第一轮复习20:相似三角形

合集下载

天津市中考一轮《相似三角形》复习试卷及答案

天津市中考一轮《相似三角形》复习试卷及答案

中考数学一轮复习专题相似三角形综合复习一选择题:1.下列说法正确的是()(A)两个矩形一定相似.(B) 两个菱形一定相似.(C)两个等腰三角形一定相似.(D) 两个等边三角形一定相似.2.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4 B.4.5 C.5 D.5.53.若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似。

如图,如果扇形AOB与扇形是相似扇形,且半径(为不等于0的常数)。

那么下面四个结论:①∠AOB=∠;②△AOB∽△;③;④扇形AOB与扇形的面积之比为.成立的个数为()A.1个B.2个C.3个D.4个4.如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是()A.2cm2 B.4cm2 C.8cm2 D.16cm25.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A. B. C. D.6.如图,矩形ABCD∽矩形ADFE,AE=1,AB=4,则AD=()A. 2B. 2.4C. 2.5D. 37.如图是测量小玻璃管口径的量具ABC,AB的长为12 cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是( )A.8 c m B.10 cm C.20 cm D.60 cm8.如图,在平行四边形ABCD 中,点E在CD上,若DE:CE =1:2,则△CEF与△ABF的周长比为()A.1:2 B.1:3 C.2:3 D.4︰99.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC与△BDA相似,可以添加一个条件.下列添加的条件中错误的是( )A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD10.如图,D是△ABC一边BC上一点,连接AD,使△ABC∽△DBA的条件是( )A.AC:BC=AD:BDB.AC:BC=AB:ADC.AB2=CD·BCD.AB2=BD·BC11.如图所示,四边形ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件:①∠APB=∠EPC;②∠APE=∠APB;③P是BC的中点;④BP:BC=2:3.其中能推出△ABP∽△ECP的有( )A.4个 B.3个 C.2个 D.1个12.如图,在▱ABCD中,AB=4,AD=3,过点A作AE⊥BC于E,且AE=3,连结DE,若F为线段DE上一点,满足∠AFE=∠B,则AF=()A.2 B. C.6 D.213.已知( )A. B. C. D.14.如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A.4.5米 B.6米 C.7.2米 D.8米15.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3 B. C. D.416.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( )A. B. C. D.17.如图,AB=AC=4,P是BC上异于B,C的一点,则AP2+BP·PC的值是( )A.16 B.20 C.25 D.3018.如图,在△ABC中,AB=AC=10,BC=16,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=α,DE交AC于点E.下列结论:①AD2=AE•AB;②3.6≤AE<10;③当AD=2时,△ABD≌△DCE;④△DCE为直角三角形时,BD 为8或12.5.其中正确的结论个数是().A.1个B. 2个C. 3个D. 4个19.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:1020.如图,小明作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1三边的中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积.用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第10个正△A10B10C10的面积是()A. B. C. D.二填空题:21.若,则= .22.若a:b:c=1:3:2,且a+b+c=24,则a+b﹣c= .23.如图,边长12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=3,则小正方形的边长为.24.如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米,甲身高1.8米,乙身高1.5米,则甲的影长是_ 米.25.如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB,CD上滑动,当CM=_________时,△AED与以M,N,C为顶点的三角形相似.26.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,则窗口底边离地面的高BC=______m.27.如图,小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度为米.28.如图,在四边形中,,如果边AB上的点P,使得以为顶点的三角形与为顶点的三角形相似,这样的点P有个.29.如图,△ABC是边长为a的等边三角形,将三角板的30°角的顶点与A重合,三角板30°角的两边与BC交于D、E两点,则DE长度的取值范围是_________.30.如图,△ABC是一张直角三角形彩色纸,AC=15cm,BC=20cm.若将斜边上的高CD 分成n等分,然后裁出(n ﹣1)张宽度相等的长方形纸条.则这(n﹣1)张纸条的面积和是cm2.三简答题:31.如图,等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,使AE=CF,连接AF,BE相交于点P.(1)求证:AF=BE,并求∠APB的度数;(2)若AE=2,试求AP·AF的值.32.已知:如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)若DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长.33.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC 于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.34.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与底面保持平行并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.35.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图23-12,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).36.如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,一动点P从点A出发沿边AC向点C以1cm/s的速度运动,另一动点Q同时从点C出发沿CB边向点B以2cm/s的速度运动.问:(1)运动几秒时,△CPQ的面积是8cm2?(2)运动几秒时,△CPQ与△ABC相似?37.如图,AD是△ABC的高,点E,F在边BC上,点H在边AB上,点G在边AC上,AD=80cm,BC=120cm.(1)若四边形EFGH是正方形,求正方形的面积.(2)若四边形EFGH是长方形,长方形的面积为y,设EF=x,则y=______.(含x的代数式),当x=______时,y最大,最大面积是______.38.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个动点到达终点时,另一个动点也随之停止运动.(1)AC= cm,BC= cm;(2)当t=5 (s)时,试在直线PQ上确定一点M,使△BCM的周长最小,并求出该最小值.(3)设点P的运动时间为t (s),△PBQ的面积为y (cm2),当△PBQ存在时,求y与t的函数关系式,并写出自变量t的取值范围;(4)探求(3)中得到的函数y有没有最大值?若有,求出最大值;若没有,说明理由.39.在等腰△ABC中,AB=AC=10,BC=12,D为底边BC的中点,以D为顶点的角∠PDQ=∠B.(1)如图1,若射线DQ经过点A,DP交AC边于点E,直接写出与△CDE相似的三角形;(2)如图2,若射线DQ交AB于点F,DP交AC边于点E,设AF=x,AE为y,试写出y与x的函数关系式;(不要求写出自变量的取值范围)40.在平面直角坐标系中,二次函数的图象与轴交于A(-3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;参考答案1、D2、B.3、D4、C5、B6、A7、A8、C9、C 10、D 11、C 12、D.13、B 14、B 15、C 16、B 17、A 18、D;19、D 20、A.21、.22、8.23、.24、6 25、或 26、4 m. 27、14+2 28、329、(2﹣3)a≤DE≤a..30、cm2.31、解:(1)∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°,∴∠APB=180°-∠APE=120°(2)∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴=,即=,∴AP·AF=12 32、【解答】(1)证明:∵AB=2,BC=4,BD=1,∴,∵∠ABD=∠CBA,∴△ABD∽△CBA;(2)解:∵DE∥AB,∴△CDE∽△CBA,∴△ABD∽△CDE,∴DE=1.5.33、【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)解:∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.34、根据题意,得∠DEF=∠DCA=90°,∠EDF=∠ADC,∴△DEF∽△DCA.∴=.已知DE=0.5米,EF=0.25米,DC=20米.∴=.解得AC=10米.∵四边形BCDG是矩形,∴BC=DG,而DG=1.5米,则BC=1.5米.35、答案:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA∴MA∥CD∥BN ∴EC=CD=x∴△ABN∽△ACD,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米36、【解答】解:(1)设x秒后,可使△CPQ的面积为8cm2.由题意得,AP=xcm,PC=(6﹣x)cm,CQ=2xcm,则(6﹣x)•2x=8,整理,得x2﹣6x+8=0,解得x1=2,x2=4.则P、Q同时出发,2秒或4秒后可使△CPQ的面积为8cm2(2)设运动y秒时,△CPQ与△ABC相似.若△CPQ∽△CAB,则=,即=,解得y=2.4秒;若△CPQ∽△CBA,则=,即=,解得y=秒.综上所述,运动2.4秒或秒时,△CPQ与△ABC相似.37、【解答】解:(1)∵四边形EFGH是正方形,∴HG∥EF,GH=HE=ID,∴△AHG∽△ABC,∴AI:AD=HG:BC,∵BC=120cm,AD=80cm,∴,解得:HG=48cm,∴正方形EFGH的面积=HG2=482=2304(cm2);(2)∵四边形EFGH是长方形,∴HG∥EF,∴△AEF∽△ABC,∴AI:AD=HG:BC,即,解得:HE=﹣x+80,∴长方形EFGH的面积y=x(﹣x+80)=﹣2+80x=﹣(x﹣60)2+240,∵﹣<0,∴当x=60,即EF=60cm时,长方形EFGH有最大面积,最大面积是240cm2;故答案为:﹣x2+80x,60cm,240cm2.38、解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC 2 +BC 2 =AB 2,即:(4x)2 +(3x)2 =10 2,解得:x=2,∴AC=8cm,BC=6cm;(2)存在,理由:∵AQ=14-2x=14-10=4,AP=x=5,∵AC=8,AB=10,∴PQ是△ABC的中位线,∴PQ∥AB,∴PQ⊥AC,∴PQ是AC的垂直平分线,∴PC=AP=5,∴当点M与P重合时,△BCM的周长最小,∴△BCM的周长为:MB+BC+MC=PB+BC+PC=5+6+5=16,∴△BCM的周长最小值为16.(3)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,∵AP=x,∴BP=10-x,BQ=2x,∵△QHB∽△ACB,②当点Q在边CA上运动时,过点Q作QH′⊥AB于H′,∵AP=x,∴BP=10-x,AQ=14-2x,∵△AQH′∽△ABC,39、【解答】解:(1)与△CDE相似的三角形为△ABD,△ACD,△ADE;理由如下:∵AB=AC,D为底边BC的中点,∴∠B=∠C,AD⊥BC,∴∠ADB=∠ADC=90°,∴△ABD∽△ACD,∵∠PDQ=∠B,∴∠PDQ=∠C,又∵∠DAE=∠CAD,∴△ADE∽△ACD;∵∠CDE+∠PDQ=90°,∴∠C+∠PDQ=90°,∴∠CED=90°=∠ADC,又∵∠C=∠C,∴△CDE∽△CAD,∴△△ABD∽△ACD∽△ADE∽△CDE;(2)∵∠FDC=∠B+∠BDF,∠FDC=∠FDE+∠EDC,∴∠EDC=∠BDF,∴△BDF∽△CDE,∴,∵D为BC的中点,∴BD=CD=6,∴∴y=;(3)△DEF与△CDE相似.理由如下:如图所示:由(2)可知:△BDF∽△CDE,则,∵BD=CD,∴,又∵∠EDF=∠C,∴△DEF∽△CED.40.解:(1)由抛物线过点A(-3,0),B(1,0),则解得∴二次函数的关系解析式.(2)连接PO,作PM⊥x轴于M,PN⊥y轴于N.设点P坐标为(m,n),则.PM =,,AO=3.当时,=2.∴OC=2.===.8分∵=-1<0,∴当时,函数有最大值.此时=.∴存在点,使△ACP的面积最大.(3)存在点Q,坐标为:,.分△BQE∽△AOC,△EBQ∽△AOC,△QEB∽△AOC三种情况讨论可得出.。

中考数学一轮复习专题突破训练—相似三角形

中考数学一轮复习专题突破训练—相似三角形

中考数学一轮复习专题突破训练—相似三角形一、单选题1.(2022·北京市第十三中学九年级期中)如图,点D,E分别在△ABC的AB,AC边上,且DE△BC,如果AD:AB=2:3,那么DE:BC等于()A.3:2B.2:5C.2:3D.3:5【答案】C【分析】根据相似三角形的判定与性质即可得出结果.【详解】解:△DE∥BC,△△ADE△△ABC,△DE:BC=AD:AB=2:3;故选:C.2.(2022·辽宁鞍山市·九年级期末)如图,在平行四边形ABCD中,点E是AB 的中点,CE和BD交于点O,若S△EOB=1,则四边形AEOD的面积为()A.4B.5C.6D.7【答案】B根据平行四边形的性质和相似的判定和性质,可以得到△BOC和△COD的面积,从而可以得到△BCD的面积,再根据△ABD和△BCD的面积一样,即可得到四边形AEOD的面积.【详解】解:△在平行四边形ABCD中,点E是AB的中点,△CD△AB,CD=AB=2BE△△DOC△△BOE,△OC CDOE BE=2,△S△EOB=1,△S△BOC=2,S△DOC=4,△S△BCD=6,△S△DAB=6,△四边形AEOD的面积为:S△DAB-S△EOB=6-1=5,故选:B.3.(2022·全国九年级专题练习)如图,已知AB△CD△EF,AD:AF=3:5,BE=12,那么CE的长等于()A.2B.4C.245D.365【分析】根据平行线分线段成比例得到3125BC =,然后利用比例性质计算出BC ,从而求出CE 即可. 【详解】解:△AB △CD △EF , △BC AD BE AF =,即3125BC =, △BC =365, △CE =BE -BC =12-365=245, 故选C .4.(2022·全国九年级专题练习)下列四条线段中,不能成比例的是( ) A.a =2,b =4,c =3,d =6 B .a ,b c =1,d C .a=6,b =4,c =10,d =5 D .a b =c d =2【答案】C 【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案. 【详解】解:A 、2×6=3×4,能成比例; B1 C 、4×10≠5×6,不能成比例;D 、523152⨯=⨯,能成比例. 故选:C .5.(2022·四川省成都市石室联合中学)如图,在ABC 中,点E 和点F 分别在边AB ,AC 上,且//EF BC ,若3AE =,6EB =,9BC =,则EF 的长为( )A .1B .92C .12D .3【答案】D 【分析】证明△AEF △△ABC ,根据相似三角形的性质列出比例式,代入计算得到答案. 【详解】 △//EF BC , △AEF ABC ∽, △EF AEBCAB, △3AE =,6EB =, 9BC =, △399EF =, △3EF =. 故选D .6.(2022·全国九年级课时练习)将三角形纸片(ABC )按如图所示的方式折叠,使点C 落在AB 边上的点D ,折痕为EF .已知3,4AB AC BC ===,若以点B 、D 、F 为顶点的三角形与ABC 相似,那么CF 的长度是( )A .2B .127或2 C .127D .125或2 【答案】B 【分析】分两种情况:若BFD C ∠=∠或若BFD A ∠=∠,再根据相似三角形的性质解题 【详解】△ABC 沿EF 折叠后点C 和点D 重合, △FD CF =,设CF x =,则,4FD CF x BF x ===-,以点B 、D 、F 为顶点的三角形与ABC 相似,分两种情况: △若BFD C ∠=∠,则BF FDBC AC =,即443x x -=,解得127x =; △若BFD A ∠=∠,则BF FD AB AC =,即433x x -=,解得2x =. 综上,CF 的长为127或2, 故选:B .7.(2022·全国九年级课时练习)已知线段a 、b 、c 、d 满足ab cd =,把它改写成比例式,错误的是( ) A .::a d c b = B .::a b c d =C .::d a b c =D .::a c d b =【答案】B【分析】根据比例的基本性质:外项之积等于内项之积,对选项一一分析,选出正确答案即可.【详解】解:A、a:d=c:b△ab=cd,故正确;B、a:b=c:d△ad=bc,故错误;C、d:a=b:c△dc=ab,故正确;D、a:c=d:b△ab=cd,故正确.故选:B.8.(2022·全国九年级课时练习)下列结论不正确的是()A.所有的矩形都相似B.所有的正三角形都相似C.所有的等腰直角三角形都相似D.所有的正八边形都相似【答案】A【分析】根据相似图形的判定判断即可;【详解】所有的矩形不一定都相似,故A错误,符合题意;因为正三角形的每个角都等于60︒,满足两个角对应相等,所有的正三角形都相似,故B正确;︒︒︒,满足两个角对应相等,因为等腰直角三角形的三个角分别为,45,45,90所有的等腰直角三角形都相似,故C正确;因为正八边形的每个角都相等,每条边都相等,所有的正八边形都相似,故D 正确; 故选A .9.(2022·全国)如果23a b =,那么2a bb-的结果是( ) A .12- B .43-C .43D .12【答案】B 【分析】根据比例的性质即可得到结论. 【详解】 △a b=23,△可设a =2k ,b =3k , △2a bb -=2k-6k 3k =-43. 故选B .10.(2022·沙坪坝·重庆一中)下列命题正确的是( ) A .位似图形一定是相似图形 B .任意两个菱形一定相似CD .23、24、25能作为直角三角形的三边长 【答案】A 【分析】根据位似图形,相似图形的定义可判断A 、B ,根据平方根的定义和勾股定理的逆定理,可判断C 、D . 【详解】解:A. 位似图形一定是相似图形,故原命题正确,符合题意; B. 任意两个菱形不一定相似,故原命题错误,不符合题意;C.±D. 23、24、25不能作为直角三角形的三边长,故原命题错误,不符合题意, 故选A . 二、填空题11.(2022·山东省青岛第二十六中学九年级期中)如果2x =3y ,那么x yy +=___. 【答案】52【分析】直接利用已知得出x =32y ,进而代入得出答案. 【详解】 解:△2x =3y , △x =32y ,△3522y yx y y y ++==.故答案为:52.12.(2022·全国九年级专题练习)ABC 中,D 、E 分别在AB 、AC 上,DE △BC ,ADE 是ABC 缩小后的图形,若DE 把ABC 的面积分成相等的两部分,则AD :AB =_____【分析】如图根据BC △DE ,可以得到△ADE △△ABC ,则21=2AED ABC S AD S AB ⎛⎫= ⎪⎝⎭△△ ,由此即可求解. 【详解】 解:△BC △DE , △△ADE △△ABC ,△DE 把△ABC 的面积分成相等的两部分,△21()2AED ABCS AD SAB ∆∆==, △22AD AB =, 故答案为:22.13.(2022·全国)如图,AC 与BD 相交于点O ,在△AOB 和△DOC 中,已知OA OBOD OC=,又因为________,可证明△AOB △△DOC .【答案】△AOB=△DOC【分析】根据相似三角形的判定,两边对应成比例,夹角相等,两三角形相似解答.【详解】解:△OA OBOD OC=,△AOB=△DOC,△△AOB△△DOC(两边对应成比例,夹角相等,两三角形相似).故答案为:△AOB=△DOC.14.(2022·全国九年级专题练习)如图:梯形ADFE相似于梯形EFCB,若AD=3,BC=4,则AEBE=__.3【分析】根据相似的性质,列出比例式,根据已知条件即可求得.【详解】因为梯形ADFE相似于梯形EFCB,所以AD EFEF BC=,即EF=23所以323AE ADBE EF===315.(2022·合肥市第四十五中学九年级)如图,正方形ABCD中,点E是BC的中点,点F是CD上一点,分别以AE、AF为对称轴,折叠△ABE、△ADF,使得AB和AD与AG重合,连接BG交AE于点H,连接CG.(1)HE:AH=______;(2)S△AFE:S正方形ABCD=______.【答案】1:4 5:12【分析】(1)根据翻折的性质得到△GHE=△BHE=90°,再根据△HEB=△BEA,从而证明△HEB△△BEA,得出HE BEBE AE=,设正方形边长为2x,则BE=x,AB=2x,由勾股定理求出AE,从而求出HE和AH,得出结论;(2)由S△AFE=12(S正方形ABCD﹣S△FCE),正方形ABCD的边长为2x,FG=DF=m,则EF =x + m,CF=2 x﹣m,,由勾股定理求出m即可.【详解】解:(1)△AE为对称轴,△△AEG△△AEB,BG△AE,△△GHE=△BHE=90°,又△△HEB=△BEA,△△HEB△△BEA,△HE BEBE AE=,在正方形ABCD 中,设边长为2x ,△点E 是BC 的中点,则BE =x ,AB =2x ,△AE=,△HE =225BE x AE ==,△AH =AE ﹣HE=,△HE :AH x =1:4. 故答案为:1:4;(2)设正方形ABCD 的边长为2x ,则S 正方形ABCD =4x 2,△S △AFE =12(S 正方形ABCD ﹣S △FCE ),CE =BE =GE =x ,设FG =DF =m ,则EF =x + m ,CF =2 x ﹣m ,在△EFC 中,△EF 2=CE 2+CF 2,△(m +x )2=(2 x ﹣m )2+ x 2,解得:m =23x ,△CE =2 x ﹣m =43x ,△S △CFE =12×CE ×CF =12×24233x x x ⨯=, △S △AFE =12×(4 x 2﹣223x )=253x , △S △AFE :S 正方形ABCD =225:43x x =5:12.故答案为:5:12.三、解答题16.(2022·辽宁鞍山市·九年级期末)如图,将△ABC绕点A旋转得到△ADE,连接BD,CE.求证:△ADB△△AEC.【答案】见解析.【分析】由题知,将△ABC绕点A旋转得到△ADE,可得到AC=AE,AB=AD,△CAE=△BAD,即可证明.【详解】△将△ABC绕点A旋转得到△ADE,△AC=AE,AB=AD,△CAE=△BAD,△AE AC,AD AB△△ADB△△AEC.17.(2022·广西贺州市·九年级期中)如图,已知在△ABC中,DE△BC,EF△AB,AE=2CE,AB=6,BC=9.求:(1)求BD的长度;(2)求DE的长度.【答案】(1)2;(2)6【分析】(1)由平行线分线段成比例得出比例式,即可得出结果;(2)由平行线分线段成比例得出比例式,即可得出结果.【详解】解:(1)△AE =2CE , △12CE AE =, △DE △BC , △13BD CE AB AC ==, △AB =6,△BD =2;(2)△EF △AB , △23AE BF AC BC ==, △BC =9,△BF =6,又△DE △BC ,△四边形BDEF 是平行四边形,△DE =BF =6.18.(2022·全国九年级专题练习)已知:如图,△ABC =△CDB =90°,AC =a ,BC =b ,当BD 与a 、b 之间满足怎样的关系时,这两个三角形相似?【答案】2b BD a =或22b a b BD -=【分析】由AB △BC ,BD △CD 得到△ABC =△BDC =90°,再利用勾股定理计算出22AB a b -根据直角三角形相似的判定方法,当AB BD AC BC =,Rt △ABC △Rt △BDC ;当=BC AC BD BC时然后分别利用比例性质可表示出BD 与a 和b 的关系. 【详解】解:△AC =a ,BC =b ,△ABC =△CDB =90°,△AB 22a b -△当BD BC AB AC=时, 即22b a b BD -=Rt △ABC △Rt △BDC ; △当BD BC CB AC=时, 即2b BD a=时,Rt △ABC △Rt △CDB ,. 19.(2020·北京市第六十六中学九年级期中)如图,在Rt△ABC 中,△C =90°,D 是AB 上一点,E 是BC 上一点,AC =6,BC =8,BD =4,BE =5.求证:DE △AB .【答案】见解析【分析】利用勾股定理可求得AB =10,则有12BE AB =,12BD BC =,结合△B =△B ,可证得△BDE △△BCA ,从而有△BDE =△C =90°,即可得证.【详解】证明:△△C =90°,AC =6,BC =8,△AB 2210AC BC +=,△BD =4,BE =5, △12BE AB =,12BD BC =, △△B =△B ,△△BDE △△BCA ,△△BDE =△C =90°,即DE △AB .20.(2022·全国九年级专题练习)如图:小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,此时他距离该塔18 m ,已知小明的身高是1.6 m ,他的影长是2 m .(1)图中△ABC 与△ADE 是否相似?为什么?(2)求古塔的高度.【答案】(1)相似,见解析;(2)16m【分析】(1)根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似;(2)利用相似三角形的性质求得相应线段的长即可.【详解】解:(1)△ABC△△ADE.△BC△AE,DE△AE,△△ACB=△AED=90°.△△A=△A,△△ABC△△ADE;(2)由(1)得△ABC△△ADE,△AC BC=AE DE△AC=2m,AE=2+18=20m,BC=1.6m,△2 1.6=,20DE△DE=16m,即古塔的高度为16m.21.(2022·全国九年级专题练习)在锐角△ABC中,AD,CE分别为BC,AB边上的高,△ABC 和△BDE 的面积分别等于18和2,DE =2,求AC 边上的高.【答案】6【分析】由已知条件得到△CEB =△ADB =90°,推出△ADB △△CEB ,根据相似三角形的性质得到BD :AB =BE :BC ,证得△BDE △△BAC ,得到S △BDE :S △ABC =(DE :AC )2,于是求得AC =6,然后根据三角形的面积公式即可得到结果.【详解】过点B 做BF △AC ,垂足为点F ,△AD ,CE 分别为BC ,AB 边上的高,△△ADB =△CEB =90°,又△△B =△B ,△Rt △ADB △Rt △CEB , △BD AB BE CB =,即BD BE AB CB=, 且△B =△B ,△△EBD △△CBA , △221189BED BCA S DE S AC ⎛⎫=== ⎪⎝⎭, △13DE AC =, 又△DE =2,△AC =6,△1182ABCS AC BF =⋅=, 6BF ∴=.22.(2022·湖南师大附中博才实验中学)如图,在正方形ABCD 中,点G 是对角线上一点,CG 的延长线交AB 于点E ,交DA 的延长线于点F ,连接AG .(1)求证:AG CG =;(2)若9GE GF ⋅=,求CG 的长.【答案】(1)见解析;(2)CG =3【分析】(1)根据正方形的性质得到△ADB =△CDB =45°,AD =CD ,从而利用全等三角形的判定定理推出△ADG △△CDG (SAS ),进而利用全等三角形的性质进行证明即可;(2)根据正方形的性质得到AD △CB ,推出△FCB =△F ,由(1)可知△ADG △△CDG ,利用全等三角形的性质得到△DAG =△DCG ,结合图形根据角之间的和差关系△DAB -△DAG =△DCB -△DCG ,推出△BCF =△BAG ,从而结合图形可利用相似三角形的判定定理得到△AEG △△F AG ,进而根据相似三角形的性质进行求解即可.【详解】解:(1)证明:△BD 是正方形ABCD 的对角线,△△ADB =△CDB =45°,又AD =CD ,在△ADG 和△CDG 中,AD CD ADG CDG DG DG =⎧⎪∠=∠⎨⎪=⎩, △△ADG △△CDG (SAS ),△AG =CG ;(2)解:△四边形ABCD 是正方形,△AD △CB ,△△FCB =△F ,由(1)可知△ADG △△CDG ,△△DAG =△DCG ,△△DAB -△DAG =△DCB -△DCG ,即△BCF =△BAG ,△△EAG =△F ,又△EGA =△AGF ,△△AEG △△F AG ,△GE GA GA GF =,即GA 2=GE •GF ,△GA =3或GA =-3(舍去),根据(1)中的结论AG =CG ,△CG =3.23.(2022·浙江杭州·翠苑中学九年级)如图,在矩形ABCD 中,E 是CD 上一点,AE AB =,作BF AE ⊥.(1)求证:ADE BFA ≅△△;(2)连结BE ,若BCE 与ADE 相似,求AD AB . 【答案】(1)见解析;(23【分析】(1)根据矩形的性质得出90D DAB ∠=∠=︒,求出90DAE FAB ∠+∠=︒,90FBA FAB ∠+∠=︒,求出D AFB ∠=∠,DAE FBA ∠=∠,再根据全等三角形的判定推出即可;(2)根据矩形的性质得出90C D ∠=∠=︒,//DC AB ,根据平行线的性质得出CEB ABE ∠=∠,设CEB ABE x ∠=∠=︒,根据等腰三角形的性质求出AEB EBA x ∠=∠=︒,根据相似三角形的性质得出两种情况:△DEA CEB x ∠=∠=︒,根据180DEA AEB CEB ∠+∠+∠=︒得出180x x x ++=,求出x ,再解直角三角形求出AE 和AD ,再求出答案即可;△DEA EBC ∠=∠,设DEA EBC y ∠=∠=︒,求出(2)180DEA AEB CEB y x ∠+∠+∠=+︒=︒,()90EBC CEB y x ∠+∠=+︒=︒,求出x ,再得出答案即可.【详解】解:(1)证明:四边形ABCD 是矩形,90D DAB ∴∠=∠=︒,90DAE FAB ∴∠+∠=︒,BF AE ⊥,90AFB ∴∠=︒,D AFB ∴∠=∠,90FBA FAB ∠+∠=︒,DAE FBA ∴∠=∠,在ADE ∆和BFA ∆中DAE FBA D AFB AE AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE BFA AAS ∴∆≅∆;(2)四边形ABCD 是矩形,90C D ∴∠=∠=︒,//DC AB ,CEB ABE ∴∠=∠,设CEB ABE x ∠=∠=︒,AE AB =,AEB EBA x ∴∠=∠=︒,当BCE ∆与ADE ∆相似时,有两种情况:△DEA CEB x ∠=∠=︒,180DEA AEB CEB ∠+∠+∠=︒,180x x x ∴++=,解得:60x =,即60DEA ∠=︒,906030DAE ∴∠=︒-︒=︒,2AE DE ∴=,由勾股定理得:AD , AE AB =,∴AD AD AB AE = △DEA EBC ∠=∠,设DEA EBC y ∠=∠=︒,CEB EBA AEB x ∠=∠=∠=︒,则(2)180DEA AEB CEB y x x y x ∠+∠+∠=︒+︒+︒=+︒=︒, 在Rt BCE ∆中,()90EBC CEB y x y x ∠+∠=︒+︒=+︒=︒, 即218090y x y x +=⎧⎨+=⎩, 解得:90x =︒,即90CEB ∠=︒,此时点E 和点C 重合,BEC ∆不存在,舍去;△AD AB =。

