. 16.一个人把六根草紧握在手中,仅露出它们的头和尾.然后随机地把六个头两两相接,六个尾也两两相接.求放开手后六根草恰巧连成一个环的概率.解:在同一种六个头两两相接情况下,只需考虑六个尾两两相接的样本点总数n = 5 × 3 = 15,事件A =“放开手后六根草恰巧连成一个环”所含样本点个数k = 4 × 2 = 8,故所求概率为158)(=A P .17.把n 个“0”与n 个“1”随机地排列,求没有两个“1”连在一起的概率.解:样本点总数!!)!2(2n n n n n N ⋅=⎟⎟⎠⎞⎜⎜⎝⎛=,事件A =“没有两个‘1’连在一起”所含样本点个数11+=⎟⎟⎠⎞⎜⎜⎝⎛+=n n n k , 故所求概率为)!2()!1(!)(n n n A P +⋅=.18.设10件产品中有2件不合格品,从中任取4件,设其中不合格品数为X ,求X 的概率分布.解:样本点总数210123478910410=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n , 事件X = 0所含样本点个数7011234567802480=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k , 故所求概率为3121070}0{===X P ; 事件X = 1所含样本点个数112212367812381=×××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k , 故所求概率为158210112}1{===X P ; 事件X = 2所含样本点个数281127822282=×××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为15221028}2{===X P . 19.n 个男孩,m 个女孩(m ≤ n + 1)随机地排成一排,试求任意两个女孩都不相邻的概率.解:样本点总数!!)!(m n m n n m n N ⋅+=⎟⎟⎠⎞⎜⎜⎝⎛+=,事件A =“任意两个女孩都不相邻”所含样本点个数)!1(!)!1(1m n m n m n k −+⋅+=⎟⎟⎠⎞⎜⎜⎝⎛+=, 故所求概率为)2()1)(()2()1()!1()!()!1(!)(+−++−+−=−+⋅++⋅=n m n m n m n n n m n m n n n A P L L .20.将3个球随机放入4个杯子中去,求杯子中球的最大个数X 的概率分布. 解:样本点总数n = 43 = 64,事件X = 1所含样本点个数24234341=××==A k ,故所求概率为836424}1{===X P ; 事件X = 2所含样本点个数363341323142=××==A C A k ,故所求概率为1696436}2{===X P ; 事件X = 3所含样本点个数4143==A k ,故所求概率为161644}3{===X P . 21.将12只球随意地放入3个盒子中,试求第一个盒子中有3只球的概率. 解:样本点总数n = 312 = 531441,事件A =“第一个盒子中有3只球”所含样本点个数11264051212310111223129=×××××=×⎟⎟⎠⎞⎜⎜⎝⎛=k , 故所求概率为2120.0531441112640)(==A P .22.将n 个完全相同的球(这时也称球是不可辨的)随机地放入N 个盒子中,试求:(1)某个指定的盒子中恰好有k 个球的概率; (2)恰好有m 个空盒的概率;(3)某指定的m 个盒子中恰好有j 个球的概率.解:样本点总数为N 取n 次的重复组合,即)!1(!)!1(1−⋅−+=⎟⎟⎠⎞⎜⎜⎝⎛−+=N n n N n n N M , (1)事件A 1 =“某个指定的盒子中恰好有k 个球”所含样本点个数为N − 1取n − k 次的重复组合,即)!2()!()!2(21)(11−⋅−−−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+−=N k n k n N k n k n N k n k n N K , 故所求概率为)1()2)(1()1()1()1()!2()!()!1()!1(!)!2()(1−−+−+−+−⋅+−−=−⋅−⋅−+−⋅⋅−−+=k n N n N n N N k n n n N k n n N N n k n N A P L L ;(2)事件A 2 =“恰好有m 个空盒”所含样本点个数可分两步考虑:首先N 选m 次的组合,选出m 个空盒,而其余N − m 个盒中每一个都分别至少有一个球, 其次剩下的n − (N − m )个球任意放入这N − m 个盒中,即N − m 取n − (N − m )次的重复组合,则)!1()!()!(!)!1(!)(12−−⋅−+⋅−⋅−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−−⎟⎟⎠⎞⎜⎜⎝⎛=m N N m n m N m n N m N n n m N K ,故所求概率为)!1()!1()!()!(!)!1(!)!1(!)(2−+⋅−−⋅−+⋅−⋅−⋅⋅−⋅=n N m N N m n m N m N n n N A P ;(3)事件A 3 =“某指定的m 个盒子中恰好有j 个球”所含样本点个数为m 取j 次的重复组合乘以N − m 取n − j 次的重复组合,则)!1()!()!1(!)!1()!1(1)()(13−−⋅−⋅−⋅−−−+⋅−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+−⎟⎟⎠⎞⎜⎜⎝⎛−+=m N j n m j j m n N j m j n j n m N j j m K , 故所求概率为)!1()!1()!()!1(!)!1(!)!1()!1()(3−+⋅−−⋅−⋅−⋅−⋅⋅−−−+⋅−+=n N m N j n m j N n j m n N j m A P .23.在区间(0, 1)中随机地取两个数,求事件“两数之和小于7/5”的概率.解:设这两个数分别为x 和y ,有Ω = {(x , y ) | 0 < x < 1, 0 < y < 1},得m (Ω) = 1,事件A =“两数之和小于7/5”,有A = {(x , y ) | 0 < x +y < 7/5}, 得504153211)(2=⎟⎠⎞⎜⎝⎛×−=A m , 故所求概率为5041)()()(=Ω=m A m A P . 24.甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的.如果甲船的停泊时间是一小时,乙船的停泊时间是两小时,求它们中任何一艘都不需要等候码头空出的概率是多少?解:设甲乙两艘轮船到达码头的时间分别为x 和y 小时,有Ω = {(x , y ) | 0 ≤ x ≤ 24, 0 ≤ y ≤ 24},得m (Ω) = 242 = 576, 事件A =“它们中任何一艘都不需要等候码头空出”, 若甲先到,有x + 1 ≤ y ≤ 24;若乙先到,有y + 2 ≤ x ≤ 24;即A = {(x , y ) | 0 ≤ x ≤ 24, 0 ≤ y ≤ 24, x + 1 ≤ y ≤ 24或y + 2 ≤ x ≤ 24},得2101322212321)(22=×+×=A m , 故所求概率为11521013)()()(=Ω=m A m A P . 25.在平面上画有间隔为d 的等距平行线,向平面任意投掷一个边长为a , b , c (均小于d )的三角形,求三角形与平行线相交的概率.解:不妨设a ≥ b ≥ c ,三角形的三个顶点分别为A , B , C ,其对边分别为a , b , c ,相应三个角也记为A , B , C ,设O 为BC 的中点,点O 与最近的一条平行线的距离为x , 从点O 向三角形外作与平行线平行的射线OD , 若B , C 中点C 更靠近某条平行线,则记α = ∠COD ,否则记α = −∠BOD , 有π}π,20|),{(<<−≤≤=Ωααdx x ,得m (Ω) = π d ,事件E =“三角形与平行线相交”,当α ≥ 0时,如果C ≤ α < π,事件E 就是OC 与平行线相交; 如果0 ≤ α < C ,事件E 就是OC 或AC 与平行线相交; 当α < 0时,如果−π < α ≤ −B ,事件E 就是OB 与平行线相交;如果−B < α < 0,事件E 就是OB 或AB 与平行线相交.记}sin 2,|),{(1αααax C x E ≤≥=, )}sin(sin 2,0|),{(2αααα−+≤<≤=C b ax C x E ,}sin 2,|),{(3αααax B x E −≤−≤=,)}sin(sin 2,0|),{(4αααα++−≤<<−=B c ax B x E ,有E = E 1∪E 2∪E 3∪E 4,得∫∫−−−⎥⎦⎤⎢⎣⎡++−+⎟⎠⎞⎜⎝⎛−=0π)sin(sin 2sin 2)(BB d B c a d a E m ααααα∫∫+⎥⎦⎤⎢⎣⎡−++π0sin 2)sin(sin 2C C d a d C b a ααααα∫∫∫∫+−++++⎟⎠⎞⎜⎝⎛−=−−π0000πsin 2)sin()sin(sin 2ααααααααd a d C b d B c d a C B π0000πcos 2)cos()cos(cos 2ααααa C b B c aCB −−++−=−− 22cos cos 22a a C b b c B c a a +⎟⎠⎞⎜⎝⎛−−−++−⎟⎠⎞⎜⎝⎛−−=c b a a a c b a abc b a b ac b c a c c b a ++=−++=−+⋅−−+⋅−++=2222222222222,故所求概率为d cb a m E m E P π)()()(++=Ω=.方法二:设事件A , B , C 分别表示“边长为a , b , c 三条边与平行线相交”,事件E 表示“三角形与平行线相交”, 由于三角形与平行线相交时,将至少有两条边与平行线相交,即E = AB ∪AC ∪BC ,则由三个事件的加法公式得P (E ) = P (AB ) + P (AC ) + P (BC ) − 2 P (ABC ), 因ABC 表示“三条边都与平行线相交”,有P (ABC ) = 0, 则P (E ) = P (AB ) + P (AC ) + P (BC ),另一方面,由于三角形与平行线相交时,将至少有两条边与平行线相交, 有A = AB ∪AC ,B = AB ∪BC ,C = AC ∪BC ,则P (A ) = P (AB ) + P (AC ) − P (ABC ) = P (AB ) + P (AC ), P (B ) = P (AC ) + P (BC ),P (C ) = P (AC ) + P (BC ),可得P (A ) + P (B ) + P (C ) = [P (AB ) + P (AC )] + [P (AC ) + P (BC )] + [P (AC ) + P (BC )]= 2[P (AB ) + P (AC ) + P (BC )],根据蒲丰投针问题知d a A P π2)(=,d b B P π2)(=,dc C P π2)(=, 故dcb a C P B P A P BC P AC P AB P E P π)]()()([21)()()()(++=++=++=.26.在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,即交点在直径上一个区间内的可能性与这区间的长度成比例,求任意画弦的长度大于R 的概率.1A解:设弦与垂直于弦的直径的交点与圆心的距离为x ,有Ω = {x | 0 ≤ x < R },得m (Ω) = R ,事件A =“弦的长度大于R ”,有2222⎟⎠⎞⎜⎝⎛>−R x R ,2243R x <,即}230|{R x x A <≤=,得R A m 23)(=,故所求概率为23)()()(=Ω=m A m A P . 27.设一个质点落在xOy 平面上由x 轴、y 轴及直线x + y = 1所围成的三角形内,而落在这三角形内各点处的可能性相等,即落在这三角形内任何区域上的概率与区域的面积成正比,试求此质点还满足y < 2x 的概率是多少?解:Ω = {(x , y ) | 0 < x < 1, 0 < y < 1, 0 < x + y < 1},得21)(=Ωm , 事件A =“满足y < 2x ”,有A = {(x , y ) | 0 < y < 1, y /2 ≤ x ≤ 1 − y },得3132121)(=××=A m , 故所求概率为32)()()(=Ω=m A m A P . 28.设a > 0,有任意两数x , y ,且0 < x < a ,0 < y < a ,试求xy < a 2/4的概率. 解:Ω = {(x , y ) | 0 ≤ x ≤ a , 0 ≤ y ≤ a },得m (Ω) = a 2,事件A =“xy < a 2/4”,有A = {(x , y ) | 0 ≤ x ≤ a , 0 ≤ y ≤ a , xy < a 2/4},即4ln 44ln 44)(22422422a a x a ax a dx x a a a A m aa aa +=⎟⎟⎠⎞⎜⎜⎝⎛−−=⎟⎟⎠⎞⎜⎜⎝⎛−−=∫, 故所求概率为5966.04ln 4141)()()(=+=Ω=m A m A P . 29.用主观方法确定:大学生中戴眼镜的概率是多少? (自己通过调查,作出主观判断)30.用主观方法确定:学生中考试作弊的概率是多少? (自己通过调查,作出主观判断)x习题1.31. 设事件A 和B 互不相容,且P (A ) = 0.3,P (B ) = 0.5,求以下事件的概率:(1)A 与B 中至少有一个发生; (2)A 和B 都发生; (3)A 发生但B 不发生. 解:(1)P (A ∪B ) = P (A ) + P (B ) = 0.3 + 0.5 = 0.8;(2)P (AB ) = 0;(3)P (A − B ) = P (A ) = 0.3.2. 设P (AB ) = 0,则下列说法哪些是正确的?(1)A 和B 不相容; (2)A 和B 相容;(3)AB 是不可能事件;(4)AB 不一定是不可能事件; (5)P (A ) = 0或P (B ) = 0; (6)P (A − B ) = P (A ). 解:(1)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容;(2)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容;(3)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容,即AB 不一定是不可能事件; (4)正确,当P (AB ) = 0时,A 和B 可能相容也可能不相容,即AB 不一定是不可能事件; (5)错误,当P (A ) > 0,P (B ) > 0时,只要A 和B 不相容,就有P (AB ) = 0; (6)正确,P (A − B ) = P (A ) − P (AB ) = P (A ).3. 一批产品分一、二、三级,其中一级品是二级品的三倍,三级品是二级品的一半,从这批产品中随机地抽取一个,试求取到二级品的概率. 解:设A , B , C 分别表示“取到一、二、三级品”,有P (A ) + P (B ) + P (C ) = 1,P (A ) = 3P (B ),)(21)(B P C P =, 则1)(29)(21)()(3==++B P B P B P B P ,即92)(=B P , 故取到二级品的概率92)(=B P .4. 从0, 1, 2, …, 9等十个数字中任意选出三个不同的数字,试求下列事件的概率:(1)A 1 = {三个数字中不含0和5}; (2)A 2 = {三个数字中不含0或5}; (3)A 3 = {三个数字中含0但不含5}.解:样本点总数1201238910310=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)事件A 1所含样本点个数56123678381=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故15712056)(1==A P ; (2)事件=2A “三个数字中含0和5”所含样本点个数8182=⎟⎟⎠⎞⎜⎜⎝⎛=A k ,故1514120112)(1)(22==−=A P A P ; (3)事件A 3所含样本点个数281278283=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故30712028)(3==A P .5. 某城市中共发行3种报纸A , B , C .在这城市的居民中有45%订阅A 报、35%订阅B 报、25%订阅C 报,10%同时订阅A 报B 报、8%同时订阅A 报C 报、5%同时订阅B 报C 报、3%同时订阅A , B , C 报.求以下事件的概率: (1)只订阅A 报;(2)只订阅一种报纸的; (3)至少订阅一种报纸的; (4)不订阅任何一种报纸的.解:设A , B , C 分别表示“订阅报纸A , B , C ”,则P (A ) = 0.45,P (B ) = 0.35,P (C ) = 0.30,P (AB ) = 0.10,P (AC ) = 0.08,P (BC ) = 0.05,P (ABC ) = 0.03,(1))()()()()()())(()(ABC P AC P AB P A P AC AB P A P C B A P C B A P +−−=−=−=U U= 0.45 − 0.10 − 0.08 + 0.03 = 0.30;(2))()()()(B A P C B A P C B A P C B A C B A C B A P ++=U U ,因)()()()()()())(()(ABC P BC P AB P B P BC AB P B P C A B P C B A P +−−=−=−=U U= 0.35 − 0.10 − 0.05 + 0.03 = 0.23,)()()()()()())(()(ABC P BC P AC P C P BC AC P C P B A C P C B A P +−−=−=−=U U= 0.30 − 0.08 − 0.05 + 0.03 = 0.20,故73.020.023.030.0)()()()(=++=++=C B A P C B A P C B A P C B A C B A C B A P U U ; (3)P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC )= 0.45 + 0.35 + 0.30 − 0.10 − 0.08 − 0.05 + 0.03 = 0.90;(4)10.090.01)(1(=−=−=C B A P C B A P U U .6. 某工厂一个班组共有男工9人、女工5人,现要选出3个代表,问选的3个代表中至少有1个女工的概率是多少?解:样本点总数364123121314314=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件=A “选的3个代表中没有女工”所含样本点个数8412378939=××××=⎟⎟⎠⎞⎜⎜⎝⎛=A k ,故所求概率为1310364280364841)(1)(==−=−=A P A P . 7. 一赌徒认为掷一颗骰子4次至少出现一次6点与掷两颗骰子24次至少出现一次双6点的机会是相等的,你认为如何? 解:“掷一颗骰子4次”的样本点总数n 1 = 64 = 1296,事件=1A “没有出现6点”所含样本点个数为625541==A k ,则5177.0129667112966251)(1)(11==−=−=A P A P ; “掷两颗骰子24次”的样本点总数n 2 = (62 )24 = 36 24,事件=2A “没有出现双6点”所含样本点个数为2424235)16(2=−=A k ,则4914.036353636351)(1)(242424242422=−=−=−=A P A P ;故掷一颗骰子4次至少出现一次6点的机会比掷两颗骰子24次至少出现一次双6点的机会更大. 8. 从数字1, 2, …, 9中可重复地任取n 次,求n 次所取数字的乘积能被10整除的概率. 解:样本点总数N = 9 n ,因事件A =“n 次所取数字的乘积能被10整除”就是“至少取到一次数字5并且至少取到一次偶数”, 则事件=A “没有取到数字5或没有取到偶数”, 设事件B =“没有取到数字5”,C =“没有取到偶数”,则事件B 所含样本点个数为K B = 8 n ,事件C 所含样本点个数为K C = 5 n , 且事件BC =“没有取到数字5和偶数”所含样本点个数为K BC = 4 n ,故nnn n n n n n n n n BC P C P B P C B P A P A P 945899495981)()()(1)(1)(1)(+−−=+−−=+−−=−=−=U . 9. 口袋中有n − 1个黑球和1个白球,每次从口袋中随机地摸出一球,并换入一只黑球.问第k 次摸球时,摸到黑球的概率是多少? 解:样本点总数N = n k ,事件=A “第k 次摸球时摸到白球”,此时前n − 1次摸球时都必须是摸到黑球,则A 中所含样本点个数1)1(−−=k A n K ,故所求概率为kk nn A P A P 1)1(1)(1)(−−−=−=. 10.若P(A ) = 1,证明:对任一事件B ,有P (AB ) = P (B ).证:因P (A ) = 1,且A B A ⊂,有0)(1)()(=−=≤A P A P B A P ,则0)()()()(=−=−=AB P B P A B P A P ,故P (AB ) = P (B ).11.掷2n + 1次硬币,求出现的正面数多于反面数的概率. 解:设A =“出现的正面数多于反面数”,因掷奇数次硬币,出现的正面数与反面数不可能相等,事件=A “出现的反面数多于正面数”,由于掷一枚硬币出现正面与出现反面的可能性相同,则“出现的正面数多于反面数”与“出现的反面数多于正面数” 的可能性相同, 可得)()(A P A P =,又1()(=+A P A P ,故P (A ) = 0.5.12.有三个人,每个人都以同样的概率1/5被分配到5个房间中的任一间中,试求:(1)三个人都分配到同一个房间的概率; (2)三个人分配到不同房间的概率. 