08组合变形 PPT课件

合集下载

材料力学第八章组合变形

材料力学第八章组合变形


A截面
C3
C1
C4


C3
C1
C2

C4
T

C1

C2

三、强度分析
1.主应力计算
1 2 2 1 2 ( ) 4 2 3 2 2 2 2


C1


2 0
2.相当应力计算 第三强度理论,计算相当力
r 3 1 3 4

z0 z
y
z1
F F
350 n n 150
50
50 150
F
n
n
FN My
由弯矩 My产生的最大弯曲正应力为
tmax
max c
M y z0 425 7.5F MPa ( ) Iy 5310 M y z1 425 12.5 F MPa ( ) Iy 5310
杆件将发生拉伸 (压缩 )与弯曲组合变形 示例1 F1 产生弯曲变形 F2 产生拉伸变形 示例2 F2 F1 F2
Fy 产生弯曲变形
Fx 产生拉伸变形
Fy

F
Fx
三、内力分析
横截面上内力 FS Mz
O
z x
FN
1.拉(压) :轴力 FN
2.弯曲
剪力F
弯矩 Mz
s
y
因为引起的切应力较小,故一般不考虑.
2 z 2 y
My Qy T
Mz Qz
T H1 r 510 Nm
l
强度校核
按第四强度理论
r4
1 W
M 0.75T 111 MPa [ ]
2 2

第八章 组合变形

第八章 组合变形

例题
[ 已知: 例8.1 已知: = 15kN , e = 300mm, 许用拉应力σ 1 ] = 32 MPa, P
试设计立柱直径d 试设计立柱直径d。
解: 将力P向立柱轴线简化,立柱 向立柱轴线简化, 将力 向立柱轴线简化 承受拉伸和弯曲两种基本变 形 任意横截面上的轴力和弯矩 为:
FN = P = 15kN
cos ϕ sin ϕ + I I z y
2 2
ω= ω
2
y

2
z
Fl 3 = 3E
ωz I z tanψ = = tan ϕ ωy I y
I 一般情况下, z ≠ I y , 故 ϕ ≠ ψ ,这表明挠度所在 一般情况下, 的平面与外力作用平面并不重合。 的平面与外力作用平面并不重合。
以矩形截面的悬臂梁为例,在端部C点受力F 以矩形截面的悬臂梁为例,在端部C点受力F,F通过截面 ϕ 形心,与y轴夹角为 形心, 建立坐标系, 建立坐标系,将F分解 分解 成沿y和 的分量 成沿 和z的分量
Fy = F cosϕ
Fz = F sin ϕ
图6.4
梁的斜弯曲可看成由Fy、Fz分别产生的两个平面弯 Fy、 曲叠加而成。且危险截面均为固定端处截面。 曲叠加而成。且危险截面均为固定端处截面。其上弯矩 值为: 值为:
σ1
σw
4×15×103 32×15×103 ×300 + ≤ 32 2 3 πd πd
d = 114mm
所示起重机的最大吊重F=12kN,许用应 例8.2 图a所示起重机的最大吊重 所示起重机的最大吊重 , 试为横梁AB选择合适的工字钢 选择合适的工字钢。 力 [σ ] = 100MPa ,试为横梁 选择合适的工字钢。 的受力图, 解:根据横梁AB的受力图,由 根据横梁 的受力图 平衡方程可得: 平衡方程可得:

《材料力学组合变形》课件

《材料力学组合变形》课件
这种变形通常发生在承受轴向力 和弯矩的杆件中,其变形特点是 杆件既有伸长或缩短,又有弯曲 。
拉伸与压缩组合变形的分析方法
01
02
03
弹性分析方法
基于弹性力学的基本原理 ,通过求解弹性方程来分 析杆件内部的应力和应变 分布。
塑性分析方法
在材料进入塑性阶段后, 采用塑性力学的基本理论 来分析杆件的承载能力和 变形行为。
材料力学在组合变形中的应用实例
01
02
03
04
桥梁工程
桥梁的受力分析、桥墩的稳定 性分析等。
建筑结构
高层建筑、大跨度结构的受力 分析、抗震设计等。
机械工程
机械零件的强度、刚度和稳定 性分析,如轴、轴承、齿轮等

