【2014海淀二模】北京市海淀区高三年级第二学期期末练习理科数学(含答案)(2014.5)

合集下载

北京市海淀区2014届下学期高三二模 理综试卷 有答案

北京市海淀区2014届下学期高三二模 理综试卷 有答案

北京市海淀区2014届下学期高三年级二模考试理综试卷【试题答案】生物部分参考答案2014.5 第一部分(选择题)(每小题6分,共30分)1.C2.D3.D4.B5.C第二部分(非选择题)(共50分)29.(每空2分,共16分)(1)受体信息(或“信号”)(2)测量并记录抑制抑制作用增强(或“抑制作用更显著”)(3)生长素含量增加(4)生长素的极性运输(5)合成30.(18分)(1)DNA(或“基因”)(1分)(2)不同(2分)核糖体(2分)(3)①氮源(1分)蛋白质和核酸(2分)②尿嘧啶(2分)③没有合成(2分)底部(1分)新合成的噬菌体RNA(2分)(4)如右表(3分)注:1组与2组可整组互换位置,但全部填写正确才可得分。

31.(16分)(1)(生物)群落(1分)分解者(1分)物质循环和能量流动(2分)(2)①排除蚯蚓个体差异对实验结果的影响(2分)灭菌(2分)②高于(或“大于”)(1分)杨半分解叶(2分)叶片种类和分解(腐解)程度(2分)(3)蚯蚓(1分)(抵抗力)稳定性(或“自我调节能力”)(2分)物理学科参考答案2014.5选择题(共48分,13题~20题每题6分)13.B 14.A 15.A 16.D 17.C 18.C 19.D 20.B21.(18分)(1)(共6分)① C (2分)②1.22 (2分)③ D (2分)(2)(12分)①0~0.6 (2分);0~3 V (1分);R 1 (1分)②见答图1 (2分)③ 1.45(2分); 1.3 (2分)④ A (2分)22.(16分) 解:(1)设圆轨道上释放小物块的位置与桌面间的高度差为H ,小物块运动至N 点过程中机械能守恒,则有2021mv mgH = (4分) 解得 H =0.45m (1分)(2)设物块经过N 点时所受支持力为F根据牛顿第二定律有Rv m mg F 20=- (4分) 解得 F =5.6 N (1分)(3)设物块做平抛运动的时间为t ,小物块落地前竖直分速度为v y ,则 221gt h = (1分) v y =gt (1分)解得 v y =4.0m/s小物块落地前速度220y v v v +=(2分) 解得v =5.0m/s动量p=mv (1分)p =1.0kg·m/s (1分)23.(18分)解:(1)闭合铜线框右侧边刚进入磁场时产生的电动势E=BLv 0 (2分) 产生的电流I =RBLv R E 0= (2分)右侧边所受安培力F=BIL =Rv L B 022 (2分) (2)线框以速度v 0进入磁场,在进入磁场的过程中,受安培力而减速运动;进入磁场后,在摩擦力作用下加速运动,当其右侧边到达PQ 时速度又恰好等于v 0。

北京市海淀区高三数学下学期期末练习 理(海淀二模)(含解析)

北京市海淀区高三数学下学期期末练习 理(海淀二模)(含解析)

海淀区高三年级第二学期期末练习数 学 (理科) 2013.5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则A B = A .(,0]-∞ B .(,1]-∞ C .[1,2] D .[1,)+∞ 【答案】B解析{}|(1)(2)0{21}A x x x x x =-+≤=-≤≤,所以A B ={1}x x ≤,即选B.2.已知数列{}n a 是公比为q 的等比数列,且134a a ⋅=,48a =,则1a q +的值为 A .3 B .2 C .3或2- D .3或3- 【答案】D解析由134a a ⋅=,48a =得2214a q =,318a q =,解得2q =±。

当2q =时,11a =,此时13a q +=。

当2q =-时,11a =-,此时13a q +=-。

选D.3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若 撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为A.ma nB.na mC. 2ma nD. 2na m【答案】C解析设图形Ω面积的为S ,则由实验结果得2S m a n=,解2ma S n =,所以选C.4.俯视图A.180B.240C.276D.300【答案】B解析由三视图可知,该几何体的下面部分是边长为6的正方体。

上部分为四棱锥。

四棱锥的底面为正方形,边长为 6.侧面三角形的斜高为 5.所以该几何体的表面积为21656542402⨯+⨯⨯⨯=,选B.5.在四边形ABCD 中,“λ∃∈R ,使得,AB DC AD BC λλ==”是“四边形ABCD 为平行四边形”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】C解析若,AB DC AD BC λλ==,则//,//AB DC AD BC ,即//,//AB DC AD BC ,所以四边形ABCD 为平行四边形。

北京市海淀区高三二模数学参考答案(理科)

北京市海淀区高三二模数学参考答案(理科)

海淀区高三年级第二学期期末练习参考答案数 学 (理科) 2014.5阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一、选择题:本大题共8小题,每小题5分,共40分.1.A2.C3.D4.A.5.D6.B7.C8.D二、填空题:本大题共6小题,每小题5分,共30分.9.01x <<{或(0,1) }11.1 12.213. 14.6,5050 {本题第一空3分,第二空2分}三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)由正弦定理可得sin sin a bA B=----------------------------2分因为,a A b ==所以sin sin b A B a === ---------------------------5分 在锐角ABC ∆中,60B =o ---------------------------7分 (Ⅱ)由余弦定理可得2222cos b a c ac B =+- ----------------------------9分 又因为3a c =所以2222193c c c =+-,即23c = -------------------------------11分解得c = -------------------------------12分经检验,由222cos 02b c a A bc +-=<可得90A >o ,不符合题意,所以c =舍去. --------------------13分 16.解:(Ⅰ)因为1//C F 平面AEG又1C F ⊂平面11ACC A ,平面11ACC A I 平面AEG AG =,1所以1//C F AG . ---------------------------------3分 因为F 为1AA 中点,且侧面11ACC A 为平行四边形所以G 为1CC 中点,所以112CG CC =.------------------------4分 (Ⅱ)因为1AA ⊥底面ABC ,所以1AA AB ⊥,1AA AC ⊥, ----------------------------------5分 又AB AC ⊥,如图,以A 为原点建立空间直角坐标系A xyz -,设2AB =,则由1AB AC AA ==可得11(2,0,0),(0,2,0),(2,0,2),(0,0,2)C B C A -----------------------------6分 因为,E G 分别是1,BC CC 的中点,所以(1,1,0),(2,0,1)E G . -----------------------------7分1(1,1,1)(2,0,2)0EG CA ⋅=-⋅-=u u u r u u u r. --------------------------------8分所以1EG CA ⊥u u u r u u u r,所以1EG A C ⊥. --------------------------------9分 (Ⅲ)设平面AEG 的法向量(,,)x y z =n ,则0,0,AE AG ⎧⋅=⎪⎨⋅=⎪⎩n n u u u r u u u r 即0,20.x y x z +=⎧⎨+=⎩ --------------------------10分 令1x =,则1,2y z =-=-,所以(1,1,2)=--n . --------------------------11分 由已知可得平面1A AG 的法向量(0,1,0)=m -------------------------------11分所以cos ,||||⋅<>==⋅n m n m n m --------------------------------13分由题意知二面角1A AG E --为钝角, 所以二面角1A AG E --的余弦值为. --------------------------------14分 16.解:(Ⅰ)设A 车在星期i 出车的事件为i A ,B 车在星期i 出车的事件为i B ,1,2,3,4,5i = 由已知可得()0.6,()0.5i i P A P B ==设该单位在星期一恰好出一台车的事件为C , -------------------------------1分 因为,A B 两车是否出车相互独立,且事件1111,A B A B 互斥 ----------------2分所以111111111111()()()()()()()()P C P A B A B P A B P A B P A P B P A P B =+=+=+ 0.6(10.5)(10.6)0.5=⨯-+-⨯ --------------------------4分 0.5=所以该单位在星期一恰好出一台车的概率为0.5. --------------------------5分 {答题与设事件都没有扣1分,有一个不扣分}(Ⅱ)X 的可能取值为0,1,2,3 ----------------------------6分 112(0)()()0.40.50.40.08P X P A B P A ===⨯⨯=2112(1)()()()()0.50.40.40.50.60.32P X P C P A P A B P A ==+=⨯+⨯⨯= 1122(2)()()()()0.60.50.40.50.60.42P X P A B P A P C P A ==+=⨯⨯+⨯=112(3)()()0.60.50.60.18P X P A B P A ===⨯⨯= ----------------------------10分所以的的分布列为--------------11分()00.0810.3220.4230.18 1.7E X =⨯+⨯+⨯+⨯=-------------------------------13分18.解: (Ⅰ)当π2a =时,π()()sin cos ,(0,)2f x x x x x π=-+∈ π'()()cos 2f x x x =- --------------------------------1分由'()0f x =得π2x =--------------------------------------2分 的情况如下4分因为(0)1f =,(π)1f =-,所以函数()f x 的值域为(1,1)-. ---------------------------------------------------5分 (Ⅱ)'()()cos f x x a x =-,①当ππa <<时,(),'()f x f x 的情况如下9分所以函数()f x 的单调增区间为π(,)2a ,单调减区间为π(0,)2和(,π)a②当πa ≥时,(),'()f x f x 的情况如下13分所以函数()f x 的单调增区间为π(,π)2,单调减区间为π(0,)2.19.解:(Ⅰ)由已知可设椭圆G 的方程为:2221(1)1x y a a +=>.-------------------------------1分由e =,可得222112a e a -==,-----------------------------------------------------2分解得22a =, ----------------------------------------------3分所以椭圆的标准方程为22121x y +=. ------------------------------------------4分(Ⅱ)法一:设00(,),C x y 且00x ≠,则00(,)D x y -. ----------------------------------------5分 因为(0,1),(0,1)A B -, 所以直线AC 的方程为0011y y x x -=+. ----------------------------------------6分 令0y =,得001M x x y -=-,所以00(,0)1x M y --. ------------------------------------7分 同理直线BD 的方程为0011y y x x +=--,求得00(,0)1x N y -+.-----------------------8分0000(,1),(,1),11x x AM AN y y -=-=--+u u u u r u u u r -----------------------------------------9分所以AM AN ⋅=u u u u r u u u r 202011x y -+-, --------------------------------------10分 由00(,)C x y 在椭圆G :2212x y +=上,所以22002(1)x y =-,-------------------11分所以10AM AN ⋅=-≠u u u u r u u u r, -----------------------------13分所以90MAN ∠≠o ,所以,以线段MN 为直径的圆不过点A . ------------------------------14分 法二:因为,C D 关于y 轴对称,且B 在y 轴上所以CBA DBA ∠=∠. ------------------------------------------5分 因为N 在x 轴上,又(0,1),(0,1)A B -关于x 轴对称所以NAB NBA CBA ∠=∠=∠, ------------------------------------------6分 所以//BC AN , -------------------------------------------7分 所以180NAC ACB ∠=-∠o , ------------------------------------------8分 设00(,),C x y 且00x ≠,则22002(1)x y =-. ----------------------------------------9分因为22200000003(,1)(,1)(1)02CA CB x y x y x y x ⋅=-+=--=>u u u r u u u r ,----------------11分所以90ACB ∠≠o , -----------------------------------12分 所以90NAC ∠≠o , ----------------------------------13分 所以,以线段MN 为直径的圆不过点A . -------------------------------14分 法三:设直线AC 的方程为1y kx =+,则1(,0)M k-, ---------------------------------5分22220,1,x y y kx ⎧+-=⎨=+⎩ 化简得到222(1)20x kx ++-=,所以22(12)40k x kx ++=,所以12240,21kx x k -==+, -----------------------------6分所以22222421112121k k y kx k k k --+=+=+=++, 所以222421(,)2121k k C k k --+++, ----------------------------7分 因为,C D 关于y 轴对称,所以222421(,)2121k k D k k -+++. ----------------------------8分所以直线BD 的方程为222211211421k k y x k k -+++=-+,即112y x k =-.------------------10分 令0y =,得到2x k =,所以(2,0)N k . --------------------11分 1(,1)(2,1)10AM AN k k⋅=--⋅-=-≠u u u u r u u u r , ----------------------12分所以90MAN ∠≠o , ----------------------------------13分 所以,以线段MN 为直径的圆恒过(0,2)和(0,2)-两点. --------------------------14分{法4 :转化为文科题做,考查向量AC AN ⋅u u u r u u u r的取值}20.解:(Ⅰ)110d =,27d =,20142d = ---------------------------3分 (Ⅱ)法一:① 当2d =时,则(,,)(,1,2)a b c a a a =++所以1(,1,2)(1,2,)f a a a a a a ++=++,122d a a =+-=,由操作规则可知,每次操作,数组中的最大数2a +变为最小数a ,最小数a 和次 小数1a +分别变为次小数1a +和最大数2a +,所以数组的极差不会改变. 所以,当2d =时,(1,2,3,)n d d n ==L 恒成立. ②当3d ≥时,则1(,,)(1,1,2)f a b c a b c =++-所以11(1)d b a b a c a d =+-+=-<-=或12(1)3d c a d =--+=- 所以总有1d d ≠.综上讨论,满足(1,2,3,)n d d n ==L 的d 的取值仅能是2. ---------------------8分 法二:因为a b c <<,所以数组(,,)a b c 的极差2d c a =-≥所以1(,,)(1,1,2)f a b c a b c =++-,若2c -为最大数,则12(1)3d c a c a d =--+=--< 若121b c a +≥->+,则1(1)(1)d b a b a c a d =+-+=-<-= 若112b a c +>+≥-,则1(1)(2)3d b c b c =+--=-+, 当3b c d -+=时,可得32b c -+≥,即1b c +≥ 由b c <可得1b c +≤ 所以1b c +=将1c b =+代入3b c c a -+=-得1b a =+所以当(,,)(,1,2)a b c a a a =++时,2n d =(1,2,3,n =L )由操作规则可知,每次操作,数组中的最大数2a +变为最小数a ,最小数a 和次小 数1a +分别变为次小数1a +和最大数2a +,所以数组的极差不会改变. 所以满足(1,2,3,)n d d n ==L 的d 的取值仅能是2. ---------------------8分 (Ⅲ)因为,,a b c 是以4为公比的正整数等比数列的三项,所以,,a b c 是形如4k m ⋅(其中*m ∈N )的数,又因为1114(31)3331k k k k k k k C C --=+=++++L所以,,a b c 中每两个数的差都是3的倍数.所以(,,)a b c 的极差0d 是3的倍数. ------------------------------------------------9分 法1:设(,,)(,,)i i i i f a b c a b c =,不妨设a b c <<,依据操作f 的规则,当在三元数组(,,)i f a b c (1,2,3,,i x =L ,x ∈N )中,总满足ic 是唯一最大数,i a 是最小数时,一定有2a x b x c x +<+<-,解得3c bx -<. 所以,当2,3,,13c bi -=-L 时,111(2)(1)3i i i i i i d c a c a d ---=-=--+=-. 3322(,,)(,,)333c b a c b c b c bf a b c -+-++=,3c bd b a -=- 依据操作f 的规则,当在三元数组(,,)i f a b c (,1,,333c b c b c bi y ---=++L ,y ∈N )中,总满足i i c b =是最大数,i a 是最小数时,一定有32233a cbc by y +-++<-,解得3b ay -<. 所以,当,1,,1333c b c b c ai ---=+-L 时,111(1)(2)3i i i i i i d c a c a d ---=-=--+=-.3(,,)(,,)333c a a b c a b c a b cf a b c -++++++=,30c a d -= 所以存在3c an -=,满足(,,)n f a b c 的极差0n d =.--------------------------------13分 法2:设(,,)(,,)i i i i f a b c a b c =,则①当(,,)i i i a b c 中有唯一最大数时,不妨设i i i a b c ≤<,则1111,1,2i i i i i i a a b b c c +++=+=+=-,所以111111,3,3i i i i i i i i i i i i b a b a c a c a c b c b ++++++-=--=---=--所以,若,,i i i i i i b a c a c b ---是3的倍数,则111111,,i i i i i i b a c a c b ++++++---是3的倍数. 所以3i i b c +≤,则3i d ≥,1130i i i i c b c b ++-=--≥, 所以111i i i a b c +++≤≤所以11133i i i i i i d c a c a d +++=-=--=--------------------------------------------11分 ②当(,,)i i i a b c 中的最大数有两个时,不妨设i i i a b c <=,则1112,1,1i i i i i i a a b b c c +++=+=-=-,所以1111113,3,i i i i i i i i i i i i b a b a c a c a c b c b ++++++-=---=---=-,所以,若,,i i i i i i b a c a c b ---是3的倍数,则111111,,i i i i i i b a c a c b ++++++---是3的倍数. 所以3i i a b +≤,则3i d ≥,1130i i i i b a b a ++-=--≥ 所以11133i i i i i i d b a b a d +++=-=--=-.所以当3i d ≥时,数列{}i d 是公差为3的等差数列.------------------------------12分 当3i d =时,由上述分析可得10i d +=,此时1113i i i a b ca b c +++++=== 所以存在3dn =,满足(,,)n f a b c 的极差0n d =.----------------------------------13分。