解:样本点总数n = 53 = 125,(1)事件A 1 =“三个人都分配到同一个房间”所含样本点个数为k 1 = 5,故所求概率为2511255)(1==A P ; (2)事件A 2 =“三个人分配到不同房间”所含样本点个数为60345352=××==A k ,故所求概率为251212560)(2==A P . 13.一间宿舍住有5位同学,求他们之中至少有2个人生日在同一个月份的概率.解:首先假设一个人的生日在每一个月份的可能性相同,样本点总数n = 125,事件=A “每个人生日都在不同月份”所含样本点个数为512A k A =, 故所求概率为6181.014489121)(1)(5512==−=−=A A P A P . 14.某班n 个战士各有1支归个人保管使用的枪,这些枪的外形完全一样,在一次夜间紧急集合中,每人随机地取了1支枪,求至少有1人拿到自己的枪的概率.解:设A i =“第i 个战士拿到自己的枪”,n i ,,2,1L =,有==i ni A 1U “至少有1人拿到自己的枪”,因)()1()()()()(2111111n n nk j i kjinj i jini i i ni A A A P A A A P A A P A P A P L L U ⋅−+++−=−≤<<≤≤<≤==∑∑∑,且n n n A P i 1!)!1()(=−=,)1(1!)!2()(−=−=n n n n A A P j i ,)2)(1(1)(−−=n n n A A A P k j i ,……, 故!)1(!31!211!1)1()2)(1(1)1(11)(11321n n C n n n C n n C n n A P n nn n n n i ni −−=−+−+−=⋅−+−−−⋅+−⋅−×=L L U . 15.设A , B 是两事件,且P (A ) = 0.6,P (B ) = 0.8,问: (1)在什么条件下P (AB )取到最大值,最大值是多少? (2)在什么条件下P (AB )取到最小值,最小值是多少? 解:(1)因P (AB ) ≤ min{P (A ), P (B )} = P (A ) = 0.6,故当P (AB ) = P (A ) 时,P (AB )取到最大值0.6;(2)因P (AB ) = P (A ) + P (B ) − P (A ∪B ) ≥ P (A ) + P (B ) − 1 = 0.4,故当P (A ∪B ) = 1时,P (AB )取到最小值0.4. 注:若A ⊂ B ,有AB = A ,可得P (AB ) = P (A ),但不能反过来,由P (AB ) = P (A ),得出A ⊂ B ;若A ∪B = Ω,可得P (A ∪B ) = 1,但不能反过来,由P (A ∪B ) = 1,得出A ∪B = Ω. 16.已知事件A , B 满足)()(B A P AB P I =,记P (A ) = p ,试求P (B ).解:因)()()(1)(1)()()(AB P B P A P B A P B A P B A P AB P +−−=−===U U I ,有1 − P (A ) − P (B ) = 0,故P (B ) = 1 − P (A ) = 1 − p .17.已知P (A ) = 0.7,P (A − B ) = 0.4,试求)(AB P .解:因P (A − B ) = P (A ) − P (AB ),有P (AB ) = P (A ) − P (A − B ) = 0.7 − 0.4 = 0.3,故7.0)(1(=−=AB P AB P . 18.设P (A ) = 0.6,P (B ) = 0.4,试证)()(B A P AB P I =.证:)()(4.06.01)()()(1)(1)()(AB P AB P AB P B P A P B A P B A P B A P =+−−=+−−=−==U U I . 19.对任意的事件A , B , C ,证明:(1)P (AB ) + P (AC ) − P (BC ) ≤ P (A );(2)P (AB ) + P (AC ) + P (BC ) ≥ P (A ) + P (B ) + P (C ) − 1. 证:(1)因P (AB ∪AC ) = P (AB ) + P (AC ) − P (ABC ),且 (AB ∪AC ) ⊂ A ,ABC ⊂ BC ,有P (AB ∪AC ) ≤ P (A ),P (ABC ) ≤ P (BC ),故P (AB ) + P (AC ) − P (BC ) = P (AB ∪AC ) + P (ABC ) − P (BC ) ≤ P (AB ∪AC ) ≤ P (A ). (2)因P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC ),故P (AB ) + P (AC ) + P (BC ) = P (A ) + P (B ) + P (C ) + P (ABC ) − P (A ∪B ∪C )≥ P (A ) + P (B ) + P (C ) + P (ABC ) − 1 ≥ P (A ) + P (B ) + P (C ) − 1.20.设A , B , C 为三个事件,且P (A ) = a ,P (B ) = 2a ,P (C ) = 3a ,P (AB ) = P (AC ) = P (BC ) = b ,证明:a ≤ 1/4,b ≤ 1/4.证:因P (B ∪C ) = P (B ) + P (C ) − P (BC ) = 5a − b ,且a = P (A ) ≥ P (AB ) = b ,则P (B ∪C ) = 5a − b ≥ 4a ,即4a ≤ 1,故a ≤ 1/4且b ≤ a ≤ 1/4.21.设事件A , B , C 的概率都是1/2,且)()(C B A P ABC P I I =,证明:2 P (ABC ) = P (AB ) + P (AC ) + P (BC ) − 1/2.证:因)(1)()()(C B A P C B A P C B A P ABC P U U U U I I −==== 1 − P (A ) − P (B ) − P (C ) + P (AB ) + P (AC ) + P (BC ) − P (ABC ),故2 P (ABC ) = P (AB ) + P (AC ) + P (BC ) + 1 − P (A ) − P (B ) − P (C ) = P (AB ) + P (AC ) + P (BC ) − 1/2. 22.证明:(1)P (AB ) ≥ P (A ) + P (B ) − 1;(2)P (A 1 A 2 …A n ) ≥ P (A 1) + P (A 2) + … + P (A n ) − (n − 1). 证:(1)因P (A ∪B ) = P (A ) + P (B ) − P (AB ),故P (AB ) = P (A ) + P (B ) − P (A ∪B ) ≥ P (A ) + P (B ) − 1;(2)用数学归纳法证明,当n = 2时,由(1)小题知结论成立,设当n = k 时,结论成立,即P (A 1 A 2 …A k ) ≥ P (A 1) + P (A 2) + … + P (A k ) − (k − 1), 则P (A 1 A 2 …A k A k + 1) ≥ P (A 1 A 2 …A k ) + P (A k + 1) − 1≥ P (A 1) + P (A 2) + … + P (A k ) − (k − 1) + P (A k + 1) − 1 = P (A 1) + P (A 2) + … + P (A k ) + P (A k + 1) − k ,即当n = k + 1时,结论成立,故由数学归纳法知P (A 1 A 2 …A n ) ≥ P (A 1) + P (A 2) + … + P (A n ) − (n − 1). 23.证明:41|)()()(|≤−B P A P AB P . 证:因)()()](1)[()]()()[()()()()(A P A P A P AB P B A P AB P A P AB P B P A P AB P −−=+−=−,且0 ≤ P (AB )[1 − P (A )] ≤ P (A )[1 − P (A )],)](1)[(()()()(0A P A P A P A P B A P A P −=≤≤, 故)}()()],(1)[(max{|)()()](1)[(||)()()(|A P A P A P AB P B A P A P A P AB P B P A P AB P −≤−−=−4121)(41)]([)()](1)[(22≤⎥⎦⎤⎢⎣⎡−−=−=−≤A P A P A P A P A P .习题1.41. 某班级学生的考试成绩数学不及格的占15%,语文不及格的占5%,这两门课都不及格的占3%.(1)已知一学生数学不及格,他语文也不及格的概率是多少? (2)已知一学生语文不及格,他数学也不及格的概率是多少? 解:设A =“数学不及格”,B =“语文不及格”,有P (A ) = 0.15,P (B ) = 0.05,P (AB ) = 0.03,(1)所求概率为2.015.003.0)()()|(===A P AB P A B P ; (2)所求概率为6.005.003.0)()()|(===B P AB P B A P . 2. 设一批产品中一、二、三等品各占60%, 35%, 5%.从中任意取出一件,结果不是三等品,求取到的是一等品的概率.解:设A , B , C 分别表示“取出一、二、三等品”,有P (A ) = 0.6,P (B ) = 0.35,P (C ) = 0.05,故所求概率为191205.016.0)(1)()()()|(=−=−==C P A P C P C A P C A P . 3. 掷两颗骰子,以A 记事件“两颗点数之和为10”,以B 记事件“第一颗点数小于第二颗点数”,试求条件概率P (A | B ) 和P (B | A ). 解:样本点总数n = 6 2 = 36,则事件A 中的样本点有 (4, 6), (5, 5), (6, 4),即个数k A = 3,有363)(=A P , 事件B 中所含样本点个数k B = 5 + 4 + 3 + 2 + 1 + 0 = 15,有3615)(=B P ,事件AB 中的样本点有 (4, 6),即个数k C = 1,有361)(=AB P , 故1513615361)()()|(===B P AB P B A P ,31363361)()()|(===A P AB P A B P .4. 以某种动物由出生活到10岁的概率为0.8,而活到15岁的概率为0.5,问现年为10岁的这种动物能活到15岁的概率是多少?解:设A , B 分别表示“这种动物能活到10岁, 15岁”,有P (A ) = 0.8,P (B ) = 0.5,故所求概率为858.05.0)()()()()|(====A P B P A P AB P A B P .5. 设10件产品中有4件不合格品,从中任取两件,已知其中一件是不合格品,求另一件也是不合格品的概率.解:设A =“其中一件是不合格品”,B =“两件都是不合格品”,有AB = B ,样本点总数45210=⎟⎟⎠⎞⎜⎜⎝⎛=n , 事件A 中所含样本点个数30624241614=+=⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=A k ,得4530)(=A P , 事件AB = B 中所含样本点个数624=⎟⎟⎠⎞⎜⎜⎝⎛=B k ,得456)()(==B P AB P ,故所求概率为2.04530456)()()|(===A P AB P A B P . 6. 设n 件产品中有m 件不合格品,从中任取两件,已知两件中有一件是合格品,求另一件也是合格品的概率.解:设A =“两件中至少有一件是合格品”,B =“两件都是合格品”,有AB = B ,样本点总数2)1(2−=⎟⎟⎠⎞⎜⎜⎝⎛=n n n N , 事件A 中所含样本点个数2)1)((2)1)(()(211−+−=−−−+−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛=m n m n m n m n m n m m n m n m k A , 得)1()1)(()(−−+−=n n m n m n A P ,事件AB = B 中所含样本点个数2)1)((2−−−=⎟⎟⎠⎞⎜⎜⎝⎛−=m n m n m n k B , 得)1()1)(()()(−−−−==n n m n m n B P AB P ,故所求概率为11)1()1)(()1()1)(()()()|(−+−−=−−+−−−−−==m n m n n n m n m n n n m n m n A P AB P A B P . 7. 掷一颗骰子两次,以x , y 分别表示先后掷出的点数,记A = {x + y < 10},B = {x > y },求P (B | A ),P (A | B ). 解:样本点总数n = 6 2 = 36,则事件A 中所含样本点个数k A = 6 + 6 + 6 + 5 + 4 + 3 = 30,有3630)(=A P , 事件B 中所含样本点个数k B = 0 + 1 + 2 + 3 + 4 + 5 = 15,有3615)(=B P ,事件AB 中所含样本点个数k AB = 0 + 1 + 2 + 3 + 4 + 3 = 13,有3613)(=AB P ,故301336303613)()()|(===A P AB P A B P ,151336153613)()()|(===B P AB P B A P .8. 已知P (A ) = 1/3,P (B | A ) = 1/4,P (A | B ) = 1/6,求P (A ∪B ).解:因1214131)|()()(=×==A B P A P AB P ,2161121)|()()(===B A P AB P B P , 故431212131)()()()(=−+=−+=AB P B P A P B A P U . 9. 已知3.0)(=A P ,P (B ) = 0.4,5.0(=B A P ,求)|(B A B P U . 解:因2.05.03.01)()(1)()()(=−−=−−=−=B A P A P B A P A P AB P ,且8.05.04.013.01()(1)(1)()()()(=−−+−=−−+−=−+=B A P B P A P B A P B P A P B A P U , 故25.08.02.0)()()())(()|(====B A P AB P B A P B A B P B A B P U U U U . 10.设A , B 为两事件,P (A ) = P (B ) = 1/3,P (A | B ) = 1/6,求|(B A P . 解:因1816131)|()()(=×==B A P B P AB P ,有18111813131)()()()(=−+=−+=AB P B P A P B A P U , 则18718111)(1)()(=−=−==B A P B A P B A P U U ,且32311)(1)(=−=−=B P B P , 故12732187)()()|(===B P B A P B A P . 11.口袋中有1个白球,1个黑球.从中任取1个,若取出白球,则试验停止;若取出黑球,则把取出的黑球放回的同时,再加入1个黑球,如此下去,直到取出的是白球为止,试求下列事件的概率.(1)取到第n 次,试验没有结束;(2)取到第n 次,试验恰好结束.解:设A k =“第k 次取出的是黑球”,k = 1, 2, ……(1)所求概率为P (A 1A 2…A n − 1A n ) = P (A 1A 2…A n − 1)P (A n | A 1A 2…A n − 1)1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L ; (2)所求概率为)|()()(121121121−−−=n n n n n A A A A P A A A P A A A A P L L L)1(1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L . 12.一盒晶体管有8只合格品,2只不合格品.从中不返回地一只一只取出,试求第二次取出的是合格品的概率.解:设A 1, A 2分别表示“第一次取出的是合格品、不合格品”,B 表示“第二次取出的是合格品”, 故所求概率为8.090729810297108)|()()|()()(2211==×+×=+=A B P A P A B P A P B P . 13.甲口袋有a 个白球、b 个黑球,乙口袋有n 个白球、m 个黑球.(1)从甲口袋任取1个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率;(2)从甲口袋任取2个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率.解:(1)设A 0 , A 1分别表示“从甲口袋取出的是白球、黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) )1)(()1(111+++++=++×+++++×+=n m b a bn n a m n n b a b m n n b a a ; (2)设A 0 , A 1 , A 2分别表示“从甲口袋取出的是2个白球、1个白球1个黑球、2个黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) + P (A 2)P (B | A 2)。
茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第1章 随机事件与概率【圣
③对立事件一定是互不相容的事件,即 A∩B=∅.但互不相容的事件不一定是对立事件.
_
④A-B 可以记为 AB.
7.事件的运算性质
5 / 85
圣才电子书
(1)交换律
十万种考研考证电子书、题库视频学习平台
A∪B=B∪A,AB=BA
(2)结合律
(A∪B)∪C=A∪(B∪C)
n r 1
次所得的组合,此种重复组合总数为
r
,这里的 r 也允许大于 n.
上述四种排列组合及其总数计算公式在使用中要注意识别有序与无序、重复与不重复.
3.确定概率的频率方法 (1)确定概率的频率方法 在大量重复试验中,用频率的稳定值去获得概率的一种方法,其基本思想是: ①与考察事件 A 有关的随机现象可大量重复进行.
4.随机变量 定义:表示随机现象结果的变量,常用大写字母 X,Y,Z 表示. 注意:很多事件都用随机变量表示时,应写明随机变量的含义.在同一个随机现象中, 不同的设置可获得不同的随机变量,如何设置可按需要进行.
5.事件间的关系 假设在同一个样本空间 Ω(即同一个随机现象)中进行.事件间的关系与集合间关系
2.排列与组合公式 排列与组合都是计算“从 n 个元素中任取 r 个元素”的取法总数公式. 区别:组合公式是不讲究取出元素间的次序,否则用排列公式.而所谓讲究元素间的次 序,可以从实际问题中得以辨别,例如两个人相互握手是不讲次序的;而两个人排队是讲次 序的,因为“甲右乙左”与“乙右甲左”是两件事.
7 / 85
_
1-1-5),或用概率论的语言说“A 不发生”,即A=Ω-A.
_
图 1-1-5 A 的对立事件A
注意:
_
_
①对立事件是相互的,即 A 的对立事件是A,而A的对立事件是 A.必然事件 Ω 与不可
茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第4~5章【圣才出品】
(1)|φ (t)|≤φ (0)=1.
——————
——————
(2)φ (-t)=φ (t),其中φ (t)表示 φ (t)的共轭.
(3)若 y=aX+b,其中 a,b 是常数,则 φ Y(t)=eibtφ X(at).
(4)独立随机变量和的特征函数为每个随机变量的特征函数的积.即设 X 与 Y 相互独
5 / 167
圣才电子书 十万种考研考证电子书、题库视频学习平台
P
Xn a
P
Yn b
则有 ①
P
X n Yn a b
②
1 / 167
圣才电子书
十万种考研考证电子书、题库视频学习平台
P
X n Yn a b
③
P
Xn Yn a b(b 0)
2.按分布收敛、弱收敛
(1)按分布收敛
设随机变量 X,X1,X2,…的分布函数分别为 F(X),F1(X),F2(X),….若对 F(x)
p(x) x e n/21 x/2 ,x 0 Γ (n / 2)2n/2
exp
it
2t 2
2
(1 it )1
(1 it )
(1 2it )n / 2
贝塔分布
Be(a,b)
p(x) Γ (a b) xa1 (1 x)b1,0 x 1 Γ (a)Γ (b)
Γ (a b)
(it)k Γ (a k)
P
Xn x
或者说,绝对偏差|Xn-x|小于任一给定量的可能性将随着 n 增大而愈来愈接近于 1, 即等价于 P(|Xn-x|<ε)→1(n→∞).
特别当 x 为退化分布时,即 P(X-c)=1,则称序列{Xn}依概率收敛于 C. (2)依概率收敛于常数的四则运算性质如下: 设{Xn},{Yn}是两个随机变量序列,a,b 是两个常数.如果
茆诗松《概率论与数理统计教程》笔记和课后习题(含考研真题)详解(随机变量及其分布)【圣才出品】
xk p xk 丌收敛,则称 X 癿数学期望丌存在.
k =1
(2)连续型随机变量
定义:设连续随机变量 x 癿密度凼数为 p(x).如果
x p xdx
则称
E
X
xp
x
dx
为 X 癿数学期望,或称作该分布 p(x)癿数学期望,简称期望或均值.若
x p x dx 丌收敛,则称 X 癿数学期望丌存在.
2.数学期望癿性质 按照数学期望 E(X)癿定义,E(X)由其分布唯一确定.若要求随机变量 X 癿一个凼
5 / 119
圣才电子书 十万种考研考证电子书、题库视频学习平台
数 g(X)癿数学期望,当然要先求出 Y=g(X)癿分布,再用此分布来求 E(Y).
lim
xx0
F
x
F
x0
即 F(x0+0)=F(x0)
返三个基本性质为判别某个凼数是否能成为分布凼数癿充要条件.
当 F(x)在 a 不 b 处连续时,有 F(a-0)=F(a),F(b-0)=F(b).
3.离散随机变量癿概率分布列
(1)定义:设 X 是一个离散随机变量,如果 X 癿所有可能叏值是 x1,x2,…,xn,…,
则称 X 叏 xi 癿概率 pi=p(xi)=P(X=xi),i=1,2,…n,…为 X 癿概率分布列或简称为
分布列,记为 X~{pi}.