第一轮复习相似三角形

第一轮复习相似三角形

A.7
B.7.5
C.8
D.8.5
典型习题
二、相似三角形的性质及其应用
如图,△ABC 是一张锐角三角形的硬纸片,AD 是边 BC 上的 高,BC=40 cm,AD=30 cm,从这张硬纸片上剪下一个长 HG 是宽 HE 的 2 倍的矩形 EFGH, 使它的一边 EF 在 BC 上, 顶点 G,H 分别在 AC,AB 上,AD 与 HG 的交点为 M. AM HG (1)求证: = ; AD BC (2)求这个矩形 EFGH 的周长.
⇔__________________________.
知识点
三、平行线分线段成比例 (1)定理: 三条平行线截两条直线,所得的对应线段的______ 比 相等. (2)ቤተ መጻሕፍቲ ባይዱ论: 平行于三角形一边的直线截其他两边(或两边的延长
比 相等. 线),所得的对应线段的______
知识点
四、相似三角形的定义 相等 如果两个三角形的对应角__________ ,对应边 成比例 ,那么这两个三角形叫做相似三角形. __________
知识点
六、相似多边形的判定及性质
1.定义:各角对应相等,各边对应 成比例的两个多 边形叫做相似多边形.相似多边形的对应边的比称为 相似比. 2.性质 (1)相似多边形对应角相等,对应边的比相等. (2)相似多边形周长的比等于相似比. (3)相似多边形面积的比等于相似比的平方.
知识点
七、位似图形及性质
达标检测
(3)∵CE∥AD,∴△AFD∽△CFE, CE CF ∴AD=AF. 1 1 ∵CE= AB,∴CE= ×6=3. 2 2 CE CF 3 CF 又∵AD=4,由AD=AF,得 =AF. 4 AC 7 ∴AF= . 4

2023年中考数学一轮复习 相似三角形性质与判定 (1)课件

2023年中考数学一轮复习  相似三角形性质与判定 (1)课件

四、相似三角形的判定与性质
7.如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一
点D处,折痕为EF(点E,F分别在边AC, BC上).
(1)若△CEF与△ABC相似,

①当AC=BC=2时,AD的长为
②当AC=3,BC=4时,AD的长为



;


.
(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.
BD,且CE⊥BD,则


的值为

四、相似三角形的判定与性质
【类比探究】(3)如图3,在四边形ABCD中,∠A=∠B=90°,
点E为AB上一点,连接DE,过点C作DE的垂线交ED的延长线于点
G,交AD的延长线于点F,求证:DE•AB=CF•AD;
四、相似三角形的判定与性质
证明:如图3,过点C作CH⊥AF交 AF的延长线于点H,
∵CG⊥EG,
∴∠G=∠H=∠A=∠B=90°,
∴四边形 ABCH 为矩形,
∴AB=CH,∠FCH+∠CFH=∠DFG+∠FDG=90°,
∴∠FCH=∠FDG=∠ADE,∠A=∠H=90°,
∴△DEA∽△CFH,






=
=






∴DE•AB=CF•AD;
四、相似三角形的判定与性质

A.∠AED=∠B

C.Βιβλιοθήκη =B.∠ADE=∠C

D.

=


三、相似三角形的判定
3.(2012•徐州)如图,在正方形ABCD中,E是CD的中点,

2023年中考数学一轮复习之必考点题型全归纳与分层精练-相似三角形(原卷版)

2023年中考数学一轮复习之必考点题型全归纳与分层精练-相似三角形(原卷版)

专题22相似三角形【专题目录】技巧1:巧用“基本图形”探索相似条件技巧2:巧作平行线构造相似三角形技巧3:证比例式或等积式的技巧【题型】一、相似图形的概念和性质【题型】二、平行线分线段成比例定理【题型】三、相似三角形的判定【题型】四、相似三角形的性质【题型】五、利用相似三角形解决实际问题【题型】六、位似图形的概念与性质【题型】七、平面直角坐标系与位似图形【考纲要求】1、了解比例线段的有关概念及其性质,并会用比例的性质解决简单的问题.2、了解相似多边形,相似三角形的概念,掌握其性质和判定并会运用.3、了解位似变换和位似图形的概念,掌握并运用其性质.【考点总结】一、相似图形及比例线段解直相似图形在数学上,我们把形状相同的图形称为相似图形.相似多边形若两个边数相同的多边形,它们的对应角相等、对应边成比例,则这两个多边形叫做相似多边形。

特征:对应角相等,对应边成比例。

比例线段的定义在四条线段a,b,c,d中,如果其中两条线段的比等于另外两条线段的比,即a cb d(或a∶b=c∶d),那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.【考点总结】二、相似三角形【技巧归纳】技巧1:巧用“基本图形”探索相似条件相似三角形的四类结构图:1.平行线型.2.相交线型.角三角形的应用比例线段的性质(1)基本性质:a b =c d ad =bc ;(2)合比性质:a b =c d a +b b =c +d d ;(3)等比性质:若a b =c d =…=m n (b +d +…+n ≠0),那么a +c +…+m b +d +…+n =a b.黄金分割点C 把线段AB 分成两条线段AC 和BC ,如果AC AB =BC AC ,则线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.3.子母型.4.旋转型.【类型】一、平行线型1.如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D.(1)求证:AE·BC =BD·AC ;(2)如果S △ADE =3,S △BDE =2,DE =6,求BC 的长.【类型】二、相交线型2.如图,点D ,E 分别为△ABC 的边AC ,AB 上的点,BD ,CE 交于点O ,且EO BO =DO CO,试问△ADE 与△ABC 相似吗?请说明理由.【类型】三、子母型3.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F.求证:AB AC =DF AF .【类型】四、旋转型4.如图,已知∠DAB =∠EAC ,∠ADE =∠ABC.求证:(1)△ADE ∽△ABC ;(2)AD AE =BD CE .技巧2:巧作平行线构造相似三角形【类型】一、巧连线段的中点构造相似三角形1.如图,在△ABC 中,E ,F 是边BC 上的两个三等分点,D 是AC 的中点,BD 分别交AE ,AF 于点P ,Q ,求BP PQ QD.【类型】二、过顶点作平行线构造相似三角形2.如图,在△ABC 中,AC =BC ,F 为底边AB 上一点,BFAF =32,取CF 的中点D ,连接AD 并延长交BC 于点E ,求BE EC 的值.【类型】三、过一边上的点作平行线构造相似三角形3.如图,在△ABC 中,AB >AC ,在边AB 上取一点D ,在AC 上取一点E ,使AD =AE ,直线DE 和BC的延长线交于点P.求证:BP CP =BD EC .【类型】四、过一点作平行线构造相似三角形4.如图,在△ABC 中,点M 为AC 边的中点,点E 为AB 上一点,且AE =14AB ,连接EM 并延长交BC 的延长线于点D.求证:BC =2CD.技巧3:证比例式或等积式的技巧【类型】一、构造平行线法1.如图,在△ABC 中,D 为AB 的中点,DF 交AC 于点E ,交BC 的延长线于点F ,求证:AE·CF =BF·EC.2.如图,已知△ABC 的边AB 上有一点D ,边BC 的延长线上有一点E ,且AD =CE ,DE 交AC 于点F ,求证:AB·DF =BC·EF.【类型】二、三点定型法3.如图,在▱ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F.求证:DC AE =CF AD .4.如图,在△ABC中,∠BAC=90°,M为BC的中点,DM⊥BC交CA的延长线于D,交AB于E.求证:AM2=MD·ME.【类型】三、构造相似三角形法5.如图,在等边三角形ABC中,点P是BC边上任意一点,AP的垂直平分线分别交AB,AC于点M,N.求证:BP·CP=BM·CN.【类型】四、等比过渡法6.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG·DF=DB·EF.7.如图,CE是Rt△ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D.求证:CE2=DE·PE.【类型】五、两次相似法8.如图,在Rt △ABC 中,AD 是斜边BC 上的高,∠ABC 的平分线BE 交AC 于E ,交AD 于F.求证:BF BE =AB BC .9.如图,在▱ABCD 中,AM ⊥BC ,AN ⊥CD ,垂足分别为M ,N.求证:(1)△AMB ∽△AND ;(2)AM AB =MN AC .【类型】六、等积代换法10.如图,在△ABC 中,AD ⊥于D ,DE ⊥AB 于E ,DF ⊥AC 于F.求证:AE AF =AC AB .【类型】七、等线段代换法11.如图,在等腰三角形ABC 中,AB =AC ,AD ⊥BC 于点D ,点P 是AD 上一点,CF ∥AB ,延长BP 交AC 于点E ,交CF 于点F ,求证:BP 2=PE·PF.12.如图,已知AD 平分∠BAC ,AD 的垂直平分线EP 交BC 的延长线于点P.求证:PD 2=PB·PC.【题型讲解】【题型】一、相似图形的概念和性质例1、如图,在△ABC 中,DE ∥AB ,且CD BD =32,则CE CA 的值为()A .35B .23C .45D .32【题型】二、平行线分线段成比例定理例2、如图,在ABC ∆中,//DE BC ,9AD =,3DB =,2CE =,则AC 的长为()A .6B .7C .8D .9【题型】三、相似三角形的判定例3、如图,已知DAB CAE ∠=∠,那么添加下列一个条件后,仍然无法判定A ABC DE ∽△△的是()A .AB AC AD AE =B .AB BC AD DE =C .B D ∠=∠D .C AED∠=∠【题型】四、相似三角形的性质例4、如图,在ABC ∆中,D 、E 分别是AB 和AC 的中点,15BCED S =四边形,则ABC S ∆=()A .30B .25C .22.5D .20【题型】五、利用相似三角形解决实际问题例5、为测量某河的宽度,小军在河对岸选定一个目标点A ,再在他所在的这一侧选点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,然后找出AD 与BC 的交点E ,如图所示.若测得BE =90m ,EC =45m ,CD =60m ,则这条河的宽AB 等于()A .120mB .67.5mC .40mD .30m【题型】六、位似图形的概念与性质例6、如图,△ABC 与△DEF 位似,点O 为位似中心.已知OA ∶OD =1∶2,则△ABC 与△DEF 的面积比为()A .1∶2B .1∶3C .1∶4D .1∶5【题型】七、平面直角坐标系与位似图形例7、如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm .则投影三角板的对应边长为()A .20cmB .10cmC .8cmD .3.2cm相似三角形(达标训练)一、单选题1.如图,已知∥DE BC ,12AD BD ,则ADE V 与ABC 的周长之比为()A .1:2B .1:4C .1:9D .1:32.如图,在ABC 中,高BD 、CE 相交于点.F 图中与AEC △一定相似的三角形有()A .1个B .2个C .3个D .4个3.在△ABC 中,D 、E 分别是AB 、AC 的中点,则△ADE 与△ABC 的面积之比为()A .16B .14C .13D .124.如图,D 是ABC 的边BC 上的一点,那么下列四个条件中,不能够判定△ABC 与△DBA 相似的是()A .C BAD∠=∠B .BAC BDA ∠=∠C .AC AD BC AB =D .2AB BD BC=⋅5.已知ABC ∽A B C ''' ,AD 和A D ''是它们的对应角平分线,若8AD =,12A D ''=,则ABC 与A B C ''' 的面积比是()A .2:3B .4:9C .3:2D .9;4二、填空题6.如图所示,某校数学兴趣小组利用标杆BE 测量建筑物的高度,已知标杆BE 高为1.5m ,测得AB =3m ,AC =10m ,则建筑物CD 的高是_____m .7.如图所示,要使ABC ADE ~,需要添加一个条件__________(填写一个正确的即可)三、解答题8.如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点,且AD :AB =AE :AC =2:3.(1)求证:△ADE ∽△ABC ;(2)若DE =4,求BC 的长.相似三角形(提升测评)一、单选题1.如图,在菱形ABCD 中,点E 在AD 边上,EF ∥CD ,交对角线BD 于点F ,则下列结论中错误的是()A .DE DF AE BF =B .EF DF AD DB =C .EF DF CD BF =D .EF DF CD DB=2.如图1为一张正三角形纸片ABC ,其中D 点在AB 上,E 点在BC 上.今以DE 为折线将B 点往右折后,BD 、BE 分别与AC 相交于F 点、G 点,如图2所示.若10AD =,16AF =,14DF =,8BF =,则CG 的长度为多少?()A .7B .8C .9D .103.如图,在平面直角坐标系中有A ,B 两点,其中点A 的坐标是(-2,1),点B 的横坐标是2,连接AO ,BO .已知90AOB ∠=︒,则点B 的纵坐标是()A .B .4CD .24.如图,D 是ABC △的边上的一点,过点D 作BC 的平行线交AC 于点E ,连接BE ,过点D 作BE 的平行线交AC 于点F ,则下列结论错误的是()A .AD AF BD EF =B .AF DF AE EB =C .=AD AE AB AC D .CAF FE DE B =二、填空题5.如图,小明想测量一棵树的高度,他发现树的影子落在了地上和墙上,此时测得地面上的影长BD 为4m ,墙上的影子CD 长为1m 1m 的垂直于地面上的标杆的影长为0.5m ,则树的高度为______m .6.如图,梯形ABCD 中,AD BC ∥,2BC AD =,点F 在BC 的延长线上,AF 与BD 相交于点E ,与CD 边相交于点G .如果2AD CF =,那么DEG ∆与CFG ∆的面积之比等于______.三、解答题7.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,连接AF 交CG 于点K ,H 是AF 的中点,连接CH .(1)求tan ∠GFK 的值;(2)求CH 的长.8.如图所示,BEF 的顶点E 在矩形ABCD 对角线AC 的延长线上,13BC AB AE ==,,与FB 交于点G ,连接AF ,满足ABF ∽CEB ,其中A 对应C B ,对应E F ,对应B(1)求证:30FAD ∠=︒.(2)若13CE =,求tan FEA ∠的值.。

相似三角形-备战2022年中考数学一轮复习考点(浙江专用)(解析版)

相似三角形-备战2022年中考数学一轮复习考点(浙江专用)(解析版)