2014海淀一模数学试题参考答案(理科)2014海淀一模数学试题参考答案(理科)

2014海淀一模数学试题参考答案(理科)2014海淀一模数学试题参考答案(理科)

海淀区高三年级第二学期期中练习参考答案数学(理科) 2014.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一、选择题:本大题共8小题,每小题5分,共40分.1.C2.D3.D4. A5.B6. B7.C8. B二、填空题:本大题共6小题,每小题5分,共30分.9.9610.1611.212.3413.32414.9;3 (本题第一空3分,第二空2分)三、解答题: 本大题共6小题,共80分.15.解: (Ⅰ)π()sin3f x x = ---------------------------2分(1)(0)(0)1f fg -=------------------------------3分π3sinsin 03=-=.-------------------------------5分(Ⅱ)(1)()π()sin()sin 1333f t f tg t t t t t ππ+-==+-+-------------------------------6分πππsincos cos sin sin 33333t t t ππ=+- ------------------------------7分1π3πsin 233t t =-------------------------------8分ππsin()33t =--------------------------------10分因为33[,]22t ∈-,所以ππ5ππ[,]3366t -∈-,------------------------------11分所以π1sin()[1,]332t π-∈-,-----------------------------12分所以()g t 在33[,]22-上的取值范围是1[,1]2------------------------------13分16.解:(Ⅰ)甲公司员工A 投递快递件数的平均数为36,众数为33. --------------------------------2分(Ⅱ)设a 为乙公司员工B 投递件数,则当a =34时,X =136元,当a >35时,354(35)7X a =⨯+-⨯元,X 的可能取值为136,147,154,189,203 -------------------------------4分{说明:X 取值都对给4分,若计算有错,在4分基础上错1个扣1分,4分扣完为止}X 的分布列为:X136147154189203P110310 210 310110--------------------------------------9分{说明:每个概率值给1分,不化简不扣分,随机变量值计算错误的此处不再重复扣分}13231()1361471541892031010101010E X =⨯+⨯+⨯+⨯+⨯ 1655==165.5()10元--------------------------------------11分(Ⅲ)根据图中数据,可估算甲公司被抽取员工该月收入4860元,乙公司被抽取员工该月收入4965元.------------------------------------13分17.(Ⅰ)因为平面ABD ⊥平面BCD ,交线为BD ,又在ABD ∆中,AE BD ⊥于E ,AE ⊂平面ABD所以AE ⊥平面BCD .--------------------------------------3分(Ⅱ)由(Ⅰ)结论AE ⊥平面BCD 可得AE EF ⊥.由题意可知EF BD ⊥,又AE ⊥BD .如图,以E 为坐标原点,分别以,,EF ED EA 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系E xyz ---------------------------4分不妨设2AB BD DC AD ====,则1BE ED ==. 由图1条件计算得,3AE =23BC =3BF =则3(0,0,0),(0,1,0),(0,1,0),3),((3,2,0)3E D B AF C --------5分 (3,1,0),(0,1,3)DC AD ==.由AE ⊥平面BCD 可知平面DCB 的法向量为EA . -----------------------------------6分设平面ADC 的法向量为(,,)x y z =n ,则0,0.DC AD ⎧⋅=⎪⎨⋅=⎪⎩n n 即30,30.x y y z +=-=⎪⎩ 令1z =,则3,1y x ==,所以3,1)=-n .------------------------------------8分平面DCB 的法向量为EA 所以5cos ,||||EA EA EA ⋅<>==⋅n n n , 所以二面角A DC B --5------------------------------9分(Ⅲ)设AM AF λ=,其中[0,1]λ∈.由于3(3)3AF =, yzxE CA 1D F所以3(3)3AM AF λλ==,其中[0,1]λ∈ --------------------------10分所以3,0,(1)33EM EA AM λ⎛=+=- ⎝--------------------------11分由0EM ⋅=n ,即3303λλ=-(1-)---------------------------12分解得3=(0,1)4λ∈.-----------------------------13分所以在线段AF 上存在点M 使EM ADC ∥平面,且34AM AF =.-------------14分 18.解(Ⅰ)e axy a '=,-----------------------------------2分因为曲线C 在点(0,1)处的切线为L :2y x m =+,所以120m =⨯+且0|2x y ='=.----------------------------------4分解得1m =,2a =-----------------------------------5分(Ⅱ)法1:对于任意实数a ,曲线C 总在直线的y ax b =+的上方,等价于 ∀x ,a R ∈,都有eaxax b >+,即∀x ,a ∈R ,e 0axax b -->恒成立,--------------------------------------6分令()e axg x ax b =--,----------------------------------------7分①若a=0,则()1g x b =-,所以实数b 的取值范围是1b <;----------------------------------------8分②若0a ≠,()(e 1)axg x a '=-,由'()0g x =得0x =, ----------------------------------------9分'(),g x 的情况如下:x0∞(-,)0 ∞(0,+)'()g x -+()g x极小值-----------------------------------------11分所以()g x 的最小值为(0)1g b =-,-------------------------------------------12分所以实数b 的取值范围是1b <;综上,实数b 的取值范围是1b <.--------------------------------------13分法2:对于任意实数a ,曲线C 总在直线的y ax b =+的上方,等价于∀x ,a R ∈,都有eaxax b >+,即∀x ,a ∈R ,e ax b ax <-恒成立, -------------------------------------------6分令t ax =,则等价于∀t ∈R ,e tb t <-恒成立,令()e t g t t =-,则()e 1tg t '=-,-----------------------------------------7分由'()0g t =得0t =, ----------------------------------------9分'(),(g t g t 的情况如下:t 0∞(-,)0 ∞(0,+)'()g t -+()g t极小值-----------------------------------------11分所以()e tg t t =-的最小值为(0)1g =, ------------------------------------------12分实数b 的取值范围是1b <. --------------------------------------------13分19.解:(Ⅰ)设00(,)A x y ,00(,)-B x y ,---------------------------------------1分因为∆ABM 为等边三角形,所以003||1|=-y x . ---------------------------------2分又点00(,)A x y 在椭圆上,所以0022003|||1|,3239,y x x y ⎧=-⎪⎨⎪+=⎩消去0y ,-----------------------------------------3分得到2003280--=x x ,解得02=x 或043=-x ,----------------------------------4分当02=x 时,23||3=AB ; 当043=-x 时,143||9=AB .-----------------------------------------5分{说明:若少一种情况扣2分}(Ⅱ)法1:根据题意可知,直线AB 斜率存在.设直线AB :=+y kx m ,11(,)A x y ,22(,)B x y ,AB 中点为00(,)N x y ,联立22239,⎧+=⎨=+⎩x y y kx m消去y 得222(23)6390+++-=k x kmx m ,------------------6分由0∆>得到222960--<m k ① ----------------------------7分所以122623+=-+kmx x k ,121224()223+=++=+my y k x x m k , ----------------------------8分所以2232(,)2323-++km mN k k ,又(1,0)M如果∆ABM 为等边三角形,则有⊥MN AB , --------------------------9分所以1MN k k ⨯=-,即2222313123mk k km k+⨯=---+,------------------------------10分化简2320k km ++=,②------------------------------11分由②得232k m k+=-,代入①得2222(32)23(32)0k k k +-+<,化简得2340+<k ,不成立,-------------------------------------13分{此步化简成42291880k k k++<或4291880k k ++<或22(32)(34)0k k ++<都给分} 故∆ABM 不能为等边三角形.-------------------------------------14分法2:设11(,)A x y ,则2211239x y +=,且1[3,3]x ∈-,所以222221111121||(1)(1)3(3)133MA x y x x x =-+=-+-=-+----------------8分 设22(,)B x y ,同理可得221||(3)13MB x =-+2[3,3]x ∈- -----------------9分因为21(3)13y x =-+在[3,3]-上单调 所以,有12x x =⇔||||MA MB =, ---------------------------------11分因为,A B 不关于x 轴对称,所以12x x ≠.所以||||MA MB ≠, ---------------------------------13分所以∆ABM 不可能为等边三角形. ---------------------------------14分20.解:(Ⅰ)设点列123(0,2),(3,0),(5,2)A A A 的正交点列是123,,B B B ,由正交点列的定义可知13(0,2),(5,2)B B ,设2(,)B x y ,1223(3,2),(2,2)=-=A A A A ,1223(,2)(5,2)=-=--B B x y B B x y ,,由正交点列的定义可知12120A A B B ⋅=,23230A A B B ⋅=,即32(2)0,,2(5)2(2)0x y x y --=⎧⎨-+-=⎩解得25=⎧⎨=⎩x y 所以点列123(0,2),(3,0),(5,2)A A A 的正交点列是123(0,2),(2,5),(5,2)B B B .------3分 (Ⅱ)由题可得122334(3,1),(3,1)(3,1)A A A A A A ==-=,, 设点列1234,,,B B B B 是点列1234,,,A A A A 的正交点列,则可设121232343(1,3),(1,3)(1,3)λλλ=-==-B B B B B B ,,λλλ∈123,,Z 因为1144,A B A B 与与相同,所以有λλλλλλ⎧⎪⎨⎪⎩123123-+-=9,(1)3+3+3=1.(2)因为λλλ∈123,,Z ,方程(2)显然不成立,所以有序整点列12340,0),3,1),6,0)(((,9,1)(A A A A 不存在正交点列;---------------8分(Ⅲ)5n n ∀≥∈,N ,都存在整点列()A n 无正交点列. -------------------------9分5n n ∀≥∈,N ,设1(,),i i i i A A a b +=其中,i i a b 是一对互质整数,1,2,3,1i n =-若有序整点列123,,,n B B B B 是点列123,,,n A A A A 正交点列,则1(,),1,2,3,,1λ+=-=-i i i i i B B b a i n ,则有11=1111=11,(1).(2)n n i i i i i n n i i i i i b a a b λλ--=--=⎧-=⎪⎪⎨⎪=⎪⎩∑∑∑∑①当n 为偶数时,取1,(0,0)A 1,=3=,1,2,3,,1-1⎧=-⎨⎩i i i a b i n i 为奇数,,为偶数.由于123,,,n B B B B 是整点列,所以有i λ∈Z ,1,2,3,,1i n =-.等式(2)中左边是3的倍数,右边等于1,等式不成立, 所以该点列123,,,n A A A A 无正交点列;②当n 为奇数时,取1,(0,0)A 11=3,2=a b ,1,=3=,2,3,,1-1⎧=-⎨⎩i i i a b i n i 为奇数,,为偶数, 由于123,,,n B B B B 是整点列,所以有i λ∈Z ,1,2,3,,1i n =-.等式(2)中左边是3的倍数,右边等于1,等式不成立, 所以该点列123,,,n A A A A 无正交点列.综上所述,5n n ∀≥∈,N ,都不存在无正交点列的有序整数点列()A n ----------13分。

北京市海淀区高三数学下学期期末练习 理(海淀二模)(含

北京市海淀区高三数学下学期期末练习 理(海淀二模)(含

海淀区高三年级第二学期期末练习数 学 (理科) 2013.5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则A B =U A .(,0]-∞ B .(,1]-∞ C .[1,2] D .[1,)+∞ 【答案】B解析{}|(1)(2)0{21}A x x x x x =-+≤=-≤≤,所以A B =U {1}x x ≤,即选B.2.已知数列{}n a 是公比为q 的等比数列,且134a a ⋅=,48a =,则1a q +的值为 A .3 B .2 C .3或2- D .3或3- 【答案】D解析由134a a ⋅=,48a =得2214a q =,318a q =,解得2q =±。

当2q =时,11a =,此时13a q +=。

当2q =-时,11a =-,此时13a q +=-。

选D.3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若 撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为A.ma nB.na mC. 2ma nD. 2na m【答案】C解析设图形Ω面积的为S ,则由实验结果得2S m a n=,解2maS n =,所以选C.4.俯视图A.180B.240C.276D.300【答案】B解析由三视图可知,该几何体的下面部分是边长为6的正方体。