分布列也可用下表来表示:
X
x1
x2
…
P P(x1) P(x2) …
茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解-第3章 多维随机变量及其分布【圣才
第 3 章 多维随机变量及其分布 3.1 复习笔记
一、多维随机变量联合分布的性质(见表 3-1-1) 表 3-1-1 联合分布的性质
二、边际分布与随机变量的独立性 1.边际分布(见表 3-1-2)
表 3-1-2 边际分布
j
5i
j
100
5
用表格形式表示如下表 3-2-1:
7 / 124
圣才电子书
十万种考研考证电子书、题库视频学习平台
表 3-2-1
行和就是 X 的分布 h(5,100,50)(超几何分布)。
列和就是 Y 的分布 h(5,100,30)(超几何分布)。
P(X≥2,Y≥1)=0.66158。
i 1
X2,…,Xn 相互独立。
n
连续随机变量:若 p(x1, x2 ,L , xn ) pi (xi ) ,则 X1,X2,…,Xn 相互独立。 i 1
三、多维随机变量函数的分布 1.最大值与最小值的分布 (1)最大值分布:
FY ( y) P( maxX1,X 2,L ,X n y)
n
=P(X1 y, X 2 y,L , X n y)= Fi (y)
1Ex4p(4 )*4E4x4p(2)4*L4 *4Ex4p(43) =Ga(m,)
m个
(4)χ2 分布的可加性:m 个χ2 变量相互独立,则
2 (n1)* 2 (n2 )*L * 2 (nm )= 2(n1+n2 +L +nm)
四、多维随机变量的特征数(见表 3-1-3)
3 / 124
圣才电子书 十万种考研考证电子书、题库视频学习平台
(1)全概率公式:密度函数形式:
概率论与数理统计(茆诗松)第二版课后第六章习题参考答案
第六章 参数估计习题6.11. 设X 1, X 2, X 3是取自某总体容量为3的样本,试证下列统计量都是该总体均值µ 的无偏估计,在方差存在时指出哪一个估计的有效性最差?(1)3211613121ˆX X X ++=µ; (2)3212313131ˆX X X ++=µ; (3)3213326161ˆX X X ++=µ. 证:因µµµµµ=++=++=613121)(61)(31)(21)ˆ(3211X E X E X E E , µµµµµ=++=++=313131)(31)(31)(31)ˆ(3212X E X E X E E , µµµµµ=++=++=326161)(32)(61)(61)ˆ(3213X E X E X E E , 故321ˆ,ˆ,ˆµµµ都是总体均值µ 的无偏估计; 因2222321136143619141)Var(361)Var(91)Var(41)ˆVar(σσσσµ=++=++=X X X , 2222321231919191)Var(91)Var(91)Var(91)ˆVar(σσσσµ=++=++=X X X , 222232132194361361)Var(94)Var(361)Var(361)ˆVar(σσσσµ=++=++=X X X , 故)ˆVar()ˆVar()ˆVar(312µµµ<<,即2ˆµ有效性最好,1ˆµ其次,3ˆµ最差. 2. 设X 1, X 2, …, X n 是来自Exp (λ)的样本,已知X 为1/λ的无偏估计,试说明X /1是否为λ的无偏估计.解:因X 1, X 2, …, X n 相互独立且都服从指数分布Exp (λ),即都服从伽玛分布Ga (1, λ),由伽玛分布的可加性知∑==ni i X Y 1服从伽玛分布Ga (n , λ),密度函数为01e )()(>−−ΙΓ=y y n nY y n y p λλ,则λλλλλλλ1)1()(e )(e )(110201−=−Γ⋅Γ=Γ=Γ⋅=⎟⎠⎞⎜⎝⎛=⎟⎠⎞⎜⎝⎛−∞+−−∞+−−∫∫n n n n n dy y n n dy y n y n Y n E X E n n y n n yn n, 故X /1不是λ的无偏估计.3. 设θˆ是参数θ 的无偏估计,且有0)ˆ(Var >θ,试证2)ˆ(θ不是θ 2的无偏估计. 证:因θθ=)ˆ(E ,有2222)ˆVar()]ˆ([)ˆVar(])ˆ[(θθθθθθ>+=+=E E ,故2)ˆ(θ不是θ 2的无偏估计. 4. 设总体X ~ N(µ , σ 2),X 1, …, X n 是来自该总体的一个样本.试确定常数c 使∑=+−ni i i X X c 121)(为σ 2的无偏估计.解:因E [(X i + 1 − X i )2 ] = Var (X i + 1 − X i ) + [E (X i + 1 − X i )]2 = Var (X i + 1) + Var (X i ) + [E (X i + 1) − E (X i )]2 = 2σ 2,则2211211121)1(22)1(])[()(σσ−=⋅−⋅=−=⎥⎦⎤⎢⎣⎡−∑∑−=+−=+n c n c X X E c X X c E n i i i n i i i ,故当)1(21−=n c 时,21121)(σ=⎥⎦⎤⎢⎣⎡−∑−=+n i i i X X c E ,即∑−=+−1121)(n i i i X X c 是σ 2的无偏估计.5. 设X 1, X 2, …, X n 是来自下列总体中抽取的简单样本,⎪⎩⎪⎨⎧+≤≤−=.,0;2121,1);(其他θθθx x p证明样本均值X 及)(21)()1(n X X +都是θ 的无偏估计,问何者更有效? 证:因总体⎟⎠⎞⎜⎝⎛+−21,21~θθU X ,有)1,0(~21U X Y +−=θ,则21−+=θY X ,21)1()1(−+=θY X ,21)()(−+=θn n Y X ,即21)(21)(21)()1()()1(−++=+θn n Y Y X X ,可得θθθ=−+=−+=21)(21)()(Y E Y E X E ,nY n Y X 121)Var(1)Var()Var(===,因Y 的密度函数与分布函数分别为p Y ( y ) = I 0<y <1,⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y有Y (1)与Y (n )的密度函数分别为10111)1()()](1[)(<<−−Ι−=−=y n Y n Y y n y p y F n y p ,1011)()]([)(<<−−Ι==y n Y n Y n ny y p y F n y p ,且(Y (1), Y (n ))的联合密度函数为)()1()()()]()()[1(),()()1(2)1()()()1(1n y y n Y Y n Y n Y n n y p y p y F y F n n y y p <−Ι−−=102)1()()()1())(1(<<<−Ι−−=n y y n n y y n n ,则11)2()()2()1()(101)1(+=+ΓΓΓ⋅=−⋅=∫−n n n n dy y n y Y E n ,1)(101)(+=⋅=∫−n n dy ny y Y E n n , )2)(1(2)3()()3()1()(10122)1(++=+ΓΓΓ⋅=−⋅=∫−n n n n n dy y n y Y E n ,2)(10122)(+=⋅=∫−n n dy ny y Y E n n , ∫∫∫∫−−−−⋅⋅=−−⋅=11)1()()()1()(1)1(2)1()()()1()()()1()()()()1())(1()(n n y n n n n y n n n n n y y d n y y dy dy y y n n y y dy Y Y E∫∫⎥⎦⎤⎢⎣⎡⋅−+−−=−−100)1()(1)1()(01)1()()()1()()()()()(n n y n n n y n n n n dy y y y n y y y ny dy2121)(102)(10)(1)(100)1()()()()(+=+==⎥⎦⎤⎢⎣⎡−⋅−=++∫∫n y n dy y y y y dy n n n n n y n n n n n , 即)2()1(11)2)(1(2)Var(22)1(++=⎟⎠⎞⎜⎝⎛+−++=n n n n n n Y ,)2()1(12)Var(22)(++=⎟⎠⎞⎜⎝⎛+−+=n n n n n n n Y n ,且)2()1(111121),Cov(2)()1(++=+⋅+−+=n n n nn n Y Y n 可得θθ=−++=⎥⎦⎤⎢⎣⎡+21)]()([21)(21)()1()()1(n n Y E Y E X X E ,)2)(1(21)2()1(422)],Cov(2)Var()[Var(41)(21Var 2)()1()()1()()1(++=+++=++=⎥⎦⎤⎢⎣⎡+n n n n n Y Y Y Y X X n n n , 因θ=(X E ,θ=⎥⎦⎤⎢⎣⎡+)(21)()1(n X X E ,故X 及)(21)()1(n X X +都是θ 的无偏估计; 因当n > 1时,)2)(1(21)(21Var 121)Var()()1(++=⎥⎦⎤⎢⎣⎡+>=n n X X n X n , 故)(21)()1(n X X +比样本均值X 更有效. 6. 设X 1, X 2, X 3服从均匀分布U (0, θ ),试证)3(34X 及4X (1)都是θ 的无偏估计量,哪个更有效?解:因总体X 的密度函数与分布函数分别为θθ<<Ι=x x p 01)(,⎪⎩⎪⎨⎧≥<≤<=.,1;0,;0,0)(θθθx x x x x F有X (1)与X (3)的密度函数分别为θθθ<<Ι−=−=x x x p x F x p 03221)(3)()](1[3)(,θθ<<Ι==x x x p x F x p 032233)()]([3)(,则443223)(3)(043223032)1(θθθθθθθθ=⎟⎟⎠⎞⎜⎜⎝⎛+⋅−⋅=−⋅=∫x x x dx x x X E , 43433)(043032)3(θθθθθ=⋅=⋅=∫x dy x x X E , 1054233)(3)(205432303222)1(θθθθθθθθ=⎟⎟⎠⎞⎜⎜⎝⎛+⋅−⋅=−⋅=∫x x x dx x x X E , 53533)(25303222)3(θθθθθ=⋅=⋅=∫x dy x x X E , 即803410)Var(222)1(θθθ=⎟⎠⎞⎜⎝⎛−=X ,8034353)Var(222)3(θθθ=⎟⎠⎞⎜⎝⎛−=X , 因θθ=⋅=44)4()1(X E ,θθ=⋅=⎟⎠⎞⎜⎝⎛433434)3(X E ,故4X (1)及)3(34X 都是θ 的无偏估计; 因5380316)4Var(22)1(θθ=⋅=X ,1580391634Var 22)3(θθ=⋅=⎟⎠⎞⎜⎝⎛X ,有⎟⎠⎞⎜⎝⎛>)3()1(34Var )4Var(X X , 故)3(34X 比4X (1)更有效. 7. 设从均值为µ ,方差为σ 2 > 0的总体中,分别抽取容量为n 1和n 2的两独立样本,1X 和2X 分别是这两个样本的均值.试证,对于任意常数a , b (a + b = 1),21X b X a Y +=都是µ 的无偏估计,并确定常数a , b 使Var (Y ) 达到最小.解:因µµµµ=+=+=+=)()()()(21b a b a X bE X aE Y E ,故Y 是µ 的无偏估计;因22222121222122221212)1()(Var )(Var )(Var σσσ⎟⎟⎠⎞⎜⎜⎝⎛+−+=⋅−+⋅=+=n a n a n n n n n a n a X b X a Y , 令022)(Var 222121=⎟⎟⎠⎞⎜⎜⎝⎛−⋅+=σn a n n n n Y da d ,得211n n n a +=,且02)(Var 2212122>⋅+=σn n n n Y a d d , 故当211n n n a +=,2121n n n a b +=−=时,Var (Y ) 达到最小2211σn n +.8. 设总体X 的均值为µ ,方差为σ 2,X 1, …, X n 是来自该总体的一个样本,T (X 1, …, X n )为µ 的任一线性无偏估计量.证明:X 与T 的相关系数为)Var()Var(T X .证:因T(X 1, …, X n )为µ的任一线性无偏估计量,设∑==ni i i n X a X X T 11),,(L ,则µµ===∑∑==ni i ni i i a X E a T E 11)()(,即11=∑=ni i a ,因X 1, …, X n 相互独立,当i ≠ j 时,有Cov (X i , X j ) = 0,则nanX X n a X a X n X a X n T X ni in i i i i n i i i i ni i i n i i 2121111),Cov(,1Cov ,1Cov ),Cov(σσ===⎟⎠⎞⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=∑∑∑∑∑=====,因),Cov()Var(1)Var(2T X nX n X ===σ,故X 与T 的相关系数为)Var()Var()Var()Var()Var()Var()Var(),Cov(),Corr(T X T X X T X T X T X ===.9. 设有k 台仪器,已知用第i 台仪器测量时,测定值总体的标准差为σ i (i = 1, …, k ).用这些仪器独立地对某一物理量θ 各观察一次,分别得到X 1, …, X k ,设仪器都没有系统误差.问a 1, …, a k 应取何值,方能使∑==ki i i X a 1ˆθ成为θ 的无偏估计,且方差达到最小?解:因θθθ⎟⎟⎠⎞⎜⎜⎝⎛===⎟⎟⎠⎞⎜⎜⎝⎛=∑∑∑∑====k i i ki i k i i i ki i i a a x E a x a E E 1111)()ˆ(, 则当11=∑=ki i a 时,∑==ki ii x a 1ˆθ是θ 的无偏估计, 因∑∑∑=====⎟⎟⎠⎞⎜⎜⎝⎛=ki i i k i i i k i i i a x a x a 122121)(Var Var )ˆ(Var σθ, 讨论在11=∑=ki i a 时,∑=ki i i a 122σ的条件极值,设拉格朗日函数⎟⎟⎠⎞⎜⎜⎝⎛−+=∑∑==1),,,(11221ki i ki iik a a a a L λσλL , 令⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=−=∂∂=+=∂∂=+=∂∂∑=,01,02,02122111ki i k k ka L a a L a a L λλσλσL L L L L 得2212−−++−=k σσλL ,2212−−−++=k i i a σσσL ,i = 1, …, k , 故当2212−−−++=k i i a σσσL ,i = 1, …, k 时,∑==ki ii x a 1ˆθ是θ 的无偏估计,且方差达到最小. 10.设X 1, X 2, …, X n 是来自N (θ, 1)的样本,证明g (θ ) = |θ | 没有无偏估计(提示:利用g (θ )在θ = 0处不可导).证:反证法:假设T = T (X 1, X 2, …, X n )是g (θ ) = |θ | 的任一无偏估计,因∑==ni i X n X 11是θ 的一个充分统计量,即在取定x X =条件下,样本条件分布与参数θ 无关,则)|(X T E S =与参数θ 无关,且S 是关于X 的函数,||)()()]|([)(θθ====g T E X T E E S E , 可得)(X S S =是g (θ ) = |θ | 的无偏估计,因X 1, X 2, …, X n 是来自N (θ, 1)的样本,由正态分布可加性知X 服从正态分布⎟⎠⎞⎜⎝⎛n N 1,θ,则∫∫∞+∞−+−−∞+∞−−−⋅⋅=⋅=dx x S ndx n x S S E x n x n n x nθθθ22222)(2e)(eπ2eπ2)()(,因E (S ) = |θ|,可知对任意的θ,反常积分∫∞+∞−+−⋅dx x S x n x n θ22e)(收敛,则由参数θ的任意性以及该反常积分在−∞与+∞两个方向的收敛性知∫∞+∞−⋅⋅+−⋅dx x S x n x n ||||22e)(θ收敛,因x n x S x S x n x n x n n ⋅⋅=⎥⎥⎦⎤⎢⎢⎣⎡⋅∂∂+−+−θθθ2222e )(e )(,且| y | ≤ e| y |,有||)1||(2222eex n n x n x n x n ⋅+⋅+−+−≤⋅θθ,则由∫∞+∞−⋅+⋅+−⋅dx x S x n x n ||)1|(|22e)(θ的收敛性知∫∞+∞−+−⎥⎥⎦⎤⎢⎢⎣⎡⋅∂∂dx x S x n x n θθ22e )(一致收敛, 可得∫∞+∞−+−−⋅⋅=dx x S nS E x n x n n θθ2222e)(e π2)(关于参数θ 可导,与E (S ) = |θ |在θ = 0处不可导矛盾,故g (θ ) = |θ | 没有无偏估计.11.设总体X 服从正态分布N (µ , σ 2),X 1, X 2, …, X n 为来自总体X 的样本,为了得到标准差σ 的估计量,考虑统计量:∑=−=ni i X X n Y 11||1,∑==n i i X n X 11,n ≥ 2,∑∑==−−=n i nj j i X X n n Y 112||)1(1,n ≥ 2,求常数C 1与C 2,使得C 1Y 1与C 2Y 2都是σ 的无偏估计. 解:设),0(~2θN Y ,有θθθθθθθπ2eπ22e π212e π21|||][|02022222222=−=⋅=⋅=+∞−∞+−∞+∞−⋅−∫∫y y y dy y dy y Y E , 因X X i −是独立正态变量X 1, X 2, …, X n 的线性组合, 且0()()(=−=−=−µµX E X E X X E i i ,22211,Cov 21),Cov(2)Var()Var()Var(σσσn n X n X n X X X X X X i i i i i −=⎟⎠⎞⎜⎝⎛−+=−+=−,则⎟⎠⎞⎜⎝⎛−−21,0~σn n N X X i ,σσπ)1(21π2|][|n n n n X X E i −=−⋅=−, 可得σσπ)1(2π)1(21|][|1)()(11111111n n C n n n n C X X E n C Y E C Y C E n i i −=−⋅⋅⋅=−⋅==∑=,故当)1(2π1−=n n C 时,E [C 1Y 1] = σ,C 1Y 1是σ 的无偏估计;当i ≠ j 时,X i 与X j 相互独立,都服从正态分布N (µ , σ 2),有E (X i − X j ) = E (X i ) − E (X j ) = µ − µ = 0,Var(X i − X j ) = Var(X i ) + Var(X j ) = σ 2 + σ 2 = 2σ 2,则X i − X j ~ N (0, 2σ 2),σσπ22π2|][|=⋅=−j i X X E , 当i = j 时,X i − X j = 0,E [| X i − X j |] = 0,可得σσπ2π2)()1(1|][|)1(1)()(2221122222C n n n n C X X E n n C Y E C Y C E n i nj j i =−⋅−⋅=−−⋅==∑∑==, 故当2π2=C 时,E [C 2Y 2] = σ,C 2Y 2是σ 的无偏估计. 习题6.21. 从一批电子元件中抽取8个进行寿命测试,得到如下数据(单位:h ):1050,1100,1130,1040,1250,1300,1200,1080,试对这批元件的平均寿命以及寿命分布的标准差给出矩估计.解:平均寿命µ 的矩估计75.1143ˆ==x µ;标准差σ 的矩估计8523.89*ˆ==s µ. 2. 设总体X ~ U (0, θ ),现从该总体中抽取容量为10的样本,样本值为:0.5,1.3,0.6,1.7,2.2,1.2,0.8,1.5,2.0,1.6,试对参数θ 给出矩估计.解:因X ~ U (0, θ ),有2)(θ=X E ,即θ = 2 E (X ),故θ 的矩估计68.234.122ˆ=×==x θ. 3. 设总体分布列如下,X 1, …, X n 是样本,试求未知参数的矩估计.(1)Nk X P 1}{==,k = 0, 1, 2, …, N − 1,N (正整数)是未知参数;(2)P {X = k } = (k − 1)θ 2 (1 − θ )k − 2,k = 2, 3, …,0 < θ < 1.解:(1)因21)]1(10[1)(−=−+++=N N N X E L ,即N = 2 E (X ) + 1,故N 的矩估计12ˆ+=X N ; (2)因⎥⎦⎤⎢⎣⎡−=−=−−⋅=∑∑∑+∞=+∞=+∞=−22222222222)1()1()1()1()(k k k k k k d d d d k k X E θθθθθθθθ θθθθθθθθθθθ2221)1(1)1(322222222=⋅=⎟⎠⎞⎜⎝⎛+−=⎥⎦⎤⎢⎣⎡−−−=d d d d , 则)(2X E =θ, 故θ 的矩估计X2ˆ=θ. 4. 设总体密度函数如下,X 1, …, X n 是样本,试求未知参数的矩估计.