考点14 相似三角形【命题趋势】相似三角形是中考数学中非常重要的一个考点,它不仅可以作为简单考点单独考察,还经常作为压轴题的重要解题方法,和其他如函数、特殊四边形、圆等问题一起考察。

而且,在很多压轴题中,虽然题面上没有明确考察相似三角形的判定或性质,但是经常通过相似三角形的判定以及性质来得到角相等或者边长间的关系,也是动点问题中得到函数关系式的重要手段。

需要考生在复习的时候给予加倍的重视! 【中考考查重点】 一、比例线段 二、相似三角形的性质 三、相似三角形的判定 四、相似三角形的基本图形考向一:比例线段一.比例的性质1.基本性质:bc ad d c b a =⇔=::;2.比例中项:b a c b c c a ⋅=⇔=2::,此时,c 为a 、b 的比例中项; 二.比例线段1.比例线段:在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段简称比例线段;2.黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB . 3.平行线分线段成比例的基本性质: 如图:AB ∥CD ∥EF ⇔DE BD CF AC =【同步练习】 1.已知=,则的值为( ) A .B .C .D .【分析】直接利用同一未知数表示出a,b的值,进而代入化简即可.【解答】解:∵=,∴设a=2x,b=5x,∴==.故选:C.2.线段AB的长为2,点C是线段AB的黄金分割点,则线段AC的长可能是()A.+1B.2﹣C.3﹣D.﹣2【分析】根据黄金分割点的定义,知AC可能是较长线段,也可能是较短线段,分别求出即可.【解答】解:∵点C是线段AB的黄金分割点,AB=2,∴AC=AB=×2=﹣1,或AC=2﹣(﹣1)=3﹣,故选:C.3.如图,直线a,b,c截直线e和f,a∥b∥c,,则下列结论中,正确的是()A.B.C.D.【分析】根据平行线分线段成比例定理即可解答本题.【解答】解:∵a∥b∥c,,∴=,∴,,,故选项A正确,符合题意,选项B、D不正确,不符合题意;连接AF,交BE于H,∵BE∥CF,∴△ABH∽△ACF,∴,,∴选项C不正确,不符合题意;故选:A.4.若==(a≠c),则=.【分析】根据等比的性质即可求解.【解答】解:∵==(a≠c),∴=.故答案为:.5.若(x、y、z均不为0),则=.【分析】设比值为k,然后用k表示出x、y、z,再代入比例式进行计算即可得解.【解答】解:设===k(k≠0),则x=6k,y=4k,z=3k,所以,==3.故答案为:3.6.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是.【分析】根据平行线分线段成比例定理的推论得出=,将AE=6代入,求出AC=14,那么EC=AC﹣AE=8.【解答】解:∵DE∥BC,∴=,∵AE=6,∴=,解得:AC =14,∴EC =AC ﹣AE =14﹣6=8. 故答案是:8.考向二:相似三角形的性质相似三角形的性质相似 三角 形的 性质相似三角形的对应角相等,对应边成比例 相似三角形的周长之比等于相似比 相似三角形的面积之比等于相似比的平方相似三角形的对应“三线”(高线、中线、角平分线)之比等于相似比【方法提炼】【同步练习】1.如图,已知△ABE ∽△CDE ,AD 、BC 相交于点E ,△ABE 与△CDE 的周长之比是,若AE =2、BE =1,则BC 的长为( )A .3B .4C .5D .6【分析】首先利用周长之比求得相似比,然后根据AE 的长求得CE 的长,从而求得BC 的长. 【解答】解:∵△ABE ∽△CDE ,△ABE 与△CDE 的周长之比是, ∴AE :CE =2:5, ∵AE =2, ∴CE =5,相似三角形性质的主要应用方向: ➢ 求角的度数 ➢ 求或证明比值关系 ➢ 证线段等积式 ➢ 求面积或面积比相似三角形的对应边成比例是求线段长度的重要方法,也是动点问题中得到函数关系式的重要手段∵BE=1,∴BC=BE+EC=1+5=6,故选:D.2.如图,已知△ABC∽△DEF,若∠A=35°,∠B=65°,则∠F的度数是()A.30°B.35°C.80°D.100°【分析】先根据三角形内角和定理求出∠C的度数,再根据相似三角形对应角相等即可解决问题.【解答】解:∵△ABC中,∠A=35°,∠B=65°,∴∠C=180°﹣∠A﹣∠B=180°﹣35°﹣65°=80°,又∵△ABC∽△DEF,∴∠F=∠C=80°,故选:C.3.如图,在正方形网格中:△ABC、△EDF的顶点都在正方形网格的格点上,△ABC∽△EDF,则∠ABC+∠ACB的度数为()A.30°B.45°C.60°D.75°【分析】利用相似三角形的性质,证明∠BAC=135°,可得结论.【解答】解:∵△ABC∽△EDF,∴∠BAC=∠DEF=135°,∴∠ABC+∠ACB=180°﹣135°=45°,故选:B.4.如图,△ABC∽△A'B′C′,下列说法正确的是()A.∠B=∠C′B.S△ABC=2S△A′B'C'C.AC=4A'C'D.A'B′=6【分析】根据相似三角形的性质解答即可.【解答】解:∵△ABC∽△A'B′C′,AB=12,BC=2a,B'C'=a,∴∠B=∠B',S△ABC:S△ABC==4,AC=2A'C',A'B'=AB==6.故A、B、C错误,D正确;故选:D.5.若D为△ABC中AB边上一点,且DE∥BC交AC于E,AB=6,BC=8,AC=10,若△ADE与△ABC 的相似比为,则AE =.【分析】先根据DE∥BC得出△ADE∽△ABC,再根据AC=10以及△ADE与△ABC的相似比为,即可求出AE.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵△ADE与△ABC的相似比为,∴=,∵AC=10,∴AE=5.故答案为:5.考向三:相似三角形的判定一.相似三角形的判定方法:判定方法1·平行∵DE∥BC∴△ABC∽△ADE判定方法2·“AA”∵∠A=∠A`,∠C=∠C` ∴△ABC∽△A,B,C,二.判定三角形相似的思路:(1)有平行截线——用平行线的性质,找等角 (2)有一对等角,找⎩⎨⎧该角的两边对应成比例另一对等角 (3)有两边对应成比例,找夹角相等(4)直角三角形,找⎩⎨⎧例直角边、斜边对应成比一对锐角相等 (5)等腰三角形,找⎩⎨⎧底边和腰长对应成比例一对底角相等 【同步练习】1.如图,在△ABC 纸片中,∠A =76°,∠B =34°.将△ABC 纸片沿某处剪开,下列四种方式中剪下的阴影三角形与原三角形相似的是( ) A .①②B .②④C .①③D .③④【分析】根据相似三角形的判定定理逐个判断即可.【解答】解:图①中,∠B =∠B ,∠A =∠BDE =76°,所以△BDE 和△ABC 相似;图②中,∠B =∠B ,不符合相似三角形的判定,不能推出△BCD 和△ABC 相似;判定方法3·“SAS ”∵````C B BCB A AB =,∠B=∠B ∴△ABC ∽△A ,B ,C , 判定方法4·“SSS ”∵``````C A ACC B BC B A AB == ∴△ABC ∽△A ,B ,C ,图③中,∠C=∠C,∠CED=∠B,所以△CDE和△CAB相似;图④中,∠C=∠C,不符合相似三角形的判定,不能推出△CDE和△ABC相似;所以阴影三角形与原三角形相似的有①③,故选:C.2.下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.=D.AB2=AD•AC【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、不能判定△ADB∽△ABC,故此选项符合题意;D、∵AB2=AD•AC,∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意.故选:C.3.如图,在下列四个条件:①∠B=∠C,②∠ADB=∠AEC,③AD:AC=AE:AB,④PE:PD=PB:PC 中,随机抽取一个能使△BPE∽△CPD的概率是()A.0.25B.0.5C.0.75D.1【分析】根据相似三角形的判定方法判断即可.【解答】解:由题意得:∠DPC=∠EPB,①∠B=∠C,根据两角相等的两个三角形相似可得:△BPE∽△CPD,②∵∠ADB=∠AEC,∴∠PDC =∠PEB ,所以,根据两角相等的两个三角形相似可得:△BPE ∽△CPD , ③∵AD :AC =AE :AB ,∠A =∠A , ∴△ADB ∽△AEC , ∴∠B =∠C ,所以,根据两角相等的两个三角形相似可得:△BPE ∽△CPD ,④PE :PD =PB :PC ,根据两边成比例且夹角相等的两个三角形相似可得:△BPE ∽△CPD , ∴在上列四个条件中,随机抽取一个能使△BPE ∽△CPD 的概率是:1, 故选:D .4.如图,在△ABC 中,AB =12,BC =15,D 为BC 上一点,且BD =BC ,在AB 边上取一点E ,使以B ,D ,E 为顶点的三角形与△ABC 相似,则BE= .【分析】根据相似三角形对应边成比例得出或,再代值计算即可.【解答】解:∵△BDE ∽△BCA 或△BDE ∽△BAC , ∴或,∵BD =BC ,BC =15, ∴BD =5, ∵AB =12, ∴或, 解得:BE =4或. 故答案为:4或.考向四:相似三角形的基本图形 一、A 字图及其变型“斜A 型”当∠ADE=∠ACB 时 △ADE ∽△ACB 性质:BCDEAB AE AC AD ==当DE ∥BC 时 △ADE ∽△ABC 性质:BCDEACAE ABAD ==①当∠A=∠C 时 △AJB ∽△CJD 性质:JDJBJC JA CDAB ==变型☆:斜A 型在圆中的应用: 如图可得:△PAB ∽△PCD二、8字图及其变型“蝴蝶型”变型三、一般母子型:联系应用:切割线定理:如图,PB 为圆O 切线,B 为切点,则:△PAB ∽△PBC得:四、一线三等角:同侧型(通常以等腰三角形或者等边三角形为背景)当AB ∥CD 时 △AOB ∽△DOC性质:OCOBOD OA CD AB ==当∠ABD=∠ACB 时 △ABD ∽△ACB 性质:ACAD AB •=2 PC PA PB •=2其中: ∠A 是公共角 AB 是公共边 BD 与BC 是对应边异侧型五、手拉手相似模型:模型名称几何模型图形特点具有性质相似型手拉手△ABC∽△ADEA、D、E逆时针A、B、C逆时针连结BD、CE①△ABD∽△ACE②△AOB∽△HOC③旋转角相等④A、B、C、H四点共圆“反向”相似型手拉手△ABC∽△ADEA、D、E顺时针A、B、C逆时针A、D、E`逆时针作△ADE关于AD对称的△ADE`性质同上①②③【同步练习】1.如图,已知,DE∥BC,AD:DB=1:2,那么下列结论中,正确的是()A.DE:BC=1:2B.AE:AC=1:3C.AD:AE=1:2D.S△ADE:S四边形BDEC=1:4【分析】利用平行线分线段成比例定理,比例的性质和相似三角形的性质对每个选项进行逐一判断即可得出结论.【解答】解:∵AD:DB=1:2,∴.∵DE∥BC,∴△ADE∽△ABC.∴.∴A选项的结论错误;∵DE∥BC,∴△ADE∽△ABC.∴.∴B选项的结论正确;∵DE∥BC,∴△ADE∽△ABC.∴.∴C选项的结论错误;∵DE∥BC,∴△ADE∽△ABC.∴.设S△ADE=k,则S△ABC=9k,∴S四边形BDEC=S△ABC﹣S△ADE=8k,∴.∴D选项的结论错误.综上所述,正确的结论是B,故选:B.2.如图,在矩形ABCD中,E,F,G分别在AB,BC,CD上,DE⊥EF,EF⊥FG,BE=3,BF=2,FC=6,则DG的长是()A.4B.C.D.5【分析】由矩形的性质可求出∠A=∠B=∠C=90°,AB=CD,证明△EFB∽△FGC,由相似三角形的性质得出,求出CG=4,同理可得出△DAE∽△EBF,由相似三角形的性质求出AE的长,则可求出答案.【解答】解:∵EF⊥FG,∴∠EFB+∠GFC=90°,∵四边形ABCD为矩形,∴∠A=∠B=∠C=90°,AB=CD,∴∠GFC+∠FGC=90°,∴∠EFB=∠FGC,∴△EFB∽△FGC,∴,∵BE=3,BF=2,FC=6,∴,∴CG=4,同理可得△DAE∽△EBF,∴,∴,∴AE=,∴BA=AE+BE=+3=,∴DG=CD﹣CG=﹣4=.故选:B.3.如图,将△ABC绕点C顺时针旋转α得到△DEC,此时点D落在边AB上,且DE垂直平分BC,则的值是()A.B.C.D.【分析】根据旋转的性质和线段垂直平分线的性质证明△DCF∽△DEC,对应边成比例即可解决问题.【解答】解:如图,设DE与BC交于点F,由旋转可知:CA=CD,AB=DE,BC=EC,∠B=∠E,∵DE垂直平分BC,∴DF⊥BC,DC=DB,CF=BF=BC=EC,∴∠DCB=∠B=∠E,∵∠DCB+∠FDC=90°,∴∠E+∠FDC=90°,∴∠DCE=90°,∴△DCF∽△DEC,∴==,∴=.故选:B.4.如图,已知在△ABC中,点D在边AB上,那么下列条件中不能判定△ABC∼△ACD的是()A.B.AC2=AD•AB C.∠B=∠ACD D.∠ADC=∠ACB【分析】△ABC和△ACD有公共角,然后根据相似三角形的判定方法对各选项进行判断.【解答】解:∵∠DAC=∠CAB,∴当∠ACD=∠B或∠ADC=∠ACB,可根据有两组角对应相等的两个三角形相似可判断△ACD∽△ABC;当,即AC2=AD•AB时,可根据两组对应边的比相等且夹角对应相等的两个三角形相似可判断△ACD∽△ABC.故选:A.5.如图,AB∥CD,AD与BC相交于点E,若AE=3,ED=5,则的值为.【分析】利用平行线的性质判定△ABE∽△DCE,利用相似三角形的性质可得结论.【解答】解:∵AB∥CD,∴△ABE∽△DCE.∴.∵AE=3,ED=5,∴=.故答案为:.1.已知,则的值是()A.B.C.D.【分析】设=k(k≠0),得出a=13k,b=5k,再代入要求的式子进行计算即可求出答案.【解答】解:设=k(k≠0),则a=13k,b=5k,∴==;故选:D.2.如图,在△ABC中,∠ABC=3∠A,AC=6,BC=4,所以AB长为()A.2B.C.D.4【分析】将∠ABC三等分,与△ABC外接圆相交,交点分别为:E与F,利用托勒密定理列出方程组,求解即可解决问题.【解答】解:将∠ABC三等分,与△ABC外接圆相交,交点分别为:E与F,如图所示:圆上依次为ABCEF,记BE=m,AB=b,则利用托勒密定理有:,可得:,即,∴b=,故选:B.3.如图,在平行四边形ABCD中,E是AB的中点,F是AD的中点,FE交AC于O点,交CB的延长线于G点,那么S△AOF:S△COG=()A.1:4B.1:9C.1:16D.1:25【分析】根据平行四边形的性质求出AD=BC,AD∥BC,推出△AFE∽△BGE,△AFO∽△CGO,再根据相似三角形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵E为AB的中点,F为AD的中点,∴AE=BE,AF=AD=BC,∵AD∥BC,∴△AFE∽△BGE,∴,∵AE=BE,∴AF=BG=BC,∴=∵AD∥BC,∴△AFO∽△CGO,∴=()2=,即S△AOF:S△COG=1:9,故选:B.4.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.B.C.D.【分析】根据平行线分线段成比例性质进行解答便可.【解答】解:∵EF∥BC,∴,∵EG∥AB,∴,∴,故选:A.5.如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△P AB 的面积分别为S,S1,S2.若S=3,则S1+S2的值为()A.24B.12C.6D.3【分析】过P作PQ平行于DC,由DC与AB平行,得到PQ平行于AB,可得出四边形PQCD与ABQP 都为平行四边形,进而确定出△PDC与△PCQ面积相等,△PQB与△ABP面积相等,再由EF为△BPC 的中位线,利用中位线定理得到EF为BC的一半,且EF平行于BC,得出△PEF与△PBC相似,相似比为1:2,面积之比为1:4,求出△PBC的面积,而△PBC面积=△CPQ面积+△PBQ面积,即为△PDC面积+△P AB面积,即为平行四边形面积的一半,即可求出所求的面积.【解答】解:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=12.故选:B.6.如图,在平行四边形ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=4,则S△ADF的值为()A.6B.10C.15D.【分析】因为四边形ABCD是平行边形,所以AD∥BC,则△AEF∽△ABC,得==,根据相似三角形面积的比等于相似比的平方求出△ABC的面积为25,而△CDA≌△ABC,则△CDA的面积为25,根据等高三角形面积的比等于底的比即可求出△ADF的面积.【解答】解:如图,∵四边形ABCD是平行边形,∴AD∥BC,∴△AEF∽△ABC,∵3AE=2EB,∴=,∴==,∴===,∵S△AEF=4,∴S△ABC===25,∴CD=AB,AD=BC,AC=CA,∴△CDA≌△ABC(SSS),∴S△CDA=S△ABC=25,∴S△ADF=S△CDA=×25=10,∴S△ADF的值为10,故选:B.7.如图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,那么=.【分析】由平行四边形的对边相等可求得BC=AD,BC∥AD,易证得△BEF∽△DAF,则,根据比例的性质即可得解.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;∵=,∵AD∥BC,∴△BEF∽△DAF,∴,∴,∴==.故答案为:.8.在矩形ABCD中,AB=6,AD=8,E是BC的中点,连接AE,过点D作DF⊥AE于点F,连接CF、AC.(1)线段DF的长为;(2)若AC交DF于点M,则=.【分析】(1)利用三角形面积相等,列出等式,求解即可;(2)延长DF交CB的延长线于K,利用相似三角形的性质求出KE,再利用平行线分线段成比例定理求解即可.【解答】解:(1)根据题意,画出下图:∵AB=6,AD=8,BE==4,∴AE=,∴S△ADE==,S△ADE==24,∴DF==.(2)若AC交DF于点M,延长DF交BC延长线于点K,如图所示:∵∠KEF=∠AEB,∠EFK=∠ABE=90°,∴△KEF∽△AEB,∴,∴,∴KE=5,∴CK=KE+EC=9,∵AD∥CK,∴=.9.如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:BD•AD=DE•AC.(2)若AB=13,BC=10,求线段DE的长.(3)在(2)的条件下,求cos∠BDE的值.【分析】(1)证明∠B=∠C,∠DEB=∠ADC=90°,可证明△BDE∽△CAD即可解决问题;(2)利用面积法:•AD•BD=•AB•DE求解即可;(3)可得出∠BDE=∠BAD,则cos∠BDE=cos∠BAD=.【解答】证明:(1)∵AB=AC,BD=CD,∴AD⊥BC,∠B=∠C,∵DE⊥AB,∴∠DEB=∠ADC,∴△BDE∽△CAD.∴,∴BA•AD=DE•CA;(2)∵AB=AC,BD=CD,∴AD⊥BC,在Rt△ADB中,AD===12,∵•AD•BD=•AB•DE,∴DE=.(3)∵∠ADB=∠AED=90°,∴∠BDE=∠BAD,∴cos∠BDE=cos∠BAD=.10.已知:四边形ABCD中,AC=AB=20,点E为BC边上一点,BE≥CE,且DE=DC,∠AED=∠B,AC、DE相交于点F,cos∠B=.(1)求证:△ABE∽△ECF;(2)若BE=18,求EF的长;(3)若∠DAE=90°,求CE的长.【分析】(1)正确作出辅助线,找到对等关系,即可证明△ABE∽△ECF;(2)找到包含有要求解的边长有关系的三角形,利用勾股定理,求出AE的边长,再利用相似三角形,找到对应关系,即可求出EF的长;(3)在直角三角形内,根据给定的余弦值,找到对应边长,即可求出CE的长.【解答】(1)证明:如图所示:过点A作AH⊥BC于H,∵AB=AC=20,∴∠AED=∠B,∴∠1+∠2=180°﹣∠AED,∵∠3+∠2=180°﹣∠B,∴∠1=∠3,∴△ABE∽△ECF;(2)解:由(1)知,过点A作AH⊥BC于H,∵AB=20,cos∠B=,∴BH=16,∵AB=AC,∴BH=CH=16,∴BC=32,∵BE=18,∴EC=14,在△ABH中,AH=,HE=BE﹣BH=18﹣16=2,∴AE=,∵△ABE∽△ECF,∴,即,∴EF=.(3)解:若∠DAE=90°,则∠BAE=90°,∵AB=20,cos∠B=,∴BE=25,∴CE=BC﹣BE=32﹣25=7.1.(2021·浙江衢州)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE与地面平行,支撑杆AD,BC可绕连接点O转动,且OA=OB,椅面底部有一根可以绕点H转动的连杆HD,点H是CD的中点,F A,EB均与地面垂直,测得F A=54cm,EB=45cm,AB=48cm.(1)椅面CE的长度为cm.