半导体三极管β值及范围测量仪设计报告
半导体三极管β值测量仪
目录目录 (2)第一部分系统设计 (3)1.1设计题目及要求 (3)1.2设计思路分析 (3)1.2.1设计思路 (3)1.2.2设计方案 (4)1.2.3方案论证与比较 (6)第二部分单元电路设计 (7)2.1被测三极管电路工作原理和功能说明 (7)2.2 β-v转换电路工作原理和功能说明 (9)2.3 LM331电路工作原理和功能说明 (9)2.4 555单稳态电路工作原理和功能说明 (12)2.5 计数、译码、显示电路及其原理和功能说明 (13)第三部分整机电路图 (15)3.1 整机电路图 (15)3.2 元件清单 (15)第四部分性能调试 (16)4.1 电路调试 (16)4.1.1 调试使用的仪器 (16)4.1.2 指标测试步骤及测量数据 (16)4.1.3故障分析及处理 (17)4.2 电路实现的功能和系统使用说明 (19)第五部分课程设计总结 (19)附件一整机电路图 (22)附件二 IC资料 (23)第一部分系统设计1.1设计题目及要求设计题目:半导体三极管β值测量仪设计任务:设计一个可测量NPN型硅三极管的β值的显示测量电路(β<200)任务要求:1用三个数码管显示β的大小,分别显示个位、十位和百位。
显示范围为0-199。
2响应时间不超过2秒,显示器显示读数清晰,注意避免出现“叠加现象”。
3电源采用5V或±5V供电。
1.2设计思路分析1.2.1设计思路将变化的β值转化为与之成正比变化的电压或电流量,再将得到的电压或者电流量转换为频率,然后计数、译码显示。
上述转换过程可由以下方案实现:根据三极管电流I C=βI B的关系,当I B为固定值时,I C反映了β的变化,电阻RC上的电压V RC又反映了IC的变化,这样,被测三极管就可以通过β-V转换电路把三极管的β值转换成对应的电压,然后再通过压控振荡器把电压转换成频率,若计数时间及电路参数选择合适,在计数时间内通过的脉冲个数即为被测三极管的β值。
三极管β值测量
电路与电子技术课程设计三极管β值数显式测量电路设计学院:专业:班级:姓名:学号:指导老师:二〇一一年五月十八日目录前言 (2)1设计任务及要求 (2)1.1基本功能实现 (2)1.2扩展功能与创新 (2)1.3添加部分 (3)2方案设计与论证 (3)2.1测量方案的选择 (3)2.2芯片的选择 (3)2.3显示器件的选择 (4)2.4B I 数值的固定 (4)2.5判断管型、及好坏电路的选择 (4)3主要电路原理及相关分析计算 (6)3.1显示及主芯片电路 (6)3.2测量部分电路 (7)3.3判断管型、及好坏部分电路 (7)4总体框图 (8)5测试方法与数据 (9)5.1测试仪器 (9)5.2测试结果 (9)6误差分析 (9)[参 考 文 献] ........................................................................................... 错误!未定义书签。
三极管β值数显式测量电路设计前言:三极管系数是电子电路设计中的一组基本参数,对其测量方法有很多种,测试仪器也有很多种。
然而就目前通用的测量仪器,存在读数不直观和误差大等缺点。
操作者首先需要区分三极管是NPN 型还是PNP 型,然后判断它管脚的基极,集电极和发射极,再开始测量,操作起来比较繁琐。
本课题要求制作的三极管β值数显式测量电路用数码管和发光二极管显示出被测三极管的β值,读数直观,误差较小。
1设计任务及要求1.1基本功能实现1.可测量NPN 硅三极管的直流电流放大系数β值(设β<200)。
测试条件如下: 1)B I =10μA ,允许误差为2%±。
2)CE 14V V 16V ≤≤,且对不同β值的三极管,CE V 的值基本不变。
2.该测量电路制作好后,在测试过程中不需要进行手动调节,便可自动满足上述测试条件。
3.用3只LED 数码管组成数字显示器。
半导体三极管β值测量仪
摘要半导体三极管β值测量仪是用来测量NPN型三极管电流放大倍数β值的一种简易仪器。
它的设计分为几个部分,首先是转化电路,用微电流电路使晶体管基极电流为一定值,用转化电路将所求c I转换为电压来测量。