(1))(2);(2x x p −=θθθ,0 < x < θ ,θ > 0; (2)p (x ;θ ) = (θ + 1) x θ,0 < x < 1,θ > 0;(3)1);(−=θθθx x p ,0 < x < 1,θ > 0; (4)θµθµθ−−=x x p e1),;(,x > µ ,θ > 0.解:(1)因3322)(2)(032202θθθθθθθ=⎟⎟⎠⎞⎜⎜⎝⎛−⋅=−⋅=∫x x dx x x X E ,即θ = 3 E (X ),故θ 的矩估计X 3ˆ=θ; (2)因212)1()1()(10210++=+⋅+=+⋅=+∫θθθθθθθx dx x x X E ,即)(11)(2X E X E −−=θ, 故θ 的矩估计XX −−=112ˆθ; (3)因11)(101101+=+⋅=⋅=+−∫θθθθθθθxdx x x X E ,即2)(1)(⎥⎦⎤⎢⎣⎡−=X E X E θ, 故θ 的矩估计21ˆ⎟⎟⎠⎞⎜⎜⎝⎛−=XX θ; (4)因θµθµθµθµµθµµθµµθµµθµ+=−=+−=−⋅=⋅=+∞−−∞+−−+∞−−∞+−−∞+−−∫∫∫x x x x x dx x d x dx x X E eeee)1(e1)(,)(2e2ee)1(e1)(22222X E dx x x d x dx x X E x x x x θµθµθµµθµµθµµθµ+=+−=−⋅=⋅=∫∫∫∞+−−+∞−−∞+−−∞+−−= µ 2 + 2µθ + 2θ 2,则Var (X ) = E (X 2 ) − [E (X )]2 = θ 2,即)Var(X =θ,)Var()(X X E −=µ,故θ 的矩估计*ˆS =θ,*ˆS X −=µ. 5. 设总体为N (µ , 1),现对该总体观测n 次,发现有k 次观测值为正,使用频率替换方法求µ 的估计.解:因p = P {X > 0} = P {X − µ > −µ} = 1 − Φ (−µ) = Φ (µ),即µ = Φ −1 ( p ),故µ 的矩估计⎟⎠⎞⎜⎝⎛Φ=Φ=−−n k p 11)ˆ(ˆµ.6. 甲、乙两个校对员彼此独立对同一本书的样稿进行校对,校完后,甲发现a 个错字,乙发现b 个错字,其中共同发现的错字有c 个,试用矩法给出如下两个未知参数的估计: (1)该书样稿的总错字个数; (2)未被发现的错字数. 解:(1)设N 为该书样稿总错别字个数,且A 、B 分别表示甲、乙发现错别字,有A 与B 相互独立,则P (AB ) = P (A ) P (B ),使用频率替换方法,即N b N a p p N c p B A AB ⋅===ˆˆˆ,得cabN =, 故总错字个数N 的矩估计cab N=ˆ; (2)设k 为未被发现的错字数,因)()()(1)(1)(AB P B P A P B A P B A P +−−=−=U ,使用频率替换方法,即N cN b N a p p pN k pAB B A B A +−−=+−−==1ˆˆˆ1ˆ,即k = N − a − b + c , 故未被发现的错字数k 的矩估计c b a cab c b a N k+−−=+−−=ˆˆ. 7. 设总体X 服从二项分布b (m , p ),其中m , p 为未知参数,X 1, …, X n 为X 的一个样本,求m 与p 的矩估计.解:因E (X ) = mp ,Var (X ) = mp (1 − p ),有)()Var(1X E X p =−,则)()Var(1X E X p −=,)Var()()]([)(2X X E X E p X E m −==, 故m 的矩估计22*ˆS X X m −=,p 的矩估计XS p 2*1ˆ−=.习题6.31. 设总体概率函数如下,X 1, …, X n 是样本,试求未知参数的最大似然估计.(1)1);(−=θθθxx p ,0 < x < 1,θ > 0;(2)p (x ;θ ) = θ c θ x − (θ + 1) ,x > c ,c > 0已知,θ > 1. 解:(1)因1,,,01212110121)()(<<−=<<−Ι=Ι=∏n i x x x n nni x ix x x x L L L θθθθθ,当0 < x 1, x 2, …, x n < 1时,)ln()1(ln 2)(ln 21n x x x nL L −+=θθθ, 令0)ln(212)(ln 21=+=n x x x n d L d L θθθθ,得)ln(21n x x x n L −=θ,即221)ln(⎥⎦⎤⎢⎣⎡=n x x x nL θ,故θ 的最大似然估计221)ln(ˆ⎦⎤⎢⎣⎡=n X X X n L θ;(2)因c x x x n n n ni c x i n i x x x c x c L >+−=>+−Ι=Ι=∏,,,)1(211)1(21)()(L L θθθθθθθ,当x 1, x 2, …, x n > c 时,ln L (θ ) = n ln θ + n θ ln c − (θ + 1) ln (x 1 x 2 …x n ), 令0)ln(ln )(ln 21=−+=n x x x c n n d L d L θθθ,得c n x x x nn ln )ln(21−=L θ, 故θ 的最大似然估计cn X X X nn ln )ln(ˆ21−=L θ.2. 设总体概率函数如下,X 1, …, X n 是样本,试求未知参数的最大似然估计.(1)p (x ;θ ) = c θ c x − (c + 1) ,x > θ ,θ > 0,c > 0已知;(2)θµθµθ−−=x x p e1),;(,x > µ ,θ > 0;(3)p (x ;θ ) = (k θ )−1,θ < x < (k + 1)θ ,θ > 0.解:(1)因θθθθθ>+−=>+−Ι=Ι=∏n i x x x c n nc n ni x c i c x x x c x c L ,,,)1(211)1(21)()(L L ,显然θ 越大,nc θ越大,但只有x 1 , x 2 , …, x n > θ 时,才有L (θ ) > 0,即θ = min {x 1, x 2, …, x n } 时,L (θ ) 达到最大,故θ 的最大似然估计},,,min{ˆ21)1(nX X X X L ==θ;(2)因µµθµθµθθµθ>⎟⎟⎠⎞⎜⎜⎝⎛−−=>−−Ι∑=Ι==∏n n i i i i x x x n x nni x x L ,,,11211e1e1),(L ,当x 1, x 2, …, x n > µ 时,⎟⎟⎠⎞⎜⎜⎝⎛−−−=∑=µθθµθn x n L ni i 11ln ),(ln , 令01),(ln 12=⎟⎟⎠⎞⎜⎜⎝⎛−+−=∑=µθθθµθn x n d L d ni i ,解得µµθ−=⎟⎟⎠⎞⎜⎜⎝⎛−=∑=x n x n n i i11, 且显然µ越大,⎟⎟⎠⎞⎝⎛−−∑=µθn x n i i 11e 越大,但只有x 1 , x 2 , …, x n > µ 时,才有L (θ, µ) > 0,即µ = min {x 1, x 2, …, x n } 时,L (θ, µ) 才能达到最大,故µ 的最大似然估计},,,min{ˆ21)1(n X X X X L ==µ,θ 的最大似然估计)1(ˆˆX X X −=−=µθ; (3)因θθθθθθθ)1(,,,1)1(121)()()(+<<−=+<<−Ι=Ι=∏k x x x n ni k x n i k k L L ,显然θ 越小,(k θ )−n 越大,但只有θ < x 1 , x 2 , …, x n < (k + 1)θ 时,才有L (θ ) > 0,即},,,max{1121n x x x k L +=θ时,L (θ ) 达到最大, 故θ 的最大似然估计为},,,max{111ˆ21)(nn X X X k k X L +=+=θ. 3. 设总体概率函数如下,X 1, …, X n 是样本,试求未知参数的最大似然估计.(1)θθθ||e 21);(x x p −=,θ > 0;(2)p(x ;θ ) = 1,θ − 1/2 < x < θ + 1/2;(3)12211),;(θθθθ−=x p ,θ1 < x < θ2.解:(1)因∑===−=−∏ni i i x n n ni x L 1||11||e21e 21)(θθθθθ,有∑=−−−=n i i x n n L 1||1ln 2ln )(ln θθθ, 令∑=+⋅−=ni i x n d L d 12||11)(ln θθθθ,得∑==ni i x n 1||1θ, 故θ的最大似然估计∑==ni i X n 1||1ˆθ; (2)因2/1,,,2/112/12/121)(+<<−=+<<−Ι=Ι=∏θθθθθn i x x x ni x L L ,即θ − 1/2 < x (1) ≤ x (n ) < θ + 1/2,可得当x (n ) − 1/2 < θ < x (1) + 1/2时,都有L (θ ) = 1,故θ 的最大似然估计ˆθ是 (x (n ) − 1/2, x (1) + 1/2) 中任何一个值; (3)因221121,,,1211221)(11),(θθθθθθθθθθ<<=<<Ι−=Ι−=∏n i x x x n ni x L L ,显然θ 1越大且θ 2越小时,L (θ1, θ 2) 越大,但只有θ1 < x 1 , x 2 , …, x n < θ 2 时,才有L (θ1, θ 2) > 0, 即θ 1 = min {x 1, x 2, …, x n }且θ 2 = max {x 1, x 2, …, x n }时,L (θ1, θ 2)达到最大,故θ 1的最大似然估计},,,min{ˆ21)1(1nX X X X L ==θ, θ 2的最大似然估计},,,max{ˆ21)(2nn X X X X L ==θ. 4. 一地质学家为研究密歇根湖的湖滩地区的岩石成分,随机地自该地区取100个样品,每个样品有10块石子,记录了每个样品中属石灰石的石子数.假设这100次观察相互独立,求这地区石子中石灰石的比例p 的最大似然估计.该地质学家所得的数据如下: 样本中的石子数 0 1 2 3 4 5 6 7 8 9 10样品个数0 1 6 7 23 26 21 12 3 1 0解:总体X 为样品的10块石子中属石灰石的石子数,即X 服从二项分布B (10, p ),其概率函数为xx p p x x p −−⎟⎟⎠⎞⎜⎜⎝⎛=10)1(10)(,x = 1, 2, …, 10,因∑−∑⋅⎟⎟⎠⎞⎜⎜⎝⎛=−⎟⎟⎠⎞⎜⎜⎝⎛===−==−∏∏1001100110001001110)1(10)1(10)(i ii iii x x i i ni x x i p p x p p x p L ,即)1ln(1000ln 10ln )(ln 100110011001p x p x x p L i i i i i i −⋅⎟⎟⎠⎞⎜⎜⎝⎛−+⋅+⎟⎟⎠⎞⎜⎜⎝⎛=∑∑∑===, 令01110001)(ln 10011001=−⋅⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=∑∑==p x p x dp p L d i i i i ,得∑==100110001i i x p ,即∑==100110001ˆi i X p 由于49909137261101001=+×+×+×+×+=∑=i i x ,故比例p 的最大似然估计499.049910001ˆ=×=p. 5. 在遗传学研究中经常要从截尾二项分布中抽样,其总体概率函数为m k p p p k m p k X P mk m k ,,2,1,)1(1)1(};{L =−−−⎟⎟⎠⎞⎜⎜⎝⎛==−. 若已知m = 2,X 1, …, X n 是样本,试求p 的最大似然估计.解:当m = 2时,X 只能取值1或2,且p p p p p X P −−=−−−==222)1(1)1(2}1{2,ppp p X P −=−−==2)1(1}2{22, 即pp p p p p p p x X P x x x x−−=⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−−==−−−−2)22(2222};{1212,x = 1, 2,因nnx x n ni x x p p p p p p p L ni i ni i i i )2()22(2)22()(112112−∑∑−=−−=−−=−−==∏, 即)2ln(ln )22ln(2)(ln 11p n p n x p x n p L n i i ni i −−⋅⎟⎟⎠⎞⎜⎜⎝⎛−+−⋅⎟⎟⎠⎞⎜⎜⎝⎛−=∑∑==,令02112222)(ln 11=−−⋅−⋅⎟⎟⎠⎞⎜⎜⎝⎛−+−−⋅⎟⎟⎠⎞⎜⎜⎝⎛−=∑∑==p n p n x p x n dp p L d n i i ni i ,得x x n p n i i22221−=−=∑=, 故p 的最大似然估计Xp22ˆ−=. 6. 已知在文学家萧伯纳的“An Intelligent Woman’s Guide to Socialism ”一书中,一个句子的单词数X 近似地服从对数正态分布,即Z = ln X ~ N (µ , σ 2 ).今从该书中随机地取20个句子,这些句子中的单词数分别为52, 24, 15, 67, 15, 22, 63, 26, 16, 32, 7, 33, 28, 14, 7, 29, 10, 6, 59, 30,求该书中一个句子单词数均值22e )(σµ+=X E 的最大似然估计.解:因Z = ln X ~ N (µ , σ 2 ),则µ的最大似然估计09.3)30ln 24ln 52(ln 201ln 11ˆ11=+++====∑∑==L n i in i i x n z n z µ, σ 2的最大似然估计51.0])09.330(ln )09.324(ln )09.352[(ln 201)(12221222=−++−+−=−==∑=∗∧L n i i zz z n sσ, 故由最大似然估计的不变性知22e)(σµ+=X E 的最大似然估计31.28e e )(251.009.322*===++∧zs z X E .7. 总体X ~ U (θ , 2θ ),其中θ > 0是未知参数,又X 1, …, X n 为取自该总体的样本,X 为样本均值.(1)证明X 32ˆ=θ是参数θ 的无偏估计和相合估计; (2)求θ的最大似然估计,它是无偏估计吗?是相合估计吗?解:(1)因X ~ U(θ , 2θ ),有θθθ2322)(=+=X E ,2212112)2()Var(θθθ=−=X , 故θθ=⋅===2332)(32)(32)ˆ(X E X E E ,即X 32ˆ=θ是参数θ 的无偏估计; 因n n X n X 2712194)Var(94)Var(94)ˆVar(22θθθ=⋅===,有θθ=→∞)ˆ(lim E n ,0)ˆVar(lim =∞→θn , 故X 32ˆ=θ是参数θ 的相合估计; (2)因θθθθθθθ2,,,122111)(<<=<<Ι=Ι=∏n i x x x nni x L L ,显然θ 越小,nθ1越大,但只有θ < x 1 , x 2 , …, x n < 2θ 时,才有L (θ ) > 0,即},,,max{2121n x x x L =θ时,L (θ ) 达到最大, 故θ 的最大似然估计为},,,max{2121*ˆ21)(nn X X X X L ==θ;因X 的密度函数为⎪⎩⎪⎨⎧<<=.,0;2,1)(其他θθθx x p ,分布函数为⎪⎩⎪⎨⎧≥<≤−<=.2,1;2,;,0)(θθθθθθx x x x x F则X (n ) 的密度函数⎪⎩⎪⎨⎧<<−==−−.,0;2,)()()]([)(11其他θθθθx x n x p x F n x p nn n n因θθθθθθθθθθθ11)()()()(2121)(+=+−⋅=−⋅−=−+−∫n nn x n dx x n x X E n n nn n ,有θ112)()(++=n n X E n , 且2222122)(22)()()(])[(θθθθθθθθθθθ+=+−⋅=−⋅−=−+−∫n nn x n dx x n x X E n n nn n , 则2222)()()2()1(12)Var()Var(θθθθ++=⎟⎠⎞⎜⎝⎛+−+=−=n n n n n n n X X n n , 因θθθ≠++==)1(212)(21*)ˆ()(n n X E E n ,22)()2()1(4)Var(41*)ˆVar(θθ++==n n n X n , 故)(21*ˆn X =θ不是参数θ 的无偏估计,应该修偏为)(121ˆn X n n ++=θ才是θ 的无偏估计, 因θθθ=++=→∞→∞)1(212lim *)ˆ(lim n n E n n ,0)2()1(4lim *)ˆVar(lim 22=++=∞→∞→θθn n n n n , 故θ 的最大似然估计)(21*ˆn X =θ是参数θ 的相合估计. 8. 设X 1, …, X n 是来自密度函数为p (x ;θ ) = e − (x − θ), x >θ 的样本.(1)求θ 的最大似然估计1ˆθ,它是否是相合估计?是否是无偏估计? (2)求θ 的矩估计2ˆθ,它是否是相合估计?是否是无偏估计? 解:(1)似然函数θθθθθ>+−=>−−Ι∑=Ι==∏n ni i i i x x x n x ni x x L ,,,1)(211ee)(L ,显然θ 越大,θn x ni i +−∑=1e 越大,但只有x 1 , x 2 , …, x n > θ 时,才有L (θ ) > 0, 即θ = min {x 1, x 2, …, x n } 时,L (θ ) 达到最大,故θ 的最大似然估计},,,min{ˆ21)1(1nX X X X L ==θ; 因X 的密度函数与分布函数分别为⎩⎨⎧≤>=−−.,0;,e )()(θθθx x x p x ⎩⎨⎧≤>−=−−.,0;,e 1)()(θθθx x x F x 则X (1) 的密度函数为⎩⎨⎧≤>=−=−−−.,0;,e )()](1[)()(11θθθx x n x p x F n x p x n n 可得X (1) − θ 服从指数分布Exp (n ),因n X E 1)()1(=−θ,2)1(1)Var(nX =−θ, 则θθθ≠+==nX E E 1)()ˆ()1(1,2)1()1(11)Var()Var()ˆVar(n X X =−==θθ, 故)1(1ˆX =θ不是θ 的无偏估计; 因θθθ=⎟⎠⎞⎜⎝⎛+=→∞→∞n E n n 1lim )ˆ(lim 1,01lim )ˆVar(lim 21==→∞→∞n n n θ, 故)1(1ˆX =θ是θ 的相合估计; (2)因总体X 的密度函数为p (x ;θ ) = e − (x − θ), x >θ ,有X − θ 服从指数分布Exp (1),则E (X − θ ) = E (X ) − θ = 1,即θ = E (X ) − 1,故θ 的矩估计1ˆ2−=X θ; 因E (X ) = θ + 1,Var(X ) = Var(X − θ) = θ 2,则θθ=−=−=1)(1)()ˆ(2X E X E E ,nX n X 22)Var(1)Var()ˆVar(θθ===, 故1ˆ2−=X θ是θ 的无偏估计; 因θθ=∞→)ˆ(lim 2E n ,0lim )ˆVar(lim 22==→∞→∞n n n θθ, 故1ˆ2−=X θ是θ 的相合估计. 9. 设总体X ~ Exp (1/θ ),X 1, …, X n 是样本,θ 的矩估计和最大似然估计都是X ,它也是θ 的相合估计和无偏估计,试证明在均方误差准则下存在优于X 的估计(提示:考虑X a a=θˆ,找均方误差最小者). 证:因X ~ Exp (1/θ ),有E (X ) = θ ,Var(X ) = θ 2,且X 的密度函数为⎪⎩⎪⎨⎧≤>=−.0,0;0,e 1)(x x x p xθθ故θ = E (X ),即θ 的矩估计为X =θˆ; 因似然函数0,,,110211e1e1)(>−=>−Ι∑=Ι==∏n ni ii ix x x x nni x x L L θθθθθ, 当x 1, x 2, …, x n > 0时,∑=−−=ni i x n L 11ln )(ln θθθ, 令01)(ln 12=+−=∑=ni i x n d L d θθθθ,得x x n ni i ==∑=11θ, 故θ 的最大似然估计也为X =θˆ; 因θ==)((X E X E ,nX n X 2)Var(1)Var(θ==,故X 是θ 的无偏估计;因θ=→∞)(lim X E n ,0lim)Var(lim 2==∞→∞→nX n n θ,故X 是θ 的相合估计;设X a a =θˆ,有θθa X aE E a ==)()ˆ(,na X a a 222)Var()ˆVar(θθ==, 则nnX E X X 2222)(])([)Var()MSE(θθθθθ=−+=−+=,222222212)(])ˆ([)ˆVar()ˆMSE(θθθθθθθθ⎟⎟⎠⎞⎜⎜⎝⎛+−+=−+=−+=a a n a a n a E a a a 2222111111121θθ⎥⎥⎦⎤⎢⎢⎣⎡++⎟⎠⎞⎜⎝⎛+−+=⎟⎠⎞⎜⎝⎛++++−+=n n n a n n n n n a a n n ,故当1+=n n a 时,X n n a 1ˆ+=θ的均方误差1)ˆMSE(2+=n a θθ小于X 的均方误差nX 2)MSE(θ=.10.