【化学】高中知识点规律大全(1)——《化学反应及其能量变化》
高中化学知识点规律
我是你叔叔~我是高二 Beng!
②离子间的氧化还原反应.由强氧化剂与强还原剂反应,生成弱氧化剂和弱还原剂,即 反应朝着氧化性、还原性减弱的方向进行.例如: Fe + Cu2 =Fe2 + Cu
- + - + +
Cl2 + 2Br =2C1 + Br2
+
-
-
2MnO4 + 16H + 10C1 =2Mn2 + 5C12↑+ 8H2O 书写离子方程式时应注意的问题: (1)电解质在非电离条件下(不是在水溶液中或熔融状态),虽然也有离子参加反应,但不 能写成离子方程式,因为此时这些离子并没有发生电离.如 NH4Cl 固体与 Ca(OH)2 固体混 合加热制取氨气的反应、浓 H2SO4 与固体(如 NaCl、Cu 等)的反应等,都不能写成离子方程 式.相反,在某些化学方程式中,虽然其反应物不是电解质或强电解质,没有大量离子参加 反应,但反应后产生了大量离子,因此,仍可写成离子方程式.如 Na、Na2O、Na2O2、SO3、 Cl2 等与 H2O 的反应. (2)多元弱酸的酸式盐,若易溶于水,则成盐的阳离子和酸根离子可拆开写成离子的形 + 式,而酸根中的 H 与正盐阴离子不能拆开写.例如 NaHS、Ca(HCO3)2 等,只能分别写成 + - + - Na 、HS 和 Ca2 、HCO3 等酸式酸根的形式. (3)对于微溶于水的物质,要分为两种情况来处理: ①当作反应物时?,微溶物要保留化学式的形式,不能拆开. ②当作反应物时,若为澄清的稀溶液,应改写为离子形式,如澄清石灰水等;若为浊液或固 体,要保留化学式的形式而不能拆开,如石灰乳、熟石灰等. (4)若反应物之间由于物质的量之比不同而发生不同的反应,即反应物之间可发生不止 一个反应时,要考虑反应物之间物质的量之比不同,相应的离子方程式也不同.例如,向 — NaOH 溶液中不断通入 CO2 气体至过量,有关反应的离子方程式依次为: CO2+ 2OH = — CO32 + H2O(CO2 适量) — — CO2+ OH =HCO3 (CO2 足量) 在溶液中离子能否大量共存的判断方法: 几种离子在溶液中能否大量共存, 实质上就是看它们之间是否发生反应. 若离子间不发 生反应,就能大量共存;否则就不能大量共存.离子间若发生下列反应之一,就不能大量共 存. + - - - + - - - - (1)生成难溶物或微溶物.如 Ca2 与 CO32 、SO42 、OH ;Ag 与 C1 、Br 、I 、SO32 , 等等. + - + - - - - - - (2)生成气体.如 NH4 与 OH ;H 与 HCO3 、CO32 、S2 、HS 、SO32 、HSO3 等. + - - - - (3)生成难电离物质(弱酸、弱碱、水).如 H 与 C1O 、F 、CH3COO 生成弱酸;OH 与 NH4 + 、 + + + + + - A13 、Fe3 、Fe2 、Cu2 等生成弱碱;H 与 OH 生成 H2O. - - + (4)发生氧化还原反应. 具有氧化性的离子(如 MnO4 、 ClO 、 Fe3 等)与具有还原性的离子( 如 - - - + S2 、I 、SO32 、Fe2 等)不能共存.应注意的是,有些离子在碱性或中性溶液中可大量共存, - - - - - - + 但在酸性条件下则不能大量共存,如 SO32 与 S2 ,NO3 与 I 、S2 、SO32 、Fe2 等. + - *(5)形成配合物.如 Fe3 与 SCN 因反应生成 Fe(SCN)3 而不能大量共存. + - *(6)弱酸根阴离子与弱碱阳离子因易发生双水解反应而不能大量共存,例如 Al3 与 HCO3 、 - - CO32 、A1O2 等. 说明: 在涉及判断离子在溶液中能否大量共存的问题时, 要注意题目中附加的限定性条件: + + + ①无色透明的溶液中,不能存在有色离子,如 Cu2 (蓝色)、Fe3 (黄色)、Fe2 (浅绿色)、MnO4 - (紫色). + ②在强酸性溶液中,与 H 起反应的离子不能大量共存. - ③在强碱性溶液中,与 OH 起反应的离子不能大量共存. 第 4 页 共 100 页
化学反应与能量必背规律知识点
化学反应与能量必背规律知识点一关于化学反应与能量●化学反应的实质是旧键的断裂和新键的形成过程,化学反应中一定存在能量的变化;化学键的断裂和形成是化学反应中能量变化的主要原因。
●物质具有的能量越低越稳定,参与反应时,化学键断裂时吸收的能量越多,说明该物质越稳定;形成该物质放出的热量也就越多。
●一般情况下,非金属性越强的元素与氢化合时放出的热量越多,所生成的氢化物越稳定。
●同一种物质,气态时的能量大于液态时的能量大于固态时的能量;也就是说:气态到液态时放热,液态到固态时放热,固态到液态或气态时吸热。
●反应热是化学反应在一定温度下进行时反应释放或吸收的热量,称为该反应在此温度下的热效应。
反应热描述的是一定温度下的反应前后的热量变化,反应热只与反应体系的始态和终态有关,与反应的途径无关。
●反应热产生的原因是化学反应过程中旧键的断裂吸收的能量与新键形成放出的能量不相等,反应热的决定因素是反应物的物质的量、反应物和生成物的状态、反应条件(温度、压强、溶液的浓度等)。
●反应热的前提是化学反应,无化学反应产生或吸收的热量不叫反应热。
如:氢氧化钠溶于水放热。
●焓变:在恒压条件下进行的反应的热效应;符号△H,单位KJ.mol-1.焓是描述物质本身所具有的能量,符号H,单位KJ.mol-1;△H=H反应物–H生成物。
●△H是常温下的反应热既25℃101Kpa下的反应热。
●比较反应热△H的大小时,反应热所带的“+”和“-”均有数学意义,参与大小的比较。
●热化学研究表明,对于等压下的化学反应,如果反应中物质的能量全部转化为热量,则该反应的反应热就等于反应前后物质焓得变化。
Qp=△H=H生成物– H反应物。
●一个反应的△H与反应物和生成物的状态有关,与测定条件有关,与热化学方程式中反应物和生成物的化学计量数有关,与反应是否可逆无关。
对于可逆反应,△H的数值是指反应物完全转化成生成物所吸收或放出的热量,故一般可逆反应的反应热不会达到△H,可用反应吸收或放出的热Q除以△H计算转化率。
高二化学选修4《化学反应原理》知识点规律大全
高中化学知识点规律大全(一)——化学反应与能量1.氧化还原反应[氧化还原反应]有电子转移(包括电子的得失和共用电子对的偏移)或有元素化合价升降的反应.如2Na+ C12=2NaCl(有电子得失)、H2+ C12=2HCl(有电子对偏移)等反应均属氧化还原反应。
氧化还原反应的本质是电子转移(电子得失或电子对偏移)。
[氧化还原反应的特征]在反应前后有元素的化合价发生变化.根据氧化还原反应的反应特征可判断一个反应是否为氧化还原反应.某一化学反应中有元素的化合价发生变化,则该反应为氧化还原反应,否则为非氧化还原反应。
氧化剂与还原剂的相互关系.[氧化还原反应与四种基本反应类型的关系]如右图所示.由图可知:置换反应都是氧化还原反应;复分解反应都不是氧化还原反应,化合反应、分解反应不一定是氧化还原反应.[氧化还原反应中电子转移的方向、数目的表示方法](1)单线桥法.表示在反应过程中反应物里元素原子间电子转移的数目和方向.用带箭头的连线从化合价升高的元素开始,指向化合价降低的元素,再在连线上方标出电子转移的数目.在单线桥法中,箭头的指向已经表明了电子转移的方向,因此不能再在线桥上写“得”、“失”字样.(2)双线桥法.表示在反应物与生成物里,同一元素原子在反应前后电子转移的数目和方向.在氧化剂与还原产物、还原剂与氧化产物之间分别用带箭头的连线从反应前的有关元素指向反应后的该种元素,并在两条线的上、下方分别写出“得”、“失”电子及数目.例如:2.离子反应[离子反应]有离子参加或有离子生成的反应,都称为离子反应.离子反应的本质、类型和发生的条件:(1)离子反应的本质:反应物中某种离子的浓度减小.(2)离子反应的主要类型及其发生的条件:①离子互换(复分解)反应.具备下列条件之一就可以使反应朝着离子浓度减小的方向进行,即离子反应就会发生.a.生成难溶于水的物质.如:Cu2++ 2OH-=Cu(OH)2↓注意:当有关离子浓度足够大时,生成微溶物的离子反应也能发生.如:2Ag++ SO42—=Ag2SO4↓Ca2++ 2OH-=Ca(OH)2↓或者由微溶物生成难溶物的反应也能生成.如当石灰乳与Na2CO3溶液混合时,发生反应:Ca(OH)2 + CO32—=CaCO3↓+ 2OH-b.生成难电离的物质(即弱电解质).如:H++ OH-=H2O H++ CH3COO-=CH3COOHc.生成挥发性物质(即气体).如:CO32-+ 2H+=CO2↑+ H2O NH4++ OH-NH3↑+ H2O②离子间的氧化还原反应.由强氧化剂与强还原剂反应,生成弱氧化剂和弱还原剂,即反应朝着氧化性、还原性减弱的方向进行.例如:Fe + Cu2+=Fe2++ Cu Cl2 + 2Br-=2C1-+ Br2 2MnO4-+ 16H++ 10C1-=2Mn2++ 5C12↑+ 8H2O书写离子方程式时应注意的问题:(1)电解质在非电离条件下(不是在水溶液中或熔融状态),虽然也有离子参加反应,但不能写成离子方程式,因为此时这些离子并没有发生电离.如NH4Cl固体与Ca(OH)2固体混合加热制取氨气的反应、浓H2SO4与固体(如NaCl、Cu等)的反应等,都不能写成离子方程式.相反,在某些化学方程式中,虽然其反应物不是电解质或强电解质,没有大量离子参加反应,但反应后产生了大量离子,因此,仍可写成离子方程式.如Na、Na2O、Na2O2、SO3、Cl2等与H2O的反应.(2)多元弱酸的酸式盐,若易溶于水,则成盐的阳离子和酸根离子可拆开写成离子的形式,而酸根中的H+与正盐阴离子不能拆开写.例如NaHS、Ca(HCO3)2等,只能分别写成Na+、HS-和Ca2+、HCO3-等酸式酸根的形式.(3)对于微溶于水的物质,要分为两种情况来处理:①当作反应物时?,微溶物要保留化学式的形式,不能拆开.②当作反应物时,若为澄清的稀溶液,应改写为离子形式,如澄清石灰水等;若为浊液或固体,要保留化学式的形式而不能拆开,如石灰乳、熟石灰等.(4)若反应物之间由于物质的量之比不同而发生不同的反应,即反应物之间可发生不止一个反应时,要考虑反应物之间物质的量之比不同,相应的离子方程式也不同.例如,向NaOH溶液中不断通入CO2气体至过量,有关反应的离子方程式依次为:CO2+ 2OH—=CO32—+ H2O(CO2适量)CO2+ OH—=HCO3—(CO2足量)在溶液中离子能否大量共存的判断方法:几种离子在溶液中能否大量共存,实质上就是看它们之间是否发生反应.若离子间不发生反应,就能大量共存;否则就不能大量共存.离子间若发生下列反应之一,就不能大量共存.(1)生成难溶物或微溶物.如Ca2+与CO32-、SO42-、OH-;Ag+与C1-、Br-、I-、SO32-,等等.(2)生成气体.如NH4+与OH-;H+与HCO3-、CO32-、S2-、HS-、SO32-、HSO3-等.(3)生成难电离物质(弱酸、弱碱、水).如H+与C1O-、F-、CH3COO-生成弱酸;OH-与NH4+、A13+、Fe3+、Fe2+、Cu2+等生成弱碱;H+与OH-生成H2O.(4)发生氧化还原反应.具有氧化性的离子(如MnO4-、ClO-、Fe3+等)与具有还原性的离子( 如S2-、I2-、Fe2+等)不能共存.应注意的是,有些离子在碱性或中性溶液中可大量共存,但在酸性条件-、SO3下则不能大量共存,如SO32-与S2-,NO3-与I-、S2-、SO32-、Fe2+等.*(5)形成配合物.如Fe3+与SCN-因反应生成Fe(SCN)3而不能大量共存.*(6)弱酸根阴离子与弱碱阳离子因易发生双水解反应而不能大量共存,例如Al3+与HCO3-、CO32-、A1O2-等.说明:在涉及判断离子在溶液中能否大量共存的问题时,要注意题目中附加的限定性条件:①无色透明的溶液中,不能存在有色离子,如Cu2+(蓝色)、Fe3+(黄色)、Fe2+(浅绿色)、MnO4-(紫色).②在强酸性溶液中,与H+起反应的离子不能大量共存.③在强碱性溶液中,与OH-起反应的离子不能大量共存.[离子方程式的书写步骤](1)“写”:写出完整的化学方程式.(2)“拆”:将化学方程式中易溶于水、易电离的物质(强酸、强碱、可溶性盐)拆开改写为离子形式;而难溶于水的物质(难溶性盐、难溶性碱)、难电离的物质(水、弱酸、弱碱)、氧化物、气体等仍用化学式表示.(3)“删”:将方程式两边相同的离子(包括个数)删去,并使各微粒符号前保持最简单的整数比.(4)“查”:检查方程式中各元素的原子个数和电荷总数是否左右相等.[复分解反应类型离子反应发生的条件]复分解反应总是朝着溶液中自由移动的离子数目减少的方向进行.具体表现为:(1)生成难溶于水的物质.如:Ba2++ SO42-=BaSO4↓(2)生成难电离的物质(水、弱酸、弱碱).如H++ OH-=H2O(3)生成气体.如:CO32-+ 2H+=CO2↑+ H2O3.化学反应中的能量变化[放热反应] 放出热量的化学反应.在放热反应中,反应物的总能量大于生成物的总能量:反应物的总能量=生成物的总能量+ 热量+ 其他形式的能量放热反应可以看成是“贮存”在反应物内部的能量转化并释放为热能及其他形式的能量的反应过程.[吸热反应] 吸收热量的化学反应.在吸热反应中,反应物的总能量小于生成物的总能量:生成物的总能量=反应物的总能量+ 热量+ 其他形式的能量吸热反应也可以看成是热能及其他形式的能量转化并“贮存”为生成物内部能量的反应过程.*[反应热](1)反应热的概念:在化学反应过程中,放出或吸收的热量,统称为反应热.反应热用符号△H表示,单位一般采用kJ·mol-1.(2)反应热与反应物、生成物的键能关系:△H=生成物键能的总和-反应物键能的总和[热化学方程式](1)热化学方程式的概念:表明反应所放出或吸收热量的化学方程式,叫做热化学方程式.(2)书写热化学方程式时应注意的问题:①需注明反应的温度和压强.因为反应的温度和压强不同时,其△H也不同.若不注明时,则是指在101kPa和25℃时的数据.②反应物、生成物的聚集状态要注明.同一化学反应,若物质的聚集状态不同,则反应热就不同.