(2)如图3,椅子折叠时,连杆HD绕着支点H带动支撑杆AD,BC转动合拢,椅面和连杆夹角∠CHD 的度数达到最小值30°时,A,B两点间的距离为cm(结果精确到0.1cm).(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)【分析】(1)由平行线的性质可得∠ECB=∠ABF,由锐角三角函数可得,即可求解;(2)如图2,延长AD,BE交于点N,由“ASA”可证△ABF≌△BAN,可得BN=AF,可求NE的长,由锐角三角函数可求DE的长,即可求DH的长,如图3,连接CD,过点H作HP⊥CD于P,由锐角三角函数和等腰三角形的性质,可求DC的长,通过相似三角形的性质可求解.【解答】解:(1)∵CE∥AB,∴∠ECB=∠ABF,∴tan∠ECB=tan∠ABF,∴,∴,∴CE=40(cm),故答案为:40;(2)如图2,延长AD,BE交于点N,∵OA=OB,∴∠OAB=∠OBA,在△ABF和△BAN中,,∴△ABF≌△BAN(ASA),∴BN=AF=54(cm),∴EN=9(cm),∵tan N=,∴=,∴DE=8(cm),∴CD=32(cm),∵点H是CD的中点,∴CH=DH=16(cm),∵CD∥AB,∴△AOB∽△DOC,∴===,如图3,连接CD,过点H作HP⊥CD于P,∵HC=HD,HP⊥CD,∴∠PHD=∠CHD=15°,CP=DP,∵sin∠DHP==sin15°≈0.26,∴PD≈16×0.26=4.16(cm),∴CD=2PD=8.32(cm),∵CD∥AB,∴△AOB∽△DOC,∴,∴,∴AB=12.48≈12.5(cm),故答案为:12.5.2.(2021·浙江宁波)【证明体验】(1)如图1,AD为△ABC的角平分线,∠ADC=60°,点E在AB上,AE=AC.求证:DE平分∠ADB.【思考探究】(2)如图2,在(1)的条件下,F为AB上一点,连结FC交AD于点G.若FB=FC,DG=2,CD=3,求BD的长.【拓展延伸】(3)如图3,在四边形ABCD中,对角线AC平分∠BAD,∠BCA=2∠DCA,点E在AC上,∠EDC=∠ABC.若BC=5,CD=2,AD=2AE,求AC的长.【分析】(1)由△EAD≌△CAD得∠ADE=∠ADC=60°,因而∠BDE=60°,所以DE平分∠ADB;(2)先证明△BDE∽△CDG,其中CD=ED,再由相似三角形的对应边成比例求出BD的长;(3)根据角平分线的特点,在AB上截取AF=AD,连结CF,构造全等三角形和相似三角形,由相似三角形的性质求出AC的长.【解答】(1)证明:如图1,∵AD平分∠BAC,∴∠EAD=∠CAD,∵AE=AC,AD=AD,∴△EAD≌△CAD(SAS),∴∠ADE=∠ADC=60°,∵∠BDE=180°﹣∠ADE﹣∠ADC=180°﹣60°﹣60°=60°,∴∠BDE=∠ADE,∴DE平分∠ADB.(2)如图2,∵FB=FC,∴∠EBD=∠GCD;∵∠BDE=∠CDG=60°,∴△BDE∽△CDG,∴;∵△EAD≌△CAD,∴DE=CD=3,∵DG=2,∴BD===.(3)如图3,在AB上取一点F,使AF=AD,连结CF.∵AC平分∠BAD,∴∠F AC=∠DAC,∵AC=AC,∴△AFC≌△ADC(SAS),∴CF=CD,∠FCA=∠DCA,∠AFC=∠ADC,∵∠FCA+∠BCF=∠BCA=2∠DCA,∴∠DCA=∠BCF,即∠DCE=∠BCF,∵∠EDC=∠ABC,即∠EDC=∠FBC,∴△DCE∽△BCF,∴,∠DEC=∠BFC,∵BC=5,CF=CD=2,∴CE===4;∵∠AED+∠DEC=180°,∠AFC+∠BFC=180°,∴∠AED=∠AFC=∠ADC,∵∠EAD=∠DAC(公共角),∴△EAD∽△DAC,∴=,∴AC=2AD,AD=2AE,∴AC=4AE=CE=×4=.3.(2021·浙江杭州)如图,锐角三角形ABC内接于⊙O,∠BAC的平分线AG交⊙O于点G,交BC边于点F,连接BG.(1)求证:△ABG∽△AFC.(2)已知AB=a,AC=AF=b,求线段FG的长(用含a,b的代数式表示).(3)已知点E在线段AF上(不与点A,点F重合),点D在线段AE上(不与点A,点E重合),∠ABD =∠CBE,求证:BG2=GE•GD.【分析】(1)根据∠BAC的平分线AG交⊙O于点G,知∠BAC=∠F AC,由圆周角定理知∠G=∠C,即可证△ABG∽△AFC;(2)由(1)知=,由AC=AF得AG=AB,即可计算FG的长度;(3)先证△DGB∽△BGE,得出线段比例关系,即可得证BG2=GE•GD.【解答】(1)证明:∵AG平分∠BAC,∴∠BAG=∠F AC,又∵∠G=∠C,∴△ABG∽△AFC;(2)解:由(1)知,△ABG∽△AFC,∴=,∵AC=AF=b,∴AB=AG=a,∴FG=AG﹣AF=a﹣b;(3)证明:∵∠CAG=∠CBG,∠BAG=∠CAG,∴∠BAG=∠CBG,∵∠ABD=∠CBE,∴∠BDG=∠BAG+∠ABD=∠CBG+∠CBE=∠EBG,又∵∠DGB=∠BGE,∴△DGB∽△BGE,∴=,∴BG2=GE•GD.4.(2021·浙江金华)在平面直角坐标系中,点A的坐标为(﹣,0),点B在直线l:y=x上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.①若BA=BO,求证:CD=CO.②若∠CBO=45°,求四边形ABOC的面积.(2)是否存在点B,使得以A,B,C为顶点的三角形与△BCO相似?若存在,求OB的长;若不存在,请说明理由.【分析】(1)①由BC⊥AB,CO⊥BO,可得∠BAD+∠ADB=∠COD+∠DOB=90°,而根据已知有∠BAD=∠DOB,故∠ADB=∠COD,从而可得∠COD=∠CDO,CD=CO;②过A作AM⊥OB于M,过M作MN⊥y轴于N,设M(m,m),可得tan∠OMN=tan∠AOM=,即=,设AM=3n,则OM=8n,Rt△AOM中,AM2+OM2=OA2,可求出AM=3,OM=8,由∠CBO=45°可知△BOC是等腰直角三角形,△ABM是等腰直角三角形,从而有AM=BM=3,BO=CO =OM﹣BM=5,AB=AM=3,BC=BO=5,即可求出S四边形ABOC=S△ABC+S△BOC=;(2)(一)过A作AM⊥OB于M,当B在线段OM或OM延长线上时,设OB=x,则BM=|8﹣x|,AB =,由△AMB∽△BOC,=,即=,得OC=,BC==,以A,B,C为顶点的三角形与△BCO相似,分两种情况:①若=,OB=4;②若=,OB =4+或OB=4﹣或OB=9;(二)当B在线段MO延长线上时,设OB=x,则BM=8+x,AB=,由△AMB∽△BOC,=,即=,得OC=•(8+x),以A,B,C为顶点的三角形与△BCO相似,需满足=,即=,可得OB=1.【解答】(1)①证明:∵BC⊥AB,CO⊥BO,∴∠ABC=∠BOC=90°,∴∠BAD+∠ADB=∠COD+∠DOB=90°,∵BA=BO,∴∠BAD=∠DOB,∴∠ADB=∠COD,∵∠ADB=∠CDO,∴∠COD=∠CDO,∴CD=CO;②解:过A作AM⊥OB于M,过M作MN⊥y轴于N,如图:∵M在直线l:y=x上,设M(m,m),∴MN=|m|=﹣m,ON=|m|=﹣m,Rt△MON中,tan∠OMN==,而OA∥MN,∴∠AOM=∠OMN,∴tan∠AOM=,即=,设AM=3n,则OM=8n,Rt△AOM中,AM2+OM2=OA2,又A的坐标为(﹣,0),∴OA=,∴(3n)2+(8n)2=()2,解得n=1(n=﹣1舍去),∴AM=3,OM=8,∵∠CBO=45°,CO⊥BO,∴△BOC是等腰直角三角形,∵BC⊥AB,∠CBO=45°,∴∠ABM=45°,∵AM⊥OB,∴△ABM是等腰直角三角形,∴AM=BM=3,BO=CO=OM﹣BM=5,∴等腰直角三角形△ABM中,AB=AM=3,等腰直角三角形△BOC中,BC=BO=5,∴S△ABC=AB•BC=15,S△BOC=BO•CO=,∴S四边形ABOC=S△ABC+S△BOC=;(2)解:存在点B,使得以A,B,C为顶点的三角形与△BCO相似,理由如下:(一)过A作AM⊥OB于M,当B在线段OM或OM延长线上时,如图:由(1)②可知:AM=3,OM=8,设OB=x,则BM=|8﹣x|,AB=,∵CO⊥BO,AM⊥BO,AB⊥BC,∴∠AMB=∠BOC=90°,∠ABM=90°﹣∠OBC=∠BCO,∴△AMB∽△BOC,∴=,即=,∴OC=,Rt△BOC中,BC==,∵∠ABC=∠BOC=90°,∴以A,B,C为顶点的三角形与△BCO相似,分两种情况:①若=,则=,解得x=4,∴此时OB=4;②若=,则=,解得x1=4+,x2=4﹣,x3=9,x4=﹣1(舍去),∴OB=4+或OB=4﹣或OB=9;(二)当B在线段MO延长线上时,如图:由(1)②可知:AM=3,OM=8,设OB=x,则BM=8+x,AB=,∵CO⊥BO,AM⊥BO,AB⊥BC,∴∠AMB=∠BOC=90°,∠ABM=90°﹣∠OBC=∠BCO,∴△AMB∽△BOC,∴=,即=,∴OC=•(8+x),Rt△BOC中,BC==•,∵∠ABC=∠BOC=90°,∴以A,B,C为顶点的三角形与△BCO相似,需满足=,即=,解得x1=﹣9(舍去),x2=1,∴OB=1,综上所述,以A,B,C为顶点的三角形与△BCO相似,则OB的长度为:4或4+或4﹣或9或1;1.(2021•瓯海区模拟)若=,则的值是()A.3B.C.D.2【分析】根据比例的性质求出b=2a,再代入求出答案即可.【解答】解:∵=,∴b=2a,∴===,故选:C.2.(2021•下城区校级四模)在比例尺为1:10000的地图上,相距4cm的A、B两地的实际距离是()A.400m B.400dm C.400cm D.400km【分析】设AB的实际距离为xcm,根据比例尺的定义得到4:x=1:10000,利用比例的性质求得x的值,注意单位统一.【解答】解:设AB的实际距离为xcm,∵比例尺为1:10000,∴4:x=1:10000,∴x=40000cm=400m.故选:A.3.(2021•温岭市一模)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,则BC:CE=()A.3:5B.1:3C.5:3D.2:3【分析】直接根据平行线分线段成比例定理求解.【解答】解:∵AB∥CD∥EF,∴===.故选:A.4.(2021•拱墅区二模)如图,在正方形ABCD中,E,F分别是BC、AB上一点,且AF=BE,AE与DF 交于点G,连接CG.若CG=BC,则AF:FB的比为()A.1:1B.1:2C.1:3D.1:4【分析】作CH⊥DF于点H,证明△AGD≌△DHC,可得AG=DH=GH,tan∠ADG==.由此可解决此问题.【解答】解:作CH⊥DF于点H,如图所示.在△ADF和△BAE中,,∴△ADF≌△BAE(SAS).∴∠ADF=∠BAE,又∠BAE+∠GAD=90°,∴∠ADF+∠GAD=90°,即∠AGD=90°.由题意可得∠ADG+∠CDG=90°,∠HDC+∠CDG=90°,.∴∠ADG=∠HDC.在△AGD和△DHC中,,∴△AGD≌△DHC(AAS).∴DH=AG.又CG=BC,BC=DC,∴CG=DC.由等腰三角形三线合一的性质可得GH=DH,∴AG=DH=GH.∴tan∠ADG=.又tan∠ADF==,∴AF=AB.即F为AB中点,∴AF:FB=1:1.故选:A.5.(2021•宁波模拟)如图,在△ABC中,DE∥AB,且=2,则的值为()A.B.C.2D.3【分析】根据平行线分线段成比例定理定理列出比例式,计算即可.【解答】解:∵=2,∴=,∵DE∥AB,∴==,故选:B.6.(2021•丽水模拟)如图,已知△ABC∽△BDC,其中AC=4,CD=2,则BC=()A.2B.C.D.4【分析】直接利用相似三角形的性质得出BC2=AC•CD,进而得出答案.【解答】解:∵△ABC∽△BDC,∴=,∵AC=4,CD=2,∴BC2=AC•CD=4×2=8,∴BC=2.故选:B.7.(2021•宁波模拟)如图,△ABC的两条中线BE,CD交于点O,则下列结论不正确的是()A.=B.=C.△ADE∽△ABC D.S△DOE:S△BOC=1:2【分析】根据三角形中位线定理得到DE=BC,DE∥BC,根据相似三角形的性质进行计算,判断即可.【解答】解:∵AD=DB,AE=EC,∴DE=BC,DE∥BC,∴=,A选项结论正确,不符合题意;∵DE∥BC,∴=,B选项结论正确,不符合题意;∵DE∥BC,∴△ADE∽△ABC,C选项结论正确,不符合题意;∵DE∥BC,∴△DOE∽△COB,∴S△DOE:S△COB=1:4,D选项结论错误,符合题意;故选:D.8.(2021•西湖区校级二模)如图,正六边形ABCDEF外作正方形DEGH,连接AH交DE于点O,则等于()A.3B.C.2D.【分析】连接BD,如图所示:由正六边形和正方形的性质得:B、D、H三点共线,设正六边形的边长为a,则AB=BC=CD=DE=a,解直角三角形求出BD,再利用平行线分线段成比例定理解决问题即可.【解答】解:连接BD,如图所示:由正六边形和正方形的性质得:B、D、H三点共线,设正六边形的边长为a,则AB=BC=CD=DE=a,∵在△BCD中,BC=CD=a,∠BCD=120°,∴BD=a.∵OD∥AB,∴===,故选:B.9.(2021•拱墅区二模)黄金分割比符合人的视觉习惯,在人体躯干和身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618越给人以美感.张女士身高165cm,若她下半身的长度(脚底到肚脐的高度)与身高的比值是0.60,为尽可能达到匀称的效果,她应该选择约厘米的高跟鞋看起来更美.(结果保留整数)【分析】根据黄金分割定义:下半身长与全身的比等于0.618即可求解.【解答】解:根据已知条件可知:下半身长是165×0.6=99(cm),设需要穿的高跟鞋为ycm,则根据黄金分割定义,得=0.618,解得:y≈8,经检验y≈8是原方程的根,答:她应该选择大约8cm的高跟鞋.故答案为8.10.(2021•金东区校级模拟)如图,已知直角坐标系中四点A(﹣2,4)、C(2,﹣3),分别过A、C作AB、CD垂直于x轴于B、D.设P是x轴上的点,且P A、PB、AB所围成的三角形与PC、PD、CD所围成的三角形相似,请写出所有符合上述条件的点P的坐标是.【分析】需要分情况分析,当点P在AB左边,在AB与CD之间,在CD的右边,通过相似三角形的性质:相似三角形的对应边成比例即可求得.【解答】解:设OP=x(x>0),分三种情况:一、若点P在AB的左边,有两种可能:①此时△ABP∽△PDC,则PB:CD=AB:PD,则(x﹣2):3=4:(x+2),解得x=4,∴点P的坐标为(﹣4,0);②若△ABP∽△CDP,则AB:CD=PB:PD,则(﹣x﹣2):(2﹣x)=4:3,解得:x=14,与假设在B点左边矛盾,舍去.二、若点P在AB与CD之间,有两种可能:①若△ABP∽△CDP,则AB:CD=BP:PD,∴4:3=(x+2):(2﹣x),解得:x=,∴点P的坐标为(,0);②若△ABP∽△PDC,则AB:PD=BP:CD,∴4:(2﹣x)=(x+2):3,方程无解;三、若点P在CD的右边,有两种可能:①若△ABP∽△CDP,则AB:CD=BP:PD,∴4:3=(2+x):(x﹣2),∴x=14,∴点P的坐标为(14,0),②若△ABP∽△PDC,则AB:PD=BP:CD,∴4:(x﹣2)=(x+2):3,∴x=4,∴点P的坐标为(4,0);∴点P的坐标为(,0)、(14,0)、(4,0)、(﹣4,0).故答案为:(,0)、(14,0)、(4,0)、(﹣4,0).11.(2021•宁波模拟)如图,▱ABCD中,对角线AC与BD相交于点O,∠ABD=∠ACB,G是线段OD上一点,∠DGC﹣∠DCG=90°,tan∠DCG=,则的值为.【分析】由锐角三角函数可设GF=a,CF=2a,由“AAS”可证△GCE≌△GCF,可得CE=CF=2a,GF=EG=a,通过证明△GFD∽△CED,可求DC=a,DE=a,通过证明△DCO∽△ACD,可得,由勾股定理可求OE,即可求解.【解答】解:如图,过点C作CE⊥BD于E,过G作GF⊥CD于F,∵∠DGC=∠CEG+∠GCE=90°+∠GCE,∴∠DGC﹣∠GCE=90°,又∵∠DGC﹣∠DCG=90°,∴∠GCD=∠ECG,∵tan∠DCG==,∴设GF=a,CF=2a,在△GCE和GCF中,,∴△GCE≌△GCF(AAS),∴CE=CF=2a,GF=EG=a,∵∠GDF=∠EDC,∠GFD=∠CED=90°,∴△GFD∽△CED,∴,∴==,∴DF=a,DG=a,∴DC=a,DE=a,∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AO=CO,BO=DO,∴∠ABD=∠BDC,∠DAC=∠ACB,∵∠ABD=∠ACB,∴∠BDC=∠DAC,又∵∠ACD=∠DCO,∴△DCO∽△ACD,∴,∴DC2=2OC2,∴OC2=a2=a2,∴OE==a,∴OD=DE+OE=a=OB,∴=,故答案为:.12.(2021•西湖区二模)如图,在矩形ABCD中,E是CD上一点,AE=AB,作BF⊥AE.(1)求证:△ADE≌△BF A;(2)连接BE,若△BCE与△ADE相似,求.【分析】(1)根据矩形的性质得出∠D=∠DAB=90°,求出∠DAE+∠F AB=90°,∠FBA+∠F AB=90°,求出∠D=∠AFB,∠DAE=∠FBA,再根据全等三角形的判定推出即可;(2)根据矩形的性质得出∠C=∠D=90°,DC∥AB,根据平行线的性质得出∠CEB=∠ABE,设∠CEB=∠ABE=x°,根据等腰三角形的性质求出∠AEB=∠EBA=x°,根据相似三角形的性质得出两种情况:①∠DEA=∠CEB=x°,根据∠DEA+∠AEB+∠CEB=180°得出x+x+x=180,求出x,再解直角三角形求出AE和AD,再求出答案即可;②∠DEA=∠EBC,设∠DEA=∠EBC=y°,求出∠DEA+∠AEB+∠CEB=(y+2x)°=180°,∠EBC+∠CEB=(y+x)°=90°,求出x,再得出答案即可.【解答】(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAB=90°,∴∠DAE+∠F AB=90°,∵BF⊥AE,∴∠AFB=90°,∴∠D=∠AFB,∠FBA+∠F AB=90°,∴∠DAE=∠FBA,在△ADE和△BF A中,∴△ADE≌△BF A(AAS);(2)解:∵四边形ABCD是矩形,∴∠C=∠D=90°,DC∥AB,∴∠CEB=∠ABE,设∠CEB=∠ABE=x°,∵AE=AB,∴∠AEB=∠EBA=x°,当△BCE与△ADE相似时,有两种情况:①∠DEA=∠CEB=x°,∵∠DEA+∠AEB+∠CEB=180°,∴x+x+x=180,解得:x=60,即∠DEA=60°,∴∠DAE=90°﹣60°=30°,∴AE=2DE,由勾股定理得:AD===DE,∵AE=AB,∴===;②∠DEA=∠EBC,设∠DEA=∠EBC=y°,∵∠CEB=∠EBA=∠AEB=x°,则∠DEA+∠AEB+∠CEB=y°+x°+x°=(y+2x)°=180°,在Rt△BCE中,∠EBC+∠CEB=y°+x°=(y+x)°=90°,即,解得:x=90°,即∠CEB=90°,此时点E和点C重合,△BEC不存在,舍去;所以=.13.(2021•拱墅区二模)如图,在△ABC中,D、E分别是边AC、BC的中点,F是BC延长线上一点,∠F=∠B.(1)若AB=10,求FD的长;(2)若AC=BC,求证:△CDE∽△DFE.【分析】(1)首先利用中位线定理得到DE∥AB以及DE的长,再证明∠DEC=∠F即可;(2)根据等腰三角形的性质得到∠A=∠B,进而求出∠CDE=∠F并结合∠CED=∠DEF即可证明△CDE∽△DFE.【解答】解:(1)∵D、E分别是AC、BC的中点,∴DE∥AB,DE=AB=5,∵DE∥AB,∴∠DEC=∠B,而∠F=∠B,∴∠DEC=∠F,∴DF=DE=5;(2)∵AC=BC,∴∠A=∠B,∵∠CDE=∠A,∠CED=∠B,∴∠CDE=∠B,∵∠B=∠F,∴∠CDE=∠F,∵∠CED=∠DEF,∴△CDE∽△DFE.14.(2021•宁波模拟)如图,矩形ABCD中,E是边AD的中点,CE与BD交于点P,将△ABE沿BE翻折,点A的对应点F刚好落在线段CP上.(1)求证:△EBC是等边三角形.(2)求的值.【分析】(1)根据矩形的性质证明△ABE≌△DCE(SAS),可得EB=EC,∠AEB=∠CED,由翻折可知:∠AEB=∠FEB,进而可以解决问题;(2)证明△PDE∽△PBC,可得==,所以=,进而可以解决问题.【解答】(1)证明:∵E是边AD的中点,∴AE=DE,∵四边形ABCD是矩形,∴∠A=∠CDA=90°,AB=CD,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴EB=EC,∠AEB=∠CED,由翻折可知:∠AEB=∠FEB,∴∠AEB=∠FEB=∠CED=60°,∴△EBC是等边三角形;(2)解:∵四边形ABCD是矩形,∴AD∥BC,。