为了估计湖中有多少条鱼,从中捞出1000条,标上记号后放回湖中,然后再捞出150条鱼,发现其中有10条鱼有记号.问湖中有多少条鱼,才能使150条鱼中出现10条带记号的鱼的概率最大?解:设湖中有N 条鱼,有湖中每条鱼带记号的概率为Np 1000=,看作总体X 服从两点分布b (1, p ),从中抽取容量为150的样本X 1, X 2, …, X 150,有101501=∑=i i x ,似然函数∑−∑=−===−=−∏ni ini iiix n x ni x x p pp p p L 11)1()1()(11,有)1ln(ln )(ln 11p x n p x p L ni i ni i −⋅⎟⎟⎠⎞⎜⎜⎝⎛−+⋅=∑∑==, 令0111)(ln 11=−−⋅⎟⎟⎠⎞⎜⎜⎝⎛−+⋅=∑∑==p x n p x dp p L d ni i n i i ,得x x n p ni i ==∑=11,即p 的最大似然估计为X p =ˆ, 因pN 1000=,由最大似然估计的不变性知X N1000ˆ=, 故湖中有150001015011000ˆ=×=N条鱼时,才能使150条鱼中出现10条带记号的鱼的概率最大. 11.证明:对正态分布N (µ , σ 2 ),若只有一个观测值,则µ , σ 2的最大似然估计不存在. 证:若只有一个观测值,似然函数222)(2eπ21),(σµσσµ−−=x L ,对于任一固定的σ,当µ = x 时,L (µ)取得最大值σπ21, 但显然σ 越小,σπ21越大,且σ 可任意接近于0,即σπ21不存在最大值,故µ , σ 2的最大似然估计不存在.习题6.41. 设总体概率函数是p (x ;θ ),X 1, …, X n 是其样本,T = T (X 1, …, X n )是θ 的充分统计量,则对g (θ )的任一估计gˆ,令)|ˆ(~T g E g =,证明:)ˆMSE()~MSE(g g ≤.这说明,在均方误差准则下,人们只需要考虑基于充分估计量的估计.解:因)|ˆ(~T g E g=,由Rao-Blackwell 定理知)ˆ()~(g E g E =,)ˆVar()~Var(g g ≤, 故)ˆMSE()]()ˆ([)ˆVar()]()~([)~Var()~MSE(22g g g E g g g E g g=−+≤−+=θθ. 2. 设T 1 , T 2分别是θ 1 , θ 2的UMVUE ,证明:对任意的(非零)常数a , b ,aT 1 + bT 2 是a θ 1 + b θ 2的UMVUE .证:因T 1 , T 2分别是θ 1 , θ 2的UMVUE ,有E (T 1) = θ 1 ,E (T 2) = θ 2 ,且对任意的满足E (ϕ) = 0的ϕ 都有Cov (T 1 , ϕ) = Cov (T 2 , ϕ) = 0, 则E (aT 1 + bT 2) = a E (T 1) + b E (T 2) = a θ 1 + b θ 2 ,且Cov (aT 1 + bT 2 , ϕ) = a Cov (T 1 , ϕ) + b Cov (T 2 , ϕ) = 0, 故aT 1 + bT 2是a θ 1 + b θ 2的UMVUE .3. 设T 是g (θ ) 的UMVUE ,gˆ是g (θ ) 的无偏估计,证明,若+∞<)ˆ(Var g ,则0)ˆ,Cov(≥g T . 证:因gˆ和T 都是g (θ ) 的无偏估计,有)()()ˆ(θg T E g E ==,即0)ˆ(=−T g E , 又因T 是g (θ ) 的UMVUE ,有0)ˆ,(Cov =−T g T ,即0),Cov()ˆ,Cov(=−T T g T , 故0),Cov()ˆ,Cov(≥=T T gT . 4. 设总体X ~ N (µ , σ 2),X 1 , …, X n 为样本,证明,∑==n i i X n X 11,∑=−−=n i i X X n S 122)(11分别为µ , σ 2的UMVUE .证:因X ~ N (µ , σ 2 ),有X 是µ 的无偏估计,S 2是σ 2的无偏估计,且样本X 1 , …, X n 的联合密度函数为===−−=−−∏ni i ix nni x n x x p 12222)(2112)(21e )π2(1e π21),;,,(µσσµσσσµL ,对任意的满足E (ϕ) = 0的ϕ (x 1 , …, x n ),有0e)π2(1)(1)(21122=∑⋅=∫∫∞+∞−∞+∞−−−=n x ndx dx E ni i L L µσϕσϕ,对E (ϕ) = 0两端关于µ 求偏导数,得∫∫∑∞+∞−∞+∞−−−=⋅−⋅==∂∂=n x ni i ndx dx x E ni i L L 1)(2112122e )(1)π2(10)(µσµσϕσµϕ∫∫∞+∞−∞+∞−−−∑⋅−⋅==n x n dx dx n x n ni i L L 1)(212122e)(1)π2(1µσµσϕσ)()]()([])[(222ϕσϕµϕσϕµσX E nE X E nX E n=−=−=,则0)(=ϕX E ,0)(()(),Cov(=⋅−=ϕϕϕE X E X E X ,故∑==ni i X n X 11是µ 的UMVUE ;对0)(=ϕX E 两端再关于µ 求偏导数,得∫∫∑∞+∞−∞+∞−−−=∑⋅−⋅==∂∂=n x n i i ndx dx x x X E ni i L L 1)(2112122e )(1)π2(10)(µσµσϕσµϕ∫∫∞+∞−∞+∞−−−∑⋅−⋅==n x n dx dx n x n x ni i L L 1)(212122e)(1)π2(1µσµσϕσ )()]()([])[(22ϕσϕµϕσϕµσX E nX E X E nX X E n=−=−=,则0)(2=ϕX E ,对0)()π2(=ϕσE n 两端关于σ 2求偏导数,得∫∫∑∞+∞−∞+∞−−−=∑⋅−⋅==∂∂=n x ni indx dx xE ni i L L 1)(211242122e)(210)]()π2[(µσµσϕσϕσ∫∫∑∞+∞−∞+∞−−−=∑⋅⎟⎟⎠⎞⎜⎜⎝⎛+−⋅==n x n i i dx dx n x n x ni i L L 1)(212124122e 221µσµµσϕ⎥⎦⎤⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛+−=∑=ϕµµσσ21222)π2(n X n X E n i i n ⎟⎟⎠⎞⎜⎜⎝⎛=⎥⎦⎤⎢⎣⎡+−⎟⎟⎠⎞⎜⎜⎝⎛=∑∑==n i i n n i i n X E E n X E n X E 122122)π2()()(22)π2(ϕσσϕµϕµϕσσ, 则012=⎟⎟⎠⎞⎜⎜⎝⎛∑=n i i X E ϕ,因⎟⎟⎠⎞⎜⎜⎝⎛−−=−−=∑∑==21212211)(11X n X n X X n S n i i n i i ,有0)(11)(2122=⎥⎦⎤⎢⎣⎡−⎟⎟⎠⎞⎜⎜⎝⎛−=∑=ϕϕϕX nE X E n S E n i i , 则Cov (S 2, ϕ ) = E (S 2ϕ ) − E (S 2) ⋅ E (ϕ) = 0,故∑=−−=ni i X X n S 122)(11是σ 2的UMVUE . 5. 设总体的概率函数为p(x ;θ ),满足定义6.4.2的条件,若二阶导数);(22θθx p ∂∂对一切的θ ∈ Θ 存在,证明费希尔信息量⎟⎟⎠⎞⎜⎜⎝⎛∂∂−=);(ln )(22θθθX p E I . 证:因θθ∂∂⋅=∂∂p p p 1ln ,2222222221ln 111ln θθθθθθθ∂∂⋅+⎟⎠⎞⎜⎝⎛∂∂−=∂∂⋅+⎟⎠⎞⎜⎝⎛∂∂⋅−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂⋅∂∂=∂∂p p p p p p p p p p , 故∫∫∞+∞−∞+∞−∂∂+−=⋅∂∂⋅+−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂⋅+⎟⎠⎞⎜⎝⎛∂∂−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂dx p I pdx p p I p p E p E p E 222222222)(1)(1ln ln θθθθθθθ)()()(22θθθI dx x p I −=⎟⎠⎞⎜⎝⎛∂∂+−=∫∞+∞−.6. 设总体密度函数为p (x ;θ ) = θ x θ − 1, 0 < x < 1, θ > 0,X 1 , …, X n 是样本.(1)求g (θ ) = 1/θ 的最大似然估计; (2)求g (θ )的有效估计.解:(1)似然函数1,,,0121110121)()(<<−=<<−Ι=Ι=∏n i x x x n n ni x i x x x x L L L θθθθθ,当0 < x 1, x 2, …, x n < 1时,ln L (θ ) = n ln θ + (θ − 1) ln (x 1x 2…x n ),令0)ln()(ln 21=+=n x x x n d L d L θθθ,得∑=−=−=ni i n x n x x x n 121ln )ln(L θ,即∑=−=ni iX n 1ln ˆθ, 故g(θ ) = 1/θ 的最大似然估计为∑=−==ni iX n g 1ln 1ˆ/1ˆθ; (2)因θθθθθθθθ1101ln )(ln ln )(ln 10101010101−=−=⋅−=⋅=⋅=∫∫∫−x dx x x x x x d x dx x x X E ,21102102101222)(ln 2ln 2)(ln )()(ln )(ln )(ln θθθθθθθ=−=⋅−==⋅=∫∫∫−X E dx x x x x x x d x dx x x X E , 则22222112)](ln [)(ln )Var(ln θθθ=⎟⎠⎞⎜⎝⎛−−=−=X E X E X ,可得)(111)(ln 1)ˆ(1θθθg n n X E n gE n i i ==⎟⎠⎞⎜⎝⎛−⋅⋅−=−=∑=,即∑=−=n i i X n g 1ln 1ˆ是g (θ )的无偏估计, 且22212111)Var(ln 1)ˆ(Var θθn nn X ngni i =⋅⋅==∑=, 因p (x ; θ ) = θ x θ − 1 I 0 < x < 1,当0 < x < 1时,ln p (x ; θ ) = ln θ + (θ − 1) ln x ,则x x p ln 1);(ln +=∂∂θθθ,2221);(ln θθθ−=∂∂x p ,即2221);(ln )(θθθθ=⎥⎦⎤⎢⎣⎡∂∂−=X p E I ,可得g (θ ) = 1/θ 无偏估计方差的C-R 下界为)ˆ(Var 111)()]([22222g n n nI g ==⋅⎟⎠⎞⎜⎝⎛−=′θθθθθ, 故∑=−=ni i X n g1ln 1ˆ是g (θ ) = 1/θ 的有效估计. 7. 设总体密度函数为2e 2);(3x xx p θθθ−=, x > 0, θ > 0,求θ 的费希尔信息量I (θ ).解:因032e 2);(>−Ι=x x xx p θθθ,当x > 0时,2ln 3ln 2ln );(ln x x x p θθθ−−+=,。
茆诗松《概率论与数理统计教程》笔记和课后习题(含考研真题)详解(假设检验)【圣才出品】
第7章假设检验7.1 复习笔记一、假设检验的基本思想与概念1.假设检验的基本思想(1)通过样本对一个假设作出“对”或“不对”的具体判断,检验的结果若是否定该命题,则称拒绝这个假设,否则就称为接受该假设.(2)若假设可用一个参数的集合表示,该假设检验问题称为参数假设检验问题,否则称为非参数假设检验问题.2.假设检验的基本步骤(1)建立假设;(2)选择检验统计量,给出拒绝域形式;注意:一个拒绝域W唯一确定一个检验法则,一个检验法则也唯一确定一个拒绝域.(3)选择显著性水平第一类错误:命题本为真,却由于随机性落入了拒绝域,而否定了命题.(弃真)第二类错误:命题本为假,由于随机性落入了接受域,而接受了命题.(取伪)犯第一类错误概率:α=pθ{(X∈W)},θ∈Θ0,也记为p{X∈W|H0};犯第二类错误概率:β=pθ{(X∈W_)},θ∈Θ1,也记为p{X∈W_|H1}.注意:α,β的控制是相反的,即减小α,会加大β.①势函数:设检验问题H0:θ∈Θ0 vs H1:θ∈Θ1的拒绝域为W,则样本观测值X落在拒绝域W内的概率称为该检验的势函数,记为g(θ)=pθ(X∈W),θ∈Θ=Θ0∪Θ1②显著性检验:对检验问题H0:θ∈Θ0 vs H1:θ∈Θ1,如果一个检验满足对任意的θ∈Θ0,都有g(θ)≤α,则称该检验是显著性水平为α的显著性检验,简称水平为α的检验.(4)给出拒绝域依据题意分析,确定统计量来给出拒绝域.(5)做出判断有了明确的拒绝域W后,根据样本观测值我们可以作出判断,决定假设是否成立.3.检验的p值定义:在一个假设检验问题中,利用样本观测值能够作出拒绝原假设的最小显著性水平,将检验的p值与假设的显著性水平α进行比较可以很容易作出检验的结论:①如果α≥p,则在显著性水平α下拒绝H0;②如果α<p,则在显著性水平α下接受H0.二、正态总体参数假设检验1.单个正态总体均值的检验设x1,…,x n是来自N(μ,σ2)的样本,单个正态总体均值的假设检验列表如下:2.假设检验与置信区间的关系检验的接受域与置信区间是一一对应的.3.两个正态总体均值差的检验设x1,…,x m是来自正态总体N(μ1,σ12)的样本,y1,…,y n是来自另一个正态总体N(μ2,σ22)的样本,两个样本相互独立,两个正态总体均值的假设检验如下表:注:1x yu -=2x y u -=t 1是服从自由度为n +m -1的t 分布的随机变量,t 2是服从自由度为l 的t 分布的随机变量.4.成对数据检验假定x ~N (μ1,σ12),y ~(μ2,σ22),且x 与y 独立,在正态性假定下,d =x -y ~N (μ,σd 2),其中μ=μ1-μ2,σd 2=σ12+σ22,将比较μ1与μ2的大小转化为考察μ是否为零,即考察如下检验问题:H 0:μ=0 vs H 1:μ≠0即把双样本的检验问题转化为单样本t 检验问题,这时检验的t 统计量为 其中在给定显著性水平α下,该检验问题的拒绝域是:W1={|t 2|≥t 1-α/2(n -1)},这就是1x y t -=2x y t -=2(dt d s =11ni i d d n ==∑1/2211()1n d i i s d d n =⎛⎫=- ⎪-⎝⎭∑成对数据的t检验.5.正态总体方差的检验(1)单个正态总体方差的χ2检验;(2)两个正态总体方差比的F检验.两正态总体方差的假设检验如下表:三、其他分布参数的假设检验1.指数分布参数的假设检验(1)提出假设:H0:θ≤θ0 vs H1:θ>θ0拒绝域:W1={χ2≥χ1-α2(2n)},p值:p1=P(χ2≥χ02).(2)提出假设:H0:θ≥θ0 vs H1:θ<θ0和H0:θ=θ0 vs H1:θ≠θ0。
茆诗松《概率论与数理统计教程》笔记和课后习题(含考研真题)详解(多维随机变量及其分布)【圣才出品】
为 n 次独立重复试验中 Ai 出现的次数,i=1,2,…,r.则(X1,X2,…,Xr)取值(n1,
n2,…,nr)的概率,即 A1 出现 n1 次,A2 出现 n2 次,……,Ar 出现 nr 次的概率为
P( X1 n1, X 2 n2 ,
n! , X r nr ) n1!n2!
pi1
pi2
pij
(2)联合分布列的基本性质:
①非负性:Pij≥0;
②正则性:Pij≥0,
pij 1
i1 j1
2 / 138
圣才电子书 十万种考研考证电子书、题库视频学习平台
求二维离散随机变量的联合分布列,关键是写出二维随机变量可能取的数对及其发生的 概率.
中仸意取出 n 个,若记 Xi 为取出的 n 个球中 i 号球的个数,i=1,2,…,r,则
P( X1 n1, X 2 n2 ,
N1 N2 Nr
,
Xr
nr )
n1
n2
N
nr
n
其中 n1+n2+…+nr=n
(3)多维均匀分布
故积分区域的边界线是否在积分区域内丌影响概率计算结果.
3 / 138
圣才电子书
5.常用多维分布
十万种考研考证电子书、次独立重复试验,如果每次试验有 r 个互丌相容结果:A1,A2,…Ar,之一发生,
且每次试验中 Ai 发生的概率为 pi=P(Ai),i=1,2,…,r,且 p1+p2+…+pr=1.记 Xi
设 D 为 Rn 中的一个有界区域,其度量(平面的为面积,空间的为体积等)为 SD,如
茆诗松《概率论与数理统计教程》(第2版)(课后习题 参数估计)【圣才出品】
第6章 参数估计一、点估计的概念与无偏性1.设x 1,x 2,x 3是取自某总体的容量为3的样本,试证下列统计量都是该总体均值μ的无偏估计,在方差存在时指出哪一个估计的有效性最差?(1)1123111=236x x x μ∧++(2)2123111=333x x x μ∧++(3)3123112=663x x x μ∧++解:先求三个统计量的数学期望,1123111111()=()()()236222E E x E x E x μμμμμ∧++=++=2123111111()=()()()333333E E x E x E x μμμμμ∧++=++=3123112112()=()()()663663E E x E x E x μμμμμ∧++=++=这说明它们都是总体均值μ的无偏估计,下面求它们的方差,不妨设总体的方差为σ2,则222211231111117()=()()()4936493618Var Var x Var x Var x μσσσσ∧++=++=222221231111111()=()()()9999993Var Var x Var x Var x μσσσσ∧++=++=222231231141141()=()()()36369363692Var Var x Var x Var x μσσσσ∧++=++=不难看出,从而的有效性最差.123()<()<()Var Var Var μμμ∧∧∧3μ∧由此可推测。
当用样本的凸组合估计总体均值时,样本均值是最有效的。
1ni ii a x =∑x 2.x 1,x 2,…,x n 是来自Exp(λ)的样本,已知为1/λ的无偏估计,试说明1/是x x 否为λ的无偏估计.解:因为x 1,x 2,…,x n 服从Exp(λ),所以y =~Ga (n ,λ),相应的密度函数1ni i x =∑为1()exp()y 0()n n p y n y y n λλλ-=->Γ,,,于是20(1/)e y ()n n y E y yn λλ∞--=Γ⎰d所以,.即不是λ的无偏估计,但它是λ的渐近无偏估计,经修偏,是λ的无偏估计.3.设是参数θ的无偏估计,且有,试证不是θ2的无偏估计.证:由方差的定义可知,由于是参数θ的无偏估计,即.因而所以不是θ2的无偏估计.4.设总体,是来自该总体的一个样本.试确定常数c 使为σ2的无偏估计.解:由于总体,这给出,于是若要使为σ2的无偏估计,即,这给出5.设总体为,为样本,证明样本均值和样本中程都是θ的无偏估计,并比较它们的有效性.解:由总体,得,,因而,这首先说明样本均值是θ的无偏估计,且为求样本中程的均值与方差,注意到,令则由于,故,从而这就证明了样本中程是θ的无偏估计.又注意到(参见第五章5.3节习题33)所以从而于是在n>2时,,这说明作为0的无偏估计,在n>2时,样本中程比样本均值有效.6.设x 1,x2,x3服从均匀分布,试证及都是θ的无偏估计量,哪个更有效?证:由可知x(1),x(3)的密度函数分别为从而故,由知两者均为θ的无偏估计.又可算得,从而故,即更有效.事实上,这里x(3)是充分统计量,这个结果与充分性原则是一致的.7.设从均值为μ,方差为的总体中,分别抽取容量为n1和n2的两独立样本,和分别是这两个样本的均值.试证,对于任意常数a,b(a+b=1),都是μ的无偏估计,并确定常数a,b使Var(Y)达到最小.证:由于和是容量分别为n1和n2的两独立样本的均值,故,,,因而这证明了是μ的无偏估计.又由a+b=1知,,从而由求导知,当时,Var(Y)达到最小,此时这个结果表明,来自同一总体的两个容量为n1和n2的样本的合样本(样本量为n1+n2)的均值是线性无偏估计类中方差最小的.8.设总体X的均值为μ,方差为σ2,是来自该总体的一个样本,为μ的任一凸线性无偏估计量.证明:与T的相关系数为.证:由于为μ的线性无偏估计量,故,其中,于是而,故有,从而9.设有k台仪器,已知用第i台仪器测量时,测定值总体的标准差为σi(i=1,2,…,k).用这些仪器独立地对某一物理量θ各观察一次,分别得到设仪器都没有系统误差.问应取何值,方能使成为θ的无偏估计,且方差达到最小?解:若要使为θ的无偏估计,即则必须有,此时,。
概率论与数理统计(茆诗松)第二版课后第六章习题参考答案
+
1 36
Var(X 2 )
+
4 9
Var(X 3)
=
1σ 36
2
+
1 36
σ
2
+
4σ 9
2
=
1 2
σ
2
,
故 Var(µˆ2 ) < Var(µˆ1) < Var(µˆ3) ,即 µˆ2 有效性最好, µˆ1 其次, µˆ3 最差.