例如:H2(g) + 1/2O2(g)=H2O(g) △H=-241.8kJ·mol—1H2(g) + 1/2O2(g)=H2O(l) △H=-285.8kJ·mol—1比较上述两个反应可知,由H2与O2反应生成1 mol H2O(l)比生成1 mol H2O(g)多放出44 kJ·mol—1的热量.③反应热写在化学方程式的右边.放热时△H用“-”,吸热时△H用“+”.例如:H2(g) + 1/2O2(g)=H2O(g) -241.8kJ·mol—1④热化学方程式中各物质前的化学计量数不表示分子个数,而只表示物质的量(mol),因此,它可用分数表示.对于相同物质的反应,当化学计量数不同时,其△H也不同.例如:2H2(g) + O2(g)=2H2O(g) △H l=-483.6 kJ·mol—1H2(g) + 1/2O2(g)=H2O(g) △H2=-241.8kJ·mol—1显然,△H l=2△H2.*[盖斯定律] 对于任何一个化学反应,不管是一步完成还是分几步完成,其反应热是相同的.也就是说,化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关.如果一个反应可以分几步进行,则各步反应的反应热之和与该反应一步完成时的反应热是相同的.高中化学知识点规律大全(二)——化学反应速率和化学平衡1.化学反应速率[化学反应速率的概念及其计算公式] (1)概念:化学反应速率是用来衡量化学反应进行的快慢程度,通常用单位时间内反应物浓度的减少或生成物浓度的增加来表示.单位有mol ·L -1·min -1或mol ·L -1·s -1 (2)计算公式:某物质X 的化学反应速率:注意 ①化学反应速率的单位是由浓度的单位(mol ·L -1)和时间的单位(s、min 或h)决定的,可以是mol ·L -1·s -1、mol ·L -1·min -1或mol ·L -1·h -1,在计算时要注意保持时间单位的一致性. ②对于某一具体的化学反应,可以用每一种反应物和每一种生成物的浓度变化来表示该反应的化学反应速率,虽然得到的数值大小可能不同,但用各物质表示的化学反应速率之比等于化学方程式中相应物质的化学计量数之比.如对于下列反应: mA + nB = pC + qD有:)(A ν∶)(B ν∶)(C ν∶)(D ν=m ∶n ∶p ∶q 或:qD pC nB mA )()()()(νννν===③化学反应速率不取负值而只取正值.④在整个反应过程中,反应不是以同样的速率进行的,因此,化学反应速率是平均速率而不是瞬时速率.[有效碰撞] 化学反应发生的先决条件是反应物分子(或离子)之间要相互接触并发生碰撞,但并不是反应物分子(或离子)间的每一次碰撞都能发生化学反应.能够发生化学反应的一类碰撞叫做有效碰撞. [活化分子] 能量较高的、能够发生有效碰撞的分子叫做活化分子. 说明 ①活化分子不一定能够发生有效碰撞,活化分子在碰撞时必须要有合适的取向才能发生有效碰撞.②活化分子在反应物分子中所占的百分数叫做活化分子百分数.当温度一定时,对某一反应而言,活化分子百分数是一定的.活化分子百分数越 大,活化分子数越多,有效碰撞次数越多.[化学平衡](1)化学平衡研究的对象:可逆反应的规律.①可逆反应的概念:在同一条件下,既能向正反应方向进行同时又能向逆反应方向进行的反应,叫做 [可逆反应] 向生成物方向进行的反应叫正反应;向反应物方向进行的反应叫逆反应.在同一条件下,既能向正反应方向进行,同时又能向逆反应方向进行的反应,叫做可逆反应.说明 (1)判断一个反应是否是可逆反应,必须满足两个条件:①在同一条件下;②正、逆反应同时进行.如H 2 + I ,生成的HI 在持续加热的条件下同时分解,故该反应为可逆反应.而如:2H 2+ O 22H 2O 2H 2O2H 2↑+ O 2↑ 这两个反应就不是可逆反应.(2)说明 a .绝大多数化学反应都有一定程度的可逆性,但有的逆反应倾向较小,从整体看实际上是朝着同方向进行的,例如NaOH + HCl = NaCl + H 2O .b .有气体参加或生成的反应,只有在密闭容器中进行时才可能是可逆反应.如CaCO3受热分解时,若在敞口容器中进行,则反应不可逆,其反应的化学方程式应写为:CaCO 3CaO + CO 2↑;若在密闭容器进行时,则反应是可逆的,其反应的化学方程式应写为:CaCO 3CaO + CO 2②可逆反应的特点:反应不能进行到底.可逆反应无论进行多长时间,反应物都不可能100%地全部转化为生成物. (2)化学平衡状态.①定义:一定条件(恒温、恒容或恒压)下的可逆反应里,正反应和逆反应的速率相等,反应混合物(包括反应物和生成物)中各组分的质量分数(或体积分数)保持不变的状态.②化学平衡状态的形成过程:在一定条件下的可逆反应里,若开始时只有反应物而无生成物,根据浓度对化学反应速率的影响可知,此时ν正最大而ν逆为0.随着反应的进行,反应物的浓度逐渐减小,生成物的浓度逐渐增大,则ν正越来越小而ν逆越来越大.当反应进行到某一时刻,ν正=ν逆,各物质的浓度不再发生改变,反应混合物中各组分的质量分数(或体积分数)也不再发生变化,这时就达到了化学平衡状态.(3)化学平衡的特征: ①“动”:化学平衡是动态平衡,正反应和逆反应仍在继续进行,即ν正=ν逆≠0. ②“等”:达平衡状态时,ν正=ν逆,这是一个可逆反应达平衡的本质.ν正=ν逆的具体含意包含两个方面:a .用同一种物质来表示反应速率时,该物质的生成速率与消耗速率相等,即单位时间内消耗与生成某反应物或生成物的量相等;b .用不同物质来表示时,某一反应物的消耗速率与某一生成物的生成速率之比等于化学方程式中相应物质的化学计量数之比. ③“定”:达平衡时,混合物各组分的浓度一定;质量比(或物质的量之比、体积比)一定;各组分的质量分数(或摩尔分数、体积分数)一定;对于有颜色的物质参加或生成的可逆反应,颜色不改变.同时,反应物的转化率最大.对于反应前后气体分子数不相等的可逆反应,达平衡时:气体的总体积(或总压强)一定;气体的平均相对分子质量一定;恒压时气体的密度一定(注意:反应前后气体体积不变的可逆反应,不能用这个结论判断是否达到平衡). ④“变”.一个可逆反应达平衡后,若外界条件(浓度、温度、压强)改变,使各组分的质量(体积、摩尔、压强)分数也发生变化,平衡发生移动,直至在新的条件下达到新的平衡(注意:若只是浓度或压强改变,而ν正仍等于ν逆,则平衡不移动).反之,平衡状态不同的同一个可逆反应,也可通过改变外界条件使其达到同一平衡状态.⑤化学平衡的建立与建立化学平衡的途径无关.对于一个可逆反应,在一定条件下,反应无论从正反应开始,还是从逆反应开始,或是正、逆反应同时开始,最终都能达到同一平衡状态.具体包括: a .当了T 、V 一定时,按化学方程式中各物质化学式前系数的相应量加入,并保持容器内的总质量不变,则不同起始状态最终可达到同一平衡状态.b .当T 、P 一定(即V 可变)时,只要保持反应混合物中各组分的组成比不变(此时在各种情况下各组分的浓度仍然相等,但各组分的物质的量和容器内的总质量不一定相等),则不同的起始状态最终也可达到同一平衡状态.如在恒温、恒压时,对于可逆反应:N 2 + 3H3,在下列起始量不同情况下达到的是同c 下,将生成物“归零”后,只要反应物的物质的量之比不变,就会达到同一平衡状态. 如:H 2(g) + I 2(g) 等.[化学平衡常数] 在一定温度下,当一个可逆反应达到平衡状态时,生成物的平衡浓度用化学方程式中的化学计量数作为指数的乘积与反应物的平衡浓度用化学方程式中的化学计量数作为指数的乘积的比值是一个常数,这个常数叫做化学平衡常数,简称平衡常数.用符号K 表示. (1)平衡常数K 的表达式:对于一般的可逆反应:mA(g) + nB(g) pC(g) + qD(g) 当在一定温度下达到化学平衡时,该反应的平衡常数为:注意:a .在平衡常数表达式中,反应物A 、B 和生成物C 、D 的状态全是气态,c(A)、c(B)、c(C)、c(D)均为平衡时的浓度.b .当反应混合物中有固体或纯液体时,他们的浓度看做是一个常数,不写入平衡常数的表达式中.例如,反应在高温下 Fe3O 4(s) + 4H 2 3Fe(s) + H 2O(g)的平衡常数表达式为:4242)]([)]([H c O H c K =又如,在密闭容器中进行的可逆反应CaCO 3(s)CaO(s) + CO 2↑的平衡常数表达式为:K =c(CO 2)c .平衡常数K 的表达式与化学方程式的书写方式有关.例如: N 2 + 3H 22NH 3 )]([)]([)]([232231N c H c NH c K ⋅=2NH 3N 2 + 3H 2 233222)]([)]([)]([NH c H c N c K ⋅=21N 2 +23H 2NH 3 2/322/1233)]([)]([)]([N c H c NH c K ⋅=显然,K 1、K 2、K 3具有如下关系:121K K =,2/113)(K K = (2)平衡常数K 值的特征:①K 值的大小与浓度、压强和是否使用催化剂无关.即对于一个给定的反应,在一定温度下,不论起始浓度(或压强)和平衡浓度(或压强)如何,也不论是否使用催化剂,达平衡时,平衡常数均相同. ②K 值随温度的变化而变化.对于一个给定的可逆反应,温度不变时,K 值不变(而不论反应体系的浓度或压强如何变化);温度不同时,K 值不同.因此,在使用平衡常数K 值时,必须指明反应温度. (3)平衡表达式K 值的意义:①判断可逆反应进行的方向.对于可逆反应:mA(g) + nB(g) pC(g) + qD(g),如果知道在一定温度下的平衡常数,并且知道某个时刻时反应物和生成物的浓度,就可以判断该反应是否达到平衡状态,如果没有达到平衡状态,则可判断反应进行的方向.将某一时刻时的生成物的浓度用化学方程式中相应的化学计量数为指数的乘积,与某一时刻时的反应物的浓度用化学方程式中相应的化学计量数为指数的乘积之比值,叫做浓度商,用Q 表示.即:当Q =K 时,体系达平衡状态;当Q <K ,为使Q 等于K ,则分子(生成物浓度的乘积)应增大,分母(反应物浓度的乘积)应减小,因此反应自左向右(正反应方向)进行,直至到达平衡状态;同理,当Q >K 时,则反应自右向左(逆反应方向)进行,直至到达平衡状态. ②表示可逆反应进行的程度.K 值越大,正反应进行的程度越大(平衡时生成物的浓度大,反应物的浓度小),反应物的转化率越高;K 值越小,正反应进行的程度越小,逆反应进行的程度越大,反应物的转化率越低. [反应物平衡转化率的计算公式] 某一反应物的平衡转化率=100-⨯指定反应物的起始量指定反应物的平衡量指定反应物的起始量%=100⨯指定反应物的起始量消耗量指定反应物达平衡时的%说明 计算式中反应物各个量的单位可以是mol ·L -1”、mol ,对于气体来说还可以是L 或mL ,但必须注意保持分子、分母中单位的一致性. 3.影响化学平衡移动的条件[化学平衡的移动] 已达平衡状态的可逆反应,当外界条件(浓度、温度、压强)改变时.由于对正、逆反应速率的影响不同,致使ν正≠ν逆,则原有的化学平衡被破坏,各组分的质量(或体积)分数发生变化,直至在新条件一定的情况下ν正′=ν逆′,而建立新的平衡状态.这种可逆反应中旧化学平衡的破坏、新化学平衡的建立,由原平衡状态向新化学平衡状态的转化过程,称为化学平衡的移动. 说明 (1)若条件的改变使ν正>ν逆,则平衡向正反应方向移动;若条件的改变使ν正<ν逆,则平衡向逆反应方向移动.但若条件改变时,ν正仍然等于ν逆,则平衡没有发生移动.(2)化学平衡能够发生移动,充分说明了化学平衡是一定条件下的平衡状态,是一种动态平衡. (3)化学平衡发生移动而达到新的平衡状态时,新的平衡状态与原平衡状态主要的不同点是:①新的平衡状态的ν正或ν逆与原平衡状态的ν正或ν逆不同;②平衡混合物里各组分的质量(或体积)分数不同. [影响化学平衡的因素](1)浓度对化学平衡的影响.一般规律:当其他条件不变时,对于已达平衡状态的可逆反应,若增加反应物浓度或减少生成物浓度,则平衡向正反应方向移动(即向生成物方向移动);若减少反应物浓度或增加生成物浓度,则平衡向逆反应方向移动(即向反应物方向移动).体的量平衡不发生移动.如反应C(s) + H 2O(g) 2(g)达平衡状态后,再加入焦炭的量,平衡不发生移动.说明 ①浓度对化学平衡的影响,可用化学反应速率与浓度的关系来说明.对于一个已达平衡状态的可逆反应,ν正=ν逆.若增大反应物的浓度,则ν正增大,而,ν逆增大得较慢,使平衡向正反应方向移动.如果减小生成物的浓度,这时虽然,ν正并未增大,但ν逆减小了,同样也使,ν正>ν逆,使平衡向正反应方向移动.同理可分析出:增大生成物的浓度或减小反应物的浓度时,平衡向逆反应方向移动.②在生产上,往往采用增大容易取得的或成本较低的反应物浓度的方法,使成本较高的原料得到充分利用.例如,在硫酸工业里,常用过量的空气使SO 2充分氧化,以生成更多的SO 3.(2)压强对化学平衡的影响.一般规律:对于有气体参加且反应前后气体体积不相等的可逆反应,在其他条件不变的情况下,若增大压强(即相当于缩小容器的体积),则平衡向气体总体积减小的方向移动,若减小压强(即增大容器的体积),则平衡向气体总体积增大的方向移动.特殊性:①对于反应前后气体总体积相等的可逆反应达平衡后,改变压强,平衡不发生移动,但气体的浓度发生改变.例如可逆反应H 2(g) + I 2达平衡后,若加大压强,平衡不会发生移动,但由于容器体积减小,使平衡混合气各组分的浓度增大,气体的颜色加深(碘蒸气为紫红色).②对于非气态反应(即无气体参加和生成的反应),改变压强,此时固、液体的浓度未改变,平衡不发生移动。
高二化学反应与能量的变化知识点总结
高二化学反应与能量的变化知识点总结
1.化学反应在生成新物质的同时,还伴随着能量的变化,其表现为热量的变化。
放热反应:如物质的燃烧、镁与盐酸反应等,这称为放热现象;
吸热反应:如一般条件为“高温”的反应(CO2在高温条件下与炭反应),这称为吸热现象。
2.人类生活对能量的利用:
⒈生活燃料的利用:如做饭、取暖等;
⒉利用燃烧产生的能量:如发电、冶金、发射火箭等;
⒊爆炸产生的能量:如开山炸石等;
⒋食物在体内发生化学反应放出热量,可维持体温供给日常活动所需的能量。
