2018年高考数学(文)二轮复习教师用书:第1部分 重点强化专题 专题1 突破点2 解三角形 Word版含答案

合集下载

2018年高考数学二轮复习教师用书(浙江) 名师寄语 第1点 归纳常考知识构建主干体系含答案

2018年高考数学二轮复习教师用书(浙江) 名师寄语 第1点 归纳常考知识构建主干体系含答案

一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过一轮复习,同学们大都掌握了基本概念的性质、定理及其一般应用,但知识较为零散,综合应用存在较大的问题,而二轮复习承上启下,是知识系统化、条理化,促进灵活运用,提高数学素养的关键时期,为进一步突出重点,攻破难点,提高二轮复习的时效性,建议专题复习时,处理好以下3点:第1点 归纳常考知识,构建主干体系由于二轮复习时间较短,复习中不可能面面俱到,这就需要我们依据《考试大纲》和《考试说明》,结合浙江近几年的高考试题进行主干网络体系的构建,并紧紧抓住高考的“热点”,有针对性地训练.例如:“三角函数”在高考中的主要考点是什么?回顾近三年的高考试题,不难发现,三角函数一般会考两类题:一类题考查解三角形(正弦定理、余弦定理、面积公式),一类题考查三角变换(和(差)角公式、倍角公式、辅助角公式、三角函数的图象与性质).【例1】 (经典高考题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 【导学号:68334000】注:本书所有主观题附规范解答及评分细则[解] (1)由已知及正弦定理得2cos C (sin A cos B +sin B cos A )=sin C ,2分即2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .4分 可得cos C =12, 因为C 为△ABC 的内角,所以C =π3. 7分 (2)由已知得12ab sin C =332. 又C =π3,所以ab =6. 9分由已知及余弦定理得a 2+b 2-2ab cos C =7,故a 2+b 2=13,从而(a +b )2=25.13分 所以△ABC 的周长为5+7. 14分【名师点评】 边角互化是利用正、余弦定理解题的有效途径,合理应用定理及其变形可化繁为简,提高运算效率,如本题也可以利用结论“a cos B +b cos A =c ”直接得出cos C =12. 【例2】 已知函数f (x )=(sin 2x +cos 2x )2-2sin 22x .(1)求f (x )的最小正周期;(2)若函数y =g (x )的图象是由y =f (x )的图象先向右平移π8个单位长度,再向上平移1个单位长度得到的,当x ∈⎣⎢⎡⎦⎥⎤0,π4时,求y =g (x )的单调递增区间和最小值.[解题指导] f (x )―――――→三角恒等变换f (x )=A sin(ωx +φ)――→平移变换y =g (x )求g (x )的单调递增区间和最小值.[解] f (x )=(sin 2x +cos 2x )2-2sin 22x=2sin 2x cos 2x +cos 22x -sin 22x=sin 4x +cos 4x=2sin ⎝ ⎛⎭⎪⎫4x +π4. 4分(1)函数f (x )的最小正周期为T =2π4=π2. 6分(2)由题意,知g (x )=2sin ⎣⎢⎡⎦⎥⎤4⎝⎛⎭⎪⎫x -π8+π4+1=2sin ⎝ ⎛⎭⎪⎫4x -π4+1. 8分 令-π2+2k π≤4x -π4≤π2+2k π(k ∈Z ), 解得-π16+k 2π≤x ≤3π16+k 2π(k ∈Z ). 10分当k =0时,得-π16≤x ≤3π16. 故当x ∈⎣⎢⎡⎦⎥⎤0,π4时,函数g (x )的单调递增区间是⎣⎢⎡⎦⎥⎤0,3π16, 12分 显然g (x )的单调递减区间是⎝ ⎛⎦⎥⎤3π16,π4,易知g (x )min =g (0)=0. 14分 【名师点评】 利用和(差)角公式、倍角公式、辅助角公式将含有多个不同的三角函数式转化为y =A sin(ωx +φ)的形式,再利用三角函数的性质求其单调区间、最值等问题.通过上述两例,我们可以发现高考对“三角函数”考什么、如何考等问题,明确地构建出了本部分知识的主干知识体系.总之,对主干知识的确定有两种途径:第一,跟着老师去复习,一般来说,老师对主干知识的把握比较准确;第二,自己多看、多做近几年的高考题,从而感悟高考考什么,怎么考,进而能使自己把握主干知识,从而进行针对性地二轮复习.。

2018届高考数学文大一轮复习教师用书:第2章 重点强化

2018届高考数学文大一轮复习教师用书:第2章 重点强化

重点强化课(一) 函数的图象与性质函数是中学数学的核心概念,函数的图象与性质既是中学数学教学的重点,又是高考考查的重点与热点,题型以选择题、填空题为主,既重视三基,又注重思想方法的考查,备考时,要透彻理解函数,尤其是分段函数的概念,切实掌握函数的性质,并加强函数与方程思想、数形结合思想、分类讨论思想的应用意识.重点1 函数图象的应用已知f (x )为偶函数,当x ≥0时,f (x )=⎩⎪⎨⎪⎧cos πx ,x ∈⎣⎢⎡⎦⎥⎤0,12,2x -1,x ∈⎝ ⎛⎭⎪⎫12,+∞,则不等式f (x -1)≤12的解集为( ) 【导学号:31222064】A.⎣⎢⎡⎦⎥⎤14,23∪⎣⎢⎡⎦⎥⎤43,74 B.⎣⎢⎡⎦⎥⎤-34,-13∪⎣⎢⎡⎦⎥⎤14,23C.⎣⎢⎡⎦⎥⎤13,34∪⎣⎢⎡⎦⎥⎤43,74D.⎣⎢⎡⎦⎥⎤-34,-13∪⎣⎢⎡⎦⎥⎤13,34A在本例条件下,若关于x 的方程f (x )=k 有2个不同的实数解,求实数k 的取值范围. 由函数f (x )的图象(图略)可知,当k =0或k >1时,方程f (x )=k 有2个不同的实数解,即实数k 的取值范围是k =0或k >1.12分在本例条件下,若函数y =f (x )-k |x |恰有两个零点,求实数k 的取值范围. 函数y =f (x )-k |x |恰有两个零点,即函数y =f (x )的图象与y =k |x |的图象恰有两个交点,借助函数图象(图略)可知k ≥2或k =0,即实数k 的取值范围为k =0或k ≥2.12分1.利用函数的图象研究函数的性质,一定要注意其对应关系,如:图象的左右范围对应定义域,上下范围对应值域,上升、下降趋势对应单调性,对称性对应奇偶性.2.有关方程解的个数问题常常转化为两个熟悉的函数图象的交点个数;利用此法也可由解的个数求参数值或范围.3.有关不等式的问题常常转化为两个函数图象的上、下关系来解.已知函数y =f (x )的图象是圆x 2+y 2=2上的两段弧,如图1所示,则不等式f (x )>f (-x )-2x 的解集是________.图1(-1,0)∪(1,2] .]重点2 函数性质的综合应用☞角度1 单调性与奇偶性结合(1)(2017·石家庄质检(二))下列函数中,既是偶函数又在(0,+∞)上单调递增的是( )A .y =1xB .y =lg xC .y =|x |-1D .y =⎝ ⎛⎭⎪⎫12|x |(2)(2016·天津高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,12 B.⎝ ⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫32,+∞ C.⎝ ⎛⎭⎪⎫12,32D.⎝ ⎛⎭⎪⎫32,+∞ (1)C (2)C☞角度2 奇偶性与周期性结合(2017·贵阳适应性考试(二))若函数f (x )=a sin 2x +b tan x +1,且f (-3)=5,则f (π+3)=________.-3☞角度3 单调性、奇偶性与周期性结合已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)D 上是增函数,f (x )在R 上是奇函数, 所以f (x )在区间上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).] 函数性质综合应用问题的常见类型及解题方法(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.重点3 函数图象与性质的综合应用(1)(2017·郑州二检)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是( )A . C .B .解决分段函数与函数零点的综合问题的关键在于“对号入座”,即根据分段函数中自变量取值范围的界定,代入相应的解析式求解零点,注意取值范围内的大前提,以及函数性质和数形结合在判断零点个数时的强大功能.(2017·云南二次统一检测)已知f (x )的定义域为实数集R ,∀x ∈R ,f (3+2x )=f (7-2x ),若f (x )=0恰有n 个不同实数根,且这n 个不同实数根之和等于75,则n =________.15重点强化训练(一) 函数的图象与性质A 组 基础达标 (建议用时:30分钟)一、选择题1.设函数f (x )为偶函数,当x ∈(0,+∞)时,f (x )=log 2x ,则f (-2)=( )【导学号:31222065】A .-12B.12 C .2 D .-2B2.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .3C3.函数f (x )=3x+12x -2的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2) C4.已知函数f (x )是定义在R 上的偶函数,且在区间B.⎝ ⎛⎦⎥⎤0,12 C.⎣⎢⎡⎦⎥⎤12,2 D .(0,2]C 上单调递减,∴-1≤log 2a ≤0,∴12≤a ≤1.综上可知12≤a ≤2.]5.(2017·陕西质检(二))若f (x )是定义在(-∞,+∞)上的偶函数,∀x 1,x 2∈ 二、填空题6.函数y =f (x )在x ∈上的图象如图2所示,则当x ∈时,f (x )+f (-x )=________.【导学号:31222067】图27.若函数y =log 2(ax 2+2x +1)的值域为R ,则a 的取值范围为________.8.(2017·银川质检)已知y =f (x )是定义在R 上的奇函数,在(0,+∞)上是增函数,且f (2)=0,则满足f (x -1)<0的x 的取值范围是________.(-∞,-1)∪(1,3) 三、解答题9.已知函数f (x )=2x,当m 取何值时方程|f (x )-2|=m 有一个解,两个解? 令F (x )=|f (x )-2|=|2x-2|,G (x )=m ,画出F (x )的图象如图所示.3分由图象看出,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个解;9分当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个解.12分 10.函数f (x )=m +log a x (a >0且a ≠1)的图象过点(8,2)和(1,-1). (1)求函数f (x )的解析式;(2)令g (x )=2f (x )-f (x -1),求g (x )的最小值及取得最小值时x 的值.(1)由⎩⎪⎨⎪⎧f =2,f =-1,得⎩⎪⎨⎪⎧m +log a 8=2,m +log a 1=-1,3分解得m =-1,a =2,故函数解析式为f (x )=-1+log 2x .5分 (2)g (x )=2f (x )-f (x -1)=2(-1+log 2x )- =log 2x 2x -1-1(x >1).7分∵x 2x -1=x -2+x -+1x -1=(x -1)+1x -1+2≥2x -1x -1+2=4. 9分当且仅当x -1=1x -1,即x =2时,等号成立. 而函数y =log 2x 在(0,+∞)上单调递增, 则log 2x 2x -1-1≥log 24-1=1,故当x =2时,函数g (x )取得最小值1.12分B 组 能力提升 (建议用时:15分钟)1.(2017·东北三省四市二联)已知函数f (x )是定义在R 上的奇函数,且在 2.已知函数f (x ),g (x )分别是定义在R 上的偶函数与奇函数,且g (x )=f (x -1),则f (2 019)的值为________.【导学号:31222068】3.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围. (1)∵对于任意x 1,x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2), ∴令x 1=x 2=1,得f (1)=2f (1), ∴f (1)=0.3分 (2)f (x )为偶函数.4分 证明如下:令x 1=x 2=-1, 有f (1)=f (-1)+f (-1), ∴f (-1)=12f (1)=0.令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ), ∴f (x )为偶函数.7分(3)依题设有f (4×4)=f (4)+f (4)=2, 由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16).9分 又f (x )在(0,+∞)上是增函数, ∴0<|x -1|<16,解得-15<x <17且x ≠1,11分∴x 的取值范围是{x |-15<x <17且x ≠1}.12分。

2018年高考数学(文)二轮复习教师用书:第1部分 重点强化专题 专题6 突破点16 导数的应用

2018年高考数学(文)二轮复习教师用书:第1部分 重点强化专题 专题6 突破点16 导数的应用

突破点16导数的应用(酌情自选)[核心知识提炼]提炼1 导数与函数的单调性(1)函数单调性的判定方法在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在此区间内单调递增;如果f′(x)<0,那么函数y=f(x)在此区间内单调递减.(2)常数函数的判定方法如果在某个区间(a,b)内,恒有f′(x)=0,那么函数y=f(x)是常数函数,在此区间内不具有单调性.(3)已知函数的单调性求参数的取值范围设可导函数f(x)在某个区间内单调递增(或递减),则可以得出函数f(x)在这个区间内f′(x)≥0(或f′(x)≤0),从而转化为恒成立问题来解决(注意等号成立的检验).提炼2 函数极值的判别注意点(1)可导函数极值点的导数为0,但导数为0的点不一定是极值点,如函数f(x)=x3,当x=0时就不是极值点,但f′(0)=0.(2)极值点不是一个点,而是一个数x0,当x=x0时,函数取得极值.在x0处有f′(x0)=0是函数f(x)在x0处取得极值的必要不充分条件.(3)函数f(x)在一闭区间上的最大值是此函数在此区间上的极大值与其端点函数值中的最大值,函数f(x)在一闭区间上的最小值是此函数在此区间上的极小值与其端点函数值中的最小值.提炼3 函数最值的判别方法(1)求函数f(x)在闭区间[a,b]上最值的关键是求出f′(x)=0的根的函数值,再与f(a),f(b)作比较,其中最大的一个是最大值,最小的一个是最小值.(2)求函数f(x)在非闭区间上的最值,只需利用导数法判断函数f(x)的单调性,即可得结论.[高考真题回访] 回访1导数的几何意义1.(2017·全国卷Ⅰ)曲线y=x2+1x在点(1,2)处的切线方程为________.x-y+1=0[∵y′=2x-1x2,∴y′|x=1=1,即曲线在点(1,2)处的切线的斜率k=1,∴切线方程为y-2=x-1,即x-y+1=0.]2.(2016·全国卷Ⅲ)已知f(x)为偶函数,当x≤0时,f(x)=e-x-1-x,则曲线y=f(x)在点(1,2)处的切线方程是________.2x-y=0[设x>0,则-x<0,f(-x)=e x-1+x.∵f(x)为偶函数,∴f(-x)=f(x),∴f(x)=e x-1+x.∵当x>0时,f′(x)=e x-1+1,∴f′(1)=e1-1+1=1+1=2.∴曲线y=f(x)在点(1,2)处的切线方程为y-2=2(x-1),即2x-y=0.]回访2导数与函数的单调性3.(2016·全国卷Ⅰ)若函数f(x)=x-13sin 2x+a sin x在(-∞,+∞)单调递增,则a的取值范围是()A .[-1,1]B .⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-1,-13 C [取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A ,B ,D.故选C.]4.(2015·全国卷Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)A [设y =g (x )=f (x )x (x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0, ∴g ′(x )<0,∴g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0.∵f (x )为奇函数,∴g (x )为偶函数,∴g (x )的图象的示意图如图所示.当x >0,g (x )>0时,f (x )>0,0<x <1,当x <0,g (x )<0时,f (x )>0,x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A.]回访3 函数的极值与最值5.(2013·全国卷Ⅱ)已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( )A .∃x 0∈R ,f (x 0)=0B .函数y =f (x )的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)上单调递减D .若x 0是f (x )的极值点,则f ′(x 0)=0C [A 项,因为函数f (x )的值域为R ,所以一定存在x 0∈R ,使f (x 0)=0.A 正确.B 项,假设函数f (x )=x 3+ax 2+bx +c 的对称中心为(m ,n ),按向量a =(-m ,-n )将函数的图象平移,则所得函数y =f (x +m )-n 是奇函数.所以f (x +m )+f (-x +m )-2n =0,化简得(3m +a )x 2+m 3+am 2+bm +c -n =0.上式对x ∈R 恒成立,故3m +a =0,得m =-a 3,n =m 3+am 2+bm +c =f ⎝ ⎛⎭⎪⎫-a 3,所以函数f (x )=x 3+ax 2+bx +c 的对称中心为⎝⎛⎭⎪⎫-a 3,f ⎝ ⎛⎭⎪⎫-a 3,故y =f (x )的图象是中心对称图形.B 正确.C 项,由于f ′(x )=3x 2+2ax +b 是二次函数,f (x )有极小值点x 0,必定有一个极大值点x 1,若x 1<x 0,则f (x )在区间(-∞,x 0)上不单调递减.C 错误.D 项,若x 0是极值点,则一定有f ′(x 0)=0.故选C.]热点题型1 利用导数研究函数的单调性题型分析:利用导数研究函数的单调性问题常在解答题的第(1)问中呈现,有一定的区分度,此类题涉及函数的极值点、利用导数判断函数的单调性、不等式的恒成立等.【例1】 (2016·辽宁葫芦岛模拟)已知x =1是f (x )=2x +b x +ln x 的一个极值点.(1)求函数f (x )的单调递减区间;(2)设函数g (x )=f (x )-3+a x ,若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围.【导学号:04024135】[解] (1)因为f(x)=2x+bx+ln x,所以f′(x)=2-bx2+1x,因为x=1是f(x)=2x+bx+ln x的一个极值点,所以f′(1)=2-b+1=0,解得b=3,经检验,符合题意,所以b=3.则函数f(x)=2x+3x+ln x,其定义域为(0,+∞).4分令f′(x)=2-3x2+1x<0,解得-32<x<1,所以函数f(x)=2x+3x+ln x的单调递减区间为(0,1].6分(2)因为g(x)=f(x)-3+ax=2x+ln x-ax,所以g′(x)=2+1x+ax2.8分因为函数g(x)在[1,2]上单调递增,所以g′(x)≥0在[1,2]上恒成立,即2+1x +ax2≥0在x∈[1,2]上恒成立,所以a≥(-2x2-x)max,而在[1,2]上,(-2x2-x)max=-3,所以a≥-3.所以实数a的取值范围为[-3,+∞).12分[方法指津]根据函数y=f(x)在(a,b)上的单调性,求参数范围的方法:(1)若函数y=f(x)在(a,b)上单调递增,转化为f′(x)≥0在(a,b)上恒成立求解.(2)若函数y=f(x)在(a,b)上单调递减,转化为f′(x)≤0在(a,b)上恒成立求解.(3)若函数y=f(x)在(a,b)上单调,转化为f′(x)在(a,b)上不变号即f′(x)在(a,b)上恒正或恒负.(4)若函数y=f(x)在(a,b)上不单调,转化为f′(x)在(a,b)上变号.[变式训练1](2017·全国卷Ⅰ改编)已知函数f(x)=e x(e x-a)-a2x,试讨论f(x)的单调性.[解]函数f(x)的定义域为(-∞,+∞),f′(x)=2e2x-a e x-a2=(2e x+a)(e x-a). 3分(1)若a =0,则f (x )=e 2x 在(-∞,+∞)上单调递增.4分 (2)若a >0,则由f ′(x )=0得x =ln a .当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. 8分(3)若a <0,则由f ′(x )=0得x =ln ⎝ ⎛⎭⎪⎫-a 2. 当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0. 故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减, 在⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增. 12分热点题型2 利用导数研究函数的极值、最值题型分析:利用导数研究函数的极值、最值是高考重点考查内容,主要以解答题的形式考查,难度较大.【例2】 (2017·山西三区八校二模)已知函数f (x )=ln x +ax 2+bx (其中a ,b 为常数且a ≠0)在x =1处取得极值.(1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,e]上的最大值为1,求a 的值.【导学号:04024136】[解] (1)因为f (x )=ln x +ax 2+bx ,所以f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +b ,1分因为函数f (x )=ln x +ax 2+bx 在x =1处取得极值,所以f ′(1)=1+2a +b =0,又a =1,所以b =-3,则f ′(x )=2x 2-3x +1x , 2分f ′(x ),f (x )随x 的变化情况如下表:3分 所以f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12,(1,+∞),单调递减区间为⎝ ⎛⎭⎪⎫12,1. 4分(2)由(1)知f ′(x )=(2ax -1)(x -1)x ,令f ′(x )=0,得x 1=1,x 2=12a , 因为f (x )在x =1处取得极值,所以x 2=12a ≠x 1=1,当12a <0时,f (x )在(0,1)上单调递增,在(1,e]上单调递减,所以f (x )在区间(0,e]上的最大值为f (1),令f (1)=1,解得a =-2, 6分当a >0时,x 2=12a >0,当12a <1时,f (x )在⎝ ⎛⎭⎪⎫0,12a 上单调递增,在⎣⎢⎡⎭⎪⎫12a ,1上单调递减,[1,e]上单调递增,所以最大值可能在x =12a 或x =e 处取得, 8分而f ⎝ ⎛⎭⎪⎫12a =ln 12a +a ⎝ ⎛⎭⎪⎫12a 2-(2a +1)12a =ln 12a -14a -1<0, 所以f (e)=ln e +a e 2-(2a +1)e =1,解得a =1e -2, 10分当1<12a <e 时,f (x )在区间(0,1)上单调递增,在⎣⎢⎡⎭⎪⎫1,12a 上单调递减,在⎣⎢⎡⎦⎥⎤12a ,e 上单调递增,所以最大值可能在x =1或x =e 处取得,而f (1)=ln 1+a -(2a +1)<0,所以f (e)=ln e +a e 2-(2a +1)e =1,解得a =1e -2,与1<x 2=12a <e 矛盾, 当x 2=12a ≥e 时,f (x )在区间(0,1)上单调递增,在(1,e]上单调递减,所以最大值可能在x =1处取得,而f (1)=ln 1+a -(2a +1)<0,矛盾,综上所述,a =1e -2或a =-2. 12分[方法指津]利用导数研究函数极值、最值的方法1.若求极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号.2.若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解.3.求函数f (x )在闭区间[a ,b ]上的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.[变式训练2] (2015·全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.[解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .2分若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0. 所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. 6分 (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln ⎝ ⎛⎭⎪⎫1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1. 10分 因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0.因此,a 的取值范围是(0,1). 12分 热点题型3 利用导数解决不等式问题题型分析:此类问题以函数、导数与不等式相交汇为命题点,实现函数与导数、不等式及求最值的相互转化,达成了综合考查考生解题能力的目的.【例3】 (2017·全国卷Ⅲ)已知函数f (x )=ln x +ax 2+(2a +1)x .(1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a -2.[解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +2a +1=(x +1)(2ax +1)x. 1分 若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0,故f (x )在(0,+∞)上单调递增.3分若a <0,则当x ∈⎝ ⎛⎭⎪⎫0,-12a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫-12a ,+∞时,f ′(x )<0. 故f (x )在⎝ ⎛⎭⎪⎫0,-12a 上单调递增,在⎝ ⎛⎭⎪⎫-12a ,+∞上单调递减. 5分(2)证明:由(1)知,当a <0时,f (x )在x =-12a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫-12a =ln ⎝ ⎛⎭⎪⎫-12a -1-14a . 6分 所以f (x )≤-34a -2等价于ln ⎝ ⎛⎭⎪⎫-12a -1-14a ≤-34a -2, 即ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0.7分 设g (x )=ln x -x +1,则g ′(x )=1x -1.8分当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0,所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 10分 故当x =1时,g (x )取得最大值,最大值为g (1)=0. 所以当x >0时,g (x )≤0.从而当a <0时,ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0, 即f (x )≤-34a -2. 12分[方法指津]1.利用导数证明不等式的基本步骤(1)作差或变形.(2)构造新的函数h(x).(3)利用导数研究h(x)的单调性或最值.(4)根据单调性及最值,得到所证不等式.特别地:当作差或变形构造的新函数不能利用导数求解时,一般转化为分别求左、右两端两个函数的最值问题.2.构造辅助函数的四种方法(1)移项法:证明不等式f(x)>g(x)(f(x)<g(x))的问题转化为证明f(x)-g(x)>0(f(x)-g(x)<0),进而构造辅助函数h(x)=f(x)-g(x).(2)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数;把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构”构造辅助函数.(3)主元法:对于(或可化为)f(x1,x2)≥A的不等式,可选x1(或x2)为主元,构造函数f(x,x2)(或f(x1,x)).(4)放缩法:若所构造函数最值不易求解,可将所证明不等式进行放缩,再重新构造函数.[变式训练3](2016·太原一模)设函数f(x)=ax2ln x+b(x-1)(x>0),曲线y=f(x)过点(e,e2-e+1),且在点(1,0)处的切线方程为y=0.(1)求a,b的值;(2)证明:当x≥1时,f(x)≥(x-1)2;(3)若当x≥1时,f(x)≥m(x-1)2恒成立,求实数m的取值范围.【导学号:04024137】[解] (1)函数f(x)=ax2ln x+b(x-1)(x>0),可得f′(x)=2a ln x+ax+b,- 11 -因为f′(1)=a+b=0,f(e)=a e2+b(e-1)=a(e2-e+1)=e2-e+1,所以a=1,b=-1.2分(2)证明:f(x)=x2ln x-x+1,设g(x)=x2ln x+x-x2(x≥1),g′(x)=2x ln x-x+1,(g′(x))′=2ln x+1>0,所以g′(x)在[0,+∞)上单调递增,所以g′(x)≥g′(1)=0,所以g(x)在[0,+∞)上单调递增,所以g(x)≥g(1)=0,所以f(x)≥(x-1)2.6分(3)设h(x)=x2ln x-x-m(x-1)2+1,h′(x)=2x ln x+x-2m(x-1)-1,由(2)中知x2ln x≥(x-1)2+x-1=x(x-1),所以x ln x≥x-1,所以h′(x)≥3(x-1)-2m(x-1),时,h′(x)≥0,①当3-2m≥0即m≤32所以h(x)在[1,+∞)单调递增,所以h(x)≥h(1)=0,成立.时,②当3-2m<0即m>32h′(x)=2x ln x+(1-2m)(x-1),(h′(x))′=2ln x+3-2m,令(h′(x))′=0,得x0=e2m-3>1,2当x∈[1,x0)时,h′(x)<h′(1)=0,所以h(x)在[1,x0)上单调递减,所以h(x)<h(1)=0,不成立.- 12 -综上,m≤3.12分2- 13 -。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题6 突破点14 函数的图象和性质 Word版含答