航空航天
飞机和航天器的结构分析、材 料选择和制造工艺等。
材料力学在组合变形中的发展趋势
特点
剪切与扭转组合变形具有复杂性和多样性,其变形行为受到多种因素的影响,如 材料的性质、杆件的长度和截面尺寸、剪切和扭转的相对大小等。
剪切与扭转组合变形的分析方法
1 2 3
工程近似法
在分析剪切与扭转组合变形时,通常采用工程近 似法,通过简化模型和假设来计算杆件的应力和 变形。
有限元法
有限元法是一种数值分析方法,可以模拟杆件在 剪切与扭转组合变形中的真实行为,提供更精确 的结果。
弯曲组合变形的分析方法
叠加法
刚度矩阵法
叠加法是分析弯曲组合变形的基本方 法之一。该方法基于线性弹性力学理 论,认为各种基本变形的应力、应变 分量可以分别计算,然后按照线性叠 加原理得到最终的应力、应变分布。
刚度矩阵法是通过建立物体内任意一 点的应力、应变与外力之间的关系, 来求解复杂变形问题的一种方法。对 于弯曲组合变形,可以通过构建系统 的刚度矩阵来求解。

《材料力学》课程讲解课件第八章组合变形

《材料力学》课程讲解课件第八章组合变形

强度条件(简单应力状态)——
max
对有棱角的截面,最大的正应力发生在棱角点处,且处于单向应力状态。
max
N A
M zmax Wz
M ymax Wy
x
对于无棱角的截面如何进行强度计算——
1、确定中性轴的位置;
y
F z
M z F ey M y F ez
ez F ey z
y
zk yk z
y
x
1、荷载的分解
F
Fy F cos
Fz F sin
z
2、任意横截面任意点的“σ”
x
F
y
(1)内力: M z (x) Fy x F cos x
M y (x) Fz x F sin x
(2)应力:
Mz k
M z yk Iz
My k
M y zk Iy
(应力的 “+”、“-” 由变形判断)
F
1, 首先将斜弯曲分解
为两个平面弯曲的叠加 Fy F cos
z
L2
L2
Fz F sin
z
2, 确定两个平面弯曲的最大弯矩
y
Mz
Fy L 4
M
y
Fz L 4
3, 计算最大正应力并校核强度
max
My Wy
Mz Wz
217.8MPa
查表: Wy 692.2cm3
4, 讨论 0
y
Wz 70.758cm3
的直径为d3,用第四强度理论设计的直径为d4,则d3 ___=__ d4。
(填“>”、“<”或“=”)
因受拉弯组合变形的杆件,危险点上只有正应力,而无切应力,
r3 1 3 2 4 2
r4

材料力学第八章组合变形

材料力学第八章组合变形

例题: 图示吊车大梁,由32a热轧普通工字钢制成,许 用应力 [σ]=160MPa ,L=4m 。起吊的重物重量F =80kN,且作用在梁的中点,作用线与y轴之间的夹角α =5°,试校核吊车大梁的强度是否安全。
F
Fy F cos 50
L2
L2
解:1. 外力分解
Fy F cos 80 cos 50 79.7kN Fz F sin 80 sin 50 6.96kN
材料力学
Mechanics of Materials
例:图示梁,已知F1=800N,F2=1650N,截面宽度 b=90mm,高度h=180mm。求:
1、梁上的max及所在位置; 2、若改为a=130mm的正方形截面,梁上的max; 3、若改为d=130mm圆形截面,梁上的max。
F2
F1 z
32
32 6
d3
72.6mm
取 d 73mm
构件在荷载的作用 下如发生两种或两种以 上基本形式的变形,且 几种变形所对应的应力 (和变形)属于同一数 量级,则构件的变形称 为组合变形。
❖组合变形的分析方法 线弹性小变形范围内,采用叠加原理
材料力学
Mechanics of Materials
二.组合变形分析方法 条件:线弹性小变形
组合 变形
0.642q 106 31.5 103
0.266q 106 237 103
160MPa
q 7.44kN / m
材料力学
Mechanics of Materials
M zD 0.456q
M zA 0.266q
z
M yD 0.444q
M yA 0.642q
A截面
y
max