最后,希望精品小编整理的高二化学反应与能量的变化知识点对您有所帮助,祝同学们学习进步。
高二寒假化学复习知识点:水溶液中的离子平衡
高二化学反应寒假复习知识点总结。
《化学反应与能量变化》知识点
《化学反应与能量变化》知识点化学反应是物质间相互作用的过程,这一过程可以使物质的成分和性质发生改变。
每一种化学反应都會涉及到能量变化,能量的产生和消耗,是影响化学反应过程的主要因素之一。
本文将深入探讨化学反应与能量变化的关系。
一、化学反应中的能量变化化学反应中会有所谓的反应热、放热和吸热等反应现象。
热量在化学反应中的作用非常重要,因为它决定着反应的方向和速率。
反应热是指在常压下,化学反应过程中释放或吸收的热量,一般用化学符号ΔH表示。
反应热可以是负数,表示反应释放热量;也可以是正数,表示反应吸收热量。
当化学反应放热时,ΔH是负数,称作放热反应或自发反应;当放热反应很强烈时,会产生爆炸、火花等现象。
反之,当化学反应吸热时,ΔH是正数,称作吸热反应或非自发反应。
吸热反应需要在一定的条件下才能进行,例如加热、分解、电解等。
二、化学反应的热化学计算化学反应的热化学计算是指利用热量平衡原则计算化学反应过程中的各种热量变化量。
在热化学计算中,常用的计算方法有热容法和焓变法。
热容法是指通过测量各个化学物质的热容和温度变化,推导出反应热的计算方法。
它的计算过程虽然简单,但它不太适合于反应系统发生状态变化的情况。
焓变法是热化学计算中的另外一种主要方法。
通过测定反应前后各种化学物质的标准热焓,用热力学第一定律计算合成或分解反应过程中的焓变,推导出反应热的计算方法。
它的计算过程需要一定的复杂化学物质的相关数据,可靠性比较高。
三、热力学法则和能量转化热力学法则是指在化学反应中,物质间能量的转化满足一些基本的规则。
其中比较知名的热力学法则包括热力学第一定律和第二定律。
热力学第一定律是能量守恒的规律,在化学反应中能量始终守恒,既不会减少,也不会增加。
因此,我们在计算反应热的过程中要确保能量的平衡性。
热力学第二定律是指物理过程从高能状态向低能状态不可逆的趋向。
在化学反应过程中,能量的转化同样也是不可逆的,化学反应只能进行到能量平衡的状态。
化学反应与能量变化知识点总结-化学反应与能量变化知识点整理
化学反应与能量变化知识点总结|化学反应与能量变化知识点整理一、化学反应与能量的变化反应热焓变(1)反应热:化学反应在一定条下反应时所释放或吸收的热量。
(2)焓变:在恒压条下进行的化学反应的热效应即为焓变。
(3)符号:ΔH,单位:kJ/mol或kJ·molˉ1。
(4)ΔH=生成物总能量-反应物总能量=反应物键能总和-生成物键能总和(5)当ΔH为“-”或ΔH<0时,为放热反应当ΔH为“+”或ΔH>0时,为吸热反应热化学方程式热化学方程式不仅表明了化学反应中的物质变化,也表明了化学反应中的能量变化。
H2(g)+?O2(g)=H2O(l)ΔH=-285.8kJ/mol表示在25℃,kPa,1molH2与?molO2反应生成液态水时放出的热量是285.8kJ。
注意事项:(1)热化学方程式各物质前的化学计量数只表示物质的量,不表示分子数,因此,它可以是整数,也可以是小数或分数。
(2)反应物和产物的聚集状态不同,反应热数值以及符号都可能不同,因此,书写热化学方程式时必须注明物质的聚集状态。
热化学方程式中不用“↑”和“↓”中和热定义:在稀溶液中,酸跟碱发生中和反应生成1molH2O,这时的反应热叫做中和热。
二、燃烧热(1)概念:25℃,kPa时,1mol纯物质完全燃烧生成稳定的氧化物时所放出的热量。
(2)单位:kJ/mol三、反应热的计算(1)盖斯定律内容:不管化学反应是一步完成或是分几步完成,其反应热是相同的。
或者说,化学反应的的反应热只与体系的始态和终态有关,而与反应的途径无关。
反应热的计算常见方法:(1)利用键能计算反应热:通常人们把拆开1mol某化学键所吸收的能量看成该化学键的键能,键能通常用E表示,单位为kJ/mol或kJ·mol-1。
方法:ΔH=∑E(反应物)-∑E(生成物),即ΔH等于反应物的键能总和与生成物的键能总和之差。
如反应H2(g)+Cl2(g)===2HCl(g)ΔH=E(H—H)+E(Cl—Cl)-2E(H—Cl)。
高一化学知识点化学反应的能量变化
高一化学知识点化学反应的能量变化化学反应的能量变化是化学领域中的一个重要概念。
在化学反应过程中,物质发生了变化,并伴随着能量的吸收或释放。
本文将就化学反应的能量变化进行探讨,包括内能变化、焓变、化学反应热等方面。
一、内能变化内能是指系统中所有分子的总能量,包括分子的动能和势能。
化学反应发生时,反应物的分子结构被打破,新的化学键形成,导致内能的变化。
反应物与生成物之间的内能差称为内能变化(ΔU)。
化学反应的内能变化可以分为两种情况:吸热反应和放热反应。
1. 吸热反应:当反应物的内能大于生成物的内能时,化学反应需要从外界吸收热量才能进行。
这种反应产生吸热现象,即反应过程中会感觉到周围温度的升高。
吸热反应的内能变化为正值(ΔU > 0)。
2. 放热反应:当反应物的内能小于生成物的内能时,化学反应会释放出热量给周围环境。
这种反应产生放热现象,即反应过程中会感觉到周围温度的降低。
放热反应的内能变化为负值(ΔU < 0)。
二、焓变焓(H)是指化学反应过程中,物质所含的能量总量。
在常压下,反应物和生成物的焓差称为焓变(ΔH)。
焓变可以帮助我们了解反应过程中的能量变化情况。
与内能变化类似,焓变也可以分为吸热反应和放热反应。
1. 吸热反应:在吸热反应中,反应物的焓高于生成物的焓,化学反应需要吸收热量才能进行。
吸热反应的焓变为正值(ΔH > 0)。
2. 放热反应:在放热反应中,反应物的焓低于生成物的焓,化学反应会释放热量给周围环境。
放热反应的焓变为负值(ΔH < 0)。
焓变与内能变化之间存在关系:ΔH = ΔU + PΔV,其中P为常数,ΔV为体积变化。
三、化学反应热化学反应热是指在标准状态下,单位摩尔物质在化学反应中产生或吸收的热量。
通常用符号ΔH表示。
1. 焓变与化学反应热之间的关系在常压下,化学反应热等于焓变:ΔH = Q,其中Q为反应所吸收或释放的热量。
2. 化学反应热的测定方法化学反应热的测定可以通过热量计实验进行。
高一化学-化学反应及其能量变化复习总结 最新
《化学反应及其能量变化》复习总结氧化还原反应、离子反应、化学反应中的能量变化是高中化学的重点内容,在学习中,同学们应熟练掌握以下知识要点。
一、氧化还原反应1.概念系统2.基本规律(1)守恒规律在任何氧化还原反应中,氧化剂得到的电子数一定等于还原剂失去的电子数,或者说氧化剂化合价降低总数值等于还原剂化合价升高总数值。
(2)反应的基本形式氧化还原反应一般可以概括成如下形式:(3)变价规律如果氧化还原反应发生在不同价态的同一种元素之间,一般说来反应物中高价态变成产物中的较高价态,反应物中的低价态变成产物中的较低价态,即高者仍高,低者仍低,不会出现价态的交叉,因为这样会消耗更多能量。
(4)影响氧化(还原)性的因素氧化性(或还原性)受氧化剂(或还原剂)的浓度、反应温度、溶液的酸碱性以及催化剂等因素影响。
一般地,浓度大、温度高等都有可能使氧化性(或还原性)增强。
溶液的酸碱性对物质的氧化性(或还原性)也存在影响。
3.典型题例析例1下列反应中,属于非氧化还原反应的是 [ ]A.3CuS+8HNO3=3Cu(NO3)2+2NO+3S+4H2OB.3Cl2+6KOH=5KCl+KClO3+3H2OC.3H2O2+2KCrO2+2KOH=2K2CrO4+4H2OD.3CCl4+K2Cr2O7=2CrO2Cl2+3COCl2+2KCl解析发生氧化还原反应的标志是化合价的变化。
因此,我们可以通过判断是否有化合价变化来判断一个反应是否是氧化还原反应。
该题选项为D。
例2硫酸铵在强热条件下分解,生成氨、二氧化硫、氮气和水,反应中生成的氧化产物和还原产物个数比为 [ ]A.1∶3 B.2∶3 C.1∶1 D.4∶3解析 N2是氧化产物,每生成1个N2,要失去6个电子。
SO2是还原产物,每生成1个SO2要得到2个电子。
要使得失电子守恒,二者个数比为1∶3。
选A。
例3已知:(1)2FeCl3+2KI===2FeCl2+2KCl+I2(2)2FeCl2+Cl2===2FeCl3判断下列物质的氧化能力由大到小的顺序是 [ ]A.Fe3+>Cl2>I2B.Cl2>Fe3+>I2C.I2>Cl2>Fe3+D.Cl2>I2>Fe3+解析由于氧化剂的氧化性强于氧化产物的氧化性。
化学高考专题知识点系列复习(珍藏版):2高中化学知识点规律大全(18章)
高中化学知识点规律大全——化学反应及其能量变化1.氧化还原反应[氧化还原反应] 有电子转移(包括电子的得失和共用电子对的偏移)或有元素化合价升降的反应.如2Na+ C12=2NaCl(有电子得失)、H 2+ C12=2HCl(有电子对偏移)等反应均属氧化还原反应。
氧化还原反应的本质是电子转移(电子得失或电子对偏移)。
[氧化还原反应的特征] 在反应前后有元素的化合价发生变化.根据氧化还原反应的反应特征可判断一个反应是否为氧化还原反应.某一化学反应中有元素的化合价发生变化,则该反应为氧化还原反应,否则为非氧化还原反应。
氧化剂与还原剂的相互关系重要的氧化剂和还原剂:(1)所含元素的化合价处在最高价的物质只能得到电子,只具有氧化性,只能作氧化剂(注:不一定是强氧化剂)。
重要的氧化剂有:①活泼非金属单质,如X 2(卤素单质)、O 2、O 3等。
②所含元素处于高价或较高价时的氧化物,如MnO 2、NO 2、PbO 2等。
③所含元素处于高价时的含氧酸,如浓H 2SO 4、HNO 3等.④所含元素处于高价时的盐,如KMnO 4、KClO 3、K 2Cr 2O 7等.⑤金属阳离子等,如Fe 3+、Cu 2+、Ag +、H +等.⑥过氧化物,如Na 2O 2、H 2O 2等.⑦特殊物质,如HClO 也具有强氧化性. (2)所含元素的化合价处在最低价的物质只能失去电子,只具有还原性,只能作还原剂(注:不一定是强还原剂).重要的还原剂有:①活泼金属单质,如Na 、K 、Ca 、Mg 、Al 、Fe 等.②某些非金属单质,如C 、H 2、Si 等.③所含元素处于低价或较低价时的氧化物,如CO 、SO 2等.④所含元素处于低价或较低价时的化合物,如含有、、、、的化合物H 2S 、Na 2S 、H 2SO 3、Na 2SO 3、HI 、HBr 、FeSO 4、NH 3等.(3)当所含元素处于中间价态时的物质,既有氧化性又有还原性,如H 2O 2、SO 2、Fe 2+等. (4)当一种物质中既含有高价态元素又含有低价态元素时,该物质既有氧化性又有还原性.例2-S 4+S 1-I 1-Br 2+Fe如,盐酸(HCl)与Zn反应时作氧化剂,而浓盐酸与MnO2共热反应时,则作还原剂.[氧化还原反应的分类](1)不同反应物间的氧化还原反应.①不同元素间的氧化还原反应.例如:MnO2+ 4HCl(浓) MnCl2+ C12↑+ 2H2O 绝大多数氧化还原反应属于这一类.②同种元素间的氧化还原反应.例如:2H2S+ SO2=3S+ 2H2O KClO3+ 6HCl(浓)=KCl+ 3C12↑+ 3H2O在这类反应中,所得氧化产物和还原产物是同一物质,这类氧化还原反应又叫归中反应.(2)同一反应物的氧化还原反应.①同一反应物中,不同元素间的氧化还原反应.例如:2KClO32KCl+ 3O2↑②同一反应物中,同种元素不同价态间的氧化还原反应.例如:NH4NO3N2O↑+ 2H2O③同一反应物中,同种元素同一价态间的氧化还原反应.例如:C12+ 2NaOH=NaCl+ NaClO+ H2O 3NO2+ H2O=2HNO3+ NO在这类反应中,某一元素的化合价有一部分升高了,另一部分则降低了.这类氧化还原反应又叫歧化反应.[氧化还原反应与四种基本反应类型的关系]如右图所示.由图可知:置换反应都是氧化还原反应;复分解反应都不是氧化还原反应,化合反应、分解反应不一定是氧化还原反应.[氧化还原反应中电子转移的方向、数目的表示方法](1)单线桥法.表示在反应过程中反应物里元素原子间电子转移的数目和方向.用带箭头的连线从化合价升高的元素开始,指向化合价降低的元素,再在连线上方标出电子转移的数目.在单线桥法中,箭头的指向已经表明了电子转移的方向,因此不能再在线桥上写“得”、“失”字样.(2)双线桥法.表示在反应物与生成物里,同一元素原子在反应前后电子转移的数目和方向.在氧化剂与还原产物、还原剂与氧化产物之间分别用带箭头的连线从反应前的有关元素指向反应后的该种元素,并在两条线的上、下方分别写出“得”、“失”电子及数目.例如:[氧化还原反应的有关规律](1)氧化性、还原性强弱判断的一般规律.氧化性、还原性的强弱取决于得失电子的难易;而与得失电子数的多少无关.①金属活动性顺序表.金属的活动性越强,金属单质(原子)的还原性也越强,而其离子的氧化性越弱.如还原性:Mg>Fe>Cu>Ag;氧化性:Ag+>Cu2+>Fe2+>Mg2+②同种元素的不同价态.特殊情况;氯的含氧酸的氧化性顺序为:HClO>HClO3>HClO4.⑧氧化还原反应进行的方向.一般而言,氧化还原反应总是朝着强氧化性物质与强还原性物质反应生成弱氧化性物质与弱还原性物质的方向进行.在一个给出的氧化还原反应方程式中,氧化剂和氧化产物都有氧化性,还原剂和还原产物都有还原性,其氧化性、还原性的强弱关系为:氧化性:氧化剂>氧化产物;还原性:还原剂>还原产物反之,根据给出的物质的氧化性、还原性的强弱,可以判断某氧化还原反应能否自动进行.④反应条件的难易.不同的氧化剂(还原剂)与同一还原剂(氧化剂)反应时,反应越易进行,则对应的氧化剂(还原剂)的氧化性(还原性)越强,反之越弱.⑤浓度.同一种氧化剂(或还原剂),其浓度越大,氧化性(或还原性)就越强.⑥H+浓度.对于在溶液中进行的氧化还原反应,若氧化剂为含氧酸或含氧酸盐,则溶液中H +浓度越大,其氧化性就越强.(2)氧化还原反应中元素化合价的规律.①一种元素具有多种价态时,处于最高价态时只具有氧化性,处于最低价态时只具有还原性,而处于中间价态时则既有氧化性又具有还原性.但须注意,若一种化合物中同时含最高价态元素和最低价态元素时,则该化合物兼有氧化性和还原性,如HCl.②价态不相交规律.同种元素不同价态间相互反应生成两种价态不同的产物时,化合价升高与化合价降低的值不相交,即高价态降低后的值一定不低于低价态升高后的值,也可归纳为“价态变化只靠拢、不相交”.所以,同种元素的相邻价态间不能发生氧化还原反应;同种元素间隔中间价态,发生归中反应.(3)氧化还原反应中的优先规律:当一种氧化剂(还原剂)同时与多种还原剂(氧化剂)相遇时,该氧化剂(还原剂)首先与还原性(氧化性)最强的物质发生反应,而只有当还原性(氧化性)最强的物质反应完后,才依次是还原性(氧化性)较弱的物质发生反应.(4)电子守恒规律.在任何氧化还原反应中,氧化剂得到的电子总数等于还原剂失去的电子总数(即氧化剂化合价升高的总数等于还原剂化合价降低的总数).这一点也是氧化还原反应配平的基础。
