2018年中考数学总复习第一编教材知识梳理篇第2章方程组与不等式组第1节一次方程组及应用精讲试题
中考数学复习《二元一次方程组》
中考考点精讲精练
考点1 解二元一次方程组[5年1考:2013年(解答题)]
典型例题
1. 解方程组: x+y=5, 2x+3y=11.
解: x+y=5, ① 2x+3y=11. ②
①×3-②,得x=4. 把x=4代入①,得y=1. 则方程组的解为 x=4,
y=1.
2x+3y=12, 2. 解方程组:
y= -1.
4. 解方程组: x+3y=-1, 3x-2y=8.
解: x+3y=-1, ①
3x-2y=8. ②
由①得x=-1-3y. ③
把③代入②,得3(-1-3y)-2y=8.
解得y=-1.
则x=-1-3×(-1)=2. 故二元一次方程组的解为
x=2, y=-1.
考点点拨: 本考点是广东中考的高频考点,题型一般为计算题,难度简 单. 解答本考点的有关题目,关键在于熟练掌握消元法和代入法 解二元一次方程组. 注意以下要点: (1)用代入消元法解二元一次方程组的步骤; (2)用加减消元法解二元一次方程组的步骤.
பைடு நூலகம்
方法规律
1. 用代入消元法解二元一次方程组的一般步骤(概括为“变, 代,解,回代,联”五步) (1)从方程组中选出一个系数比较简单的方程,将这个方程中
的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示 出来,即写成y=ax+b的形式,即“变”. (2)将y=ax+b代入到另一个方程中,消去y,得到一个关于x的
3. 列二元一次方程组解应用题的一般步骤(概括为“审,找, 列,解,答”五步) (1)审:通过审题,把实际问题抽象成数学问题,分析已知数 和未知数,并用字母表示其中的两个未知数. (2)找:找出能够表示题意的两个相等关系. (3)列:根据这两个相等关系列出必需的代数式,从而列出方 程组. (4)解:解这个方程组,求出两个未知数的值. (5)答:在对求出的方程组的解做出是否合理的判断的基础上, 写出答案.
第2讲 方程(组)与不等式(组)(解析)
第2讲 方程(组)与不等式(组)知识点1 一元一次方程1.等式及其性质 ⑴ 等式:用等号“=”来表示等量关系的式子叫等式.⑵ 性质:① 如果,那么b ±c ;② 如果,那么bc ;如果,那么b c2. 方程、一元一次方程的解、概念(1) 方程:含有未知数的等式叫做方程;使方程左右两边的值相等的未知数的值,叫做方程的解;求方程解的过程叫做解方程. 方程的解与解方程不同.(2) 一元一次方程:在整式方程中,只含有一个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程;它的一般形式为ax+b=0. 3. 解一元一次方程的步骤:①去分母;②去;③移;④合并;⑤系数化为1. 4. 一元一次方程的应用:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数. (3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.b a ==±c a b a ==ac ba =()0≠c =c a ()0≠a(6)“答”就是写出答案,注意单位要写清楚.【典例】例1如果3m=3n,那么下列等式不一定成立的是()A.m﹣3=n﹣3B.2m+3=3n+2C.5+m=5+n D.m−3=n −3【解答】解:A、由3m=3n得m=n,两边都减去3得m﹣3=n﹣3,原变形正确,故此选项不符合题意;B、3m=3n两边都加上2得3m+2=3n+2,原变形错误,故此选项符合题意;C、由3m=3n得m=n,两边都加上5得5+m=5+n,原变形正确,故此选项不符合题意;D、由3m=3n得m=n,两边都除以﹣3得m−3=n−3,原变形正确,故此选项不符合题意;故选:B.【方法总结】本题考查了等式的性质,解题的关键是掌握等式的性质:性质1:等式两边同时加上(或减去)同一个代数式,所得结果仍是等式;性质2:等式两边同时乘同一个数(或除以一个不为0的数),所得结果仍是等式.例2解方程:(1)2﹣3(x﹣1)=2(x﹣2);(2).【解答】解:(1)2﹣3(x﹣1)=2(x﹣2),去括号,得2﹣3x+3=2x﹣4,移项,得﹣3x﹣2x=﹣4﹣2﹣3,合并同类项,得﹣5x=﹣9,系数化为1,得x=;(2),去分母,得3(3x+2)=15﹣5(2x﹣1),去括号,得9x+6=15﹣10x+5,移项,得9x+10x=15+5﹣6,合并同类项,得19x=24,系数化为1,得x=.【方法总结】本题考查了解一元一次方程,掌握解一元一次方程的基本步骤是解答本题的关键.例3若方程12﹣3(x+1)=7﹣x的解与关于x的方程6﹣2k=2(x+3)的解相同,求k的值.【解答】解:∵12﹣3(x+1)=7﹣x,∴12﹣3x﹣3=7﹣x,∴2=2x,∴x=1,把x=1代入6﹣2k=2(x+3)得6﹣2k=8,∴k=﹣1.【方法总结】本题考查了同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程.例4若方程2(2x﹣1)=3x+1与关于x的方程2ax=(a+1)x﹣6的解互为倒数,求a的值.【解答】解:解方程①得,x=3,方程②的解为x=,代入得,解得a=﹣17.【方法总结】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.例5我市某区为鼓励毕业大学生自主创业,经过调研决定:在2021年对60名自主创业的大学生进行奖励,共计奖励50万元.奖励标准是:大学生自主创业连续经营一年以上的给予5000元奖励;自主创业且解决3人以上失业人员稳定就业的,再给予1万元奖励.问:该区自主创业大学生中连续经营一年以上的和自主创业且解决3人以上失业人员稳定就业的大学生分别有多少人?【解答】解:50万=500000元,设自主创业且连续经营一年以上的大学生有x人,自主创业且解决3人以上失业人员稳定就业的大学生有(60﹣x)人,根据题意得:5000x +10000(60﹣x )=500000, 解得:x =20,则60﹣x =60﹣20=40(人),答:自主创业且连续经营一年以上的大学生有20人,自主创业且解决3人以上失业人员稳定就业的大学生有40人.【方法总结】本题考查一元一次方程的应用,关键是找到等量关系列出方程.例6两辆汽车从相距80km 的两地同时出发相向而行,甲车的速度比乙车的速度快20km /h ,半小时后两车相遇? (1)两车的速度各是多少? (2)两车出发几小时后相距20km ?【解答】解:(1)设乙车的速度为xkm /h ,则甲车速度为(x +20)km /h , 根据题意得:(x +x +20)×12=80, 解得:x =70, ∴x +20=70+20=90,则甲车速度为90km /h ,乙车速度为70m /h ; (2)设两车出发y 小时相距20km , 当两车没有相遇时相距20km , 根据题意得:(70+90)y +20=80, 解得:y =38;当两车相遇后相距20km , 根据题意得:(70+90)y =80+20, 解得:y =58,综上,两车出发38小时或58小时后相距20km .【方法总结】此题考查了一元一次方程的应用,弄清题意是解本题的关键.【随堂练习】1.在下列方程的变形中,正确的是( ) A .由2x +1=3x ,得2x +3x =1 B .由25x =34,得x =34×52C .由2x =34,得x =32D .由−x+13=2,得﹣x +1=6 【解答】解:A 、由2x +1=3x 得2x ﹣3x =﹣1,原变形错误,故此选项不符合题意; B 、由25x =34得x =34×52,原变形正确,故此选项符合题意;C 、由2x =34得x =38,原变形错误,故此选项不符合题意; D 、由−x+13=2得﹣x ﹣1=6,原变形错误,故此选项不符合题意; 故选:B . 2.解方程:(1)3x +2=4(2x +3); (2)﹣1.【解答】解:(1)去括号得:3x +2=8x +12, 移项得:3x ﹣8x =12﹣2, 合并得:﹣5x =10, 解得:x =﹣2;(2)去分母得:2(5y ﹣9)=3(3y ﹣1)﹣6, 去括号得:10y ﹣18=9y ﹣3﹣6, 移项得:10y ﹣9y =﹣3﹣6+18, 合并得:y =9. 3.某同学在解关于y 的方程﹣=1去分母时,忘记将方程右边的1乘以12,从而求得方程的解为y =10. (1)求a 的值; (2)求方程正确的解.【解答】解:(1)该同学去分母时方程右边的1忘记乘12, 则原方程变为3(3y ﹣a )﹣2(5y ﹣7a )=1, ∵方程的解为y =10,代入得3(30﹣a )﹣2(50﹣7a )=1.解得a=1.(2)将a=1代入方程﹣=1,得﹣=1,解得y=﹣1,即原方程的解为y=﹣1.4.已知关于x的方程2(x﹣1)=3m﹣1与3x﹣2=﹣4的解相同,求m的值.【解答】解:因为关于x的方程2(x﹣1)=3m﹣1与3x﹣2=﹣4的解相同,所以解方程3x﹣2=﹣4,得x=−2 3,把x=−23代入2(x﹣1)=3m﹣1,得2(−23−1)=3m﹣1,解得m=−7 9.5.为加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格如表:每月用水量单价(元)不超过23立方米的部分m超过23立方米的部分m+1.1(1)某用户4月份用水10立方米,共交费26元,求m的值;(2)在(1)的前提下,该用户5月份交水费82元,请问该用户5月份用水多少立方米?【解答】解:(1)依题意得:10m=26,∴m=2.6,答:m的值为2.6;(2)∵23×2.6=59.8<82,∴该用户5月份用水超过23立方米,设该用户5月份用水x立方米,根据题意得:23×2.6+(2.6+1.1)•(x﹣23)=82,解得x=29,答:该用户5月份用水为29立方米.知识点2 一元二次方程1.一元二次方程:在整式方程中,只含一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程.一元二次方程的一般形式是)0(02≠=++a c bx ax .其中2ax 叫做二次项,bx 叫做一次项,c 叫做常数项;a 叫做二次项的系数,b 叫做一次项的系数. 2. 一元二次方程的常用解法:(1)直接开平方法:形如或的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为的形式,⑤如果是非负数,即,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程的求根公式 .(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为0;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3. 一元二次方程根的判别式:关于x 的一元二次方程的根的判别式为=∆. (1)>0一元二次方程有两个不相等的实数根,即242ab b ac -±-.