材料力学 第八章 组合变形

材料力学 第八章 组合变形

度理论校核此杆的强度。 解:①外力分析
y ZC
Mx z P2z
P2y 400N YA 457N Z A 20.1N
P2Z 70.5N YC 257N Z C 90.6N
YA A 150
T M x 120Nm
B 200
C YC D 100
P2y
x
y
M Z (Nm) M (Nm)
建立图示杆件的强度条件
解:①外力向形心
x A 150 P1 T A 150 B 200 C T B 200 C 100 D 简化并分解
z
z P2z D P2y x 弯扭组合变形 y
100
M Z (Nm) M (Nm)
y
②每个外力分量对应 x 的内力方程和内力图 X
(Nm) My (Nm) Mz
x X
125 37.8 162.8MPa
孔移至板中间时
N 100 103 2 A 631.9mm 10(100 x) x 36.8mm 6 σ max 162.8 10
偏心拉伸或压缩:
CL11TU11
任意横截面上的内力: N P,M y Pa,M z Pb
第八章 组合变形
§8–1 组合变形和叠加原理
§8–2 拉(压)弯组合 §8–4 偏心压缩 截面核心 §8-4 弯曲与扭转
§8–1组合变形和叠加原理
一、组合变形 :在复杂外载作用下,构件的变形会包含几种简
单变形,当几种变形所对应的应力属同一量级时,不能忽略
之,这类构件的变形称为组合变形。 P P
弯曲与扭转
P1
80ºP2 z
x A 150 B 200 C 100 D
y

材料力学课件第8章组合变形zym

材料力学课件第8章组合变形zym

§8—4 扭转与弯曲的组合 一、圆截面杆弯扭组合 实例: (一)实例: 已知:塑性材料轴尺寸,传动力偶Me。 已知:塑性材料轴尺寸,传动力偶 。 试建立轴的强度条件。 试建立轴的强度条件。 解: 1、确定危险点: 、确定危险点: (1)外力分析 ) F 计算简图: ①计算简图: Fτ 由 ∑ M x = 0 得: FD = Me 2 可确定F 由F可确定 τ。 可确定 外力分解: ②外力分解: 变形判断: ③变形判断: AB段扭转变形,BE段弯扭组合变 段扭转变形, 段弯扭组合变 段扭转变形 形,EC段弯曲变形。 段弯曲变形。 段弯曲变形
解: 、确定各边为中性轴时的压力作用点: 1、确定各边为中性轴时的压力作用点: b2 h2 2 iy = , iz2 = 12 12 h az = ∞ AB截距: a y = − , 截距: 截距 2 h2 iz2 12 = h , zF = 0 F作用点 坐标: yF = − = − 作用点a坐标 作用点 坐标: h 6 ay − 2 同样确定b,c,d点。 同样确定 点 2、连线 确定截面核心。 、连线a,b,c,d确定截面核心。 确定截面核心 解:
3 由: W ≥ M max = 12 ×10 N ⋅ m 6
[σ ]
100 × 10 Pa
= 12 × 10−5 m3 = 120cm3
查表选定16号工字钢。 查表选定 号工字钢。 号工字钢 (2)组合变形校核计算: )组合变形校核计算: 16号工字钢:W=141cm3,A=26.1cm3 号工字钢: 号工字钢
2、应力状态分析 、 均为单向应力状态 单向应力状态。 均为单向应力状态。
'' σ A = σ ′ +σ A =
F (0.425m) F × (0.075m) + −3 2 15 ×10 m 5310 ×10−8 m 4