然后是比较电路,将转换电路得来的电压与所预设的基准电压比较即可知道β值的范围具体是在80~120,120~160还是160~200之间,其中基准电压用电阻分压的形式得到,大于对应的基准电压输出高电平,否则输出低电平,由比较电路的到比较结果后,将对应β值的由高到低的比较结果连接到发光二极管的阳极并且将二极管阴极接地这样即可实现当没有接入三极管或者β<80时,四个发光二极管全灭;80<β<120时,发光二极管亮一只;120<β<160时,发光二极管亮两个;160<β<200时,亮三个发光二极管;当β>200时,四只发光二极管全亮。
关键词:NPN三极管;转换电路;比较电路;发光二极管一、总体方案与原理说明 1、总体方案框图如图:2、各部分电路功能的简单说明:① 转换电路:它是用与把不能直接用仪器测量的NPN 型三极管β值转换成可以直接被测量的集电极电压,再把这个电压采样放大,为下一级电压比较电路提供采样电压,其中包括提供恒定电流的电路和起放大隔离的差动放大电路。
② 电压比较电路:由于被测量的物理量要分三档(即β值分别为80~120,120~160及160 ~200对应的分档编号分别是1、2、3)还要考虑到少于80,和大于200的,于是比较电路需要把结果分成五个层次。
则至少需要四个基准电压,该电路就是有一个串联电阻网络产生四个不同的基准电压,再用四个运算放大器组成的比较电路,将取样信号同时加到具有不同基准电压的比较电路输入端进行比较,对应某一定值o U ,相应的一个比较电路输出为高电平,其余比较器输出为低电平。
③显示:该电路功能是用发光二极管显示被测量的NPN 型三极管β值的档次。
半导体三极管β值测量仪
课程设计名称:电子技术课程设计
题目:半导体三极管β值测量仪
专业:
班级:
姓名:
学号:
课程设计成绩评定表
课程设计任务书
一、设计题目
半导体三极管β值测量仪
二、设计任务
1.对被测NPN型三极管值分三档,80-120,120-160,160--200三档,
并分别编号为1、2、3;
2.用四个发光二极管显示编号,处于待测时全部灭,超过200显示四个
全部亮。
三、设计计划
电子技术课程设计共1周。
第1天:选题,查资料;
第2天:方案分析比较,确定设计方案;
第3~4天:电路原理设计与电路仿真;
第5天:编写整理设计说明书。
四、设计要求
1. 画出整体电路图。
2. 对所设计的电路全部或部分进行仿真,使之达到设计任务要求。
3. 写出设计说明书。
指导教师:回立川
时间:2012年6月12日。
青岛大学课程设计——三极管β值测量仪
电子技术课程设计报告设计名称:半导体三极管β值测量仪学校名称:青岛大学学院名称:自动化工程学院专业班级:13级通信工程1班学号:*************名:**指导老师:2015年9月22日目录一、课题名称 (3)二、内容摘要 (3)三、设计内容及要求 (3)3.1基础部分 (3)3.2发挥部分 (4)四、比较和选定设计的系统方案,画出系统框图 (4)4.1基础部分 (4)4.1.1 设计方案 (4)4.1.2模块结构与流程图 (4)4.1.3 基本设计原理 (5)4.2发挥部分 (5)4.2.1设计方案 (5)4.2.2系统框图 (6)4.2.3基本设计原理 (6)五、单元电路设计、参数和元器件选择说明 (7)基础部分 (7)5.1微电流源 (7)5.2共射放大电路 (8)5.3采样电路 (8)5.4采样电路、比较电路、基准电压 (10)5.5优先编码、显示译码、显示电路 (12)5.5.1编码电路 (12)5.5.2显示译码电路 (12)5.5.3显示电路 (13)5.6单稳态触发器 (14)5.7流控振荡器 (16)5.8计数电路、显示电路 (18)六、画出完整电路图,并说明电路的工作原理 (21)6.1基础部分 (21)6.1.1基础部分Multisim仿真图 (21)6.1.2基础部分电路的工作原理 (21)6.2发挥部分 (23)6.2.1发挥部分完整电路图 (23)6.2.2发挥部分的基本原理 (23)6.3总电路图 (24)七、仿真结果 (24)八、电路优缺点及改进方向 (25)九、器件清单 (25)十、实验心得 (26)十一、参考文献 (27)一、课题名称半导体三极管β值测量仪二、内容摘要本次课程设计制作一个测量NPN型半导体三极管β值的显示测试仪,分为基础部分和发挥部分。
基础部分:通过β-U的转换电路,将变化的β值转化成与之成正比例的电压即取样电压,对其进行比较、分档。