(2)=0一元二次方程有两个相等的实数根,即2ba-. )0(2≥=a a x )0()(2≥=-a a b x ()02≠=++a o c bx ax 2()x m n +=0n ≥20(0)ax bx c a ++=≠221,2440)b b ac x b ac -±-=-≥()002≠=++a c bx ax ac b 42-ac b 42-⇔()002≠=++a c bx ax =2,1x ac b 42-⇔==21x x(3)<0一元二次方程没有实数根.4. 一元二次方程根与系数的关系关于x 的一元二次方程有两根分别为,,那么 a b -,c a. 【典例】例1若关于x 的方程(m +1)x |m |+1+x ﹣3=0是一元二次方程,求m 的值. 【解答】解:∵关于x 的方程(m +1)x |m |+1+x ﹣3=0是一元二次方程, ∴,解得m =1.【方法总结】本题主要考查一元二次方程的定义,一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0),特别要注意a ≠0的条件. 例2解方程:9(x ﹣1)2=16(x +2)2.【解答】解:两边直接开平方,得:3(x ﹣1)=±4(x +2), 即3x ﹣3=4x +8或3x ﹣3=﹣4x ﹣8, 解得:x =﹣11或x =﹣.【方法总结】考查了解一元二次方程﹣直接开平方法.解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x 2=a (a ≥0);ax 2=b (a ,b 同号且a ≠0);(x +a )2=b (b ≥0);a (x +b )2=c (a ,c 同号且a ≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”. (2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点. 例3用配方法解方程:x 2﹣8x +13=0.ac b 42-⇔()002≠=++a c bx ax 20(0)ax bx c a ++=≠1x 2x =+21x x =⋅21x x移项,得:x2﹣8x=﹣13,配方,得:x2﹣8x+16=﹣13+16,即(x﹣4)2=3,开方,得:x﹣4=±,∴x1=+4,x2=﹣+4.【方法总结】本题考查解一元二次方程—配方法,解答本题的关键是会用配方法解方程.例4若关于x的一元二次方程kx2﹣6x+9=0有实数根,求k的取值范围.【解答】解:根据题意得k≠0且△=(﹣6)2﹣4k×9≥0,解得k≤1且k≠0.【方法总结】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.例5岳池县是电子商务百强县,某商店积极利用网络优势销售当地特产—西板豆豉.已知每瓶西板豆豉的成本价为16元,当销售单价定为20元时,每天可售出80瓶.为了回馈广大顾客,该商店现决定降价销售(销售单价不低于成本价).经市场调查反映:若销售单价每降低0.5元,则每天可多售出20瓶.(1)当销售单价降低1元时,每天的销售利润为360元;(2)为尽可能让利于顾客,若该商店销售西板豆豉每天的实际利润为350元,求西板豆豉的销售单价.【解答】解:(1)(20﹣16﹣1)×[80+20×(1÷0.5)]=360(元).答:如果销售单价降低1元,那么每天的销售利润为360元.故答案为:360;(2)设销售单价降低x元,则每瓶的销售利润为20﹣16﹣x=(4﹣x)元,每天的销售量为80+20×=(80+40x)瓶,依题意,得:(4﹣x)(80+40x)=350,解得:x1=1.5,x2=0.5,又∵为尽快减少库存,∴x=1.5,∴20﹣x=18.5,答:西板豆豉的销售单价为18.5元.【方法总结】本题考查了一元二次方程的应用,找准等量关系:每天的销售利润=每瓶的销售利润×日销售量是解决问题的关键.例6在学校劳动基地里有一块长40米、宽20米的矩形试验田,为了管理方便,准备沿平行于两边的方向纵、横开辟三条等宽的小道,如图.已知这块矩形试验田中种植的面积为741平方米,小道的宽为多少米?【解答】解:设小道的宽为x米,则剩余部分可合成长(40﹣x)米,宽(20﹣x)米的矩形,依题意得:(40﹣x)(20﹣x)=741,整理得:x2﹣60x+59=0,解得:x1=1,x2=59.又∵20﹣x>0,∴x<20,∴x=1.答:小道的宽为1米.【方法总结】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.【随堂练习】1.解方程:(1)(x﹣1)2﹣=0;(2)2x2+8x﹣1=0.【解答】解:(1)(x﹣1)2﹣=0,(x﹣1)2=,∴x﹣1=或x﹣1=﹣,解得x1=,x2=﹣;(2)2x2+8x﹣1=0,x2+4x=,x2+4x+4=+4,即(x+2)2=,则x+2=±,∴x1=﹣2+,x2=﹣2﹣.2.已知关于x的方程x2+kx﹣2=0.(1)求证:不论k取何实数,该方程总有两个不相等的实数根;(2)若该方程的一个根为2,求它的另一个根.【解答】解:(1)∵a=1,b=k,c=﹣2,∴b2﹣4ac=k2+8,∵不论k取何实数,k2≥0,∴k2+8>0,即b2﹣4ac>0,∴不论k取何实数,该方程总有两个不相等的实数根;(2)设方程的另一个根为β,∴2β=﹣2,∴β=﹣1,∴另一个根为﹣1.3.惠友超市于今年年初以25元/件的进价购进一批商品.当商品售价为40元/件时,一月份销售了256件.二、三月份该商品十分畅销,销售量持续走高.在售价不变的基础上,三月份的销售量达到了400件.(1)求二、三月份销售量的月平均增长率.(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每件每降价1元,销售量增加5件.当每件商品降价多少元时,商场获利4250元?【解答】解:(1)设二、三这两个月的月平均增长率为x,则256(1+x)2=400,解得:x1=25%,x2=﹣2.25(不合题意,舍去),答:二、三月份销售量的月平均增长率是25%;(2)设降价y元,(40﹣y﹣25)(400+5y)=4250,整理得:y2+65y﹣350=0,解得:y1=5,y2=﹣70(不合题意,舍去),答:当商品降价5元时,商场当月获利4250元.4.如图是一张长20cm、宽13cm的矩形纸板,将纸板四个角各剪去一个边长为xcm的正方形,然后将四周突出部分折起,可制成一个无盖纸盒.(1)这个无盖纸盒的长为(20﹣2x)cm,宽为(13﹣2x)cm;(用含x的式子表示)(2)若要制成一个底面积是144cm2的无盖长方体纸盒,求x的值.【解答】解:(1)∵纸板是长为20cm,宽为13cm的矩形,且纸板四个角各剪去一个边长为xcm的正方形,∴无盖纸盒的长为(20﹣2x)cm,宽为(13﹣2x)cm.故答案为:(20﹣2x);(13﹣2x).(2)依题意,得:(20﹣2x)(13﹣2x)=144,整理,得:2x2﹣33x+58=0,解得:x1=2,x2=14.5(不合题意,舍去).答:x的值为2.知识点3 分式方程1.分式方程:分母中含有未知数的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以最简公分母,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入最简公分母中,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解,是否是所列分式方程的解;(2)检验所求的解,是否为增根.【典例】例1解方程:(1)=﹣2.(2)=.【解答】解:(1)=﹣2,原方程化为:=﹣2,方程两边都乘2(x﹣1),得2x=3﹣4(x﹣1),解得:,检验:当时,2(x﹣1)≠0,所以x=是原分式方程的根,即原分式方程的解是x=;(2)=,原方程化为:=,方程两边都乘(2x+1)(2x﹣1),得2(2x+1)=4,解得:,检验:当时,2x﹣1=0,所以x=是原方程的增根,即原方程无解.【方法总结】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.例2用换元法解方程(xx+1)2+5(x x+1)+6=0时,若设xx+1=t,则原方程可化为关于t的一元二次方程是t2+5t+6=0.【解答】解:把xx+1=t代入方程(x x+1)2+5(x x+1)+6=0,得t2+5t+6=0.故答案为:t2+5t+6=0.【方法总结】此题考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.例3定义一种新运算“⊗”,规则如下:a⊗b=,(a≠b2),这里等式右边是实数运算,例如:1⊗3==﹣.求x⊗(﹣2)=1中x的值.【解答】解:根据题中的新定义化简得:=1,即=1,去分母得:x﹣4=1,解得:x=5,检验:把x=5代入得:x﹣4≠0,∴分式方程的解为x=5.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验,弄清题中的新定义是解本题的关键.例4疫情过后,为做好复工复产,某工厂用A 、B 两种型号机器人搬运原料.已知A 型机器人每小时搬运的原料比B 型机器人每小时搬运的原料的一半多50千克,且B 型机器人搬运2400千克所用时间与A 型机器人搬运2000千克所用时间相等,求这两种机器人每小时分别搬运多少千克原料.【解答】解:设B 型机器人每小时搬运xkg 原料,则A 型机器人每小时搬运(12x +50)kg原料, 依题意,得:2400x=200012x+50, 解得:x =150,经检验,x =150是原方程的解,且符合题意, ∴12x +50=125.答:A 型机器人每小时搬运125kg 原料,B 型机器人每小时搬运150kg 原料.【方法总结】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 例5 2020年春节寒假期间,小伟同学完成数学寒假作业的情况是这样的:原计划每天都做相同页数的数学作业,做了5天后,由于新冠疫情加重,当地加强了防控措施,对外出进行限制,小伟有更多的时间待在家里,做作业的效率提高到原来的2倍,结果比原计划提前6天完成了数学寒假作业,已知数学寒假作业本共有34页,求小伟原计划每天做多少页数学寒假作业?【解答】解:设小伟原计划每天做x 页数学寒假作业,则做作业的效率提高后每天做2x 页的数学寒假作业, 依题意,得:﹣(5+)=6,解得:x =2,经检验,x =2是原方程的解,且符合题意. 答:小伟原计划每天做2页数学寒假作业.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 例6要在规定天数内修筑一段公路,若让甲队单独修筑,则正好在规定天数内按期完成;若让乙队单独修筑,则要比规定天数多8天才完成.现在由乙队单独修筑其中一小段,用去了规定时间的一半,然后甲队接着单独修筑2天,这段公路还有一半未修筑.若让两队共同再修筑2天,能否完成任务?【解答】解:设甲队x 天完成任务,则乙队(x +8)天完成任务, 由题意得:×+=,解得:x =8,检验得:x =8是原方程的根,则2×(+)=<,答:若让两队再共同修筑2天,不能完成任务.