超全超细【精品】高中化学知识点规律大全(18章)
高中化学知识点规律大全——化学反应及其能量变化1.氧化还原反应[氧化还原反应]有电子转移(包括电子的得失和共用电子对的偏移)或有元素化合价升降的反应.如2Na+ C12=2NaCl(有电子得失)、H2+ C12=2HCl(有电子对偏移)等反应均属氧化还原反应。
氧化还原反应的本质是电子转移(电子得失或电子对偏移)。
[氧化还原反应的特征]在反应前后有元素的化合价发生变化.根据氧化还原反应的反应特征可判断一个反应是否为氧化还原反应.某一化学反应中有元素的化合价发生变化,则该反应为氧化还原反应,否则为非氧化还原反应。
[氧化剂与还原剂]概念含义概念含义氧化剂反应后所含元素化合价降低的反应物还原剂反应后所含元素化合价升高的反应物被氧化还原剂在反应时化合价升高的过程被还原氧化剂在反应时化合价降低的过程氧化性氧化剂具有的夺电子的能力还原性还原剂具有的失电子的能力氧化反应元素在反应过程中化合价升高的反应还原反应元素在反应过程中化合价降低的反应氧化产物还原剂在反应时化合价升高后得到的产物还原产物氧化剂在反应时化合价降低后得到的产物重要的氧化剂和还原剂:(1)所含元素的化合价处在最高价的物质只能得到电子,只具有氧化性,只能作氧化剂(注:不一定是强氧化剂)。
重要的氧化剂有:①活泼非金属单质,如X2(卤素单质)、O2、O3等。
②所含元素处于高价或较高价时的氧化物,如MnO2、NO2、PbO2等。
③所含元素处于高价时的含氧酸,如浓H2SO4、HNO3等.④所含元素处于高价时的盐,如KMnO4、KClO3、K2Cr2O7等.⑤金属阳离子等,如Fe3+、Cu2+、Ag+、H+等.⑥过氧化物,如Na2O2、H2O2等.⑦特殊物质,如HClO也具有强氧化性.(2)所含元素的化合价处在最低价的物质只能失去电子,只具有还原性,只能作还原剂(注:不一定是强还原剂).重要的还原剂有:①活泼金属单质,如Na、K、Ca、Mg、Al、Fe等.②某些非金属单质,如C、H2、Si等.③所含元素处于低价或较低价时的氧化物,如CO、SO2等.④所含元素处于低价或较低价时的化合物,如含有2-S、4+S、1-I、1-Br、2+Fe的化合物H2S、Na2S、H2SO3、Na2SO3、HI、HBr、FeSO4、NH3等.(3)当所含元素处于中间价态时的物质,既有氧化性又有还原性,如H2O2、SO2、Fe2+等.(4)当一种物质中既含有高价态元素又含有低价态元素时,该物质既有氧化性又有还原性.例如,盐酸(HCl)与Zn反应时作氧化剂,而浓盐酸与MnO2共热反应时,则作还原剂.[氧化还原反应的分类](1)不同反应物间的氧化还原反应.①不同元素间的氧化还原反应.例如:MnO2+ 4HCl(浓) MnCl2+ C12↑+ 2H2O 绝大多数氧化还原反应属于这一类.②同种元素间的氧化还原反应.例如:2H2S+ SO2=3S+ 2H2O KClO3+ 6HCl(浓)=KCl+ 3C12↑+ 3H2O在这类反应中,所得氧化产物和还原产物是同一物质,这类氧化还原反应又叫归中反应.(2)同一反应物的氧化还原反应.①同一反应物中,不同元素间的氧化还原反应.例如:2KClO32KCl+ 3O2↑②同一反应物中,同种元素不同价态间的氧化还原反应.例如:NH4NO3N2O↑+ 2H2O③同一反应物中,同种元素同一价态间的氧化还原反应.例如:C12+ 2NaOH=NaCl+ NaClO+ H2O 3NO2+ H2O=2HNO3+ NO在这类反应中,某一元素的化合价有一部分升高了,另一部分则降低了.这类氧化还原反应又叫歧化反应.[氧化还原反应与四种基本反应类型的关系]如右图所示.由图可知:置换反应都是氧化还原反应;复分解反应都不是氧化还原反应,化合反应、分解反应不一定是氧化还原反应.[氧化还原反应中电子转移的方向、数目的表示方法](1)单线桥法.表示在反应过程中反应物里元素原子间电子转移的数目和方向.用带箭头的连线从化合价升高的元素开始,指向化合价降低的元素,再在连线上方标出电子转移的数目.在单线桥法中,箭头的指向已经表明了电子转移的方向,因此不能再在线桥上写“得”、“失”字样.(2)双线桥法.表示在反应物与生成物里,同一元素原子在反应前后电子转移的数目和方向.在氧化剂与还原产物、还原剂与氧化产物之间分别用带箭头的连线从反应前的有关元素指向反应后的该种元素,并在两条线的上、下方分别写出“得”、“失”电子及数目.例如:[氧化还原反应的有关规律](1)氧化性、还原性强弱判断的一般规律.氧化性、还原性的强弱取决于得失电子的难易;而与得失电子数的多少无关.①金属活动性顺序表.金属的活动性越强,金属单质(原子)的还原性也越强,而其离子的氧化性越弱.如还原性:Mg>Fe>Cu>Ag;氧化性:Ag+>Cu2+>Fe2+>Mg2+②同种元素的不同价态.特殊情况;氯的含氧酸的氧化性顺序为:HClO>HClO3>HClO4.⑧氧化还原反应进行的方向.一般而言,氧化还原反应总是朝着强氧化性物质与强还原性物质反应生成弱氧化性物质与弱还原性物质的方向进行.在一个给出的氧化还原反应方程式中,氧化剂和氧化产物都有氧化性,还原剂和还原产物都有还原性,其氧化性、还原性的强弱关系为:氧化性:氧化剂>氧化产物;还原性:还原剂>还原产物反之,根据给出的物质的氧化性、还原性的强弱,可以判断某氧化还原反应能否自动进行.④反应条件的难易.不同的氧化剂(还原剂)与同一还原剂(氧化剂)反应时,反应越易进行,则对应的氧化剂(还原剂)的氧化性(还原性)越强,反之越弱.⑤浓度.同一种氧化剂(或还原剂),其浓度越大,氧化性(或还原性)就越强.⑥H+浓度.对于在溶液中进行的氧化还原反应,若氧化剂为含氧酸或含氧酸盐,则溶液中H+浓度越大,其氧化性就越强.(2)氧化还原反应中元素化合价的规律.①一种元素具有多种价态时,处于最高价态时只具有氧化性,处于最低价态时只具有还原性,而处于中间价态时则既有氧化性又具有还原性.但须注意,若一种化合物中同时含最高价态元素和最低价态元素时,则该化合物兼有氧化性和还原性,如HCl.②价态不相交规律.同种元素不同价态间相互反应生成两种价态不同的产物时,化合价升高与化合价降低的值不相交,即高价态降低后的值一定不低于低价态升高后的值,也可归纳为“价态变化只靠拢、不相交”.所以,同种元素的相邻价态间不能发生氧化还原反应;同种元素间隔中间价态,发生归中反应.(3)氧化还原反应中的优先规律:当一种氧化剂(还原剂)同时与多种还原剂(氧化剂)相遇时,该氧化剂(还原剂)首先与还原性(氧化性)最强的物质发生反应,而只有当还原性(氧化性)最强的物质反应完后,才依次是还原性(氧化性)较弱的物质发生反应.(4)电子守恒规律.在任何氧化还原反应中,氧化剂得到的电子总数等于还原剂失去的电子总数(即氧化剂化合价升高的总数等于还原剂化合价降低的总数).这一点也是氧化还原反应配平的基础。
高二化学选修4《化学反应原理》知识点规律大全
高二化学选修4《化学反应原理》知识点规律大全work Information Technology Company.2020YEAR高中化学知识点规律大全(一)——化学反应与能量1.氧化还原反应[氧化还原反应]有电子转移(包括电子的得失和共用电子对的偏移)或有元素化合价升降的反应.如2Na+ C12=2NaCl(有电子得失)、H2+ C12=2HCl(有电子对偏移)等反应均属氧化还原反应。
氧化还原反应的本质是电子转移(电子得失或电子对偏移)。
[氧化还原反应的特征]在反应前后有元素的化合价发生变化.根据氧化还原反应的反应特征可判断一个反应是否为氧化还原反应.某一化学反应中有元素的化合价发生变化,则该反应为氧化还原反应,否则为非氧化还原反应。
概念含义概念含义氧化剂反应后所含元素化合价降低的反应物还原剂反应后所含元素化合价升高的反应物被氧化还原剂在反应时化合价升高的过程被还原氧化剂在反应时化合价降低的过程氧化性氧化剂具有的夺电子的能力还原性还原剂具有的失电子的能力氧化反应元素在反应过程中化合价升高的反应还原反应元素在反应过程中化合价降低的反应氧化产物还原剂在反应时化合价升高后得到的产物还原产物氧化剂在反应时化合价降低后得到的产物.[氧化还原反应与四种基本反应类型的关系]如右图所示.由图可知:置换反应都是氧化还原反应;复分解反应都不是氧化还原反应,化合反应、分解反应不一定是氧化还原反应.[氧化还原反应中电子转移的方向、数目的表示方法](1)单线桥法.表示在反应过程中反应物里元素原子间电子转移的数目和方向.用带箭头的连线从化合价升高的元素开始,指向化合价降低的元素,再在连线上方标出电子转移的数目.在单线桥法中,箭头的指向已经表明了电子转移的方向,因此不能再在线桥上写“得”、“失”字样.(2)双线桥法.表示在反应物与生成物里,同一元素原子在反应前后电子转移的数目和方向.在氧化剂与还原产物、还原剂与氧化产物之间分别用带箭头的连线从反应前的有关元素指向反应后的该种元素,并在两条线的上、下方分别写出“得”、“失”电子及数目.例如:2.离子反应[离子反应]有离子参加或有离子生成的反应,都称为离子反应.离子反应的本质、类型和发生的条件:(1)离子反应的本质:反应物中某种离子的浓度减小.(2)离子反应的主要类型及其发生的条件:①离子互换(复分解)反应.具备下列条件之一就可以使反应朝着离子浓度减小的方向进行,即离子反应就会发生.a.生成难溶于水的物质.如:Cu2++ 2OH-=Cu(OH)2↓注意:当有关离子浓度足够大时,生成微溶物的离子反应也能发生.如:2Ag++ SO42—=Ag2SO4↓ Ca2++ 2OH-=Ca(OH)2↓或者由微溶物生成难溶物的反应也能生成.如当石灰乳与Na2CO3溶液混合时,发生反应:Ca(OH)2 + CO32—=CaCO3↓+ 2OH-b.生成难电离的物质(即弱电解质).如:H++ OH-=H2O H++ CH3COO-=CH3COOH c.生成挥发性物质(即气体).如:CO32-+ 2H+=CO2↑+ H2O NH4++ OH-NH3↑+H2O②离子间的氧化还原反应.由强氧化剂与强还原剂反应,生成弱氧化剂和弱还原剂,即反应朝着氧化性、还原性减弱的方向进行.例如:Fe + Cu2+=Fe2++ Cu Cl2 + 2Br-=2C1-+ Br2 2MnO4-+ 16H++ 10C1-=2Mn2++ 5C12↑+ 8H2O书写离子方程式时应注意的问题:(1)电解质在非电离条件下(不是在水溶液中或熔融状态),虽然也有离子参加反应,但不能写成离子方程式,因为此时这些离子并没有发生电离.如NH4Cl固体与Ca(OH)2固体混合加热制取氨气的反应、浓H2SO4与固体(如NaCl、Cu等)的反应等,都不能写成离子方程式.相反,在某些化学方程式中,虽然其反应物不是电解质或强电解质,没有大量离子参加反应,但反应后产生了大量离子,因此,仍可写成离子方程式.如Na、Na2O、Na2O2、SO3、Cl2等与H2O的反应.(2)多元弱酸的酸式盐,若易溶于水,则成盐的阳离子和酸根离子可拆开写成离子的形式,而酸根中的H+与正盐阴离子不能拆开写.例如NaHS、Ca(HCO3)2等,只能分别写成Na+、HS-和Ca2+、HCO3-等酸式酸根的形式.(3)对于微溶于水的物质,要分为两种情况来处理:①当作反应物时,微溶物要保留化学式的形式,不能拆开.②当作反应物时,若为澄清的稀溶液,应改写为离子形式,如澄清石灰水等;若为浊液或固体,要保留化学式的形式而不能拆开,如石灰乳、熟石灰等.(4)若反应物之间由于物质的量之比不同而发生不同的反应,即反应物之间可发生不止一个反应时,要考虑反应物之间物质的量之比不同,相应的离子方程式也不同.例如,向NaOH溶液中不断通入CO2气体至过量,有关反应的离子方程式依次为: CO2+ 2OH—=CO32—+ H2O(CO2适量)CO2+ OH—=HCO3—(CO2足量)在溶液中离子能否大量共存的判断方法:几种离子在溶液中能否大量共存,实质上就是看它们之间是否发生反应.若离子间不发生反应,就能大量共存;否则就不能大量共存.离子间若发生下列反应之一,就不能大量共存.(1)生成难溶物或微溶物.如Ca2+与CO32-、SO42-、OH-;Ag+与C1-、Br-、I-、SO32-,等等.(2)生成气体.如NH4+与OH-;H+与HCO3-、CO32-、S2-、HS-、SO32-、HSO3-等.(3)生成难电离物质(弱酸、弱碱、水).如H+与C1O-、F-、CH3COO-生成弱酸;OH-与NH4+、A13+、Fe3+、Fe2+、Cu2+等生成弱碱;H+与OH-生成H2O.(4)发生氧化还原反应.具有氧化性的离子(如MnO4-、ClO-、Fe3+等)与具有还原性的离子( 如S2-、I-、SO32-、Fe2+等)不能共存.应注意的是,有些离子在碱性或中性溶液中可大量共存,但在酸性条件下则不能大量共存,如SO32-与S2-,NO3-与I-、S2-、SO32-、Fe2+等.*(5)形成配合物.如Fe3+与SCN-因反应生成Fe(SCN)3而不能大量共存.*(6)弱酸根阴离子与弱碱阳离子因易发生双水解反应而不能大量共存,例如Al3+与HCO3-、CO32-、A1O2-等.说明:在涉及判断离子在溶液中能否大量共存的问题时,要注意题目中附加的限定性条件:①无色透明的溶液中,不能存在有色离子,如Cu2+(蓝色)、Fe3+(黄色)、Fe2+(浅绿色)、MnO4-(紫色).②在强酸性溶液中,与H+起反应的离子不能大量共存.③在强碱性溶液中,与OH-起反应的离子不能大量共存.[离子方程式的书写步骤](1)“写”:写出完整的化学方程式.