上部分为四棱锥。

四棱锥的底面为正方形,边长为 6.侧面三角形的斜高为 5.所以该几何体的表面积为21656542402⨯+⨯⨯⨯=,选B.5.在四边形ABCD 中,“λ∃∈R ,使得,AB DC AD BC λλ==u u u r u u u r u u u r u u u r”是“四边形ABCD 为平行四边形”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C解析若,AB DC AD BC λλ==u u u r u u u r u u u r u u u r ,则//,//AB DC AD BCu u u r u u u r u u u r u u u r ,即//,//AB DC AD BC ,所以四边形ABCD 为平行四边形。

【2014海淀二模】北京市海淀区2014届高三下学期期末练习(二模)数学文试题(扫描版,WORD答案)

【2014海淀二模】北京市海淀区2014届高三下学期期末练习(二模)数学文试题(扫描版,WORD答案)

海淀区高三年级第二学期期末练习参考答案数 学 (文科) 2014.5阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一、选择题:本大题共8小题,每小题5分,共40分.1.C2.B3.D4.B5.A6.A7.D8.B二、填空题:本大题共6小题,每小题5分,共30分.10.2 11.8 12.①② 13.2,0 14.5,3.6 {第13,14题的第一空3分,第二空2分}三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)()2cos21f x x x a =++- --------------------------4分12cos2)12x x a =++- π2sin(2)16x a =++- ---------------------------6分∴周期2ππ.2T == ----------------------------7分 (Ⅱ)令()0f x =,即π2sin(2)1=06x a ++-, ------------------------------8分则π=12sin(2)6a x -+, --------------------------------9分因为π1sin(2)16x -≤+≤, ---------------------------------11分所以π112sin(2)36x -≤-+≤, --------------------------------12分所以,若()f x 有零点,则实数a 的取值范围是[1,3]-. -----------------------------13分 16.解:(Ⅰ)上半年的鲜疏价格的月平均值大于下半年的鲜疏价格的月平均值.--------------------4分 (Ⅱ)从2012年2月到2013年1月的12个月中价格指数环比下降的月份有4月、5月、6月、9月、10月. ------------------------------------------6分设“所选两个月的价格指数均环比下降”为事件A ,--------------------------------------7分在这12个月份中任取连续两个月共有11种不同的取法,------------------------------8分 其中事件A 有(4月,5月),(5月,6月),(9月,10月),共3种情况. ---------9分∴3().11P A =-----------------------------------------10分(Ⅲ)从2012年11月开始,2012年11月,12月,2013年1月这连续3个月的价格指数方差最大.-----------------------------------------13分 17.解: (I )1A A ⊥底面ABC ,1A A ∴⊥AB , -------------------------2分AB AC ⊥,1A A AC A =,AB ∴⊥面11A ACC . --------------------------4分(II )面DEF //面1ABC ,面ABC面DEF DE =,面ABC面1ABC AB =,AB ∴//DE , ---------------------------7分在ABC ∆中E 是棱BC 的中点,D ∴是线段AC 的中点. ---------------------------8分 (III )三棱柱111ABC A B C -中1A A AC = ∴侧面11A ACC 是菱形,11AC AC ∴⊥, --------------------------------9分 由(1)可得1AB AC ⊥, 1AB AC A =,1A C ∴⊥面1ABC , --------------------------------11分1A C ∴⊥1BC . -------------------------------12分又,E F 分别为棱1,BC CC 的中点,EF ∴//1BC , ------------------------------13分1EF AC ∴⊥. ------------------------------141分18. 解:(Ⅰ)由已知可得2'()24f x x ax =++. ---------------------------------1分'(0)4f ∴=, ---------------------------------2分又(0)f b =()f x ∴在0x =处的切线方程为4y x b =+. ---------------------------------4分令321443x ax x b x b +++=+,整理得2(3)0x a x +=.0x ∴=或3x a =-, -----------------------------------5分0a ≠ 30a ∴-≠, ----------------------------------------6分()f x ∴与切线有两个不同的公共点.----------------------------------------7分(Ⅱ)()f x 在(1,1)-上有且仅有一个极值点,∴2'()24f x x ax =++在(1,1)-上有且仅有一个异号零点, ---------------------------9分由二次函数图象性质可得'(1)'(1)0f f -<, -------------------------------------10分即(52)(52)0a a -+<,解得52a >或52a <-, ----------------------------12分综上,a 的取值范围是55(,)(,)22-∞-+∞. -------------------------------13分 19.解:(Ⅰ)由已知可设椭圆G 的方程为:2221(1)x y a a+=> --------------------------------------------1分由e =,可得222112a e a -==,----------------------------------------------------------------3分解得22a =, -----------------------------------------------------------4分所以椭圆的标准方程为2212x y +=. ----------------------------------------------------5分(Ⅱ)法一:设00(,),C x y 则000(,),0D x y x -≠------------------------------------------------------6分 因为(0,1),(0,1)A B -, 所以直线BC 的方程为0011y y x x +=-, ------------------------------------------------------7分令0y =,得001M x x y =+,所以00(,0)1xM y +. ----------------------------------------------8分 所以000(,1),(,1),1x AM AD x y y =-=--+ -------------------------------------------9分所以200011x AM AD y y -⋅=-++,---------------------------------------------10分又因为2200121x y +=,代入得200002(1)111y AM AD y y y -⋅=+-=-+ --------------------11分因为011y -<<,所以0AM AD ⋅≠. -----------------------------------------------------------12分所以90MAN ∠≠, -------------------------------------------------------13分所以点A 不在以线段MN 为直径的圆上. ---------------------------------------------14分法二:设直线BC 的方程为1y kx =-,则1(,0)M k. ------------------------------------------------6分由22220,1,x y y kx ⎧+-=⎨=-⎩化简得到222(1)20x kx +--=,所以22(12)40k x kx +-=,所以12240,21kx x k ==+, -------------------------------------8分所以22222421112121k k y kx k k k -=-=-=++, 所以222421(,)2121k k C k k -++,所以222421(,)2121k k D k k --++ ----------------------------------------9分所以2221421(,1),(,1),2121k k AM AD k k k --=-=-++ ---------------------------------------------10分所以2222421210212121k AM AD k k k ---⋅=-+=≠+++, --------------------------------------12分所以90MAN ∠≠, ---------------------------------------13分所以点A 不在以线段MN 为直径的圆上. ------------------------------------14分20.解:(Ⅰ)①因为5135514S =<-,数列1,3,5,2,4-不是“Γ数列”, ---------------------------------2分②因为31113311284S =>-,又34是数列2323333,,444中的最大项 所以数列2323333,,444是“Γ数列”. ----------------------------------------------4分(Ⅱ)反证法证明:假设存在某项i a <0,则12111i i k k k i k a a a a a a S a S -+-+++++++=->.设12111max{,,,,,,,}j i i k k a a a a a a a -+-=,则12111k i i i k k j S a a a a a a a k a -+--=+++++++≤(-1),所以(1)j k k a S ->,即1kj S a k >-, 这与“Γ数列”定义矛盾,所以原结论正确. --------------------------8分 (Ⅲ)由(Ⅱ)问可知10,0b d ≥≥.①当0d =时,121m m m S Sb b b m m ====<-,符合题设; ---------------------9分 ②当0d >时,12m b b b <<<由“Γ数列”的定义可知1m m S b m ≤-,即111(1)[(1)](1)2m b m d mb m m d -+-≤+-整理得1(1)(2)2m m d b --≤(*)显然当123m b =+时,上述不等式(*)就不成立所以0d >时,对任意正整数3m ≥,1(1)(2)2m m d b --≤不可能都成立.综上讨论可知{}n b 的公差0d . --------------------------------------------------13分。

2014海淀区高三数学二模(理)试卷分析

2014海淀区高三数学二模(理)试卷分析
第12题、三视图。自2011年三视图题目出现在第7题的位置上, 考察了四面体的表面积问题之后难度上升。预测,三视图在今 年的试卷中也许不会缺席,与体积表面积相结合的考察也成为 主流,难度应该不会明显降低。
注意题目中的条件:斜三棱柱
2、试卷的整体风格和命题背景 :
第13题、函数的切线。既考核函数知识,又兼顾两条直线平 行的知识点,体现数形结合思想。
第3题、算法。就解题方法我们可以注意到,试题希望学生用 最踏实的方法解题,没有为技巧性的方法留太大的空间。另 一方面,以往循环结构中的核心语句都有一定的背景,题目 设置存在拓展的空间,但并没有刻意为难学生。 第4题、极坐标。低调简单 ,考察了最常规的直线和圆的方 程 ,此外,参数方程和极坐标相结合也是一种可能的考察方 向,值得注意。
(3)准、快、灵的训练意识——“准”是“快”和 “灵”的必要保障,失去了“准”的支撑,“快” 和“灵”也就毫无意义,因此应注重训练培养“一 次成功”的的解题能力.
试卷讲评课要有四戒:
(1)对答案式讲评:别让“假象”蒙蔽眼睛! (2)一言堂式讲评:别因“封口”扼杀灵性! (3)就题论题式讲评:别因“时间紧”放弃变式!
第14题、集合。可以说,这道题给踏实认真的学生提供了机会, 选择了质朴的回归,没有出现新定义,没有出动态问题,也没 有刻意难为重视计算的同学。
2、试卷的整体风格和命题背景 :
第15题、解三角形。解三角形题目难度没有什么变化。值得 小心的是,解三角形与三角函数本是同根生,尤其是陷阱就 在定义域上或角的取值范围等,因此还是要保持警惕。
第7题、等差数列。等差数列的单调性由公差d决定,与一次 函数单调性由一次项系数决定刚好吻合 ,因此构造数列中的 项与公差d的函数关系是解决取值范围的通法。 第8题、立体几何。“动”与“静”是相对的,在运动变化过 程中要善于寻求或构造与之相关的一些不变因素,建立变量 与不变量的有机统一体。