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题6 突破点14 函数的图象和性质 Word版含答

专题六函数与导数建知识网络明内在联系[高考点拨]函数与导数专题是历年浙江高考的“常青树”,在浙江新高考中常以“两小一大”的形式呈现,其中两小题中的一小题难度偏低,另一小题与一大题常在选择题与解答题的压轴题的位置呈现,命题角度多样,形式多变,能充分体现学以致用的考查目的,深受命题人的喜爱.结合典型考题的研究,本专题将从“函数的图象和性质”“函数与方程”“导数的应用”三大方面着手分析,引领考生高效备考.突破点14 函数的图象和性质(对应学生用书第52页)[核心知识提炼]提炼1函数的奇偶性(1)若函数y=f(x)为奇(偶)函数,则f(-x)=-f(x)(f(-x)=f(x)).(2)奇函数y=f(x)若在x=0处有意义,则必有f(0)=0.(3)判断函数的奇偶性需注意:一是判断定义域是否关于原点对称;二是若所给函数的解析式较为复杂,应先化简;三是判断f(-x)=-f(x),还是f(-x)=f(x),有时需用其等价形式f(-x)±f(x)=0来判断.(4)奇函数的图象关于原点成中心对称,偶函数的图象关于y轴对称.(5)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.提炼2 函数的周期性(1)若函数y =f (x )满足f (a +x )=f (x -a )(a ≠0),则函数y =f (x )是以2|a |为周期的周期性函数.(2)若奇函数y =f (x )满足f (a +x )=f (a -x )(a ≠0),则函数y =f (x )是以4|a |为周期的周期性函数.(3)若偶函数y =f (x )满足f (a +x )=f (a -x )(a ≠0),则函数y =f (x )是以2|a |为周期的周期性函数.(4)若f (a +x )=-f (x )⎝⎛⎭⎪⎫或f a +x =1f x (a ≠0),则函数y =f (x )是以2|a |为周期的周期性函数.(5)若y =f (x )的图象关于直线x =a ,x =b (a ≠b )对称,则函数y =f (x )是以2|b -a |为周期的周期性函数. 提炼3 函数的图象(1)由解析式确定函数图象.此类问题往往需要化简函数解析式,利用函数的性质(单调性、奇偶性、过定点等)判断,常用排除法.(2)已知函数图象确定相关函数的图象.此类问题主要考查函数图象的变换(如平移变换、对称变换等),要注意函数y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|等的相互关系.(3)借助动点探究函数图象.解决此类问题可以根据已知条件求出函数解析式后再判断函数的图象;也可采用“以静观动”,即将动点处于某些特殊的位置处考察图象的变化特征,从而作出选择.[高考真题回访]回访1 函数的性质1.(2017·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关B [法一:设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.故选B.法二:由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,则M -m 的值在变化,故与a 有关.故选B.]2.(2015·浙江高考)存在函数f (x )满足:对于任意x ∈R 都有( ) A .f (sin 2x )=sin x B .f (sin 2x )=x 2+x C .f (x 2+1)=|x +1|D .f (x 2+2x )=|x +1|D [取x =0,π2,可得f (0)=0,1,这与函数的定义矛盾,所以选项A 错误;取x =0,π,可得f (0)=0,π2+π,这与函数的定义矛盾,所以选项B 错误; 取x =1,-1,可得f (2)=2,0,这与函数的定义矛盾,所以选项C 错误;取f (x )=x +1,则对任意x ∈R 都有f (x 2+2x )=x 2+2x +1=|x +1|,故选项D 正确. 综上可知,本题选D.]3.(2014·浙江高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f (f (a ))=2,则a =________.2 [若a >0,则f (a )=-a 2<0,f (f (a ))=a 4-2a 2+2=2,得a = 2.若a ≤0,则f (a )=a 2+2a +2=(a +1)2+1>0,f (f (a ))=-(a 2+2a +2)2=2,此方程无解.] 4.(2015·浙江高考)已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.0 22-3 [∵f (-3)=lg[(-3)2+1]=lg 10=1, ∴f (f (-3))=f (1)=1+2-3=0. 当x ≥1时,x +2x-3≥2x ·2x -3=22-3,当且仅当x =2x,即x =2时等号成立,此时f (x )min =22-3<0;当x <1时,lg(x 2+1)≥lg(02+1)=0,此时f (x )min =0. ∴f (x )的最小值为22-3.] 回访2 函数的图象5.(2017·浙江高考)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )图14­1D [观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,∴对应函数f (x )的增减性从左到右依次为减、增、减、增. 观察选项可知,排除A 、C.如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故选项D 正确.故选D.]6.(2015·浙江高考)函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )D [函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)为奇函数,排除选项A ,B ;当x =π时,f (x )=⎝⎛⎭⎪⎫π-1πcos π=1π-π<0,排除选项C ,故选D.]7.(2014·浙江高考)在同一直角坐标系中,函数f (x )=x a(x ≥0),g (x )=log a x 的图象可能是( )D [法一:分a >1,0<a <1两种情形讨论.当a >1时,y =x a与y =log a x 均为增函数,但y =x a递增较快,排除C ;当0<a <1时,y =x a为增函数,y =log a x 为减函数,排除A ,由于y =x a递增较慢,所以选D. 法二:幂函数f (x )=x a的图象不过(0,1)点,排除A ;B 项中由对数函数f (x )=log a x 的图象知0<a <1,而此时幂函数f (x )=x a的图象应是增长越来越慢的变化趋势,故B 错,D 对;C 项中由对数函数f (x )=log a x 的图象知a >1,而此时幂函数f (x )=x a的图象应是增长越来越快的变化趋势,故C 错.](对应学生用书第54页)热点题型1 函数图象的判断与应用题型分析:函数的图象是近几年高考的热点内容,主要有函数图象的判断和函数图象的应用两种题型.【例1】 (1)函数y =2x 2-e |x |在[-2,2]的图象大致为()(2)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则 i =1mx i =( )A .0B .mC .2mD .4m(1)D (2)B [(1)∵f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数, 又f (2)=8-e 2∈(0,1),故排除A ,B. 设g (x )=2x 2-e x ,则g ′(x )=4x -e x. 又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C.故选D. (2)∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称,∴两函数图象的交点关于直线x =1对称.当m 为偶数时,∑i =1mx i =2×m2=m ;当m 为奇数时,∑i =1mx i =2×m -12+1=m .故选B.] [方法指津]函数图象的判断方法1.根据函数的定义域判断图象的左右位置,根据函数的值域判断图象的上下位置. 2.根据函数的单调性,判断图象的变化趋势. 3.根据函数的奇偶性,判断图象的对称性. 4.根据函数的周期性,判断图象的循环往复. 5.取特殊值代入,进行检验.[变式训练1] (1)函数f (x )=|x |+ax(其中a ∈R )的图象不可能是()图14­2(2)如图14­1,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}(1)C (2)C [(1)当a =0时,f (x )=|x |,故A 可能;由题意得f (x )=⎩⎪⎨⎪⎧x +ax,x >0,-x +ax ,x <0,则当x >0时,f ′(x )=1-a x 2=x 2-a x 2,当x <0时,f ′(x )=-1-a x 2=-x 2-ax 2,若a >0,易知当x >0,0<x <a 时,f (x )为减函数,x >a 时,f (x )为增函数,x <0时,f (x )为减函数,故B 可能;若a <0,易知x <0,--a <x <0时,f (x )为增函数,x <--a 时,f (x )为减函数,x >0时,f (x )为增函数,故D 可能,故选C.(2)令g (x )=y =log 2(x +1),作出函数g (x )图象如图.由⎩⎪⎨⎪⎧x +y =2,y =log 2x +,得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.]热点题型2 函数性质的综合应用题型分析:函数性质的综合应用是高考的热点内容,解决此类问题时,性质的判断是关键,应用是难点.【例2】 (1)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1B.⎝⎛⎭⎪⎫-∞,13∪(1,+∞) C.⎝ ⎛⎭⎪⎫-13,13 D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞ (2)设奇函数y =f (x )(x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于________. 【导学号:68334135】(1)A (2)-14 [(1)法一:∵f (-x )=ln(1+|-x |)-11+-x 2=f (x ),∴函数f (x )为偶函数.∵当x ≥0时,f (x )=ln(1+x )-11+x2,在(0,+∞)上y =ln(1+x )递增,y =-11+x 2也递增,根据单调性的性质知,f (x )在(0,+∞)上单调递增.综上可知:f (x )>f (2x -1)⇔f (|x |)>f (|2x -1|)⇔|x |>|2x -1|⇔x 2>(2x -1)2⇔3x 2-4x +1<0⇔13<x <1.故选A. 法二:令x =0,此时f (x )=f (0)=-1<0,f (2x -1) =f (-1)=ln 2-12=ln 2-ln e>0,∴x =0不满足f (x )>f (2x -1),故C 错误.令x =2,此时f (x )=f (2)=ln 3-15,f (2x -1)=f (3)=ln 4-110.∵f (2)-f (3)=ln 3-ln4-110,其中ln 3<ln 4,∴ln 3-ln 4-110<0,∴f (2)-f (3)<0,即f (2)<f (3),∴x =2不满足f (x )>f (2x -1), 故B ,D 错误.故选A.(2)根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t )=f (1+t ),即f (t +1)=-f (t ),进而得到f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫12=-14.所以f (3)+f ⎝ ⎛⎭⎪⎫-32=0+⎝ ⎛⎭⎪⎫-14=-14. [方法指津]函数性质的综合应用类型1.函数单调性与奇偶性的综合.注意奇、偶函数图象的对称性,以及奇、偶函数在关于原点对称的区间上单调性的关系.2.周期性与奇偶性的综合.此类问题多为求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.3.单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.[变式训练2] (1)(2017·浙江五校联考)已知函数f (x )是定义在R 上的奇函数,且在[0,+∞)上是增函数,则不等式⎪⎪⎪⎪⎪⎪f x -f ⎝ ⎛⎭⎪⎫ln 1x 2<f (1)的解集为( )【导学号:68334136】A.⎝ ⎛⎭⎪⎫0,1e B .(0,e) C.⎝ ⎛⎭⎪⎫1e ,e D .(e ,+∞)(2)已知函数y =f (x )是定义在R 上的奇函数,∀x ∈R ,f (x -1)=f (x +1)成立,当x ∈(0,1)且x 1≠x 2时,有f x 2-f x 1x 2-x 1<0.给出下列命题:①f (1)=0;②f (x )在[-2,2]上有5个零点;③点(2 014,0)是函数y =f (x )图象的一个对称中心; ④直线x =2 014是函数y =f (x )图象的一条对称轴. 则正确命题的序号是________.(1)C (2)①②③ [(1)∵f (x )为R 上的奇函数,则f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=-f (ln x ),∴⎪⎪⎪⎪⎪⎪fx -f ⎝ ⎛⎭⎪⎫ln 1x 2=|fx +fx2=|f (ln x )|,即原不等式可化为|f (ln x )|<f (1),∴-f (1)<f (ln x )<f (1),即f (-1)<f (ln x )<f (1).又由已知可得f (x )在R 上单调递增,∴-1<ln x <1, 解得1e<x <e ,故选C.(2)令f (x -1)=f (x +1)中x =0, 得f (-1)=f (1). ∵f (-1)=-f (1), ∴2f (1)=0,∴f (1)=0,故①正确;由f (x -1)=f (x +1)得f (x )=f (x +2), ∴f (x )是周期为2的周期函数, ∴f (2)=f (0)=0,又当x ∈(0,1)且x 1≠x 2时,有f x 2-f x 1x 2-x 1<0,∴函数在区间(0,1)上单调递减,可作函数的简图如图:由图知②③正确,④不正确,∴正确命题的序号为①②③.]。

2018年高考数学(理)二轮复习教师用书:第1部分重点强化专题专题1第1讲三角函数问题(含答案)

2018年高考数学(理)二轮复习教师用书:第1部分重点强化专题专题1第1讲三角函数问题(含答案)