【方法总结】此题主要考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.【随堂练习】1.用换元法解方程x−1x=3x x−1−2时,设x−1x=y ,换元后化成关于y 的一元二次方程的一般形式为 y 2+2y ﹣3=0 . 【解答】解:x−1x=3x x−1−2时,设x−1x=y ,则原方程化为:y =3y −2, y 2=3﹣2y , y 2+2y ﹣3=0,故答案为:y 2+2y ﹣3=0. 2.解方程: (1)=;(2)﹣3.【解答】解:(1)去分母得:x +2(x ﹣2)=x +2,去括号得:x+2x﹣4=x+2,解得:x=3,检验:把x=3代入得:(x+2)(x﹣2)≠0,∴分式方程的解为x=3;(2)去分母得:1=x﹣1﹣3(x﹣2),去括号得:1=x﹣1﹣3x+6,解得:x=2,检验:把x=2代入得:x﹣2=0,∴x=2是增根,分式方程无解.3.若关于x的方程有增根,则增根是多少?并求方程产生增根时m的值.【解答】解:去分母,得:m+2(x﹣3)=x+3,由分式方程有增根,得到x﹣3=0或x+3=0,即x=±3,把x=3代入整式方程,可得:m=6,把x=﹣3代入整式方程,可得:m=12,综上,可得:方程的增根是x=±3,方程产生增根时m=6或12.4.虎林西苑社区在扎实开展党史学习教育期间,开展“我为群众办实事”活动,为某小区铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.【解答】解:设原计划每天铺设管道x米.由题意,得:﹣=2,解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.5.某所学校有A、B两班师生前往一个农庄参加植树活动.已知A班每天植树量是B班每天植树量的1.5倍,A班植树300棵所用的天数比B班植树240棵所用的天数少2天,求A、B两班每天各植树多少棵?【解答】解:设B班每天植树x棵,那么A班每天植树1.5x棵,依题意,得3001.5x =240x−2,解之得x=20,经检验,x=20是原方程的解则当x=20时,1.5x=30.答:A班每天植树30棵,B班每天植树20棵.知识点4 方程组(1)二元一次方程:含有两个未知数(元)并且未知数的次数是2的整式方程.(2) 二元一次方程组:由2个或2个以上的含有相同未知数的二元一次方程组成的方程组叫二元一次方程组.(3)二元一次方程的解:适合一个二元一次方程的两个未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有无数个解.(4)二元一次方程组的解:使二元一次方程组成立的未知数的值,叫做二元一次方程组的解.(5)①代入消元法、②加减消元法.【典例】例1下列方程中,是二元一次方程的是()A.xy=2B.3x=4y C.x+1y=2D.x2+2y=4【解答】解:A、是二元二次方程,故本选项不符合题意;B、是二元一次方程,故本选项符合题意;C、不是整式方程,故本选项不符合题意;D、是二元二次方程,故本选项不符合题意;故选:B.【方法总结】本题主要考查二元一次方程的定义,二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.例2解方程组:(1);(2).【解答】解:(1),①+②×2,得11x=﹣11,解得x=﹣1,把x=﹣1代入②,得y=2,故方程组的解为;(2)方程组整理,得,②×2﹣①,得5x=10,解得x=2,把x=2代入②,得6﹣2y=6,解得y=0,故方程组的解为.【方法总结】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.例3已知方程组与有相同的解,求m和n值.【解答】解:由已知可得,解得,把代入剩下的两个方程组成的方程组,得,解得m=﹣1,n=﹣4.【方法总结】解答此题的关键是熟知方程组有公共解得含义,考查了学生对题意的理解能力. 例4糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?【解答】解:设竹签有x 根,山楂有y 个, 由题意得:{5x +4=y 8(x −7)=y ,解得:{x =20y =104,答:竹签有20根,山楂有104个.【方法总结】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.例5中药是我国的传统医药,其独特的疗效体现了我们祖先的智慧,并且在抗击新冠疫情中,中医药发挥了重要的作用.现某种药材种植基地欲将一批150吨的重要中药材运往某药品生产厂,现有甲、乙两种车型供运输选择,每辆车的运载能力(假设每辆车均满载)和运费如下表所示:车型 甲 乙 运载量(吨/辆) 10 12 运费(元/辆)700720若全部中药材用甲、乙两种车型一次性运完,需支付运费9900元,问甲、乙两种车型各需多少辆?【解答】解:设甲种车型需x 辆,乙种车型需y 辆, 根据题意得:,解得:,答:甲种车型需9辆,乙种车型需5辆.【方法总结】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.【随堂练习】1.如果3x 3m﹣2n﹣4y n﹣m+12=0是关于x 、y 的二元一次方程,那么m 、n 的值分别为( ) A .m =2,n =3 B .m =2,n =1C .m =﹣1,n =2D .m =3,n =4【解答】解:∵3x 3m ﹣2n﹣4y n﹣m+12=0是关于x 、y 的二元一次方程,∴{3m −2n =1n −m =1, 解得:{m =3n =4,故选:D .2.如果方程组{ax −by =134x −5y =41与{ax +by =32x +3y =−7有相同的解,则a ,b 的值是( )A .{a =2b =1B .{a =2b =−3C .{a =52b =1D .{a =4b =−5【解答】解:由已知得方程组{4x −5y =412x +3y =−7,解得{x =4y =−5,代入{ax −by =13ax +by =3,得到{4a +5b =134a −5b =3,解得{a =2b =1.故选:A .3.解方程组:.【解答】解:,①+②×2得:13x =26,即x =2, 把x =2代入②得:y =4, 则方程组的解为.4.列二元一次方程组解应用题:小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路.她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟.求小颖上坡、下坡各用了多长时间?【解答】解:设小颖上坡用了x 分钟,下坡用了y 分钟, 依题意得:{x +y =1680x +200y =1880,解得:{x =11y =5.答:小颖上坡用了11分钟,下坡用了5分钟.5.某市要在A ,B 两景区安装爱心休闲椅,它有长条椅和弧形椅两种类型,其中每条长条椅可以同时供3人使用,每条弧形椅可以同时供5人使用.(列二元一次方程组解答) (1)市政府现在要为B 景区购买长条椅120条,弧形椅80条,若购买一条长条椅和一条弧形椅的价格共360元,为B 景区购买共花费了32800元,求长条椅和弧形椅的单价分别为多少元?(2)现决定从某公司为A 景区采购两种爱心休闲椅共400条,且正好可让1400名游客同时使用,求A 景区采购的长条椅和弧形椅分别为多少条? 【解答】解:(1)设长条椅的单价为x 元,弧形椅的单价为y 元, 依题意得:,解得:.答:长条椅的单价为100元,弧形椅的单价为260元. (2)设A 景区采购长条椅m 条,弧形椅n 条, 依题意得:,解得:.答:A 景区采购长条椅300条,弧形椅100条.知识点5不等式(组)1. 用不等号连接起来的式子叫不等式;使不等式成立的未知数的值叫做不等式的解;一些使不等式成立的未知数的值叫做不等式的解集.求一个不等式的解的过程或证明不等式无解的过程叫做解不等式.2.不等式的基本性质:(1)若<,则+<; (2)若>,>0则> (或> ); (3)若>,<0则 < (或< ). 3.一元一次不等式:只含有一个未知数,且未知数的次数是一次且系数不等于0的不等式,称为一元一次不等式;一元一次不等式的一般形式为ax >b 或;解一元一次不等式的一般步骤:去分母、去括号 、移项、合并同类项、系数化为1.4.一元一次不等式组:几个含有相同未知数的一元一次不等式合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集. 5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知)的解集是,即“小小取小”;的解集是,即“大大取大”;的解集是,即“大小小大中间找”;的解集是空集,即“大大小小取不了”. 6.求不等式(组)的特殊解:不等式(组)的解一般有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案.7.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②找:找出能够表示应用题全部含义的一个不等关系;③设:设未知数(一般求什么,就设什么为;④a b a c c b +a b c ac bc c a c b a b c ac bc c a cbax b <a b <x a x b <⎧⎨<⎩x a <x ax b >⎧⎨>⎩x b >x ax b>⎧⎨<⎩a x b <<x ax b <⎧⎨>⎩x。
中考数学复习第二章方程组与不等式组讲义
第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。
(系数不为0)的整式方程。
形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。
解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。
一般形式: ax+by=c ,有无数组解。
2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。
⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。
【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。
2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。
第二章 一元一次不等式和一元一次不等式组总结
第二章一元一次不等式和一元一次不等式组复习知识要点:1. 不等式:一般地用不等号连接的式子叫做不等式。
2. 不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
3. 解不等式:把不等式变为x>a或x<a的形式。
4. 一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,不等式的左右两边都是整式的不等式,叫做一元一次不等式。