北京市海淀区高三二模数学理科含答案

北京市海淀区高三二模数学理科含答案

海淀区高三年级第二学期期末练习数 学 (理科) 2013.5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则A B =A .(,0]-∞B .(,1]-∞C . [1,2]D .[1,)+∞2.已知数列{}n a 是公比为q 的等比数列,且134a a ⋅=,48a =,则1a q +的值为 A .3 B .2 C .3或2- D .3或3-3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若 撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为A.ma nB.na mC. 2ma nD. 2na m4.某空间几何体的三视图如右图所示,则该几何体的表面积为 A.180 B.240 C.276 D.3005.在四边形ABCD 中,“λ∃∈R ,使得,AB DC AD BC λλ==”是“四边形ABCD 为平行四边形”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6.用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为A. 32B. 36C. 42D. 487.双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x =的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为B.112俯视图8. 若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是 A. 若34a =,则m 可以取3个不同的值 B.若m ={}n a 是周期为3的数列C.T ∀∈*N 且2T ≥,存在1m >,{}n a 是周期为T 的数列D.Q m ∃∈且2m ≥,数列{}n a 是周期数列二、填空题:本大题共6小题,每小题5分,共30分.9. 在极坐标系中,极点到直线cos 2ρθ=的距离为_______.10.已知1211ln ,sin ,222a b c -===,则,,a b c 按照从大到小....排列为______. 11.直线1l 过点(2,0)-且倾斜角为30,直线2l 过点(2,0)且与直线1l 垂直,则直线1l 与直线2l 的交点坐标为____.12.在ABC ∆中,30,45,2A B a ∠=∠==,则_____;b = C _____.AB S ∆=13.正方体1111ABCD A B C D -的棱长为1,若动点P 在线段1BD 上运动,则DC AP ⋅的取值范围是______________.14.在平面直角坐标系中,动点(,)P x y 到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P 的轨迹为曲线W . (I) 给出下列三个结论: ①曲线W 关于原点对称; ②曲线W 关于直线y x =对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12; 其中,所有正确结论的序号是_____; (Ⅱ)曲线W 上的点到原点距离的最小值为______.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数cos2()1π)4x f x x =--.(Ⅰ)求函数()f x 的定义域; (Ⅱ) 求函数()f x 的单调递增区间.16.(本小题满分13分)福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为p ,获得50元奖金的概率为2%.(I) 假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率; (II )为了能够筹得资金资助福利事业, 求p 的取值范围.17. (本小题满分14分)如图1,在直角梯形ABCD 中,90ABC DAB ∠=∠=,30CAB ∠=,2BC =,4AD =. 把DAC ∆沿对角线AC 折起到PAC ∆的位置,如图2所示,使得点P 在平面ABC上的正投影H 恰好落在线段AC 上,连接PB ,点,E F 分别为线段,PA AB 的中点. (I) 求证:平面//EFH 平面PBC ;(II) 求直线HE 与平面PHB 所成角的正弦值;(III)在棱PA 上是否存在一点M ,使得M 到点,,,P H A F 四点的距离相等?请说明理由.CDBA图1H E CPBAF图218. (本小题满分13分)已知函数()e x f x =,点(,0)A a 为一定点,直线()x t t a =≠分别与函数()f x 的图象和x 轴交于点M ,N ,记AMN ∆的面积为()S t . (I )当0a =时,求函数()S t 的单调区间;(II )当2a >时, 若0[0,2]t ∃∈,使得0()e S t ≥, 求实数a 的取值范围.19. (本小题满分14分)已知椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60的菱形的四个顶点.(I )求椭圆M 的方程;(II )直线l 与椭圆M 交于A ,B 两点,且线段AB 的垂直平分线经过点1(0,)2-,求AOB ∆(O 为原点)面积的最大值.20. (本小题满分13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”(Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可); 表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值;(Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作”以后,使得到的数表每行的各数之 表2和与每列的各数之和均为非负整数?请说明理由.22221212a a a a a a a a ------海淀区高三年级第二学期期末练习数 学 (理科)参考答案及评分标准 2013.5一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(I)因为πsin()04x -≠所以ππ,4x k -≠Z k ∈ ……………………2分 所以函数的定义域为π{|π+,4x x k ≠Z}k ∈ ……………………4分(II )因为22cos sin ()1sin cos x xf x x x-=-- ……………………6分= 1(cos sin )x x ++1sin cos x x =++π= 1)4x + ……………………8分又sin yx =的单调递增区间为 ππ(2π,2π)22k k -+ ,Z k ∈令πππ2π2π242k x k -<+<+解得 3ππ2π2π44k x k -<<+ ……………………11分 又注意到ππ+,4x k ≠9. 2 10.c b a >> 11. 12. 13.[0,1]14.②③;2所以()f x 的单调递增区间为3ππ(2π,2π)44k k -+, Z k ∈ …………………13分16. 解:(I )设至少一张中奖为事件A则2()10.50.75P A =-= …………………4分(II) 设福彩中心卖出一张彩票可能获得的资金为ξ则ξ可以取5,0,45,145-- …………………6分 ξ的分布列为…………………8分所以ξ的期望为550%0(50%2%)(45)2%(145)E p p ξ=⨯+⨯--+-⨯+-⨯ 2.590%145p =-- …………………11分 所以当 1.61450p ->时,即8725p < …………………12分 所以当80725p <<时,福彩中心可以获取资金资助福利事业…………………13分17.解:(I )因为点P 在平面ABC 上的正投影H 恰好落在线段AC 上所以PH ⊥平面ABC ,所以PH ⊥AC …………………1分因为在直角梯形ABCD 中,90ABC DAB ∠=∠=,30CAB ∠=,2BC =,4AD =所以4AC =,60CAB ∠=,所以ADC ∆是等边三角形,所以H 是AC 中点,…………………2分所以//HE PC …………………3分 同理可证//EF PB 又,HEEF E CP PB P ==所以平面//EFH 平面PBC …………………5分 (II )在平面ABC 内过H 作AC 的垂线如图建立空间直角坐标系,则(0,2,0)A -,P ,B …………………6分因为(0,E -,(0,HE =- 设平面PHB 的法向量为(,,)n x y z =因为(3,1,0)HB =,HP =所以有00HB n HP n ⎧⋅=⎪⎨⋅=⎪⎩,即00y z +==⎪⎩,令x =则3,y =- 所以 (3,3,0)n =- …………………8分cos ,||||22n HE n HE n HE ⋅<>===⋅⋅…………………10分所以直线HE 与平面PHB …………………11分 (III)存在,事实上记点E 为M 即可 …………………12分因为在直角三角形PHA 中,122EH PE EA PA ====, …………………13分 在直角三角形PHB 中,点4,PB =122EF PB == 所以点E 到四个点,,,P O C F 的距离相等 …………………14分 18.解: (I) 因为1()||e 2t S t t a =-,其中t a ≠ …………………2分 当0a =,1()||e 2t S t t =,其中0t ≠ 当0t >时,1()e 2t S t t =,1'()(1)e 2tS t t =+,所以'()0S t >,所以()S t 在(0,)+∞上递增, …………………4分当0t <时,1()e 2t S t t =-,1'()(1)e 2tS t t =-+,令1'()(1)e 02tS t t =-+>, 解得1t <-,所以()S t 在(,1)-∞-上递增令1'()(1)e 02tS t t =-+<, 解得1t >-,所以()S t 在(1,0)-上递减 ……………7分综上,()S t 的单调递增区间为(0,)+∞,(,1)-∞-()S t 的单调递增区间为(1,0)- (II )因为1()||e 2t S t t a =-,其中t a ≠当2a >,[0,2]t ∈时,1()()e 2t S t a t =- 因为0[0,2]t ∃∈,使得0()e S t ≥,所以()S t 在[0,2]上的最大值一定大于等于e1'()[(1)]e 2t S t t a =---,令'()0S t =,得1t a =- …………………8分当12a -≥时,即3a ≥时1'()[(1)]e 02t S t t a =--->对(0,2)t ∈成立,()S t 单调递增所以当2t =时,()S t 取得最大值21(2)(2)e 2S a =-令21(2)e e 2a -≥ ,解得 22e a ≥+ ,所以3a ≥ …………………10分 当12a -<时,即3a <时1'()[(1)]e 02t S t t a =--->对(0,1)t a ∈-成立,()S t 单调递增1'()[(1)]e 02t S t t a =---<对(1,2)t a ∈-成立,()S t 单调递减所以当1t a =-时,()S t 取得最大值11(1)e 2a S a --=令11(1)e e 2a S a --=≥ ,解得ln22a ≥+所以ln223a +≤< …………………12分 综上所述,ln22a +≤ …………………13分19.解:(I)因为椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点,所以1a b ==,椭圆M 的方程为2213x y += …………………4分(II)设1122(,),(,),A x y B x y 因为AB 的垂直平分线通过点1(0,)2-, 显然直线AB 有斜率,当直线AB 的斜率为0时,则AB 的垂直平分线为y 轴,则1212,x x y y =-=所以111111=|2||||||||2AOB S x y x y x ∆===2211(3)322x x +-≤=,所以AOB S ∆≤1||x =时,AOB S ∆ ………………7分当直线AB 的斜率不为0时,则设AB 的方程为y kx t =+所以2213y kx t x y =+⎧⎪⎨+=⎪⎩,代入得到222(31)6330k x ktx t +++-= 当224(933)0k t ∆=+->, 即2231k t +>①方程有两个不同的解又122631ktx x k -+=+,1223231x x kt k +-=+ …………………8分 所以122231y y tk +=+, 又1212112202y y x x k ++=-+-,化简得到2314k t += ② 代入①,得到04t << …………………10分又原点到直线的距离为d =12|||AB x x =-=所以1=||||2AOB S AB d ∆=化简得到AOB S ∆ …………………12分 因为04t <<,所以当2t =时,即k =AOB S ∆综上,AOB ∆…………………14分 20.(I )解:法1:42123712371237210121012101-−−−−−→−−−−−→----改变第列改变第行法2:14123712371237210121012101----−−−−−→−−−−−→--改变第列改变第列…………………3分(II) 每一列所有数之和分别为2,0,2-,0,每一行所有数之和分别为1-,1; ①如果首先操作第三列,则22221212a a a a a a a a -----则第一行之和为21a -,第二行之和为52a -, 这两个数中,必须有一个为负数,另外一个为非负数, 所以 12a ≤或52a ≥ 当12a ≤时,则接下来只能操作第一行, 22221212a a a a a a a a ------此时每列之和分别为2222,22,22,2a a a a --- 必有2220a -≥,解得0,1a =- 当52a ≥时,则接下来操作第二行 22221212a a a a a a a a ------此时第4列和为负,不符合题意. …………………6分 ② 如果首先操作第一行22221212a a a a a a a a -----则每一列之和分别为22a -,222a -,22a -,22a当1a =时,每列各数之和已经非负,不需要进行第二次操作,舍掉 当1a ≠时,22a -,22a -至少有一个为负数,所以此时必须有2220a -≥,即11a -≤≤,所以0a =或1a =- 经检验,0a =或1a =-符合要求综上:0,1a =- …………………9分 (III )能经过有限次操作以后,使得得到的数表所有的行和与所有的列和均为非负实数。

北京市海淀区2014届高三下学期期末练习(二模)理综试题(WORD版)

北京市海淀区2014届高三下学期期末练习(二模)理综试题(WORD版)

北京市海淀区2014届高三下学期期末练习(二模)理科综合能力测试生物1.下列生命活动中,一般不发生细胞分化的是A.被激活的B淋巴细胞形成浆细胞和记忆细胞B.骨髓中的造血干细胞产生红细胞、白细胞和血小板C.筛选得到的杂交瘤细胞克隆培养获得大量抗体D.用植物组织培养技术培育马铃薯茎尖获得脱毒苗2.下列关于人体生命活动调节过程的叙述,正确的是A.大量饮水→垂体释放的抗利尿激素增加→尿量增加→渗透压稳定B.炎热环境→大脑皮层体温调节中枢兴奋→散热增加→体温稳定C.饥饿→胰高血糖素分泌增加→肌糖原分解→血糖稳定D.剧烈运动→乳酸增加→体液中的某些离子缓冲→pH相对稳定3.突变基因杂合细胞进行有丝分裂时,出现了如图所示的染色体片段交换,这种染色体片段交换的细胞继续完成有丝分裂后,可能产生的子细胞是①正常基因纯合细胞②突变基因杂合细胞③突变基因纯合细胞A.①②B.①③C.②③D.①②③4. SPL蛋白是植物中广泛存在的一类调控基因转录的分子。

不同植物的SPL蛋白结构不同,但均有一个大约由80个氨基酸构成的结构相同的功能区,可识别并结合到某些基因的特定区域。

SPL基因最初是从植物花序cDNA(由mRNA逆转录形成)文库中得到的。

下列相关叙述正确的是A.SPL是80个氨基酸构成的蛋白质B. SPL基因能在花序细胞中表达C.SPL可催化特定基因的翻译过程D. SPL在不同绿色植物中功能差异较大5.下列有关生物技术与实践的叙述,不正确的是A.用双缩脲试剂检测某组织样液中是否含有蛋白质B.用龙胆紫染液染色以观察根尖细胞的有丝分裂C.制作泡菜时密封坛口的目的是促进酵母菌的增殖D.在适宜的高渗溶液中酶解法去除植物细胞壁29.(16分)为研究乙烯影响植物根生长的机理,研究者以拟南芥幼苗为材料进行实验。

(1)乙烯和生长素都要通过与__________结合,将________传递给靶细胞,从而调节植物的生命活动。

(2)实验一:研究者将拟南芥幼苗放在含不同浓度的ACC(乙烯前体,分解后产生乙烯)、IAA时________________。

2014年北京市海淀区高三一模数学(理)试题和答案

2014年北京市海淀区高三一模数学(理)试题和答案

海淀区高三年级第二学期期中练习数学(理科) 2014.4本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}211,2,,,,2A B y y x x A A B ⎧⎫===∈=⎨⎬⎩⎭集合则 A.⎭⎬⎫⎩⎨⎧21 B.{}2 C.{}1 D.φ2.复数()()1i 1i z =+-在复平面内对应的点的坐标为 A. (1,0) B. (0,2) C.()1,0 D. (2,0)1((2)f >的只可能是A BC D4.已知直线l 的参数方程为1,1x t y t=+⎧⎨=-+⎩(t 为参数),则直线l 的普通方程为A.02=--y xB.02=+-y xC.0x y +=D.02=-+y x 5.在数列{}n a 中,“12,2,3,4,n n a a n -==”是“{}n a 是公比为2的等比数列”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6. 小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有 A. 4种 B.5种 C.6种 D.9种7.某购物网站在2013年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为 A.1 B.2 C.3 D.48. 已知(1,0)A ,点B 在曲线:G ln(1)y x =+上,若线段AB 与曲线:M 1y x=相交且交点恰为 线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.记曲线G 关于曲线M 的关联点 的个数为a ,则 A .0a = B .1a = C .2a = D .2a >二、填空题:本大题共6小题,每小题5分,共30分.9.一个空间几何体的三视图如图所示,该几何体的体积为______. 10. 函数2y x x =-的图象与x 轴所围成的封闭图形的面积等于_______. 11.如图,AB 切圆O 于B ,AB =1AC =,则AO 的长为_______.12. 已知圆04122=-++mx y x 与抛物线24y x =的准线相切,则=m _______13.如图,已知ABC ∆中,30BAD ∠=,45CAD ∠=,3,2AB AC ==,则BDDC=________. 14.已知向量序列:123,,,,,n a a a a 满足如下条件:1||4||2==a d ,121⋅=-a d 且1n n --=a a d (2,3,4,n =).若10k ⋅=a a ,则k =________;123||,||,||,,||,n a a a a 中第_____项最小.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数ππ()2sincos 66f x x x =,过两点(,()),(1,(1))A t f t B t f t ++的直线的斜率记为()g t .(Ⅰ)求(0)g 的值;(II )写出函数()g t 的解析式,求()g t 在33[,]22-上的取值范围. 16. (本小题满分13分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、10天的数据,制表如下:35件以内(含35AB D俯视图主视图侧视图件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B 的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X (单位:元),求X 的分布列和数学期望; (Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费. 17. (本小题满分14分)如图1,在Rt △ABC 中,∠ACB=30°,∠ABC=90°,D 为AC 中点,AE BD ⊥于E ,延长AE 交BC 于F ,将∆ABD 沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示. (Ⅰ)求证:AE ⊥平面BCD ;(Ⅱ)求二面角A –DC –B 的余弦值.(Ⅲ)在线段AF 上是否存在点M 使得//EM 平面ADC ?若存在,请指明点M 的位置;若不存在,请说明理由.18. (本小题满分13分)已知曲线:e ax C y =.(Ⅰ)若曲线C 在点(0,1) 处的切线为2y x m =+,求实数a 和m 的值;(Ⅱ)对任意实数a , 曲线C 总在直线l :y ax b =+的上方,求实数b 的取值范围. 19. (本小题满分14分)已知,A B 是椭圆22:239C x y +=上两点, 点M 的坐标为(1,0).(Ⅰ)当,A B 两点关于x 轴对称,且MAB ∆为等边三角形时,求AB 的长;(Ⅱ)当,A B 两点不关于x 轴对称时,证明:MAB ∆不可能为等边三角形.20. (本小题满分13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)()A n :123,,,,n A A A A 与()B n :123,,,,n B B B B ,其中3n ≥,若同时满足:①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =-,则称()A n 与()B n 互为正交点列.(Ⅰ)求(3)A :123(0,2),(3,0),(5,2)A A A 的正交点列(3)B ;(Ⅱ)判断(4)A :12340,0),3,1),6,0)(((,9,1)(A A A A 是否存在正交点列(4)B ?并说明理由; (Ⅲ)5n n ∀≥∈,N ,是否都存在无正交点列的有序整点列()A n ?并证明你的结论.海淀区高三年级第二学期期中练习参考答案数学(理科) 2014.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

北京海淀高考二模数学理(含解析)

北京海淀高考二模数学理(含解析)