三角函数第1讲三角函数问题题型1 三角函数的图象问题(对应学生用书第1页)■核心知识储备………………………………………………………………………·1.“五点法”作图用五点法画y=A sin(ωx+φ)在一个周期内的简图时,一般先列表,后描点,连线,其中所列表如下:■典题试解寻法………………………………………………………………………【典题1】 (考查三角函数图象的平移变换)(2017·全国Ⅰ卷)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2[思路分析] 异名三角函数――――――→诱导公式同名三角函数――――――――――→图象的伸缩和平移变换得结论. [解析] 因为y =sin ⎝ ⎛⎭⎪⎫2x +2π3=cos ⎝ ⎛⎭⎪⎫2x +2π3-π2=cos ⎝ ⎛⎭⎪⎫2x +π6,所以曲线C 1:y =cos x上各点的横坐标缩短到原来的12,纵坐标不变,得到曲线y =cos 2x ,再把得到的曲线y =cos 2x 向左平移π12个单位长度,得到曲线y =cos 2⎝ ⎛⎭⎪⎫x +π12=cos ⎝ ⎛⎭⎪⎫2x +π6.故选D. [答案] D【典题2】 (考查已知三角函数的图象求解析式)(2017·洛阳模拟)函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0<φ<π2的部分图象如图1­1所示,已知图象经过点A (0,1),B ⎝ ⎛⎭⎪⎫π3,-1,则f (x )=________.图1­1[思路分析] 由图象得周期T ,利用T =2πω得ω→由特殊点A (0,1)得关于φ的三角方程→利用φ的范围确定φ的值→f (x ).[解析] 由已知得T 2=π3,∴T =2π3,又T =2πω,∴ω=3.∵f (0)=1,∴sin φ=12,又∵0<φ<π2,∴φ=π6,∴f (x )=2sin ⎝ ⎛⎭⎪⎫3x +π6(经检验满足题意). [答案] 2sin ⎝ ⎛⎭⎪⎫3x +π6 [类题通法]当原函数与所要变换得到的目标函数的名称不同时,首先要将函数名称统一,将y =sin ωx ω>的图象变换成y =ωx +φ的图象时,只需进行平移变换,应把ωx +φ变换成ω⎝ ⎛⎭⎪⎫x +φω,根据⎪⎪⎪⎪⎪⎪φω确定平移量的大小,根据φω的符号确定平移的方向.函数y =Aωx +φ的解析式的确定①A 由最值确定,A =最大值-最小值2;②ω由周期确定;φ由图象上的特殊点确定.通常利用峰点、谷点或零点列出关于φ的方程,结合φ的范围解得φ的值,所列方程如下:峰点:ωx +φ=π2+2k π;谷点:ωx +φ=-π2+2k π.,利用零点时,要区分该零点是升零点,还是降零点.升零点图象上升时与x 轴的交点:ωx +φ=2k π;降零点图象下降时与x 轴的交点:ωx +φ=π+2k π以上k ∈Z■对点即时训练………………………………………………………………………·1.已知函数f (x )=sin 2(ωx )-12(ω>0)的最小正周期为π2,若将其图象沿x 轴向右平移a (a >0)个单位,所得图象关于原点对称,则实数a 的最小值为( ) A .π4B .3π4C .π2D .π8D [依题意得f (x )=1-cos 2ωx 2-12=-12cos 2ωx ,最小正周期T =2π2ω=π2,ω=2,所以f (x )=-12cos 4x ,将f (x )=-12cos 4x 的图象向右平移a 个单位后得到函数g (x )=-12cos[4(x -a )]的图象.又函数g (x )的图象关于原点对称. 因此有g (0)=-12cos 4a =0,4a =k π+π2,k ∈Z ,即a =k π4+π8,k ∈Z ,因此正实数a的最小值是π8,选D.]2.函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图1­2所示,则f ⎝ ⎛⎭⎪⎫π3的值为________.图1­21 [根据图象可知,A =2,3T 4=11π12-π6,所以周期T =π,ω=2πT=2. 又函数过点⎝ ⎛⎭⎪⎫π6,2,所以有sin ⎝ ⎛⎭⎪⎫2×π6+φ=1,而0<φ<π,所以φ=π6,则f (x )=2sin ⎝⎛⎭⎪⎫2x +π6,因此f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫2π3+π6=1.]■题型强化集训………………………………………………………………………·(见专题限时集训T 3、T 5、T 11) 题型2 三角函数的性质问题(对应学生用书第2页)■核心知识储备……………………………………………………………………… 1.三角函数的单调区间:y =sin x 的单调递增区间是⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),单调递减区间是⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2(k ∈Z );y =cos x 的单调递增区间是[2k π-π,2k π](k ∈Z ),单调递减区间是[2k π,2k π+π](k ∈Z );y =tan x 的单调递增区间是⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z ). 2.三角函数的对称性y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得.y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得.y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数.3.三角函数的最值(1)y =a sin x +b cos x +c 型函数的最值: 通过引入辅助角φ可将此类函数的最值问题转化为y =a 2+b 2sin(x +φ)+c ⎝⎛⎭⎪⎫其中tan φ=b a 的最值问题,然后利用三角函数的图象和性质求解. (2)y =a sin 2x +b sin x cos x +c cos 2x 型函数的最值:可利用降幂公式sin 2x =1-cos 2x 2,sin x cos x =sin 2x 2,cos 2x =1+cos 2x 2,将y =a sin 2x +b sin x cos x +c cos 2x 转化为y=A sin 2x +B cos 2x +C ,这样就可将其转化为(1)的类型来求最值. ■典题试解寻法………………………………………………………………………· 【典题1】 (考查三角函数图象的对称性)将函数f (x )=cos 2x 的图象向右平移π4个单位后得到函数g (x )的图象,则g (x )具有性质( )A .最大值为1,图象关于直线x =π2对称B .在⎝ ⎛⎭⎪⎫0,π4上单调递增,为奇函数C .在⎝ ⎛⎭⎪⎫-3π8,π8上单调递增,为偶函数D .周期为π,图象关于点⎝ ⎛⎭⎪⎫3π8,0对称[解析] 由题意可得将f (x )=cos 2x 的图象向右平移π4个单位得到g (x )=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4=cos ⎝ ⎛⎭⎪⎫π2-2x =sin 2x 的图象,因为函数g (x )为奇函数,所以排除C ,又当x =π2时函数值为0,当x =3π8时,函数值为22,所以A 和D 中对称的说法不正确,选B.[答案] B【典题2】 (考查三角函数的值域问题)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________. [解析] f (x )=1-cos 2x +3cos x -34=-⎝⎛⎭⎪⎫cos x -322+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1], ∴当cos x =32时,f (x )取得最大值,最大值为1. [答案] 1【典题3】 (考查三角函数的定义域、周期性及单调性的判断)已知函数f (x )=4tanx ·sin ⎝ ⎛⎭⎪⎫π2-x ·cos ⎝⎛⎭⎪⎫x -π3- 3.(1)求f (x )的定义域与最小正周期;(2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.[解] (1)f (x )的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π2+k π,k ∈Z. f (x )=4tan x cos x cos ⎝⎛⎭⎪⎫x -π3-3=4sin x cos ⎝⎛⎭⎪⎫x -π3- 3=4sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x -3=2sin x cos x +23sin 2x - 3=sin 2x +3(1-cos 2x )-3=sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期T =2π2=π. (2)令z =2x -π3,则函数y =2sin z 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z . 由-π2+2k π≤2x -π3≤π2+2k π,得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-π12+k π≤x ≤5π12+k π,k ∈Z,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4.所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减. [类题通法]函数y =A sin(ωx +φ)的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y =A sin(ωx +φ)+B 的形式;第二步:把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.■对点即时训练………………………………………………………………………·1.已知函数f (x )=sin(ωx +2φ)-2sin φcos(ωx +φ)(ω>0,φ∈R )在⎝ ⎛⎭⎪⎫π,3π2上单调递减,则ω的取值范围是( ) A .(0,2]B .⎝ ⎛⎦⎥⎤0,12C .⎣⎢⎡⎦⎥⎤12,1D .⎣⎢⎡⎦⎥⎤12,54 C [f (x )=sin(ωx +φ+φ)-2sin φcos(ωx +φ)=cos φsin(ωx +φ)-sin φcos(ωx +φ)=sin ωx ,π2+2k π≤ωx ≤3π2+2k π,k ∈Z ⇒π2ω+2k πω≤x ≤3π2ω+2k πω,k ∈Z ,所以函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤π2ω+2k πω,3π2ω+2k πω,k ∈Z ,所以π2ω+2k πω≤π<3π2≤3π2ω+2k πω,k ∈Z ,由π2ω+2k πω≤π,可得12+2k ≤ω,k ∈Z ,由3π2≤3π2ω+2k πω,k ∈Z ,可得ω≤1+4k 3,k ∈Z ,所以12+2k ≤ω≤1+4k 3,k ∈Z ,又T 2≥3π2-π=π2,所以2πω≥π,因为ω>0,所以0<ω≤2,所以当k =0时,12≤ω≤1.故选C.]2.已知函数f (x )=A cos 2(ωx +φ)+1⎝ ⎛⎭⎪⎫A >0,ω>0,0<φ<π2的最大值为3,f (x )的图象与y轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f (1)+f (2)+…+f (2 016)=( ) A .2 468 B .3 501 C .4 032D .5 739C [f (x )=A 2cos(2ωx +2φ)+A 2+1.由相邻两条对称轴间的距离为2,知T2=2,得T =4=2π2ω,∴ω=π4,由f (x )的最大值为3,得A =2.又f (x )的图象过点(0,2),∴cos 2φ=0,∴2φ=k π+π2(k ∈Z ),即φ=k π2+π4(k ∈Z ),又0<φ<π2,∴φ=π4,∴f (x )=cos ⎝ ⎛⎭⎪⎫π2x +π2+2=-sin πx 2+2.∴f (1)+f (2)+…+f (2 016)=(-1+2)+(0+2)+(1+2)+(0+2)+(-1+2)+…+(0+2)=2×2 016=4 032.]■题型强化集训………………………………………………………………………·(见专题限时集训T 1、T 4、T 6、T 7、T 8、T 12、T 13、T 14)题型3 三角恒等变换 (对应学生用书第4页)■核心知识储备………………………………………………………………………· 1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β; (2)cos(α±β)=cos αcos β∓sin αsin β; (3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)tan 2α=2tan α1-tan 2α. 3.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中tan φ=b a . ■典题试解寻法………………………………………………………………………·【典题1】 (考查给式求角问题)(2014·全国Ⅰ卷)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2[解析] 法一:(切化弦)由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β,∴sin(α-β)=cos α=sin ⎝ ⎛⎭⎪⎫π2-α. ∵α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,∴α-β∈⎝ ⎛⎭⎪⎫-π2,π2,π2-α∈⎝⎛⎭⎪⎫0,π2,由sin(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α,得α-β=π2-α,∴2α-β=π2.法二:(弦化切)tan α=1+sin βcos β=1+cos ⎝ ⎛⎭⎪⎫π2-βsin ⎝ ⎛⎭⎪⎫π2-β=2cos 2⎝ ⎛⎭⎪⎫π4-β22sin ⎝ ⎛⎭⎪⎫π4-β2cos ⎝ ⎛⎭⎪⎫π4-β2=cot ⎝ ⎛⎭⎪⎫π4-β2 =tan ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-β2 =tan ⎝ ⎛⎭⎪⎫π4+β2, ∴α=k π+⎝ ⎛⎭⎪⎫π4+β2,k ∈Z , ∴2α-β=2k π+π2,k ∈Z .当k =0时,满足2α-β=π2,故选B. [答案] B【典题2】 (考查给值求值问题)(2016·江西八校联考)如图1­3,圆O 与x 轴的正半轴的交点为A ,点C ,B 在圆O 上,且点C 位于第一象限,点B 的坐标为⎝ ⎛⎭⎪⎫1213,-513,∠AOC =α,若|BC |=1,则3cos2α2-sin α2cos α2-32的值为________.图1­3[解析] 由题意可知|OB |=|BC |=1,∴△OBC 为正三角形.由三角函数的定义可知,sin∠AOB =sin ⎝ ⎛⎭⎪⎫π3-α=513,∴3cos2α2-sin α2cos α2-32=3+cos α2-sin α2-32=32cos α-12sin α=sin ⎝ ⎛⎭⎪⎫π3-α=513. [答案]513[类题通法]解决三角函数式的化简求值要坚持“三看”原则:一看“角”,通过看角之间的差别与联系,把角进行合理的拆分;二是“函数名称”,是需进行“切化弦”还是“弦化切”等,从而确定使用的公式;三看“结构特征”,了解变式或化简的方向.■对点即时训练………………………………………………………………………· 1.对于锐角α,若sin ⎝ ⎛⎭⎪⎫α-π12=35,则cos ⎝⎛⎭⎪⎫2α+π3=( )A .2425 B .38 C .28D .-2425D [由α为锐角,且sin ⎝ ⎛⎭⎪⎫α-π12=35,可得cos ⎝ ⎛⎭⎪⎫α-π12=45,那么cos ⎝ ⎛⎭⎪⎫α+π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π12+π4=cos ⎝ ⎛⎭⎪⎫α-π12cos π4-sin ⎝ ⎛⎭⎪⎫α-π12sin π4=210,于是cos ⎝ ⎛⎭⎪⎫2α+π3=2cos 2⎝ ⎛⎭⎪⎫α+π6-1=2×⎝ ⎛⎭⎪⎫2102-1=-2425.故选D.] 2.已知tan α=13,tan β=-17,且0<α<π2,π2<β<π,则2α-β的值为________.-3π4 [tan 2α=2tan α1-tan 2α=34, 又0<α<π2,所以2α∈⎝⎛⎭⎪⎫0,π2,又π2<β<π,所以2α-β∈(-π,0),又tan β=-17,则tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-328=1,故2α-β=-3π4.]■题型强化集训………………………………………………………………………·(见专题限时集训T 2、T 9、T 10) 三年真题| 验收复习效果 (对应学生用书第4页)1.(2015·全国Ⅰ卷)sin 20°cos 10°-cos 160°sin 10°=( )A .-32 B.32 C .-12 D.12D [sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.]2.(2016·全国Ⅲ卷)若tan α=34,则cos 2α+2sin 2α=( )A .6425B .4825C .1D .1625A [因为tan α=34,则cos 2α+2sin 2α=cos 2α+4sin αcos αsin 2α+cos 2α=1+4tan αtan 2α+1=1+4×34⎝ ⎛⎭⎪⎫342+1=6425.故选A.] 3.(2016·全国Ⅱ卷)若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( ) A .x =k π2-π6(k ∈Z ) B .x =k π2+π6(k ∈Z ) C .x =k π2-π12(k ∈Z ) D .x =k π2+π12(k ∈Z )B [将函数y =2sin 2x 的图象向左平移π12个单位长度,得到函数y =2sin 2⎝ ⎛⎭⎪⎫x +π12=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象.由2x +π6=kx +π2(k ∈Z ),得x =k π2+π6(k ∈Z ),即平移后图象的对称轴为x =k π2+π6(k ∈Z ).] 4.(2017·全国Ⅲ卷)设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减 D [A 项,因为f (x )=cos ⎝⎛⎭⎪⎫x +π3的周期为2k π(k ∈Z ),所以f (x )的一个周期为-2π,A项正确.B 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3图象的对称轴为直线x =k π-π3(k ∈Z ),所以y =f (x )的图象关于直线x =8π3对称,B 项正确.C 项,f (x +π)=cos ⎝⎛⎭⎪⎫x +4π3.令x +4π3=k π+π2(k ∈Z ),得x =k π-56π,当k =1时,x =π6,所以f (x +π)的一个零点为x =π6,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3(k ∈Z ),递增区间为⎣⎢⎡ 2k π+2π3,⎦⎥⎤2k π+5π3(k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.故选D.]5.(2015·全国Ⅰ卷)函数f (x )=cos(ωx +φ)的部分图象如图1­4所示,则f (x )的单调递减区间为( )图1­4A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z D [由图象知,最小正周期T =2⎝ ⎛⎭⎪⎫54-14=2,∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝ ⎛⎭⎪⎫2k -14,2k +34,k ∈Z .故选D.]6.(2016·全国Ⅰ卷)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A .11B .9C .7D .5B [因为f (x )=sin(ωx +φ)的一个零点为x =-π4,x =π4为y =f (x )图象的对称轴,所以T 4·k =π2(k 为奇数).又T =2πω,所以ω=k (k 为奇数). 又函数f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以π12≤12×2πω,即ω≤12.若ω=11,又|φ|≤π2,则ω=-π4,此时,f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4,f (x )在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝⎛⎭⎪⎫3π44,5π36上单调递减,不满足条件.若ω=9,又|φ|≤π2,则φ=π4,此时,f (x )=sin ⎝ ⎛⎭⎪⎫9x +π4,满足f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调的条件.故选B.]。