(2)“拆”:将化学方程式中易溶于水、易电离的物质(强酸、强碱、可溶性盐)拆开改写为离子形式;而难溶于水的物质(难溶性盐、难溶性碱)、难电离的物质(水、弱酸、弱碱)、氧化物、气体等仍用化学式表示.(3)“删”:将方程式两边相同的离子(包括个数)删去,并使各微粒符号前保持最简单的整数比.(4)“查”:检查方程式中各元素的原子个数和电荷总数是否左右相等.[复分解反应类型离子反应发生的条件]复分解反应总是朝着溶液中自由移动的离子数目减少的方向进行.具体表现为:(1)生成难溶于水的物质.如:Ba2++ SO42-=BaSO4↓(2)生成难电离的物质(水、弱酸、弱碱).如H++ OH-=H2O(3)生成气体.如:CO32-+ 2H+=CO2↑+ H2O3.化学反应中的能量变化[放热反应] 放出热量的化学反应.在放热反应中,反应物的总能量大于生成物的总能量:反应物的总能量=生成物的总能量 + 热量 + 其他形式的能量放热反应可以看成是“贮存”在反应物内部的能量转化并释放为热能及其他形式的能量的反应过程.[吸热反应] 吸收热量的化学反应.在吸热反应中,反应物的总能量小于生成物的总能量:生成物的总能量=反应物的总能量 + 热量 + 其他形式的能量吸热反应也可以看成是热能及其他形式的能量转化并“贮存”为生成物内部能量的反应过程.*[反应热](1)反应热的概念:在化学反应过程中,放出或吸收的热量,统称为反应热.反应热用符号△H表示,单位一般采用kJ·mol-1.(2)反应热与反应物、生成物的键能关系:△H=生成物键能的总和-反应物键能的总和(3)放热反应与吸热反应的比较.反应热放热反应吸热反应含义反应物所具有的总能量大于生成物所具有的总能量,反应物转化为生成物时放出热量反应物所具有的总能量小于生成物所具有的总能量,反应物转化为生成物时吸收热量反应本身的能量变化反应放出热量后使反应本身的能量降低反应吸收热量后使反应本身的能量升高表示符号或ΔH值“-”ΔH<0 “+”ΔH>0说明:放热反应和吸热反应过程中的能量变化示意图如图3—1—2所示.[热化学方程式](1)热化学方程式的概念:表明反应所放出或吸收热量的化学方程式,叫做热化学方程式.(2)书写热化学方程式时应注意的问题:①需注明反应的温度和压强.因为反应的温度和压强不同时,其△H也不同.若不注明时,则是指在101kPa和25℃时的数据.②反应物、生成物的聚集状态要注明.同一化学反应,若物质的聚集状态不同,则反应热就不同.例如:H2(g) + 1/2O2(g)=H2O(g) △H=-241.8kJ·mol—1H2(g) + 1/2O2(g)=H2O(l) △H=-285.8kJ·mol—1比较上述两个反应可知,由H2与O2反应生成1 mol H2O(l)比生成1 mol H2O(g)多放出44 kJ·mol—1的热量.③反应热写在化学方程式的右边.放热时△H用“-”,吸热时△H用“+”.例如: H2(g) + 1/2O2(g)=H2O(g) -241.8kJ·mol—1④热化学方程式中各物质前的化学计量数不表示分子个数,而只表示物质的量(mol),因此,它可用分数表示.对于相同物质的反应,当化学计量数不同时,其△H也不同.例如:2H2(g) + O2(g)=2H2O(g) △H l=-483.6 kJ·mol—1H2(g) + 1/2O2(g)=H2O(g) △H2=-241.8kJ·mol—1显然,△H l=2△H2.*[盖斯定律] 对于任何一个化学反应,不管是一步完成还是分几步完成,其反应热是相同的.也就是说,化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关.如果一个反应可以分几步进行,则各步反应的反应热之和与该反应一步完成时的反应热是相同的.*4.燃烧热和中和热高中化学知识点规律大全(二)——化学反应速率和化学平衡1.化学反应速率[化学反应速率的概念及其计算公式](1)概念:化学反应速率是用来衡量化学反应进行的快慢程度,通常用单位时间内反应物浓度的减少或生成物浓度的增加来表示.单位有mol ·L -1·min -1或mol ·L -1·s -1(2)计算公式:某物质X 的化学反应速率:))或时间变化量()的浓度变化量(min )(1s L mol X X -⋅=ν注意 ①化学反应速率的单位是由浓度的单位(mol ·L -1)和时间的单位(s 、min 或h)决定的,可以是mol ·L -1·s -1、mol ·L -1·min -1或mol ·L -1·h -1,在计算时要注意保持时间单位的一致性.②对于某一具体的化学反应,可以用每一种反应物和每一种生成物的浓度变化来表示该反应的化学反应速率,虽然得到的数值大小可能不同,但用各物质表示的化学反应速率之比等于化学方程式中相应物质的化学计量数之比.如对于下列反应:mA + nB = pC + qD有:)(A ν∶)(B ν∶)(C ν∶)(D ν=m ∶n ∶p ∶q 或:q D p C n B m A )()()()(νννν===③化学反应速率不取负值而只取正值.④在整个反应过程中,反应不是以同样的速率进行的,因此,化学反应速率是平均速率而不是瞬时速率.[有效碰撞] 化学反应发生的先决条件是反应物分子(或离子)之间要相互接触并发生碰撞,但并不是反应物分子(或离子)间的每一次碰撞都能发生化学反应.能够发生化学反应的一类碰撞叫做有效碰撞.[活化分子] 能量较高的、能够发生有效碰撞的分子叫做活化分子.说明 ①活化分子不一定能够发生有效碰撞,活化分子在碰撞时必须要有合适的取向才能发生有效碰撞.②活化分子在反应物分子中所占的百分数叫做活化分子百分数.当温度一定时,对某一反应而言,活化分子百分数是一定的.活化分子百分数越 大,活化分子数越多,有效碰撞次数越多.[影响化学反应速率的因素]2.化学平衡[化学平衡](1)化学平衡研究的对象:可逆反应的规律.①可逆反应的概念:在同一条件下,既能向正反应方向进行同时又能向逆反应方向进行[可逆反应] 向生成物方向进行的反应叫正反应;向反应物方向进行的反应叫逆反应.在同一条件下,既能向正反应方向进行,同时又能向逆反应方向进行的反应,叫做可逆反应.说明 (1)判断一个反应是否是可逆反应,必须满足两个条件:①在同一条件下;②正、逆反应同时进行.如H 2 + I ,生成的HI 在持续加热的条件下同时分解,故该反应为可逆反应.而如:2H2 + O2 2H2O 2H2O 2H2↑+ O2↑这两个反应就不是可逆反应.(2)在化学方程式中,用可逆符号“”表示可逆反应.说明 a.绝大多数化学反应都有一定程度的可逆性,但有的逆反应倾向较小,从整体看实际上是朝着同方向进行的,例如NaOH + HCl = NaCl + H2O.b.有气体参加或生成的反应,只有在密闭容器中进行时才可能是可逆反应.如CaCO3受热分解时,若在敞口容器中进行,则反应不可逆,其反应的化学方程式应写为:CaCO3CaO + CO2↑;若在密闭容器进行时,则反应是可逆的,其反应的化学方程式应写为:CaCO3CaO + CO2②可逆反应的特点:反应不能进行到底.可逆反应无论进行多长时间,反应物都不可能100%地全部转化为生成物.(2)化学平衡状态.①定义:一定条件(恒温、恒容或恒压)下的可逆反应里,正反应和逆反应的速率相等,反应混合物(包括反应物和生成物)中各组分的质量分数(或体积分数)保持不变的状态.②化学平衡状态的形成过程:在一定条件下的可逆反应里,若开始时只有反应物而无生成物,根据浓度对化学反应速率的影响可知,此时ν正最大而ν逆为0.随着反应的进行,反应物的浓度逐渐减小,生成物的浓度逐渐增大,则ν正越来越小而ν逆越来越大.当反应进行到某一时刻,ν正=ν逆,各物质的浓度不再发生改变,反应混合物中各组分的质量分数(或体积分数)也不再发生变化,这时就达到了化学平衡状态.(3)化学平衡的特征:①“动”:化学平衡是动态平衡,正反应和逆反应仍在继续进行,即ν正=ν逆≠0.②“等”:达平衡状态时,ν正=ν逆,这是一个可逆反应达平衡的本质.ν正=ν逆的具体含意包含两个方面:a.用同一种物质来表示反应速率时,该物质的生成速率与消耗速率相等,即单位时间内消耗与生成某反应物或生成物的量相等;b.用不同物质来表示时,某一反应物的消耗速率与某一生成物的生成速率之比等于化学方程式中相应物质的化学计量数之比.③“定”:达平衡时,混合物各组分的浓度一定;质量比(或物质的量之比、体积比)一定;各组分的质量分数(或摩尔分数、体积分数)一定;对于有颜色的物质参加或生成的可逆反应,颜色不改变.同时,反应物的转化率最大.对于反应前后气体分子数不相等的可逆反应,达平衡时:气体的总体积(或总压强)一定;气体的平均相对分子质量一定;恒压时气体的密度一定(注意:反应前后气体体积不变的可逆反应,不能用这个结论判断是否达到平衡).④“变”.一个可逆反应达平衡后,若外界条件(浓度、温度、压强)改变,使各组分的质量(体积、摩尔、压强)分数也发生变化,平衡发生移动,直至在新的条件下达到新的平衡(注意:若只是浓度或压强改变,而ν正仍等于ν逆,则平衡不移动).反之,平衡状态不同的同一个可逆反应,也可通过改变外界条件使其达到同一平衡状态.⑤化学平衡的建立与建立化学平衡的途径无关.对于一个可逆反应,在一定条件下,反应无论从正反应开始,还是从逆反应开始,或是正、逆反应同时开始,最终都能达到同一平衡状态.具体包括:a.当了T、V一定时,按化学方程式中各物质化学式前系数的相应量加入,并保持容器内的总质量不变,则不同起始状态最终可达到同一平衡状态.b.当T、P一定(即V可变)时,只要保持反应混合物中各组分的组成比不变(此时在各种情况下各组分的浓度仍然相等,但各组分的物质的量和容器内的总质量不一定相等),则不同的起始状态最终也可达到同一平衡状态.如在恒温、恒压时,对于可逆反应:N 2 + 3H3,在下列起始量不同情况下达到的是同一平衡状态.c .对于反应前后气体体积相等的可逆反应,不论是恒温、恒容或是恒温、恒压,在不同的起始状态下,将生成物“归零”后,只要反应物的物质的量之比不变,就会达到同一平衡状态.如:H 2(g) + I 2等.[判断化学平衡状态的依据][化学平衡常数] 在一定温度下,当一个可逆反应达到平衡状态时,生成物的平衡浓度用化学方程式中的化学计量数作为指数的乘积与反应物的平衡浓度用化学方程式中的化学计量数作为指数的乘积的比值是一个常数,这个常数叫做化学平衡常数,简称平衡常数.用符号K 表示.(1)平衡常数K 的表达式:对于一般的可逆反应:mA(g) + nB(g) pC(g) + qD(g) 当在一定温度下达到化学平衡时,该反应的平衡常数为: n m q p B c A c D c C c K )]([)]([)]([)]([⋅⋅= 注意:a .在平衡常数表达式中,反应物A 、B 和生成物C 、D 的状态全是气态,c(A)、c(B)、c(C)、c(D)均为平衡时的浓度.b .当反应混合物中有固体或纯液体时,他们的浓度看做是一个常数,不写入平衡常数的表达式中.例如,反应在高温下 Fe 3O 4(s) + 4H 23Fe(s) + H 2O(g)的平衡常数表达式为:4242)]([)]([H c O H c K =又如,在密闭容器中进行的可逆反应CaCO 3(s)CaO(s) + CO 2↑的平衡常数表达式为:K =c(CO 2)c .平衡常数K 的表达式与化学方程式的书写方式有关.例如:N 2 + 3H 22NH 3 )]([)]([)]([232231N c H c NH c K ⋅= 2NH 3N 2 + 3H 2 233222)]([)]([)]([NH c H c N c K ⋅= 21N 2 +23H 2NH 3 2/322/1233)]([)]([)]([N c H c NH c K ⋅= 显然,K 1、K 2、K 3具有如下关系:121K K =,2/113)(K K = (2)平衡常数K 值的特征:①K 值的大小与浓度、压强和是否使用催化剂无关.即对于一个给定的反应,在一定温度下,不论起始浓度(或压强)和平衡浓度(或压强)如何,也不论是否使用催化剂,达平衡时,平衡常数均相同.②K 值随温度的变化而变化.对于一个给定的可逆反应,温度不变时,K 值不变(而不论反应体系的浓度或压强如何变化);温度不同时,K 值不同.因此,在使用平衡常数K 值时,必须指明反应温度.(3)平衡表达式K 值的意义:①判断可逆反应进行的方向.对于可逆反应:,如果知道在一定温度下的平衡常数,并且知道某个时刻时反应物和生成物的浓度,就可以判断该反应是否达到平衡状态,如果没有达到平衡状态,则可判断反应进行的方向. 将某一时刻时的生成物的浓度用化学方程式中相应的化学计量数为指数的乘积,与某一时刻时的反应物的浓度用化学方程式中相应的化学计量数为指数的乘积之比值,叫做浓度商,用Q 表示.即:Q B c A c D c C c nm qp =⋅⋅)]([)]([)]([)]([ 当Q =K 时,体系达平衡状态;当Q <K ,为使Q 等于K ,则分子(生成物浓度的乘积)应增大,分母(反应物浓度的乘积)应减小,因此反应自左向右(正反应方向)进行,直至到达平衡状态;同理,当Q >K 时,则反应自右向左(逆反应方向)进行,直至到达平衡状态.②表示可逆反应进行的程度.K 值越大,正反应进行的程度越大(平衡时生成物的浓度大,反应物的浓度小),反应物的转化率越高;K 值越小,正反应进行的程度越小,逆反应进行的程度越大,反应物的转化率越低.[反应物平衡转化率的计算公式]某一反应物的平衡转化率=100-⨯指定反应物的起始量指定反应物的平衡量指定反应物的起始量% =100⨯指定反应物的起始量消耗量指定反应物达平衡时的%说明计算式中反应物各个量的单位可以是mol·L-1”、mol,对于气体来说还可以是L或mL,但必须注意保持分子、分母中单位的一致性.3.影响化学平衡移动的条件[化学平衡的移动]已达平衡状态的可逆反应,当外界条件(浓度、温度、压强)改变时.由于对正、逆反应速率的影响不同,致使ν正≠ν逆,则原有的化学平衡被破坏,各组分的质量(或体积)分数发生变化,直至在新条件一定的情况下ν正′=ν逆′,而建立新的平衡状态.这种可逆反应中旧化学平衡的破坏、新化学平衡的建立,由原平衡状态向新化学平衡状态的转化过程,称为化学平衡的移动.说明 (1)若条件的改变使ν正>ν逆,则平衡向正反应方向移动;若条件的改变使ν正<ν逆,则平衡向逆反应方向移动.