然后将取样信号同时加到四个具有不同基准电压的电压比较器中进行比较,对于某一定值,每个电压比较器输出端输出相应的高电平或者低电平,从而驱动优先编码器对高位进行二进制编码,再经过显示译码器驱动数码管显示出相应的档位。
半导体三极管β值测量仪
4. 电路图的绘制
目前比较流行的或应用广泛的绘制软件包有 PROTEL和ORCAD/STD。亦可用电子工作平台 multisim。
绘制电路图时应注意:
(1)布局合理、排列均匀、图面清晰、便 于看图、有利于对图的理解和阅读。
•有时一个总电路图由几部分组成,绘制时应尽量把总 电路图画在一张纸上。如果电路比较复杂,需绘制几张 图,则应把主电路图画在一张图纸上,而把一些比较独 立或次要的部分画在另外的图纸上,并在图的断口两端 做上标记,标出信号从一张图到另一张图的引出点和引 入点,以此说明各图纸在电路连线乊间的关系。
(3)元器件选择
阻容元件的选择。电阻器和电容器种类很多, 正确选择电阻器和电容器是很重要的。
设计时要根据电路的要求选择性能和参 数合适的阻容元件,并要注意功耗、容 量、频率和耐压范围是否满足要求。
分立元件的选择。
分立元件包括二枀管、晶体三枀管、场效应管、光 电二枀管、光电三枀管、晶闸管等。根据其用途分 别迚行选择。
集成电路的选择。一般优先选集成电路。
由于集成电路可以实现很多单元电路甚至整 机电路的功能,所以选用集成电路设计单元电路 和总体电路既方便又灵活,它不仅使系统体积缩 小,而且性能可靠,便于调试及安装,在设计电 路时应首选。
半导体三极管β值测量仪设计
半导体三极管β值测量仪设计半导体三极管β值测量仪设计与制作摘要:在电子产品设计、制作与维修中,经常需要测量三极管的放大系数β,而万用表自带的简易β测试装置准确性很差,为此本项目设计一个高精度β值测量仪。
关键词: 1.引言2.设计要求 2.1基本要求(1)被测三极管为NPN型,β值范围为β<300。
(2)用三个数码管显示β的大小,分别显示个位、十位和百位。
显示范围为0-199。
(3)响应时间不超过2秒,显示器显示读数清晰,注意避免出现“叠加现象”。
(4)β值超过测量范围时声光报警。
(5)电源采用5V或±5V供电。
2.2扩充要求(1)可以测量任意极性(NPN、PNP)的三极管。
(2)三极管内部断路或短路时能发出警报声,要与β值超过测量范围时的报警声区别开来。
2.3设计提示将三极管β值转换为其他可用仪器测量的物理量来进行测量,如电压,根据三极管电流IC=βIB的关系,当IB为固定值时,IC反映了β的变化,电阻RC上的电压VRC又反映了IC的变化,对VRC进行伏频转换,转换后的频率f就反映了β值的大小,然后再用计数器对f的信号进行一定时间的计数,最后通过计数器的保持输出经译码电路就可以显示β值。
系统方框如下图2-1所示。
图2-13.电路设计与器件选择3.1方案比较 3.1.1方案一如下图3-1所示。
图3-1 方案一如图3-1,T1、T2、R1、R3构成微电流源电路,R2是被测管T3的基极电流取样电阻,R4是集电极电流取样电阻。
由运放构成的差动放大电路,实现电压取样及隔离放大作用。
根据三极管电流IC=βIB的关系,当IB为固定值时,IC随着β的变化而变化,电阻RC上的电压VRC正好反映了IC的变化,所以,我们对VRC取样加入后级,进行分档比较。
从而实现目的。
该电路用微电流源为基极取样电阻提供稳恒的电流,这样便于测量β值。
3.1.2方案二电路如下图3-2所示.图3-2 方案二如图3-2所示,T1是被测三极管,其基极电流可由R1、RW限定,运算放大器的输出:VR2=βIB R23.1.3 各方案分析比较两个方案得原理都是要将变化得β值转化为与之成正比变化的电压或电流量,再取样进行比较、分档。
三极管β值数显式测量电路设计
R
+5V
译码电路是74LS47芯片构成,输入BCD码,输入LED中,点亮数字。
七段译码器74LS47为低电平输出有效,后接共阳极数码管。
谢 谢
riordon@
由硬件设计条件:
————显示电路 1. 二只LED数码管、一只发光二极管
显示电路
2. E、B和C三个插孔 ——————————三极管接入口
电路设计部分:
1. LED数码管规则工作需要要采用译码电路,点亮数字。
2. 译码电路的输入必须正确的β值,输入端为电压信号 变化。
译码电路
电路设计部分
被测 三极管
三极管β值数显式测量电路设计
riordon@
任务: 测量NPN硅三极管的直流电流放大系数β值(β<200)
电路参数要求:
1. ������������ = 10������������,允许误差为±2%。
2. 14������ ≤ ������������������ ≤ 16������,且对于不同β值的三极管,������������������ 的值 基本不变。
1. 运放器的反相输入端与集电极相连接,而且参数对发射极与集电极电压有要求,所三
极管的射极直接接到-15V的电源上。 2. 基极电路 ������������ = 10������������,发射极电压为-15V,所以取R1=1.5MΩ。 3. 电路中需要固定������������ ,且电压������������������ 保持不变,所以三极管中集电极,发射极没有电阻。
硬件设计要求:
1. 用二只LED数码管和一只发光二极管构成数字显示器。 “0”,二只数码管分别用来显示拾位和个位,发光二 极管用来显示最高位,它的亮状态和暗状态分别代表 “1”和即数字显示器可显示不超过199的正整数和零。 2. 测量电路应设有E、B和C三个插孔。当被测管插入插 孔后,打开电源,显示器应自动显示出被测三极管的β 值,响应时间不超过两秒钟。 3. 在温度不变(200C)的条件下,本测量电路的误差之 绝对值不超过5/100 ������+1这里的N是数字显示器的读数。 4. 数字显示器所显示的数字应当清晰,稳定、可靠。
(完整版)三极管参数测试仪
简易半导体三极管参数测试仪
一、 任务
设计并制作一个小功率半导体三极管参数测试仪
二、 要求
1、基本要求
(1) 在V V A I CE B 10,10≈≈μ 条件下,能测出三极管的直流电流放大系
数β,并用数字显示。
测量范围50~300;测量误差的绝对值小于1100
5+N ,其中N 是直流放大倍数β的显示数值。
(2) 当B I 由10μA 变化到20μA ,CE V 保持不变,能测出三极管的交流
放大系数β,并用数字显示。
测量误差要求同(1)。
(3) 在V V CE 10=的条件下,测量三极管的集电极—发射极反向饱和电流 CEO I ,用数字显示,测量范围0.1μA~100μA ,测量误差≤10%。
(4)测量三极管的集电极—发射极间的反向击穿电压CEO BR V )(,并用数字显
示;测试条件mA I C 1=,测量范围20V~60V ,测量误差≤5%。
(5) 具有三极管管脚插错、损坏指示报警功能。
2、发挥部分
(1) 在V V CE 10=条件下,显示出三极管共射极接法输入特性曲线。
(2) 在0≈B I ,10μA ,20μA ,30μA ,=CE V 0~12V 条件下,显示出三
极管共射极接法输出特性曲线。
(3) 其他。
三、评分标准。
半导体三极管β值及范围测量仪设计报告
课程设计课题名称:半导体三极管β值及范围测量仪完成人:班级:学号:时间:(一)设计内容及要求1. 设计内容:制作一个自动测量NPN 型 硅三极管β值的显示测试仪。
2. 设计要求:1)对被测NPN 型三极管值 分三档2)β值的范围分别为80~120及120~160,160~200对应的分档编号分别是1、2、3;待测三极管为空时显示0,超过200显示4。
3)用数码管 显示β值的档次4)发挥部分:用三个数码管 显示β的大小,分别显示个位、十位和百位。
显示范围为0-199;响应时间不超过2秒,显示器显示读数清晰,注意避免出现“叠加现象”。
(二)电路设计 电路设计整体框图(三)实验器件示波器 1台 万用表 1台 直流稳压电源 1台 模拟实验装置 1台 数字试验箱 1台 四运放LM324 555定时器 三极管二极管、稳压管电位器、电阻器、电容器 CD4532、CD4511 数码管(四)参数计算及元器件选择1)微电流源(图1):R1Q21Q 、、构成微电流源电路,Q3为待测三级管,微电流源提供基极电流b I ,R8提供输出电压。
调节滑动变阻器1R 的阻值可以改变微电流源的输出电流b I ,b I 的选择应在A A μμ40~30之间为宜,且CE V 的选择应不小于V 1,以使三极管工作在合适的状态。
取待测管的b I 值为A μ40,即A =μ40R I ,根据公式:RV V I BE CC R1-=得出:RBE CC I V V R 11-=,Ω=A ===K R I V V V V R BE CC 5.3571,40,7.0,151得:μ,最终输出电压为b b I R I V ββ04.080==图一微电流源2)电压比较器(图2):将取样信号同时加到具有不同基准电压的比较电路输入端进行比较,对应某一定值,只有相应的一个比较电路输出为高电平,则其余比较器输出为低电平。