2. 设 X1, X2, …, Xn 是来自 Exp(λ)的样本,已知 X 为 1/λ的无偏估计,试说明1/ X 是否为λ的无偏估计. 解:因 X1, X2, …, Xn 相互独立且都服从指数分布 Exp(λ),即都服从伽玛分布 Ga(1, λ),
a2
−
2 n2
a+
1 n2
⎟⎟⎠⎞σ 2 ,
令
d da
Var(Y )
=
⎜⎜⎝⎛
n1 + n2 n1n2
⋅ 2a
−
2 n2
⎟⎟⎠⎞σ
2
=
0
,得
a
=
n1
n1 + n2
,且
d2 d 2a
Var(Y )
=
n1 + n2 n1n2
⋅ 2σ
2
>
0,
故当 a = n1 , b = 1 − a = n2 时,Var (Y ) 达到最小 1 σ 2 .
概率论与数理统计茆诗松第二版课后第六章习题参考答案高等数理统计茆诗松数理统计茆诗松pdf概率论第二版课后答案概率论第六章答案概率论第二版答案概率论第六章概率论第二版概率论与数理统计概率论与数理统计视频
概率论与数理统计(茆诗松)第二版课后第五章习题参考答案
3. 假若某地区 30 名 2000 年某专业毕业生实习期满后的月薪数据如下: 909 1086 1120 999 1320 1071 1081 1130 1336 967 825 914 992 1232 950 1203 1025 1096 808 1224 871 1164 971 950 866 (1)构造该批数据的频率分布表(分 6 组) ; (2)画出直方图. 解: (1)最大观测值为 1572,最小观测值为 738,则组距为 d =
样本的分布为 p ( x1 , x2 , L , xn ) = λ eλ x1 ⋅ λ eλ x2 L λ eλ xn = λ n e
λ ∑ xi
i =1 n
,xi > 0.
6. 美国某高校根据毕业生返校情况纪录,宣布该校毕业生的年平均工资为 5 万美元,你对此有何评论? 解:返校的毕业生只是毕业生中一部分特殊群体, 样本的抽取不具有随机性, 不能反应全体毕业生的情况.
4 (68,78] 3
5 (78,88] 2
试写出此分布样本的经验分布函数. 解:经验分布函数
⎧0, ⎪0.15, ⎪ ⎪0.35, ⎪ Fn ( x) = ⎨ ⎪0.75, ⎪0.9, ⎪ ⎪ ⎩1,
x < 37.5, 37.5 ≤ x < 47.5, 47.5 ≤ x < 57.5, 57.5 ≤ x < 67.5, 67.5 ≤ x < 77.5, x ≥ 77.5.
频数 9 9 5 4 4 1 1 3 4 30
频率 0.225 0.225 0.125 0.1 0.1 0.025 0.025 0.075 0.1 1
累计频率 0.225 0.45 0.575 0.675 0.775 0.8 0.825 0.9 1
茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解(多维随机变量及其分布)【圣才出品】
Y=y 条件下 X 的条件分布函数为
F x y j P X xi Y y j pi j
xi x
xi x
X=x 条件下 Y 的条件分布函数为
F y xi P Y y j X xi p j i
yjy
yjy
2.连续随机变量的条件分布
Y=y 条件下 X 的条件分布函数和条件密度函数: F
1 / 124
圣才电子书
十万种考研考证电子书、题库视频学习平台
表 3-1-2 边际分布
2.随机变量间的独立性
n
对任意 n 个实数 X1,X2,…,Xn:若 F ( x1, x2,, xn )= Fi ( xi ) ,则 X1,X2,…,
i =1
Xn 相互独立。
n
离散随机变量:若 P( X1=x1, X 2 =x2,, X n xn ) P( Xi xi ) ,则 X1, i 1
xy
x p u, y pY y
du ;
px
y
p x, y pY y
。
F X=x 条件下 Y 的条件分布函数和条件密度函数:
yx
y p x,v pX x
dv ;
py
x
px, y pX x
。
5 / 124
圣才电子书 十万种考研考证电子书、题库视频学习平台
Exp()*Exp()**Exp() =Ga(m,) m个
(4)χ2 分布的可加性:m 个χ2 变量相互独立,则
2 (n1)* 2 (n2 )** 2 (nm )= 2 (n1 +n2 + +nm )
四、多维随机变量的特征数(见表 3-1-3)
3 / 124
圣才电子书 十万种考研考证电子书、题库视频学习平台
概率论与数理统计(茆诗松)第二版课后第六章习题参考答案
习题 6.1
1. 设 X1, X2, X3 是取自某总体容量为 3 的样本,试证下列统计量都是该总体均值µ 的无偏估计,在方差存 在时指出哪一个估计的有效性最差?
(1) µˆ1
=
1 2
X1
+
1 3
X
2
+
1 6
X3 ;
(2) µˆ2
=
1 3
X1
+
1 3
X
2
+
1 3
X
3
;
(3) µˆ3
=
n1 + n2
n1 + n2
n1 + n2
8. 设总体 X 的均值为µ ,方差为σ 2,X1, …, Xn 是来自该总体的一个样本,T (X1, …, Xn)为µ 的任一线性
无偏估计量.证明: X 与 T 的相关系数为 Var( X ) Var(T ) .
n
∑ 证:因 T (X1, …, Xn)为µ 的任一线性无偏估计量,设 T ( X1, L, X n ) = ai X i , i=1
2. 设 X1, X2, …, Xn 是来自 Exp(λ)的样本,已知 X 为 1/λ的无偏估计,试说明1/ X 是否为λ的无偏估计. 解:因 X1, X2, …, Xn 相互独立且都服从指数分布 Exp(λ),即都服从伽玛分布 Ga(1, λ),
n
∑ 由伽玛分布的可加性知 Y = X i 服从伽玛分布 Ga(n, λ),密度函数为 i=1
=
(n
2 + 1)(n
+
2)
,
E(Y(2n) )
=
1 y 2 ⋅ nyn−1dy = n ,
茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解-第1章 随机事件与概率【圣才出品】
十万种考研考证电子书、题库视频学习平台
第 1 章 随机事件与概率
1.1 复习笔记
一、随机事件பைடு நூலகம்其运算 1.事件间的运算(见表 1-1-1)
表 1-1-1 事件间的运算
注:①对立事件是相互的。必然事件与不可能事件互为对立事件。 ②A 与 B 互为对立事件⇔A∩B=∅ ,且 A∪B=Ω。 ③对立事件一定是互不相容的事件,反之不一定。
4 / 78
圣才电子书
十万种考研考证电子书、题库视频学习平台
P(AB) P( A)P(B) P(AC) P( A)P(C) P(BC) P(B)P(C)
则称 A,B,C 两两独立。若还有 P(ABC)=P(A)P(B)P(C),则称 A,B,C
相互独立。
(2)n 个事件的独立性
(2)任意事件 A,B,P(A-B)=P(A)-P(AB)。
3.概率的加法公式
(1)(加法公式)对任意两个事件 A,B,有
P(A∪B)=P(A)+P(B)-P(AB)
对任意 n 个事件 A1,A2,…,An,有
P
n
U
i 1
Ai
n i 1
P
Ai
P
1i jn
Ai Aj
P Ai Aj Ak L 1 n1 P A1A2 L AN
1.2 课后习题详解
习题 1.1
1.写出下列随机试验的样本空间: (1)抛三枚硬币; (2)抛三颗骰子; (3)连续抛一枚硬币,直至出现正面为止; (4)口袋中有黑、白、红球各一个,从中任取两个球先从中取出一个,放回后再取出
5 / 78
圣才电子书
一个;
十万种考研考证电子书、题库视频学习平台
概率论与数理统计茆诗松)第二版课后第三章习题参考答案
第三章 多维随机变量及其分布习题3.11. 100件商品中有50件一等品、30件二等品、20件三等品.从中任取5件,以X 、Y 分别表示取出的5件中一等品、二等品的件数,在以下情况下求 (X , Y ) 的联合分布列. (1)不放回抽取;(2)有放回抽取. 解:(1)(X , Y )服从多维超几何分布,X , Y 的全部可能取值分别为0, 1, 2, 3, 4, 5,且i j i j i j i j Y i X P −==⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛===5,,0;5,4,3,2,1,0,51005203050},{L ,故 (X , Y ) 的联合分布列为0281.0500000918.00612.040001132.01562.00495.03000661.01416.00927.00185.0200182.00539.00549.00227.00032.010019.00073.00102.00066.00019.00002.00543210X Y(2)(X , Y )服从多项分布,X , Y 的全部可能取值分别为0, 1, 2, 3, 4, 5,且i j i j i j i j Y i X P j i j i −==×××−−⋅⋅===−−5,,0;5,4,3,2,1,0,2.03.05.0)!5(!!!5},{5L ,故 (X , Y ) 的联合分布列为03125.05000009375.00625.040001125.015.005.03000675.0135.009.002.02002025.0054.0054.0024.0004.0100243.00081.00108.00072.00024.000032.00543210X Y2. 盒子里装有3个黑球、2个红球、2个白球,从中任取4个,以X 表示取到黑球的个数,以Y 表示取到红球的个数,试求P {X = Y }.解:35935335647222347221213}2,2{}1,1{}{=+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛===+====Y X P Y X P Y X P .3. 口袋中有5个白球、8个黑球,从中不放回地一个接一个取出3个.如果第i 次取出的是白球,则令X i = 1,否则令X i = 0,i = 1, 2, 3.求:(1)(X 1, X 2, X 3)的联合分布列; (2)(X 1, X 2)的联合分布列. 解:(1)14328116127138)}0,0,0(),,{(321=⋅⋅==X X X P ,42970115127138)}1,0,0(),,{(321=⋅⋅==X X X P , 42970117125138)}0,1,0(),,{(321=⋅⋅==X X X P ,42970117128135)}0,0,1(),,{(321=⋅⋅==X X X P ,42940114125138)}1,1,0(),,{(321=⋅⋅==X X X P ,42940114128135)}1,0,1(),,{(321=⋅⋅==X X X P ,42940118124135)}0,1,1(),,{(321=⋅⋅==X X X P ,1435113124135)}1,1,1(),,{(321=⋅⋅==X X X P ;(2)3914127138)}0,0(),{(21=⋅==X X P ,3910125138)}1,0(),{(21=⋅==X X P ,3910128135)}0,1(),{(21=⋅==X X P ,395124135)}1,1(),{(21=⋅==X X P .39/539/10139/1039/1401012X X4. 设随机变量X i , i =1, 2的分布列如下,且满足P {X 1X 2 = 0} = 1,试求P {X 1 = X 2}.25.05.025.0101P X i −解:因P {X 1 X 2 = 0} = 1,有P {X 1 X 2 ≠ 0} = 0,即P {X 1 = −1, X 2 = −1} = P {X 1 = −1, X 2 = 1} = P {X 1 = 1, X 2 = −1} = P {X 1 = 1, X 2 = 1} = 0,分布列为故P {X 1 = X 2} = P {X 1 = −1, X 2 = −1} + P {X 1 = 0, X 2 = 0} + P {X 1 = 1, X 2 = 1} = 0. 5. 设随机变量 (X , Y ) 的联合密度函数为⎩⎨⎧<<<<−−=.,0,42,20),6(),(其他y x y x k y x p试求(1)常数k ;(2)P {X < 1, Y < 3}; (3)P {X < 1.5}; (4)P {X + Y ≤ 4}. 解:(1)由正则性:1),(=∫∫+∞∞−+∞∞−dxdy y x p ,得6)6(2242⎜⎜⎝⎛−−⋅=−−∫∫∫xy y k dx dy y x k dx故81=k ; (2)∫∫∫⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−−=<<1032210322681)6(81}3,1{y xy y dx dy y x dx Y X P 832278127811210=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−=∫x x dx x ; (3)∫∫∫⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−−=<5.104225.10422681)6(81}5.1{y xy y dx dy y x dx X P 3227)6(81)26(815.1025.10=−=−=∫x x dx x ; (4)∫∫∫−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−−=<+204222422681)6(81}4{xxy xy y dx dy y x dx Y X P326268124681203222=⎟⎟⎠⎞⎜⎜⎝⎛+−=⎟⎟⎠⎞⎜⎜⎝⎛+−=∫x x x dx x x . 6. 设随机变量(X , Y )的联合密度函数为⎩⎨⎧>>=+−.,0,0,0,e ),()43(其他y x k y x p y x 试求(1)常数k ;(2)(X , Y ) 的联合分布函数F (x , y ); (3)P {0 < X ≤ 1, 0 < Y ≤ 2}. 解:(1)由正则性:1),(=∫∫+∞∞−+∞∞−dxdy y x p ,得e 0)43(⎢⎣⎡⋅=∞+∞+∞++−∫∫∫k dx dy k dx y x 故k = 12;(2)当x ≤ 0或y ≤ 0时,F (x , y ) = P (∅) = 0,当x > 0且y > 0时,∫∫∫∫−−+−+−−=−⋅==xy u x y v u x y v u du du dv du y x F 0430)43(0)43()e 1(e 3]e 3[e 12),()e 1)(e 1()e 1(e 43043y x xy u −−−−−−=−−=故(X , Y )的联合分布函数为⎩⎨⎧>>−−=−−.,0,0,0),e 1)(e 1(),(43其他y x y x F y x (3)P {0 < X ≤ 1, 0 < Y ≤ 2} = P {X ≤ 1, Y ≤ 2} = F (1, 2) = (1 − e −3) (1 − e −8).7. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,10,4),(其他y x xy y x p 试求(1)P {0 < X < 0.5, 0.25 < Y < 1}; (2)P {X = Y }; (3)P {X < Y };(4)(X , Y ) 的联合分布函数.解:(1)∫∫∫⋅==<<<<5.00125.025.00125.024}125.0,5.00{xy dx xydy dx Y X P641516158155.0025.00===∫x xdx ; (2)P {X = Y } = 0;(3)∫∫∫∫−=⋅==<1311211)22(24}{dx x x xy dx xydy dx Y X P xx21211042=⎟⎠⎞⎜⎝⎛−=x x ;(4)当x < 0或y < 0时,F (x , y ) = P (∅) = 0,当0 ≤ x < 1且0 ≤ y < 1时,220220202224},{),(y x y u du uy uv du uvdv du y Y x X P y x F x x x y x y ===⋅==≤≤=∫∫∫∫;当0 ≤ x < 1且y ≥ 1时,2020010210224},{),(x u udu uv du uvdv du y Y x X P y x F x xx x ===⋅==≤≤=∫∫∫∫;当x ≥ 1且0 ≤ y < 1时,210221210210224},{),(y y u du uy uv du uvdv du y Y x X P y x F y y ===⋅==≤≤=∫∫∫∫;当x ≥ 1且y ≥ 1时,F (x , y ) = P (Ω) = 1, 故(X , Y ) 的联合分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥<≤≥≥<≤<≤<≤<<=.1,1,1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或 8. 设二维随机变量(X , Y ) 在边长为2,中心为(0, 0) 的正方形区域内服从均匀分布,试求P {X 22 解:设D 表示该正方形区域,面积S D = 4,G 表示单位圆区域,面积S G = π,故4π}1{22==≤+D G S S Y X P .9. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,),(2其他x y x k y x p (1)试求常数k ;(2)求P {X > 0.5}和P {Y < 0.5}. 解:(1)由正则性:1),(=∫∫+∞∞−+∞∞−dxdy y x p ,得1632)(10321021122==⎟⎟⎠⎞⎜⎜⎝⎛−=−=⋅=∫∫∫∫k x x k dx x x k y k dx kdy dx xx xx, 故k = 6;(2)∫∫∫∫−=⋅==>15.0215.015.0)66(66}5.0{22dx x x ydx dy dx X P x xxx5.0)23(15.032=−=x x ;∫∫∫∫−=⋅==<5.005.005.00)66(66}5.0{dy y y xdy dx dy Y P y yyy432)34(5.00223−=−=y y . 10.设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<−=.,0,10),1(6),(其他y x y y x p (1)求P {X > 0.5, Y > 0.5};(2)求P {X < 0.5}和P {Y < 0.5}; (3)求P {X + Y < 1}.解:(1)81)1()1(3])1(3[)1(6}5.0,5.0{15.0315.0215.01215.01=−−=−=−−⋅=−=>>∫∫∫∫x dx x y dx dy y dx Y X P xx; (2)∫∫∫−−⋅=−=<5.00125.001])1(3[)1(6}5.0{x x y dx dy y dx X P 87)1()1(35.0035.002=−−=−=∫x dx x ; ∫∫∫−−⋅=−=<5.005.025.005.0])1(3[)1(6}5.0{xxy dx dy y dx Y P21)1(43)1(3435.0035.002=⎥⎦⎤⎢⎣⎡−−−=⎥⎦⎤⎢⎣⎡−+−=∫x x dx x ; (3)∫∫∫−−−−⋅=−=<+5.00125.001])1(3[)1(6}1{x xxxy dx dy y dx Y X P43])1([])1(33[5.00335.0022=−−−=−+−=∫x x dx x x .11.设随机变量Y 服从参数为λ = 1的指数分布,定义随机变量X k 如下:2,1.,1,,0=⎩⎨⎧>≤=k k Y k Y X k .求X 1和X 2的联合分布列.解:因Y 的密度函数为⎩⎨⎧<≥=−.0,0,0,e )(y y y p y Y且X 1和X 2的全部可能取值为0, 1,则1101021e 1e e }1{}2,1{}0,0{−−−−=−==≤=≤≤===∫yy dy Y P Y Y P X X P ,P {X 1 = 0, X 2 = 1} = P {Y ≤ 1, Y > 2} = P (∅) = 0,21212121e e e e }21{}2,1{}0,1{−−−−−=−==≤<=≤>===∫yy dy Y P Y Y P X X P ,22221e e e }2{}2,1{}1,1{−+∞−+∞−=−==>=>>===∫yy dy Y P Y Y P X X P ,故X 1和X 2的联合分布列为221112e e e 1e 1010−−−−−−X X12.设二维随机变量(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧<<<<+=.,0,20,10,3),(2其他y x xy x y x p 求P {X + Y ≥ 1}.解:∫∫∫−−⎟⎟⎠⎞⎜⎜⎝⎛+⋅=⎟⎠⎞⎜⎝⎛+=≥+1021221021263}1{x x xy y x dx dy xy x dx Y X P 72652459441653421104321032=⎟⎠⎞⎜⎝⎛++=⎟⎠⎞⎜⎝⎛++=∫x x x dx x x x . 13.设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<=−.,0,0,e ),(其他y x y x p y 试求P {X + Y ≤ 1}. 解:∫∫∫∫−−−−−−+−=−⋅==≤+5.0015.0015.001)e e ()e (e }1{dx dx dy dx Y X P x x x xy x xy5.015.001e 2e 1)e e (−−−−−+=−−=x x .14.设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,20,10,2/1),(其他y x y x p求X 与Y 中至少有一个小于0.5的概率.解:85831431211}5.0,5.0{1}5.0},{min{15.015.025.0=−=−=−=≥≥−=<∫∫∫dx dy dx Y X P Y X P .15.从(0,1)中随机地取两个数,求其积不小于3/16,且其和不大于1的概率. 解:设X 、Y 分别表示“从(0,1)中随机地取到的两个数”,则(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,10,1),(其他y x y x p故所求概率为∫∫∫⎟⎠⎞⎜⎝⎛−−==≤+≥−4341434111631631}1,163{dx x x dy dx Y X XY P x x3ln 16341ln 1632143412−=⎟⎠⎞⎜⎝⎛−−=x x x .