相似三角形-中考数学第一轮总复习课件(全国通用)

相似三角形-中考数学第一轮总复习课件(全国通用)

中考数学第一轮总复习典例精讲考点聚集查漏补缺拓展提升第四单元 三角形专题4.4 相似三角形知识点比例线段01相似三角形的性质与判定02相似三角形的应用03拓展训练04【例1】已知2x=3y(y≠0),则下面结论成立的是( ) A.x:y=3:2 B.x:3=2:y C.x:y=2:3 D.x:2=y:3A1.线段的比:在同一单位长度下,两条线段长度的比叫做两条线段的比;2.比例线段:对于四条线段a,b,c,d,若其中两条线段的比与另两条线段的比相等(a:b=c:d).我们就说这四条线段成比例,简称比例线段.3.比例的基本性质:4.更比定理:考点聚集ad=bc知识点一典例精讲比例线段1.已知 ,则 的值是____.2.人们认为最美人体的头顶至肚脐的长度与肚脐至足底之比是 .某人测得头顶至肚脐长约65cm,肚脐至足底长约102cm,为尽可能达到黄金比的美感效果,作为形象设计师的你,对于她的着装建议为穿一双( )cm的高跟鞋(精确到1cm) A.2 B.3 C.4 D.5B 知识点一强化训练比例线段知识点比例线段01相似三角形的性质与判定02相似三角形的应用03拓展训练04【例2】如图,已知△ABC中,∠BAC=90º,延长BA到点D,使AD=0.5AB,点E,F分别是边BC,AC的中点.求证:DF=BE 方法一:证△ADF≌△FEC(SAS)AFDBCE方法二:证△ADF∽△BCA方法三:连接AE,利用平行四边形证明知识点二典例精讲相似三角形的性质与判定1.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是( ) A.∠C=∠AED B.AB:AD=AC:AE C.∠B=∠D D.AB:AD=BC:DE2.如图,△ABC 中,∠A =78º,AB =4,AC =6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )DA 1CEBD2知识点二强化训练三角形相似的性质与判定CAC B78ºAC B78ºAAC B14DAC B 23CAC B 78ºB3.如图,在□ABCD中,连接AC,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S △AEF =4,则S △ADF 的值为_____.4.如图,一束光线从点A(4,4)射出,经y轴上的点C的反射后,经过点B(1,0),则点C的坐标是( ) A.(0,0.5) B.(0,0.8) C.(0,1) D.(0,2)5.在□ABCD中,E是AD上的一点,且点E将AD分为2:3的两部分,连接BE,AC相交于F,则S △AEF :S △CBF =_______.AFE DCB10知识点二强化训练三角形相似的性质与判定B AyxC OB(1,0)知识点比例线段01相似三角形的性质与判定02相似三角形的应用03拓展训练04【例3】如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB=_____m.5.5 DAE BFC 知识点三典例精讲相似三角形的应用3.如图,△ABC是一张锐角三角形硬纸片,AD是边BC上的高BC=40cm,AD=30cm,从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G,H分别在AC,AB上,AD与HG的交点为M.(1)求证:AM:AD=HG:BC;(2)求矩形EFGH的周长。

2020初中数学中考一轮复习基础达标训练:相似三角形2(附答案)

2020初中数学中考一轮复习基础达标训练:相似三角形2(附答案)

2020初中数学中考一轮复习基础达标训练:相似三角形2(附答案)1.如图,P 为平行四边形ABCD 边AB 上一点,E 、F 分别为PD 、PC 的三等分点(靠近P ),则阴影部分的面积与四边形CDEF 的面积比为( )A .12B .103C .98D .542.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BCDF CE=B .BC DFCE AD= C .CD BCEF BE= D .CD ADEF AF= 3.有一个正六边形,将其按比例缩小,使得缩小后的正六边形的面积为原正六边形面积的,已知原正六边形一边为3,则后来正六边形的边长为( ) A .9B .3C .D .4.如图,BD 、CE 是ABC △的两条高,BD 、CE 相交于O ,则下列结论不正确的是( ).A .ADE V ∽ABC △B .DOE △∽COB △C .BOE △∽COD △D .BOE △∽BDE V5.如图,已知12∠∠=,若再增加一个条件不一定能使结论ADE ABC V V ∽成立,则这个条件是( )A .DB ∠∠= B .AEDC ∠∠=C .AD AEAB AC=D .AD DEAB BC=6.如图DE // BC ,AD :DB=2:1,那么△ADE 与△ABC 的相似比为( )A .16B .23C .14D .27.如图,的高AD ,BE 交于点0,连接DE ,则图中相似三角形共有( )A .4对B .6对C .7对D .8对8.如图,在△ABC 中,AC =15,BC =18,cos C =35,DE ∥BC ,DF ⊥BC ,若S △BFD =2S △BDE ,则CD 长为( )A .7.5B .9C .10D .59.已知线段a ,b ,c ,d 是比例线段,其中b 2cm =,c 3cm =,d 6cm =,则a 等于( )A .1cmB .4cmC .9cmD .36cm10.在比例尺为1:100000的地图上,相距3m 的两地,它们的实际距离为_____km . 11.如图,直线112y x =+与x 轴,y 轴分别相交于A ,B 两点,与双曲线4y x=(0x >)相交于点P ,过P 作PC x ⊥轴于点C ,2OC =,在点P 右侧的双曲线上取一点M ,作MH x ⊥轴于H ,当以点M ,C ,H 为顶点的三角形与AOB ∆相似,则点M 的坐标是__________.12.如图,已知D 是BC 边延长线上的一点,DF 交AC 边于E 点,且AF =1,BC =3CD ,AE =2EC ,则FB 长为_____.13.如果两个相似三角形的面积比是1:9,那么这两个三角形的相似比是______. 14.如图,在ABC V 中,AB AC ,M 为AC 边上一点.要使ABC BCM V V ∽,还需要添加一个条件,这个条件可以是________.(只需填写一个你认为适当的条件即可)15.如图,在矩形中,E 是边的延长线上一点,连接交边于点F 若AB =4,BC =6,DE =2,则AF 的长为___.16.若两个三角形的相似比为3:4,则这两个三角形的面积比为________. 17.如图,直线y =12x+1与x 轴交于点A ,与y 轴交于点B ,△BOC 与△B′O′C′是以点A 为位似中心的位似图形,且相似比为1:3,则点B 的对应点B′的坐标为_____.18.如图,A ,B 两点分别位于一个池塘的两端,为了测量A 、B 之间的距离,小天想了一个办法:在地上取一点C ,使它可以直接到达A 、B 两点,连接AC ,BC ,在AC上取一点M,使AM=3MC,作MN//AB交BC于点N,测得MN=36m,则A、B两点间的距离为_____.19.如图,将边长为8的正方形纸片ABCD沿着EF折叠,使点C落在AB边的中点M 处.点D落在点D'处,MD'与AD交于点G,则△AMG的内切圆半径的长为______.20.如图,AD⊥BC,垂足为D,BE⊥AC,垂足为E,AD与BE相交于点F,连接ED.求证:CD CB CE CA⋅=⋅21.一天晚上,小颖由路灯A下的B处向正东走到C处时,测得影子CD的长为1米,当她继续向正东走到D处时,测得此时影子DE的一端E到路灯A的仰角为45°,已知小颖的身高为1.5米,那么路灯AB的高度是多少米?22.如图,AD DE AEAB BC AC==,求证:ABD ACE∠=∠.23.如图,AD 为ABC △的角平分线,BE AD ⊥的延长线于E ,CF AD ⊥于F ,BF 、EC 的延长线交于点P ,求证:CF//AP24.在ABC V 中,ACB 90∠=o ,AC BC 2==,点C 在直线m 上,m//AB ,DBE 45∠=o ,其中点D 、E 分别在直线AC 、m 上,将DBE ∠绕点B 旋转(点D 、E都不与点C 重合).()1当点D 在边AC 上时(如图1),设CE x =,CD y =,求y 关于x 的函数解析式,并写出定义域;()2当BCE V 为等腰三角形时,求CD 的长.25.如图,四边形ABCD 中,AB =AD ,边BC 、CD 的垂直平分线交于四边形内部一点O ,连接BO 、DO ,已知BO ∥AD .(1)判断四边形ABOD 的形状?并证明你的结论;(2)连接AO 并延长,交BC 于点E ,若CE =25,BE =65,∠ODC =45°. ①求AB 的长.②若∠BAD =135°,求AO•AE 的值.26.如图,ABC △是等边三角形,点D ,E 分别在BC ,AC 上,且BD CE ,AD 与BE 相交于点F.AEF V 与ABE △相似吗?说说你的理由.27.《九章算术》有一道这样的题,原文如下:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”大意为:今有一座长方形小城(如图),东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门,走出东门15里处有棵大树,问走出南门多少步恰好有望见这棵树.请解答上述问题(注:1里=300步).参考答案1.D 【解析】 【分析】根据平行四边形的性质和相似三角形的判定和性质定理即可得到结论. 【详解】解:∵四边形ABCD 是平行四边形, ∴S △CPD =12S 四边形ABCD , ∵E 、F 分别为PD 、PC 的三等分点, ∴13PE PF PD PC ==, ∵∠EPF =∠DPC , ∴△PEF ∽△PDC ,∴19PEF PDC S S =n n , ∴CDEF 89PDC S S n 四边形=,∴CDEF ABCD49S S =四边形四边形, ∴阴影部分的面积与四边形CDEF 的面积比为54, 故选:D . 【点睛】本题考查相似三角形的判定与性质、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件,画出合适的辅助线,利用数形结合的思想解答问题. 2.A 【解析】 【分析】已知AB ∥CD ∥EF ,根据平行线分线段成比例定理,对各项进行分析即可. 【详解】 ∵AB ∥CD ∥EF ,DF CE故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.3.C【解析】【分析】先由位似图形的性质可得这两个正六边形相似;再由缩小后的正六边形的面积为原正六边形面积的可得相似比为1:,进而求解即可.【详解】∵这两个正六边形是位似图形,∴这两个正六边形相似.∵缩小后的正六边形的面积为原正六边形面积的,∴相似比为1:.∵原正六边形的边长为3,∴后来正六边形的边长为=.故选C.【点睛】本题考查本题考查位似图形的应用,需掌握位似图形的性质.4.D【解析】【分析】根据相似三角形的判定定理,找出图中的全等三角形,即可得到答案.【详解】∵BD、CE是△ABC的高,∴∠ADB=∠AEC=90°,又∵∠A=∠A∴△ADB∽△AECAE AC又∵∠A=∠A∴△ADE∽△ABC,故A正确;∵BD、CE是△ABC的高,∴∠OEB=∠ODC=90°,又∵∠EOB=∠DOC∴△BOE∽△COD,故C正确;∵△BOE∽△COD∴OE OB= OD OC又∵∠DOE=∠COB∴△DOE∽△COB,故B正确;无法判定△BOE∽△BDE,故D错误;故选D.【点睛】本题考查相似三角形的判定与性质,熟练掌握相似三角形的判定定理是解决本题的关键. 5.D【解析】【分析】根据12∠=∠可得∠DAE=∠BAC,因此只要再找一组角相等或一组对应边成比例即可. 【详解】解:∵12∠=∠,∴∠DAE=∠BAC.选项A、B中,根据两角分别相等的两个三角形相似可得△ADE∽△ABC;选项C中根据两边成比例且夹角相等的两个三角形相似可得△ADE∽△ABC;选项D中,由于∠DAE与∠BAC,不是成比例两边的夹角,所以不一定能使△ADE∽△ABC. 故选D.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.6.B【解析】【分析】 先求出ADAB的值,再由相似三角形的对应边成比例即可得出结论. 【详解】解:∵AD :DB=2:1,23∴=AD AB ∵DE ∥BC , ∴△ADE ∽△ABC ,∴△ADE 与△ABC 的相似比= 23AD AB = 故选:B . 【点睛】本题考查的是相似三角形的性质,熟知相似三角形对应边的比等于相似比是解答此题的关键. 7.D 【解析】 【分析】根据相似三角形的判定定理解答即可. 【详解】 解:∵的高AD ,BE 交于点O ,∴.又∵,,,∴.∵,∴,∴,又∵,∴,∴,则,∴.又∵,∴.故选D. 【点睛】本题考查了相似三角形的性质及其判定,解题的关键是熟练掌握这些性质. 8.C 【解析】【分析】设CD=5x ,CF=3x ,先证△AED ∽△ABC ,得到ED BC =AD AC,又由S △BFD =2S △BDE ,即12ED•DF=12×12BF•DF ,解得x=2,即可求CD=5×2=10. 【详解】设CD=5x ,CF=3x ,则AD=15-5x ,BF=18-3x ,∵DE ∥BC ,∴△AED ∽△ABC , 即ED BC =AD AC , 即18ED =15515x -, ED=18(155)15x -(1) ∵S △BFD =2S △BDE , 即12ED•DF=12×12BF•DF , 即ED=12(18-3x )(2) 由(1)(2)得x=2,故CD=5×2=10. 故选:C .【点睛】本题较复杂,涉及到三角形相似及平行线的性质,需同学们熟练掌握.9.A【解析】【分析】根据a 、b 、c 、d 是成比例线段,得a :b c =:d ,再根据比例的基本性质,求出a 的值即可.【详解】a Q 、b 、c 、d 是成比例线段,a ∴:bc =:d ,b 2cm =Q ,c 3cm =,d 6cm =,a1cm∴=;故选A.【点睛】本题考查了比例线段,写比例式的时候一定要注意顺序,再根据比例的基本性质进行求解.10.300.【解析】【分析】首先根据地图的比例尺,求出在地图上相距3m的两地的实际距离,然后将实际距离的单位换算为km即可.【详解】3÷1100000=300000(m),300000m=300km;答:它们的实际距离为300km;故答案为:300.【点睛】本题考查比例尺的应用,学会换算单位也是本题的难点.11.(4,1)或(12)+【解析】【分析】先求出点A、点B的坐标,设点M的坐标为(m,n),分两种情况:当△MCH∽△BAO和△MCH∽△ABO时,由相似得比例求出m的值,即可得出点M的坐标.【详解】解:直线y=12x+1与x轴,y轴分别相交于A,B两点,令x=0得y=1,令y=0得x=-2,∴A(-2,0),B(0,1).设点M的坐标为(m,n),∵点M在双曲线4yx=上,∴n=4m.当△MCH∽△BAO时,可得CH MH AO BO=,即221 m n -=,∴m-2=2n,即m-2=8m,∴m2-2m-8=0,解得:m1=4,m2=-2(舍去),∴n=4m=1,∴M(4,1);当△MCH∽△ABO时,可得CH MH BO AO=,即212 m n -=整理得:2m-4=4m,∴m2-2m-2=0,解得:m1m2,∴n=,∴M(,).综上,M(4,1)或M().故答案为:(4,1)或(,).【点睛】此题属于反比例函数综合题,涉及的知识有:相似三角形的判定和性质,一次函数图象与性质,反比例函数图象上点的坐标特征,设出点M的坐标然后分两种情况进行讨论是解本题的关键.12.2.【解析】【分析】过C作CG∥AB交DF于G,于是得到△CDG∽△BDF,△CEG∽△AFE,根据相似三角形的性质得CGBF=CDBD,CGAF=CEAE,求得BF=4CG,AF=2CG,即可得到结论.【详解】过C作CG∥AB交DF于G,∴△CDG∽△BDF,△CEG∽△AFE,∴CGBF=CDBD,CGAF=CEAE∵BC=3CD,∴CDBD=14,∴CGBF=14,∴BF=4CG,∵AE=2EC,∴CGAF=12,∴AF=2CG,∵AF=1,∴BF=2;故答案为:2.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是根据相似三角形的性质列出比例式求解.13.1:3【解析】【分析】由两个相似三角形的面积比是1:9,根据相似三角形的面积比等于相似比的平方,即可求得答案.【详解】解:∵两个相似三角形的面积比是1:9,∴这两个三角形的相似比是:1:3.故答案为:1:3.【点睛】本题考查了相似三角形的性质.此题比较简单,注意掌握定理的应用是解此题的关键. 14.BM BC =或ABC BMC ∠∠=或A MBC ∠∠=(答案不唯一)【解析】【分析】要使△ABC ∽△BCM ,可以再添加BM =BC 或∠ABC =∠BMC 或∠A =∠MBC 从而根据有两组角对应相等的两个三角形相似来判定.【详解】因为AB =AC ,所以∠ABC =∠C ,若BM =BC 或∠ABC =∠BMC 或∠A =∠MBC (答案不唯一),则△ABC ∽△BCM .故答案为BM =BC 或∠ABC =∠BMC 或∠A =∠MBC (答案不唯一).【点睛】这是一道考查相似三角形的判定的开放性的题,答案不唯一.15.4【解析】【分析】由四边形ABCD是矩形,推出,,设,则由,可得,由此构建方程即可解决问题.【详解】解:四边形ABCD是矩形,,,设,则,,∽,,,,.故答案为4.【点睛】本题考查相似三角形的判定和性质,矩形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.9:16【解析】【分析】根据相似三角形面积的比等于相似比的平方解答即可.【详解】解:∵两个三角形的相似比为3:4,∴这两个三角形的面积比为9:16,故答案为:9:16.【点睛】本题考查的是相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解题的关键.17.(﹣8,﹣3)或(4,3).【解析】【分析】先解得点A 和点B 的坐标,再利用位似变换可得结果.【详解】解:∵直线y =12x+1与x 轴交于点A ,与y 轴交于点B 令x=0可得y=1;令y=0可得x=-2,∴点A 和点B 的坐标分别为(-2,0);(0,1),∵△BOC 与△B′O′C′是以点A 为位似中心的位似图形,且相似比为1:3,13OB OA O B AO ∴==′′′ ∴O′B′=3,AO′=6,∴B′的坐标为(-8,-3)或(4,3).故答案为:(-8,-3)或(4,3).【点睛】本题主要考查了位似变换和一次函数图象上点的坐标特征,得出点A 和点B 的坐标是解答此题的关键.18.144m【解析】【分析】根据MN ∥AB ,可得△CMN ∽△CAB ,然后再根据相似三角形的性质可得MN CM AB AC =,再代入数进行计算即可.【详解】解:∵MN ∥AB ,∴△CMN ∽△CAB , ∴MN CM AB AC=, ∵AM=3MC ,MN=36m ,∴3614 AB,AB=144m,故答案为144m.【点睛】此题主要考查了相似三角形的判定和性质,关键是掌握相似三角形对应边成比例.19.4 3【解析】【分析】由勾股定理可求ME=5,BE=3,通过证明△AMG∽△BEM,可得AG=163,GM=203,即可求解.【详解】∵将边长为8的正方形纸片ABCD沿着EF折叠,使点C落在AB边的中点M处.∴ME=CE,MB=12AB=4=AM,∠D'ME=∠C=90°,在Rt△MBE中,ME2=MB2+BE2,∴ME2=16+(8-ME)2,∴ME=5,∴BE=3,∵∠D'ME=∠DAB=90°=∠B∴∠EMB+∠BEM=90°,∠EMB+∠AMD'=90°∴∠AMD'=∠BEM,且∠GAM=∠B=90°∴△AMG∽△BEM∴AM AG GM BE MB ME ==∴4345AG GM==,∴AG=163,GM=203∴△AMG的内切圆半径的长=423 AG AM GM+-=故答案为:4 3 .【点睛】此题考查三角形内切圆和内心,勾股定理,相似三角形的判定和性质,熟练运用相似三角形的性质求AG,GM的长度是本题的关键.20.证明见详解【解析】【分析】根据垂直得出∠BEC=∠ADC=90°,求出∠CBE=∠DAC,根据相似三角形的判定定理得出即可.【详解】证明:∵AD⊥BC,BE⊥AC,∴∠BEC=∠ADC=90°,∵∠BCE=∠ACD(公共角),∴∠CBE=∠CAD,∴△CBE∽△CAD,∴CE CB CD CA=即:CD CB CE CA⋅=⋅【点睛】本题考查了相似三角形的判定和性质的应用,能熟练地运用定理进行推理是解此题的关键.21.AB=4.5m【解析】【分析】如图,根据已知可得AB=BE,再证明△DCM∽△DBA,然后利用相似三角形的性质得出DC BDMC AB=,设AB=x,代入数据后解方程即可求出AB的高度.【详解】解:如图,∵∠ABE =90°,∠E =45°,∴∠E =∠EAB =∠EFD =45°, ∴AB =BE ,DE =DF =1.5,∵MC ∥AB ,∴△DCM ∽△DBA ,∴DC BD MC AB=, 设AB =x ,则BD =x ﹣1.5, ∴1 1.51.5x x -=, 解得:x =4.5.∴路灯A 的高度AB 为4.5m .【点睛】此题主要考查了相似三角形的应用和投影问题,根据已知得出AB =BE 、熟练掌握相似三角形的判定和性质是解题关键.22.见解析【解析】【分析】由AD DE AE AB BC AC==,得到△ADE ∽△ABC ,根据相似三角形的性质得到∠DAE=∠BAC ,根据角的和差得到∠DAB=∠EAC ,推出△ADB ∽△AEC ,即可得到结论.【详解】证明:∵AD DE AE AB BC AC==, ∴ADE ABC ∆∆∽.∴DAE BAC ∠=∠.∴DAB EAC ∠=∠. ∵AD AE AB AC=, ∴ADBC AEC ∆∆∽.∴ABD ACE ∠=∠.【点睛】考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键. 23.见解析【解析】【分析】由条件可得CF ∥BE ,结合条件可证明△BAE ∽△ACF ,可得到CP AF PE AE =,则有CF ∥AP . 【详解】证明:∵CF ⊥AE ,BE ⊥AE ,∴CF ∥BE , ∴CP CF PE BE=,∠AFC =∠AEB =90°, ∵AD 是∠BAC 的平分线,∴∠BAE =∠EAC ,∴△BAE ∽△CAF , ∴AF CF AE BE=, ∴CP AF PE AE =, ∴CF ∥AP .【点睛】本题主要考查平行线分线段成比例的逆定理及相似三角形的判定和性质,掌握相似三角形的对应边成比例是解题的关键,注意由线段对应成比例也可以证明平行.24.(1)y 2x =<<;(2)当BCE V 为等腰三角形时,CD 的长为2或2或2.【解析】【分析】(1)证明△ADB ∽△CEB ,通过比例式找到y 与x 的关系;(2)分情况讨论,①当BE=CE 时,C 、D 重合,不符合题意,舍去;②当BC=BE 时,如图1;③当BC=CE 时,有两种图形(如图2、3).画出对应图形后,根据等腰三角形的性质,求出底角度数,再转化为边之间的关系即可求解.【详解】解:()1m //AB Q ,ECB CBA 45∠∠∴==o .A ECB 45∠∠∴==o .DBA 45CBD ∠∠=-o Q ,EBC 45CBD ∠∠=-o ,DBA EBC ∠∠∴=.ADB V ∴∽CEB V.AD AB CE BC ∴=,即2y x -=.y 2x ∴=-<<;()2①当BE CE =时,C 、D 重合,不符合题意,舍去;②当BC BE =时,如图1,ECB 45∠=o Q ,CEB 45∠∴=o ,CBE 90∠∴=o .则CBD 90DBE 45∠∠=-=o o .ABD 454590∠∴=+=o o o .A 45∠=o Q ,ABD ∴V 是等腰直角三角形.AD 4∴=,CD 422∴=-=;③当BC CE =时,Ⅰ.如图2,ECB 45∠=o Q ,CBE 67.5∠∴=o .ABD CBE 67.5∠∠∴==o .ADB 1804567.567.5o o o o ∠∴=--=.ABD ADB ∠∠∴=,AD AB 22∴==.CD 222∴=-;Ⅱ.如图3,则BCE 135∠=o ,CBE 22.5∠∴=o .ABD 22.5o ∠∴=,CAB 45∠=o Q ,ADB 4522.522.5∠∴=-=o o o .AD AB 22∴==.CD 222∴=+.所以当BCE V 为等腰三角形时,CD 的长为2或222或222.【点睛】本题主要考查相似三角形的判定和性质、等腰三角形的判定和性质,还考查了分类讨论思想,解题的关键是画出对应图形进行求解.25.(1)证明见解析(2)10(3)100【解析】【分析】(1)连接AO 、CO ,根据中垂线知OB =OC =OD ,证△ABO ≌△ADO 得∠BAO =∠DAO ,由BO ∥AD 知∠BOA =∠DAO ,从而得∠BAO =∠BOA ,据此知AB =BO ,继而得证;(2)连接CO 、DE ,设DE 交OC 于点P ,先证△BOE ≌△DOE 得BE =DE 、∠OBE =∠ODE ,结合∠OBC =∠OCB 知∠OCE =∠ODE ,由∠EPC =∠OPD 知∠CEP =∠DOP =90°,根据CE 2+DE 2=DC 2知CE 2+BE 2=2AB 2,代入计算可得;(3)由△BOE ≌△DOE ,∠DEB =90°知∠OEB =∠OED =45°,结合四边形ABOD 是菱形,∠BAD =135°知∠ABO =45°,从而得∠ABO =∠AEB ,证△ABO ∽△AEB 得AO•AE =AB 2,代入计算可得.【详解】解:(1)四边形ABOD 是菱形,理由如下:如图1,连接AO、CO,∵边BC、CD的垂直平分线交于点O,∴OB=OC=OD,又AB=AD,AO=AO,∴△ABO≌△ADO(SSS),∴∠BAO=∠DAO,∵BO∥AD,∴∠BOA=∠DAO,∴∠BAO=∠BOA,∴AB=BO,∴AB=BO=OD=AD,∴四边形ABOD是菱形;(2)如图2,连接CO、DE,设DE交OC于点P,∵∠ODC=45°,OC=OD,∴∠COD=90°,△OCD是等腰直角三角形,∴CD22AB,∵四边形ABOD是菱形,∴∠DOA=∠BOA,∴∠BOE=∠DOE,在△BOE和△DOE中,∵B0D0BOE DOE0E0E=⎧⎪∠=∠⎨⎪=⎩,∴△BOE≌△DOE(SAS),∴BE=DE、∠OBE=∠ODE,∵∠OBC=∠OCB,∴∠OCE=∠ODE,又∵∠EPC=∠OPD,∴∠CEP=∠DOP=90°,在Rt△DCE中,CE2+DE2=DC2,即CE2+BE2=2AB2,∵CE=BE=∴2AB2=(2+(2=200,∴AB=10;(3)由(2)知△BOE≌△DOE,∠DEB=90°,∴∠OEB=∠OED=45°,∵四边形ABOD是菱形,∠BAD=135°,∴∠ABO=45°,∴∠ABO=∠AEB,又∵∠BAO=∠EAB,∴△ABO∽△AEB,∴AB AD AE AB=,∴AO•AE=AB2,∵AB=10,∴AO•AE=100.【点睛】本题是相似三角形的综合问题,解题的关键是掌握菱形的判定与性质、全等三角形和相似三角形的判定与性质及等腰直角三角形的性质等知识点.26.答案见解析【解析】【分析】证ABD BCE ∽△△,得BAD CBE ∠=∠,再证ABE FAE ∠=∠,可进一步证AEF BEA ∽△△.【详解】解:相似.理由如下:∵BD CE =,60ABC C ∠=∠=︒,AB BC =,∴ABD BCE ∽△△,∴BAD CBE ∠=∠,∵60ABC BAC ∠=∠=︒,∴ABE FAE ∠=∠.又∵AEF BEA ∠=∠,∴AEF BEA ∽△△.【点睛】考核知识点:相似三角形的判定和性质.熟记相似三角形的判定和性质的内容是关键. 27.315步【解析】【分析】根据题意写出AB 、AC 、CD 的长,根据相似三角形的性质得到比例式,计算即可.【详解】解:由题意,得15AB =里, 4.5AC =里, 3.5CD =里,∵DE CD ⊥,AC CD ⊥∴//AC DE ,易得ACB ∆∽DEC ∆, ∴DE DC AC AB=, 即 3.54.515DE =, 解得 1.05DE =(里)315=(步)∴走出南门315步恰好能望见这棵树.【点睛】本题考查了相似三角形的应用,根据题意得出相似三角形是解决此题的关键.。