2018年高考数学(文)二轮复习教师用书:第1部分 重点强化专题 专题6 突破点14 函数的图象和性质

2018年高考数学(文)二轮复习教师用书:第1部分 重点强化专题 专题6 突破点14 函数的图象和性质

专题六函数与导数建知识网络明内在联系[高考点拨]函数与导数专题是历年高考的“常青树”,在高考中常以“两小一大”的形式呈现,其中两小题中的一小题难度偏低,另一小题与一大题常在选择题与解答题的压轴题的位置呈现,命题角度多样,形式多变,能充分体现学以致用的考查目的,深受命题人的喜爱.结合典型考题的研究,本专题将从“函数的图象与性质”“函数与方程”“导数的应用”三大方面着手分析,引领考生高效备考.突破点14函数的图象和性质[核心知识提炼]提炼1 函数的奇偶性(1)若函数y =f (x )为奇(偶)函数,则f (-x )=-f (x )(f (-x )=f (x )). (2)奇函数y =f (x )若在x =0处有意义,则必有f (0)=0.(3)判断函数的奇偶性需注意:一是判断定义域是否关于原点对称;二是若所给函数的解析式较为复杂,应先化简;三是判断f (-x )=-f (x ),还是f (-x )=f (x ),有时需用其等价形式f (-x )±f (x )=0来判断.(4)奇函数的图象关于原点成中心对称,偶函数的图象关于y 轴对称.(5)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. 提炼2 函数的周期性(1)若函数y =f (x )满足f (a +x )=f (x -a )(a ≠0),则函数y =f (x )是以2|a |为周期的周期性函数.(2)若奇函数y =f (x )满足f (a +x )=f (a -x )(a ≠0),则函数y =f (x )是以4|a |为周期的周期性函数.(3)若偶函数y =f (x )满足f (a +x )=f (a -x )(a ≠0),则函数y =f (x )是以2|a |为周期的周期性函数.(4)若f (a +x )=-f (x )⎝ ⎛⎭⎪⎫或f (a +x )=1f (x )(a ≠0),则函数y =f (x )是以2|a |为周期的周期性函数.(5)若y =f (x )的图象关于直线x =a ,x =b (a ≠b )对称,则函数y =f (x )是以2|b -a |为周期的周期性函数. 提炼3 函数的图象(1)由解析式确定函数图象.此类问题往往需要化简函数解析式,利用函数的性质(单调性、奇偶性、过定点等)判断,常用排除法.(2)已知函数图象确定相关函数的图象.此类问题主要考查函数图象的变换(如平移变换、对称变换等),要注意函数y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|等的相互关系.(3)借助动点探究函数图象.解决此类问题可以根据已知条件求出函数解析式后再判断函数的图象;也可采用“以静观动”,即将动点处于某些特殊的位置处考察图象的变化特征,从而作出选择.[高考真题回访]回访1函数的奇偶性与周期性1.(2014·全国卷Ⅰ)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数C[A:令h(x)=f(x)·g(x),则h(-x)=f(-x)·g(-x)=-f(x)·g(x)=-h(x),∴h(x)是奇函数,A错.B:令h(x)=|f(x)|g(x),则h(-x)=|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x)=h(x),∴h(x)是偶函数,B.C:令h(x)=f(x)|g(x)|,则h(-x)=f(-x)|g(-x)|=-f(x)|g(x)|=-h(x),∴h(x)是奇函数,C正确.D:令h(x)=|f(x)·g(x)|,则h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x)|=|f(x)·g(x)|=h(x),∴h(x)是偶函数,D错.]2.(2017·全国卷Ⅱ)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=________.12[法一:令x>0,则-x<0.∴f(-x)=-2x3+x2.∵函数f(x)是定义在R上的奇函数,∴f(-x)=-f(x).∴f(x)=2x3-x2(x>0).∴f(2)=2×23-22=12.法二:f(2)=-f(-2)=-[2×(-2)3+(-2)2]=12.]回访2函数的图象3.(2015·全国卷Ⅰ)设函数y=f(x)的图象与y=2x+a的图象关于直线y=-x对称,且f(-2)+f(-4)=1,则a=()A.-1B.1C.2D.4C[设(x,y)为y=f(x)图象上任意一点,则(-y,-x)在y=2x+a的图象上,所以有-x=2-y+a,从而有-y+a=log2(-x)(指数式与对数式的互化),所以y=a-log2(-x),即f(x)=a-log2(-x),所以f(-2)+f(-4)=(a-log22)+(a-log24)=(a-1)+(a-2)=1,解得a=2.故选C.]4.(2017·全国卷Ⅰ)函数y=sin 2x1-cos x的部分图象大致为()C[令f(x)=sin 2x1-cos x,∵f(1)=sin 21-cos 1>0,f(π)=sin 2π1-cos π=0,∴排除选项A,D.由1-cos x≠0得x≠2kπ(k∈Z),故函数f(x)的定义域关于原点对称.又∵f (-x )=sin (-2x )1-cos (-x )=-sin 2x1-cos x=-f (x ),∴f (x )为奇函数,其图象关于原点对称,∴排除选项B. 故选C.]回访3 函数的单调性5.(2017·全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞)D [由x 2-2x -8>0,得x >4或x <-2. 设t =x 2-2x -8,则y =ln t 为增函数.要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8的单调递增区间. ∵函数t =x 2-2x -8的单调递增区间为(4,+∞), ∴函数f (x )的单调递增区间为(4,+∞). 故选D.]6.(2015·全国卷Ⅱ)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( ) A.⎝ ⎛⎭⎪⎫13,1 B.⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞) C.⎝ ⎛⎭⎪⎫-13,13 D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞ A [法一:∵f (-x )=ln(1+|-x |)-11+(-x )2=f (x ),∴函数f (x )为偶函数. ∵当x ≥0时,f (x )=ln(1+x )-11+x 2,在(0,+∞)上y=ln(1+x)递增,y=-11+x2也递增,根据单调性的性质知,f(x)在(0,+∞)上单调递增.又∵f(x)为偶函数,∴f(x)在(-∞,0)上单调递减,∴f(x)>f(2x-1)⇔f(|x|)>f(|2x-1|)⇔|x|>|2x-1|⇔x2>(2x-1)2⇔3x2-4x+1<0⇔13<x<1.故选A.法二:(特殊值排除法)令x=0,此时f(x)=f(0)=-1<0,f(2x-1)=f(-1)=ln 2-12=ln 2-ln e>0,∴x=0不满足f(x)>f(2x-1),故C错误.令x=2,此时f(x)=f(2)=ln 3-15,f(2x-1)=f(3)=ln 4-110.∵f(2)-f(3)=ln 3-ln 4-1 10,其中ln 3<ln 4,∴ln 3-ln 4-110<0,∴f(2)-f(3)<0,即f(2)<f(3),∴x=2不满足f(x)>f(2x-1),故B,D错误.故选A.]热点题型1函数图象的判断与应用题型分析:函数的图象是近几年高考的热点内容,主要有函数图象的判断和函数图象的应用两种题型.【例1】(1)(2017·全国卷Ⅲ)函数y=1+x+sin xx2的部分图象大致为()(2)(2016·全国卷Ⅱ)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =()A .0B .mC .2mD .4m(1)D (2)B [(1)当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx 2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx 2>0,故排除选项A ,C. 故选D.(2)∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称,∴两函数图象的交点关于直线x =1对称.当m 为偶数时,∑i =1mx i =2×m2=m ;当m 为奇数时,∑i =1mx i =2×m-12+1=m.故选B.][方法指津]函数图象的判断方法1.根据函数的定义域判断图象的左右位置,根据函数的值域判断图象的上下位置. 2.根据函数的单调性,判断图象的变化趋势. 3.根据函数的奇偶性,判断图象的对称性. 4.根据函数的周期性,判断图象的循环往复. 5.取特殊值代入,进行检验.[变式训练1] (1)(2016·济南模拟)函数y =xe cos x (-π≤x ≤π)的大致图象为( )【导学号:04024121】A .B .C .D .(2)(2017·东北三省四市联考)对∀x ∈⎝ ⎛⎭⎪⎫0,13,23x ≤log a x +1恒成立,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,23 B.⎝ ⎛⎦⎥⎤0,12 C.⎣⎢⎡⎭⎪⎫13,1 D.⎣⎢⎡⎭⎪⎫12,1 (1)A (2)C [(1)令f (x )=xe cos x ,则f (-x )=-xe cos (-x )=-xe cos x =-f (x ),即函数的图象关于原点对称,排除选项C ,D ;当x =π2时,f ⎝ ⎛⎭⎪⎫π2=π2>0,排除选项B.故选A.(2)不等式23x ≤log a x +1即为8x ≤log a x +1,若8x ≤log a x +1在⎝ ⎛⎭⎪⎫0,13上恒成立,则0<a <1,分别在同一坐标系中画出y =8x 与y =log a x +1的图象如图所示,易知log a 13+1≥813,解得13≤a <1,故选C.]热点题型2 函数性质的综合应用题型分析:函数性质的综合应用是高考的热点内容,解决此类问题时,性质的判断是关键,应用是难点.【例2】(1)(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln(2-x ),则( )A .f (x )在(0,2)单调递增B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称(2)已知函数f (x )是定义在R 上的奇函数,且对于任意x ∈R ,恒有f (x -1)=f (x +1)成立,当x ∈[-1,0]时,f (x )=2x -1,则f (2 017)=________.(1)C(2)12[(1)f(x)的定义域为(0,2).f(x)=ln x+ln(2-x)=ln[x(2-x)]=ln(-x2+2x).设u=-x2+2x,x∈(0,2),则u=-x2+2x在(0,1)上单调递增,在(1,2)上单调递减.又y=ln u在其定义域上单调递增,∴f(x)=ln(-x2+2x)在(0,1)上单调递增,在(1,2)上单调递减.∴选项A,B错误.∵f(x)=ln x+ln(2-x)=f(2-x),∴f(x)的图象关于直线x=1对称,∴选项C正确.∵f(2-x)+f(x)=[ln(2-x)+ln x]+[ln x+ln(2-x)]=2[ln x+ln(2-x)],不恒为0,∴f(x)的图象不关于点(1,0)对称,∴选项D错误.故选C.(2)由f(x-1)=f(x+1)得f(x)的周期为2,则f(2 017)=f(1)=-f(-1)=-(2-1-1)=1 2.][方法指津]函数性质的综合应用类型1.函数单调性与奇偶性的综合.注意奇、偶函数图象的对称性,以及奇、偶函数在关于原点对称的区间上单调性的关系.2.周期性与奇偶性的综合.此类问题多为求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.3.单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.[变式训练2] (1)(2016·长春二模)已知函数f(x)是定义在R上的奇函数,且在[0,+∞)上是增函数,则不等式⎪⎪⎪⎪⎪⎪f(ln x)-f⎝⎛⎭⎪⎫ln1x2<f(1)的解集为()【导学号:04024122】A.⎝ ⎛⎭⎪⎫0,1e B .(0,e) C.⎝ ⎛⎭⎪⎫1e ,e D .(e ,+∞)(2)已知函数y =f (x )是定义在R 上的奇函数,∀x ∈R ,f (x -1)=f (x +1)成立,当x ∈(0,1)且x 1≠x 2时,有f (x 2)-f (x 1)x 2-x 1<0.给出下列命题: ①f (1)=0;②f (x )在[-2,2]上有5个零点;③点(2 014,0)是函数y =f (x )图象的一个对称中心;④直线x =2 014是函数y =f (x )图象的一条对称轴.则正确命题的序号是________.【导学号:04024123】(1)C (2)①②③ [(1)∵f (x )为R 上的奇函数,则f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=-f (ln x ), ∴⎪⎪⎪⎪⎪⎪f (ln x )-f ⎝ ⎛⎭⎪⎫ln 1x 2=|f (ln x )+f (ln x )|2=|f (ln x )|,即原不等式可化为|f (ln x )|<f (1),∴-f (1)<f (ln x )<f (1),即f (-1)<f (ln x )<f (1).又由已知可得f (x )在R 上单调递增,∴-1<ln x <1,解得1e <x <e ,故选C.(2)令f (x -1)=f (x +1)中x =0,得f (-1)=f (1).∵f (-1)=-f (1),∴2f (1)=0,∴f (1)=0,故①正确;由f (x -1)=f (x +1)得f (x )=f (x +2),∴f (x )是周期为2的周期函数,∴f (2)=f (0)=0,又当x ∈(0,1)且x 1≠x 2时,有f (x 2)-f (x 1)x 2-x 1<0,∴函数在区间(0,1)上单调递减,可作函数的简图如图:由图知②③正确,④不正确,∴正确命题的序号为①②③.]。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题3 突破点6 古典概型

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题3 突破点6 古典概型

专题三概率及期望与方差建知识网络明内在联系[高考点拨]本专题涉及面广,往往以生活中的热点问题为依托,在浙江新高考中的考查方式十分灵活,背景容易创新.基于上述分析,本专题按照“古典概型”“随机变量及其分布”两个方面分类进行引导,强化突破.突破点6 古典概型(对应学生用书第24页)[核心知识提炼]提炼1古典概型问题的求解技巧(1)直接列举:涉及一些常见的古典概型问题时,往往把事件发生的所有结果逐一列举出来,然后进行求解.(2)画树状图:涉及一些特殊古典概型问题时,直接列举容易出错,通过画树状图,列举过程更具有直观性、条理性,使列举结果不重、不漏.(3)逆向思维:对于较复杂的古典概型问题,若直接求解比较困难,可利用逆向思维,先求其对立事件的概率,进而可得所求事件的概率.(4)活用对称:对于一些具有一定对称性的古典概型问题,通过列举基本事件个数结合古典概型的概率公式来处理反而比较复杂,利用对称思维,可以快速解决. 提炼2求概率的两种常用方法(1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率. (2)若一个较复杂的事件的对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.[高考真题回访]回访 古典概型1.(2011·浙江高考)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( ) A.110B.310 C.35D.910D [“所取的3个球中至少有1个白球”的对立事件是“所取的3个球都不是白球”,因而所求的概率P =1-C 33C 35=1-110=910.]2.(2014·浙江高考)在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.13[记“两人都中奖”为事件A , 设中一、二等奖及不中奖分别记为1,2,0,那么甲、乙抽奖结果有(1,2),(1,0),(2,1),(2,0),(0,1),(0,2),共6种.其中甲、乙都中奖有(1,2),(2,1),2种,所以P (A )=26=13.]3.(2013·浙江高考)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于__________.15[用A ,B ,C 表示三名男同学,用a ,b ,c 表示三名女同学,则从6名同学中选出2人的所有选法为:AB ,AC ,Aa ,Ab ,Ac ,BC ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,ab ,ac ,bc ,共15种选法,其中都是女同学的选法有3种,即ab ,ac ,bc ,故所求概率为315=15.](对应学生用书第25页) 热点题型1 古典概型题型分析:古典概型是高考考查概率的核心,问题背景大多是取球、选人、组数等,求解的关键是准确列举基本事件,难度较小.【例1】 (1)(2017·浙东北教学联盟高三一模考试7)袋子里有大小、形状相同的红球m 个,黑球n 个(m >n >2).从中任取1个球是红球的概率记为p 1.若将红球、黑球个数各增加1个,此时从中任取1个球是红球的概率记为p 2;若将红球、黑球个数各减少1个,此时从中任取1个球是红球的概率记为p 3,则( ) A .p 1>p 2>p 3 B .p 1>p 3>p 2 C .p 3>p 2>p 1D .p 3>p 1>p 2(2)已知M ={1,2,3,4},若a ∈M ,b ∈M ,则函数f (x )=ax 3+bx 2+x -3在R 上为增函数的概率是( )【导学号:68334080】A.916B.716 C.416D.316(1)B (2)A [(1)由题意得p 1=mm +n,p 2=m +1m +n +2,p 3=m -1m +n -2,则1p 1=m +n m =1+n m ,1p 2=m +n +2m +1=1+n +1m +1,1p 3=m +n -2m -1=1+n -1m -1,则1p 1-1p 2=n m -n +1m +1=n -mm m +<0,1p 1-1p 3=nm-n -1m -1=m -n m m ->0,所以1p 2>1p 1>1p 3,所以p 3>p 1>p 2,故选D.(2)记事件A 为“函数f (x )=ax 3+bx 2+x -3在R 上为增函数”.因为f (x )=ax 3+bx 2+x -3,所以f ′(x )=3ax 2+2bx +1. 因为函数f (x )在R 上为增函数,所以f ′(x )≥0在R 上恒成立.又a >0,所以Δ=(2b )2-4×3a =4b 2-12a ≤0在R 上恒成立,即a ≥b 23.所以当b =1时,有a ≥13,故a 可取1,2,3,4,共4个数;当b =2时,有a ≥43,故a 可取2,3,4,共3个数;当b =3时,有a ≥3,故a 可取3,4,共2个数; 当b =4时,有a ≥163,故a 无可取值.综上,事件A 包含的基本事件有4+3+2=9(种). 又a ,b ∈{1,2,3,4},所以(a ,b )共有4×4=16(种). 故所求事件A 的概率为P (A )=916.故选A.][方法指津]利用古典概型求事件概率的关键及注意点1.关键:正确列举出基本事件的总数和待求事件包括的基本事件数.2.注意点:(1)对于较复杂的题目,列出事件数时要正确分类,分类时应不重不漏. (2)当直接求解有困难时,可考虑求其对立事件的概率.[变式训练1] (2016·温州调研)若将甲、乙两个球随机放入编号为1,2,3的三个盒子中,每个盒子的放球数量不限,则在1,2号盒子中各有一个球的概率是________.29[将甲、乙两个球随机放入编号为1,2,3的三个盒子中,每个盒子的放球数量不限,则有3×3=9种不同放法,其中在1,2号盒子中各有一个球的结果有2种,故所求概率是29.]热点题型2 互斥事件与对立事件的概率题型分析:互斥事件与对立事件的概率常与古典概型等交汇命题,主要考查学生的分析转化能力,难度中等.【例2】现有甲、乙、丙、丁4个学生课余参加学校社团文学社与街舞社的活动,每人参加且只能参加一个社团的活动,且参加每个社团是等可能的.(1)求文学社和街舞社都至少有1人参加的概率;(2)求甲、乙同在一个社团,且丙、丁不同在一个社团的概率.[解]甲、乙、丙、丁4个学生课余参加学校社团文学社与街舞社的情况如下:共有 (1)文学社或街舞社没有人参加的基本事件有2个, 故所求概率为1416=78.9分(2)甲、乙同在一个社团,且丙、丁不同在一个社团的基本事件有4个,故所求概率为416=14.12分[方法指津]1.直接求法:将所求事件分解为一些彼此互斥事件的和,运用互斥事件概率的加法公式计算. 2.间接求法:先求此事件的对立事件,再用公式P (A )=1-P (A )求解,即运用逆向思维(正难则反),特别是“至多”“至少”型题目,用间接求法会较简便. 提醒:应用互斥事件概率的加法公式的前提是确定各个事件是否彼此互斥.[变式训练2] (名师押题)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率; (2)求该地1位车主甲、乙两种保险都不购买的概率.【导学号:68334081】[解] 记事件A 为“该车主购买甲种保险”,事件B 为“该车主购买乙种保险但不购买甲种保险”,事件C 为“该车主至少购买甲、乙两种保险中的1种”,事件D 为“该车主甲、乙两种保险都不购买”.4分(1)由题意得P (A )=0.5,P (B )=0.3,6分 又C =A ∪B ,所以P (C )=P (A ∪B )=P (A )+P (B )=0.5+0.3=0.8. 12分 (2)因为D 与C 是对立事件,所以P (D )=1-P (C )=1-0.8=0.2. 15分。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题2 突破点5 数列求和及其综合应用