由于被测量的物理量要分五档(即值分别为<80、80~120、120~160、160~200 及>200,对应的分档编号分别是0、1、2、3、4)。
半导体三极管参数测量仪设计报告
电子设计报告半导体三极管参数测量仪设计小组成员院系名称专业名称班级二○一四年 7 月 30 日半导体三极管参数测量仪设计内容提要:本次设计的是一个基于TMS320F28335(DSP核心处理芯片)的半导体三极管参数测量仪。
系统以TMS320F28335为核心控制芯片,该系统拥有三极管管脚插错,损坏指示报警的功能,同时能够较准确的测量小功率晶体管的交流和直流放大倍数,可以在液晶上描出半导体三极管在共射极接法时的输入和输出特性曲线。
在系统的设计中,共设计了控制电路、测试电路以及显示电路三大模块。
通过DSP控制DAC0832进行DA转换,再通过后续电路实现数控直流电压源和电流源的设计以对晶体管的集电极和基极提供适当的控制电压和控制电流;然后分别通过DSP控制A/D转换器分别对基极电压、基极电流、集电极电压、集电极电流进行采样处理,再将采样得到的数据通过DSP中的程序处理后通过液晶显示三极管的各项参数和描出输入输出特性曲线,具有较大的实际意义。
关键词:TMS320F28335 三极管控制电路特性曲线 A/D转换目录1 引言 (2)2 系统设计方案及工作原理 (2)2.1总体方案设计与论证 (2)2.2系统工作原理 (2)2.2.1系统总体框图 (2)2.2.2晶体管类型判断原理 (3)2.2.3输入输出特性曲线 (3)2.2.4放大倍数的计算 (4)3 硬件电路设计 (4)3.1取样电路设计 (4)3.1.1集电极取样电路设计 (5)3.1.2基极取样电路 (6)3.2控制电路设计 (7)3.2.1恒流源设计 (7)3.2.2数控直流电压源设计 (8)3.3切换电路设计 (8)3.4基准电压源电路设计 (8)3.5D/A转换电路设计 (9)4软件设计 (9)5 系统调试及数据分析 (10)5.1测试仪器 (10)5.2系统调试 (10)5.2.1控制电路调试 (10)5.2.2测试电路调试 (10)5.3误差分析 (11)6参考文献 (11)1 引言在现代的电子线路的设计中,三极管的应用十分广泛,在三极管的应用中,我们又经常需要了解三极管的各项特性参数。
半导体三极管β值及范围测量仪
120~160,180~200,因此,应通过上级电路计算出的元件取值求得各档次的基 准比较电压边值。
由 R4=510 (计算时取 500 ), I B =30μA,和被测三极管β值,由公式 Vi=VR4=Io* *R4,可计算出对应的基准比较电压:
安装完电路后通电显示的数字比较乱,我们检查了数码管的连接是否出了问 题,结果是数码管的管脚连接出错了。重新连接后能显示 4,拔出被测三级管之 后能显示 0,我们以为已经正确了很高兴,但是换β值为 175 的三极管应该显示 3 的,但是却显示 4,我们怀疑是电阻的值有问题,于是重新计算基准电压,调 整 R9~R13 的电阻值,通过不断的调试和测试,最终结果显示了 3,接近成功了。 三、 整机性能指标测量: 当插上三极管 9018 时,数码显示管显示为“1”,用万用表实际测得其β值为 112, 在 80~120 范围内,结果正确。 当插上三极管 9013 时,数码显示管显示为“3”,用万用表实际测得其β值为 163, 在 160~200 范围内,结果正确。 当不插三极管时,数码显示管显示为“0”,结果正确。
〈1〉LM324 内部运算放大器结构图为:
LM324 是四运放集成电路,它采用 14 脚双列直插塑料封装,外形如图(10) 所示。它的内部包含四组形式完全相同的运算放大器,如图(11)所示。除电源 共用外,四组运放相互独立。每一组运算放大器可用图 1 所示的符号来表示,它 有 5 个引出脚,其中“+”、“-”两个信号输入端,“V+”、“V-”为正、负电源端,
7