《材料力学》第八章组合变形

《材料力学》第八章组合变形
解 (1)外力分析,确定变形类型—拉弯组合;
(2)内力分析,确定危险截面—整个轴;
M=600(kN·cm) FN=15(kN)
(3)应力计算,确定危险点—a、b点;
P产生拉伸正应力: t
FN AFNd 2源自4FNd 24
M拉产弯生组弯合曲:的正应力:wmax
M Wy
M
d3
32
32M
d3
P M= a Pe
补例8.1 已知: P=2kN,L求=:1mσm,Iazx=628×104mm4,Iy=64×1040mm2740 2844
解:1.分解P力。 Py Pcos φ Pz Psin φ 2.画弯矩图,确定危险截面--固定端截面。 3.画应力分布图,确定危险点—A、 B点
σ” σ’
A
x
y
Pyl
M
z
践中,在计算中,往往忽略轴力的影响。
4.大家考虑扭转、斜弯曲与拉(压)的组合怎么处理?
例8.5 图8.14a是某滚齿机传动轴AB的示意图。轴的直径为35 mm,材料为45钢, [σ]=85 MPa。轴是由P=2.2kW的电动机通过
带轮C带动的,转速为n=966r/min。带轮的直径为D=132 mm,
Mz Py l - x Pcosφ l - x Mcosφ My Pz l - x Psinφ l - x Msinφ
式中的总弯矩为:M Pl- x
3.计算两个平面弯曲的正应力。在x截面上任取一点A(z 、y),
与弯矩Mz、My对应的正应力分别为σ’和σ”,故
- Mz y , - M yz
第八章 组合变形
基本要求: 掌握弯曲与拉伸(或压缩)的组合、扭转与弯曲的组合 的强度计算。
重点: 弯曲与拉伸(或压缩)的组合,扭转与弯曲的组合。

材料力学第8章组合变形

材料力学第8章组合变形

MB
M
2 yB
M
2 zB
(364 N m)2 (1000N m)2 1064N m
•由Mz图和My图可知, B截面上的总弯矩最大, 并且由扭矩图可见B截 面上的扭矩与CD段其 它横截面上相同,TB =-1000 N·m,于是判 定横截面B为危险截面。
3. 根据MB和TB按第四强度理论建立的强度条件为
Wp
r4
M 2 0.75T 2
W
300N.m 1400N
300N.m
1500N 200
150
300N.m
128.6N.m
120N.m
(2)作内力图
危险截面E 左处
T 300N.m
M
M
2 y
M
2 z
176N.m
(3)由强度条件设计d
r3
M2 T2 W
W d 3
32
32 M 2 T 2
第8章 组合变形
8.1 组合变形和叠加原理 8.2 拉伸或压缩与弯曲的组合 8.3 偏心压缩和截面核心 8.4 扭转与弯曲的组合 8.5 组合变形的普遍情况
8.1 组合变形和叠加原理
组合变形——实际构件由外力所引起的变形包含两种或两 种以上的基本变形。如压力框架、烟囱、传动轴、有吊车 的立柱。 叠加原理——如果内力、应力、变形等与外力成线性关系, 则在小变形条件下,复杂受力情况下组合变形构件的内力, 应力,变形等力学响应可以分成几个基本变形单独受力情 况下相应力学响应的叠加,且与各单独受力的加载次序无 关。 前提条件:
即 亦即 于是得
r4
M 2 0.75T 2 [ ]
W
•请同学们按
照第三强度理 (1064 N m)2 0.75(1000 N m)2 100106 Pa W

材料力学第八章组合变形及连接部分的计算

材料力学第八章组合变形及连接部分的计算
t . max
Mz 0 FN Iy A
F
350
M
FN
425 10 3 F 0.075 F 5.3110 5 15 10 3 667 F Pa F Mz c. max 1 N Iy A
t .max
c.max
425 10 3 F 0.125 F 5 5.31 10 15 10 3 934 F Pa
50 150
425F 103 N.m
A 15000 mm2 z0 75mm z1 125mm I y 5.31107 mm4
y1
z0
y
z1
150 50 150
(2)立柱横截面的内力 FN F 50 M 425103 F N.m (3)立柱横截面的最大应力
az
中性轴
z0 0 y0 0
i z2 a y yo ey 2 iy a z zo ez
截面核心
y
中性轴
F (e y , e z )
z
求直径为D的圆截面的截面核心.
d a y1 2
i z2 ay ey
a z1
az
2 iy
2 4 d d 64 2 iy i z2 2 A d 4 16
F
1, 首先将斜弯曲分解 为两个平面弯曲的叠加
Fy F cos

L2
L2
Z y
My Wy
Fz F sin
2, 确定两个平面弯曲的最大弯矩
Z y
Wz 70.758cm 3
Mz
Fy L 4
Fz L My 4
查表: W y 692.2cm 3