5. 解一元一次不等式的步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为16. 一元一次不等式组的解集:几个一元一次不等式的解集的公共部分。
法则:“同大取大,同小取小,大小小大取中间,大大小小是无解。
”7. 列不等式解应用题的一般步骤:1、分析题意,清楚已知量与未知量之间的关系,找到题中适当的不等关系。
2、正确的设未知数,根据不等关系列出不等式。
3、解不等式。
4、在不等式的解集中选取符合题意的解。
5、做出正确的结论。
8. 不等式的基本性质与等式的基本性质有哪些异同点?9. 解一元一次不等式和解一元一次方程有什么异同?10. 解一元一次不等式组求公共部分时要记住:“同大取大,同小取小,大于小数小于大数居中间,大于大数小于小数无解”11. 说一说运用不等式解决实际问题的基本过程.①审题,设未知数;②找不等关系;③列不等式;④解不等式;⑤写出答案.(7)一元一次不等式与一次函数.【典型例题】例1. 用不等式表示下列数量关系。
(1)a 的一半与-3的和小于或等于1。
()的与的差的相反数不小于。
2a 3525-()的相反数的不大于的倍加。
317516x x 解:()的一半:112a a与-的和:3123a +-()小于或等于:11231a +-≤()故:1231a +-≤()()的与的差:2352352a a - 相反数:-()352a -不小于-:53525--≥-()a故:---≥-()3525a()的相反数的:31717x x-x 的5倍加16:5x +16其关系不大于:-≤+17516x x故:-≤+17516x x点评:用不等号表示的时候要准确理解“大”、“小”、“多”、“少”、“不大于”、“不小于”、“不多于”、“不少于”、“至少”、“至多”等词语的含义。
(完整版)初中数学各章节详细知识点
各章节知识点七年级上册第一章《有理数》1.正数与负数的概念2.正数与负数的实际意义3.有理数的概念4.数轴的概念5.相反数的概念6.绝对值的概念7.有理数的大小比较8.有理数的加法法则(6分)9.有理数的减法法则10.有理数的乘法法则11.有理数的运算律12.有理数的除法法则13.有理数的混合运算法则(6分)14.有理数的乘方相关概念(乘方、幂、底数、指数)15.有理数的乘方法则16.科学记数法(3分)17.近似数(有效数字)第二章《整式的加减》1.单项式及其相关概念(单项式、系数、次数)2.多项式及其相关概念(多项式、项、常数项、次数)3.整式4.同类项的概念5.合并同类项的法则6.去括号法则7.整式加减的运算法则(6分)第三章《一元一次方程》1.方程的概念2.一元一次方程的概念3.方程的解4.等式的性质5.一元一次方程的解法(步骤)(6分)6.一元一次方程的应用问题(和差倍分问题、数字问题、行程问题、工程问题、劳动力调配问题、增长率问题、商品利润问题)第四章《图形的初步认识》1.几何图形的概念2.立体图形的概念3.平面图形的概念4.立体图形的三视图(3分)5.立体图形的展开图6.点、线、面、体的概念7.直线的相关概念(直线、相交线、交点)8.两点确定一条直线9.点与直线的位置关系10.线段的中点11.两点之间线段最短12.两点之间的距离13.角及其相关概念14.角平分线(3分)15.余角的概念16.补角的概念17.余角(补角)的性质(3分)七年级下册第五章《相交线与平行线》1.相交线的相关概念(邻补角、对顶角)2.对顶角的性质3.垂线的相关概念(垂直、垂线、垂足)4.过一点画垂线5.垂线段最短6.点到直线的距离7.“三线八角”的相关概念8.平行的概念9.平行公理10.平行线的判定(3分)11.平行线的性质(3分)12.命题及其相关概念(命题、真命题、假命题)13.定理的概念14.平移的概念15.平移的性质(3分)第六章《平面直角坐标系》1.有序实数对的概念2.平面直角坐标系及其相关概念(平面直角坐标系、横轴、纵轴、原点、坐标、象限)3.特殊点坐标(象限符号、坐标轴上点的特征、坐标轴角平分线上点的特征、对称点坐标特征、平行于坐标轴的点的特征)4.直角坐标系的实际应用5.平移的坐标特征(3分)第七章《三角形》1.三角形的概念2.三角形的分类3.三角形的三边关系4.三角形的“三线”(高线、中线、角平分线)5.三角形的稳定性6.三角形的内角和定理7.三角形的外角8.三角形的外角性质定理(3分)9.等腰三角形的性质10.等边三角形的性质11.直角三角形的性质(6分)12.多边形及其相关概念(多边形、对角线、正多边形)13.多边形的内角和定理14.多边形的外角和定理第八章《二元一次方程组》1.二元一次方程的概念2.二元一次方程(组)的解3.解二元一次方程(代入消元法、加减消元法)(6分)4.二元一次方程的应用(6分)5.三元一次方程组的概念6.三元一次方程组的解法第九章《不等式与不等式组》1.不等式的概念2.不等式的解3.解集4.一元一次不等式的概念5.不等式的性质(3分)6.一元一次不等式的解法(3分)7.一元一次不等式的应用8.一元一次不等式组的概念9.一元一次不等式组的解法(6分)第十章《数据的收集、整理与描述》1.收集数据(问卷)2.整理数据(表格)3.描述数据(条形统计图、扇形统计图)(6分)4.抽样调查的概念5.总体、个体、样本、样本容量6.简单随机抽样的概念7.直方图及其相关概念(直方图、组距、频数)(6分)8.画直方图的步骤八年级上册第十一章《全等三角形》1.全等形的概念2.全等三角形的相关概念(全等三角形、对应顶点、对应边、对应角)3.全等三角形的性质4.全等三角形的判定(SSS,SAS,ASA,AAS)(6分)5.直角三角形的判定(HL)6.角平分线的性质7.角平分线的判定(6分)第十二章《轴对称》1.轴对称图形的概念2.关于直线对称的相关概念3.轴对称的性质4.线段垂直平分线的性质(6分)5.线段垂直平分线的判定(6分)6.作轴对称图形7.关于坐标轴对称点的特征8.等腰三角形的概念9.等腰三角形的性质10.等腰三角形的判定(6分)11.等边三角形的概念12.等边三角形的判定13.等边三角形的性质(6分)第十三章《实数》1.算术平方根的概念2.平方根的概念3.平方根的性质(3分)4.立方根的概念5.立方根的性质(3分)6.实数的概念7.实数的分类8.实数的相反数、绝对值(3分)9.实数与数轴的关系第十四章《一次函数》1.变量与常量2.函数与自变量3.函数的图像4.正比例函数的解析式5.正比例函数的图象及其性质(7分)6.一次函数的解析式7.一次函数的图象及其性质(7分)8.一次函数与一元一次方程的关系9.一次函数与一元一次不等式关系10.一次函数与二元一次方程组的关系第十五章《整式的乘除与因式分解》1.同底数的幂的乘法公式(3分)2.幂的乘方公式(3分)3.积的乘方公式整式的乘法法则4.单项式与多项式相乘的乘法法则5.多项式相乘的乘法法则(3分)6.平方差公式7.完全平方公式(3分)8.添括号法则9.同底数幂的除法法则10.单项式除单项式的法则11.多项式除以单项式法则12.因式分解的概念13.因式分解的方法(提取公因式法、公式法)(6分)八年级下册第十六章《分式》1.分式的概念2.分式的基本性质(3分)3.约分与通分4.最简分式5.分母有理化(3分)6.分式乘除的法则7.分式加减的法则8.整数指数幂的运算性质(3分)9.分式方程的概念10.分式方程的解法(6分)11.分式方程的应用(7分)第十七章《反比例函数》1.反比例函数的概念2.反比例函数的图象及其性质(7分)3.反比例函数的应用第十八章《勾股定理》1.勾股定理(6分)2.勾股定理的逆定理(3分)第十九章《四边形》1.平行四边形的概念2.平行四边形的性质(7分)3.平行四边形的判定(7分)4.两条平行直线之间的距离5.矩形的概念6.矩形的判定7.矩形的性质(7分)8.菱形的概念9.菱形的性质(7分)10.菱形的判定11.正方形的概念12.正方形的性质与判定(7分)13.梯形概念14.梯形的分类15.等腰梯形的性质16.等腰绞刑的判定(7分)第二十章《数据的分析》1.平均数与加权平均数2.中位数3.众数(3分)4.方差第二十一章《二次根式》1.二次根式的概念2.二次根式的两个重要公式(3分)3.代数式的概念4.二次根式的乘法法则5.二次根式的除法法则(6分)6.最简二次根式7.二次根式的加减法法则(3分)九年级上册第二十二章《一元二次方程》1.一元二次方程的概念2.一元二次方程的根3.一元二次方程的解法(直接开方法、配方法、求根公式法、因式分解法)(6分)4.根的判别式5.一元二次方程根与系数的关系6.一元二次方程的应用(面积问题、连续增长问题)(6分)第二十三章《二次函数》1. 一元二次方程的概念2. 二次函数的基本形式3. 二次函数图象的平移4. 二次函数图像的画法5. 二次函数图像的性质(7分)6. 二次函数图像的表示方法7. 二次函数图像的图像与各项系数之间的关系(7分)8. 二次函数图象的对称9. 二次函数与一元二次方程(7分)10. 函数的应用第二十四章《旋转》1.旋转的相关概念(旋转、旋转中心、旋转角)2.旋转的性质(6分)3.中心对称的相关概念(中心对称、对称中心、对称点)(6分)4.中心对称的性质5.中心对称图形的概念6.关于原点对称的点的坐标的特征(3分)第二十五章《圆》1.圆的相关概念(圆的两种定义、圆心、半径、弦、直径、圆弧、优弧、劣弧、半圆、等圆、等弧)2.垂径定理及其推论(6分)3.弧、弦、圆心角、弦心距之间的关系定理(6分)4.圆周角的概念5.圆周角定理及其推论6.圆内接多边形的概念7.圆内接四边形的性质(3分)8.点与圆的位置关系9.三点确定一个圆10.三角形的外接圆及外心11.直线与圆的位置关系及其相关概念(7分)12.切线的性质及判定定理(7分)13.切线长定理(7分)14.圆与圆的位置关系及其相关概念(7分)15.正多边形与圆的相关概念(正三角形与圆、正方形与圆、正六边形与圆)16.弧长公式及扇形面积公式(7分)17.圆锥及圆柱的侧面积及表面积(7分)第二十六章《概率》1.随机事件、不可能事件、必然事件的概念2.随机事件的性质3.概率的概念4.概率的计算公式(3分)5.用列表法、树形图计算概率(7分)6.频率与概率的关系第二十七章《相似》1. 有关相似形的概念2. 比例的性质3. 平行线分线段成比例定理(3分)4. 相似三角形(判定,性质,应用)(7分)5. 位似第二十八章《解直角三角形》1. 直角三角形的性质(3分)2. 直角三角形的判定(6分)3. 锐角三角函数的概念4. 解直角三角形(7分)第二十九章《投影与视图》1. 平行投影2. 中心投影3. 正投影。
初三数学总复习教案第二单元 方程与不等式
1、下列方程是一元二次方程的是()
A 2x-1=0B. x2-3y+1=0
C. x2-9=0D. ax2+bx+c=0(a,b,c为常数)
2.用直接开平方解(x-3)2=8得方程的根是( )
A.x=3+2 B.x1=3+2 ,x2=3-2
C. x=3+2 D.x1=3+2 ,x2=3-2
5、一家商店进行装修,若请甲乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元,问:
(1)甲乙两组工作一天,商店应各付多少钱?
(2)已知甲乙两组单独完成分别需要12天和24天,单独请哪组,商店所付的费用较少?
(3)若装修完后,商店营业,每天可赢利200元,你认为如何安排施工有利于商店经营,为什么?