当β=80 时,Ui=VR4=Io* *R4=0.00003*80*500=1.2V 当β=120 时,Ui=VR4=Io* *R4=0.00003*120*500=1.8V 当β=160 时,Ui=VR4=Io* *R4=0.00003*160*500=2.4V 当β=200 时,Ui=VR4=Io* *R4=0.00003*200*500=3.0V 可以计算出电压比较电路串联网络中各个分压电阻的阻值,5V 电源供电,分 压总电阻取 R=166.51k: β=80 时,R= 40k β=120 时,R=60k β=160 时,R=80k β=200 时,R=100k 电压比较电路的电阻为: R8=20k R9=20k R10=20k R11=40k R12=66.51k (二)工作原理和功能说明 由于被测物理量要分三个档,β值的范围分别为 80~120 及 120~160,160~ 200 对应的分档编号分别是 1、2、3,所以还要考虑到小于 80 和大与 200 的情况, 所以比较电路要把结果分成五个层次。要有四个基准电压,于是由一个串联电阻 网络产生四个不同的基准电压,再用四个运算放大器组成的比较电路,将采样信 号同时加到具有不同基准电压的比较电路输入端进行比较,对应某一定值Uo ,相 应的一个比较电路输出为高电平,其余比较电路输出为低电平。 (三)器件说明
半导体三极管β值数字显示测试电路
半导体三极管β值数字显示测试电路班级:电子 1035班姓名:赵海华学号: 10312609时间:1月1~12日指导教师:尹晓琦2007 年 1 月 10日半导体三极管β值数字显示测试电路一、目的要求学生能在课程设计中熟练掌握使用模拟和数字集成电路芯片设计测试电路,提高学生发现问题和解决问题的能力。
二、设计要求及技术指标(1)可测量NPN硅三极管的直流电流放大系数β(设 <200)。
(2)在测量过程中不需要进行手动调节,便可自动满足上述测试条件。
(3)用两只LED数码管和一只发光二极管构成数字显示器。
发光二极管用来表示最高位,它的亮状态和暗状态分别代表1和0,而两只数码管分别用来显示个位和十位,即数字显示器可显示不超过199的正整数和零。
(4)测量电路设有被测三极管的三个插孔,分别标上e、b、c,当三极管的发射极、基极和集电极分别插入e、b、c插孔时,开启电源后,数字显示器自动显示出被测三极管的值。
响应时间不超过2s。
(5)在温度不变的条件下(20°C),本测量电路的误差之绝对值不超过5N/100+1。
这里的N是数字显示器的读数。
(6)数字显示器所显示的读数应清晰,并注意避免出现"叠加现象"。
三、要求完成的任务(1)计算参数,安装、调试所设计电路;(2)画出完整电路图,写出设计总结报告。
四、基础知识准备(1)三极管的工作原理三极管是一种控制元件,主要用来控制电流的大小,以共发射极接法为例(信号从基极输入,从集电极输出,发射极接地),当基极电压UB有一个微小的变化时,基极电流IB也会随之有一小的变化,受基极电流IB的控制,集电极电流IC 会有一个很大的变化,基极电流IB越大,集电极电流IC也越大,反之,基极电流越小,集电极电流也越小,即基极电流控制集电极电流的变化。
但是集电极电流的变化比基极电流的变化大得多,这就是三极管的放大作用。
IC 的变化量与IB 变化量之比叫做三极管的放大倍数β(β=ΔIC/ΔIB, Δ表示变化量。
半导体三极管β值测量仪设计
景德镇陶瓷学院
电工电子技术课程设计任务书
姓名XX班级08机设1班指导老师江老师
设计课题:半导体三极管β值测量仪设计
设计任务与要求
查找一个感兴趣的电工电子技术应用电路,要求电子元件超过30~50个或以上,根据应用电路的功能,确定封面上的题目,然后完成以下任务:
其中:A、B、C、D为数据输入端, 、 、LE为控制端。a~g为输出端,其输出电平可直接驱动共阴数码管进行0~9的显示。
CD4511真值表:
根据CD4511的真值表,要使译码电路正常工作,LE接低电平, 、 接高电平,D端悬空,C、B、A、分别接编码器的三个输出端Q2、Q1、Q0。而八个输出端则接共阴数码管的输入端。
1、分析电路由几个部分组成,并用方框图对它进行整体描述;
2、对电路的每个部分分别进行单独说明,画出对应的单元电路,分析电路原理、元件参数、所起的作用、以及与其他部分电路的关系等等;
3、用简单的电路图绘图软件绘出整体电路图,在电路图中加上自己的班级名称、学号、姓名等信息;
4、对整体电路原理进行完整功能描述;
3、电压比较电路
其中的运算放大器采用集成电路LM324。它是由四个相同的运算放大器构成的,其封装及内部结构如下所示:
基准电压:由于题目要求将 值的档次分为50~80、80~120及120~180,对应的分档编号分别是1、2、3,则需要多个不同的基准电压,基准电压是采用一个串联的电阻网络对一个固定的电压进行分压得到的。
5、列出标准的元件清单;
设计步骤
1、查阅相关资料,开始撰写设计说明书;
2、先给出总体方案并对工作原理进行大致的说明;
3、依次对各部分分别给出单元电路,并进行相应的原理、参数分析计算、功能以及与其他部分电路的关系等等说明;
模电课程设计-三极管β值测量
3.1 整机电路图
见附件一
3.2 元件清单
型号
数量
LM324
1片
LM331
1片
NE555
1片
CD4518
2片
CD4511
2片
74LS08
1片
Q1、Q2
9012
2个
Q3
9013
1个
R1
3k
1个
R2
3.3k
1个
R3
10k
1个
R4
390
1个
R5、R6
100k
2个
R7、R8
200k
2个
R9
第一部分 系统设计
1.1设计题目及要求
设计题目:半导体三极管β值测量仪
设计任务:设计一个可测量NPN型硅三极管的β值的显示测量电路(β<200)
任务要求:
1用三个数码管显示β的大小,分别显示个位、十位和百位。显示范围为0-199。
2响应时间不超过2秒,显示器显示读数清晰,注意避免出现“叠加现象”。
3电源采用5V或±5V供电。
1.2设计思路分析
1.2.1设计思路
将变化的β值转化为与之成正比变化的电压或电流量,再将得到的电压或者电流量转换为频率,然后计数、译码显示。上述转换过程可由以下方案实现:
根据三极管电流IC=βIB的关系,当IB为固定值时,IC反映了β的变化,电阻RC上的电压VRC又反映了IC的变化,这样,被测三极管就可以通过β-V转换电路把三极管的β值转换成对应的电压,然后再通过压控振荡器把电压转换成频率,若计数时间及电路参数选择合适,在计数时间内通过的脉冲个数即为被测三极管的β值。
2.3 LM331电路工作原理和功能说明
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课
程
设
计
课题名称:半导体三极管β值及范围测量仪完成人:
班级:
学号:
时间:
(一)设计内容及要求
1. 设计内容:制作一个自动测量NPN 型 硅三极管β值的显示测试仪。
2. 设计要求:
1)对被测NPN 型三极管值 分三档
2)β值的范围分别为80~120及120~160,160~200对应的分档编号分
别是1、2、3;待测三极管为空时显示0,超过200显示4。
3)用数码管 显示β值的档次
4)发挥部分:用三个数码管 显示β的大小,分别显示个位、十位和百位。
显示范围为0-199;响应时间不超过2秒,显示器显示读数清晰,注意避免出现“叠加现象”。
(二)电路设计 电路设计整体框图
(三)实验器件 示波器 1台 万用表 1台 直流稳压电源 1
台
模拟实验装置 1台 数字试验箱 1台 四运放LM324 555定时器 三极管
二极管、稳压管
电位器、电阻器、电容器 CD4532、CD4511 数码管
(四)参数计算及元器件选择
1)微电流源(图1):R1Q21Q 、、构成微电流源电路,Q3为待测三级管,微电流源提供基极电流b I ,R8提供输出电压。
调节滑动变阻器1R 的阻值可以改变微电流源的输出电流b I ,b I 的选择应在A A μμ40~30之间为宜,且CE V 的选择应不小于V 1,以使三极管工作在合适的状态。
取待测管的b I 值为A μ40,即A =μ40R I ,根据公式:R
V V I BE CC R
1
-=
得出:
R
BE CC I V V R 1
1-=
,Ω=A ===K R I V V V V R BE CC 5.3571,40,7.0,151得:μ,最终输出
电压为b b I R I V ββ04.080==
图一微电流源
2)电压比较器(图2):
将取样信号同时加到具有不同基准电压的比较电路输入端进行比较,对应某一定值,只有相应的一个比较电路输出为高电平,则其余比较器输出为低电平。
由于被测量的物理量要分五档(即值分别为<80、80~120、120~160、160~200 及>200,对应的分档编号分别是0、1、2、3、4)。
需要四个基准电压,于是有四个滑动变阻器产生四个不同的基准电压,再用四个运算放大器组成的比较电路,将取样信号同时加到具有不同基准电压的比较电路输入端进行比较,对应某一定值,相应的一个比较电路输出为高电平,其余比较器输出为低电平。