海淀区高三年级第二学期期末练习数 学 (理科)2013.5一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合{}|(1)(2)0A x x x =-+≤,{}0B x x =<,则A B =U ( ). A .(,0]-∞ B .(,1]-∞ C . [1,2] D .[1,)+∞2.已知数列{}n a 是公比为q 的等比数列,且134a a ⋅=,48a =,则1a q +的值为( ). A .3 B .2 C .3或2- D .3或3-3.如图,在边长为a 的正方形内有不规则图形Ω.向正方形内随机撒豆子,若 撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为(A .ma nB .na mC . 2ma nD . 2nam4.某空间几何体的三视图如右图所示,则该几何体的表面积为( ).A .180B .240C .276D .3005.在四边形ABCD 中,“λ∃∈R ,使得,AB DC AD BC λλ==uu u r uuu r uuu r uu u r”是“四边形ABCD 为平行四边形”的( ).A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件6.用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为( ).A . 32B . 36C . 42D . 48俯视图左视图主视图7.双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x =的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F △是以1AF 为底边的等腰三角形,则双曲线C 的离心率为( ).A .B .1C .1D .2+8. 若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是( ). A . 若34a =,则m 可以取3个不同的值 B. 若m ={}n a 是周期为3的数列C .*N T ∀∈且2T ≥,存在1m >,{}n a 是周期为T 的数列D .Q m ∃∈且2m ≥,数列{}n a 是周期数列二、填空题:本大题共6小题,每小题5分,共30分. 9.在极坐标系中,极点到直线cos 2ρθ=的距离为_______.10.已知1211ln ,sin ,222a b c -===,则,,a b c 按照从大到小....排列为______.11.直线1l 过点(2,0)-且倾斜角为30o ,直线2l 过点(2,0)且与直线1l 垂直,则直线1l 与直线2l 的交点坐标为________.12.在ABC∆中,30,45,A B a ∠=∠==o o ,则b =_____;C AB S ∆=—_____.13.正方体1111ABCD A B C D -的棱长为1,若动点P 在线段1BD 上运动,则DC AP ⋅uuu r uu u r的取值范围是__________.14.在平面直角坐标系中,动点(,)P x y 到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P 的轨迹为曲线W . (I )给出下列三个结论: ①曲线W 关于原点对称; ②曲线W 关于直线y x =对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12; 其中,所有正确结论的序号是_____;(Ⅱ)曲线W 上的点到原点距离的最小值为______.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. 15.(本小题满分13分)已知函数cos 2()1π)4x f x x =--.(Ⅰ)求函数()f x 的定义域; (Ⅱ)求函数()f x 的单调递增区间.福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为p,获得50元奖金的概率为2%.(Ⅰ)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率;(Ⅱ)为了能够筹得资金资助福利事业,求p的取值范围.如图1,在直角梯形ABCD 中,90ABC DAB ∠=∠=o ,30CAB ∠=o ,2BC =, 4AD =.把DAC ∆沿对角线AC 折起到PAC ∆的位置,如图2所示,使得点P 在平面ABC 上的正投影H 恰好落在线段AC 上,连接PB ,点,E F 分别为线段,PA AB 的中点. (Ⅰ)求证:平面EFH ∥平面PBC ;(Ⅱ)求直线HE 与平面PHB 所成角的正弦值;(Ⅲ)在棱PA 上是否存在一点M ,使得M 到点,,,P H A F 四点的距离相等?请说明 理由.图2图1DCB AHFAEFCB已知函数()e x f x =,点(,0)A a 为一定点,直线()x t t a =≠分别与函数()f x 的图象和x 轴交于点M ,N ,记ABC △的面积为()S t . (Ⅰ)当0a =时,求函数()S t 的单调区间;(Ⅱ)当2a >时, 若0[0,2]t ∃∈,使得0()e S t ≥, 求实数a 的取值范围.已知椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60o 的菱形的四个顶点.(Ⅰ)求椭圆M 的方程;(Ⅱ)直线l 与椭圆M 交于A ,B 两点,且线段AB 的垂直平分线经过点1(0,)2-,求AOB △(O 为原点)面积的最大值.设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”. (Ⅰ)数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);(Ⅱ)数表A 如表2所示,若必须经过两次“操作”,才可使 表1得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值;(Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作”以后,使得到的数表每行的各数之 表2 和与每列的各数之和均为非负整数?请说明理由.22221212a a a a a a a a ------海淀区高三年级第二学期期末练习数 学 (理)参考答案及评分标准 2013.5一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)9.2 10.c b a >> 11.12.2 13.[0,1] 14.②③;2三、解答题(本大题共6小题,共80分) 15.(本小题满分13分)(Ⅰ)解:因为πsin()04x -≠,所以ππ,4x k -≠Z k ∈, ……………………2分所以函数的定义域为π{|π+,4x x k ≠}k ∈Z . …………………4分(Ⅱ)解:因为22cos sin ()1sin cos x xf x x x -=-- ……………………6分 = 1+(cos sin )x x +π= 1)4x +, ……………………8分又sin y x =的单调递增区间为ππ2π,2π22k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z令πππ2π2π242k x k -≤+≤+,解得3ππ2π2π44k x k -≤≤+, ……………………11分 又注意到ππ+4x k ≠,所以()f x 的单调递增区间为3ππ2π,2π44k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z .…………13分16.(Ⅰ)解:设至少一张中奖为事件A则2()10.50.75P A =-=, …………………4分(Ⅱ)解:设福彩中心卖出一张彩票可能获得的资金为ξ,则ξ可以取5,0,45,145--, …………………6分 ξ的分布列为…………………8分所以ξ的期望为()550%0(50%2%)(45)2%(145)E p p ξ=⨯+⨯--+-⨯+-⨯2.590%145p =--, …………………11分所以当 1.61450p ->时,即8725p < , …………………12分 所以当80725p <<时,福彩中心可以获取资金资助福利事业.…………13分 17.(Ⅰ)证明:因为点P 在平面ABC 上的正投影H 恰好落在线段AC 上,所以PH ⊥平面ABC ,所以PH ⊥AC , …………………1分 因为在直角梯形ABCD 中,90ABC DAB ∠=∠=o ,30CAB ∠=o ,2BC =,4AD =,所以4AC =,60CAB ∠=o ,所以ADC ∆是等边三角形, 所以H 是AC 中点, .....................2分 所以HE PC ∥, (3)分 同理可证EF PB ∥,又,HE EF E CP PB P ==I I ,所以EFH PBC ∥平面PBC .…………………5分 (Ⅱ)解:在平面ABC 内过H 作AC 的垂线,如图建立空间直角坐标系,则(0,2,0)A -,P ,B , ………6分 因为(0,E -,(0,HE =-uuu r, 设平面PHB 的法向量为(,,)n x y z =r,因为HB =uu u r ,HP =uu u r,所以有00HB n HP n ⎧⋅=⎪⎨⋅=⎪⎩uu u r r uu u r r ,即00y z +==⎪⎩,令x =则3,y =- 所以 3,0)n =-r, …………………8分Acos ,||||n HE n HE n HE ⋅<>===⋅r uuu rr uuu r r uuuu r , …………………10分所以直线HE 与平面PHB . …………………11分(Ⅲ)证明:存在,事实上记点E 为M 即可, …………………12分因为在直角三角形PHA 中,122EH PE EA PA ====, …………………13分 在直角三角形PHB 中,点4,PB =122EF PB ==,所以点E 到四个点,,,P O C F 的距离相等. …………………14分 18.(Ⅰ)解:因为1()||e 2t S t t a =-,其中t a ≠, …………………2分 当0a =,1()||e 2tS t t =,其中0t ≠,当0t >时,1()e 2t S t t =,1'()(1)e 2tS t t =+,所以'()0S t >,所以()S t 在(0,)+∞上递增, …………………4分当0t <时,1()e 2t S t t =-,1'()(1)e 2tS t t =-+,令1'()(1)e 02tS t t =-+>, 解得1t <-,所以()S t 在(,1)-∞-上递增,令1'()(1)e 02tS t t =-+<, 解得1t >-,所以()S t 在(1,0)-上递减, …………7分综上,()S t 的单调递增区间为(0,)+∞,(,1)-∞-,()S t 的单调递增区间为(1,0)-.(Ⅱ)因为1()||e 2t S t t a =-,其中t a ≠, 当2a >,[0,2]t ∈时,1()()e 2t S t a t =-,因为0[0,2]t ∃∈,使得0()e S t ≥,所以()S t 在[0,2]上的最大值一定大于等于e ,1'()[(1)]e 2t S t t a =---,令'()0S t =,得1t a =-, …………………8分当12a -≥时,即3a ≥时,1'()[(1)]e 02t S t t a =--->对(0,2)t ∈成立,()S t 单调递增,所以当2t =时,()S t 取得最大值21(2)(2)e 2S a =-,令21(2)e e 2a -≥ ,解得 22ea ≥+,所以3a ≥, …………………10分 当12a -<时,即3a <时,1'()[(1)]e 02t S t t a =--->对(0,1)t a ∈-成立,()S t 单调递增,1'()[(1)]e 02t S t t a =---<对(1,2)t a ∈-成立,()S t 单调递减,所以当1t a =-时,()S t 取得最大值11(1)e 2a S a --=,令11(1)e e 2a S a --=≥ ,解得ln22a ≥+,所以ln223a +≤<. …………………12分 综上所述,ln22a +≤ . …………………13分 19.(Ⅰ)解:因为椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60o的菱形的四个顶点,所以1a b ==,椭圆M 的方程为2213x y += …………………4分(Ⅱ)解:设1122(,),(,)A x y B x y ,因为AB 的垂直平分线通过点10,2⎛⎫- ⎪⎝⎭,显然直线AB 有斜率,当直线AB 的斜率为0时,则AB 的垂直平分线为y 轴,则1212,x x y y =-=,所以111111=|2||||||||2AOB S x y x y x ==△2211(3)322x x +-≤=,所以AOB S ≤△,当且仅当1||x 时,AOB S △.………6分 当直线AB 的斜率不为0时,则设AB 的方程为y kx t =+,所以2213y kx t x y =+⎧⎪⎨+=⎪⎩,代入得到222(31)6330k x kt t +++-=, 当224(933)0k t ∆=+->, 即2231k t +>, ① 方程有两个不同的解又122631kt x x k -+=+,1223231x x ktk +-=+, …………………9分所以122231y y tk +=+,又1212112202y y x x k ++=-+-,化简得到2314k t +=, ②代入①,得到04t <<, …………………10分又原点到直线的距离为d =,12|||AB x x =-=,所以1=||||2AOB S AB d ∆=,化简得到AOB S △ …………………12分 因为04t <<,所以当2t =时,即k =AOB S △. 综上,AOB△. …………………14分 20.(Ⅰ)解:法一:42123712371237210121012101-−−−−−→−−−−−→----改变第列改变第行法二:24123712371237210121012101--−−−−−→−−−−−→----改变第行改变第列法三:14123712371237210121012101----−−−−−→−−−−−→--改变第列改变第列…………………3分(Ⅱ)解:每一列所有数之和分别为2,0,2,0-,每一行所有数之和分别为1-,1;①如果首先操作第三列,则22221212a a a a a a a a -----则第一行之和为21a -,第二行之和为52a -, 这两个数中,必须有一个为负数,另外一个为非负数, 所以 12a ≤或52a ≥, 当12a ≤时,则接下来只能操作第一行,22221212a a a a a a a a ------此时每列之和分别为2222,22,22,2a a a a ---, 必有2220a -≥,解得0,1a =-, 当52a ≥时,则接下来操作第二行, 22221212a a a a a a a a ------此时第4列和为负,不符合题意. …………………6分 ②如果首先操作第一行22221212a a a a a a a a -----则每一列之和分别为22a -,222a -,22a -,22a ,当1a =时,每列各数之和已经非负,不需要进行第二次操作,舍掉, 当1a ≠时,22a -,22a -至少有一个为负数,所以此时必须有2220a -≥,即11a -≤≤,所以0a =或1a =-, 经检验,0a =或1a =-符合要求.综上:0,1a =-. …………………9分(Ⅲ)证明:能经过有限次操作以后,使得得到的数表所有的行和与所有的列和均为非负实数.证明如下:记数表中第i 行第j 列的实数为ij c (1,2,,;1,2,,i m j n ==L L ),各行的数字之和分别为12,,,m a a a L ,各列的数字之和分别为12,,,n b b b L ,12m A a a a =+++L ,12n B b b b =+++L ,数表中m n ⨯个实数之和为S ,则S A B ==.记{}112211221min 11(1,2,,)0|i i n in l i i n in i mK k c k c k c k l n k c k c k c ≤≤=+++=-=+++≠L L L 或且{}112211221min 11(1,2,,)0|j j m mj s j j m mj j nT t c t c t c t s m t c t c t c ≤≤=+++=-=+++≠L L L 或且{}min ,K T λ=.按要求操作一次时,使该行的行和(或该列的列和)由负变正,都会引起A (和B )增大,从而也就使得S 增加,增加的幅度大于等于2λ,但是每次操作都只是改变数表中某行(或某列)各数的符号,而不改变其绝对值,显然,S 必然小于等于最初的数表中m n ⨯个实数的绝对值之和,可见其增加的趋势必在有限次之后终止.终止之时,必是所有的行和与所有的列和均为非负实数,否则,只要再改变该行或该列的符号,S 就又会继续上升,导致矛盾,故结论成立. ……13分北京市海淀区高三统一测试 数学(理科)选填解析一、 选择题 1.【答案】B【解析】解:因为{}21A x x =-≤≤,所以A B =U {}1x x ≤. 故选B .2.【答案】D【解析】解:由题意得22111231214428a q a a q q q a q ⎧===⎧⎧⎪⇒⇒⎨⎨⎨===⎪⎩⎩⎩或112a q =-⎧⎨=-⎩. 故选D .3.【答案】C【解析】解:由几何概型的知识可知S m S n Ω=正,所以2mS ma S n nΩ==正. 故选C .4.【答案】B【解析】解:画出直观图可知该立体图形为正方体与正四棱锥组成,所以1566465180602402S =⨯⨯+⨯⨯⨯=+=.故选B .5.【答案】C【解析】解:当1λ=时,可知,AB DC AD BC ==uu u r uuu r uuu r uu u r,故四边形ABCD 为平行四边形;四 边形ABCD 为平行四边形,则,AB DC AD BC ==uu u r uuu r uuu r uu u r,此时1λ=,故λ∃∈R ,使得 ,AB DC AD BC λλ==uu u r uuu r uuu r uu u r . 故选C .6.【答案】A【解析】解:由题可知2,4都不排在个位和万位共有233336A A ⋅=种,其中5排在百位的 有22224A A ⋅=种,所以满足条件的共有36432-=. 566故选A .7.【答案】B【解析】解:由题可知作图,过点A 做抛物线准线的垂线,交于点B ,由抛物线的定义可知2AB AF =,因为抛物线方程为24y x =,所以1222F F AF ==;综上可知四边形12ABF F 为正方形,所以1AF =,由双曲线的定义可知1222a AF AF =-=,即1a =-,1c =,所以1e ==.故选B .8.【答案】D【解析】解:A .34a =可以经过两次减1得到,也可以经过先减1,再取倒数得到,还 可以是先取倒数,然后减1得到,但是不可能经过两次取倒数得到.因此m 可以取3个 不同的值:6,54,15.B .21a ,31a =,4a =……,周期为3.C .设(0,1)α∈满足11T αα=-+,即1α=<.此时一个周期之内的所有项为:1,2,,T T ααα-+-+L .可以取m 为其中除了α以外的任意一个值. D .若数列{}n a 是周期数列,则必有小于1的项.而(0,1)α∀∈且α∈Q ,1αα-不可能是正整数,故1α不能写成n α+的形式,*n ∈N ,故数列{}n a 不是周期数列.(假设1n αα-=为正整数,则α=(,)p p q q =∈*N 是有理数,则222(4)p n q=+,由于24n +是正整数,故可设1q =,于是()()4p n p n +-=,无解.故α不是有理数)注:①对于正实数轴上的点,设数轴上的点A 1,点B 所表示的实数是点A 1.考虑一个点P 1出发,1-在1的左边,因此点P 随后跳到11处.在此之后,只要该点在1的右边,就往左移动1个单位;只要该点在1的左边,就移动到其倒数所表示的点的位置.因为1)1)2-=是整数,因此此时的{}n a 是周期数列,且周期为213+=.现将A点向()0,0点移动,与此同时,点B 会相应地向右移动(保持乘积为1),于是,A B 两点 之间的距离逐渐增大.*T ∀∈N ,4T ≥,在此过程中必定存在有某个时刻,,A B 两点 之间的距离恰为1T -,此时{}n a 是周期数列,且周期为T ,而m 的值可以取点P 经过的且在1的右边的任何一个点.周期为2 ② 由于实数是连续的,而有理数不是,因此①只能说明C 选项是正确的,而不能说明 D 选项是正确的. 故选D .二、 填空题 9.【答案】2【解析】解:由cos 22x ρθ=⇒=,极点()0,0所以距离为2. 故答案为2.10.【答案】c b a >>【解析】解:因为()1ln ,02a =∈-∞,()1sin 0,12b =∈,()1221,c -==+∞,所以c b a >>.故答案为c b a >>.11.【答案】(【解析】解:1tan 30k ==o )1:2l y x =+ ①121k k ⋅=-得2k =)2:2l y x =- ②由①②解得,1x y =⎧⎪⎨=⎪⎩故答案为(.12.【答案】2【解析】解:sin 45b =o,所以2b =,sin sin()C A B =+=,1sin 2ABC S ab C =△. 故答案为213.【答案】[]0,1【解析】解:建立如图A xyz -的空间直角坐标系,则点()1,0,0D ,()1,1,0C ,()0,0,0A ,因为点在线段1BD 上,可以设点()1,,1P a a a -+,所以()0,1,0DC =uuu r,()[]()1,,10,1AP a a a a =-+∈u u u r ,所以DC AP a ⋅=uuu r uu u r,故[]0,1a ∈.故答案为[]0,1.14.【答案】②③;2【解析】解:(Ⅰ)① 错误.显然点(1,0)在曲线W 上,点(1,0)-不在曲线W 上.② 正确.设点1P 和2P 关于直线y x =对称,则点1P 和2P 到两条坐标轴的距离之和相等,到点(1,1)的距离也相等,因此点1P 和2P 要么都在曲线W 上,要么都不在曲线W 上. ③ 正确.设(,)P x y ,只考虑第一象限内(包括x 轴非负半轴,y 轴非负半轴)的轨迹,由条件可知x y +(1)(1)2x y ++=.它的轨迹是曲线 2(12)xy x =≤≤向左向下各平移一个单位得到的.面积显然小于12,因为原点,点(0,1) 和点(1,0)构成的三角形的面积为12,而题中的封闭图形在三角形的内部. (Ⅱ)对||||x y +平方得 ||1xy x y =--.分别对点P 在四个象限进行讨论可知,曲线W 在第二象限的轨迹是1(0)y x =<,在第四象限的轨迹是1(0)x y =<,在第三象限的轨迹是(1)(1)2(1,1)x y x y ++=<-<-.因此曲线W 上的点到原点距离最小的点在第一象限.根据(1)(1)2x y ++=可得1xy x y ++=,到原点的距离最小的点为1)-,到原点的1)2=故答案为②③;2。