高三数学一轮复习第1课时相似三角形的判定及有关性质.ppt

高三数学一轮复习第1课时相似三角形的判定及有关性质.ppt

2.平行线分线段成比例定理 定理 三条平行线截两条直线,所得的 __对__应__线__段___成比例. 推论 平行于三角形一边的直线截其他 两边(或两边的延长线)所得的__对__应__线__段__ 成比例.
【思考探究】 使用平行截割定理时要注意 什么?
提示: 要注意对应线段、对应边对应成 比例,不要乱对应顺序.
如图所示,在△ABC 中,∠CAB=90°,AD⊥ BC 于 D,BE 是∠ABC 的平分线,交 AD 于 F, 求证:DAFF=AEEC.
证明: 由三角形的内角平分线定理得,
在△ABD
中,DF=BD,① AF AB
在△ABC 中,AEEC=ABBC,②
在 Rt△ABC 中,由射影定理知,AB2=BD·BC,
如图,△ABC 中,D 为 BC 中点,E 在 AC 上且 AE=2CE,AD、BE 相交 于点 F,求FADF,BFFE.
解析: 过点 D 作 DG∥AC 且交 BE 于点 G, 因为点 D 为 BC 的中点, 所以 EC=2DG.因为 AE=2CE, 所 以DAGE = 41.从 而FADF = DAEG=41, 所以GFEF=14.因为 BG=GE,
三角形相似.
判定定理2 对于任意两个三角形,如果一个三角形 的两边和另一个三角形的两边对应_成__比__例__,并且夹 角相等,那么这两个三角形相似.简述为:两边对
应_成__比__例__且夹角相等,两三角形相似. 判定定理3 对于任意两个三角形,如果一个三角形 的三条边和另一个三角形的三条边对应_成__比__例__,那 么这两个三角形相似.简述为:三边对应_成__比__例__, 两三角形相似.
(2)两个直角三角形相似的判定
定理 ①如果两个直角三角形的一个锐角对 应_相__等__,那么它们相似. ②如果两个直角三角形的两条直角边对应 __成__比__例__,那么它们相似. ③如果一个直角三角形的斜边和一条直角边 与应_另_成_一_比_个_例_直_,角那三么角这形两的个斜直边角和三一角条形直相角似边.对

相似三角形的应用-2022年中考数学一轮复习考点(浙江专用)(解析版)

相似三角形的应用-2022年中考数学一轮复习考点(浙江专用)(解析版)

考点15 相似三角形的应用【命题趋势】相似三角形的应用在中考中主要考察热点有:8字图、A字图等简单相似模型。

出题类型可以是选择填空这类小题,也可以是18~19这类解答题,难度通常不大,问题背景多以现实中的实物如树高、楼高、物体尺寸等为背景,提炼出数学模型,进而利用(或构造)简单相似模型求解长度等问题。