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题2 突破点5 数列求和及其综合应用

突破点5 数列求和及其综合应用(对应学生用书第19页)[核心知识提炼]提炼1 a n 和S n 的关系若a n 为数列{a n }的通项,S n 为其前n 项和,则有a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.在使用这个关系式时,一定要注意区分n =1,n ≥2两种情况,求出结果后,判断这两种情况能否整合在一起. 提炼2求数列通项常用的方法(1)定义法:①形如a n +1=a n +c (c 为常数),直接利用定义判断其为等差数列.②形如a n +1=ka n (k 为非零常数)且首项不为零,直接利用定义判断其为等比数列.(2)叠加法:形如a n +1=a n +f (n ),利用a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),求其通项公式. (3)叠乘法:形如a n +1a n =f (n )≠0,利用a n =a 1·a 2a 1·a 3a 2·…·a na n -1,求其通项公式. (4)待定系数法:形如a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q1-p,再转化为等比数列求解.(5)构造法:形如a n +1=pa n +q n(其中p ,q 均为常数,pq (p -1)≠0),先在原递推公式两边同除以qn +1,得a n +1q n +1=p q ·a n q n +1q ,构造新数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,接下来用待定系数法求解.(6)取对数法:形如a n +1=pa mn (p >0,a n >0),先在原递推公式两边同时取对数,再利用待定系数法求解. 提炼3数列求和数列求和的关键是分析其通项,数列的基本求和方法有公式法、裂(拆)项相消法、错位相减法、分组法、倒序相加法和并项法等,而裂项相消法,错位相减法是常用的两种方法. 提炼4数列的综合问题数列综合问题的考查方式主要有三种:(1)判断数列问题中的一些不等关系,可以利用数列的单调性比较大小,或者是借助数列对应函数的单调性比较大小.(2)以数列为载体,考查不等式的恒成立问题,此类问题可转化为函数的最值问题. (3)考查与数列有关的不等式的证明问题,此类问题大多还要借助构造函数去证明,或者是直接利用放缩法证明或直接利用数学归纳法.[高考真题回访]回访1 数列求和1.(2014·浙江高考)已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2. (1)求a n 与b n ;(2)设c n =1a n -1b n(n ∈N *).记数列{c n }的前n 项和为S n .①求S n ;②求正整数k ,使得对任意n ∈N *,均有S k ≥S n . [解] (1)由题意知a 1a 2a 3…a n =(2)b n ,b 3-b 2=6, 知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2舍去), 2分 所以数列{a n }的通项为a n =2n(n ∈N *), 所以,a 1a 2a 3…a n =2n n +2=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *). 5分 (2)①由(1)知c n =1a n -1b n =12n -⎝ ⎛⎭⎪⎫1n -1n +1(n ∈N *), 所以S n =1n +1-12n (n ∈N *).7分②因为c 1=0,c 2>0,c 3>0,c 4>0, 当n ≥5时,c n =1nn +⎣⎢⎡⎦⎥⎤n n +2n -1,9分而n n +2n-n +n +2n +1=n +n -2n +1>0,得n n +2n≤+25<1,11分所以,当n ≥5时,c n <0.综上,对任意n ∈N *恒有S 4≥S n ,故k =4. 14分 回访2 数列的综合问题2.(2017·浙江高考)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n ∈N *). 证明:当n ∈N *时, (1)0<x n +1<x n ; (2)2x n +1-x n ≤x n x n +12;(3)12n -1≤x n ≤12n -2.[解] (1)证明:用数学归纳法证明:x n >0. 当n =1时,x 1=1>0. 假设n =k 时,x k >0, 那么n =k +1时,若x k +1≤0,则0<x k =x k +1+ln(1+x k +1)≤0,矛盾, 故x k +1>0. 3分因此x n >0(n ∈N *).所以x n =x n +1+ln(1+x n +1)>x n +1. 因此0<x n +1<x n (n ∈N *).5分(2)证明:由x n =x n +1+ln(1+x n +1)得x n x n +1-4x n +1+2x n=x 2n +1-2x n +1+(x n +1+2)ln(1+x n +1).7分记函数f (x )=x 2-2x +(x +2)ln(1+x )(x ≥0), f ′(x )=2x 2+xx +1+ln(1+x )>0(x >0),函数f (x )在[0,+∞)上单调递增, 所以f (x )≥f (0)=0,因此x 2n +1-2x n +1+(x n +1+2)ln(1+x n +1)=f (x n +1)≥0, 故2x n +1-x n ≤x n x n +12(n ∈N *).10分(3)证明:因为x n =x n +1+ln(1+x n +1)≤x n +1+x n +1=2x n +1, 所以x n ≥12n -1.由x n x n +12≥2x n +1-x n得1x n +1-12≥2⎝ ⎛⎭⎪⎫1x n -12>0,13分所以1x n -12≥2⎝ ⎛⎭⎪⎫1x n -1-12≥…≥2n -1⎝ ⎛⎭⎪⎫1x 1-12=2n -2, 故x n ≤12n -2.综上,12n -1≤x n ≤12n -2(n ∈N *).15分3.(2016·浙江高考)设数列{a n }满足⎪⎪⎪⎪⎪⎪a n -a n +12≤1,n ∈N *.(1)证明:|a n |≥2n -1(|a 1|-2),n ∈N *;(2)若|a n |≤⎝ ⎛⎭⎪⎫32n ,n ∈N *,证明:|a n |≤2,n ∈N *.[证明] (1)由⎪⎪⎪⎪⎪⎪a n -a n +12≤1, 得|a n |-12|a n +1|≤1,故|a n |2n -|a n +1|2n +1≤12n ,n ∈N *,2分所以|a 1|21-|a n |2n =⎝ ⎛⎭⎪⎫|a 1|21-|a 2|22+⎝ ⎛⎭⎪⎫|a 2|22-|a 3|23+…+⎝ ⎛⎭⎪⎫|a n -1|2n -1-|a n |2n ≤121+122+…+12n -1<1,因此|a n |≥2n -1(|a 1|-2). 5分(2)任取n ∈N *,由(1)知,对于任意m >n ,|a n |2n -|a m |2m=⎝ ⎛⎭⎪⎫|a n |2n -|a n +1|2n +1+⎝ ⎛⎭⎪⎫|a n +1|2n +1-|a n +2|2n +2+…+⎝ ⎛⎭⎪⎫|a m-1|2m -1-|a m |2m ≤12n +12n +1+…+12m -1<12n -1, 故|a n |<⎝ ⎛⎭⎪⎫12n -1+|a m |2m ·2n≤⎣⎢⎡⎭⎪⎫12n -1+12m·⎝ ⎛⎭⎪⎫32m ·2n =2+⎝ ⎛⎭⎪⎫34m ·2n.8分从而对于任意m >n ,均有|a n |<2+⎝ ⎛⎭⎪⎫34m ·2n.①由m 的任意性得|a n |≤2. 否则,存在n 0∈N *,有|an 0|>2, 取正整数m 0>log 34|an 0|-22n 0且m 0>n 0,11分则2n 0·⎝ ⎛⎭⎪⎫34m 0<2n 0·⎝ ⎛⎭⎪⎫34log 34|an 0|-22n 0=|an 0|-2,与①式矛盾.综上,对于任意n ∈N *,均有|a n |≤2.15分(对应学生用书第21页) 热点题型1 数列中的a n 与S n 的关系数列中的a n 与S n 的关系题型分析:以数列中a n 与S n 间的递推关系为载体,考查数列通项公式的求法,以及推理论证的能力.【例1】 数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且满足2a na n S n -S 2n=1(n ≥2).求数列{a n }的通项公式.【导学号:68334070】[解] 由已知,当n ≥2时,2a na n S n -S 2n=1,所以S n -S n -1S n -S n -1S n -S 2n =1,2分即S n -S n -1-S n -1S n=1,所以1S n -1S n -1=12.4分又S 1=a 1=1,所以数列⎩⎨⎧⎭⎬⎫1S n 是首项为1,公差为12的等差数列,6分所以1S n =1+12(n -1)=n +12,即S n =2n +1.8分 所以当n ≥2时,a n =S n -S n -1=2n +1-2n =-2nn +.12分因此a n =⎩⎪⎨⎪⎧1,n =1,-2n n +,n ≥2. 15分[方法指津]给出S n 与a n 的递推关系,求a n ,常用思路:一是利用S n -S n -1=a n n 转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n . 提醒:在利用a n =S n -S n -1n求通项公式时,务必验证n =1时的情形[变式训练1] (1)已知数列{a n }前n 项和为S n ,若S n =2a n -2n,则S n =__________. 【导学号:68334071】(2)已知数列{a n }的各项均为正数,其前n 项和为S n ,且2S n +2=3a n (n ∈N *),则a n =__________. (1)n ·2n(n ∈N *) (2)2×3n -1(n ∈N *) [(1)由S n =2a n -2n得当n =1时,S 1=a 1=2;当n ≥2时,S n =2(S n -S n -1)-2n,即S n 2n -S n -12n -1=1,所以数列⎩⎨⎧⎭⎬⎫S n 2n 是首项为1,公差为1的等差数列,则S n2n=n ,S n =n ·2n (n ≥2),当n =1时,也符合上式,所以S n =n ·2n (n ∈N *).(2)因为2S n +2=3a n ,①所以2S n +1+2=3a n +1, ②由②-①,得2S n +1-2S n =3a n +1-3a n ,所以2a n +1=3a n +1-3a n ,即a n +1a n=3. 当n =1时,2+2S 1=3a 1,所以a 1=2,所以数列{a n }是首项为2,公比为3的等比数列, 所以a n =2×3n -1(n ∈N *).]热点题型2 裂项相消法求和题型分析:裂项相消法是指把数列与式中的各项分别裂开后,某些项可以相互抵消从而求和的方法,主要适用于⎩⎨⎧⎭⎬⎫1a n a n +1或⎩⎨⎧⎭⎬⎫1a n a n +2其中{a n }为等差数列等形式的数列求和.【例2】 已知等差数列{a n }的公差d ≠0,它的前n 项和为S n ,若S 5=70,且a 2,a 7,a 22成等比数列,(1)求数列{a n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n ,求证:16≤T n <38.[解] (1)由已知及等差数列的性质得S 5=5a 3,∴a 3=14, 1分 又a 2,a 7,a 22成等比数列,即a 27=a 2·a 22. 2分由(a 1+6d )2=(a 1+d )(a 1+21d )且d ≠0, 解得a 1=32d ,∴a 1=6,d =4.4分 故数列{a n }的通项公式为a n =4n +2,n ∈N *. 6分(2)证明:由(1)得S n =n a 1+a n2=2n 2+4n ,1S n=12n 2+4n =14⎝ ⎛⎭⎪⎫1n -1n +2,8分∴T n =141-13+12-14+…+1n -1n +2=38-14⎝ ⎛⎭⎪⎫1n +1+1n +2.11分又T n ≥T 1=38-14⎝ ⎛⎭⎪⎫12+13=16,所以16≤T n <38.15分[方法指津]裂项相消法的基本思想就是把通项a n 分拆成a n =b n +k -b n k ≥1,k ∈N *的形式,常见的裂项方式有: (1nn +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ; 1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(1n +n +k =1kn +k -n提醒:在裂项变形时,务必注意裂项前后系数的变化.[变式训练2] (名师押题)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . [解] (1)由题设知a 1·a 4=a 2·a 3=8, 2分又a 1+a 4=9,可得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1.(舍去)4分 由a 4=a 1q 3得公比q =2,故a n =a 1q n -1=2n -1.6分 (2)S n =a 1-qn1-q=2n-1.8分 又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,12分所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.热点题型3 错位相减法求和题型分析:限于数列解答题的位置较为靠前,加上错位相减法的运算量相对较大,故该命题点出现的频率不高,但其仍是命题的热点之一,务必加强训练.【例3】 已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+ (1)b n =b n +1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n . [解] (1)由a 1=2,a n +1=2a n ,得a n =2n(n ∈N *). 2分由题意知:当n =1时,b 1=b 2-1,故b 2=2. 3分 当n ≥2时,1nb n =b n +1-b n .4分整理得b n +1n +1=b n n,所以b n =n (n ∈N *). 6分(2)由(1)知a n b n =n ·2n,因此T n =2+2·22+3·23+…+n ·2n, 2T n =22+2·23+3·24+…+n ·2n +1,10分 所以T n -2T n =2+22+23+ (2)-n ·2n +1.12分故T n =(n -1)2n +1+2(n ∈N *).15分[方法指津]运用错位相减法求和应注意:一是判断模型,即判断数列{a n },{b n }中一个为等差数列,一个为等比数列;二是错开位置,一般先乘以公比,再把前n 项和退后一个位置来书写,这样避免两式相减时看错列;三是相减,相减时一定要注意式中最后一项的符号,考生常在此步出错,一定要细心.提醒:为保证结果正确,可对得到的和取n =1,2进行验证.[变式训练3] 已知在公比大于1的等比数列{a n }中,a 2,a 4是函数f (x )=(x -2)(x -8)的两个零点.(1)求数列{a n }的通项公式; (2)求数列{2na n }的前n 项和S n .[解] (1)因为a 2,a 4是函数f (x )=(x -2)(x -8)的两个零点,且等比数列{a n }的公比q 大于1,所以a 2=2,a 4=8,2分所以q =2,所以数列{a n }的通项公式为a n =2n -1(n ∈N *).6分(2)由(1)知2na n =n ×2n,所以S n =1×2+2×22+…+n ×2n,① 7分 2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1,②11分由①-②,得-S n =2+22+23+…+2n -n ×2n +1=2-2n×21-2-n ×2n +1,13分所以S n =2+(n -1)×2n +1(n ∈N *).15分热点题型4 数列的综合问题题型分析:数列与函数、不等式的综合问题多为解答题.难度偏大,属中高档题,常有以下两个命题角度:以数列为载体,考查不等式的恒成立问题; 考查与数列有关的不等式的证明问题.【例4】 (2017·绍兴市方向性仿真考试)已知数列{a n }满足,a 1=1,a n =1a n +1-12. (1)求证:23≤a n ≤1;(2)求证:|a n +1-a n |≤13;(3)求证:|a 2n -a n |≤1027.【导学号:68334072】[证明] (1)由已知得a n +1=1a n +12,又a 1=1,所以a 2=23,a 3=67,a 4=1419,猜想23≤a n ≤1.2分下面用数学归纳法证明. ①当n =1时,命题显然成立;②假设n =k 时,有23≤a n ≤1成立,则当n =k +1时,a k +1=1a k +12≤123+12<1,a k +1=1a k +12≥11+12=23,即当n =k +1时也成立, 所以对任意n ∈N *,都有23≤a n ≤1.5分(2)当n =1时,|a 2-a 1|=13,当n ≥2时,∵⎝⎛⎭⎪⎫a n +12⎝ ⎛⎭⎪⎫a n -1+12=⎝ ⎛⎭⎪⎫a n +12·1a n =1+12a n ≥1+12=32, 7分∴|a n +1-a n |=⎪⎪⎪⎪⎪⎪⎪⎪1a n +12-1a n -1+12 =|a n -a n -1|⎝ ⎛⎭⎪⎫a n +12⎝ ⎛⎭⎪⎫a n -1+12≤23|a n -a n -1|≤…≤⎝ ⎛⎭⎪⎫23n -1|a 2-a 1|=13·⎝ ⎛⎭⎪⎫23n -1<13.综上所述,|a n +1-a n |≤13.10分(3)当n =1时,|a 2-a 1|=13=927<1027; 11分当n ≥2时,|a 2n -a n |≤|a 2n -a 2n -1|+|a 2n -1-a 2n -2|+…+|a n +1-a n | ≤13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232n -2+⎝ ⎛⎭⎪⎫232n -3+…+⎝ ⎛⎭⎪⎫23n -1 =⎝ ⎛⎭⎪⎫23n -1-⎝ ⎛⎭⎪⎫232n -1≤23-⎝ ⎛⎭⎪⎫233=1027.15分[方法指津]解决数列与不等式的综合问题时,如果是证明题,要灵活的选择不等式的证明方法,如比较法、综合法、分析法、放缩法、反证法及数学归纳法等;如果是解不等式问题,要使用解不等式的各种解法,如列表法、因式分解法、穿根法等,总之解决这类问题把数列和不等式的知识巧妙结合起来综合处理就行了.[变式训练4] (2017·台州市高三年级调考)已知数列{a n }满足:a n >0,a n +1+1a n<2(n ∈N *).(1)求证:a n +2<a n +1<2(n ∈N *); (2)求证:a n >1(n ∈N *).[证明] (1)由a n >0,a n +1+1a n<2,得a n +1<2-1a n<2.2分因为2>a n +2+1a n +1>2a n +2a n +1(由题知a n +1≠a n +2), 所以a n +2<a n +1<2.4分(2)法一:假设存在a N ≤1(N ≥1,N ∈N *), 由(1)可得当n >N 时,a n ≤a N +1<1.6分根据a n +1-1<1-1a n =a n -1a n<0,而a n <1,所以1a n +1-1>a n a n -1=1+1a n -1,于是1a N +2-1>1+1a N +1-1,……1a N +n -1>1+1a N +n -1-1.10分累加可得1a N +n -1>n -1+1a N +1-1.(*)由假设可得a N +n -1<0,12分而当n >-1a N +1-1+1时,显然有n -1+1a N +1-1>0,因此有1a N +n -1<n -1+1a N +1-1,这显然与(*)矛盾. 所以a n >1(n ∈N *).15分法二:假设存在a N ≤1(N ≥1,N ∈N *),由(1)可得当n >N 时,0<a n ≤a N +1<1. 6分 根据a n +1-1<1-1a n =a n -1a n<0,而a n <1,所以11-a n +1<an 1-a n,所以1-a n +11-a n >1a n ≥1a N +1>1.于是1-a n >(1-a n -1)⎝ ⎛⎭⎪⎫1a N +1,1-a n -1>(1-a n -2)⎝ ⎛⎭⎪⎫1a N +1,……1-a N +2>(1-a N +1)⎝ ⎛⎭⎪⎫1a N +1.10分 累乘可得1-a n >(1-a N +1)⎝ ⎛⎭⎪⎫1a N +1n -N -1,(*)由(1)可得1-a n <1, 12分 而当n > ⎝ ⎛⎭⎪⎫11-a N +1+N +1时,则有(1-a N +1)⎝ ⎛⎭⎪⎫1a N +1n -N -1>1,这显然与(*)矛盾.所以a n >1(n ∈N *). 15分。

2018届高考数学(文)二轮专题复习习题:第1部分 专题二 函数、不等式、导数 1-2-3

2018届高考数学(文)二轮专题复习习题:第1部分 专题二 函数、不等式、导数 1-2-3

限时规范训练六 导数的简单应用 限时45分钟,实际用时________ 分值81分,实际得分________一、选择题(本题共6小题,每小题5分,共30分)1.设函数f (x )=x 24-a ln x ,若f ′(2)=3,则实数a 的值为( )A .4B .-4C .2D .-2解析:选B.f ′(x )=x 2-a x ,故f ′(2)=22-a2=3,因此a =-4.2.曲线y =e x在点A 处的切线与直线x -y +3=0平行,则点A 的坐标为( ) A .(-1,e -1) B .(0,1) C .(1,e)D .(0,2)解析:选B.设A (x 0,e x 0),y ′=e x,∴y ′|x =x 0=e x 0.由导数的几何意义可知切线的斜率k =e x 0.由切线与直线x -y +3=0平行可得切线的斜率k =1. ∴e x 0=1,∴x 0=0,∴A (0,1).故选B.3.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为 ( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B.⎝⎛⎭⎪⎫32,+∞ C.⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ D.⎝⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫32,+∞ 解析:选D.若函数f (x )=x 3-2cx 2+x 有极值点,则f ′(x )=3x 2-4cx +1=0有两根,故Δ=(-4c )2-12>0,从而c >32或c <-32. 4.已知f (x )=a ln x +12x 2(a >0),若对任意两个不等的正实数x 1,x 2都有f x 1-f x 2x 1-x 2≥2恒成立,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(0,1)D .(0,1]解析:选A.由条件可知在定义域上函数图象的切线斜率大于等于2,所以函数的导数f ′(x )=a x+x ≥2.可得x =a 时,f ′(x )有最小值2.∴a ≥1.5.若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k<1kB .f ⎝ ⎛⎭⎪⎫1k >1k -1C .f ⎝⎛⎭⎪⎫1k -1<1k -1D .f ⎝⎛⎭⎪⎫1k -1>1k -1解析:选C.构造函数g (x )=f (x )-kx +1,则g ′(x )=f ′(x )-k >0,∴g (x )在R 上为增函数. ∵k >1,∴1k -1>0,则g ⎝ ⎛⎭⎪⎫1k -1>g (0). 而g (0)=f (0)+1=0, ∴g ⎝⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k k -1+1>0,即f ⎝⎛⎭⎪⎫1k -1>k k -1-1=1k -1,所以选项C 错误,故选C.6.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:选C.因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝ ⎛⎭⎪⎫12=b ,又f (x )=f (2-x ),所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C.二、填空题(本题共3小题,每小题5分,共15分)7.(2017·高考全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.解析:∵y ′=2x -1x2,∴y ′|x =1=1,即曲线在点(1,2)处的切线的斜率k =1, ∴切线方程为y -2=x -1, 即x -y +1=0. 答案:x -y +1=08.已知函数f (x )=-12x 2-3x +4ln x 在(t ,t +1)上不单调,则实数t 的取值范围是________.解析:由题意得,f (x )的定义域为(0,+∞),∴t >0, ∴f ′(x )=-x -3+4x=0在(t ,t +1)上有解,∴x 2+3x -4x=0在(t ,t +1)上有解,∴x 2+3x -4=0在(t ,t +1)上有解,由x 2+3x -4=0得x =1或x =-4(舍去),∴1∈(t ,t +1),∴t ∈(0,1),故实数t 的取值范围是(0,1).答案:(0,1)9.已知函数f (x )=1-xax+ln x ,若函数f (x )在[1,+∞)上为增函数,则正实数a 的取值范围为________.解析:∵f (x )=1-x ax +ln x ,∴f ′(x )=ax -1ax2(a >0).∵函数f (x )在[1,+∞)上为增函数,∴f ′(x )=ax -1ax 2≥0在x ∈[1,+∞)上恒成立,∴ax -1≥0在x ∈[1,+∞)上恒成立,即a ≥1x在x ∈[1,+∞)上恒成立,∴a ≥1.答案:[1,+∞)三、解答题(本题共3小题,每小题12分,共36分) 10.(2017·高考全国卷Ⅱ)设函数f (x )=(1-x 2)e x. (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. 解:(1)f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)单调递减,在(-1-2,-1+2)单调递增.(2)f (x )=(1+x )(1-x )e x.当a ≥1时,设函数h (x )=(1-x )e x,则h ′(x )=-x e x<0(x >0),因此h (x )在[0,+∞)单调递减.而h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x-x -1,则g ′(x )=e x-1>0(x >0),所以g (x )在[0,+∞)单调递增.而g (0)=0,故e x≥x +1.当0<x <1时,f (x )>(1-x )(1+x )2,(1-x )(1+x )2-ax -1=x (1-a -x -x 2),取x 0=5-4a -12,则x 0∈(0,1),(1-x 0)(1+x 0)2-ax 0-1=0,故f (x 0)>ax 0+1. 当a ≤0时,取x 0=5-12,则x 0∈(0,1),f (x 0)>(1-x 0)(1+x 0)2=1≥ax 0+1. 综上,a 的取值范围是[1,+∞).11.(2017·河南郑州质量检测)设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x .(1)求函数f (x )的单调区间;(2)当m ≥0时,讨论函数f (x )与g (x )图象的交点个数.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=x 2-mx,当m ≤0时,f ′(x )>0,所以函数f (x )的单调递增区间是(0,+∞),无单调递减区间. 当m >0时,f ′(x )=x +mx -mx,当0<x <m 时,f ′(x )<0,函数f (x )单调递减;当x >m 时,f ′(x )>0,函数f (x )单调递增.综上,当m ≤0时,函数f (x )的单调递增区间是(0,+∞),无单调递减区间;当m >0时,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ).(2)令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,问题等价于求函数F (x )的零点个数,当m =0时,F (x )=-12x 2+x ,x >0,有唯一零点;当m ≠0时,F ′(x )=-x -x -m x,当m =1时,F ′(x )≤0,函数F (x )为减函数,注意到F (1)=32>0,F (4)=-ln 4<0,所以F (x )有唯一零点.当m >1时,0<x <1或x >m 时,F ′(x )<0;1<x <m 时,F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增,注意到F (1)=m +12>0,F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.当0<m <1时,0<x <m 或x >1时,F ′(x )<0;m <x <1时,F ′(x )>0,所以函数F (x )在(0,m )和(1,+∞)上单调递减,在(m,1)上单调递增,易得ln m <0, 所以F (m )=m2(m +2-2ln m )>0,而F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即两函数图象有一个交点. 12.(2017·河南洛阳模拟)已知函数f (x )=ln x -a x +x -1,曲线y =f (x )在点⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12处的切线平行于直线y =10x +1.(1)求函数f (x )的单调区间;(2)设直线l 为函数g (x )=ln x 的图象上任意一点A (x 0,y 0)处的切线,在区间(1,+∞)上是否存在x 0,使得直线l 与曲线h (x )=e x也相切?若存在,满足条件的x 0有几个?解:(1)∵函数f (x )=ln x -a x +x -1,∴f ′(x )=1x+2a x -2,∵曲线y =f (x )在点⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12处的切线平行于直线y =10x +1, ∴f ′⎝ ⎛⎭⎪⎫12=2+8a =10,∴a =1,∴f ′(x )=x 2+1x x -2.∵x >0且x ≠1,∴f ′(x )>0,∴函数f (x )的单调递增区间为(0,1)和(1,+∞). (2)存在且唯一,证明如下:∵g (x )=ln x ,∴切线l 的方程为y -ln x 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1 ①,设直线l 与曲线h (x )=e x相切于点(x 1,e x 1), ∵h ′(x )=e x,∴e x 1=1x 0,∴x 1=-ln x 0,∴直线l 的方程也可以写成y -1x 0=1x 0(x +ln x 0),即y =1x 0x +ln x 0x 0+1x 0②,由①②得ln x 0-1=ln x 0x 0+1x 0,∴ln x 0=x 0+1x 0-1.证明:在区间(1,+∞)上x 0存在且唯一. 由(1)可知,f (x )=ln x -x +1x -1在区间(1,+∞)上单调递增, 又f (e)=-2e -1<0,f (e 2)=e 2-3e 2-1>0,结合零点存在性定理,说明方程f (x )=0必在区间(e ,e 2)上有唯一的根,这个根就是所求的唯一x 0.。