但若条件改变时,ν正仍然等于ν逆,则平衡没有发生移动.(2)化学平衡能够发生移动,充分说明了化学平衡是一定条件下的平衡状态,是一种动态平衡.(3)化学平衡发生移动而达到新的平衡状态时,新的平衡状态与原平衡状态主要的不同点是:①新的平衡状态的ν正或ν逆与原平衡状态的ν正或ν逆不同;②平衡混合物里各组分的质量(或体积)分数不同.[影响化学平衡的因素](1)浓度对化学平衡的影响.一般规律:当其他条件不变时,对于已达平衡状态的可逆反应,若增加反应物浓度或减少生成物浓度,则平衡向正反应方向移动(即向生成物方向移动);若减少反应物浓度或增加生成物浓度,则平衡向逆反应方向移动(即向反应物方向移动).特殊性:对于气体与固体或固体与固体之间的反应,由于固体的浓度可认为是常数,因此改变固体的量平衡不发生移动.如反应C(s) + H22(g)达平衡状态后,再加入焦炭的量,平衡不发生移动.说明①浓度对化学平衡的影响,可用化学反应速率与浓度的关系来说明.对于一个已达平衡状态的可逆反应,ν正=ν逆.若增大反应物的浓度,则ν正增大,而,ν逆增大得较慢,使平衡向正反应方向移动.如果减小生成物的浓度,这时虽然,ν正并未增大,但ν逆减小了,同样也使,ν正>ν逆,使平衡向正反应方向移动.同理可分析出:增大生成物的浓度或减小反应物的浓度时,平衡向逆反应方向移动.②在生产上,往往采用增大容易取得的或成本较低的反应物浓度的方法,使成本较高的原料得到充分利用.例如,在硫酸工业里,常用过量的空气使SO2充分氧化,以生成更多的SO3.(2)压强对化学平衡的影响.一般规律:对于有气体参加且反应前后气体体积不相等的可逆反应,在其他条件不变的情况下,若增大压强(即相当于缩小容器的体积),则平衡向气体总体积减小的方向移动,若减小压强(即增大容器的体积),则平衡向气体总体积增大的方向移动.特殊性:①对于反应前后气体总体积相等的可逆反应达平衡后,改变压强,平衡不发生移动,但气体的浓度发生改变.例如可逆反应H2(g) + I2达平衡后,若加大压强,平衡不会发生移动,但由于容器体积减小,使平衡混合气各组分的浓度增大,气体的颜色加深(碘蒸气为紫红色).②对于非气态反应(即无气体参加和生成的反应),改变压强,此时固、液体的浓度未改变,平衡不发生移动。
《化学反应与能量变化》知识点
《化学反应与能量变化》知识点一、关键信息1、化学反应中的能量变化形式:包括热能、电能、光能等。
2、吸热反应和放热反应的定义与特点。
3、反应热的概念及其计算方法。
4、热化学方程式的书写规则与注意事项。
5、燃烧热和中和热的定义与测定。
6、能源的分类与利用。
二、化学反应中的能量变化1、能量变化的本质化学反应的过程是旧化学键断裂和新化学键形成的过程。
旧化学键断裂需要吸收能量,新化学键形成会释放能量。
当吸收的能量小于释放的能量时,反应表现为放热;反之则为吸热。
2、能量变化的形式热能:是化学反应中最常见的能量变化形式,如燃烧反应、酸碱中和反应等。
电能:例如原电池反应,将化学能转化为电能。
光能:某些化学反应会伴随发光现象,如镁条燃烧。
三、吸热反应和放热反应1、吸热反应定义:吸收热量的化学反应。
特点:反应物的总能量低于生成物的总能量。
常见的吸热反应:大多数分解反应、氯化铵与氢氧化钡的反应等。
2、放热反应定义:放出热量的化学反应。
特点:反应物的总能量高于生成物的总能量。
常见的放热反应:燃烧反应、中和反应、金属与酸的置换反应等。
四、反应热1、概念化学反应在一定条件下放出或吸收的热量,通常用符号ΔH 表示。
单位:kJ/mol 。
2、计算方法ΔH =生成物的总能量反应物的总能量ΔH =反应物的键能总和生成物的键能总和五、热化学方程式1、书写规则注明反应物和生成物的状态,用 g 、 l 、 s 分别表示气态、液态、固态。
注明反应的温度和压强(若在常温常压下进行,可不注明)。
注明ΔH 的数值和正负号,ΔH 的单位为 kJ/mol 。
化学计量数可以是整数,也可以是分数,只表示物质的量。
2、注意事项反应热与物质的量相对应。
同一化学反应,化学计量数不同,ΔH 不同。
六、燃烧热1、定义在 101 kPa 时,1 mol 纯物质完全燃烧生成稳定的氧化物时所放出的热量。
2、注意事项可燃物的化学计量数为 1 。
生成稳定的氧化物,如碳燃烧生成二氧化碳,氢燃烧生成液态水。
高三化学必修一知识点化学反应与能量
高三化学必修一知识点化学反应与能量一、化学反应及能量变化1、化学反应的实质、特征和规律实质:反应物化学键的断裂和生成物化学键的形成特征:既有新物质生成又有能量的变化遵循的规律:质量守恒和能量守恒2、化学反应过程中的能量形式:常以热能、电能、光能等形式表现出来二、反应热与焓变1、反应热定义:在化学反应过程中,当反应物和生成物具有相同温度时,所吸收或放出的热量成为化学反应的反应热。
2、焓变定义:在恒温、恒压条件下的反应热叫反应的焓变,符号是△H,单位常用KJ/mol。
3、产生原因:化学键断裂—吸热化学键形成—放热4、计算方法:△H=生成物的总能量-反应物的总能量=反应物的键能总和-生成物的键能总和5、放热反应和吸热反应化学反应都伴随着能量的变化,通常表现为热量变化。
据此,可将化学反应分为放热反应和吸热反应。
(2)反应是否需要加热,只是引发反应的条件,与反应是放热还是吸热并无直接关系。
许多放热反应也需要加热引发反应,也有部分吸热反应不需加热,在常温时就可以进行。
中和热(1)定义:稀溶液中,酸和碱发生中和反应生成1mol水时的反应热三、化学电池:化学电池,是一种能将化学能直接转变成电能的装置,它通过化学反应,消耗某种化学物质,输出电能。
它包括一次电池、二次电池和燃料电池等几大类。
不同种类的电池:(一)一次电池一次电池的活性物质(发生氧化还原反应的物质)消耗到一定程度,就不能使用了。
一次电池中电解质溶液制成胶状,不流动,也叫干电池。
常用的有普通的锌锰干电池、碱性锌锰电池、锌汞电池、镁锰干电池等。
常见的一次电池:(1)普通锌锰干电池的周围是细密的石墨和去极化剂MnO2的混合物,在混合物周围再装入以NH4Cl溶液浸润ZnCl2,NH4Cl和淀粉或其他填充物(制成糊状物)。
为了避免水的蒸发,干电池用蜡封好。
干电池在使用时的电极反应为—负极:Zn—2e=Zn2+—正极:2NH4++2e+2MnO2=2NH3+Mn2O3+H2O总反应:Zn+2MnO2+2NH4+=Mn2O3+2NH3+Zn2++H2O(2)碱性锌锰干电池——负极:Zn+2OH—2e=Zn(OH)2——正极:2MnO2+2H2O+2e=2MnOOH+2OH总反应:Zn+2MnO2+2H2O=2MnOOH+Zn(OH)2(3)银一锌电池电子手表、液晶显示的计算器或一个小型的助听器等所需电流是微安或毫安级的,它们所用的电池体积很小,有“纽扣”电池之称。
化学必背知识点:化学反应与能量变化
化学必背知识点:化学反应与能量变化化学必背知识点:化学反应与能量变化2023年已经来临,化学领域的发展日新月异,为了帮助广大化学学习者更好地掌握化学反应与能量变化的知识,本文将介绍一些重要的必背知识点。
化学反应与能量变化是化学学习的基础,对于理解化学反应机理以及实验现象至关重要。
一、化学反应的能量变化化学反应涉及的能量变化主要包括热能的变化、活化能的变化以及反应焓的变化。
1. 热能变化:化学反应在进行过程中会释放或吸收热能。
释放热能的反应称为放热反应,而吸收热能的反应称为吸热反应。
热能的变化可以通过测量反应前后体系的温度变化或者利用热量计等实验仪器来进行实验测定。
2. 活化能变化:活化能是指反应物转变为产物所需的最小能量,也可以理解为反应物在反应过程中必须克服的能量障垒。
活化能的变化对于反应速率起着重要作用。
通常情况下,活化能较低的反应具有较快的反应速率。
3. 反应焓变化:反应焓是指反应前后体系的热能变化,并且可以通过实验方法测定。
反应焓变化可以是放热的,也可以是吸热的。
当反应焓变化为负值时,说明反应是放热的;当反应焓变化为正值时,说明反应是吸热的。
反应焓变化在热力学研究和工业生产中具有重要的应用价值。
二、能量守恒定律与反应热能量守恒定律是指在任何一个系统中,能量的总量在封闭系统的情况下不会增加或减少。
同样,在化学反应中,能量守恒定律同样适用。
化学反应中的能量转化是在一个封闭系统中进行的,而能量守恒定律保证了反应前后能量的总量不变。
反应热是指化学反应过程中放出或吸收的能量。
根据反应热的正负可以判断反应是放热反应还是吸热反应。
放热反应的反应热为负值,吸热反应的反应热为正值。
三、热力学第一定律与热化学方程式热力学第一定律,也被称为能量守恒定律,在化学反应中起着重要作用。
热力学第一定律可以用数学表达式表示为ΔU = q + w,其中ΔU代表内能的变化,q代表吸热或放热,w代表对外界做功。
热化学方程式是在化学方程式的基础上加上了反应热的表示。
高二化学选修4《化学反应原理》知识点规律大全
高中化学知识点规律大全(一)——化学反应与能量1.氧化还原反应[氧化还原反应]有电子转移(包括电子的得失和共用电子对的偏移)或有元素化合价升降的反应.如2Na+C12=2NaCl(有电子得失)、H2+C12=2HCl(有电子对偏移)等反应均属氧化还原反应。
氧化还原反应的本质是电子转移(电子得失或电子对偏移)。
[氧化还原反应的特征]在反应前后有元素的化合价发生变化.根据氧化还原反应的反应特征可判断一个反应是否为氧化还原反应.某一化学反应中有元素的化合价发生变化,则该反应为氧化还原反应,否则为非氧化还原反应。
[氧化剂与还原剂]单线桥法.表示在反应过程中反应物里元素原子间电子转移的数目和方向.用带箭头的连线从化合价升高的[离子反应]有离子参加或有离子生成的反应,都称为离子反应.离子反应的本质、类型和发生的条件:(1)离子反应的本质:反应物中某种离子的浓度减小.(2)离子反应的主要类型及其发生的条件:①离子互换(复分解)反应.具备下列条件之一就可以使反应朝着离子浓度减小的方向进行,即离子反应就会发生.a.生成难溶于水的物质.如:Cu2++2OH-=Cu(OH)2↓注意:当有关离子浓度足够大时,生成微溶物的离子反应也能发生.如:2Ag++SO42—=Ag2SO4↓Ca2++2OH-=Ca(OH)2↓或者由微溶物生成难溶物的反应也能生成.如当石灰乳与Na2CO3溶液混合时,发生反应:Ca(OH)2+CO32—=CaCO3↓+2OH-b.生成难电离的物质(即弱电解质).如:H++OH-=H2OH++CH3COO-=CH3COOHc.生成挥发性物质(即气体).如:CO32-+2H+=CO2↑+H2ONH4++OH-NH3↑+H2O②离子间的氧化还原反应.由强氧化剂与强还原剂反应,生成弱氧化剂和弱还原剂,即反应朝着氧化性、还原性减弱的方向进行.例如:Fe+Cu2+=Fe2++CuCl2+2Br-=2C1-+Br22MnO4-+16H++10C1-=2Mn2++5C12↑+8H2O书写离子方程式时应注意的问题:(1)电解质在非电离条件下(不是在水溶液中或熔融状态),虽然也有离子参加反应,但不能写成离子方程式,因为此时这些离子并没有发生电离.如NH4Cl固体与Ca(OH)2固体混合加热制取氨气的反应、浓H2SO4与固体(如NaCl、Cu等)的反应等,都不能写成离子方程式.相反,在某些化学方程式中,虽然其反应物不是电解质或强电解质,没有大量离子参加反应,但反应后产生了大量离子,因此,仍可写成离子方程式.如Na、Na2O、Na2O2、SO3、Cl2等与H2O的反应.(2)多元弱酸的酸式盐,若易溶于水,则成盐的阳离子和酸根离子可拆开写成离子的形式,而酸根中的H+与正盐阴离子不能拆开写.例如NaHS、Ca(HCO3)2等,只能分别写成Na+、HS-和Ca2+、HCO3-等酸式酸根的形式.(3)对于微溶于水的物质,要分为两种情况来处理:①当作反应物时?,微溶物要保留化学式的形式,不能拆开.②当作反应物时,若为澄清的稀溶液,应改写为离子形式,如澄清石灰水等;若为浊液或固体,要保留化学式的形式而不能拆开,如石灰乳、熟石灰等.(4)若反应物之间由于物质的量之比不同而发生不同的反应,即反应物之间可发生不止一个反应时,要考虑反应物之间物质的量之比不同,相应的离子方程式也不同.例如,向NaOH溶液中不断通入CO2气体至过量,有关反应的离子方程式依次为:CO2+2OH—=CO32—+H2O(CO2适量)CO2+OH—=HCO3—(CO2足量)若离子间不发生反应,就能大量共;Ag+与C1-、Br-、I-、SO32-,等等.HS-、SO32-、HSO3-等.F-、CH3COO-生成弱酸;OH-与NH4+、A1Fe2+SO*(6)说明:①无色透明的溶液中,不能存在有色离子,如Cu2+(②在强酸性溶液中,与H+③在强碱性溶液中,与OH-[离子方程式的书写步骤](1)“写”:写出完整的化学方程式.(2)“拆”:将化学方程式中易溶于水、易电离的物质(强酸、强碱、可溶性盐)拆开改写为离子形式;而难溶于水的物质(难溶性盐、难溶性碱)、难电离的物质(水、弱酸、弱碱)、氧化物、气体等仍用化学式表示.(3)“删”:将方程式两边相同的离子(包括个数)删去,并使各微粒符号前保持最简单的整数比.(4)“查”:检查方程式中各元素的原子个数和电荷总数是否左右相等.[复分解反应类型离子反应发生的条件]复分解反应总是朝着溶液中自由移动的离子数目减少的方向进行.具体表现为:(1)生成难溶于水的物质.如:Ba2++SO42-=BaSO4↓(2)生成难电离的物质(水、弱酸、弱碱).如H++OH-=H2O(3)生成气体.如:CO32-+2H+=CO2↑+H2O3.化学反应中的能量变化[放热反应]放出热量的化学反应.在放热反应中,反应物的总能量大于生成物的总能量:反应物的总能量=生成物的总能量+热量+其他形式的能量放热反应可以看成是“贮存”在反应物内部的能量转化并释放为热能及其他形式的能量的反应过程.[吸热反应]吸收热量的化学反应.在吸热反应中,反应物的总能量小于生成物的总能量:生成物的总能量=反应物的总能量+热量+其他形式的能量吸热反应也可以看成是热能及其他形式的能量转化并“贮存”为生成物内部能量的反应过程. *[反应热](1)反应热的概念:在化学反应过程中,放出或吸收的热量,统称为反应热.反应热用符号△H 表示,单位一般采用kJ ·mol -1.