【中考考查重点】一、相似三角形在实际生活中的应用二、位似图形三、相似三角形与函数综合考向一:相似三角形在实际生活中的应用相似三角形在实际生活中的应用:(一)建模思想:建立相似三角形的模型(二)常见题目类型:1.利用投影、平行线、标杆等构造相似三角形求解2.测量底部可以到达的物体的高度3.测量底部不可以到达的物体的高度4.测量河的宽度【同步练习】1.如图,小明周末晚上陪父母在马路上散步,他由灯下A处前进4米到达B处时,测得影子BC长为1米,已知小明身高1.6米,他若继续往前走4米到达D处,此时影子DE长为()A.1米B.2米C.3米D.4米【分析】依据△CBF∽△CAP,即可得到AP=8,再依据△EDG∽△EAP,即可得到DE 长.【解答】解:由FB∥AP可得,△CBF∽△CAP,∴=,即=,解得AP=8,由GD∥AP可得,△EDG∽△EAP,∴=,即=,解得ED=2,故选:B.2.《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为()A.2米B.3米C.米D.米【分析】由题意知:△ABE∽△CDE,得出对应边成比例即可得出CD.【解答】解:由题意知:AB∥CD,则∠BAE=∠C,∠B=∠CDE,∴△ABE∽△CDE,∴=,∴=,∴CD=3米,故选:B.3.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.5m,木竿PQ的影子有一部分落在了墙上,它的影子QN=1.8m,MN=0.8m,木竿PQ的长度为.【分析】根据同一时刻物高与影长成正比列式求解即可.【解答】解:设木竿PQ长为xm,依题意得=,解得x=1.6,答:木竿PQ长度为1.6m,故答案为:1.6m.4.如图,有一块三角形余料,它的边BC=100m,高线AH=80m,要把它加工成矩形零件,使矩形的一边EF在BC上,其余两个顶点D、G分别在边AB、AC上,设矩形DEFG的一边长DE=xm,矩形DEFG的面积为S.(1)矩形DEFG的另一边长DG是多少?(用关于x的代数式表示)(2)求S关于x的函数表达式和自变量x的取值范围.(3)当x为多少时,矩形DEFG的面积S有最大值?最大值是多少?【分析】(1)利用矩形的性质,DG∥EF,利用同位角相等,证△ADG∽△ABC,利用相似三角形的性质求解即可;(2)由(1)可知,DG=(80﹣x),然后即可求出用x表示的矩形面积的关系式.(3)利用配方法求出最大值即可.【解答】解:(1)∵四边形DEFG是矩形,∴DG∥EF,∴∠ADG=∠ABC,∠AGD=∠ACB,∴△ADG∽△ABC,∴=,∴=,∴DG=(80﹣x)(m);(2)矩形面积S=x•(80﹣x)=﹣x2+100x(0<x<80);(3)∵S=﹣(x2﹣80x)=﹣(x﹣40)2+2000,∵﹣<0,∴x=40时,S的值最大,最大值为2000.答:当x=40时,S的值最大,最大值为2000m2.考向二:位似图形位似图形满足的条件:①所有经过对应点的直线都相交于同一点(该点叫做位似中心);②这个交点到两个对应点的距离之比都相等(这个比值叫做位似比)【同步练习】1.如图,BC∥ED,下列说法不正确的是()A.AE:AD是相似比B.点A是两个三角形的位似中心C.B与D、C与E是对应位似点D.两个三角形是位似图形【分析】根据位似变换的概念和性质判断即可.【解答】解:A、当BC∥ED时,△AED∽△ACB,AE:AC是相似比,本选项说法不正确,符合题意;B、点A是两个三角形的位似中心,本选项说法正确,不符合题意;C、B与D、C与E是对应位似点,本选项说法正确,不符合题意;D、两个三角形是位似图形,本选项说法正确,不符合题意;故选:A.2.如图,已知△ABC和△ADE是以点A为位似中心的位似图形,且△ABC和△ADE的周长比为2:1,则△ABC和△ADE的位似比是()A.1:4B.4:1C.1:2D.2:1【分析】利用位似的性质求解.【解答】解:∵△ABC和△ADE是以点A为位似中心的位似图形,∴△ABC∽△ADE,位似比等于相似比,∵△ABC和△ADE的周长比为2:1,∴△ABC和△ADE的相似比为2:1,∴△ABC和△ADE的位似比是2:1.故选:D.3.如图,在网格图中,以O为位似中心,把△ABC缩小到原来的,则点A的对应点为()A.D点B.E点C.D点或G点D.D点或F点【分析】作射线AO,根据位似变换的概念判断即可.【解答】解:作射线AO,由图可知,点D和点G都在射线AO上,且=,=,则点A的对应点为D点或G点,故选:C.4.如图,在7×4方格纸中,点A,B,C都在格点上,用无刻度直尺作图.(1)在图1中的线段AC上找一个点E,使AE=AC;(2)在图2中作一个格点△CDE,使△CDE与△ABC相似.【分析】(1)构造相似比为的相似三角形即可解决问题;(2)利用勾股定理的逆定理判断出∠ACB=90°,从而解决问题.【解答】解:(1)如图,构造相似比为的相似三角形,则点E即为所求;(2)如图,∵BC2=5,AC2=20,AB2=25,∴BC2+AC2=AB2,∴∠ACB=90°,AC=2BC,∴△CDE即为所求.5.如图,在平面直角坐标系中,△ABC的顶点为A(2,1),B (1,3),C(4,1),若△A1B1C1与△ABC是以坐标原点O为位似中心的位似图形,点A、B、C的对应点分别为A1、B1、C1,且A1的坐标为(4,2).(1)请在所给平面直角坐标系第一象限内画出△A1B1C1;(2)分别写出点B1、C1的坐标.【分析】(1)(2)利用点A和点A1的坐标特征确定位似比为2,然后把点B、C的横纵坐标都乘以2得到点B1、C1的坐标,然后描点即可.【解答】解:(1)如图,△A1B1C1;(2)点B1的坐标为(2,6),点C1的坐标为(8,2).考向三:相似三角形与函数综合【方法提炼】【同步练习】1.(2021•无棣县二模)如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③C.①③④D.②④【分析】据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E 时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED 的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.【解答】解:根据图(2)可得,当点P到达点E时,点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,相似三角形与函数的综合重点是利用相似三角形的性质,设置参数,构建对应函数模型,再利用函数的性质求解后续问题在Rt△ABE中,AB===4,∴cos∠ABE==,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB==,∴PF=PB sin∠PBF=t,∴当0<t≤5时,y=BQ•PF=t•t=t2,故③小题正确;当t=秒时,点P在CD上,此时,PD=﹣BE﹣ED=﹣5﹣2=,PQ=CD﹣PD=4﹣=,∵=,==,∴=,又∵∠A=∠Q=90°,∴△ABE∽△QBP,故④小题正确.综上所述,正确的有①③④.故选:C.2.(2020•达州)如图,在梯形ABCD中,AB∥CD,∠B=90°,AB=6cm,CD=2cm.P 为线段BC上的一动点,且和B、C不重合,连接P A,过点P作PE⊥P A交射线CD于点E.聪聪根据学习函数的经验,对这个问题进行了研究:(1)通过推理,他发现△ABP∽△PCE,请你帮他完成证明.(2)利用几何画板,他改变BC的长度,运动点P,得到不同位置时,CE、BP的长度的对应值:当BC=6cm时,得表1:BP/cm…12345…CE/cm…0.83 1.33 1.50 1.330.83…当BC=8cm时,得表2:BP/cm…1234567…CE/cm… 1.17 2.00 2.50 2.67 2.50 2.00 1.17…这说明,点P在线段BC上运动时,要保证点E总在线段CD上,BC的长度应有一定的限制.①填空:根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中,的长度为自变量,的长度为因变量;②设BC=mcm,当点P在线段BC上运动时,点E总在线段CD上,求m的取值范围.【分析】(1)根据两角对应相等两三角形相似证明即可.(2)①根据函数的定义判断即可.②设BP=xcm,CE=ycm.利用相似三角形的性质构建二次函数,利用二次函数的性质求出y的最大值即可解决问题.【解答】(1)证明:∵AB∥CD,∴∠B+∠C=180°,∵∠B=90°,∴∠B=∠C=90°,∵AP⊥PE,∴∠APE=90°,∴∠APB+∠EPC=90°,∵∠EPC+∠PEC=90°,∴∠APB=∠PEC,∴△ABP∽△PCE.(2)解:①根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中,BP的长度为自变量,EC的长度为因变量,故答案为:BP,EC.②设BP=xcm,CE=ycm.∵△ABP∽△PCE,∴=,∴=,∴y=﹣x2+mx=﹣(x﹣m)2+,∵﹣<0,∴x=m时,y有最大值,∵点E在线段CD上,CD=2cm,∴≤2,∴m≤4,∴0<m≤4.1.如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m时,标准视力表中最大的“”字高度为72.7mm,当测试距离为3m时,最大的“”字高度为()A.121.17mm B.43.62mm C.29.08mm D.4.36mm【分析】直接利用平行线分线段成比例定理列比例式,代入可得结论.【解答】解:由题意得:CB∥DF,,∵AD=3m,AB=5m,BC=72.7mm,,∴DF=43.62(mm),故选:B.2.如图,点A,B都在格点上,若BC=,则AC的长为()A.B.C.2D.3【分析】根据相似三角形的判定和性质可以得到AB的长,然后由图可知AC=AB﹣BC,然后代入数据计算即可.【解答】解:作CD⊥BD于点D,作AE⊥BD于点E,如右图所示,则CD∥AE,∴△BDC∽△BEA,∴,∴=,解得BA=2,∴AC=BA﹣BC=2﹣=,故选:B.3.国旗法规定:所有国旗均为相似矩形,在下列四面国旗中,其中只有一面不符合标准,这面国旗是()A.B.C.D.【分析】根据已知条件分别求出矩形的长与宽的比,即可得到结论.【解答】解:A、=,B、=,C、=,D、=,∵==≠,∴B选项不符合标准,故选:B.4.如图,△ABC与△A′B′C′位似,位似中心为点O,,△ABC的面积为9,则△A′B′C′面积为()A.B.6C.4D.【分析】根据位似图形的概念得到△ABC∽△A′B′C′,根据相似三角形的面积之比等于相似比的平方解答.【解答】解:根据题意知,△ABC∽△A′B′C′,∵,∴△ABC的面积:△A′B′C′面积=9:4.又∵△ABC的面积为9,∴△A′B′C′面积为4.故选:C.5.如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,若OA:AA′=2:5,则△ABC与△A′B′C′的周长比为()A.2:3B.4:3C.2:9D.4:9【分析】根据题意求出OA:OA′=2:3,根据相似三角形的性质求出AC:A′C′,根据相似三角形的性质计算即可.【解答】解:∵OA:AA′=2:5,∴OA:OA′=2:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,△ABC∽△A′B′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=2:3,∴△ABC与△A′B′C′的周长比为2:3,故选:A.6.小明的身高为1.6m,某一时刻他在阳光下的影子长为2m,与他邻近的一棵树的影长为10m,则这棵树的高为m.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:设这棵树的高度为xm,根据相同时刻的物高与影长成比例,则可列比例为:,解得:x=8.故答案为:8.7.据《墨经》记载,在两千多年前,我国学者墨子和他的学生做了“小孔成像”实验,阐释了光的直线传播原理.小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布上形成倒立的实像CD(点A、B的对应点分别是C、D).若物体AB的高为6cm,小孔O到物体和实像的水平距离BE、CE分别为8cm、6cm,则实像CD的高度为cm.【分析】根据相似三角形的判定和性质定理即可得到答案.【解答】解:∵AB∥CD,∴△OAB∽△OCD,∴,∴,∴CD=4.5,答:实像CD的高度为4.5cm,故答案为:4.5.8.小丽想利用所学知识测量旗杆AB的高度,如图,小丽在自家窗边看见旗杆和住宅楼之间有一棵大树DE,小丽通过调整自己的位置,发现半蹲于窗边,眼睛位于C处时,恰好看到旗杆顶端A、大树顶端D在一条直线上,小丽用测距仪测得眼睛到大树和旗杆的水平距离CH、CG分别为7米、28米,眼睛到地面的距离CF为3.5米,已知大树DE的高度为7米,CG∥BF交AB于点G,AB⊥BF于点B,DE⊥BF于点E,交CG于点H,CF⊥BF于点F.求旗杆AB的高度.【分析】根据相似三角形的判定与性质得出比例式求解即可.【解答】解:由题意知BG=HE=CF=3.5米,∴DH=DE﹣CF=7﹣3.5=3.5(米),∵AB⊥BF,DE⊥BF,∴AG∥DH,∴△CDH∽△CAG,∴=,即,∴AG=14米,∴AB=AG+GB=14+3.5=17.5(米),∴旗杆AB的高度为17.5米.9.如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件PQMN,使一边在BC上,其余两个顶点分别在边AB、AC上.(1)求证:△APQ∽△ABC;(2)若这个矩形的边PN:PQ=1:2,则这个矩形的长、宽各是多少?【分析】(1)根据矩形的对边平行得到BC∥PQ,利用“平行于三角形的一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似”判定即可.(2)设宽为xmm,则长为2xmm,同(1)列出比例关系求解即可.【解答】解:(1)∵四边形PNQM为矩形,∴MN∥PQ,即PQ∥BC,∴△APQ∽△ABC;(2)设边宽为xmm,则长为2xmm,∵四边形PNMQ为矩形,∴PQ∥BC,∵AD⊥BC,∴PQ⊥AD,∵PN:PQ=1:2,∴PQ为长,PN为宽,∵PQ∥BC,∴△APQ∽△ABC,∴=,由题意知PQ=2xmm,AD=80mm,BC=120mm,PN=xmm,∴=,解得x=,2x=.即长为mm,宽为mm.答:矩形的长mm,宽为mm.10.(2022•禅城区校级模拟)如图①,四边形ABCD是矩形,AB=1,BC=2,点E是线段BC上一动点(不与B、C两点重合),点F是线段BA延长线的一动点,连接DE,EF,DF,EF交AD于点G,设BE,AF=y,已知y与x之间的函数关系式如图②所示,(1)图②中y与x的函数关系式为;(2)求证:△CDE∽△ADF;(3)当△DEG是等腰三角形时,求x的值.【分析】(1)利用待定系数法可得y与x的函数表达式.(2)利用两边成比例夹角相等证明△CDE∽△ADF即可.(3)分三种情况:①若DE=DG,则∠DGE=∠DEG,②若DE=EG,如图①,作EH ∥CD,交AD于H,③若DG=EG,则∠GDE=∠GED,分别列方程计算可得结论.【解答】(1)解:设y=kx+b,由图象得:当x=1时,y=2,当x=0时,y=4,代入得:,,∴y=﹣2x+4(0<x<2).故答案为:y=﹣2x+4(0<x<2).(2)证明:∵BE=x,BC=2∴CE=2﹣x,∴==,=,∴=,∵四边形ABCD是矩形,∴∠C=∠DAF=90°,∴△CDE∽△ADF,∴∠ADF=∠CDE.(3)解:假设存在x的值,使得△DEG是等腰三角形,①若DE=DG,则∠DGE=∠DEG,∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DGE=∠GEB,∴∠DEG=∠BEG,在△DEF和△BEF中,,∴△DEF≌△BEF(AAS),∴DE=BE=x,CE=2﹣x,在Rt△CDE中,由勾股定理得:1+(2﹣x)2=x2,x=.②若DE=EG,如图①,作EH∥CD,交AD于H,∵AD∥BC,EH∥CD,∴四边形CDHE是平行四边形,∴∠C=90°,∴四边形CDHE是矩形,∴EH=CD=1,DH=CE=2﹣x,EH⊥DG,∴HG=DH=2﹣x,∴AG=2x﹣2,∵EH∥CD,DC∥AB,∴EH∥AF,∴△EHG∽△F AG,∴=,∴=,∴x1=,x2=(舍),经检验x=是分式方程的解,∴x=.③若DG=EG,则∠GDE=∠GED,∵AD∥BC,∴∠GDE=∠DEC,∴∠GED=∠DEC,∵∠C=∠EDF=90°,∴△CDE∽△DFE,∴=,∵△CDE∽△ADF,∴==,∴=,∴2﹣x=,∴x=.综上,x=或或.1.(2021·浙江绍兴)如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树影AC=3m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是()A.2m B.3m C.m D.m【分析】利用相似三角形的性质求解即可.【解答】解:∵AB∥OP,∴△CAB∽△CPO,∴,∴,∴AB=2(m),故选:A.2.(2021·浙江嘉兴)如图,在直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是.【分析】根据图示,对应点所在的直线都经过同一点,该点就是位似中心.【解答】解:如图,点G(4,2)即为所求的位似中心.故答案是:(4,2).3.(2021·浙江温州)如图,图形甲与图形乙是位似图形,O是位似中心,位似比为2:3,点A,B的对应点分别为点A′,B′.若AB=6,则A′B′的长为()A.8B.9C.10D.15【分析】根据位似图形的概念列出比例式,代入计算即可.【解答】解:∵图形甲与图形乙是位似图形,位似比为2:3,AB=6,∴=,即=,解得,A′B′=9,故选:B.4.(2021·浙江金华)如图1是一种利用镜面反射,放大微小变化的装置.木条BC上的点P处安装一平面镜,BC与刻度尺边MN的交点为D,从A点发出的光束经平面镜P反射后,在MN上形成一个光点E.已知AB⊥BC,MN⊥BC,AB=6.5,BP=4,PD=8.(1)ED的长为.(2)将木条BC绕点B按顺时针方向旋转一定角度得到BC′(如图2),点P的对应点为P′,BC′与MN的交点为D′,从A点发出的光束经平面镜P′反射后,在MN上的光点为E′.若DD′=5,则EE′的长为.【分析】(1)由题意可得,△ABP∽△EDP,则=,进而可得出DE的长;(2)过点E′作∠E′FG=∠E′D′F,过点E′作E′G⊥BC′于点G,易得△ABP′∽△E′FP′,由此可得=,在Rt△BDD′中,由勾股定理可求出BD′的长,可求出∠BD′D的正切值,设P′F的长,分别表示E′F和E′D′及FG和GD′的长,再根据BD′=13,可建立等式,可得结论.【解答】解:(1)如图,由题意可得,∠APB=∠EPD,∠B=∠EDP=90°,∴△ABP∽△EDP,∴=,∵AB=6.5,BP=4,PD=8,∴=,∴DE=13;故答案为:13.(2)如图2,过点E′作∠E′FD′=∠E′D′F,过点E′作E′G⊥BC′于点G,∴E′F=E′D′,FG=GD′,∵AB∥MN,∴∠ABD′+∠E′D′B=180°,∴∠ABD′+∠E′FG=180°,∵∠E′FB+∠E′FG=180°,∴∠ABP′=∠E′FP′,又∠AP′B=∠E′P′F,∴△ABP′∽△E′FP′,∴=即,=,设P′F=4m,则E′F=6.5m,∴E′D′=6.5m,在Rt△BDD′中,∠BDD′=90°,DD′=5,BD=BP+PD=12,由勾股定理可得,BD′=13,∴cos∠BD′D=,在Rt△E′GD′中,cos∠BD′D==,∴GD′=2.5m,∴FG=GD′=2.5m,∵BP′+P′F+FG+GD′=13,∴4+4m+2.5m+2.5m=13,解得m=1,∴E′D′=6.5,∴EE′=DE+DD′﹣D′E′=13+5﹣6.5=11.5.故答案为:11.5.5.(2021·浙江湖州)已知在平面直角坐标系xOy中,点A是反比例函数y=(x>0)图象上的一个动点,连结AO,AO的延长线交反比例函数y=(k>0,x<0)的图象于点B,过点A作AE⊥y轴于点E.(1)如图1,过点B作BF⊥x轴,于点F,连接EF.①若k=1,求证:四边形AEFO是平行四边形;②连结BE,若k=4,求△BOE的面积.(2)如图2,过点E作EP∥AB,交反比例函数y=(k>0,x<0)的图象于点P,连结OP.试探究:对于确定的实数k,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由.【分析】(1)①设点A的坐标为(a,),则当点k=1时,点B的坐标为(﹣a,﹣),得出AE=OF,AE∥OF,由平行四边形的判定可得出结论;②过点B作BD⊥y轴于点D,如图1,证明△AEO∽△BDO,由相似三角形的性质得出,则可得出答案;(2)过点P作PH⊥x轴于点H,PE与x轴交于点G,设点A的坐标为(a,),点P 的坐标为(b,),则AE=a,OE=,PH=﹣,证明△AEO∽△GHP,由相似三角形的性质得出,解方程得出,由三角形面积公式可得出答案.【解答】(1)①证明:设点A的坐标为(a,),则当点k=1时,点B的坐标为(﹣a,﹣),∴AE=OF=a,∵AE⊥y轴,∴AE∥OF,∴四边形AEFO是平行四边形;②解:过点B作BD⊥y轴于点D,如图1,∵AE⊥y轴,∴AE∥BD,∴△AEO∽△BDO,∴,∴当k=4时,,即,∴S△BOE=2S△AOE=1;(2)不改变.理由如下:过点P作PH⊥x轴于点H,PE与x轴交于点G,设点A的坐标为(a,),点P的坐标为(b,),则AE=a,OE=,PH=﹣,∵四边形AEGO是平行四边形,∴∠EAO=∠EGO,AE=OG,∵∠EGO=∠PGH,∴∠EAO=∠PGH,又∵∠PHG=∠AEO,∴△AEO∽△GHP,∴,∵GH=OH﹣OG=﹣b﹣a,∴,∴﹣k=0,解得,∵a,b异号,k>0,∴,∴S△POE=×OE×(﹣b)=×(﹣b)=﹣,∴对于确定的实数k,动点A在运动过程中,△POE的面积不会发生变化.1.(2021•温州模拟)如图,在正六边形桌面中心正上方有一盏吊灯,在灯光下,桌面在水平地面的投影是一个面积为m2的正六边形,已知桌子的高度为0.75m,桌面边长为1m,则吊灯距地面的高度为()A.2.25m B.2.3m C.2.35m D.2.4m【分析】首先根据正六边形的面积可得正六边形的边长,进而可通过构造相似三角形,由相似三角形性质求出.【解答】解:设正六边形的边长是xm,则x•x••6=,解得x=1.5,如图,依题意知DF=FE=0.5米,FG=0.75米,CG=0.75米,∵DE∥BC,∴△F AE∽△GAC,∴,即=,解得:AF=1.5,∴AG=1.5+0.75=2.25(m),答:吊灯距地面的高度为2.25m.故选:A.2.(2021•临海市一模)如图,为测量楼高AB,在适当位置竖立一根高2m的标杆MN,并在同一时刻分别测得其落在地面上的影长AC=20m,MP=2.5m,则楼高AB为()A.15m B.16m C.18m D.20m【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.【解答】解:∵,即,∴楼高=16米.故选:B.3.(2022•温州模拟)如图,在4×7的方格中,点A,B,C,D在格点上,线段CD是由线段AB位似放大得到,则它们的位似中心是()A.点P1B.点P2C.点P3D.点P4【分析】延长CA、DB交于点P 1,根据位似中心的概念得到答案.【解答】解:延长CA、DB交于点P1,则点P1为位似中心,故选:A.4.(2021•嘉兴二模)如图,在直角坐标系中,△ABC的顶点B的坐标为(﹣1,1),现以坐标原点O为位似中心,作与△ABC的位似比为的位似图形△A'B'C',则B'的坐标为()A.B.C.或D.或【分析】根据以原点为位似中心的对应点的坐标关系,把B点的横纵坐标都乘以或﹣得到B'的坐标.【解答】解:∵位似中心为坐标原点,作与△ABC的位似比为的位似图形△A'B'C',而B的坐标为(﹣1,1),∴B'的坐标为(﹣,)或(,﹣).故选:C.5.(2021•嘉善县一模)如图,在平面直角坐标系中,点A的坐标为(1,0),点D的坐标为(3,0),若△ABC与△DEF是位似图形,则的值是()A.B.C.D.【分析】根据位似图形的概念得到AC∥DF,【解答】解:∵点A的坐标为(1,0),点D的坐标为(3,0),∴OA=1,OD=3,即=,∵△ABC与△DEF是位似图形,∴AC∥DF,∴△OAC∽△ODF,∴==,故选:B.6.(2021•瑞安市一模)数学兴趣小组计划测量公路上路灯的高度AB,准备了标杆CD,EF及皮尺,按如图竖直放置标杆CD与EF.已知CD=EF=2米,DF=2米,在路灯的照射下,标杆CD的顶端C在EF上留下的影子为G,标杆EF在地面上的影子是FH,测得FG=0.5米,FH=4米,则路灯的高度AB=米.【分析】延长CG交FH于M,根据相似三角形的判定和性质解答即可.【解答】解:如图,延长CG交FH于M,∵∠GMF=∠CMD,∠GFM=∠CDM=90°,∴△GFM∽△CDM,∴,设FM为a米,则a=(a+2)×,解得:a=,设BD=x米,AB=y米,同理可得,△CMD∽△AMB,∴,,可得,,整理得:,解得:,经检验是分式方程组的解,∴AB=5米.故答案为:5.7.(2022•鹿城区校级一模)如图,在8×8的网格中,△ABC是格点三角形,请分别在图1和图2中按要求作图.(1)在图1中以O为位似中心,作格点三角形△A1B1C1,使其与△ABC位似比为1:2.(2)在图2中作格点线段BM⊥AC.【分析】(1)连接OA,OB,OC,取OA,OB,OC的中点A1,B1,C1,连接A1B1,B1C1,C1A1即可;(2)利用数形结合的思想作出线段BM即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,线段BM即为所求.8.(2021•永嘉县校级模拟)已知一块等腰三角铁板废料如图所示,其中AB=AC=50cm,BC=60cm,现要用这块废料裁一块正方形DEFG铁板,使它的一边DE落在△ABC的一腰上,顶点F、G分别落在另一腰AB和BC上,求;(1)等腰三角形ABC的面积S△ABC;(2)正方形DEFG的边长.【分析】(1)过A作AH⊥BC于H,根据等腰三角形的性质得到BH=BC=30(cm),根据勾股定理得到AH===40(cm),由三角形的面积公式即可得到结论;(2)过B作BM⊥AC交FG于N,根据三角形的面积公式得到BM=48(cm),根据正方形的性质得到FG∥DE,根据相似三角形的性质即可得到结论.【解答】解:(1)过A作AH⊥BC于H,∵AB=AC=50cm,BC=60cm,∴BH=BC=30(cm),∴AH===40(cm),∴S△ABC=BC•AH=60×40=1200(cm2);(2)过B作BM⊥AC交FG于N,则S△ABC=AC•BM=1200,∵AC=50cm,∴BM=48(cm),∵四边形DEFG是正方形,∴FG∥DE,∴BN⊥FG,△BFG∽△BAC,∴=,∴,∴FG=,∴正方形DEFG的边长为.9.(2021•海曙区模拟)如图是某公园的一台滑梯,滑梯着地点B与梯架之间的距离BC=4m.(1)现在某一时刻测得身高1.8m的小明爸爸在阳光下的影长为0.9m,滑梯最高处A在阳光下的影长为1m,求滑梯的高AC;(2)若规定滑梯的倾斜角(∠ABC)不超过30°属于安全范围,请通过计算说明这架滑梯的倾斜角是否符合安全要求?【分析】(1)直接利用同一时刻太阳光下影长与物体高度成比例进而得出答案;(2)直接利用锐角三角函数关系得出∠ABC的取值范围.【解答】解:(1)由题意可得:=,解得:AC=2(m),答:滑梯的高AC为2m;(2)∵tan∠ABC===<tan30°=,∴∠ABC<30°,∴这架滑梯的倾斜角符合安全要求.10.(2021•婺城区校级模拟)已知在菱形ABCD中,AB=4,∠BAD=120°,点P是直线AB上任意一点,联结PC.在∠PCD内部作射线CQ与对角线BD交于点Q(与B、D 不重合),且∠PCQ=30°.(1)如图,当点P在边AB上时,如果BP=3,求线段PC的长;(2)当点P在射线BA上时,设BP=x,CQ=y,求y关于x的函数解析式及定义域;(3)联结PQ,直线PQ与直线BC交于点E,如果△QCE与△BCP相似,求线段BP的长.【分析】(1)如图1中,作PH⊥BC于H.解直角三角形求出BH,PH,在Rt△PCH中,理由勾股定理即可解决问题.(2)如图1中,作PH⊥BC于H,连接PQ,设PC交BD于O.证明△POQ∽△BOC,推出∠OPQ=∠OBC=30°=∠PCQ,推出PQ=CQ=y,推出PC=y,在Rt△PHB 中,BH=x,PH=x,根据PC2=PH2+CH2,可得结论.(3)分两种情形:①如图2中,若直线QP交直线BC于B点左侧于E.②如图3中,若直线QP交直线BC于C点右侧于E.分别求解即可.【解答】解:(1)如图1中,作PH⊥BC于H.∵四边形ABCD是菱形,∴AB=BC=4,AD∥BC,∴∠A+∠ABC=180°,∵∠A=120°,∴∠PBH=60°,∵PB=3,∠PHB=90°,∴BH=PB•cos60°=,PH=PB•sin60°=,∴CH=BC﹣BH=4﹣=,∴PC===.(2)如图1中,作PH⊥BC于H,连接PQ,设PC交BD于O.∵四边形ABCD是菱形,∴∠ABD=∠CBD=30°,∵∠PCQ=30°,∴∠PBO=∠QCO,∵∠POB=∠QOC,∴△POB∽△QOC,∴=,∴=,∵∠POQ=∠BOC,∴△POQ∽△BOC,∴∠OPQ=∠OBC=30°=∠PCQ,∴PQ=CQ=y,∴PC=y,在Rt△PHB中,BH=x,PH=x,∵PC2=PH2+CH2,∴3y2=(x)2+(4﹣x)2,∴y=(0≤x<8).(3)①如图2中,若直线QP交直线BC于B点左侧于E.此时∠CQE=120°,∵∠PBC=60°,∴△PBC中,不存在角与∠CQE相等,此时△QCE与△BCP不可能相似.②如图3中,若直线QP交直线BC于C点右侧于E.则∠CQE=∠B=QBC+∠QCP=60°=∠CBP,∵∠PCB>∠E,∴只可能∠BCP=∠QCE=75°,作CF⊥AB于F,则BF=2,CF=2,∠PCF=45°,∴PF=CF=2,此时PB=2+2,③如图4中,当点P在AB的延长线上时,∵△QCE与△BCP相似,∴∠CQE=∠CBP=120°,∴∠QCE=∠PCB=15°,作CF⊥AB于F.∵∠FCB=30°,∴∠FCP=45°,∴BF=BC=2,CF=PF=2,∴PB=2﹣2.综上所述,满足条件的PB的值为2+2或2﹣2.。

2024年中考第一轮复习相似三角形 课件

2024年中考第一轮复习相似三角形 课件

么这四条线段 a,b,c,d 叫做成比例线段,简称比例线段
(续表)
如果点 P 把线段 AB 分成两条线段 AP 和 PB(AP>BP),使
黄金分割
④ PA2=PB·AB ,那么称线段 AB 被点 P 黄金分割,点 P 叫做线段 AB
的黄金分割点,线段 AP 与 AB 的比叫做黄金比,黄金比
AP
=⑤
①∠B=∠ACD;②∠ADC=∠ACB;



=

;④AC2=AD·AB.

A.1 个
B.2 个
C.3 个
D.4 个
图20-7
10.如图20-8,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在
不添加辅助线的情况下,与△AEF相似的三角形有 2
图20-8
个.
■ 知识梳理
与△ OCD 的面积分别是 S1 和 S2,△ OAB 和△ OCD 的周长分别是 C1 和 C2,则下列等式一
定成立的是

3
A. =

2

3
C. 1 =
2
2
(
)

3
B. =

2

3
D. 1 =
2
2
图20-9
【方法点析】相似三角形主要应用在以下几方面:①求角的度数;②求或证明比
值关系;③证线段等积式;④求面积或面积比.相似三角形的对应边成比例是求线
■ 知识梳理
1.比例的性质

(1)基本性质:

=

⇒ad=①

bc
.