2018年浙江高考数学二轮复习教师用书第1部分 重点强化专题 专题2 突破点4 等差数列、等比数列 Word版含答案

2018年浙江高考数学二轮复习教师用书第1部分 重点强化专题 专题2 突破点4 等差数列、等比数列 Word版含答案

专题二 数 列 建知识网络 明内在联系[高考点拨] 数列专题是浙江新高考的必考专题之一,主要考查等差、等比数列的基本量运算及数列求和的能力,该部分即可单独命题,又可与其他专题综合命题,考查方式灵活多样,结合浙江新高考的命题研究,本专题我们按照“等差、等比数列”和“数列求和及综合应用”两条主线展开分析和预测.突破点 等差数列、等比数列(对应学生用书第页)[核心知识提炼]提炼等差数列、等比数列的运算()通项公式;)-(+等差数列:=.-·等比数列:= ()求和公式;=+等差数列:= .(≠)=等比数列:=()性质若+=+,;+在等差数列中+= .·=·在等比数列中提炼等差数列、等比数列的判定与证明数列{}是等差数列或等比数列的证明方法:()证明数列{}是等差数列的两种基本方法 为同一常数;)*∈(-+利用定义,证明① .(≥)++-=利用中项性质,即证明②()证明{}是等比数列的两种基本方法 ①利用定义,证明(∈*)为同一常数; ②利用等比中项,即证明=-+(≥).提炼数列中项的最值的求法()根据数列与函数之间的对应关系,构造相应的函数()=,利用求解函数最值的方法(多利用函数的单调性)进行求解,但要注意自变量的取值必须是正整数的限制.()利用数列的单调性求解,利用不等式+≥(或+≤)求解出的取值范围,从而确定数列单调性的变化,进而确定相应的最值.()转化为关于的不等式组求解,若求数列{}的最大项,则可解不等式组(\\(≥-,≥+;))若求数列{}的最小项,则可解不等式组(\\(≤-,≤+,))求出的取值范围之后,再确定取得最值的项.[高考真题回访]回访 等差数列及其运算.(·浙江高考)已知等差数列{}的公差为,前项和为,则“>”是“+>”的( )【导学号:】.充分不必要条件 .必要不充分条件 .充分必要条件 .既不充分也不必要条件[法一:∵数列{}是公差为的等差数列, ∴=+,=+,=+, ∴+=+=+. 若>,则>+>+, 即+>.若+>,则+>+,即>,∴>.∴“>”是“+>”的充分必要条件. 故选.法二:∵+>⇔+++>(+)⇔>⇔+>⇔>,∴“>”是“+>”的充分必要条件. 故选.].(·浙江高考)已知{}是等差数列,公差不为零,前项和是,若,,成等比数列,则( ) .>,>。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题1 突破点3 平面向量 Word版含答案

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题1 突破点3 平面向量 Word版含答案

突破点3 平面向量(对应学生用书第14页)[核心知识提炼]提炼1 平面向量共线、垂直的两个充要条件 若a =(x 1,y 1),b =(x 2,y 2),则: (1)a∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=0. (2)a⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0. 提炼2 数量积常见的三种应用已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),则 (1)证明向量垂直:a⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0. (2)求向量的长度:|a |=a·a =x 21+y 21. (3)求向量的夹角:cos 〈a ,b 〉=a·b |a||b|=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提炼3平面向量解题中应熟知的常用结论(1)A ,B ,C 三点共线的充要条件是存在实数λ,μ,有OA →=λOB →+μOC →,且λ+μ=1. (2)C 是线段AB 中点的充要条件是OC →=12(OA →+OB →).(3)G 是△ABC 的重心的充要条件为GA →+GB →+GC →=0,若△ABC 的三个顶点坐标分别为A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心坐标为x 1+x 2+x 33,y 1+y 2+y 33.(4)PA →·PB →=PB →·PC →=PA →·PC →⇔P 为△ABC 的垂心.(5)非零向量a ,b 垂直的充要条件:a⊥b ⇔a·b =0⇔|a +b|=|a -b|⇔x 1x 2+y 1y 2=0. (6)向量b 在a 的方向上的投影为|b |cos θ=a·b|a |, 向量a 在b 的方向上的投影为|a |cos θ=a·b|b|. [高考真题回访]回访1 平面向量的线性运算1.(2018·浙江高考)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.4 25 [设a ,b 的夹角为θ. ∵|a |=1,|b |=2,∴|a +b |+|a -b |=a +b2+a -b2=5+4cos θ+5-4cos θ. 令y =5+4cos θ+5-4cos θ, 则y 2=10+225-16cos 2θ.∵θ∈[0,π],∴cos 2θ∈[0,1],∴y 2∈[16,20], ∴y ∈[4,25],即|a +b |+|a -b |∈[4,25].] 2.(2018·浙江高考)记max{x ,y }=⎩⎪⎨⎪⎧x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A .min{|a +b |,|a -b |}≤min{|a |,|b |}B .min{|a +b |,|a -b |}≥min{|a |,|b |}C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |2D [由于|a +b |,|a -b |与|a |,|b |的大小关系与夹角大小有关,故A ,B 错.当a ,b 夹角为锐角时,|a +b |>|a -b |,此时,|a +b |2>|a |2+|b |2;当a ,b 夹角为钝角时,|a +b |<|a -b |,此时,|a -b |2>|a |2+|b |2;当a ⊥b 时,|a +b |2=|a-b |2=|a |2+|b |2,故选D.]3.(2018·浙江高考)设θ为两个非零向量a ,b 的夹角,已知对任意实数t ,|b +t a |的最小值为1.( )【导学号:68334048】A .若θ确定,则|a |唯一确定B .若θ确定,则|b |唯一确定C .若|a |确定,则θ唯一确定D .若|b |确定,则θ唯一确定B [|b +t a |2=b 2+2a ·b ·t +t 2a 2=|a |2t 2+2|a |·|b |cos θ·t +|b |2. 因为|b +t a |min =1,所以4|a |2·|b |2-4|a |2·|b |2cos 2θ4|a |2=|b |2(1-cos 2θ)=1. 所以|b |2sin 2θ=1,所以|b |sin θ=1,即|b |=1sin θ. 即θ确定,|b |唯一确定.] 回访2 平面向量的数量积及其应用4.(2018·浙江高考)设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P, 恒有PB →·PC →≥P 0B →·P 0C →,则( ) A .∠ABC =90° B .∠BAC =90° C .AB =ACD .AC =BCD [A 项,若∠ABC =90°,如图,则PB →·PC →=|PB →|·|PC →|cos ∠BPC =|PB →|2,P 0B →·P 0C →=|P 0B →|2.当点P 落在点P 0的右侧时,|PB →|2<|P 0B →|2,即PB →·PC →<P 0B →·P 0C →,不符合;B 项,若∠BAC =90°,如图,则PB →·PC →=|PB →|·|PC →|cos ∠BPC =-|PB →|·|PA →|,P 0B →·P 0A →=-|P 0B →||P 0A →|=-3.当P 为AB 的中点时,PB →·PC →=-4, PB →·PC →<P 0B →·P 0C →,不符合;C 项,若AB =AC ,假设∠BAC =120°,如图,则AC ′=2,PB →·PC →=|PB →|·|PC →|cos ∠BPC =-|PB →||PC ′→|,P 0B →·P 0C →=|P 0B →||P 0C →|cos ∠BP 0C =-|P 0B →||P 0C ′→|=-5.当P 落在A 点时,-|PB →||PC ′→|=-8,所以PB →·PC →<P 0B →·P 0C →,不符合.故选D.]5.(2018·浙江高考)已知平面向量a ,b ,|a |=1,|b |=2,a ·b =1,若e 为平面单位向量,则|a ·e |+|b ·e |的最大值是________. 【导学号:68334049】7 [∵a ·b =|a |·|b |cos 〈a ,b 〉=1×2×cos〈a ,b 〉=1,∴cos 〈a ,b 〉=12,∴〈a ,b 〉=60°.以a 的起点为原点,所在直线为x 轴建立直角坐标系, 则a =(1,0),b =(1,3). 设e =(cos θ,sin θ),则|a ·e |+|b ·e |=|cos θ|+|cos θ+3sin θ|≤|cos θ|+|cos θ|+|3sin θ| =2|cos θ|+3|sin θ| ≤θ|2+|sin θ|22+=7.]6.(2018·浙江高考)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________.233 [∵e 1·e 2=12, ∴|e 1||e 2|cos 〈e 1,e 2〉=12,∴〈e 1,e 2〉=60°.又∵b ·e 1=b ·e 2=1>0,∴〈b ,e 1〉=〈b ,e 2〉=30°. 由b ·e 1=1,得|b ||e 1|cos 30°=1,∴|b |=132=233.]7.(2018·浙江高考)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于________. 2 [根据题意,得⎝ ⎛⎭⎪⎫|x ||b |2=x 2x e 1+y e 22=x 2x e 12+y e 22+2xy e 1·e 2=x 2x 2+y 2+2xy cosπ6=x 2x 2+y 2+3xy=11+⎝ ⎛⎭⎪⎫y x 2+3y x =1⎝ ⎛⎭⎪⎫y x +322+14.因为⎝ ⎛⎭⎪⎫yx +322+14≥14,所以0<⎝ ⎛⎭⎪⎫|x ||b|2≤4,所以0<|x ||b |≤2.故|x ||b |的最大值为2.](对应学生用书第15页) 热点题型1 平面向量的运算题型分析:该热点是高考的必考点之一,考查方式主要体现在以下两个方面:一是以平面图形为载体考查向量的线性运算;二是以向量的共线与垂直为切入点,考查向量的夹角、模等. 【例1】 (1)(2018·杭州第二次调研)在梯形ABCD 中,AB ∥DC ,AB ⊥AD ,AD =DC =1,AB =2.若AP →=16AD →+56AB →,则|BC →+tPB →|(t ∈R )的取值范围是( )【导学号:68334050】A.⎣⎢⎡⎭⎪⎫55,+∞ B .[2,+∞)C.⎣⎢⎡⎦⎥⎤55,1 D .[1,+∞)(2)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A .-58B.18C.14D.118(1)A (2)B [(1)以A 为坐标原点,AB ,AD 分别为x 轴,y 轴建立直角坐标系(图略),则D (0,1),B (2,0),C (1,1),设P (x ,y ),由AP →=16AD →+56AB →得(x ,y )=16(0,1)+56(2,0),x =53,y =16,所以P ⎝ ⎛⎭⎪⎫53,16, ∴PB →=⎝ ⎛⎭⎪⎫13,-16,BC →=(-1,1),即|BC →+tPB →|=⎝ ⎛⎭⎪⎫t 3-12+⎝ ⎛⎭⎪⎫1-t 62=536t 2-t +2≥55,当且仅当t =185时等号成立,故选A.(2)如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →,所以AF →=12AB →+34AC →.又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →.又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B.][方法指津]1.平面向量的线性运算要抓住两条主线:一是基于“形”,通过作出向量,结合图形分析;二是基于“数”,借助坐标运算来实现.2.正确理解并掌握向量的概念及运算,强化“坐标化”的解题意识,注重数形结合思想、方程思想与转化思想的应用.提醒:运算两平面向量的数量积时,务必要注意两向量的方向.[变式训练1] (1)已知向量a =(-1,2),b =(3,1),c =(x,4),若(a -b )⊥c ,则c·(a +b )=( )A .(2,12)B .(-2,12)C .14D .10(2)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0.若a ∥b ,则mn=__________. 【导学号:68334051】(1)C (2)-2 [(1)易知a -b =(-4,1),由(a -b )⊥c ,可得(-4)×x +1×4=0,即-4x +4=0,解得x =1, ∴c =(1,4).而a +b =(2,3),∴c·(a +b )=1×2+4×3=14.故选C.(2)∵a ∥b ,∴a =λb ,即m e 1+2e 2=λ(n e 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,解得m n=-2.]热点题型2 三角与向量的综合问题题型分析:平面向量作为解决问题的工具,具有代数形式和几何形式的“双重型”,高考常在平面向量与三角函数的交汇处命题,通过向量运算作为题目条件. 【例2】 (名师押题)已知向量a =⎝ ⎛⎭⎪⎫sin x ,34,b =(cos x ,-1). (1)当a ∥b 时,求cos 2x -sin 2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =3,b =2,sin B =63,求y =f (x )+4cos ⎝⎛⎭⎪⎫2A +π6⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π3的取值范围.[解] (1)∵a ∥b ,∴34cos x +sin x =0,2分 ∴tan x =-34,4分 ∴cos 2x -sin 2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85. 6分 (2)f (x )=2(a +b )·b =2sin ⎝ ⎛⎭⎪⎫2x +π4+32,8分由正弦定理得a sin A =bsin B,可得sin A =22. 9分 ∵b >a ,∴A =π4,10分 y =f (x )+4cos ⎝⎛⎭⎪⎫2A +π6=2sin ⎝⎛⎭⎪⎫2x +π4-12.13分∵x ∈⎣⎢⎡⎦⎥⎤0,π3,∴2x +π4∈⎣⎢⎡⎦⎥⎤π4,11π12,∴32-1≤y ≤2-12, 即y 的取值范围是⎣⎢⎡⎦⎥⎤32-1,2-12.15分[方法指津]平面向量与三角函数问题的综合主要利用向量数量积运算的坐标形式,多与同角三角函数关系、诱导公式以及和角与倍角等公式求值等问题相结合,计算的准确性和三角变换的灵活性是解决此类问题的关键点.[变式训练2] 在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.[解] (1)若m ⊥n ,则m ·n =0. 由向量数量积的坐标公式得22sin x -22cos x =0, 4分 ∴tan x =1.6分(2)∵m 与n 的夹角为π3,∴m ·n =|m |·|n |cos π3,即22sin x -22cos x =12,8分∴sin ⎝⎛⎭⎪⎫x -π4=12.12分又∵x ∈⎝ ⎛⎭⎪⎫0,π2,∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4, ∴x -π4=π6,即x =5π12.15分。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题2 突破点5 数列求和及其综合应用 Word版含