A、 B、 C、 D、
2、下列各对数值中,是方程组 的解的是()
A、 B、 C、 D、
3、用“加减法”将方程组 中的 x 消去后得到的方程是------( )
A、y=8B、7y=10C、-7y=8D、-7y=10
4、已知 3-x+2y=0,则 2x-4y-3 的值为( )
A、-3B、3C、1D、0
5、我国民间流传着许多诗歌形式的数学题,令人耳目一新,你能解决“鸡兔同笼”问题吗?“鸡兔同笼不知数,三十六头笼中露,看来脚有一百只,几多鸡来几多兔?”设鸡x只,兔y只( )
【提高演练】
《复习指南》P25A组、1、2、(1)、3、4、5B组1、2(1)、3
【达标自检】
《分类集训》P15A组、B组
第三、四课时:一元一次不等式(组)
【知识梳理】
方程(组)与不等式(组)知识点
中考复习三 方程(组)与不等式(组)【一次方程及方程】一、等式与方程的有关概念1.等式及其性质 ⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca. 2. 方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程 的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系 数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a . 3. 解一元一次方程的步骤:①去 ;②去 ;③移 ;④合并 ;⑤系数化为1. 二、二元一次方程(组)及解法1.二元一次方程:含有 未知数(元)并且未知数的次数是 的整式方程.2. 二元一次方程组:由2个或2个以上的 组成的方程组叫二元一次方程组.3.二元一次方程的解: 适合一个二元一次方程的 未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有 个解.4.二元一次方程组的解: 使二元一次方程组的 ,叫做二元一次方程组的解. 5. 解二元一次方程的方法步骤: 二元一次方程组方程.消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种. 6.易错知识辨析:(1)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘 以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏 乘没有分母的项;③解方程时一定要注意“移项”要变号.(2)二元一次方程有无数个解,它的解是一组未知数的值;(3)二元一次方程组的解是两个二元一次方程的公共解,是一对确定的数值; (4)利用加减法消元时,一定注意要各项系数的符号.1.(2009年,3分)如图9加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm ,此时木桶中水的深度是 cm .2.(2010年,2分)小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,下面所列方程正确的是 A .48)12(5=-+x x B .48)12(5=-+x x C .48)5(12=-+x x D .48)12(5=-+x x 【一元二次方程及其应用】1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数.2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用 直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二 次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项, 右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是21,240)x b ac =-≥.(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3. 一元二次方程根的判别式:关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=2,1x .(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x .(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根.4. 一元二次方程根与系数的关系若关于x 的一元二次方程20(0)ax bx c a ++=≠有两根分别为1x ,2x ,那么=+21x x ,=⋅21x x .5.列一元二次方程解应用题的一般步骤:审、找、设、列、解、答六步。
河北省中考数学总复习第一编教材知识梳理篇第2章方程组与不等式组第2节一元二次方程及应用精讲试题
第二节 一元二次方程及应用河北五年中考命题规律年份题号 考查点 考查内容 分值 总分19 一元二次方程的解法 综合题,在新定义的背景下用直接开平方法解一元二次方程 37 26(2) 一元二次方程及根的判别式利用题中已知条件列出方程,并用判别式判断根的情况 414 一元二次方程根的判别式 利用已知条件判断含字母系数的一元二次方程的根的情况2 212 一元二次方程根的判别式考一元二次方程无实数根求参数的取值范围 2 221 解一元二次方程 (1)从推导一元二次方程的求根公式的步骤中找错误,并写出正确的求根公式; (2)用配方法解一元二次方程10 10未考查命题规律纵观河北近五年中考,、、、考查了一元二次方程,分值2~10分,涉及的题型有选择、填空、解答,题目难度一般,其中一元二次方程的配方法在选择和解答题中各考查了1次,一元二次方程的应用在选择、填空中各考过1次,一元二次方程根的判别式考查了3次,属基础题.河北五年中考真题及模拟一元二次方程的解法1.(河北中考)嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a≠0)的求根公式时,对于b 2-4ac>0的情况,她是这样做的:由于a≠0,方程ax 2+bx +c =0变形为:x 2+b a x =-c a ,第一步x 2+b a x +⎝ ⎛⎭⎪⎫b 2a 2=-c a +⎝ ⎛⎭⎪⎫b 2a 2,第二步⎝ ⎛⎭⎪⎫x +b 2a 2=b 2-4ac 4a 2,第三步 x +b 2a =b 2-4ac 4a(b 2-4ac >0),第四步 x =-b +b 2-4ac 2a.第五步(1)嘉淇的解法从第__四__步开始出现错误;事实上,当b 2-4ac>0时,方程ax 2+bx +c =0(a≠0)的求根公式为__x =-b ±b 2-4ac2a__.(2)用配方法解方程:x 2-2x -24=0. 解:x 1=6,x 2=-4.2.(沧州中考模拟)在解方程(x +2)(x -2)=5时,甲同学说:由于5=1×5,可令x +2=1,x -2=5,得方程的根x 1=-1,x 2=7;乙同学说:应把方程右边化为0,得x 2-9=0,再分解因式,即(x +3)(x -3)=0,得方程的根x 1=-3,x 2=3.对于甲、乙两名同学的说法,下列判断正确的是( A )A .甲错误,乙正确B .甲正确,乙错误C .甲、乙都正确D .甲、乙都错误3.(石家庄二十八中一模)现定义运算“★”,对于任意实数a ,b ,都有a★b=a 2-3a +b ,如3★5=32-3×3+5,若x★2=6,则实数x 的值是( B )A .-4或-1B .4或-1C .4或-2D .-4或2 一元二次方程根的判别式及根与系数的关系4.(河北中考)若关于x 的方程x 2+2x +a =0不存在实数根,则a 的取值范围是( B ) A .a<1 B .a>1 C .a ≤1 D .a ≥15.(河北中考)a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是( B ) A .有两个相等的实数根 B .有两个不相等的实数根 C .无实数根 D .有一根为06.(唐山十三中三模)已知关于x 的方程2x 2-mx -6=0的一个根是2,则m =__1__,另一个根为__-32__.7.(唐山二模)对于实数a ,b ,定义新运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a≥b),ab -b 2(a <b ),例如:4*2,因为4>2,所以4*2=42-4×2=8.(1)求(-5)*(-3)的值;(2)若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,求x 1*x 2的值. 解:(1)∵-5<-3,∴(-5)*(-3)=(-5)×(-3)-(-3)2=6;(2)方程x 2-5x +6=0的两根为2或3;①2*3=2×3-9=-3;②3*2=32-2×3=3. 一元二次方程的应用8.(邯郸25中模拟)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( D )A .48(1-x)2=36B .48(1+x)2=36C .36(1-x)2=48D .36(1+x)2=489.(石家庄十八县重点中学一模)为落实“两免一补”政策,某市投入教育经费2 500万元,预计要投入教育经费 3 600万元.已知至的教育经费投入以相同的百分率逐年增长,则该市要投入的教育经费为__3__000__万元.10.(河北中考)某厂按用户的月需求量x(件)完成一种产品的生产,其中x >0.每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比.经市场调研发现,月需求量x 与月份n(n 为整数,1≤n ≤12)符合关系式x =2n 2-2kn +9(k +3)(k 为常数),且得到了表中的数据.月份n(月) 1 2 成本y(万元/件) 11 12 需求量x(件/月) 120 100(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元;(2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(m +1)个月的利润相差最大,求m.解:(1)由题意,设y =a +bx ,由表中数据得⎩⎪⎨⎪⎧11=a +b120,12=a +b100,解得⎩⎪⎨⎪⎧a =6,b =600,∴y =6+600x,由题意,若12=18-⎝⎛⎭⎪⎫6+600x ,则600x =0,∵x >0, ∴600x>0,∴不可能;(2)将n =1,x =120代入x =2n 2-2kn +9(k +3),得120=2-2k +9k +27, 解得k =13,∴x =2n 2-26n +144,将n =2,x =100代入x =2n 2-26n +144也符合, ∴k =13;由题意,得18=6+600x,解得x =50,∴50=2n 2-26n +144,即n 2-13n +47=0,∵Δ=(-13)2-4×1×47<0, ∴方程无实数根, ∴不存在;(3)设第m 个月的利润为W ,W =x(18-y)=18x -x ⎝⎛⎭⎪⎫6+600x=12(x -50)=24(m 2-13m +47),∴第(m +1)个月的利润为W′=24[(m +1)2-13(m +1)+47]=24(m 2-11m +35), 若W≥W′,W -W′=48(6-m),m 取最小值1时,W -W′取得最大值240;若W <W′,W ′-W =48(m -6),由m +1≤12知m 取最大值11时,W ′-W 取得最大值240; ∴m =1或11.,中考考点清单一元二次方程的概念1.只含有__1__个未知数,未知数的最高次数是__2__,像这样的__整式__方程叫一元二次方程.其一般形式是__ax 2+bx +c =0(a≠0)__.【易错警示】判断一个方程是一元二次方程的条件:①是整式方程;②二次项系数不为零;③未知数的最高次数是2,且只含有一个未知数.一元二次方程的解法2.直接开 平方法这种方法适合于左边是一个完全平方式,而右边是一个非负数的一元二次方程,即形如(x +m)2=n(n≥0)的方程. 配方法配方法一般适用于解二次项系数为1,一次项系数为偶数的这类一元二次方程,配方的关键是把方程左边化为含有未知数的__完全平方__式,右边是一个非负常数.公式法求根公式为__x =-b ±b 2-4ac 2a(b 2-4ac≥0)__,适用于所有的一元二次方程.因式分 解法因式分解法的步骤:(1)将方程右边化为__0__;(2)将方程左边分解为一次因式的乘积;(3)令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是一元二次方程的解.【温馨提示】关于x 的一元二次方程ax 2+bx +c =0(a≠0)的解法:(1)当b =0,c ≠0时,x 2=-c a,考虑用直接开平方法解;(2)当c =0,b ≠0时,用因式分解法解; (3)当a =1,b 为偶数时,用配方法解简便.一元二次方程根的判别式3.根的判别式:一元二次方程ax 2+bx +c =0(a≠0)的根的情况可由__b 2-4ac__来判定,我们将__b 2-4ac__称为根的判别式.4.判别式与根的关系:(1)b 2-4ac>0⇔方程有__两个不相等__的实数根;(2)b 2-4ac<0⇔方程没有实数根;(3)b 2-4ac =0⇔方程有__两个相等__的实数根.【易错警示】(1)一元二次方程有实数根的前提是b 2-4ac≥0;(2)当a ,c 异号时,Δ>0.一元二次方程的应用5.