(2)比例中项:如果三个数 a,b,c 满足比例式 = ⇔② b2=ac ,则 b 就叫做 a,c 的比例

最新用相似三角形法解决共点力平衡问题—高考物理一轮复习微专题

最新用相似三角形法解决共点力平衡问题—高考物理一轮复习微专题

用相似三角形法解决共点力平衡问题【要点回顾】如果有具体的物理环境或者有一定的框架结构,我们也可以利用相似形的办法来确定共点的三个力的大小关系,这种方法称为相似三角形法。

具体的解题步骤是:1、利用合成法或分解法来确定合力与分力的图示关系2、在确定的平行四边形中选取一个三角形,确定这个三角形跟周围环境的三角形是否存在着相似关系。

3、如果存在着相似关系,则利用相似关系来确定合力与分力之间的关系。

用于三力平衡中,一个力是恒力,另外两个力方向都变化,且有空间几何关系的情景。

【典型例题】例1、如图所示,轻质细杆一端可绕固定在墙壁的轴O转动,另一端A用细绳拴住固定在墙壁上B点,细绳与竖直墙壁成直角,已知绳长30cm,杆长50cm,今在杆的A端挂上一重30N的重物,求细绳上的拉力T和轻杆所受的压力N。

【解析】利用合成法求出支持力N和重力G的合力F,根据平衡条件知,合力F的大小等于绳上的拉力,如图,在力构成的直角三角形和框架构成的三角形相似,所以AO N AB F BO G == 解得⎪⎪⎩⎪⎪⎨⎧=⨯===⨯===N N G BO AO N N N G BO AB F T 4150304050490304030 例2、光滑的半圆弧倒扣在地面上,在半圆弧的球心正上方有一定滑轮,一细绳跨过定滑轮系住一个小球静止在球面上,如果将小球缓慢的向上拉动一些,分析小球受到的拉力和支持力的大小如何变化?【解析】将拉力和支持力沿重力的反方向进行合成,得两个力的合力F ,从图上可以看出,由合力、支持力和拉力所构成的三角形与△AOB 相似,由相似三角形的知识得:OBN AO F AB T == ⎪⎪⎩⎪⎪⎨⎧====G AO OB F AO OB N G AO AB F AO AB T 其中AO 、OB 是不变的,而AB 变小,可知:支持力N 不变,拉力T 变小。

【跟踪练习】1.(2020·宜宾市叙州区第二中学校高三三模)如图所示,质量为m 的小球置于倾角为30°的光滑斜面上,劲度系数为k 的轻质弹簧,一端系在小球上,另一端固定在墙上的P 点,小球静止时,弹簧与竖直方向的夹角为30°,则弹簧的伸长量为( )A .mg k BD【答案】C【解析】对小球受力分析如图所示:由力的合成可知,FN 和F 的合力与重力mg 等大反向,由几何关系可知02cos30mg F ==F kx =,解得x =C 正确,A 、B 、D 错误;故选C 。

中考数学一轮复习专题解析—相似三角形

中考数学一轮复习专题解析—相似三角形

中考数学一轮复习专题解析—相似三角形复习目标1.了解相似图形和相似三角形的概念。

2.掌握三角形相似的判定方法和性质并学会运用。

考点梳理一、相似图形1.形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.2.比例线段的相关概念如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm b a =,或写成n m b a ::=. 注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位. 在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注意:(1)当两个比例式的每一项都对应相同,两个比例式才是同一比例式.(2)比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. 3. 比例的性质基本性质:(1)bc ad d c b a =⇔=::;(2)b a c b c c a ⋅=⇔=2::.注意:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.更比性质(交换比例的内项或外项):()()()a b c d a c d c b d b ad b c a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 反比性质(把比的前项、后项交换):cd a b d c b a =⇒=. 合比性质:dd c b b a d c b a ±=±⇒=. 注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间 发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a c c d a a b d c b a 等等. 等比性质: 如果)0(≠++++====n f d b n m f e d c b a ,那么b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.4.比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.推论:(1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.(2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边.5.黄金分割把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB 例1.如果0ab cd =≠,则下列正确的是( )A .::a c b d =B .::a d c b =C .::a b c d =D .::d c b a = 【答案】B【分析】根据比例的基本性质,列出比例式即可.【详解】解:∵0ab cd =≠,∵::a d c b =,故选:B .例2.两个相似多边形的一组对应边的长分别为6cm ,9cm ,那么它们的相似比为( )A .23B C .49 D .94【答案】A【分析】根据相似多边形的性质求解即可;【详解】两个相似多边形一组对应边的长分别为6cm ,9cm ,∵它们的相似比为:6293=.故选A .二、相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∵”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注意:∵对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.∵顺序性:相似三角形的相似比是有顺序的.∵两个三角形形状一样,但大小不一定一样.∵全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.三、相似三角形的等价关系(1)反身性:对于任一ABC ∆有ABC ∆∵ABC ∆.(2)对称性:若ABC ∆∵'''C B A ∆,则'''C B A ∆∵ABC ∆.(3)传递性:若ABC ∆∵C B A '∆'',且C B A '∆''∵C B A ''''''∆,则ABC ∆∵C B A ''''''∆.四、相似三角形的基本定理定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:五、三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

第一轮复习—19相似三角形

第一轮复习—19相似三角形

第1题相似三角形1.三边对应成_________,三个角对应________的两个三角形叫做相似三角形. 2.相似三角形的判定方法⑴若DE∥BC(A 型和X 型)则______________.⑵射影定理:若CD 为Rt△ABC 斜边上的高(双直角图形)则Rt△ABC∽Rt△ACD∽Rt△CBD 且AC 2=________,CD 2=_______,BC 2=__ ____.⑶两个角对应相等的两个三角形__________. ⑷两边对应成_________且夹角相等的两个三角形相似.⑸三边对应成比例的两个三角形___________. 3.相似三角形的性质⑴相似三角形的对应边_________,对应角________.⑵相似三角形的对应边的比叫做________,一般用k 表示.⑶相似三角形的对应角平分线,对应边的________线,对应边上的_______•线的比等于_______比,周长之比也等于________比,面积比等于_________.练习题一、选择题1.如图,等腰直角△ABC 的直角边长为3,P 为斜边BC 上一点,且BP =1, D 为AC 上一点,若∠APD=45°,则CD 的长为( )A .53B.33D.352.在比例尺1:6000000的地图上,量得南京到北京的距离是15㎝,这两地的实际距离是( ) A .0.9㎞ B. 9㎞ C.90㎞ D.900㎞3.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③A D AB A EA C=;其中正确的有 ( )A 、3个B 、2个C 、1个D 、0个二、填空题1.小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为 米.2.Rt △ABC 中,AD 为斜边BC 上的高,若4ABC ABD S S ∆∆=, 则A B B C= .3.已知△ABC 中,DE ∥BC ,且DE =2,BC =5,则△ADE 和△ABC 的面积比为_______4.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE//BC ,若AD :AB=3:4, DE=6,则BC= ________.45°ADCPBADE E D CBA。

2020初中数学中考一轮复习基础达标训练:相似三角形(附答案)

2020初中数学中考一轮复习基础达标训练:相似三角形(附答案)

2020初中数学中考一轮复习基础达标训练:相似三角形(附答案)1.△ABC∽△A1B1C1,且相似比为23,△A1B1C1∽△A2B2C2,且相似比为54,则△ABC与△A2B2C2的相似比为()A.56B.65C.56或65D.8152.如图,l1∥l2∥l3,若32ABBC,DF=6,则DE等于()A.3 B.3.2 C.3.6 D.43.小明的身高为1.8米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为( )A.3.2米B.4.8米C.5.4米D.5.6米4.如图,在平行四边形ABCD中,E在DC边上,若DE:EC=1:2,则△CEF与△ABF 的面积比为()A.1:4 B.2:3 C.4:9 D.1:95.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线于点F,若S△DEC=9,则S△BCF=()A.6 B.8 C.10 D.126.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上,则CE:CF的值为()A .45B .35C .56D .677.如图,∠ABD =∠BCD =900,AD =10,BD =6。

如果两个三角形相似,则CD 的长为A 、3.6B 、4.8C 、4.8或3.6D 、无法确定8.若ABC V 的各边都分别扩大到原来的2倍,得到111A B C V ,下列结论正确的是( ) A .ABC V 与111A B C V 的对应角不相等B .ABC V 与111A B C V 不一定相似 C .ABC V 与111A B C V 的相似比为1:2D .ABC V 与111A B C V 的相似比为2:19.如图,已知点P 在△ABC 的边AC 上,下列条件中,不能判断△ABP ∽△ACB 的是( )A .∠ABP=∠CB .∠APB=∠ABC C .AB 2=AP•ACD .=10.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .∠ABP=∠CB .∠APB=∠ABC C .=D .=11.如图,已知点 A 在反比例函数k y x(x <0) 上,作 Rt △ABC ,点 D 是斜边 AC的中点,连DB 并延长交y 轴于点E,若△BCE 的面积为12,则k 的值为_____.12.已知线段AB=2,点C为AB的黄金分割点,且AC<BC,那么BC=_____.13.如图,点P是矩形ABCD的对角线AC上的一点(异于两个端点),AB=2BC=2,若BP的垂直平分线EF经过该矩形的一个顶点,则BP的垂直平分线EF与对角线AC 的夹角(锐角)的正切值为_____.14.如图,在Rt△ABC中,∠C=90°,点D在边BC上,且∠ADC+∠B=90°,DC=3,BD=6,则cosB=.15.如图,数学趣闻:上世纪九十年代,国外有人传说:“从月亮上看地球,长城是肉眼唯一看得见的建筑物.”设长城的厚度为10m,人的正常视力能看清的最小物体所形成的视角为1',且已知月、地两球之间的距离为380000km,根据学过的数学知识,)你认为这个传说________.(请填“可能”或“不可能”,参考数据:tan0.5'0.000145416.如图,△ABC中,AB=AC=4cm,点D在BA的延长线上,AE平分∠DAC,按下列步骤作图.步骤1:分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于点F,连接AF,交BC于点G;步骤2:分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于点M和点N,作直线MN,交AG于点I;步骤3:连接BI并延长,交AE于点Q.若,则线段AQ的长为_____cm.17.如图,在直角坐标系中,A,B为定点,A(2,﹣3),B(4,﹣3),定直线l∥AB,P是l上一动点,l到AB的距离为6,M,N分别为P A,PB的中点下列说法中:①线段MN的长始终为1;②△P AB的周长固定不变;③△PMN的面积固定不变;④若存在点Q使得四边形APBQ是平行四边形,则Q到MN所在直线的距离必为9.其中正确的说法是_____.18.若7x=3y,则xy=_____.19.如图,在Rt△ABC中,AD为斜边BC上的高,若S△CAD=3S△ABD,则AB:AC 等于_____.20.如图,在矩形ABCD中,E是AD上一点,把△ABE沿直线BE翻折,点A正好落在BC边上的点F处,如果四边形CDEF和矩形ABCD相似,那么四边形CDEF和矩形ABCD面积比是__.21.如图,在ABCV中,D、E分别为AB、AC上的点,线段BE、CD相交于点O,且12DCB EBC A ∠=∠=∠. ()1求证:BOD V ∽BAE V ;()2求证:BD CE =;()3若M 、N 分别是BE 、CD 的中点,过MN 的直线交AB 于P ,交AC 于Q ,线段AP 、AQ 相等吗?为什么?22.如图,D 是△ABC 的边AC 上的一点,连接BD ,已知∠ABD =∠C ,AB =6,AC =9.(1)试说明:△ABD ∽△ACB ;(2)求线段CD 的长.23.如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,连接PA 、PB 、AB 、OP ,已知PB 是⊙O 的切线.(1)求证:∠PBA=∠C ;(2)若OP ∥BC ,且OP=9,⊙O 的半径为32,求BC 的长.24.在平面直角坐标系中,已知点A(-2,0),点B(0,4),点E 在OB 上,且∠OAE =∠OBA .(1)如图①,求点E 的坐标(2)如图②,将△AEO 沿x 轴向右平移得到△A′E′O′,连接A′B ,BE′.①设AA′=m ,其中0<m<2,试用含m 的式子表示A′B 2+BE′2,并求出使A′B 2+BE′2取得最小值时点E′的坐标;②当A′B +BE′取得最小值时,求点E′的坐标(直接写出结果即可).25.如图,已知AC ,EC 分别为正方形ABCD 和正方形EFCG 的对角线,点E 在△ABC 内,连接BF ,∠CAE+∠CBE=90°.(1)求证:△CAE ∽△CBF ;(2)若BE=1,AE=2,求CE 的长.26.如图,AD 是Rt △ABC 斜边BC 上的高.(1)尺规作图:作∠C 的平分线,交AB 于点E,交AD 于点F (不写作法,必须保留作图痕迹,标上应有的字母);(2)在(1)的条件下,过F 画BC 的平行线交AC 于点H,线段FH 与线段CH 的数量关系如何?请予以证明;(3)在(2)的条件下,连结DE 、DH.求证:ED ⊥HD .27.如图所示,在矩形ABCD 中,对角线AC ,BD 相交于点O .过点O 作OE BC ⊥于点E ,连接DE 交OC 于点F ,过点F 作FG BC ⊥于点G ,则ABC V 与FGC V 是位似图形吗?若是,请说出位似中心,并求出相似比;若不是,请说明理由.28.如图,长方形ABCD中,P是AD上一动点,连接BP,过点A作BP的垂线,垂足为F,交BD于点E,交CD于点G.(1)当AB=AD,且P是AD的中点时,求证:AG=BP;(2)在(1)的条件下,求DEBE的值;(3)类比探究:若AB=3AD,AD=2AP,DEBE的值为.(直接填答案)参考答案1.A【解析】∵△ABC ∽△A 1B 1C 1,相似比为210=315, △A 1B 1C 1∽△A 2B 2C 2 ,相似比为515=412 , ∴△ABC 与△A 2B 2C 2的相似比为105=126, 故选A .2.C【解析】试题解析:根据平行线分线段成比例定理,可得: 3,2AB DE BC EF == 设3,2,DE x EF x ==5 6.DF x ∴==解得: 1.2.x =3 3.6.DE x ∴==故选C.3.C【解析】【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】据相同时刻的物高与影长成比例,设这棵树的高度为xm , 则可列比例为:1.826x =, 解得,x=5.4.故选C .【点睛】本题主要考查了同一时刻物高和影长成正比,考查利用所学知识解决实际问题的能力. 4.C【解析】【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的面积比等于相似比的平方就可得到答案.【详解】∵四边形ABCD 是平行四边形,∴DC ∥AB ,CD =AB ,∴△DFE ∽△BF A .∵DE :EC =1:2,∴EC :DC =CE :AB =2:3,∴△CEF 与△ABF 的面积比49=. 故选C .【点睛】本题考查了相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,周长的比等于相似比,面积比等于相似比的平方是解答此题的关键.5.D【解析】【分析】由已知条件求出△DEF 的面积,根据平行四边形的性质得到AD ∥BC 和△DEF ∽△BCF ,根据相似三角形的面积比是相似比的平方即可得到答案.【详解】∵E 是边AD 的中点,∴DE 12=AD 12=BC ,∴12EF CF =,∴△DEF 的面积13=S △DEC =3。

2020春中考数学一轮复习专题:相似三角形

2020春中考数学一轮复习专题:相似三角形

2020春中考数学一轮复习专题:相似三角形(1)【复习目标】1.了解线段的比,成比例线段;通过建筑、艺术等方面的实例了解黄金分割.2. 了解相似三角形的概念,掌握相似三角形的判定及直角三角形相似的判定;会用相似三角形证明角相等或线段成比例,或进行角的度数和线段长度的计算等【课堂研讨】考点一比例性质1.已知513ba=,则a ba b-+的值是2.已知三个数1,2, 3 ,请你再添上一个(只填一个)数,使它们能构成一个比例式,则这个数是。

3. 在RtΔABC中,∠ACB=90°,CD⊥AB于D,AC=6,AD=4,则AB= .4.已知点C是线段AB的黄金分割点,若ACAB≈0.6 18,那么CBAC的近似值是_______ 5.如图,直线l1∥l2∥l3,另两条直线分别交l1,l2,l3于点A,B,C及点D,E,F,且AB=3,DE=4,EF=2,则BC=______.★6. (1)如图,AD是△ABC的中线,P是AD的中点,延长BP交AC于点F,若AC的长为6,求AF的长(2)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,求AC的长.第(1)题第(2)题BACDE1.如图,已知△ABC ∽△ADB 中,CD =6,AD =2,BD =3,则AB =_____, BC =_____.2.如图,在△ABC 中,EF ∥BC ,12AE EB =,S 梯形BCFE =8,则S △ABC 的值是3、如图,在△ABC 中,∠B =45°,BC =5,高AD =4,矩形EFPQ 的一边QP 在BC 边上,E 、F 分别在AB 、AC 上,AD 交EF 于点H . (1)求证:BCEFAD AH =; (2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求出最大面积;4、如图,在R t △ABC 中,∠ACB =90°,AC =5cm ,∠BAC =60°,动点M 从点B 出发,在BA 边上以每秒2cm 的速度向点A 匀速运动,同时动点N 从点C 出发,在CB 边上以每秒3cm 的速度向点B 匀速运动,设运动时间为t 秒(05≤≤t ),连接MN . (1)若△MBN 与△ABC 相似,求t 的值;(2)当t 为何值时,四边形ACNM 的面积最小?并求出最小值.1.如图,在大小为4×4的正方形网格中,是相似三角形的是________(请填上编号).2.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是 ( )A.∠ABD=∠C B.∠ADB=∠ABCC.AB CBBD CD= D.AD ABAB AC=3. 如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC= 14BC.图中相似三角形共有()A.1对 B.2对C.3对 D.4对4、(1)提出问题:如图①,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连接AM,以AM为边作等边△AMN,连接CN.求证:∠ABC=∠ACN.(2)类比探究:如图②,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其他条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.(3)拓展延伸:如图③,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B,C),连接AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连接CN,试探究∠ABC与∠ACN 的数量关系,并说明理由.5. 如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.相似三角形拓展提升训练一、填空题1.如图,△ABC∽△DEF,相似比为1∶2,若BC=1,则EF的长是()A.1 B.2 C.3 D.42.如图,在研究相似问题时,甲、乙两同学的观点如下:甲:将边长为3,4,5的三角形按图中的方式向外扩张,得到新三角形,它们的对应边间距均为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图②的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对 B.两人都不对 C.甲对,乙不对 D.甲不对,乙对3.如图,在△ABC中,AB=AC,点D在边BC上,连接AD,将线段AD绕点A逆时针旋转到AE,使得∠DAE=∠BAC,连接DE交AC于F,图中相似的三角形有______对.第3题第4题第5题P A4、如图,AD 是△ABC 的中线,F 在AC 上CF=3AF ,若BF 的长为6,则PF 的长为______.5、如图,梯形ABCD 中,AD ∥BC ,∠B =∠ACD =90°,AB =2,DC =3,则△ABC 与△DCA 的面积比为______________6、如图,P 为平行四边形ABCD 边AD 上一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,S 1,S 2,若S =2,则S 1+S 2=______第6题 第7题7、如图,小明用长为3 m 的竹竿CD 做测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿与旗杆的距离DB =12 m ,则旗杆AB 的高为_________________8、如图,梯形ABCD 中,AD ∥BC ,∠D=90°,∠ABC=60°,CD=33AD=16,点P 是AD 边上的一点,∠CPB=120°.①△PCB 与△ABP 相似吗?为什么? ②求△ABP 的面积S 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形
例1 如图,已知E 是矩形ABCD 的边CD 上一点,BF AE 于F ,试证明ABF EAD △∽△.
例2 如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,•要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,•这个正方形零件的边长是多少?
例3 如图,图中的小方格都是边长为1的正方形,△ABC 与△A′B′C′是关于点0为位似中心的位似图形,它们的顶点都在小正方形的顶点上.
(1)画出位似中心点O ;
(2)求出△ABC 与△A′B′C′的位似比
(3)以点O 为位似中心,再画一个△A 1B 1C 1,使它与△ABC 的位似比等于1.5.
例4 一天,某校数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些深坑对河道的影响.如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:
①先测量出沙坑坑沿圆周的周长约为34.54米;
②甲同学直立于沙坑坑沿圆周所在平面上,经过适当调整自己所处的位置,当他位于点B 时,恰好他的视线经过沙坑坑沿圆周上的一点A 看到坑底S (甲同学的视线起点C 与点A 、点S 三点共线).经测量:AB =1.2米,BC =1.6米. 根据以上测量数据,求“圆锥形坑”的深度(圆锥的高).(π取3.14,结果精确到0.1米)
练习:
1.如图,在平行四边形ABCD 中,E 是AD 上一点,连结CE 并延长交BA 的延长线于点F ,则下列结论中错误的是( )
A. ∠AEF =∠DEC
B. FA:CD =AE:BC
C. FA:AB =FE:EC
D. AB =DC
2.在△ABC 中,∠B =25°,AD 是BC 边上的高,并且AD BD DC 2=·,则∠BCA 的度数为_________。

3.如图,在ABC ∆中,90B ∠=
,12mm AB =,24mm BC =,动点P 从点A
开始沿边AB 向B 以2mm /s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以4mm /s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过________秒,四边形APQC 的面积最小.
4.如图,路灯(P 点)距地面8米,身高1.6米的小明从距路灯的底部(O 点 )20米的A 点,沿OA 所在的直线行走14米到B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?
5、如图,四边形ABCD 为一梯形纸片,AB ∥CD ,AD =BC .翻折纸片ABCD ,使点A 与点C 重合,折痕为EF .已知CE ⊥AB ,
(1)求证:EF ∥BD ;(2)若AB =7,CD =3,求线段EF 的长;
6、如图,已知A (8,0),B (0,6),两个动点P 、Q 同时在△OAB 的边上按逆时针方向(→O→A→B→O→)运动,开始时点P 在点B 位置,点Q 在点O 位置,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位.
(1)在前3秒内,求△OPQ 的面积与t 的函数关系式;
(2)在前10秒内,求P 、Q 两点之间的最小距离,并求此时点P 、Q 的坐标; (3)在前15秒内,探究PQ 平行于△OAB 一边的情况,并求平行时点P 、Q 的坐标.
第24题
D F C。

相关文档
最新文档