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题2 突破点5 数列求和及其综合应用 Word版含

突破点5 数列求和及其综合应用(对应学生用书第19页)[核心知识提炼]提炼1 a n 和S n 的关系若a n 为数列{a n }的通项,S n 为其前n 项和,则有a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.在使用这个关系式时,一定要注意区分n =1,n ≥2两种情况,求出结果后,判断这两种情况能否整合在一起. 提炼2求数列通项常用的方法(1)定义法:①形如a n +1=a n +c (c 为常数),直接利用定义判断其为等差数列.②形如a n +1=ka n (k 为非零常数)且首项不为零,直接利用定义判断其为等比数列.(2)叠加法:形如a n +1=a n +f (n ),利用a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),求其通项公式. (3)叠乘法:形如a n +1a n =f (n )≠0,利用a n =a 1·a 2a 1·a 3a 2·…·a na n -1,求其通项公式. (4)待定系数法:形如a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q1-p,再转化为等比数列求解.(5)构造法:形如a n +1=pa n +q n(其中p ,q 均为常数,pq (p -1)≠0),先在原递推公式两边同除以qn +1,得a n +1q n +1=p q ·a n q n +1q ,构造新数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,接下来用待定系数法求解.(6)取对数法:形如a n +1=pa mn (p >0,a n >0),先在原递推公式两边同时取对数,再利用待定系数法求解. 提炼3数列求和数列求和的关键是分析其通项,数列的基本求和方法有公式法、裂(拆)项相消法、错位相减法、分组法、倒序相加法和并项法等,而裂项相消法,错位相减法是常用的两种方法. 提炼4数列的综合问题数列综合问题的考查方式主要有三种:(1)判断数列问题中的一些不等关系,可以利用数列的单调性比较大小,或者是借助数列对应函数的单调性比较大小.(2)以数列为载体,考查不等式的恒成立问题,此类问题可转化为函数的最值问题. (3)考查与数列有关的不等式的证明问题,此类问题大多还要借助构造函数去证明,或者是直接利用放缩法证明或直接利用数学归纳法.[高考真题回访]回访1 数列求和1.(2014·浙江高考)已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2. (1)求a n 与b n ;(2)设c n =1a n -1b n(n ∈N *).记数列{c n }的前n 项和为S n .①求S n ;②求正整数k ,使得对任意n ∈N *,均有S k ≥S n . [解] (1)由题意知a 1a 2a 3…a n =(2)b n ,b 3-b 2=6, 知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2舍去), 2分 所以数列{a n }的通项为a n =2n(n ∈N *), 所以,a 1a 2a 3…a n =2n n +2=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *). 5分 (2)①由(1)知c n =1a n -1b n =12n -⎝ ⎛⎭⎪⎫1n -1n +1(n ∈N *), 所以S n =1n +1-12n (n ∈N *).7分②因为c 1=0,c 2>0,c 3>0,c 4>0, 当n ≥5时,c n =1nn +⎣⎢⎡⎦⎥⎤n n +2n -1,9分而n n +2n-n +n +2n +1=n +n -2n +1>0,得n n +2n≤+25<1,11分所以,当n ≥5时,c n <0.综上,对任意n ∈N *恒有S 4≥S n ,故k =4. 14分 回访2 数列的综合问题2.(2017·浙江高考)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n ∈N *). 证明:当n ∈N *时, (1)0<x n +1<x n ; (2)2x n +1-x n ≤x n x n +12;(3)12n -1≤x n ≤12n -2.[解] (1)证明:用数学归纳法证明:x n >0. 当n =1时,x 1=1>0. 假设n =k 时,x k >0, 那么n =k +1时,若x k +1≤0,则0<x k =x k +1+ln(1+x k +1)≤0,矛盾, 故x k +1>0. 3分因此x n >0(n ∈N *).所以x n =x n +1+ln(1+x n +1)>x n +1. 因此0<x n +1<x n (n ∈N *).5分(2)证明:由x n =x n +1+ln(1+x n +1)得x n x n +1-4x n +1+2x n=x 2n +1-2x n +1+(x n +1+2)ln(1+x n +1).7分记函数f (x )=x 2-2x +(x +2)ln(1+x )(x ≥0), f ′(x )=2x 2+xx +1+ln(1+x )>0(x >0),函数f (x )在[0,+∞)上单调递增, 所以f (x )≥f (0)=0,因此x 2n +1-2x n +1+(x n +1+2)ln(1+x n +1)=f (x n +1)≥0, 故2x n +1-x n ≤x n x n +12(n ∈N *).10分(3)证明:因为x n =x n +1+ln(1+x n +1)≤x n +1+x n +1=2x n +1, 所以x n ≥12n -1.由x n x n +12≥2x n +1-x n得1x n +1-12≥2⎝ ⎛⎭⎪⎫1x n -12>0,13分所以1x n -12≥2⎝ ⎛⎭⎪⎫1x n -1-12≥…≥2n -1⎝ ⎛⎭⎪⎫1x 1-12=2n -2, 故x n ≤12n -2.综上,12n -1≤x n ≤12n -2(n ∈N *).15分3.(2016·浙江高考)设数列{a n }满足⎪⎪⎪⎪⎪⎪a n -a n +12≤1,n ∈N *.(1)证明:|a n |≥2n -1(|a 1|-2),n ∈N *;(2)若|a n |≤⎝ ⎛⎭⎪⎫32n ,n ∈N *,证明:|a n |≤2,n ∈N *.[证明] (1)由⎪⎪⎪⎪⎪⎪a n -a n +12≤1, 得|a n |-12|a n +1|≤1,故|a n |2n -|a n +1|2n +1≤12n ,n ∈N *,2分所以|a 1|21-|a n |2n =⎝ ⎛⎭⎪⎫|a 1|21-|a 2|22+⎝ ⎛⎭⎪⎫|a 2|22-|a 3|23+…+⎝ ⎛⎭⎪⎫|a n -1|2n -1-|a n |2n ≤121+122+…+12n -1<1,因此|a n |≥2n -1(|a 1|-2). 5分(2)任取n ∈N *,由(1)知,对于任意m >n ,|a n |2n -|a m |2m=⎝ ⎛⎭⎪⎫|a n |2n -|a n +1|2n +1+⎝ ⎛⎭⎪⎫|a n +1|2n +1-|a n +2|2n +2+…+⎝ ⎛⎭⎪⎫|a m-1|2m -1-|a m |2m ≤12n +12n +1+…+12m -1<12n -1, 故|a n |<⎝ ⎛⎭⎪⎫12n -1+|a m |2m ·2n≤⎣⎢⎡⎭⎪⎫12n -1+12m·⎝ ⎛⎭⎪⎫32m ·2n =2+⎝ ⎛⎭⎪⎫34m ·2n.8分从而对于任意m >n ,均有|a n |<2+⎝ ⎛⎭⎪⎫34m ·2n.①由m 的任意性得|a n |≤2. 否则,存在n 0∈N *,有|an 0|>2, 取正整数m 0>log 34|an 0|-22n 0且m 0>n 0,11分则2n 0·⎝ ⎛⎭⎪⎫34m 0<2n 0·⎝ ⎛⎭⎪⎫34log 34|an 0|-22n 0=|an 0|-2,与①式矛盾.综上,对于任意n ∈N *,均有|a n |≤2.15分(对应学生用书第21页) 热点题型1 数列中的a n 与S n 的关系数列中的a n 与S n 的关系题型分析:以数列中a n 与S n 间的递推关系为载体,考查数列通项公式的求法,以及推理论证的能力.【例1】 数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且满足2a na n S n -S 2n=1(n ≥2).求数列{a n }的通项公式.【导学号:68334070】[解] 由已知,当n ≥2时,2a na n S n -S 2n=1,所以S n -S n -1S n -S n -1S n -S 2n =1,2分即S n -S n -1-S n -1S n=1,所以1S n -1S n -1=12.4分又S 1=a 1=1,所以数列⎩⎨⎧⎭⎬⎫1S n 是首项为1,公差为12的等差数列,6分所以1S n =1+12(n -1)=n +12,即S n =2n +1.8分 所以当n ≥2时,a n =S n -S n -1=2n +1-2n =-2nn +.12分因此a n =⎩⎪⎨⎪⎧1,n =1,-2n n +,n ≥2. 15分[方法指津]给出S n 与a n 的递推关系,求a n ,常用思路:一是利用S n -S n -1=a n n 转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n . 提醒:在利用a n =S n -S n -1n求通项公式时,务必验证n =1时的情形[变式训练1] (1)已知数列{a n }前n 项和为S n ,若S n =2a n -2n,则S n =__________. 【导学号:68334071】(2)已知数列{a n }的各项均为正数,其前n 项和为S n ,且2S n +2=3a n (n ∈N *),则a n =__________. (1)n ·2n(n ∈N *) (2)2×3n -1(n ∈N *) [(1)由S n =2a n -2n得当n =1时,S 1=a 1=2;当n ≥2时,S n =2(S n -S n -1)-2n,即S n 2n -S n -12n -1=1,所以数列⎩⎨⎧⎭⎬⎫S n 2n 是首项为1,公差为1的等差数列,则S n2n=n ,S n =n ·2n (n ≥2),当n =1时,也符合上式,所以S n =n ·2n (n ∈N *).(2)因为2S n +2=3a n ,①所以2S n +1+2=3a n +1, ②由②-①,得2S n +1-2S n =3a n +1-3a n ,所以2a n +1=3a n +1-3a n ,即a n +1a n=3. 当n =1时,2+2S 1=3a 1,所以a 1=2,所以数列{a n }是首项为2,公比为3的等比数列, 所以a n =2×3n -1(n ∈N *).]热点题型2 裂项相消法求和题型分析:裂项相消法是指把数列与式中的各项分别裂开后,某些项可以相互抵消从而求和的方法,主要适用于⎩⎨⎧⎭⎬⎫1a n a n +1或⎩⎨⎧⎭⎬⎫1a n a n +2其中{a n }为等差数列等形式的数列求和.【例2】 已知等差数列{a n }的公差d ≠0,它的前n 项和为S n ,若S 5=70,且a 2,a 7,a 22成等比数列,(1)求数列{a n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n ,求证:16≤T n <38.[解] (1)由已知及等差数列的性质得S 5=5a 3,∴a 3=14, 1分 又a 2,a 7,a 22成等比数列,即a 27=a 2·a 22. 2分由(a 1+6d )2=(a 1+d )(a 1+21d )且d ≠0, 解得a 1=32d ,∴a 1=6,d =4.4分 故数列{a n }的通项公式为a n =4n +2,n ∈N *. 6分(2)证明:由(1)得S n =n a 1+a n2=2n 2+4n ,1S n=12n 2+4n =14⎝ ⎛⎭⎪⎫1n -1n +2,8分∴T n =141-13+12-14+…+1n -1n +2=38-14⎝ ⎛⎭⎪⎫1n +1+1n +2.11分又T n ≥T 1=38-14⎝ ⎛⎭⎪⎫12+13=16,所以16≤T n <38.15分[方法指津]裂项相消法的基本思想就是把通项a n 分拆成a n =b n +k -b n k ≥1,k ∈N *的形式,常见的裂项方式有: (1nn +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ; 1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(1n +n +k =1kn +k -n提醒:在裂项变形时,务必注意裂项前后系数的变化.[变式训练2] (名师押题)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . [解] (1)由题设知a 1·a 4=a 2·a 3=8, 2分又a 1+a 4=9,可得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1.(舍去)4分 由a 4=a 1q 3得公比q =2,故a n =a 1q n -1=2n -1.6分 (2)S n =a 1-qn1-q=2n-1.8分 又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,12分所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.热点题型3 错位相减法求和题型分析:限于数列解答题的位置较为靠前,加上错位相减法的运算量相对较大,故该命题点出现的频率不高,但其仍是命题的热点之一,务必加强训练.【例3】 已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+ (1)b n =b n +1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n . [解] (1)由a 1=2,a n +1=2a n ,得a n =2n(n ∈N *). 2分由题意知:当n =1时,b 1=b 2-1,故b 2=2. 3分 当n ≥2时,1nb n =b n +1-b n .4分整理得b n +1n +1=b n n,所以b n =n (n ∈N *). 6分(2)由(1)知a n b n =n ·2n,因此T n =2+2·22+3·23+…+n ·2n, 2T n =22+2·23+3·24+…+n ·2n +1,10分 所以T n -2T n =2+22+23+ (2)-n ·2n +1.12分故T n =(n -1)2n +1+2(n ∈N *).15分[方法指津]运用错位相减法求和应注意:一是判断模型,即判断数列{a n },{b n }中一个为等差数列,一个为等比数列;二是错开位置,一般先乘以公比,再把前n 项和退后一个位置来书写,这样避免两式相减时看错列;三是相减,相减时一定要注意式中最后一项的符号,考生常在此步出错,一定要细心.提醒:为保证结果正确,可对得到的和取n =1,2进行验证.[变式训练3] 已知在公比大于1的等比数列{a n }中,a 2,a 4是函数f (x )=(x -2)(x -8)的两个零点.(1)求数列{a n }的通项公式; (2)求数列{2na n }的前n 项和S n .[解] (1)因为a 2,a 4是函数f (x )=(x -2)(x -8)的两个零点,且等比数列{a n }的公比q 大于1,所以a 2=2,a 4=8,2分所以q =2,所以数列{a n }的通项公式为a n =2n -1(n ∈N *).6分(2)由(1)知2na n =n ×2n,所以S n =1×2+2×22+…+n ×2n,① 7分 2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1,②11分由①-②,得-S n =2+22+23+…+2n -n ×2n +1=2-2n×21-2-n ×2n +1,13分所以S n =2+(n -1)×2n +1(n ∈N *).15分热点题型4 数列的综合问题题型分析:数列与函数、不等式的综合问题多为解答题.难度偏大,属中高档题,常有以下两个命题角度:以数列为载体,考查不等式的恒成立问题; 考查与数列有关的不等式的证明问题.【例4】 (2017·绍兴市方向性仿真考试)已知数列{a n }满足,a 1=1,a n =1a n +1-12. (1)求证:23≤a n ≤1;(2)求证:|a n +1-a n |≤13;(3)求证:|a 2n -a n |≤1027.【导学号:68334072】[证明] (1)由已知得a n +1=1a n +12,又a 1=1,所以a 2=23,a 3=67,a 4=1419,猜想23≤a n ≤1.2分下面用数学归纳法证明. ①当n =1时,命题显然成立;②假设n =k 时,有23≤a n ≤1成立,则当n =k +1时,a k +1=1a k +12≤123+12<1,a k +1=1a k +12≥11+12=23,即当n =k +1时也成立, 所以对任意n ∈N *,都有23≤a n ≤1.5分(2)当n =1时,|a 2-a 1|=13,当n ≥2时,∵⎝⎛⎭⎪⎫a n +12⎝ ⎛⎭⎪⎫a n -1+12=⎝ ⎛⎭⎪⎫a n +12·1a n =1+12a n ≥1+12=32, 7分∴|a n +1-a n |=⎪⎪⎪⎪⎪⎪⎪⎪1a n +12-1a n -1+12 =|a n -a n -1|⎝ ⎛⎭⎪⎫a n +12⎝ ⎛⎭⎪⎫a n -1+12≤23|a n -a n -1|≤…≤⎝ ⎛⎭⎪⎫23n -1|a 2-a 1|=13·⎝ ⎛⎭⎪⎫23n -1<13.综上所述,|a n +1-a n |≤13.10分(3)当n =1时,|a 2-a 1|=13=927<1027; 11分当n ≥2时,|a 2n -a n |≤|a 2n -a 2n -1|+|a 2n -1-a 2n -2|+…+|a n +1-a n | ≤13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232n -2+⎝ ⎛⎭⎪⎫232n -3+…+⎝ ⎛⎭⎪⎫23n -1 =⎝ ⎛⎭⎪⎫23n -1-⎝ ⎛⎭⎪⎫232n -1≤23-⎝ ⎛⎭⎪⎫233=1027.15分[方法指津]解决数列与不等式的综合问题时,如果是证明题,要灵活的选择不等式的证明方法,如比较法、综合法、分析法、放缩法、反证法及数学归纳法等;如果是解不等式问题,要使用解不等式的各种解法,如列表法、因式分解法、穿根法等,总之解决这类问题把数列和不等式的知识巧妙结合起来综合处理就行了.[变式训练4] (2017·台州市高三年级调考)已知数列{a n }满足:a n >0,a n +1+1a n<2(n ∈N *).(1)求证:a n +2<a n +1<2(n ∈N *); (2)求证:a n >1(n ∈N *).[证明] (1)由a n >0,a n +1+1a n<2,得a n +1<2-1a n<2.2分因为2>a n +2+1a n +1>2a n +2a n +1(由题知a n +1≠a n +2), 所以a n +2<a n +1<2.4分(2)法一:假设存在a N ≤1(N ≥1,N ∈N *), 由(1)可得当n >N 时,a n ≤a N +1<1.6分根据a n +1-1<1-1a n =a n -1a n<0,而a n <1,所以1a n +1-1>a n a n -1=1+1a n -1,于是1a N +2-1>1+1a N +1-1,……1a N +n -1>1+1a N +n -1-1.10分累加可得1a N +n -1>n -1+1a N +1-1.(*)由假设可得a N +n -1<0,12分而当n >-1a N +1-1+1时,显然有n -1+1a N +1-1>0,因此有1a N +n -1<n -1+1a N +1-1,这显然与(*)矛盾. 所以a n >1(n ∈N *).15分法二:假设存在a N ≤1(N ≥1,N ∈N *),由(1)可得当n >N 时,0<a n ≤a N +1<1. 6分 根据a n +1-1<1-1a n =a n -1a n<0,而a n <1,所以11-a n +1<an 1-a n,所以1-a n +11-a n >1a n ≥1a N +1>1.于是1-a n >(1-a n -1)⎝ ⎛⎭⎪⎫1a N +1,1-a n -1>(1-a n -2)⎝ ⎛⎭⎪⎫1a N +1,……1-a N +2>(1-a N +1)⎝ ⎛⎭⎪⎫1a N +1.10分 累乘可得1-a n >(1-a N +1)⎝ ⎛⎭⎪⎫1a N +1n -N -1,(*)由(1)可得1-a n <1, 12分 而当n > ⎝ ⎛⎭⎪⎫11-a N +1+N +1时,则有(1-a N +1)⎝ ⎛⎭⎪⎫1a N +1n -N -1>1,这显然与(*)矛盾.所以a n >1(n ∈N *). 15分。

2018年江苏高考数学二轮复习教师用书第1部分 知识专题突破 专题11 附加题部分 Word版含答案

2018年江苏高考数学二轮复习教师用书第1部分 知识专题突破 专题11 附加题部分 Word版含答案

专题十一附加题部分(选修测试物理的考生学习此部分)此部分考查的内容主要是选修系列中的内容以及选修系列中专题-《几何证明选讲》、-《矩阵与变换》、-《坐标系与参数方程》、-《不等式选讲》这个专题的内容(考生只需选考其中两个专题).———————命题观察·高考定位———————(对应学生用书第页).(·江苏高考)如图-,在平面直角坐标系中,已知直线:--=,抛物线:=(>).图-()若直线过抛物线的焦点,求抛物线的方程.()已知抛物线上存在关于直线对称的相异两点和.①求证:线段的中点坐标为(-,-);②求的取值范围.【导学号:】[解]()抛物线:=(>)的焦点为,由点在直线:--=上,得--=,即=.所以抛物线的方程为=.()设(,),(,),线段的中点(,).因为点和关于直线对称,所以直线垂直平分线段,于是直线的斜率为-,则可设其方程为=-+.①证明:由(\\(=,=-+))消去得+-=.(*)因为和是抛物线上的相异两点,所以≠,从而Δ=()-×(-)>,化简得+>.方程(*)的两根为=-±,从而==-.因为(,)在直线上,所以=-.因此,线段的中点坐标为(-,-).②因为(-,-)在直线=-+上,所以-=-(-)+,即=-.由①知+>,于是+(-)>,所以<.因此,的取值范围是..(·江苏高考) 如图-,在四棱锥-中,已知⊥平面,且四边形为直角梯形,∠=∠=,==,==.图-()求平面与平面所成二面角的余弦值;()点是线段上的动点,当直线与所成的角最小时,求线段的长.[解]以为正交基底建立如图所示的空间直角坐标系-,则各点的坐标为(),(),(),().第题图()由题意知,⊥平面,所以是平面的一个法向量,=().因为=(,-),=(,-),设平面的法向量为=(,,),则·=,·=,即(\\(+-=,-=.))令=,解得=,=.所以=()是平面的一个法向量.从而〈,〉==,所以平面与平面所成二面角的余弦值为.()因为=(-),设=λ=(-λ,λ)(≤λ≤),又=(,-),则=+=(-λ,-λ).又=(,-),从而〈,〉==.设+λ=,∈[],则〈,〉==≤.当且仅当=,即λ=时,〈,〉的最大值为.因为=在上是减函数,。