2014海淀二模试题及答案word版

2014海淀二模试题及答案word版

海淀区高三年级第二学期期末练习英语2014.5本试卷共12页,共150分。

考试时长120分钟。

考生务必将答案写在答卷纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

第一部分:听力理解(共三节,30分)第一节(共5小题;每小题1.5分,共7.5分)听下面5段对话。

每段对话后有一道小题,从每题所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你将有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话你将听一遍。

1. What does the boy want for breakfast?A. Bread.B. Pancakes.C. Sandwich.2. What did the man do in his vacation?A. He stayed at home.B. He took someC. He did a part-time job.3. How does the man feel about the interview?A. Confident.B. Uncertain.C. Disappointed.4. What is the man doing?A. Making an apology.B. Making an offer.C. Making a request.5. Here is the post office?第二节(共10小题,每小题1.5分,共15分)听下面4段对话。

每段对话后有几道小题,从每题所给的A、B、C三个选项中选出最佳选项。

听每段对话前,你将有5秒钟时间阅读每小题,听完后,美小题将给出5秒钟的作答时间。

每段对话你将听两遍。

听完第6段材料,回答第6至7小题。

6. What happened to the man in today’s game?A. He broke his leg.B. He injured his ankle.C. He hurt his back.7. What does the woman ask the man to do?A. Give up sports.B. Lie comfortably.C. Stop arguing.听第7段材料,回答第8至9题。

北京市海淀区高三二模数学理科含答案[1]

北京市海淀区高三二模数学理科含答案[1]

海淀区高三年级第二学期期末练习数 学 (理科) 2013.5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则A B = A .(,0]-∞ B .(,1]-∞ C .[1,2] D .[1,)+∞2.已知数列{}n a 是公比为q 的等比数列,且134a a ⋅=,48a =,则1a q +的值为 A .3 B .2 C .3或2- D .3或3-3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若 撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为A.ma nB.na mC. 2ma nD. 2na m4.某空间几何体的三视图如右图所示,则该几何体的表面积为 A.180 B.240 C.276 D.3005.在四边形ABCD 中,“λ∃∈R ,使得,AB DC AD BC λλ==”是“四边形ABCD 为平行四边形”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6.用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为 A.32 B. 36 C. 42 D.487.双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x =的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为B.112俯视图8. 若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是 A. 若34a =,则m 可以取3个不同的值 B.若m ={}n a 是周期为3的数列C.T ∀∈*N 且2T ≥,存在1m >,{}n a 是周期为T 的数列D.Q m ∃∈且2m ≥,数列{}n a 是周期数列二、填空题:本大题共6小题,每小题5分,共30分.9.在极坐标系中,极点到直线cos 2ρθ=的距离为_______.10.已知1211ln ,sin ,222a b c -===,则,,a b c 按照从.大到小...排列为______. 11.直线1l 过点(2,0)-且倾斜角为30,直线2l 过点(2,0)且与直线1l 垂直,则直线1l 与直线2l 的交点坐标为____.12.在ABC ∆中,30,45,2A B a ∠=∠==,则_____;b =C _____.AB S ∆=13.正方体1111ABCD A B C D -的棱长为1,若动点P 在线段1BD 上运动,则DC AP ⋅的取值范围是______________.14.在平面直角坐标系中,动点(,)P x y 到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P 的轨迹为曲线W . (I) 给出下列三个结论: ①曲线W 关于原点对称; ②曲线W 关于直线y x =对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12; 其中,所有正确结论的序号是_____; (Ⅱ)曲线W 上的点到原点距离的最小值为______.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数cos2()1π)4x f x x =--.(Ⅰ)求函数()f x 的定义域; (Ⅱ) 求函数()f x 的单调递增区间.16.(本小题满分13分)福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为p ,获得50元奖金的概率为2%.(I)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率; (II )为了能够筹得资金资助福利事业, 求p 的取值范围.17. (本小题满分14分)如图1,在直角梯形ABCD 中,90ABC DAB ∠=∠=,30CAB ∠=,2BC =,4AD =. 把DAC ∆沿对角线AC 折起到PAC ∆的位置,如图2所示,使得点P 在平面ABC上的正投影H 恰好落在线段AC 上,连接PB ,点,E F 分别为线段,PA AB 的中点. (I) 求证:平面//EFH 平面PBC ; (II)求直线HE 与平面PHB 所成角的正弦值;(III)在棱PA 上是否存在一点M ,使得M 到点,,,P H A F 四点的距离相等?请说明理由.CDBA图1H E CPBAF图218.(本小题满分13分)已知函数()e x f x =,点(,0)A a 为一定点,直线()x t t a =≠分别与函数()f x 的图象和x 轴交于点M ,N ,记AMN ∆的面积为()S t . (I )当0a =时,求函数()S t 的单调区间;(II )当2a >时, 若0[0,2]t ∃∈,使得0()e S t ≥, 求实数a 的取值范围.19. (本小题满分14分)已知椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60的菱形的四个顶点.(I )求椭圆M 的方程;(II )直线l 与椭圆M 交于A ,B 两点,且线段AB 的垂直平分线经过点1(0,)2-,求A O B ∆(O 为原点)面积的最大值.20.(本小题满分13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”. (Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值;(Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A , 能否经过有限次“操作”以后,使得到的数表每行的各数之表2和与每列的各数之和均为非负整数?请说明理由.22221212a a a a a a a a ------海淀区高三年级第二学期期末练习数 学 (理科)参考答案及评分标准2013.5一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(I )因为πsin()04x -≠所以ππ,4x k -≠Z k ∈……………………2分 所以函数的定义域为π{|π+,4x x k ≠Z}k ∈……………………4分(II )因为22cos sin ()1sin cos x xf x x x -=--……………………6分= 1(cos sin )x x ++1sin cos x x =++π= 1)4x +……………………8分又sin yx =的单调递增区间为 ππ(2π,2π)22k k -+ ,Z k ∈令πππ2π2π242k x k -<+<+解得 3ππ2π2π44k x k -<<+……………………11分 又注意到ππ+,4x k ≠9. 2 10.c b a >> 11.12. 13.[0,1]14.②③;2所以()f x 的单调递增区间为3ππ(2π,2π)44k k -+, Z k ∈…………………13分16. 解:(I )设至少一张中奖为事件A则2()10.50.75P A =-=…………………4分(II) 设福彩中心卖出一张彩票可能获得的资金为ξ 则ξ可以取5,0,45,145--…………………6分ξ的分布列为…………………8分所以ξ的期望为550%0(50%2%)(45)2%(145)E p p ξ=⨯+⨯--+-⨯+-⨯2.590%145p =--…………………11分所以当 1.61450p ->时,即8725p <…………………12分 所以当80725p <<时,福彩中心可以获取资金资助福利事业…………………13分17.解:(I )因为点P 在平面ABC 上的正投影H 恰好落在线段AC 上 所以PH ⊥平面ABC ,所以PH ⊥AC …………………1分因为在直角梯形ABCD 中,90ABC DAB ∠=∠=,30CAB ∠=,2BC =,4AD =所以4AC =,60CAB ∠=,所以ADC ∆是等边三角形,所以H 是AC 中点, …………………2分所以//HE PC …………………3分 同理可证//EF PB 又,HEEF E CP PB P ==所以平面//EFH 平面PBC …………………5分 (II )在平面ABC 内过H 作AC 的垂线如图建立空间直角坐标系,则(0,2,0)A -,P ,B …………………6分因为(0,E -,(0,HE =- 设平面PHB 的法向量为(,,)n x y z = 因为(3,1,0)HB =,HP =所以有00HB n HP n ⎧⋅=⎪⎨⋅=⎪⎩,即00y z +==⎪⎩,令x =则3,y =-所以(3,3,0)n =-…………………8分cos ,||||22n HE n HEn HE ⋅<>===⋅⋅10分所以直线HE 与平面PHB …………………11分 (III)存在,事实上记点E 为M 即可 …………………12分因为在直角三角形PHA 中,122EH PE EA PA ====,…………………13分 在直角三角形PHB 中,点4,PB =122EF PB == 所以点E 到四个点,,,P O C F 的距离相等…………………14分 18.解: (I) 因为1()||e 2t S t t a =-,其中t a ≠…………………2分 当0a =,1()||e 2t S t t =,其中0t ≠ 当0t >时,1()e 2t S t t =,1'()(1)e 2t S t t =+,所以'()0S t >,所以()S t 在(0,)+∞上递增,…………………4分 当0t <时,1()e 2t S t t =-,1'()(1)e 2t S t t =-+,令1'()(1)e 02t S t t =-+>,解得1t <-,所以()S t 在(,1)-∞-上递增 令1'()(1)e 02t S t t =-+<,解得1t >-,所以()S t 在(1,0)-上递减……………7分综上,()S t 的单调递增区间为(0,)+∞,(,1)-∞-()S t 的单调递增区间为(1,0)-(II )因为1()||e 2t S t t a =-,其中t a ≠ 当2a >,[0,2]t ∈时,1()()e 2t S t a t =-因为0[0,2]t ∃∈,使得0()e S t ≥,所以()S t 在[0,2]上的最大值一定大于等于e1'()[(1)]e 2t S t t a =---,令'()0S t =,得1t a =-…………………8分当12a -≥时,即3a ≥时1'()[(1)]e 02t S t t a =--->对(0,2)t ∈成立,()S t 单调递增所以当2t =时,()S t 取得最大值21(2)(2)e 2S a =-令21(2)e e 2a -≥,解得22ea ≥+, 所以3a ≥…………………10分 当12a -<时,即3a <时1'()[(1)]e 02t S t t a =--->对(0,1)t a ∈-成立,()S t 单调递增1'()[(1)]e 02t S t t a =---<对(1,2)t a ∈-成立,()S t 单调递减所以当1t a =-时,()S t 取得最大值11(1)e 2a S a --=令11(1)e e 2a S a --=≥,解得ln22a ≥+所以ln223a +≤<…………………12分 综上所述,ln22a +≤…………………13分19.解:(I)因为椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60的菱形的四个顶点,所以1a b ==,椭圆M 的方程为2213x y +=…………………4分(II)设1122(,),(,),A x y B x y 因为AB 的垂直平分线通过点1(0,)2-, 显然直线AB 有斜率,当直线AB 的斜率为0时,则AB 的垂直平分线为y 轴,则1212,x x y y =-=所以111111=|2||||||||2AOB S x y x y x ∆====2211(3)322x x +-≤=,所以AOB S ∆≤1||x =时,AOB S ∆………………7分 当直线AB 的斜率不为0时,则设AB 的方程为y kx t =+所以2213y kx t x y =+⎧⎪⎨+=⎪⎩,代入得到222(31)6330k x ktx t +++-= 当224(933)0k t ∆=+->, 即2231k t +>①方程有两个不同的解又122631kt x x k -+=+,1223231x x ktk +-=+…………………8分 所以122231y y tk +=+, 又1212112202y y x x k ++=-+-,化简得到2314k t +=② 代入①,得到04t <<…………………10分又原点到直线的距离为d =12|||AB x x =-=所以1=||||2AOB S AB d ∆=化简得到AOB S ∆12分 因为04t <<,所以当2t =时,即k =时,AOB S ∆综上,AOB ∆…………………14分 20.(I )解:法1:42123712371237210121012101-−−−−−→−−−−−→----改变第列改变第行法2:14123712371237210121012101----−−−−−→−−−−−→--改变第列改变第列…………………3分(II) 每一列所有数之和分别为2,0,2-,0,每一行所有数之和分别为1-,1; ①如果首先操作第三列,则22221212a a a a a a a a -----则第一行之和为21a -,第二行之和为52a -, 这两个数中,必须有一个为负数,另外一个为非负数, 所以12a ≤或52a ≥ 当12a ≤时,则接下来只能操作第一行, 22221212a a a a a a a a ------此时每列之和分别为2222,22,22,2a a a a --- 必有2220a -≥,解得0,1a =- 当52a ≥时,则接下来操作第二行 22221212a a a a a a a a ------此时第4列和为负,不符合题意. …………………6分 ②如果首先操作第一行22221212a a a a a a a a -----则每一列之和分别为22a -,222a -,22a -,22a当1a =时,每列各数之和已经非负,不需要进行第二次操作,舍掉 当1a ≠时,22a -,22a -至少有一个为负数,所以此时必须有2220a -≥,即11a -≤≤,所以0a =或1a =- 经检验,0a =或1a =-符合要求 综上:0,1a =-…………………9分(III )能经过有限次操作以后,使得得到的数表所有的行和与所有的列和均为非负实数。