列一元二次方程解应用题的步骤:(1)审题;(2)设未知数;(3)列方程;(4)解方程;(5)检验;(6)做结论.6.一元二次方程应用问题常见的等量关系:(1)增长率中的等量关系:增长率=增量÷基础量;(2)利率中的等量关系:本息和=本金+利息,利息=本金×利率×时间;(3)利润中的等量关系:毛利润=售出价-进货价,纯利润=售出价-进货价-其他费用, 利润率=利润÷进货价.,中考重难点突破一元二次方程的解法【例1】(保定十七中二月调研)解下列方程:(1)(x -2)2=12;(2)x 2-4x +1=0;(3)x 2-3x +1=0;(4)x 2=2x.【解析】(1)可以用直接开平方法解;(2)因为b =-4是偶数,可以用配方法解;(3)因为b =-3是奇数,配方法解较复杂,可用公式法;(4)直接因式分解.【答案】解:(1)直接开平方,得x -2=±22,即x 1=2+22,x 2=2-22;(2)配方,得(x -2)2=3,直接开平方,得x -2=±3,即x 1=2+3,x 2=2-3;(3)∵a=1,b =-3,c =1,∴Δ=b 2-4ac =(-3)2-4×1×1=5>0,∴x =-(-3)±52×1,即x 1=3+52,x 2=3-52; (4)分解因式,得x(x -2)=0.即x 1=2,x 2=0.1.方程(x -3)(x +1)=0的解是( C ) A .x =3 B .x =-1C .x 1=3,x 2=-1D .x 1=-3,x 2=12.(唐山路北一模)用配方法解一元二次方程x 2+4x -5=0,此方程可变形为( A ) A .(x +2)2=9 B .(x -2)2=9 C .(x +2)2=1 D .(x -2)2=1 3.用公式法解方程:(1)(广东中考)x 2-3x +2=0; 解:x 1=1,x 2=2;(2)(兰州中考)x 2-1=2(x +1). 解:x 1=-1,x 2=3.一元二次方程根的判别式及根与系数的关系【例2】(包头中考)若关于x 的不等式x -a 2<1的解集为x <1,则关于x 的一元二次方程x 2+ax +1=0根的情况是( A )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定【解析】解不等式x -a 2<1得x <1+a 2,而不等式x -a 2<1的解集为x <1,所以1+a2=1,解得a =0,又因为Δ=a 2-4=-4,所以关于x 的一元二次方程x 2+ax +1=0没有实数根.故选C .【答案】C4.(唐山丰润二模)方程x 2-x +3=0根的情况是( D ) A .只有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根5.(保定博野模拟)已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( C )A .a>2B .a<2C .a<2且a≠1D .a<-26.(咸宁中考)已知a ,b ,c 为常数,点P(a ,c)在第二象限,则关于x 的方程ax 2+bx +c =0的根的情况是( B )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判断 一元二次方程的应用【例3】(达州中考)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.(1)用含x 的代数式表示第3年的可变成本为________万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率.【解析】(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x)万元,则第三年的可变成本为2.6(1+x)2万元;(2)根据养殖成本=固定成本+可变成本建立方程即可.【答案】(1)2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146.解得x 1=0.1,x 2=-2.1(不合题意,舍去). 答:可变成本平均每年增长的百分率为10%.【例4】有一人患了流感,经过两轮传染后共有256人患了流感,则每轮传染中平均一个人传染( A ) A .17人 B .16人 C .15人 D .10人【解析】设每轮传染中平均一个人传染了x 个人,则第一轮传染了x 个人;患流感的人把病毒传染给别人,自己也包括在总数中,第二轮作为传染源的是(x +1)人,每人传染x 个人,则传染x(x +1)人.两轮后得流感的总人数为:一开始的1人+第一轮传染的x 个人+第二轮传染的x(x +1)人,列方程:1+x +x(1+x)=256,解得x 1=15,x 2=-17.因为x 表示人数,所以x =-17不合题意,应舍去;取x =15,故选C .【答案】C【例5】商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x 元.据此规律,正常销售情况下,每件商品降价多少元时,商场日盈利可达到2 100元?【解析】设降价x 元,则每件盈利(50-x)元,数量增多2x 件,再由单件利润×数量=2 100即可.【答案】解:设每件商品降价x 元,则商场日销售量增加2x 件,每件商品盈利(50-x)元.由题意,得(50-x)(30+2x)=2 100.整理,得x 2-35x +300=0. 解得x 1=15,x 2=20. ∵要尽快减少库存,∴x =15不合题意,舍去,只取x =20.答:每件商品降价20元时,商场日盈利可达到2 100元.【例6】(南通中考)如图,为美化校园环境,某校计划在一块长为60 m ,宽为40 m 的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的甬道,设甬道宽为a m .(1)用含a 的式子表示花圃的面积;(2)如果甬道所占面积是整个长方形空地面积的38,求出此时甬道的宽.【解析】(1)用含a 的式子先表示出花圃的长和宽,再利用矩形面积公式列出式子即可;(2)甬道所占面积等于大长方形空地面积减去中间小花圃的面积,再根据甬道所占面积是整个长方形空地面积的38,列出方程进行计算即可.【答案】解:(1)(60-2a)(40-2a); (2)由题意,得60×40-(60-2a)(40-2a)=38×60×40,解得a 1=5,a 2=45(舍去). 答:此时甬道的宽为5 m .7.(巴中中考)某地外贸收入为2.5亿元,外贸收入达到了4亿元,若平均每年的增长率为x ,则可以列出方程为( A )A .2.5(1+x)2=4B .(2.5+x%)2=4C .2.5(1+x)(1+2x)=4D .2.5(1+x%)2=48.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了 1 m ,另一边减少了2 m ,剩余空地的面积为18 m 2,求原正方形空地的边长.设原正方形的空地的边长为x m ,则可列方程为( C )A .(x +1)(x +2)=18B .x 2-3x +16=0C .(x -1)(x -2)=18D .x 2+3x +16=09.(原创)有一人患了流感,经过两轮传染后共有64人患了流感,问每轮传染中平均一个人传染__7__个人.如果不及时控制,第三轮又将有__448__人被传染.10.为了绿化校园环境,学校向某园林公司购买了一批树苗.园林公司规定;如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,每棵所出售的这批树苗售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8 800元,那么该校共购买了多少棵树苗?解:设该校共买了x 棵树苗. 120×60=7 200(元). ∵7 200<8 800,∴购买树苗超过60棵;x[120-0.5(x-60)]=8 800,x1=220,x2=80,当x=220时,120-0.5×(220-60)=40<100,∴x=220舍去.∴x=80.答:该校共购买了80棵树苗.。
方程组与不等式组知识点总结
方程组与不等式组知识点总结一、方程组。
1. 二元一次方程组。
- 定义。
- 含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。
把两个含有相同未知数的二元一次方程(或者一个二元一次方程,一个一元一次方程)联立起来,组成的方程组叫做二元一次方程组。
例如x + y=5 2x - y = 1。
- 解法。
- 代入消元法。
- 步骤:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的代数式表示出来,如对于方程组y = 2x - 3 3x+2y = 8,由第一个方程y = 2x - 3,将y代入第二个方程得3x+2(2x - 3)=8,然后解这个一元一次方程求出x的值,再把x的值代入y = 2x - 3求出y的值。
- 加减消元法。
- 步骤:当方程组中两个方程的同一未知数的系数相等或互为相反数时,把这两个方程的两边分别相减或相加,消去这个未知数,得到一个一元一次方程。
例如对于方程组3x+2y = 11 5x - 2y = 13,将两个方程相加得(3x + 2y)+(5x - 2y)=11 + 13,即8x=24,解得x = 3,再把x = 3代入3x+2y = 11求出y的值。
2. 三元一次方程组。
- 定义。
- 含有三个未知数,并且含有未知数的项的次数都是1的整式方程组成的方程组叫做三元一次方程组。
例如x + y+z = 6 2x - y+z = 3 3x + 2y - z=4。
- 解法。
- 思路是通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程求解。
例如先消去z,可以将第一个方程x + y+z = 6与第三个方程3x + 2y - z = 4相加得到4x+3y = 10,再将第一个方程x + y+z = 6与第二个方程2x - y+z = 3相减得到-x + 2y=3,这样就得到了一个二元一次方程组4x + 3y=10 -x+2y = 3,然后用二元一次方程组的解法求解。
2025年湖南中考数学一轮复习考点研析 第二章 方程(组)与不等式(组)一元一次不等式(组)及其应用
(2)不等式②的解集为________;
(3)把不等式组的解集在如图的数轴上表示出来;
解:在数轴上表示不等式组的解集如解图.
1≤x<3
(4)不等式组的解集为____________;
1,2
(5)不等式组的整数解为________.
解图
解
答
变式2-1
是(
C
-+3<5,
(2023·娄底)不等式组ቊ
的单价为380元/个.若学校购买这两种灭火器的总价不超过21 000元,则最多
可购买这种型号的水基灭火器多少个?
解:设可购买这种型号的水基灭火器x个,则购买这种型
号的干粉灭火器(50-x)个.
根据题意,得540x+380(50-x)≤21 000,解得x≤12.5.
∵x为整数,∴x的最大值为12.
∴最多可购买这种型号的水基灭火器12个.
解
1.若a>b,则下列四个选项一定成立的是( A )
A.a+2>b+2
B.-3a>-3b
C. <
4
4
D.a-1<b-1
2.(2022·益阳)若x=2是下列四个选项中的某个不等式组的一个解,则这个不
等式组是( D )
<1,
A.ቊ
<-1
<1,
B.ቊ
> -1
> 1,
C.ቊ
<-1
> 1,
不等式的解集 不等式的解的全体称为不等式的解集
2.不等式的性质
性质
性质1
内容
应用
不等式两边都加上(或减去)同一个数(或式),不等号
b±c
的方向不变,即如果a>b,那么a±c>_______
中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
5.(数学文化)《九章算术》是中国古代数学著作之一,书中有这样的一 个问题:五只雀、六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问: 每只雀、燕的质量各为多少?设一只雀的质量为 x 斤,一只燕的质量为 y
5x+6y=1, 斤,则可列方程组为__4x+y=5y+__x.
【考情分析】广西近 6 年主要考查解一元一次方程或二元一次方程组, 应用一元一次方程或二元一次方程组解决简单的实际问题,难度小,分 值 3-10 分,常在解答题中与不等式、一次函数的实际应用结合考查.
x=1, 则方程组的解为y=-1.
x-3y=-2, 5.(2020·玉林第 20 题 6 分)解方程组:2x+y=3.
x-3y=-2①, 解:2x+y=3②. ①+②×3 得 x+6x=-2+3×3, 解得 x=1, 将 x=1 代入②得 2+y=3, 解得 y=1.
x=1, 则方程组的解为y=1.
根据题意可列方程组为
y=3x-2, A.y=2x+9
y=3x-2, C.y=2x-9
y=3(x-2), B.y=2x+9
y=3(x-2), D.y=2x-9
( B)
7.(2021·桂林第 24 题 8 分)为了美化环境,建设生态桂林,某社区需 要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天 能完成的绿化改造面积比乙队多 200 m2,甲队与乙队合作一天能完成 800 m2 的绿化改造面积. (1)甲、乙两工程队每天各能完成多少 m2的绿化改造面积? (2)该社区需要进行绿化改造的区域共有 12 000 m2,甲队每天的施工费 用为 600 元,乙队每天的施工费用为 400 元,比较以下三种方案: ①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成. 哪一种方案的施工费用最少?