(2)反应热与反应物、生成物的键能关系:△H =生成物键能的总和-反应物键能的总和 (3)放热反应与吸热反应的比较.说明:放热反应和吸热反应过程中的能量变化示意图如图3—1—2所示. [ H 也不同.若不注明时,则是指在101kPa 和25对于相同物质的反应,当化学计量数不同时,其△H 2H 2(g)+O 2(g)=2H 2O(g)△H l =-483.6kJ ·mol —1H 2(g)+1/2O 2(g)=H 2O(g)△H 2=-241.8kJ ·mol —1显然,△H l =2△H 2.*[盖斯定律]应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关.如果一个反应可以分几步进行,则各步反应的反应热之和与该反应一步完成时的反应热是相同的. *4.燃烧热和中和热高中化学知识点规律大全(二)——化学反应速率和化学平衡1.化学反应速率[化学反应速率的概念及其计算公式](1)概念:化学反应速率是用来衡量化学反应进行的快慢程度,通常用单位时间内反应物浓度的减少或生成物浓度的增加来表示.单位有mol·L-1·min-1或mol·L-1·s-1(2)计算公式:某物质X的化学反应速率:注意①化学反应速率的单位是由浓度的单位(mol·L-1)和时间的单位(s、min或h)决定的,可以是mol·L-1·s -1、mol·L-1·min-1或mol·L-1·h-1,在计算时要注意保持时间单位的一致性.②对于某一具体的化学反应,可以用每一种反应物和每一种生成物的浓度变化来表示该反应的化学反应速率,虽然得到的数值大小可能不同,但用各物质表示的化学反应速率之比等于化学方程式中相应物质的化学计量数之比.如对于下列反应:[化学平衡](1)化学平衡研究的对象:可逆反应的规律. ①可逆反应的概念:在同一条件下,既能向正反应方向进行同时又能向逆反应方向进行的反应,叫做可逆反应.可[可逆反应]向生成物方向进行的反应叫正反应;向反应物方向进行的反应叫逆反应.在同一条件下,既能向正反应方向进行,同时又能向逆反应方向进行的反应,叫做可逆反应.说明(1)判断一个反应是否是可逆反应,必须满足两个条件:①在同一条件下;②正、逆反应同时进行.如H 2+I 22HI ,生成的HI 在持续加热的条件下同时分解,故该反应为可逆反应.而如:2H +O 22Hb CaCO3受热分解时,若在敞口容CaCO 3CaO+CO CaCO 3CaO+CO 物.(2)化学平衡状态.①定义:一定条件(恒温、恒容或恒压)和生成物)中各组分的质量分数(或体积分数)②化学平衡状态的形成过程:应速率的影响可知,此时ν正最大而ν逆为0.则ν正越来越小而ν逆越来越大.当反应进行到某一时刻,ν正=ν逆,各物质的浓度不再发生改变,反应混合物中各组分的质量分数(或体积分数)也不再发生变化,这时就达到了化学平衡状态. (3)化学平衡的特征: ①“动”:化学平衡是动态平衡,正反应和逆反应仍在继续进行,即ν正=ν逆≠0. ②“等”:达平衡状态时,ν正=ν逆,这是一个可逆反应达平衡的本质.ν正=ν逆的具体含意包含两个方面:a .用同一种物质来表示反应速率时,该物质的生成速率与消耗速率相等,即单位时间内消耗与生成某反应物或生成物的量相等;b .用不同物质来表示时,某一反应物的消耗速率与某一生成物的生成速率之比等于化学方程式中相应物质的化学计量数之比. ③“定”:达平衡时,混合物各组分的浓度一定;质量比(或物质的量之比、体积比)一定;各组分的质量分数(或摩尔分数、体积分数)一定;对于有颜色的物质参加或生成的可逆反应,颜色不改变.同时,反应物的转化率最大.对于反应前后气体分子数不相等的可逆反应,达平衡时:气体的总体积(或总压强)一定;气体的平均相对分子质量一定;恒压时气体的密度一定(注意:反应前后气体体积不变的可逆反应,不能用这个结论判断是否达到平衡). ④“变”.一个可逆反应达平衡后,若外界条件(浓度、温度、压强)改变,使各组分的质量(体积、摩尔、压强)分数也发生变化,平衡发生移动,直至在新的条件下达到新的平衡(注意:若只是浓度或压强改变,而ν正仍等于ν逆,则平衡不移动).反之,平衡状态不同的同一个可逆反应,也可通过改变外界条件使其达到同一平衡状态. ⑤化学平衡的建立与建立化学平衡的途径无关.对于一个可逆反应,在一定条件下,反应无论从正反应开始,还是从逆反应开始,或是正、逆反应同时开始,最终都能达到同一平衡状态.具体包括:a .当了T 、V 一定时,按化学方程式中各物质化学式前系数的相应量加入,并保持容器内的总质量不变,则不同起始状态最终可达到同一平衡状态.b .当T 、P 一定(即V 可变)时,只要保持反应混合物中各组分的组成比不变(此时在各种情况下各组分的浓度仍然相等,但各组分的物质的量和容器内的总质量不一定相等),则不同的起始状态最终也可达到同一平衡状态.3,在下列起始量不同情况下达到的是同一平衡状态.c .对于反应前后气体体积相等的可逆反应,不论是恒温、恒容或是恒温、恒压,在不同的起始状态下,将生成[化学平衡常数]在一定温度下,当一个可逆反应达到平衡状态时,生成物的平衡浓度用化学方程式中的化学计量数作为指数的乘积与反应物的平衡浓度用化学方程式中的化学计量数作为指数的乘积的比值是一个常数,这个常数叫做化学平衡常数,简称平衡常数.用符号K 表示.(1)平衡常数K 的表达式:对于一般的可逆反应:当在一定温度下达到化学平衡时,该反应的平衡常数为:注意:a .在平衡常数表达式中,反应物A 、B 和生成物C 、D 的状态全是气态,c(A)、c(B)、c(C)、c(D)均为平衡时的浓度.b .当反应混合物中有固体或纯液体时,他们的浓度看做是一个常数,不写入平衡常数的表达式中.例如,反应在高温下Fe 3O 4(s)+4H 23Fe(s)+H 2O(g)的平衡常数表达式为:4242)]([)]([H c O H c K =又如,在密闭容器中进行的可逆反应CaCO 3(s)CaO(s)+CO 2↑的平衡常数表达式为:K =c(CO 2)c .平衡常数K 的表达式与化学方程式的书写方式有关.例如: N 2+3H 22NH 3)]([)]([)]([232231N c H c NH c K ⋅=2NH 3N 2+3H 2233222)]([)]([)]([NH c H c N c K ⋅=21N 2+23H 2NH 32/322/1233)]([)]([)]([N c H c NH c K ⋅=显然,K 1、K 2、K 3具有如下关系:121K K =,2/113)(K K = (2)平衡常数K 值的特征:①K 值的大小与浓度、压强和是否使用催化剂无关.即对于一个给定的反应,在一定温度下,不论起始浓度(或压强)和平衡浓度(或压强)如何,也不论是否使用催化剂,达平衡时,平衡常数均相同.②K 值随温度的变化而变化.对于一个给定的可逆反应,温度不变时,K 值不变(而不论反应体系的浓度或压强如当逆K [=100⨯指定反应物的起始量%说明计算式中反应物各个量的单位可以是mol ·L -1”、mol ,对于气体来说还可以是L 或mL ,但必须注意保持分子、分母中单位的一致性. 3.影响化学平衡移动的条件[化学平衡的移动]已达平衡状态的可逆反应,当外界条件(浓度、温度、压强)改变时.由于对正、逆反应速率的影响不同,致使ν正≠ν逆,则原有的化学平衡被破坏,各组分的质量(或体积)分数发生变化,直至在新条件一定的情况下ν正′=ν逆′,而建立新的平衡状态.这种可逆反应中旧化学平衡的破坏、新化学平衡的建立,由原平衡状态向新化学平衡状态的转化过程,称为化学平衡的移动.说明(1)若条件的改变使ν正>ν逆,则平衡向正反应方向移动;若条件的改变使ν正<ν逆,则平衡向逆反应方向移动.但若条件改变时,ν正仍然等于ν逆,则平衡没有发生移动.(2)化学平衡能够发生移动,充分说明了化学平衡是一定条件下的平衡状态,是一种动态平衡.(3)化学平衡发生移动而达到新的平衡状态时,新的平衡状态与原平衡状态主要的不同点是:①新的平衡状态的ν正或ν逆与原平衡状态的ν正或ν逆不同;②平衡混合物里各组分的质量(或体积)分数不同. [影响化学平衡的因素](1)浓度对化学平衡的影响.一般规律:当其他条件不变时,对于已达平衡状态的可逆反应,若增加反应物浓度或减少生成物浓度,则平衡向正反应方向移动(即向生成物方向移动);若减少反应物浓度或增加生成物浓度,则平衡向逆反应方向移动(即向反应物方向移动).特殊性:对于气体与固体或固体与固体之间的反应,由于固体的浓度可认为是常数,因此改变固体的量平衡不发生移动.如反应C(s)+H 22(g)达平衡状态后,再加入焦炭的量,平衡不发生移动.说明①浓度对化学平衡的影响,可用化学反应速率与浓度的关系来说明.对于一个已达平衡状态的可逆反应,ν正=ν逆.若增大反应物的浓度,则ν正增大,而,ν逆增大得较慢,使平衡向正反应方向移动.如果减小生成物的浓度,这时虽然,ν正并未增大,但ν逆减小了,同样也使,ν正>ν逆,使平衡向正反应方向移动.同理可分析出:增大生成物的浓度或减小反应物的浓度时,平衡向逆反应方向移动. ②在生产上,往往采用增大容易取得的或成本较低的反应物浓度的方法,使成本较高的原料得到充分利用.例如,在硫酸工业里,常用过量的空气使SO 2充分氧化,以生成更多的SO 3.(2)压强对化学平衡的影响.一般规律:对于有气体参加且反应前后气体体积不相等的可逆反应,在其他条件不变的情况下,若增大压强(即相当于缩小容器的体积),则平衡向气体总体积减小的方向移动,若减小压强(即增大容器的体积),则平衡向气体总体积增大的方向移动.特殊性:①对于反应前后气体总体积相等的可逆反应达平衡后,改变压强,平衡不发生移动,但气体的浓度发生改变.例如可逆反应H 2(g)+I 2达平衡后,若加大压强,平衡不会发生移动,但由于容器体积减(碘蒸气为紫红色).②对于非气态反应(即无气体参加和 但平衡混合气中各组分的浓度并未改变,使反应混合物的浓度改变,造成ν正≠ν逆。
高三化学化学反应与能量要点(人教版)
高三化学化学反应与能量要点(人教版)一、化学反应及能量变化1、化学反应的实质、特征和规律实质:反应物化学键的断裂和生成物化学键的形成特征:既有新物质生成又有能量的变化遵循的规律:质量守恒和能量守恒2、化学反应过程中的能量形式:常以热能、电能、光能等形式表现出来二、反应热与焓变1、反应热定义:在化学反应过程中,当反应物和生成物具有相同温度时,所吸收或放出的热量成为化学反应的反应热。
2、焓变定义:在恒温、恒压条件下的反应热叫反应的焓变,符号是△ H,单位常用KJ/mol。
3、产生原因:化学键断裂—吸热化学键形成—放热4、计算方法:△日=生成物的总能量-反应物的总能量=反应物的键能总和-生成物的键能总和5、放热反应和吸热反应化学反应都伴随着能量的变化,通常表现为热量变化。
据此,可将化学反应分为放热反应和吸热反应(2) 反应是否需要加热,仅仅引发反应的条件,与反应是放热还是吸热并无直接关系。
很多放热反应也需要加热引发反应,也有部分吸热反应不需加热,在常温时就能够实行。
中和热(1) 定义:稀溶液中,酸和碱发生中和反应生成1mol 水时的反应热三、化学电池:化学电池,是一种能将化学能直接转变成电能的装置,它通过化学反应,消耗某种化学物质,输出电能。
它包括一次电池、二次电池和燃料电池等几大类。
不同种类的电池:( 一) 一次电池一次电池的活性物质( 发生氧化还原反应的物质) 消耗到一定水准,就不能使用了。
一次电池中电解质溶液制成胶状,不流动,也叫干电池。
常用的有普通的锌锰干电池、碱性锌锰电池、锌汞电池、镁锰干电池等。
常见的一次电池:(1) 普通锌锰干电池的周围是细密的石墨和去极化剂MnO2的混合物,在混合物周围再装入以NH4CI溶液浸润ZnCI2, NH4CI和淀粉或其他填充物(制成糊状物)为了避免水的蒸发,干电池用蜡封好。
干电池在使用时的电极反应为—负极:Zn —2e=Zn2+—正极:2NH4+ + 2e + 2MnO2 = 2NH3 +Mn2O3+ H2O 总反应:Zn + 2MnO2 + 2NH4+ = Mn2O3+ 2NH3 + Zn2++H2O(2) 碱性锌锰干电池——负极:Zn + 2OH —2e=Zn(OH)2——正极:2MnO2 + 2H2O +2e=2MnOOH + 2OH总反应:Zn +2MnO2 + 2H2O=2MnOOH +Zn(OH)2(3) 银一锌电池电子手表、液晶显示的计算器或一个小型的助听器等所需电流是微安或毫安级的,它们所用的电池体积很小,有“纽扣”电池之称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中化学知识点规律大全——化学反应及其能量变化1.氧化还原反应[氧化还原反应]有电子转移(包括电子的得失和共用电子对的偏移)或有元素化合价升降的反应.如2Na+ C12=2NaCl(有电子得失)、H2+ C12=2HCl(有电子对偏移)等反应均属氧化还原反应。
氧化还原反应的本质是电子转移(电子得失或电子对偏移)。
[氧化还原反应的特征]在反应前后有元素的化合价发生变化.根据氧化还原反应的反应特征可判断一个反应是否为氧化还原反应.某一化学反应中有元素的化合价发生变化,则该反应为氧化还原反应,否则为非氧化还原反应。
氧化剂与还原剂的相互关系重要的氧化剂和还原剂:(1)所含元素的化合价处在最高价的物质只能得到电子,只具有氧化性,只能作氧化剂(注:不一定是强氧化剂)。
重要的氧化剂有:①活泼非金属单质,如X2(卤素单质)、O2、O3等。
②所含元素处于高价或较高价时的氧化物,如MnO2、NO2、PbO2等。