拉(压)与弯曲的组合

拉(压)与弯曲的组合

max
F
M
114.3 48.98
163.3MPa [ ] 140MPa
正应力分布图如下:
下边缘应力为:
max
F
M
114.3 48.98
65.3MPa(拉应力)
讨论:
显然,钢板的强度不够;引起应力增 大的原因是偏心距造成的。因此,解 决此类问题就是消除偏心距,如左:
max
FN A
弯扭组合的危险点可代第三或第四强度理论公式
材料力学电子教程
第八章 组合变形
三、弯扭组合强度计算准则
强度公式推导: – 由应力公式
max
min
x
y
2
(
x
2
y
)2
2 x
得:
1 3
1 2
2 4 2
第三强度理论:
❖ σr3 =σ1-σ3≤[σ] 得: r3 2 4 2
第四强度理论:
M=FNe=400kN.mm
FN引起的应力
F
FN A
F (b t)
80 10 3 10 (80 10)
114.3MPa
M引起的应力
M
M Wz
F e (b t)2
80 10 3 5 10 (80 10)2
48.98MPa
6
6
材料力学电子教程
第八章 组合变形
例8-2(续)
因此,最大拉应力为(上缺口最低点):
第八章 组合变形
解:1.将外载沿横截面的形心主轴分解
Py P sin Pz P cos
2.分别研究两个平面弯曲 (1)内力
Mz Py(L x) P(L x)sin Msin M y M cos

材料力学第八章-组合变形

材料力学第八章-组合变形

12 103 141106
94.3MPa 100MPa
故所选工字钢为合适。
材料力学
如果材料许用拉应力和许用压应力不 同,且截面部分 区域受拉,部分区域 受压,应分别计算出最大拉应力 和最 大压应力,并分别按拉伸、压缩进行 强度计算。
材料力学
=+
材料力学
t,max
=+
t,max
①外力分析:外力向形心简化并沿主惯性轴分解。
②内力分析:求每个外力分量对应的内力方程和 内力图,确定危险面。
③应力分析:画危险面应力分布图,叠加,建立 危险点的强度条件。
一般不考虑剪切变形;含弯曲组合变形,一般以弯
曲为主,其危险截面主要依据Mmax,一般不考虑弯
曲切应力。
材料力学
四.叠加原理
构件在小变形和服从胡克定律的条件下, 力的独立性原理是成立的。即所有载荷作用 下的内力、应力、应变等是各个单独载荷作 用下的值的代数和。
材料力学
F F
350
150
y
50 z
50 150 z0 z1
显然,立柱是拉伸和弯曲的 组合变形。
1、计算截面特性(详细计算略) 面积 A 15103 m2
z0 75mm I y 5310 cm4
材料力学
2、计算内力 取立柱的某个截面进行分析
FN F
M (35 7.5) 102 F 42.5102 F
组合变形
§8.1 组合变形和叠加原理 §8.2 拉伸或压缩与弯曲的组合 §8.3 偏心压缩和截面核心 §8.4扭转与弯曲的组合
content
1、了解组合变形杆件强度计算的基本方法 2、掌握拉(压)弯组合变形和偏心拉压杆 件的应力和强度计算 3、掌握圆轴在弯扭组合变形情况下的强度 条件和强度计算

材料力学-第八章组合变形

材料力学-第八章组合变形

M z y M y sin
Iz
Iz
x
M y z M z cos
Iy
Iy
x
y
z
y
z

M
y sin
z

cos
对于圆形截面
因为过形心的任意轴均为截面的对称轴,所以当横 截面上同时作用两个弯矩时,可以将弯矩用矢量表示, 然后求二者的矢量和。于是,斜弯曲圆截面上的应力计 算公式为:
A
C
B
D
2 kN 5 kN
300 500
2 kN (a)
500
解:
1.5 kN Am
7 kN
C
1.5 kN m
B
D
(1)分析载荷 如图b所示
5 kN
12 kN (b)
T 1.5 kN m
(2)作内力图 x
如图c、d、e、f 所示
(c)
MC MD
1.5 kN Am
7 kN
C
1.5 kN m
B
FN A


F (2a)2
1 4
F a2
(2)开槽后的正应力
My
FN F
My

Fa 2
FN
2
max


FN A

My Wy




F 2a2

Fa / 2 2a2 a2 /
6


2
F a2
2a
2a
z
a
所以:
2
1
8
y
§8.3 斜弯曲
F1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档