2014海淀区高三二模数学(理科)

2014海淀区高三二模数学(理科)

2014海淀区高三二模数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)sin(﹣150°)的值为()A.﹣B.C.﹣D.2.(5分)已知命题p:“∀a>0,有e a≥1成立”,则¬p为()A.∃a≤0,有e a≤1成立B.∃a≤0,有e a≥1成立C.∃a>0,有e a<1成立D.∃a>0,有e a≤1成立3.(5分)执行如图所示的程序框图,若输出的S为4,则输入的x应为()A.﹣2 B.16 C.﹣2或8 D.﹣2或164.(5分)在极坐标系中,圆ρ=2sinθ的圆心到极轴的距离为()A.1 B.C.D.25.(5分)已知P(x,y)是不等式组表示的平面区域内的一点,A(1,2),O为坐标原点,则•的最大值()A.2 B.3 C.5 D.66.(5分)一观览车的主架示意图如图所示,其中O为轮轴的中心,距地面32m(即OM长),巨轮的半径为30m,AM=BP=2m,巨轮逆时针旋转且每12分钟转动一圈.若点M为吊舱P的初始位置,经过t分钟,该吊舱P距离地面的高度为h(t)m,则h(t)=()A.30sin(t﹣)+30 B.30sin(t﹣)+30C.30sin(t﹣)+32 D.30sin(t﹣)7.(5分)已知等差数列{a n}单调递增且满足a1+a10=4,则a8的取值范围是()A.(2,4) B.(﹣∞,2)C.(2,+∞)D.(4,+∞)8.(5分)已知点E、F分别是正方体ABCD﹣A1B1C1D1的棱AB、AA1的中点,点M、N分别是线段D1E 与C1F上的点,则满足与平面ABCD平行的直线MN有()A.0条 B.1条 C.2条 D.无数条二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)满足不等式x2﹣x<0的x的取值范围是.10.(5分)已知双曲线的一条渐近线方程为y=2x,则其离心率为.11.(5分)已知(ax+1)5的展开式中x3的系数是10,则实数a的值是.12.(5分)已知斜三棱柱的三视图如图所示,该斜三棱柱的体积为.13.(5分)已知l1、l2是曲线C:y=的两条互相平行的切线,则l1与l2的距离的最大值为.14.(5分)已知集合M={1,2,3,…,100},A是集合M的非空子集,把集合A中的各元素之和记作S(A).①满足S(A)=8的集合A的个数为;②S(A)的所有不同取值的个数为.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)在锐角△ABC中,a=2sinA且b=.(Ⅰ)求B的大小;(Ⅱ)若a=3c,求c的值.16.(14分)如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AB⊥AC,AC=AB=AA1,E、F分别是棱BC,A1A的中点,G为棱CC1上的一点,且C1F∥平面AEG.(Ⅰ)求的值;(Ⅱ)求证:EG⊥A1C;(Ⅲ)求二面角A1﹣AG﹣E的余弦值.17.(13分)某单位有车牌尾号为2的汽车A和尾号为6的汽车B,两车分属于两个独立业务部门.对一段时间内两辆汽车的用车记录进行统计,在非限行日,A车日出车频率0.6,B车日出车频率0.5.该地区汽车限行规定如下:现将汽车日出车频率理解为日出车概率,且A,B两车出车相互独立.(Ⅰ)求该单位在星期一恰好出车一台的概率;(Ⅱ)设X表示该单位在星期一与星期二两天的出车台数之和,求X的分布列及其数学期望E(X).18.(13分)已知函数f(x)=(x﹣a)sinx+cosx,x∈(0,π).(Ⅰ)当a=时,求函数f(x)值域;(Ⅱ)当a>时,求函数f(x)的单调区间.19.(14分)已知椭圆G的离心率为,其短轴两端点为A(0,1),B(0,﹣1).(Ⅰ)求椭圆G的方程;(Ⅱ)若C、D是椭圆G上关于y轴对称的两个不同点,直线AC、BD与x轴分别交于点M、N.判断以MN为直径的圆是否过点A,并说明理由.20.(13分)对于自然数数组(a,b,c),如下定义该数组的极差:三个数的最大值与最小值的差.如果(a,b,c)的极差d≥1,可实施如下操作f:若a,b,c中最大的数唯一,则把最大数减2,其余两个数各增加1;若a,b,c中最大的数有两个,则把最大数各减1,第三个数加2,此为一次操作,操作结果记为f1(a,b,c),其级差为d1.若d1≥1,则继续对f1(a,b,c)实施操作f,…,实施n 次操作后的结果记为f n(a,b,c),其极差记为d n.例如:f1(1,3,3)=(3,2,2),f2(1,3,3)=(1,3,3).(Ⅰ)若(a,b,c)=(1,3,14),求d1,d2和d2014的值;(Ⅱ)已知(a,b,c)的极差为d且a<b<c,若n=1,2,3,…时,恒有d n=d,求d的所有可能取值;(Ⅲ)若a,b,c是以4为公比的正整数等比数列中的任意三项,求证:存在n满足d n=0.参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【解答】sin(﹣150°)=﹣sin150°=﹣sin(180°﹣30°)=﹣sin30°=﹣.故选:A.2.【解答】全称命题的否定是特称命题,则¬p:∃a>0,有e a<1成立,故选:C.3.【解答】由程序框图知:算法的功能是求S=的值,当x≤1时,输出的S=4⇒2﹣x=4⇒x=﹣2;当x>1时,输出的S=4⇒log2x=4⇒x=16.故选:D.4.【解答】圆ρ=2sinθ的直角坐标方程为x2+(y﹣1)2=1,它的圆心为(0,1),故圆心到极轴的距离为1,故答案为:1.5.【解答】作出不等式组对应的平面区域如图:z=•,则z=x+2y,即y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点B(0,3),y=﹣x+z的截距最大,此时z最大.代入z=x+2y=0+2×3=6.即•的最大值最大值为6.故选:D6.【解答】设巨轮转动时距离地面的高度h与时间t之间的函数关系式为:h=Asin(ωt+φ)+b,∵巨轮逆时针旋转且每12分钟转动一圈,∴T==12,解得ω=,又巨轮的半径为30m,即A=30,又观览车的轮轴的中心距地面32m,AM=2m,∴b=30,∴h=30sin(t﹣)+30,故选:B.7.【解答】设公差为d,则∵a1+a10=4,∴2a1+9d=4,∴a1=2﹣,∴a8=a1+7d=2+d,∵d>0,∴a8=2+d>2.故选:C.8.【解答】取BB1的中点H,连接FH,则FH∥C1D,连接HE,在D1E上任取一点M,过M在面D1HE中,作MG平行于HO,其中O为线段D1E的中点,交D1H于G,再过G作GN∥FH,交C1F于N,连接MN,O在平面ABCD的正投影为K,连接KB,则OH∥KB,由于GM∥HO,HO∥KB,KB⊂平面ABCD,GM⊄平面ABCD,所以GM∥平面ABCD,同理由NG∥FH,可推得NG∥平面ABCD,由面面平行的判定定理得,平面MNG∥平面ABCD,则MN∥平面ABCD.由于M为D1E上任一点,故这样的直线MN有无数条.故选:D.二、填空题:本大题共6小题,每小题5分,共30分. 9.【解答】不等式x2﹣x<0可化为x(x﹣1)<0,解得0<x<1;∴x的取值范围是(0,1).故答案为:(0,1).10.【解答】∵双曲线的一条渐近线方程为y=2x,∴=2,即b=2a,∴c=,∴e===.故答案为:.11.【解答】(ax+1)5的展开式的通项公式为T r+1=,则∵(ax+1)5的展开式中x3的系数是10,∴=10,∴a=1.故答案为:1.12.【解答】由题意可知三棱柱的底面是直角边长为1和2的直角三角形,棱柱的高为:2.斜三棱柱的体积为:=2.故答案为:2.13.【解答】设l1,l2与曲线相切的切点分别是P1(x1,y1),P2(x2,y2),则y1=,y2=,又y′=()′=﹣,∵l1∥l2,∴﹣,∴x2=﹣x1,∴l1:y﹣y1=﹣(x﹣x1)即y=﹣,l2:y﹣y2=﹣(x﹣x2)即y=﹣,∴由两平行线的距离公式得,d==.当且仅当即x1=±1时,d取得最大值2.故答案为:2.14.【解答】①一个元素:8;两个元素:1,7;2,6;3,5;三个元素:1,3,4;1,2,5;四个元素:∴满足S(A)=8的集合A的个数为6.②∵S(A)的所有可能取值为1,2,3,4,5, (100)对于S(A)来说,由于它是集合A中的各元素之和,同时A又是集合M的非空子集,∵1+2+3+…+100=5050,∴易知S(A)将取尽1到5050的所有数,∴S(A)的取值个数为5050,故答案:①6;②5050.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.【解答】(Ⅰ)由正弦定理可得=,∵a=2sinA,b=,∴sinB===,则在锐角△ABC中,B=60°;(Ⅱ)由余弦定理可得b2=a2+c2﹣2accosB,又a=3c,b=,cosB=,∴21=9c2+c2﹣3c2,即c2=3,解得:c=,经检验,由cosA==﹣<0,可得A>90°,不符合题意,则a=3c时,此三角形无解.16.【解答】(Ⅰ)解:因为C1F∥平面AEG,又C1F⊂平面ACC1A1,平面ACC1A1∩平面AEG=AG,所以C1F∥AG.(3分)因为F为AA1中点,且侧面ACC1A1为平行四边形,所以G为CC1中点,所以=.(4分)(Ⅱ)证明:因为AA1⊥底面ABC,所以AA1⊥AB,AA1⊥AC,(5分)又AB⊥AC,如图,以A为原点建立空间直角坐标系A﹣xyz,设AB=2,则由AB=AC=AA1,得C(2,0,0),B(0,2,0),C1(2,0,2),A1(0,0,2),A(0,0,0),(6分)因为E,G分别是BC,CC1的中点,所以E(1,1,0),G(2,0,1).(7分)所以,因为=(1,﹣1,1)•(﹣2,0,2)=0.(8分)所以,所以EG⊥CA1.(9分)(Ⅲ)解:设平面AEG的法向量,因为,所以,(10分)令x=1,得=(1,﹣1,﹣2).(11分)由已知得平面A1AG的法向量,(11分)所以cos<>==﹣,(13分)由题意知二面角A1﹣AG﹣E为钝角,所以二面角A1﹣AG﹣E的余弦值为﹣.(14分)17.【解答】(Ⅰ)设A车在星期i出车的事件为A i,B车在星期i出车的事件为B i,i=1,2,3,4,5,则由已知可得P(A i)=0.6,P(B i)=0.5.设该单位在星期一恰好出车一台的事件为C,则P(C)=P()=+=0.6×(1﹣0.5)+(1﹣0.6)×0.5=0.5,∴该单位在星期一恰好出车一台的概率为0.5;(Ⅱ)X的取值为0,1,2,3,则P(X=0)==0.4×0.5×0.4=0.08,P(X=1)==0.5×0.4+0.4×0.5×0.6=0.32,P(X=2)==0.6×0.5×0.4+0.5×0.6=0.42,P(X=3)=P(A1B1)P(A2)=0.6×0.5×0.6=0.18,∴X的分布列为EX=1×0.32+2×0.42+3×0.18=1.7.18.【解答】(Ⅰ)当a=时,f(x)=(x﹣)sinx+cosx,x∈(0,π).f′(x)=(x﹣)cosx,由f′(x)=0得x=,f(x),f′(x )的情况如下:(0,)(,π)x﹣因为f(0)=1,f(π)=﹣1,所以函数f(x)的值域为(﹣1,1).(Ⅱ)f′(x)=(x﹣a)cosx,①当时,f(x),f′(x)的情况如下(0,)(,a)所以函数f(x)的单调增区间为(,a),单调减区间为(0,)和(a,π).②当a≥π时,f(x),f′(x)的情况如下(0,)(,π)所以函数f(x)的单调增区间为(,π),单调减区间为(0,).19.【解答】(Ⅰ)∵椭圆G的离心率为,其短轴两端点为A(0,1),B(0,﹣1),∴设椭圆G的方程为:.由e=,得,解得a2=2,∴椭圆的标准方程为.(Ⅱ)以MN为直径的圆是不过点A.理由如下:∵C、D是椭圆G上关于y轴对称的两个不同点,∴设C(x0,y0),且x0≠0,则D(﹣x0,y0).∵A(0,1),B(0,﹣1),∴直线AC的方程为y=.令y=0,得,∴M().同理直线BD的方程为y=,令y=0,解得N().,,∴=,由C(x1,y1)在椭圆G:上,∴,∴,∴∠MAN≠90°,∴以线段MN为直径的圆不过点A.20.【解答】(Ⅰ)解:由题意,d1=10,d2=7,d2014=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)(Ⅱ)解:①当d=2时,则(a,b,c)=(a,a+1,a+2)所以f1(a,a+1,a+2)=(a+1,a+2,a),d1=a+2﹣a=2,由操作规则可知,每次操作,数组中的最大数a+2变为最小数a,最小数a和次小数a+1分别变为次小数a+1和最大数a+2,所以数组的极差不会改变.所以,当d=2时,d n=d(n=1,2,3,…)恒成立.②当d≥3时,则f1(a,b,c)=(a+1,b+1,c﹣2)所以d1=b+1﹣(a+1)=b﹣a<c﹣a=d或d1=c﹣2﹣(a+1)=d﹣3所以总有d1≠d.综上讨论,满足d n=d(n=1,2,3,…)的d的取值仅能是2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)(Ⅲ)证明:因为a,b,c是以4为公比的正整数等比数列的三项,所以a,b,c是形如m•4k(其中m∈N*)的数,又因为4k=(3+1)k=3k++…+1所以a,b,c中每两个数的差都是3的倍数.所以(a,b,c)的极差d0是3的倍数.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)设f i(a,b,c)=(a i,b i,c i),不妨设a<b<c,依据操作f的规则,当在三元数组f i(a,b,c)(i=1,2,3,…x,x∈N)中,总满足c i是唯一最大数,a i是最小数时,一定有a+x<b+x<c﹣2x,解得x<.所以,当i=1,2,3,…﹣1时,d i=c i﹣a i=(c i﹣1﹣2)﹣(a i﹣1+1)=d i﹣1﹣3.(a,b,c)=(,,),=b﹣a依据操作f的规则,当在三元数组f i(a,b,c)(i=,+1,…+y,y∈N)中,总满足c i=b i 是最大数,a i是最小数时,一定有+2y<﹣y,解得y<.所以,当i=,+1,…,﹣1时,d i=c i﹣a i=(c i﹣1﹣1)﹣(a i﹣1+2)=d i﹣1﹣3.(a,b,c)=(,,),=0所以存在n=,满足f n(a,b,c)的极差d n=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)。