③所含元素处于高价时的含氧酸,如浓H2SO4、HNO3等.④所含元素处于高价时的盐,如KMnO4、KClO3、K2Cr2O7等.⑤金属阳离子等,如Fe3+、Cu2+、Ag +、H+等.⑥过氧化物,如Na2O2、H2O2等.⑦特殊物质,如HClO也具有强氧化性.(2)所含元素的化合价处在最低价的物质只能失去电子,只具有还原性,只能作还原剂(注:不一定是强还原剂).重要的还原剂有:①活泼金属单质,如Na、K、Ca、Mg、Al、Fe等.②某些非金属单质,如C、H2、Si等.③所含元素处于低价或较低价时的氧化物,如CO、SO2等.④所含元素处于低价或较低价时的化合物,如含有2-S、4+S、1-I、1-Br、2+Fe的化合物H2S、Na2S、H2SO3、Na2SO3、HI、HBr、FeSO4、NH3等.(3)当所含元素处于中间价态时的物质,既有氧化性又有还原性,如H2O2、SO2、Fe2+等.(4)当一种物质中既含有高价态元素又含有低价态元素时,该物质既有氧化性又有还原性.例如,盐酸(HCl)与Zn反应时作氧化剂,而浓盐酸与MnO2共热反应时,则作还原剂.[氧化还原反应的分类](1)不同反应物间的氧化还原反应.①不同元素间的氧化还原反应.例如:MnO2+ 4HCl(浓) MnCl2+ C12↑+ 2H2O 绝大多数氧化还原反应属于这一类.②同种元素间的氧化还原反应.例如:2H2S+ SO2=3S+ 2H2O KClO3+ 6HCl(浓)=KCl+ 3C12↑+ 3H2O在这类反应中,所得氧化产物和还原产物是同一物质,这类氧化还原反应又叫归中反应.(2)同一反应物的氧化还原反应.①同一反应物中,不同元素间的氧化还原反应.例如:2KClO32KCl+ 3O2↑②同一反应物中,同种元素不同价态间的氧化还原反应.例如:NH4NO3N2O↑+ 2H2O③同一反应物中,同种元素同一价态间的氧化还原反应.例如:C12+ 2NaOH=NaCl+ NaClO+ H2O 3NO2+ H2O=2HNO3+ NO在这类反应中,某一元素的化合价有一部分升高了,另一部分则降低了.这类氧化还原反应又叫歧化反应.[氧化还原反应与四种基本反应类型的关系]如右图所示.由图可知:置换反应都是氧化还原反应;复分解反应都不是氧化还原反应,化合反应、分解反应不一定是氧化还原反应.[氧化还原反应中电子转移的方向、数目的表示方法](1)单线桥法.表示在反应过程中反应物里元素原子间电子转移的数目和方向.用带箭头的连线从化合价升高的元素开始,指向化合价降低的元素,再在连线上方标出电子转移的数目.在单线桥法中,箭头的指向已经表明了电子转移的方向,因此不能再在线桥上写“得”、“失”字样.(2)双线桥法.表示在反应物与生成物里,同一元素原子在反应前后电子转移的数目和方向.在氧化剂与还原产物、还原剂与氧化产物之间分别用带箭头的连线从反应前的有关元素指向反应后的该种元素,并在两条线的上、下方分别写出“得”、“失”电子及数目.例如:[氧化还原反应的有关规律](1)氧化性、还原性强弱判断的一般规律.氧化性、还原性的强弱取决于得失电子的难易;而与得失电子数的多少无关.①金属活动性顺序表.金属的活动性越强,金属单质(原子)的还原性也越强,而其离子的氧化性越弱.如还原性:Mg>Fe>Cu>Ag;氧化性:Ag+>Cu2+>Fe2+>Mg2+②同种元素的不同价态.特殊情况;氯的含氧酸的氧化性顺序为:HClO>HClO3>HClO4.⑧氧化还原反应进行的方向.一般而言,氧化还原反应总是朝着强氧化性物质与强还原性物质反应生成弱氧化性物质与弱还原性物质的方向进行.在一个给出的氧化还原反应方程式中,氧化剂和氧化产物都有氧化性,还原剂和还原产物都有还原性,其氧化性、还原性的强弱关系为:氧化性:氧化剂>氧化产物;还原性:还原剂>还原产物反之,根据给出的物质的氧化性、还原性的强弱,可以判断某氧化还原反应能否自动进行.④反应条件的难易.不同的氧化剂(还原剂)与同一还原剂(氧化剂)反应时,反应越易进行,则对应的氧化剂(还原剂)的氧化性(还原性)越强,反之越弱.⑤浓度.同一种氧化剂(或还原剂),其浓度越大,氧化性(或还原性)就越强.⑥H+浓度.对于在溶液中进行的氧化还原反应,若氧化剂为含氧酸或含氧酸盐,则溶液中H +浓度越大,其氧化性就越强.(2)氧化还原反应中元素化合价的规律.①一种元素具有多种价态时,处于最高价态时只具有氧化性,处于最低价态时只具有还原性,而处于中间价态时则既有氧化性又具有还原性.但须注意,若一种化合物中同时含最高价态元素和最低价态元素时,则该化合物兼有氧化性和还原性,如HCl.②价态不相交规律.同种元素不同价态间相互反应生成两种价态不同的产物时,化合价升高与化合价降低的值不相交,即高价态降低后的值一定不低于低价态升高后的值,也可归纳为“价态变化只靠拢、不相交”.所以,同种元素的相邻价态间不能发生氧化还原反应;同种元素间隔中间价态,发生归中反应.(3)氧化还原反应中的优先规律:当一种氧化剂(还原剂)同时与多种还原剂(氧化剂)相遇时,该氧化剂(还原剂)首先与还原性(氧化性)最强的物质发生反应,而只有当还原性(氧化性)最强的物质反应完后,才依次是还原性(氧化性)较弱的物质发生反应.(4)电子守恒规律.在任何氧化还原反应中,氧化剂得到的电子总数等于还原剂失去的电子总数(即氧化剂化合价升高的总数等于还原剂化合价降低的总数).这一点也是氧化还原反应配平的基础。
2.离子反应[离子反应]有离子参加或有离子生成的反应,都称为离子反应.离子反应的本质、类型和发生的条件:(1)离子反应的本质:反应物中某种离子的浓度减小.(2)离子反应的主要类型及其发生的条件:①离子互换(复分解)反应.具备下列条件之一就可以使反应朝着离子浓度减小的方向进行,即离子反应就会发生.a.生成难溶于水的物质.如:Cu2++ 2OH-=Cu(OH)2↓注意:当有关离子浓度足够大时,生成微溶物的离子反应也能发生.如:2Ag++ SO42—=Ag2SO4↓Ca2++ 2OH-=Ca(OH)2↓或者由微溶物生成难溶物的反应也能生成.如当石灰乳与Na2CO3溶液混合时,发生反应:Ca(OH)2 + CO32—=CaCO3↓+ 2OH-b.生成难电离的物质(即弱电解质).如:H++ OH-=H2O H++ CH3COO-=CH3COOH c.生成挥发性物质(即气体).如:CO32-+ 2H+=CO2↑+ H2O NH4++ OH-NH3↑+ H2O ②离子间的氧化还原反应.由强氧化剂与强还原剂反应,生成弱氧化剂和弱还原剂,即反应朝着氧化性、还原性减弱的方向进行.例如:Fe + Cu2+=Fe2++ Cu Cl2 + 2Br-=2C1-+ Br22MnO4-+ 16H++ 10C1-=2Mn2++ 5C12↑+ 8H2O书写离子方程式时应注意的问题:(1)电解质在非电离条件下(不是在水溶液中或熔融状态),虽然也有离子参加反应,但不能写成离子方程式,因为此时这些离子并没有发生电离.如NH4Cl固体与Ca(OH)2固体混合加热制取氨气的反应、浓H2SO4与固体(如NaCl、Cu等)的反应等,都不能写成离子方程式.相反,在某些化学方程式中,虽然其反应物不是电解质或强电解质,没有大量离子参加反应,但反应后产生了大量离子,因此,仍可写成离子方程式.如Na、Na2O、Na2O2、SO3、Cl2等与H2O的反应.(2)多元弱酸的酸式盐,若易溶于水,则成盐的阳离子和酸根离子可拆开写成离子的形式,而酸根中的H+与正盐阴离子不能拆开写.例如NaHS、Ca(HCO3)2等,只能分别写成Na -等酸式酸根的形式.+、HS-和Ca2+、HCO3(3)对于微溶于水的物质,要分为两种情况来处理:①当作反应物时?,微溶物要保留化学式的形式,不能拆开.②当作反应物时,若为澄清的稀溶液,应改写为离子形式,如澄清石灰水等;若为浊液或固体,要保留化学式的形式而不能拆开,如石灰乳、熟石灰等.(4)若反应物之间由于物质的量之比不同而发生不同的反应,即反应物之间可发生不止一个反应时,要考虑反应物之间物质的量之比不同,相应的离子方程式也不同.例如,向NaOH溶液中不断通入CO2气体至过量,有关反应的离子方程式依次为:CO2+ 2OH—=CO32—+ H2O(CO2适量)CO2+ OH—=HCO3—(CO2足量)在溶液中离子能否大量共存的判断方法:几种离子在溶液中能否大量共存,实质上就是看它们之间是否发生反应.若离子间不发生反应,就能大量共存;否则就不能大量共存.离子间若发生下列反应之一,就不能大量共存.(1)生成难溶物或微溶物.如Ca2+与CO32-、SO42-、OH-;Ag+与C1-、Br-、I-、SO32-,等等.(2)生成气体.如NH4+与OH-;H+与HCO3-、CO32-、S2-、HS-、SO32-、HSO3-等.(3)生成难电离物质(弱酸、弱碱、水).如H+与C1O-、F-、CH3COO-生成弱酸;OH-与NH4+、A13+、Fe3+、Fe2+、Cu2+等生成弱碱;H+与OH-生成H2O.(4)发生氧化还原反应.具有氧化性的离子(如MnO4-、ClO-、Fe3+等)与具有还原性的离子( 如S2-、I-、SO32-、Fe2+等)不能共存.应注意的是,有些离子在碱性或中性溶液中可大量共存,但在酸性条件下则不能大量共存,如SO32-与S2-,NO3-与I-、S2-、SO32-、Fe2+等.*(5)形成配合物.如Fe3+与SCN-因反应生成Fe(SCN)3而不能大量共存.*(6)弱酸根阴离子与弱碱阳离子因易发生双水解反应而不能大量共存,例如Al3+与HCO3-、CO32-、A1O2-等.说明:在涉及判断离子在溶液中能否大量共存的问题时,要注意题目中附加的限定性条件:①无色透明的溶液中,不能存在有色离子,如Cu2+(蓝色)、Fe3+(黄色)、Fe2+(浅绿色)、MnO4-(紫色).②在强酸性溶液中,与H+起反应的离子不能大量共存.③在强碱性溶液中,与OH-起反应的离子不能大量共存.[电解质与非电解质](1)电解质:在水溶液里或者熔融状态下能够导电的化合物叫电解质.电解质不一定能导电,而只有在溶于水或熔融状态时电离出自由移动的离子后才能导电(因此,电解质导电的原因是存在自由移动的离子).能导电的不一定是电解质,如金属、石墨等单质.(2)非电解质:在水溶液里和熔融状态下都不能导电的化合物.因为非电解质归属于化合物,故如C12等不导电的单质不属于非电解质.(3)电解质与非电解质的比较.说明某些气体化合物的水溶液虽然能导电,但其原因并非该物质本身电离生成了自由移动的离子,因此这些气体化合物属于非电解质.例如;氨气能溶于水,但NH3是非电解质.氨水能导电是因为NH3与H2O反应生成了能电离出NH4+和OH-的NH3·H2O的缘故,所以NH3·H2O才是电解质.[强电解质与弱电解质](1)强电解质:溶于水后全部电离成离子的电解质.(2)弱电解质:溶于水后只有一部分分子能电离成离子的电解质.注意: (1)在含有阴、阳离子的固态强电解质中,虽然有阴、阳离子存在,但这些离子不能自由移动,因此不导电.如氯化钠固体不导电.(2)电解质溶液导电能力的强弱取决于溶液中自由移动离子浓度的大小(注意:不是取决于自由移动离子数目的多少).溶液中离子浓度大,溶液的导电性就强;反之,溶液的导电性就弱.因此,强电解质溶液的导电能力不一定比弱电解质溶液的导电能力强.但在相同条件(相同浓度、相同温度)下,强电解质溶液的导电能力比弱电解质的导电能力强.[离子方程式]用实际参加反应的离子符号来表示离子反应的式子.所谓实际参加反应的离子,即是在反应前后数目发生变化的离子.离子方程式不仅表示一定物质间的某个反应,而且可以表示所有同一类型的离子反应.如:H++ OH-=H2O可以表示强酸与强碱反应生成可溶性盐的中和反应.[离子方程式的书写步骤](1)“写”:写出完整的化学方程式.(2)“拆”:将化学方程式中易溶于水、易电离的物质(强酸、强碱、可溶性盐)拆开改写为离子形式;而难溶于水的物质(难溶性盐、难溶性碱)、难电离的物质(水、弱酸、弱碱)、氧化物、气体等仍用化学式表示.(3)“删”:将方程式两边相同的离子(包括个数)删去,并使各微粒符号前保持最简单的整数比.(4)“查”:检查方程式中各元素的原子个数和电荷总数是否左右相等.[复分解反应类型离子反应发生的条件]复分解反应总是朝着溶液中自由移动的离子数目减少的方向进行.具体表现为:(1)生成难溶于水的物质.如:Ba2++ SO42-=BaSO4↓(2)生成难电离的物质(水、弱酸、弱碱).如H++ OH-=H2O(3)生成气体.如:CO32-+ 2H+=CO2↑+ H2O3.化学反应中的能量变化[放热反应] 放出热量的化学反应.在放热反应中,反应物的总能量大于生成物的总能量:反应物的总能量=生成物的总能量+ 热量+ 其他形式的能量放热反应可以看成是“贮存”在反应物内部的能量转化并释放为热能及其他形式的能量的反应过程.[吸热反应] 吸收热量的化学反应.在吸热反应中,反应物的总能量小于生成物的总能量:生成物的总能量=反应物的总能量+ 热量+ 其他形式的能量吸热反应也可以看成是热能及其他形式的能量转化并“贮存”为生成物内部能量的反应过程.*[反应热](1)反应热的概念:在化学反应过程中,放出或吸收的热量,统称为反应热.反应热用符号△H表示,单位一般采用kJ·mol-1.(2)反应热与反应物、生成物的键能关系:△H=生成物键能的总和-反应物键能的总和说明:放热反应和吸热反应过程中的能量变化示意图如图3—1—2所示.[热化学方程式](1)热化学方程式的概念:表明反应所放出或吸收热量的化学方程式,叫做热化学方程式.(2)书写热化学方程式时应注意的问题:①需注明反应的温度和压强.因为反应的温度和压强不同时,其△H也不同.若不注明时,则是指在101kPa和25℃时的数据.②反应物、生成物的聚集状态要注明.同一化学反应,若物质的聚集状态不同,则反应热就不同.例如:H2(g) + 1/2O2(g)=H2O(g) △H=-241.8kJ·mol—1H2(g) + 1/2O2(g)=H2O(l) △H=-285.8kJ·mol—1比较上述两个反应可知,由H2与O2反应生成1 mol H2O(l)比生成1 mol H2O(g)多放出44 kJ·mol —1的热量.③反应热写在化学方程式的右边.放热时△H用“-”,吸热时△H用“+”.例如:H2(g) + 1/2O2(g)=H2O(g) -241.8kJ·mol—1④热化学方程式中各物质前的化学计量数不表示分子个数,而只表示物质的量(mol),因此,它可用分数表示.对于相同物质的反应,当化学计量数不同时,其△H也不同.例如:2H2(g) + O2(g)=2H2O(g) △H l=-483.6 kJ·mol—1H2(g) + 1/2O2(g)=H2O(g) △H2=-241.8kJ·mol—1显然,△H l=2△H2.*[盖斯定律] 对于任何一个化学反应,不管是一步完成还是分几步完成,其反应热是相同的.也就是说,化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关.如果一个反应可以分几步进行,则各步反应的反应热之和与该反应一步完成时的反应热是相同的.。