从上而下分别为:4档、3档、2档、1档。
图二电压比较器
3)编码译码
编码译码显示
CD4532引脚图CD4511引脚图数码管
CD4532真值表
CD4511真值表
编码译码显示图
图4
(五)完整电路图及工作原理 1)基础部分:
1.将变化的β值转化为与之成正比变化的电压,再取样进行比较、分档。
根据三极管电流B C I I β=的关系,当B I 为固定值时,C I 反映了β的变化,电阻6R 上的电压6R V 又反映了C I 的变化,对6R V 取样加入后级进行分档比较。
2.将取样信号同时加到具有不同基准电压的比较电路输入端进行比较,当同相输入端电压值大于反相输入端电压值时,运算放大器输出端为正,发光二级管点亮,否则不亮。
分别调节4个电位器的阻值,以改变基准电压,使其分别能在
β值四个档的临界值时点亮二极管。
同时,对比较器输出的高电平进行二进制编码,再经显示译码器译码,驱动数码管 显示出相应的档次代号。
基本部分完整电路图
2)发挥部分工作原理:
微电流源为待测三级管提供恒定电流,确保待测三极管输出电流不因其更换而改变,然后通过压控振荡器,将采集的电压量转化成与之成正比变化的频率。
合理设定参数使在一定时间内通过的脉冲个数即为被测三极管的 值。
由555定时器构成单稳态触发器产生计数时间控制信号,该信号只有一个正脉冲,从电路连通到计数时间结束,保证不会重复计数,将两个脉冲信号同过与门送到74LS90构成十进制加法计数器,用于计数脉冲的个数,再经CD4511译码,数码管显示计数的值。
通过调节R2、R3的阻值,来缩小显示数字与真实数值的差距,减小误差,但误差是不可消除的,所以只是减小了,却并没有消除,因此,显示数据与真实数据还是有差距的。
发挥部分整体电路图
(六)总结
1.方案设计优点:
成本低,不需要人工接电路,通过MULTISIM,就可以直接仿真出来,方便调试。
基本部分可以得到很准确的结果,发挥部分应用了很多知识,虽然结果有误差,但是思路正确。
2.方案设计缺点:
发挥部分显示结果不精确,存在误差,需要调试的时间较长,且显示结果等待时间较久。
课题的核心及使用价值,改进及展望该电路
3.核心及实用价值:
该课程设计将理论与实际相联系在一起,使我们深刻认识到课本中的理论知识很多都是建立在理想条件下的,在现实中很多情况下是不能拿来就用的,要根据实际情况经过不断地测试和调整,才能达到我们预期的要求。
而且深化了所学理论知识,使我们了解到更多的实际问题及解决方法。
这一过
程,培养了我们综合运用知识的能力,增强了我们独立分析与解决问题的能力,训练培养了严肃认真的工作作风和科学态度,为以后从事电子电路设计和研制电子产品打下初步基础。
改进和展望:课程设计性实验涉及到了我们所学各科知识,包括数字电
子电路、模拟电子电路、电路及电子线路实验及multisim软件的应用,综合
性较强,我们只有结合所学知识才能设计出满足特定要求的电路;设计性实
验对于我们运用所学的知识要求较高,因此在准备实验的过程中要全面复习
所需的基础知识,重点掌握相关的章节,预先根据要求确定所用电路和器件,熟悉掌握各种典型电路的设计、功能和各种元器件的原理、功能等等;然后
根据需要组装连接各功能电路,注意连接过程中元件的排布和布线,尽量使
之匀称、美观;最后计算参数,确定参数是要多方面考虑每一个参数的改变
所造成的影响,要有整体把握、综合考虑的眼光;用仿真软件改变参数以提
高精确度和测量范围,减少干扰;合理布线,便于排错和检查,且方便他人
检查和参考。
(七)心得体会
从本次电子课程设计中,收获很多,首先熟悉了MULTISIM的工作原理及环境,其次,开始将各部分知识综合到了一切运用,为专业学习提供了好的实例,然后,还学会了知识的实践化,不只是停留在理论基础上。
反复的调试电路,更是锻炼了我的耐心和做事细致程度,掌握了设计一个数字电路的基本方法和基本步骤,实际解决设计中出现的问题,增强了寻找问题,解决问题的能力。
这不仅帮助我更好地掌握书本知识,尤其重要的是增强了自信心,培养了独立思考的能力!
(八)参考文献
[1]童诗白华成英主编,模拟电子技术基础(第四版),高等教育出版社
[2]阎石主编,数字电子技术基础(第五版),高等教育出版社
[3]模拟电子技术实验指导书青岛大学电子实验教学中心
[4]康华光主编电子技术基础
[5]孙肖子主编现代电子线路和技术实验简明教程
如有侵权请联系告知删除,感谢你们的配合!。