习题3.21. 设二维离散随机变量(X , Y ) 的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求X 与Y 各自的边际分布列. 解:因X 的全部可能值为−1, 0, 1,且12512131}1{=+=−=X P , 61}0{==X P , 125}1{==X P , 故X 的边际分布列为12561125101PX − 因Y 的全部可能值为0, 1, 2,且12712561}0{=+==X P , 31}1{==X P , 121}2{==X P , 故Y 的边际分布列为12131127210PY2. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧>>−−−=−−−−−.,0,0,0,e e e 1),(},max{122121其他y x y x F y x y x y x λλλλλ 试求X 与Y 各自的边际分布函数.解:当x ≤ 0时,F (x , y ) = 0,有F X (x ) = F (x , + ∞) = 0,当x > 0时,⎩⎨⎧≤>−−−=−−−−−.0,0,0,e e e 1),(},max{122121y y y x F y x y x y x λλλλλ 有 x y x y x y x y X x F x F 1122121e 1]e e e 1[lim ),()(},max{λλλλλλ−−−−−−+∞→−=−−−=∞+=,故⎩⎨⎧≤>−=−.0,0,0,e 1)(1x x x F x X λ 当y ≤ 0时,F (x , y ) = 0,有F Y ( y ) = F (+ ∞, y ) = 0,当y > 0时,⎩⎨⎧≤>−−−=−−−−−.0,0,0,e e e 1),(},max{122121x x y x F y x y x y x λλλλλ 有 y y x y x y x x Y y F y F 2122121e 1]e e e 1[lim ),()(},max{λλλλλλ−−−−−−+∞→−=−−−=+∞=,故⎩⎨⎧≤>−=−.0,0,0,e 1)(2y y y F y Y λ 3. 试求以下二维均匀分布的边际分布:⎪⎩⎪⎨⎧≤+=.,0,1,π1),(22其他y x y x p解:当x < −1或x > 1时,p X (x ) = 0,当−1 ≤ x ≤ 1时,2111π2π1),()(22x dy dy y x p x p x x X −===∫∫−−−∞+∞−, 故⎪⎩⎪⎨⎧≤≤−−=.,0,11,1π2)(2其他x x x p X当y < −1或y > 1时,p Y ( y ) = 0,当−1 ≤ y ≤ 1时,2111π2π1),()(22y dx dx y x p y p y y Y −===∫∫−−−∞+∞−, 故⎪⎩⎪⎨⎧≤≤−−=.,0,11,1π2)(2其他y y y p Y4. 设平面区域D 由曲线y = 1/ x 及直线y = 0,x = 1,x = e 2所围成,二维随机变量(X , Y ) 在区域D 上服从均匀分布,试求X 的边际密度函数.解:因平面区域D 的面积为2ln 122e 1e 1===∫x dx xS D , 则(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧∉∈=.),(,0,),(,21),(D y x D y x y x p 当x < 1或x > e 2时,p X (x ) = 0,当1 ≤ x ≤ e 2时,xdy dy y x p x p x X 2121),()(10===∫∫∞+∞−, 故⎪⎩⎪⎨⎧≤≤=.,0,e 1,21)(2其他x x x p X5. 求以下给出的(X , Y ) 的联合密度函数的边际密度函数p x (x ) 和p y ( y ):(1)⎩⎨⎧<<=−.,0;0,e ),(1其他y x y x p y (2)⎪⎩⎪⎨⎧−<<+=.,0;10),(45),(222其他x y y x y x p(3)⎪⎩⎪⎨⎧<<<=.,0;10,1),(3其他x y x y x p解:(1)当x ≤ 0时,p X (x ) = 0,当x > 0时,x xyxy X dy dy y x p x p −+∞−+∞−+∞∞−=−===∫∫e e e ),()(1,故⎩⎨⎧≤>=−.0,0;0,e )(x x x p x X 当y ≤ 0时,p Y ( y ) = 0, 当y > 0时,y yy Y y dx dx y x p y p −−+∞∞−===∫∫e e ),()(01,故⎩⎨⎧≤>=−.0,0;0,e )(y y y y p y Y (2)当x ≤ −1或x ≥ 1时,p X (x ) = 0,当−1 < x < 1时,)1(85)21(45)(45),()(41022102222x y y x dy y x dy y x p x p x x X −=+=+==−−+∞∞−∫∫, 故⎪⎩⎪⎨⎧<<−−=.,0;11),1(85)(4其他x x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0,当0 < y < 1时,y y xy x dx y x dx y x p y p y y yyY −+=+=+==−−−−−−+∞∞−∫∫1)21(65)31(45)(45),()(113112, 故⎪⎩⎪⎨⎧<<−+=.,0;10,1)21(65)(其他y y y y p Y (3)当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,111),()(03=⋅===∫∫+∞∞−xx dy x dy y x p x p xX , 故⎩⎨⎧<<=.,0;10,1)(其他x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,y y x dx xdx y x p y p y y Y ln ln 1ln ln 1),()(1−=−====∫∫+∞∞−, 故⎩⎨⎧<<−=.,0;10,ln )(其他y y y p Y6. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,6),(2其他x y x y x p试求边际密度函数p x (x ) 和p y ( y ). 解:当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,)(66),()(22x x dy dy y x p x p xxX −===∫∫+∞∞−,故⎩⎨⎧<<−=.,0,10),(6)(2其他x x x x p X 当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,)(66),()(y y dx dx y x p y p yyY −===∫∫+∞∞−,故⎪⎩⎪⎨⎧<<−=.,0,10),(6)(其他y y y y p Y7. 试验证:以下给出的两个不同的联合密度函数,它们有相同的边际密度函数.⎩⎨⎧≤≤≤≤+=.,0,10,10,),(其他y x y x y x p ⎩⎨⎧≤≤≤≤++=.,0,10,10),5.0)(5.0(),(其他y x y x y x g 证:当x < 0或x > 1时,p X (x ) = 0,当0 ≤ x ≤ 1时,5.0)21()(),()(1021+=+=+==∫∫+∞∞−x y xy dy y x dy y x p x p X ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他x x x p X当y < 0或y > 1时,p Y ( y ) = 0, 当0 ≤ y ≤ 1时,5.0)21()(),()(10210+=+=+==∫∫+∞∞−y xy x dx y x dx y x p y p Y ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他y y y p Y并且当x < 0或x > 1时,g X (x ) = 0,当0 ≤ x ≤ 1时,5.0)5.0(21)5.0()5.0)(5.0(),()(1021+=+⋅+=++==∫∫+∞∞−x y x dy y x dy y x g x g X ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他x x x g X 当y < 0或y > 1时,g Y ( y ) = 0,当0 ≤ y ≤ 1时,5.0)5.0()5.0(21)5.0)(5.0(),()(1021+=+⋅+=++==∫∫+∞∞−y y x dx y x dx y x g y g Y ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他y y y g Y故它们有相同的边际密度函数.8. 设随机变量X 和Y 独立同分布,且P {X = −1} = P {Y = −1} = P {X = 1} = P {Y = 1} = 1/2,试求P {X = Y }.解:因X 和Y 独立同分布,且P {X = −1} = P {Y = −1} = P {X = 1} = P {Y = 1} = 1/2,则(X , Y ) 的联合概率分布21212141411214141111ji p p X Y ⋅⋅−− 故P {X = Y } = P {X = −1, Y = −1} + P {X = 1, Y = 1} = 1/2.9. 甲、乙两人独立地各进行两次射击,假设甲的命中率为0.2,乙的命中率为0.5,以X 和Y 分别表示甲和乙的命中次数,试求P {X ≤ Y }. 解:因X 的全部可能取值为0, 1, 2,且P {X = 0} = 0.8 2 = 0.64,32.08.02.012}1{=××⎟⎟⎠⎞⎜⎜⎝⎛==X P ,P {X = 2} = 0.2 2= 0.04, 又因Y 的全部可能取值为0, 1, 2,且P {Y = 0} = 0.5 2 = 0.25,5.05.05.012}1{=××⎟⎟⎠⎞⎜⎜⎝⎛==Y P ,P {Y = 2} = 0.5 2= 0.25,则(X , Y ) 的联合概率分布25.05.025.004.001.002.001.0232.008.016.008.0164.016.032.016.00210ji p p X Y ⋅⋅故P {X ≤ Y } = 1 − P {X > Y } = 1 − P {X = 1, Y = 0} − P {X = 2, Y = 0} − P {X = 2, Y = 1} = 0.89. 10.设随机变量X 和Y 相互独立,其联合分布列为3/19/19/121321b x c a x y y y X Y试求联合分布列中的a , b , c .解:因c a p ++=⋅911,9431912+=++=⋅b b p ,911+=⋅a p ,b p +=⋅912,c p +=⋅313, 根据独立性,知81495919422222++=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=⋅==⋅⋅b b b b p p b p , 可得0814942=+−b b ,即0922=⎟⎠⎞⎜⎝⎛−b , 故92=b ; 再根据独立性,知⎟⎠⎞⎜⎝⎛+=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=⋅==⋅⋅91969194911221a a b p p p ,可得6191=+a ,故181=a ; 由正则性,知1953191912131=+++=+++++=∑∑==c b a b c a p i j ij ,可得94=++c b a ,故6118394==−−=b ac . 11.设X 和Y 是两个相互独立的随机变量,X ~ U (0, 1),Y ~ Exp (1).试求(1)X 与Y 的联合密度函数;(2)P {Y ≤ X };(3)P {X + Y ≤ 1}.解:(1)因X 与Y 相互独立,且边际密度函数分别为⎩⎨⎧<<=.,0,10,1)(其他x x p X ⎩⎨⎧<≥=−.0,0,0,e )(y y y p y Y故X 与Y 的联合密度函数为⎩⎨⎧≥<<==−.,0,0,10,e )()(),(其他y x y p x p y x p y Y X (2)1111101e 1e 1)e ()e 1()e (e }{−−−−−−=−+=+=−=−⋅==≤∫∫∫∫x x x y xy x dx dx dy dx X Y P ;(3)11110110101010e )e ()e 1()e (e }1{−−−−−−−=−=−=−⋅==≤+∫∫∫∫x x x y xy x dx dx dy dx Y X P .12.设随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,0,10,3),(其他x y x x y x p 试求(1)边际密度函数p x (x ) 和p y ( y );(2)X 与Y 是否独立.解:(1)当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,2033),()(x xdy dy y x p x p xX ===∫∫+∞∞−,故⎩⎨⎧<<=.,0,10,3)(2其他x x x p X 当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,)1(23233),()(2121y x xdx dx y x p y p yyY −====∫∫+∞∞−, 故⎪⎩⎪⎨⎧<<−=.,0,10),1(23)(2其他y y y p Y (2)因⎪⎩⎪⎨⎧<<<<−=.,0,10,10),1(29)()(22其他y x y x y p x p Y X 即p x (x ) p y ( y ) ≠ p (x , y ),故X 与Y 不独立.13.设随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<=.,0,10,||,1),(其他y y x y x p 试求(1)边际密度函数p x (x ) 和p y ( y );(2)X 与Y 是否独立.解:(1)当x ≤ −1或x ≥ 1时,p X (x ) = 0,当−1 < x < 0时,x dy dy y x p x p xX +===∫∫−+∞∞−11),()(1,当0 ≤ x < 1时,x dy dy y x p x p xX −===∫∫+∞∞−11),()(1,故⎪⎩⎪⎨⎧<≤−<<−+=.,0,10,1,01,1)(其他x x x x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0,当0 < y < 1时,y dx dx y x p y p yyY 21),()(===∫∫−+∞∞−,故⎩⎨⎧<<=.,0,10,2)(其他y y y p Y(2)因⎪⎩⎪⎨⎧<<<≤−<<<<−+=.,0,10,10),1(2,10,01),1(2)()(其他y x x y y x x y y p x p Y X 即p x (x ) p y ( y ) ≠ p (x , y ),故X 与Y 不独立.14.设二维随机变量(X , Y ) 的联合密度函数如下,试问X 与Y 是否相互独立?(1)⎩⎨⎧>>=+−.,0;0,0,e ),()(其他y x x y x p y x (2)+∞<<∞−++=y x y x y x p ,,)1)(1(π1),(222;(3)⎩⎨⎧<<<=.,0;10,2),(其他y x y x p (4)⎩⎨⎧<+<<<<<=.,0;10,10,10,24),(其他y x y x xy y x p(5)⎩⎨⎧<<<<−=.,0;10,10),1(12),(其他y x x xy y x p(6)⎪⎩⎪⎨⎧<<=.,0;1,421),(22其他y x y x y x p解:(1)因x e − (x + y ) = x e −x ⋅ e −y 可分离变量,x > 0, y > 0是广义矩形区域,故X 与Y 相互独立;(2)因)1π(1)1π(1)1)(1(π122222y x y x +⋅+=++可分离变量,−∞ < x , y < +∞是广义矩形区域, 故X 与Y 相互独立;(3)因0 < x < y < 1不是矩形区域,故X 与Y 不独立;(4)因0 < x < 1, 0 < y < 1, 0 < x + y < 1不是矩形区域,故X 与Y 不独立;(5)因12xy (1 − x ) = 12x (1 − x ) ⋅ y 可分离变量,0 < x < 1, 0 < y < 1是矩形区域,故X 与Y 相互独立; (6)因x 2 < y < 1不是矩形区域,故X 与Y 不独立.15.在长为a 的线段的中点的两边随机地各取一点,求两点间的距离小于a / 3的概率.解:设X 和Y 分别表示这两个点与线段中点的距离,有X 和Y 相互独立且都服从[0, a / 2]的均匀分布,则(X , Y ) 的联合密度函数为 ⎪⎩⎪⎨⎧<<<<=.,0,20,20,4),(2其他a y a x a y x pa a故所求概率为922321}3{22=⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛×==<+a a S S aY X P DG . 16.设二维随机变量(X , Y ) 服从区域D = {(x , y ): a ≤ x ≤ b , c ≤ y ≤ d }上的均匀分布,试证X 与Y 相互独立. 证:因(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧≤≤≤≤−−=.,0;,,))((1),(其他d y c b x a c d a b y x p当x < a 或x > b 时,p X (x ) = 0,当a ≤ x ≤ b 时,a b dy c d a b dy y x p x p d c X −=−−==∫∫+∞∞−1))((1),()(, 则⎪⎩⎪⎨⎧≤≤−=.,0;,1)(其他b x a a b x p X当y < c 或y > d 时,p Y ( y ) = 0,当c ≤ y ≤ d 时,cd dx c d a b dx y x p y p baY −=−−==∫∫+∞∞−1))((1),()(, 则⎪⎩⎪⎨⎧≤≤−=.,0;,1)(其他d y c c d y p Y因p x (x ) p y ( y ) = p (x , y ), 故X 与Y 相互独立.17.设X 1, X 2, …, X n 是独立同分布的正值随机变量.证明n k n k X X X X E n k ≤=⎟⎟⎠⎞⎜⎜⎝⎛++++,11L L .证:因X 1, X 2, …, X n 是独立同分布的正值随机变量,则由对称性知),,2,1(1n i X X X niL L =++同分布,且满足101<++<niX X X L ,可得⎟⎟⎠⎞⎜⎜⎝⎛++n i X X X E L 1存在,且⎟⎟⎠⎞⎜⎜⎝⎛++==⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++n nn n X X X E X X X E X X X E L L L L 11211, 因11111211=⎟⎟⎠⎞⎜⎜⎝⎛++++=⎟⎟⎠⎞⎜⎜⎝⎛++++⎟⎟⎠⎞⎜⎜⎝⎛+++⎟⎟⎠⎞⎜⎜⎝⎛++n n n n n n X X X X E X X X E X X X E X X X E L L L L L L , 则n X X X E X X X E X X X E n n n n 111211=⎟⎟⎠⎞⎜⎜⎝⎛++==⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++L L L L , 故n k n k XX X X E n k≤=⎟⎟⎠⎞⎜⎜⎝⎛++++,11L L .习题3.31. 设二维随机变量(X , Y ) 的联合分布列为09.007.004.0222.011.007.0120.015.005.00321X Y 试分布求U = max{X , Y } 和V = min{X , Y } 的分布列.解:因P {U = 1} = P {X = 0, Y = 1} + P {X = 1, Y = 1} = 0.05 + 0.07 = 0.12;P {U = 2} = P {X = 0, Y = 2} + P {X = 1, Y = 2} + P {X = 2, Y = 2} + P {X = 2, Y = 1}= 0.15 + 0.11 + 0.07 + 0.04 = 0.37;P {U = 3} = P {X = 0, Y = 3} + P {X = 1, Y = 3} + P {X = 2, Y = 3} = 0.20 + 0.22 + 0.09 = 0.51; 故U 的分布列为51.037.012.0321P U因P {V = 0} = P {X = 0, Y = 1} + P {X = 0, Y = 2} + P {X = 0, Y = 3} = 0.05 + 0.15 + 0.20 = 0.40; P {V = 1} = P {X = 1, Y = 1} + P {X = 1, Y = 2} + P {X = 1, Y = 3} + P {X = 2, Y = 1}= 0.07 + 0.11 + 0.22 + 0.04 = 0.44;P {V = 2} = P {X = 2, Y = 2} + P {X = 2, Y = 3} = 0.07 + 0.09 = 0.16; 故V 的分布列为16.044.040.0210P V2. 设X 和Y 是相互独立的随机变量,且X ~ Exp (λ ),Y ~ Exp (µ ).如果定义随机变量Z 如下⎩⎨⎧>≤=.,0,,1Y X Y X Z 当当 求Z 的分布列.解:因(X , Y ) 的联合密度函数为⎩⎨⎧>>==+−.,0,0,0,e )()(),()(其他y x y p x p y x p y x Y X µλλµ 则∫∫∫+∞+∞+−+∞+∞+−−⋅==≤==0)(0)(e )(e }{}1{xy x xy x dx dy dx Y X P Z P µλµλλλµµλλµλλλµλµλ+=+−==+∞+−+∞+−∫0)(0)(e e xx dx ,µλµ+==−==}1{1}0{Z P Z P ,故Z 的分布列为µλλµλµ++PZ 13. 设随机变量X 和Y 的分布列分别为4/12/14/1101P X − 2/12/110P Y已知P {XY = 0} = 1,试求Z = max{X , Y }的分布列.解:因P {X 1 X 2 = 0} = 1,有P {X 1 X 2 ≠ 0} = 0,即P {X 1 = −1, X 2 = 1} = P {X 1 = 1, X 2 = 1} = 0,可得 (X , Y ) 的联合分布列为因{Z P {Z P 故Z 4.