2018北师大版文科数学高考总复习教师用书:专题探究课一含答案

2018北师大版文科数学高考总复习教师用书:专题探究课一含答案

高考导航函数是中学数学的核心内容,导数是研究函数的重要工具,因此,导数的应用是历年高考的重点与热点,常涉及的问题有:讨论函数的单调性(求函数的单调区间)、求极值、求最值、求切线方程、求函数的零点或方程的根、求参数的范围、证明不等式等,涉及的数学思想有:函数与方程、分类讨论、数形结合、转化与化归思想等,中、高档难度均有.热点一利用导数研究函数的性质以含参数的函数为载体,结合具体函数与导数的几何意义,研究函数的性质,是高考的热点重点.本热点主要有三种考查方式:(1)讨论函数的单调性或求单调区间;(2)求函数的极值或最值;(3)利用函数的单调性、极值、最值,求参数的范围.【例1】(2015·全国Ⅱ卷)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.解(1)f(x)的定义域为(0,+∞),f′(x)=错误!-a.若a≤0,则f′(x)〉0,所以f(x)在(0,+∞)上单调递增.若a〉0,则当x∈错误!时,f′(x)〉0;当x∈错误!时,f′(x)<0.所以f(x)在错误!上单调递增,在错误!上单调递减.(2)由(1)知,当a≤0,f(x)在(0,+∞)上无最大值;当a〉0时,f(x)在x=错误!取得最大值,最大值为f错误!=ln错误!+a错误!=-ln a+a-1.因此f错误!〉2a-2等价于ln a+a-1〈0.令g(a)=ln a+a-1,则g(a)在(0,+∞)上单调递增,g(1)=0。

于是,当0〈a<1时,g(a)<0;当a>1时,g(a)>0。

因此,a的取值范围是(0,1).探究提高(1)判断函数的单调性,求函数的单调区间、极值等问题,最终归结到判断f′(x)的符号问题上,而f′(x)>0或f′(x)〈0,最终可转化为一个一元一次不等式或一元二次不等式问题.(2)若已知f(x)的单调性,则转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题求解.【训练1】设f(x)=-错误!x3+错误!x2+2ax.(1)若f(x)在错误!上存在单调递增区间,求a的取值范围;(2)当0<a<2时,f(x)在[1,4]上的最小值为-163,求f(x)在该区间上的最大值.解(1)由f′(x)=-x2+x+2a=-错误!2+错误!+2a,当x∈错误!时,f′(x)的最大值为f′错误!=错误!+2a;令错误!+2a>0,得a>-错误!.所以,当a>-错误!时,f(x)在错误!上存在单调递增区间.(2)已知0<a<2,f(x)在[1,4]上取到最小值-163,而f′(x)=-x2+x+2a的图像开口向下,且对称轴x=错误!,∴f′(1)=-1+1+2a=2a>0,f′(4)=-16+4+2a=2a-12<0,则必有一点x0∈[1,4],使得f′(x0)=0,此时函数f(x)在[1,x0]上单调递增,在[x0,4]上单调递减,f(1)=-13+错误!+2a=错误!+2a>0,∴f(4)=-错误!×64+错误!×16+8a=-错误!+8a=-错误!⇒a=1.此时,由f′(x0)=-x错误!+x0+2=0⇒x0=2或-1(舍去),所以函数f(x)max=f(2)=错误!。

2018北师大版文科数学高考总复习教师用书1-1集合Word版含答案

2018北师大版文科数学高考总复习教师用书1-1集合Word版含答案

第1讲集合最新考纲 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.知识梳理1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系4.(1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B.(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)任何集合都有两个子集.()(2)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C.()(3)若{x2,1}={0,1},则x=0,1.()(4)若A∩B=A∩C,则B=C.()解析(1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.集合A是函数y=x2的定义域,即A=(-∞,+∞);集合B是函数y=x2的值域,即B=[0,+∞);集合C是抛物线y=x2上的点集.因此A,B,C不相等.(3)错误.当x=1,不满足互异性.(4)错误.当A=∅时,B,C可为任意集合.答案(1)×(2)×(3)×(4)×2.(教材改编)若集合A={x∈N|x≤10},a=22,则下列结论正确的是() A.{a}⊆A B.a⊆A C.{a}∈A D.a∉A解析由题意知A={0,1,2,3},由a=22,知a∉A.答案 D3.(2016·全国Ⅰ卷)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=() A.{1,3} B.{3,5} C.{5,7} D.{1,7}解析因为A={1,3,5,7},而3,5∈A且3,5∈B,所以A∩B={3,5}.答案 B4.(2017·西安模拟)设全集U={x|x∈N+,x<6},集合A={1,3},B={3,5},则∁U(A∪B)等于()A.{1,4} B.{1,5} C.{2,5} D.{2,4}解析由题意得A∪B={1,3}∪{3,5}={1,3,5}.又U={1,2,3,4,5},∴∁U(A∪B)={2,4}.答案 D5.已知集合A={(x,y)|x,y∈R,且x2+y2=1},B={(x,y)|x,y∈R,且y=x},则A ∩B的元素个数为________.解析集合A表示圆心在原点的单位圆,集合B表示直线y=x,易知直线y=x和圆x2+y2=1相交,且有2个交点,故A∩B中有2个元素.答案 2考点一集合的基本概念【例1】(1)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是() A.1 B.3 C.5 D.9(2)若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=()A.92 B.98C.0 D.0或98解析(1)当x=0,y=0,1,2时,x-y=0,-1,-2;当x=1,y=0,1,2时,x-y=1,0,-1;当x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知,B的元素为-2,-1,0,1,2,共5个.(2)若集合A中只有一个元素,则方程ax2-3x+2=0只有一个实根或有两个相等实根.当a=0时,x=23,符合题意;当a≠0时,由Δ=(-3)2-8a=0,得a=9 8,所以a的取值为0或9 8.答案(1)C(2)D规律方法(1)第(1)题易忽视集合中元素的互异性误选 D.第(2)题集合A中只有一个元素,要分a=0与a≠0两种情况进行讨论,此题易忽视a=0的情形.(2)用描述法表示集合,先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合. 【训练1】 (1)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.(2)已知集合A ={x ∈R |ax 2+3x -2=0},若A =∅,则实数a 的取值范围为________.解析 (1)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba ,b ,a ≠0,所以a +b =0,且b =1,所以a =-1,b =1,所以b -a =2. (2)由A =∅知方程ax 2+3x -2=0无实根, 当a =0时,x =23不合题意,舍去; 当a ≠0时,Δ=9+8a <0,∴a <-98. 答案 (1)2 (2)⎝ ⎛⎭⎪⎫-∞,-98考点二 集合间的基本关系【例2】 (1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A .AB B .BA C .A ⊆B D .B =A(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.解析 (1)易知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}. 因此BA .(2)当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎨⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为(-∞,4].答案(1)B(2)(-∞,4]规律方法(1)若B⊆A,应分B=∅和B≠∅两种情况讨论.(2)已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常要合理利用数轴、Venn图,化抽象为直观进行求解.【训练2】(1)(2017·南昌质检)若集合A={x|x>0},且B⊆A,则集合B可能是() A.{1,2} B.{x|x≤1}C.{-1,0,1} D.R(2)(2016·渭南调研)已知集合A={x|x=x2-2,x∈R},B={1,m},若A⊆B,则m 的值为()A.2 B.-1C.-1或2 D.2或2解析(1)因为A={x|x>0},且B⊆A,再根据选项A,B,C,D可知选项A正确.(2)由x=x2-2,得x=2,则A={2}.因为B={1,m}且A⊆B,所以m=2.答案(1)A(2)A考点三集合的基本运算【例3】(1)(2015·全国Ⅰ卷)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2(2)(2016·浙江卷)设集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=() A.[2,3] B.(-2,3]C.[1,2) D.(-∞,-2)∪[1,+∞)解析(1)集合A中元素满足x=3n+2,n∈N,即被3除余2,而集合B中满足这一要求的元素只有8和14.共2个元素.(2)易知Q={x|x≥2或x≤-2}.∴∁R Q={x|-2<x<2},又P={x|1≤x≤3},故P∪(∁R Q)={x|-2<x≤3}.答案(1)D(2)B规律方法(1)在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.(2)一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.【训练3】(1)(2017·石家庄模拟)设集合M={-1,1},N={x|x2-x<6},则下列结论正确的是()A.N⊆M B.N∩M=∅C.M⊆N D.M∩N=R(2)(2016·山东卷)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=() A.{2,6} B.{3,6}C.{1,3,4,5} D.{1,2,4,6}解析(1)易知N=(-2,3),且M={-1,1},∴M⊆N.(2)∵A={1,3,5},B={3,4,5},∴A∪B={1,3,4,5},又全集U={1,2,3,4,5,6},因此∁U(A∪B)={2,6}.答案(1)C(2)A[思想方法]1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的又一体现.[易错防范]1.集合问题解题中要认清集合中元素的属性(是数集、点集还是其他类型集合),要对集合进行化简.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.基础巩固题组(建议用时:25分钟)一、选择题1.(2015·全国Ⅱ卷)已知集合A={1,2,3},B={2,3},则()A.A=B B.A∩B=∅C.AB D.BA解析∵A={1,2,3},B={2,3},∴2,3∈A且2,3∈B,1∈A但1∉B,∴B A.答案 D2.(2016·全国Ⅱ卷)已知集合A={1,2,3},B={x|x2<9},则A∩B=() A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2}C.{1,2,3} D.{1,2}解析由于B={x|x2<9}={x|-3<x<3},又A={1,2,3},因此A∩B={1,2}.答案 D3.(2017·宝鸡模拟)已知集合A={x|lg x>0},B={x|x≤1},则()A.A∩B≠∅B.A∪B=RC.B⊆A D.A⊆B解析由B={x|x≤1},且A={x|lg x>0}=(1,+∞),∴A∪B=R.答案 B4.已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是() A.(-∞,-1] B.[1,+∞)C.[-1,1] D.(-∞,-1]∪[1,+∞)解析因为P∪M=P,所以M⊆P,即a∈P,得a2≤1,解得-1≤a≤1,所以a的取值范围是[-1,1].答案 C5.(2016·山东卷)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=() A.(-1,1) B.(0,1)C.(-1,+∞) D.(0,+∞)解析由y=2x,x∈R,知y>0,则A=(0,+∞).又B ={x |x 2-1<0}=(-1,1). 因此A ∪B =(-1,+∞). 答案 C6.(2016·浙江卷)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则(∁U P )∪Q =( )A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}解析 ∵U ={1,2,3,4,5,6},P ={1,3,5},∴∁U P ={2,4,6},∵Q ={1,2,4},∴(∁U P )∪Q ={1,2,4,6}. 答案 C7.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( ) A .1 B .3 C .7 D .31解析 具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.答案 B8.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A .{x |x ≥0} B .{x |x ≤1} C .{x |0≤x ≤1} D .{x |0<x <1} 解析∵A ={x |x ≤0},B ={x |x ≥1},∴A ∪B ={x |x ≤0或x ≥1},在数轴上表示如图. ∴∁U (A ∪B )={x |0<x <1}. 答案 D 二、填空题9.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是________. 解析 ∵1∉{x |x 2-2x +a >0},∴1∈{x|x2-2x+a≤0},即1-2+a≤0,∴a≤1.答案(-∞,1]10.(2016·天津卷)已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=________. 解析由A={1,2,3},B={y|y=2x-1,x∈A},∴B={1,3,5},因此A∩B={1,3}.答案{1,3}11.集合A={x|x<0},B={x|y=lg[x(x+1)]},若A-B={x|x∈A,且x∉B},则A-B=________.解析由x(x+1)>0,得x<-1或x>0,∴B=(-∞,-1)∪(0,+∞),∴A-B=[-1,0).答案[-1,0)12.(2017·合肥质检)已知集合A={x|x2-2 016x-2 017≤0},B={x|x<m+1},若A⊆B,则实数m的取值范围是________.解析由x2-2 016x-2 017≤0,得A=[-1,2 017],又B={x|x<m+1},且A⊆B,所以m+1>2 017,则m>2 016.答案(2 016,+∞)能力提升题组(建议用时:10分钟)13.(2016·全国Ⅲ卷改编)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则(∁R S)∩T=() A.[2,3] B.(-∞,-2)∪[3,+∞)C.(2,3) D.(0,+∞)解析易知S=(-∞,2]∪[3,+∞),∴∁R S=(2,3),因此(∁R S)∩T=(2,3).答案 C14.(2016·黄山模拟)集合U=R,A={x|x2-x-2<0},B={x|y=ln(1-x)},则图中阴影部分所表示的集合是()A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤1}解析 易知A =(-1,2),B =(-∞,1),∴∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}. 答案 B15.(2017·南昌十所省重点中学模拟)设集合A =⎩⎨⎧⎭⎬⎫x ∈N 14≤2x ≤16,B ={x |y =ln(x 2-3x )},则A ∩B 中元素的个数是________. 解析 由14≤2x ≤16,x ∈N , ∴x =0,1,2,3,4,即A ={0,1,2,3,4}. 又x 2-3x >0,知B ={x |x >3或x <0}, ∴A ∩B ={4},即A ∩B 中只有一个元素. 答案 116.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m +n =________.解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1}, 由A ∩B =(-1,n )可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.所以m +n =0. 答案 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

突破点2 解三角形[核心知识提炼]提炼1 常见解三角形的题型及解法(1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一.(3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解. 提炼2 三角形的常用面积公式设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,其面积为S . (1)S =12ah a =12bh b =12ch c (h a ,h b ,h c 分别表示a ,b ,c 边上的高). (2)S =12ab sin C =12bc sin A =12ca sinB.(3)S =12r (a +b +c )(r 为三角形ABC 内切圆的半径).[高考真题回访]回访1 正、余弦定理的应用1.(2016·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =5,c =2,cos A =23,则b =( )A.2 B .3 C .2D .3D [由余弦定理得5=b 2+4-2×b ×2×23,解得b =3或b =-13(舍去),故选D.]2.(2017·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.75° [如图,由正弦定理,得3sin 60°=6sin B ,∴sin B =22.又c >b ,∴B =45°, ∴A =180°-60°-45°=75°.]3.(2016·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.2113[在△ABC 中,∵cos A =45,cos C =513, ∴sin A =35,sin C =1213,∴sin B =sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365. 又∵a sin A =b sin B ,∴b =a sin B sin A =1×636535=2113.]回访2 三角形的面积问题4.(2013·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为( ) A .23+2 B.3+1 C .23-2D.3-1B [∵B =π6,C =π4,∴A =π-B -C =π-π6-π4=7π12. 由正弦定理b sin B =c sin C ,得2sin π6=csinπ4, 即212=c22,∴c =2 2.∴S △ABC =12bc sin A =12×2×22sin 7π12=3+1.故选B.] 回访3 正、余弦定理的实际应用5.(2014·全国卷Ⅰ)如图2-1,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.图2-1150 [根据图示,AC =100 2 m.在△MAC 中,∠CMA =180°-75°-60°=45°. 由正弦定理得AC sin 45°=AMsin 60°⇒AM =100 3 m. 在△AMN 中,MNAM =sin 60°, ∴MN =1003×32=150(m).]热点题型1 正、余弦定理的应用题型分析:利用正、余弦定理解题是历年高考的热点,也是必考点,求解的关键是合理应用正、余弦定理实现边角的互化.【例1】 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin Cc .(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tanB.【导学号:04024038】[解] (1)证明:根据正弦定理,可设a sin A =b sin B =csin C =k (k >0). 则a =k sin A ,b =k sin B ,c =k sin C , 代入cos A a +cos B b =sin Cc 中,有 cos A k sin A +cos B k sin B =sin C k sin C ,2分 即sin A sin B =sin A cos B +cos A sin B =sin(A +B ). 4分在△ABC 中,由A +B +C =π, 有sin(A +B )=sin(π-C )=sin C , 所以sin A sin B =sin C.6分(2)由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有 cos A =b 2+c 2-a 22bc =35,8分 所以sin A =1-cos 2A =45.9分由(1)知sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35 sin B , 11分 故tan B =sin Bcos B =4.12分[方法指津]关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.[变式训练1] (1)(2017·全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,若2b cos B=a cos C+c cos A,则B=________.π3[法一:由2b cos B=a cos C+c cos A及正弦定理,得2sin B cos B=sin A cos C+sin C cos A.∴2sin B cos B=sin(A+C).又A+B+C=π,∴A+C=π-B.∴2sin B cos B=sin(π-B)=sin B.又sin B≠0,∴cos B=12,∴B=π3.法二:∵在△ABC中,a cos C+c cos A=b,∴条件等式变为2b cos B=b,∴cos B=1 2.又0<B<π,∴B=π3.](2)在△ABC中,a,b,c分别为内角A,B,C的对边,且a cos B+b cos(B+C)=0.①证明:△ABC为等腰三角形;②若2(b2+c2-a2)=bc,求cos B+cos C的值.[解]①证明:∵a cos B+b cos (B+C)=0,∴由正弦定理得sin A cos B+sin B cos(π-A)=0,即sin A cos B-sin B cos A=0,3分∴sin(A-B)=0,∴A-B=kπ,k∈Z.4分∵A,B是△ABC的两内角,∴A-B=0,即A=B,5分∴△ABC 是等腰三角形. 6分②由2(b 2+c 2-a 2)=bc , 得b 2+c 2-a 22bc =14, 7分 由余弦定理得cos A =14,8分 cos C =cos(π-2A )=-cos 2A =1-2cos 2 A =78. 10分 ∵A =B ,∴cos B =cos A =14, 11分 ∴cos B +cos C =14+78=98.12分热点题型2 三角形面积的求解问题题型分析:三角形面积的计算及与三角形面积有关的最值问题是解三角形的重要命题点之一,本质上还是考查利用正、余弦定理解三角形,难度中等. 【例2】 设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.【导学号:04024039】[解] (1)由题意知f (x )=sin 2x2-1+cos ⎝ ⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12.2分由-π2+2k π≤2x ≤π2+2k π,k ∈Z ,可得-π4+k π≤x ≤π4+k π,k ∈Z .由π2+2k π≤2x ≤3π2+2k π,k ∈Z ,可得π4+k π≤x ≤3π4+k π,k ∈Z .4分所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z );单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ).6分(2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12,7分 由题意知A 为锐角,所以cos A =32.8分由余弦定理a 2=b 2+c 2-2bc cos A ,可得1+3bc =b 2+c 2≥2bc , 10分 即bc ≤2+3,当且仅当b =c 时等号成立. 因此12bc sin A ≤2+34, 所以△ABC 面积的最大值为2+34.12分[方法指津]1.在研究三角函数的图象与性质时常先将函数的解析式利用三角恒等变换转化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B ,y =A tan(ωx +φ)+B )的形式,进而利用函数y =sin x (或y =cos x ,y =tan x )的图象与性质解决问题.2.在三角形中,正、余弦定理可以实现边角互化,尤其在余弦定理a 2=b 2+c 2-2bc cos A 中,有a 2+c 2和ac 两项,二者的关系a 2+c 2=(a +c )2-2ac 经常用到,有时还可利用基本不等式求最值.[变式训练2] (2017·深圳二模)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,2b =3a sin B +b cos A ,c =4. (1)求A ;(2)若D 是BC 的中点,AD =7,求△ABC 的面积. [解] (1)由2b =3a sin B +b cos A 及正弦定理, 又0<B <π,可得2=3sin A +cos A , 2分 即有sin ⎝ ⎛⎭⎪⎫A +π6=1,4分∵0<A <π,∴π6<A +π6<7π6, ∴A +π6=π2,∴A =π3.6分(2)设BD =CD =x ,则BC =2x ,由余弦定理得cos∠BAC=b2+16-(2x)28b=12,得4x2=b2-4b+16.①7分∵∠ADB=180°-∠ADC,∴cos∠ADB+cos∠ADC=0,8分由余弦定理得7+x2-1627x+7+x2-b227x=0,得2x2=b2+2.②9分联立①②,得b2+4b-12=0,解得b=2(舍负),11分∴S△ABC =12bc sin∠BAC=12×2×4×32=23.12分。

相关文档
最新文档