方程(组)相关知识点
第一节 一次方程(组)【考点链接一】 一元一次方程及解法 一、等式的性质性质1:等式两边加(或减)同一个数或同一个 ,所得结果仍是等式; 性质2:等式两边乘(或除以)同一个数(除数不能为0),所得结果仍是 . 二、方程的有关概念1、 含有未知数的 叫做方程.2、 方程的解使方程左右两边的值 的未知数的值叫做方程的解.三、一元一次方程的解法 解一元一次方程的一般步骤:去分母、去 、移项、合并 、系数化为1. 【考点链接二】 二元一次方程组及解法 一、二元一次方程的概念含有 未知数,并且未知项的次数是 的整式方程叫做二元一次方程. 二、二元一次方程组的解二元一次方程组的两个方程的 ,叫做二元一次方程组的解. 三、二元一次方程组的解法二元一次方程组方程−−−→消元转化方程. 消元是解二元一次方程组的基本思路,方法有 消元法和 消元法两种. 【考点链接三】 一次方程(组)的应用 列方程(组)解应用题的一般步骤1.审 审清题意和数量关系,弄清题中的已知量和未知量,明确各数量之间的关系.2.设 设未知数(可设直接或 未知数).3.列 根据题意寻找 列方程(组).4.解 解方程(组).5.答 检验所求的未知数的值是否符合题意,写出答案。
第二节一元一次不等式(组)【考点链接一】不等式的概念及性质1、不等式的有关概念:用不等号连接起来的式子叫做不等式,使不等式成立的未知数的取值范围叫做不等式的解集2、不等式的基本性质:性质1 若a<b,则a±c<b±c性质2 若a<b且c>0,则ac bc (或acbc)性质3 若a<b且c<0,则ac bc (或acbc).【考点链接二】一元一次不等式(组)的解法1、一元一次不等式的解法(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.2、不等式组的解法一般先分别求出不等式组中各个不等式的解集,并表示在数轴上,再求出他们的公共部分,就得到不等式组的解集.3、不等式组的解集情况(假设b<a)【考点链接二】不等式的应用列不等式解应用题和列方程解应用题的一般步骤基本相似,其步骤包括:(1)审清题意;(2)设未知数;(3)列不等式;(4)解不等式;(5) 作答。
人教版中考数学第一轮复习第二章方程与不等式
第二章 方程与不等式第七讲 一次方程(组)【基础知识回顾】一、 等式的概念及性质:1、等式:用“=”连接表示 关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减) 所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以 (除数不为0)所得结果仍是等式 即:若a=b,那么a c= ,若a=b (c≠o )那么a c= 【名师提醒:①用等式性质进行等式变形,必须注意“都”,不能漏项②等式两边都除以一个数或式时必须保证它的值 】二、方程的有关概念:1、含有未知数的 叫做方程2、使方程左右两边相等的 的值,叫做方程的解4、一个方程两边都是关于未知数的 ,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是 的 方程叫做一元一次方程,一元一次方程一般可以化成 的形式。
2、解一元一次方程的一般步骤:1。
2。
3。
4。
5。
【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意。
】四、二元一次方程组及解法:1、 解二元一次方程组的基本思路是: ;2.解方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解 2、二元一次方程组的解应写成 五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【重点考点例析】 一、选择题1.一元一次方程2x=4的解是( )A .x=1 B .x=2 C .x=3 D.x=4x=ay=b 的形式2.已知方程组2535x yx y+=⎧⎨+=⎩,则x+y的值为()A.-1 B.0 C.2 D.3A.4150048000x yx y+=⎧⎨+=⎩B.4150068000x yx y+=⎧⎨+=⎩C.1500468000x yx y+=⎧⎨+=⎩D.1500648000x yx y+=⎧⎨+=⎩二、填空题12.方程组31x yx y+=⎧⎨-=⎩的解是.13.若方程组7353x yx y+=⎧⎨-=-⎩,则3(x+y)-(3x-5y)的值是.14.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为.15.某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价元.三、解答题20.解方程组128 x yx y=+⎧⎨+=⎩.21.解方程组251x yx y+=⎧⎨-=⎩.【基础知识回顾】一、一元二次方程的定义:1、一元二次方程:含有个未知数,并且未知数最高次数是2的方程2、一元二次方程的一般形式:其中二次项是一次项是,是常数项【名师提醒:1、在一元二次方程的一般形式要特别注意强调a≠0这一条件2、将一元二次方程化为一般形式时要按二次项、一次项、常数项排列,并一般首项为正】二、一元二次方程的常用解法:1、直接开平方法:如果ax 2 =b 则X 2 = X1= X2=2、配方法:解法步骤:①、化二次项系数为即方程两边都二次项系数,②、移项:把项移到方程的边③、配方:方程两边都加上把左边配成完全平方的形式④、解方程:若方程右边是非负数,则可用直接开平方法解方程3、公式法:如果方程ax 2+bx+c=0(a≠0) 满足b 2-4ac≥0,则方程的求根公式为4、因式分解法:一元二次方程化为一般形式后,如果左边能分解因式,即产生A.B=0的形式,则可将原方程化为两个方程,即、从而得方程的两根【名师提醒:一元二次方程的四种解法应根据方程的特点灵活选用,较常用到的是法和法】三、一元二次方程根的判别式关于X的一元二次方程ax 2+bx+c=0(a≠0)根的情况由决定,我们把它叫做一元二次方程根的判别式,一般用符号表示①当时,方程有两个不等的实数根②当时,方程看两个相等的实数根方程有两个实数跟,则③当时,方程没有实数根【名师提醒:在使用根的判别式解决问题时,如果二次项系数中含有字母一定要保证二次项系数】四、一元二次方程根与系数的关系:关于X的一元二次方程ax 2 +bx+c=0(a±0)有两个根分别为X1、X2则x1+x2 = x1x2 =【重点考点例析】一、选择题1.方程x2-5x=0的解是()A.x1=0,x2=-5 B.x=5 C.x1=0,x2=5 D.x=0 2.已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为()A.1 B.-1 C.2 D.-23.已知b<0,关于x的一元二次方程(x-1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根4.一元二次方程2x2-5x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0.下列说法正确的是()A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解6.已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是()A.4 B.-4 C.1 D.-17.若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k=1 D.k≥08.若关于x的方程x2-4x+m=0没有实数根,则实数m的取值范围是()A.m<-4 B.m>-4 C.m<4 D.m>49.关于x的一元二次方程(a-1)x2-2x+3=0有实数根,则整数a的最大值是()A.2 B.1 C.0 D.-110.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4 B.x-6=4 C.x+6=4 D.x+6=-4 11.用配方法解方程x2-2x-1=0时,配方后得的方程为()A.(x+1)2=0 B.(x-1)2=0 C.(x+1)2=2 D.(x-1)2=2二、填空题三、解答题21.选择适当的方法解下列方程:(1)27(23)28x -=; (2)223990y y--= (3)221x +=; (4)2(21)3(21)20x x ++++= 23.关于x 的一元二次方程为(m-1)x 2-2mx+m+1=0.(1)求出方程的根;(2)m 为何整数时,此方程的两个根都为正整数?24.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?25.要建一个面积为150m 2的长方形养鸡场,为了节约材料,鸡场的一边靠着原有的一条墙,墙长为am ,另三边用竹篱笆围成,如图,如果篱笆的长为35m ,(1)求鸡场的长与宽各为多少?(2)题中墙的长度a 对题目的解起着怎样的作用?第九讲 分式方程【基础知识回顾】一、分式方程的概念分母中含有 的方程叫做分式方程【名师提醒:分母中是否含有未知数是区分分式方程和整式方程的根本依据】二、分式方程的解法:1、解分式方程的基本思路是 把分式方程转化为整式方程:即分式方程 ﹥整式方程2、解分式方程的一般步骤:①、 ②、 ③、3、增根:转化 去分母 A B D E F在进行分式方程去分母的变形时,有时可能产生使原方程分母为 的根称为方程的增根。
中考总复习数学第1节 一次方程(组)及其应用
【自主作答】(1)x=1;(2)xy==12,.
类型3:列一次方程(组)解实际问题
►例3(2020·绍兴)有两种消费券:A 券,满 60 元减 20
元;B 券,满 90 元减 30 元,即一次购物大于等于 60 元、
90 元,付款时分别减 20 元、30 元.小敏有一张 A 券,
小聪有一张 B 券,他们都购了一件标价相同的商品,各
【自主作答】100 或 85
►例4某一天,蔬菜经营户老李用了 145 元从蔬菜批
发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄
子当天的批发价与零售价如下表所示:
品名
黄瓜
茄子
批发价/(元/千克)
3
4
零售价/(元/千克)
4
7
当天他卖完这些黄瓜和茄子共赚了 90 元,这天他批 发的黄瓜与茄子分别是多少千克?
(1)请求出 A,B 两个品种去年平均亩产量分别是多 少.
(2)今年,科技小组加大了小麦种植的科研力度,在 A,B 种植亩数不变的情况下,预计 A,B 两个品种平均 亩产量将在去年的基础上分别增加 a%和 2a%,由于 B 品种深受市场的欢迎,预计每千克价格将在去年的基础 上上涨 a%,而 A 品种的售价不变.A,B 两个品种全部 售出后总收入将在去年的基础上增加290a%.求 a 的值.
自付款,若能用券时用券,这样两人共付款 150 元,则
所购商品的标价是
元.
分析:设所购商品的标价是 x 元,由题意,得
①所购商品的标价小于 90 元, x-20+x=150 ,
解得 x= 85
;②所购商品的标价大于 90 元,
x-20+x-30=150 ,解得 x= 100 .故所购商品
的标价是 100 或 85 元.
中考数学决胜一轮复习第2章方程组与不等式组第1节一次方程(组)及其应用
●考点四 二元一次方程组的解法 解二元一次方程组的基本思想是:“__消__元____”,即将二元一次方 程 组 转 化 为 一 元 一 次 方 程 . 常 见 方 法 有 : “___代_入____ 消 元 法 ” 和 “___加_减____消元法”.
+120(50-m)≤5 500,解得 m≥25.所以,至少购买 25 个篮球,则最多
购买 25 个足球.
12/8/2021
第二十一页,共三十九页。
12/8/2021
中考真题汇编
第二十二页,共三十九页。
1.(2018·安徽)《孙子算经》中有这样一道题,原文如下:今有 百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?
12/8/2021
第二十六页,共三十九页。
4.(2018·东营)小岩打算购买气球装扮学校“毕业典礼”活动会
∴打折后购买这批粽子比不打折节省了 3 640 元. 【点拨】 本题考查了列一次方程(组)解实际问题的运用,解答的
关键是抓住“总价=单价×数量”以及读懂生活中销售(xiāoshòu)商品时“打
折”的实际含义. 12/8/2021
第十七页,共三十九页。
1.若关于于 x,y 的二元一次方程 3x-ay=1 有一个解是xy==23,, 则 a=____4___.