(1)X (2)X 解:(1)(X , 因P {Z = 0} = P {X = 0, Y = 0} = 0.25;P {Z = 1} = 1 − P {Z = 0} = 0.75; 故Z 的分布列为75.025.010P Z(2)因P {Z = k } = P {X = k , Y ≤ k } + P {X < k , Y = k } = P {X = k } P {Y ≤ k } + P {X < k } P {Y = k }p p p p p p p p k k i i kj j k 1111111)1()1()1()1(−−=−=−−−⋅−+−⋅−=∑∑p p p p p p p p p p k k k k 111)1()1(1)1(1)1(1)1(1)1(−−−−⋅−−−−+−−−−⋅−= = (1 − p ) k − 1 p ⋅ [2 − (1 − p ) k − 1 − (1 − p ) k ]故Z = max{X , Y }的概率函数为p z (k ) = (1 − p ) k − 1 p ⋅ [2 − (1 − p ) k − 1 − (1 − p ) k ],k = 1, 2, ….5. 设X 和Y 为两个随机变量,且73}0,0{=≥≥Y X P ,74}0{}0{=≥=≥Y P X P , 试求P {max{X , Y } ≥ 0}.解:设A 表示事件“X ≥ 0”,B 表示事件“Y ≥ 0”,有73)(=AB P ,74)()(==B P A P , 故75737474)()()()(}0},{max{=−+=−+==≥AB P B P A P B A P Y X P U .6. 设X 与Y 的联合密度函数为⎩⎨⎧>>=+−.,0,0,0,e ),()(其他y x y x p y x 试求以下随机变量的密度函数(1)Z = (X + Y )/2;(2)Z = Y − X .解:方法一:分布函数法(1)作曲线簇z yx =+2,得z 的分段点为0,当z ≤ 0时,F Z (z ) = 0,当z > 0时,∫∫∫−+−−+−−⋅==z x z y x zx z y x Z dx dy dx z F 2020)(2020)(]e [e )(z z x z z x z z x dx 2202202e )12(1)e e ()e e (−−−−−+−=−−=+−=∫,因分布函数F Z (z ) 连续,有Z = (X + Y )/2为连续随机变量, 故Z = (X + Y )/2的密度函数为⎩⎨⎧≤>=′=−.0,0,0,e 4)()(2z z z z F z p z Z Z (2)作曲线簇y − x = z ,得z 的分段点为0,当z ≤ 0时,∫∫∫∫+∞−−+−+∞−++−+∞−++−−=−⋅==zx z x zz x y x zzx y x Z dx dy dx z F e []e [e )()2(0)(0)(z z z zx z x e 21e e 21e e 21)2(=⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−=+∞−−+−,当z > 0时,∫∫∫∫+∞−+−+∞++−+∞++−+−=−⋅==0)2(0)(0)(]e e []e [e )(dx dx dy dx z F x z x z x y x zx y x Zz z x z x −−+∞−+−−=⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−=e 2111e 21e e 210)2(,因分布函数F Z (z )连续,有Z = Y − X 为连续随机变量,故Z = Y − X 的密度函数为⎪⎩⎪⎨⎧>≤=′=−.0,e 21,0,e 21)()(z z z F z p zzZ Z 方法二:增补变量法 (1)函数2yx z +=对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎪⎩⎪⎨⎧=+=,,2y v y x z 有反函数⎩⎨⎧=−=,,2v y v z x 且21012=−=′′′′=vz vzy y x x J , 则∫∫+∞∞−+∞∞−−=⋅−=dv v v z p dv v v z p z p Z ),2(22),2()(,作曲线簇z yx =+2,得z 的分段点为0, 当z ≤ 0时,p Z (z ) = 0,当z > 0时,z z z Z z dv z p 2202e 4e 2)(−−==∫, 故Z = (X + Y )/2的密度函数为⎩⎨⎧≤>=−.0,0,0,e 4)(2z z z z p z Z(2)函数z = y − x 对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎩⎨⎧=−=,,y v x y z 有反函数⎩⎨⎧=−=,,v y z v x 且11011−=−=′′′′=v z vzy y x x J , 则∫+∞∞−−=dv v z v p z p Z ),()(,作曲线簇y − x = z ,得z 的分段点为0, 当z ≤ 0时,zz v z v Z dv z p e 21e 21e )(0202=−==+∞+−+∞+−∫, 当z > 0时,z zzv z z v Z dv z p −+∞+−+∞+−=−==∫e 21e 21e )(22, 故Z = Y − X 的密度函数为⎪⎩⎪⎨⎧>≤=−.0,e 21,0,e 21)(z z z p zzZ 7. 设X 与Y 的联合密度函数为⎩⎨⎧<<<<=.,0,0,10,3),(其他x y x x y x p 试求Z = X − Y 的密度函数.解:方法一:分布函数法作曲线簇x − y = z ,得z 的分段点为0, 1, 当z < 0时,F Z (z ) = 0,当0 ≤ z < 1时,31203102102123233333)(z z z x x xzdx dx x xdy dx xdy dx z F z z zz z xzx z x Z −=+=+=+=∫∫∫∫∫∫−,当z ≥ 1时,F Z (z ) = 1,因分布函数F Z (z ) 连续,有Z = X − Y 为连续随机变量, 故Z = X − Y 的密度函数为⎪⎩⎪⎨⎧<<−=′=.,0,10),1(23)()(2其他z z z F z p Z Z方法二:增补变量法函数z = x − y 对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎩⎨⎧=−=,,y v y x z 有反函数⎩⎨⎧=+=,,v y v z x 且11011==′′′′=vz vzy y x x J , 则∫+∞∞−+=dv v v z p z p Z ),()(,作曲线簇x − y = z ,得z 的分段点为0, 1,当z ≤ 0或z ≥ 1时,p Z (z ) = 0, 当0 < z < 1时,)1(23)(23)(3)(210210z v z dv v z z p z z Z −=+=+=−−∫, 故Z = X − Y 的密度函数为⎪⎩⎪⎨⎧<<−=.,0,10),1(23)(2其他z z z p Z 8. 某种商品一周的需要量是一个随机变量,其密度函数为⎩⎨⎧≤>=−.0,0,0,e )(1t t t t p t设各周的需要量是相互独立的,试求(1)两周需要量的密度函数p 2 (x );(2)三周需要量的密度函数p 3 (x ). 解:方法一:根据独立伽玛变量之和仍为伽玛变量设T i 表示“该种商品第i 周的需要量”,因T i 的密度函数为⎪⎩⎪⎨⎧≤>Γ=−−.0,0,0,e )2(1)(121t t t t p t可知T i 服从伽玛分布Ga (2, 1),(1)两周需要量为T 1 + T 2,因T 1与T 2相互独立且都服从伽玛分布Ga (2, 1),故T 1 + T 2服从伽玛分布Ga (4, 1),密度函数为 ⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>Γ=−−−.0,0,0,e 61.0,0,0,e )4(1)(3142x x x x x x x p x x (2)三周需要量为T 1 + T 2 + T 3,因T 1, T 2, T 3相互独立且都服从伽玛分布Ga (2, 1),故T 1 + T 2 + T 3服从伽玛分布Ga (6, 1),密度函数为 ⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>Γ=−−−.0,0,0,e 1201.0,0,0,e )6(1)(5163x x x x x x x p xx 方法二:分布函数法(1)两周需要量为X 2 = T 1 + T 2,作曲线簇t 1 + t 2 = x ,得x 的分段点为0,当x ≤ 0时,F 2 (x ) = 0,当x > 0时,∫∫∫−−−−−−−−−⋅=⋅=xt x t t t xt x t t t t dt dt t t dt x F 02110221121221121)e e (e e e )( ∫−−+−−=xt x dt t t xt t 0111121]e e )[(1xt t x t t x t t 0121213111e e e 212131⎥⎦⎤⎢⎣⎡−−⎟⎠⎞⎜⎝⎛−−=−−−11)1(e e e 212131233−−−−⎟⎠⎞⎜⎝⎛−−=−−−x x x x x x xxx x x x x x −−−−−−−−=e 61e 21e e 132, 因分布函数F 2 (x )连续,有X 2 = T 1 + T 2为连续随机变量, 故X 2 = T 1 + T 2的密度函数为⎪⎩⎪⎨⎧≤>=′=−.0,0,0,e 61)()(322x x x x F x p x(2)三周需要量为X 3 = T 1 + T 2 + T 3 = X 2 + T 3,作曲线簇x 2 + t 3 = x ,得x 的分段点为0,当x ≤ 0时,F 3 (x ) = 0,当x > 0时,∫∫∫−−−−−−−−−⋅=⋅=x x x t t x x x x t x t x dx dt t x dx x F 003322003332232332232)e e (e 61e e 61)(∫−−+−−=x x x dx x x x x x 0232323242]e e )[(6`12 xx x x x x x x x x x x x 0222324242522222e 6e 6e 3e e 41415161⎥⎦⎤⎢⎣⎡−−−−⎟⎠⎞⎜⎝⎛−−=−−−−− )1(e e e 21e 61e 4141516123455−−−−−−⎟⎠⎞⎜⎝⎛−−=−−−−−x x x x x x x x x x x xx x x x x x x x x x −−−−−−−−−−−−=e 1201e 241e 61e 21e e 15432, 因分布函数F 3 (x ) 连续,有X 3 = T 1 + T 2 + T 3为连续随机变量, 故X 3 = T 1 + T 2 + T 3的密度函数为⎪⎩⎪⎨⎧≤>=′=−.0,0,0,e 1201)()(533x x x x F x p x 方法三:卷积公式(增补变量法)(1)两周需要量为X 2 = T 1 + T 2,卷积公式∫+∞∞−−=2222)()()(21dt t p t x p x p T T ,作曲线簇t 1 + t 2 = x ,得x 的分段点为0, 当x ≤ 0时,p 2 (x ) = 0, 当x > 0时,xxx xxxt t x x t x t dt t xt dt t t x x p −−−−−−=⎟⎠⎞⎜⎝⎛−=−=⋅−=∫∫e 61e3121e )(e e )()(30322202222022)(2222, 故X 2 = T 1 + T 2的密度函数为⎪⎩⎪⎨⎧≤>=−.0,0,0,e 61)(32x x x x p x(2)三周需要量为X 3 = T 1 + T 2 + T 3 = X 2 + T 3,卷积公式∫+∞∞−−=3333)()()(32dt t p t x p x p T X ,作曲线簇x 2 + t 3 = x ,得x 的分段点为0,当x ≤ 0时,p 3 (x ) = 0,21当x > 0时,∫∫−−−−−+−=−=x x xt t x dt t xt t x t x dt t t x x p 03433323233033)(333e )33(61e e )(61)(33 x xx x t x t x t x t −−=⎟⎠⎞⎜⎝⎛−+−=e 1201e 51432161505343233323, 故X 3 = T 1 + T 2 + T 3的密度函数为⎪⎩⎪⎨⎧≤>=−.0,0,0,e 1201)(53x x x x p x9. 设随机变量X 与Y 相互独立,试在以下情况下求Z = X + Y 的密度函数:(1)X ~ U (0, 1),Y ~ U (0, 1); (2)X ~ U (0, 1),Y ~ Exp (1). 解:方法一:分布函数法(1)作曲线簇x + y = z ,得z 的分段点为0, 1, 2,当z < 0时,F Z (z ) = 0,当0 ≤ z < 1时,2020002121)(1)(z x zx dx x z dy dx z F zz zxz Z =⎟⎠⎞⎜⎝⎛−=−==∫∫∫−,当1 ≤ z < 2时,1121110110110)(211)(111)(−−−−−−−−−=−+=+=∫∫∫∫∫∫z z z z xz z Zx z z dx x z dx dy dx dy dx z F121221)1(21122−−=+−−−=z z z z , 当z ≥ 2时,F Z (z ) = 1,因分布函数F Z (z ) 连续,有Z = X + Y 为连续随机变量, 故Z = X + Y 的密度函数为⎪⎩⎪⎨⎧<≤−<≤=′=.,0,21,2,10,)()(其他z z z z z F z p Z Z(2)作曲线簇x + y = z ,得z 的分段点为0, 1,当z < 0时,F Z (z ) = 0, 当0 ≤ z < 1时,z z x z zx z zx z y z xz y Z z x dx dx dy dx z F −+−+−−−−−+−=−=−=−⋅==∫∫∫∫e 1)e ()e 1()e (e )(0000,当z ≥ 1时,z z x z x z x z y xz y Z x dx dx dy dx z F −−+−+−−−−−+−=−=−=−⋅==∫∫∫∫e e 1)e ()e 1()e (e )(111110,因分布函数F Z (z ) 连续,有Z = X + Y 为连续随机变量, 故Z = X + Y 的密度函数为⎪⎩⎪⎨⎧<≥−<≤−=′=−−.0,0,1,e )1(e ,10,e 1)()(z z z z F z p z z Z Z方法二:卷积公式(增补变量法) 卷积公式∫+∞∞−−=dy y p y z p z p Y X Z )()()(,(1)作曲线簇x + y = z ,得z 的分段点为0, 1, 2,2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章 参数估计
6.1 复习笔记
一、点估计的概念与无偏性 1.点估计及无偏性
(1)定义:设x 1,…,x n 是来自总体的一个样本,用于估计未知参数θ的统计量θ∧
=θ∧
(x 1,…,x n )称为θ的估计量,或称为θ的点估计,简称估计.
(2)定义:设θ∧
=θ∧
(x 1,…,x n )是θ的一个估计,θ的参数空间为Θ,若对任意的θ∈Θ,有E θ(θ∧
)=θ,则称θ∧
是θ的无偏估计,否则称为有偏估计.
注意:
①当样本量趋于无穷时,有E (s n 2)→σ2,称s n 2为σ2的渐近无偏估计,这表明当样本量较大时,s n 2可近似看作σ2的无偏估计.
②若对s n 2作如下修正:
则s 2是总体方差的无偏估计.这个量常被采用.
③无偏性不具有不变性.即若θ∧
是θ的无偏估计,一般而言,其函数g (θ∧
)不是g (θ)的无偏估计,除非g (θ)是θ的线性函数.
④并不是所有的参数都存在无偏估计,当参数存在无偏估计时,我们称该参数是可估的,否则称它是不可估的.
222
1
1()11n
n i i ns s x x n n ===---∑
2.有效性
定义:设θ∧1,θ∧2是θ的两个无偏估计,如果对任意的θ∈Θ有Var (θ∧1)≤Var (θ∧
2),且至少有一个θ∈Θ使得上述不等号严格成立,则称θ∧
1比θ∧
2有效.
二、矩估计及相合性 1.替换原理和矩法估计 替换原理指:
(1)用样本矩去替换总体矩,这里的矩可以是原点矩也可以是中心矩. (2)用样本矩的函数去替换相应的总体矩的函数.
2.概率函数已知时未知参数的矩估计
设总体具有已知的概率函数p (x ;θ1,…,θk ),(θ1,…,θk )∈Θ是未知参数或参数向量,x 1,…,x n 是样本.假定总体的k 阶原点矩u k 存在,则对所有的j (0<j <k )u j 都存在,若假设θ1,…,θk 能够表示成u 1,…,u k 的函数θj =θj (u 1,…,u k ),则可给出θj 的矩估计:θ∧
j =θj (a 1,…,a k ),j =1,…,k ,其中a 1,…,a k 是前k 阶样本原点矩
进一步,如果我们要估计θ1,…,θk 的函数η=g (θ1,…,θ∧
k ),则可直接得到η的矩估计η∧
=g (θ∧
1,…,θ∧
k ).
注:当k =1时,我们通常可以由样本均值出发对未知参数进行估计;如果k =2,我们可以由一阶、二阶原点矩(或二阶中心矩)出发估计未知参数.
1
1n j
j i
i a x n ==∑
3.相合性
定义:设θ∈Θ为未知参数,θ∧n =θ∧
n (x 1,…,x n )是θ的一个估计量,n 是样本容量,若对任何一个ε>0,有
则称θ∧
n 为参数θ的相合估计. 判断相合性的两个有用定理:
(1)设θ∧
n =θ∧
n (x 1,…,x n )是θ的一个估计量,若
则θ∧
n 是θ的相合估计.
(2)若θ∧
n1,…,θ∧
nk 分别是θ1,…,θk 的相合估计η=g (θ1,…,θk ),是θ1,…,θk 的连续函数,则η∧
=g (θ∧
n1,…,θ∧
nk )是η的相合估计.
三、最大似然估计与EM 算法 1.最大似然估计
定义:设总体的概率函数为P (x ;θ),θ∈Θ,其中θ是一个未知参数或几个未知参数组成的参数向量,Θ是参数空间,x 1,…,x n 是来自该总体的样本,将样本的联合概率函数看成θ的函数,用L (θ;x 1,…,x n )表示,简记为L (θ),
L (θ)=L (θ;x 1,…,x n )=p (x 1;θ)p (x 2;θ)…p (x n ;θ)
ˆlim ()0n n P θθε→∞
-≥=ˆlim ()n
n E θθ→∞
=ˆlim ()0n
n Var θ→∞
=
L (θ)称为样本的似然函数.如果某统计量θ∧
=θ∧
(x 1,…,x n )满足
则称θ∧
是θ的最大似然估计,简记为MLE .
注意:在做题时,习惯于由lnL (θ)出发寻找θ的最大似然估计,再求导,计算极值.但在有些场合用求导就没用,此时就需要从取值范围中的最大值和最小值来入手.
2.EM 算法
当分布中有多余参数或数据为截尾或缺失时,其MLE 的求取是比较困难的,这时候就可以采用EM 算法,其出发点是把求MLE 的算法分为两步:
(1)求期望,以便把多余的部分去掉; (2)求极大值.
3.渐近正态性
最大似然估计有一个良好的性质:它通常具有渐近正态性.
(1)定义:参数目的相合估计θ∧
n 称为渐近正态,若存在趋于0的非负常数序列σn (θ)
,使得依分布收敛于标准正态分布.这时也称θ∧
n 服从渐近正态分布N (θ,σn 2(θ)),
记为θ∧n ~AN (θ,σn 2(θ)),σn 2(θ)称为θ∧
n 的渐近方差.
(2)定理:设总体x 有密度函数p (x ;θ),θ∈Θ,Θ为非退化区间,假定 ①对任意的x ,偏导数∂lnp/∂θ,对所有θ∈Θ都存在; ②∀θ∈Θ有
|∂p/∂θ|<F 1(x ),|∂2p/∂θ2|<F 2(x ),|∂3lnp/∂θ3|<F 3(x )
()
()ˆmax L L θθθ∈Θ
=()
ˆn n θθσθ-
其中函数F 1(x ),F 2(x ),F 3(x )满足
③∀θ∈Θ,
若x 1,x 2,…,x n 是来自该总体的样本,则存在未知参数θ的最大似然估计θ∧n =θ∧
n (x 1,x 2,…,x n ),且θ∧
n 具有相合性和渐近正态性,
该定理表明最大似然估计通常是渐近正态的,且其渐近方差σn 2(θ)=(nI (θ))-1
有一个统一的形式,其中,I (θ)称为费希尔信息量.
四、最小方差无偏估计 1.均方误差
(1)使用条件:小样本,有偏估计.
(2)均方误差为:MSE (θ∧
)=E (θ∧
-θ)2,常用来评价点估计. 将均方误差进行如下分解:
MSE (θ∧
)=E[(θ∧
-E θ∧
)+(E θ∧
-θ)]2=E (θ∧
-E θ∧
)2+(E θ∧
-θ)2+2E[(θ∧
-E θ∧
)
1()d F x x ∞
-∞
<∞⎰
2()d F x x ∞
-∞
<∞⎰
3sup ()(;)d F x p x x ∞
-∞
∈Θ
<∞⎰θθ()()2
ln 0;d p p x x ∞
-∞
∂⎛⎫
<I =<∞ ⎪∂⎝⎭
⎰θθθ1
ˆ~(,)()
n
AN nI θθθ
(E θ∧
-θ)]=Var (θ∧
)+(E θ∧
-θ)2
由分解式可以看出均方误差是由点估计的方差与偏差|E θ∧
-θ|的平方两部分组成.如果θ∧
是θ的无偏估计,则MSE (θ∧
)=Var (θ∧
).
(3)一致最小均方误差
设有样本x 1,…,x n ,对待估参数θ有一个估计类,如果对该估计类中另外任意一个θ的估计θ~
,在参数空间Θ上都有MSE (θ∧
)≤MSE (θ~
),称θ∧
(x 1,…,x n )是该估计类中θ的一致最小均方误差估计.
2.一致最小方差无偏估计
定义:设θ∧
是θ的一个无偏估计,如果对另外任意一个θ的无偏估计θ~
.在参数率间Θ上都有Var (θ∧
)≤Var (θ~
),则称θ∧
是θ的一致最小方差无偏估计,简记为UMVUE .
关于UMVUE ,有如下一个判断准则:
设X =(x 1,…,x n )是来自某总体的一个样本,θ∧
=θ∧
(X )是θ的一个无偏估计,Var (θ∧
)<∞,则θ∧
是θ的UMVUE 的充要条件是:对任意一个满足E (φ(X ))=0和Var (φ(X ))<∞的φ(X )都有Cov θ(θ∧
,φ)=0,∀θ∈Θ.
这个定理表明UMVUE 的重要特征是:θ的最小方差无偏估计必与任一零的无偏估计不相关,反之亦然.
3.充分性原则
定理:总体概率函数是p (x ;θ),x 1,…,x n 是其样本,T =T (x 1,…,x n )是θ的充分统计量,则对θ的任一无偏估计θ∧
=θ∧(x 1,…,x n );令
ˆ()E T θθ
=。