12/8/2021
第二十页,共三十九页。
解 : (1) 设 每 个 篮 球 和 每 个 足 球 的 售 价 分 别 是 x , y 元 , 则 有
2x+y=320, 3x+2y=540,
解方程组,得xy==112000,,
即每个篮
中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
13.(2021·毕节适应性考试)如图,点 A 在数轴上表示的数是-16.点 B 在数轴上表示的数是 8.若点 A 以 6 个单位长度/秒的速度向右匀速运动, 同时点 B 以 2 个单位长度/秒的速度向左匀速运动,问:当 AB=8 时,运 动时间为__2或4 __秒.
14.(2021·贺州)为了提倡节约用水,某市制定了两种收费方式:当每 户每月用水量不超过 12 m3时,按一级单价收费;当每户每月用水量超过 12 m3 时,超过部分按二级单价收费. 已知李阿姨家五月份用水量为 10 m3, 缴纳水费 32 元,七月份因孩子放假在家,用水量为 14 m3,缴纳水费 51.4 元. (1)问该市一级水费,二级水费的单价分别是多少? (2)某户某月缴纳水费为 64.4 元时,用水量为多少?
1 y=4 的一个解,则 a 的值为 2 .
7.(2020·南京)已知
x,y
x+3y=-1, 满足方程组2x+y=3, 则
x+y
的值为__11__.
8.(2020·牡丹江)某种商品每件的进价为 120 元,标价为 180 元.为了
拓展销路,商店准备打折销售.若使利润率为 20%,则商店应打__88__折.
解:(1)-1;5. (2)设铅笔的单价为 m 元,橡皮的单价为 n 元,日记本的单价为 p 元,依 题意,得 20m+3n+2p=32,① 39m+5n+3p=58,② 由 2×①-②可得 m+n+p=6, ∴5m+5n+5p=5×6=30. 答:购买 5 支铅笔、5 块橡皮、5 本日记本共需 30 元.
15.(2020·扬州)阅读感悟: 有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于 未知数的代数式的值,如以下问题: 已知实数 x,y 满足 3x-y=5①,2x+3y=7②,求 x-4y 和 7x+5y 的值. 本题常规思路是将①②两式联立组成方程组,解得 x,y 的值再代入欲求 值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方 程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式 的值,如由①-②可得 x-4y=-2,由①+②×2 可得 7x+5y=19.这样 的解题思想就是通常所说的“整体思想”.
方程与不等式知识点总结
第一章 一元一次方程1、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2、一元一次方程的标准形式: ax+b=0(x 是未知数,a 。
b 是已知数,且a ≠0)。
3、一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解)。
4、列一元一次方程解应用题:(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。
(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有 关的代数式是获得方程的基础。
11、列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率= 比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101 ,利润=售价-成本, %100⨯-=成本成本售价利润率; (6)周长。
面积。
体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章方程(组)与不等式(组) 第一节一次方程(组)及应用及应用在中考中考过河北五年中考真题及模拟)一次方程(组)的应用1.(2015河北中考)利用加减消元法解方程组⎩⎪⎨⎪⎧2x+5y=-10,①5x-3y=6,②下列做法正确的是(D) A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×22.(2017张家口中考模拟)小明在解关于x,y的二元一次方程组⎩⎪⎨⎪⎧x+y=△,2x-3y=5时,解得⎩⎪⎨⎪⎧x=4y=则△和 代表的数分别是(B)A.△=1, =5 B.△=5, =1C.△=-1, =3 D.△=3, =-13.(2016石家庄二模)希望中学九年级(1)班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中,正确的是(A)A.2(x-1)+x=49 B.2(x+1)+x=49C.x-1+2x=49 D.x+1+2x=494.(2017原创)已知⎩⎪⎨⎪⎧x =3,y =-2是关于⎩⎪⎨⎪⎧ax +by =3,bx +ay =-7的解,则(a +b )(a -b )的值为__-8__. 5.(2016河北中考)已知n 边形的内角和θ=(n -2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n .若不对,说明理由;(2)若n 边形变为(n +x )边形,发现内角和增加了360°,用列方程的方法确定x . 解:(1)甲对,乙不对. ∵θ=360°,∴(n -2)×180°=360°.解得n =4.∵θ=630°,∴(n -2)×180°=630°,解得n =112.∵n 为整数,∴θ不能取630°; (2)依题意,得(n -2)×180°+360°=(n +x -2)×180°.解得x =2.,中考考点清单方程、方程的解与解方程1.含有未知数的__等式__叫方程.2.使方程左右两边相等的__未知数__的值叫方程的解. 3.求方程__解__的过程叫解方程.等式的基本性质4.一次方程(组)5.次方程【易错警示】(1)解一元一次方程去分母时常数项不要漏乘,移项一定要变号;(2)二元一次方程组的解应写成⎩⎪⎨⎪⎧x =a ,y =b的形式.列方程(组)解应用题的一般步骤6.;(1)消元思想:将二元一次方程组通过消元使其变成一元一次方程;(2)整体思想:在解方程时结合方程的结构特点,灵活采取整体思想,使整个过程简捷;(3)转化思想:解一元一次方程最终要转化成ax =b ;解二元一次方程组先转化成一元一次方程; (4)数形结合思想:利用图形的性质建立方程模型解决几何图形中的问题; (5)方程思想:利用其他知识构造方程解决问题.,中考重难点突破一元一次方程及解法【例1】(1)(2017成都中考)已知|a +2|=1,则a =________.(2)解方程:0.5x +20.03-x =0.3(0.5x +2)0.2-13112.【解析】(1)注意绝对值等于1的数有两个;(2)先根据分式的基本性质把各分母变成整数,再由等式的性质去分母,小心不要把两者混为一谈.【答案】(1)-1或-3;(2)解:原方程可化为:50x +2003-x =3(x +4)4-13112,解得x =-5.1.若代数式x +3值是2,则x =__-1__. 2.(滨州中考)解方程:2-2x +13=1+x2.解:去分母,得12-2(2x +1)=3(1+x ), 去括号,得12-4x -2=3+3x , 移项,得-4x -3x =3+2-12, 合并同类项,得-7x =-7, 系数化为1,得x =1.二元一次方程组及解法【例2】已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +3y =m ,x +2y =-1的解互为相反数,则m =________.【解析】由解互为相反数可得x =-y ,而后把x =-y 代入方程组从而得到关于m ,y 的二元一次方程组,解之即可得m 的值.【答案】-13.(2017济南中考)如果13x a +2y 3与-3x 3y 2b -1是同类项,那么a ,b 的值分别是( A )A .⎩⎪⎨⎪⎧a =1,b =2B .⎩⎪⎨⎪⎧a =0,b =2C .⎩⎪⎨⎪⎧a =2,b =1D .⎩⎪⎨⎪⎧a =1,b =14.解方程组:⎩⎪⎨⎪⎧5x +10=10y , ①15x =20y +10. ②解:由①,得x -2y =-2.③由②,得3x -4y =2.④ ③×2-④,得x =6.把x =6代入③,得y =4,所以原方程组的解为⎩⎪⎨⎪⎧x =6,y =4.一元一次方程的应用【例3】(2017资阳中考)电器商城某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( A )A .562.5元B .875元C .550元D .750元【解析】本例涉及标价、打折后的新售价、进价、利润、利润率及它们之间的关系.进价为500÷20%=2 500(元).设标价为x 元,根据题意,得80%x -2 500=500,解得x =3 750.∴3 750×90%-2 500=875(元).【答案】B5.学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.求篮球和足球的单价.解:设一个篮球x 元,则一个足球(x -30)元. 由题意,得2x +3(x -30)=510. 解得x =120.x -30=90.答:一个篮球120元,一个足球90元.二元一次方程的应用【例4】(2017金华中考)某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4∶3,二楼售出与未售出的座位数比为3∶2,且此场音乐会一、二楼未售出的座位数相等,则此场音乐会售出与未售出的座位数比为( A )A .2∶1B .7∶5C .17∶12D .24∶17【解析】设一楼售出的座位数为4x ,未售出的座位数为3x ,二楼售出的座位数为3y ,未售出的座位数为2y .由题意,得3x =2y ,则x =2y3.那么4x +3y 3x +2y =4×23y +3y 2y +2y=17∶12.【答案】C6.(2017新疆中考)某班级为筹建运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有多少种购买方案?解:设买甲种运动服x 套,乙种y 套. 由题意,得20x +35y =365,则x =73-7y 4,∵x ,y 必须为正整数, ∴73-7y 4>0,即0<y <737,∴当x =3时,x =13, 当y =7时,x =6. 答:有2种方案.二元一次方程组的应用【例5】(2017徐州中考)某景点的门票价格如下表:某校七年级(1)50人且少于100人.如果两班都以班为单位单独购票,则一共支付1 118元,如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【解析】条件中只说(1)班学生人数少于50人,(2)班人数多于50人且少于100人.那么,两班共有人数是不到100人,还是比100人多,都不清楚,因此,需分类讨论是100多人,还是在50至100中.【答案】解:(1)设七年级(1)班有x 人、七年级(2)班有y 人.当50<x +y <100时,由题意,得 ⎩⎪⎨⎪⎧12x +10y =1 118,10(x +y )=816. ∴x +y =81.6,不是整数,不合题意. 当x +y >100时,由题意,得 ⎩⎪⎨⎪⎧12x +10y =1 118,8(x +y )=816.解得⎩⎪⎨⎪⎧x =49,y =53. 答:七年级(1)班有49人,七年级(2)班有53人;(2)七年级(1)班节约了(12-8)×49=196(元),七年级(2)班节约了(10-8)×53=106(元).7.(江西中考)小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格.解:设每支中性笔x 元,每盒笔芯y 元. 根据题意,得 ⎩⎪⎨⎪⎧20x +2y =56,2x +3y =28,解得⎩⎪⎨⎪⎧x =2,y =8. 答:每支中性笔2元,每盒笔芯8元.8.(孝感中考)孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A ,B 两种树木共100棵进行校园绿化升级.经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元.(1)求A 种、B 种树木每棵各多少元;(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠.请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.解:(1)设A 种树木每棵x 元,B 种树木每棵y 元.根据题意,得⎩⎪⎨⎪⎧2x +5y =600,3x +y =380.解得⎩⎪⎨⎪⎧x =100y =80.答:A 种树木每棵100元,B 种树木每棵80元;(2)设购买A 种树木为a 棵,则购买B 种树木为(100-a )棵. 则a ≥3(100-a ),∴a ≥75. 设实际付款总金额为w 元.则w =0.9[100a +80(100-a )]=18a +7 200, ∵18>0,w 随a 的增大而增大, ∴当a =75时,w 最小. 即a =75,w 最小值=18×75+7 200=8 550(元).∴当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少费用为8 550元.。