2014年北京市海淀区高三二模参考答案(理科)

2014年北京市海淀区高三二模参考答案(理科)

海淀区高三年级第二学期期末练习参考答案数 学 (理科) 2014.5阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一、选择题:本大题共8小题,每小题5分,共40分.1.A2.C3.D4.A.5.D6.B7.C8.D二、填空题:本大题共6小题,每小题5分,共30分.9.01x <<{或(0,1) }11.1 12.213. 14.6,5050 {本题第一空3分,第二空2分}三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)由正弦定理可得sin sin a bA B=----------------------------2分因为,a A b =所以sin sin b A B a === ---------------------------5分 在锐角ABC ∆中,60B = ---------------------------7分 (Ⅱ)由余弦定理可得2222cos b a c ac B =+- ----------------------------9分 又因为3a c =所以2222193c c c =+-,即23c = -------------------------------11分解得c = -------------------------------12分经检验,由222cos 02b c a A bc +-==<可得90A >,不符合题意,所以c =. --------------------13分 16.解:(Ⅰ)因为1//C F 平面AEG又1C F ⊂平面11ACC A ,平面11ACC A 平面AEG AG =1所以1//C F AG . ---------------------------------3分 因为F 为1AA 中点,且侧面11ACC A 为平行四边形所以G 为1CC 中点,所以112CG CC =.------------------------4分 (Ⅱ)因为1AA ⊥底面ABC ,所以1AA AB ⊥,1AA AC ⊥, ----------------------------------5分 又AB AC ⊥,如图,以A 为原点建立空间直角坐标系A xyz -,设2AB =,则由1AB AC AA ==可得11(2,0,0),(0,2,0),(2,0,2),(0,0,2)C B C A -----------------------------6分 因为,E G 分别是1,BC CC 的中点,所以(1,1,0),(2,0,1)E G . -----------------------------7分1(1,1,1)(2,0,2)0EG CA ⋅=-⋅-=. --------------------------------8分所以1EG CA ⊥,所以1EG AC ⊥. --------------------------------9分 (Ⅲ)设平面AEG 的法向量(,,)x y z =n ,则0,0,AE AG ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20.x y x z +=⎧⎨+=⎩ --------------------------10分令1x =,则1,2y z =-=-,所以(1,1,2)=--n . --------------------------11分 由已知可得平面1A AG 的法向量(0,1,0)=m -------------------------------11分所以cos ,||||⋅<>==⋅n m n m n m --------------------------------13分由题意知二面角1A AG E --为钝角, 所以二面角1A AG E --的余弦值为. --------------------------------14分 16.解:(Ⅰ)设A 车在星期i 出车的事件为i A ,B 车在星期i 出车的事件为i B ,1,2,3,4,5i = 由已知可得()0.6,()0.5i i P A P B ==设该单位在星期一恰好出一台车的事件为C , -------------------------------1分 因为,A B 两车是否出车相互独立,且事件1111,A B A B 互斥 ----------------2分所以111111111111()()()()()()()()P C P A B A B P A B P A B P A P B P A P B =+=+=+ 0.6(10.5)(10.6)0.5=⨯-+-⨯ --------------------------4分 0.5=所以该单位在星期一恰好出一台车的概率为0.5. --------------------------5分 {答题与设事件都没有扣1分,有一个不扣分}(Ⅱ)X 的可能取值为0,1,2,3 ----------------------------6分 112(0)()()0.40.50.40.08P X P A B P A ===⨯⨯= 2112(1)()()()()0.50.40.40.50.60.32P X P C P A P A B P A ==+=⨯+⨯⨯= 1122(2)()()()()0.60.50.40.50.60.42P X P A B P A P C P A ==+=⨯⨯+⨯= 112(3)()()0.60.50.60.18P X P A B P A ===⨯⨯= ----------------------------10分所以的的分布列为--------------11分()00.0810.3220.4230.18 1.7E X =⨯+⨯+⨯+⨯=-------------------------------13分18.解: (Ⅰ)当π2a =时,π()()sin cos ,(0,)2f x x x x x π=-+∈π'()()c os 2f x x x =---------------------------------1分 由'()0f x =得π2x =--------------------------------------2分 (),'()f x f x 的情况如下--------------------------------------------------4分因为(0)1f =,(π)1f =-,所以函数()f x 的值域为(1,1)-. ---------------------------------------------------5分 (Ⅱ)'()()cos f x x a x =-,①当ππa <<时,(),'()f x f x 的情况如下分 所以函数()f x 的单调增区间为π(,)2a ,单调减区间为π(0,)2和(,π)a ②当时,(),'()f x f x 的情况如下------------------------------------------------13分 所以函数()f x 的单调增区间为π(,π)2,单调减区间为π(0,)2. 19.解:(Ⅰ)由已知可设椭圆G 的方程为:2221(1)1x y a a +=>.-------------------------------1分 由e =222112a e a -==,-----------------------------------------------------2分 解得22a =, ----------------------------------------------3分所以椭圆的标准方程为22121x y +=. ------------------------------------------4分 (Ⅱ)法一:设00(,),C x y 且00x ≠,则00(,)D x y -. ----------------------------------------5分 因为(0,1),(0,1)A B -, 所以直线AC 的方程为0011y y x x -=+. ----------------------------------------6分 令0y =,得001M x x y -=-,所以00(,0)1x M y --. ------------------------------------7分 同理直线BD 的方程为0011y y x x +=--,求得00(,0)1x N y -+.-----------------------8分0000(,1),(,1),11x x AM AN y y -=-=--+ -----------------------------------------9分所以AM AN ⋅=202011x y -+-, --------------------------------------10分由00(,)C x y 在椭圆G :2212x y +=上,所以22002(1)x y =-,-------------------11分 所以10AM AN ⋅=-≠, -----------------------------13分 所以90MAN ∠≠,所以,以线段MN 为直径的圆不过点A . ------------------------------14分 法二:因为,C D 关于y 轴对称,且B 在y 轴上所以CBA DBA ∠=∠. ------------------------------------------5分 因为N 在x 轴上,又(0,1),(0,1)A B -关于x 轴对称所以NAB NBA CBA ∠=∠=∠, ------------------------------------------6分 所以//BC AN , -------------------------------------------7分 所以180NAC ACB ∠=-∠, ------------------------------------------8分 设00(,),C x y 且00x ≠,则22002(1)x y =-. ----------------------------------------9分 因为22200000003(,1)(,1)(1)02CA CB x y x y x y x ⋅=-+=--=>,----------------11分 所以90ACB ∠≠, -----------------------------------12分 所以90NAC ∠≠, ----------------------------------13分 所以,以线段MN 为直径的圆不过点A . -------------------------------14分 法三:设直线AC 的方程为1y kx =+,则1(,0)M k-, ---------------------------------5分22220,1,x y y kx ⎧+-=⎨=+⎩ 化简得到222(1)20x kx ++-=,所以22(12)40k x kx ++=,所以12240,21kx x k -==+, -----------------------------6分所以22222421112121k k y kx k k k --+=+=+=++,所以222421(,)2121k k C k k --+++, ----------------------------7分 因为,C D 关于y 轴对称,所以222421(,)2121k k D k k -+++. ----------------------------8分所以直线BD 的方程为222211211421k k y x k k -+++=-+,即112y x k =-.------------------10分 令0y =,得到2x k =,所以(2,0)N k . --------------------11分1(,1)(2,1)10AM AN k k⋅=--⋅-=-≠, ----------------------12分所以90MAN ∠≠, ----------------------------------13分 所以,以线段MN 为直径的圆恒过(0,2)和(0,2)-两点. --------------------------14分{法4 :转化为文科题做,考查向量AC AN ⋅的取值} 20.解:(Ⅰ)110d =,27d =,20142d = ---------------------------3分 (Ⅱ)法一:① 当2d =时,则(,,)(,1,2)a b c a a a =++所以1(,1,2)(1,2,)f a a a a a a ++=++,122d a a =+-=,由操作规则可知,每次操作,数组中的最大数2a +变为最小数a ,最小数a 和次 小数1a +分别变为次小数1a +和最大数2a +,所以数组的极差不会改变. 所以,当2d =时,(1,2,3,)n d d n ==恒成立. ②当3d ≥时,则1(,,)(1,1,2)f a b c a b c =++-所以11(1)d b a b a c a d =+-+=-<-=或12(1)3d c a d =--+=- 所以总有1d d ≠.综上讨论,满足(1,2,3,)n d d n ==的d 的取值仅能是2. ---------------------8分 法二:因为a b c <<,所以数组(,,)a b c 的极差2d c a =-≥所以1(,,)(1,1,2)f a b c a b c =++-,若2c -为最大数,则12(1)3d c a c a d =--+=--< 若121b c a +≥->+,则1(1)(1)d b a b a c a d =+-+=-<-= 若112b a c +>+≥-,则1(1)(2)3d b c b c =+--=-+, 当3b c d -+=时,可得32b c -+≥,即1b c +≥ 由b c <可得1b c +≤ 所以1b c +=将1c b =+代入3b c c a -+=-得1b a =+所以当(,,)(,1,2)a b c a a a =++时,2n d =(1,2,3,n =)由操作规则可知,每次操作,数组中的最大数2a +变为最小数a ,最小数a 和次小 数1a +分别变为次小数1a +和最大数2a +,所以数组的极差不会改变. 所以满足(1,2,3,)n d d n ==的d 的取值仅能是2. ---------------------8分 (Ⅲ)因为,,a b c 是以4为公比的正整数等比数列的三项,所以,,a b c 是形如4k m ⋅(其中*m ∈N )的数,又因为1114(31)3331k k k k k k k C C --=+=++++所以,,a b c 中每两个数的差都是3的倍数.所以(,,)a b c 的极差0d 是3的倍数. ------------------------------------------------9分 法1:设(,,)(,,)i i i i f a b c a b c =,不妨设a b c <<,依据操作f 的规则,当在三元数组(,,)i f a b c (1,2,3,,i x =,x ∈N )中,总满足ic 是唯一最大数,i a 是最小数时,一定有2a x b x c x +<+<-,解得3c bx -<. 所以,当2,3,,13c bi -=-时,111(2)(1)3i i i i i i d c a c a d ---=-=--+=-. 3322(,,)(,,)333c b a c b c b c bf a b c -+-++=,3c bd b a -=- 依据操作f 的规则,当在三元数组(,,)i f a b c (,1,,333c b c b c bi y ---=++,y ∈N )中,总满足i i c b =是最大数,i a 是最小数时,一定有32233a cbc by y +-++<-,解得3b ay -<. 所以,当,1,,1333c b c b c ai ---=+-时,111(1)(2)3i i i i i i d c a c a d ---=-=--+=-.3(,,)(,,)333c a a b c a b c a b cf a b c -++++++=,30c a d -= 所以存在3c an -=,满足(,,)n f a b c 的极差0n d =.--------------------------------13分 法2:设(,,)(,,)i i i i f a b c a b c =,则①当(,,)i i i a b c 中有唯一最大数时,不妨设i i i a b c ≤<,则1111,1,2i i i i i i a a b b c c +++=+=+=-,所以111111,3,3i i i i i i i i i i i i b a b a c a c a c b c b ++++++-=--=---=--所以,若,,i i i i i i b a c a c b ---是3的倍数,则111111,,i i i i i i b a c a c b ++++++---是3的倍数. 所以3i i b c +≤,则3i d ≥,1130i i i i c b c b ++-=--≥, 所以111i i i a b c +++≤≤所以11133i i i i i i d c a c a d +++=-=--=--------------------------------------------11分 ②当(,,)i i i a b c 中的最大数有两个时,不妨设i i i a b c <=,则1112,1,1i i i i i i a a b b c c +++=+=-=-,所以1111113,3,i i i i i i i i i i i i b a b a c a c a c b c b ++++++-=---=---=-,所以,若,,i i i i i i b a c a c b ---是3的倍数,则111111,,i i i i i i b a c a c b ++++++---是3的倍数. 所以3i i a b +≤,则3i d ≥,1130i i i i b a b a ++-=--≥ 所以11133i i i i i i d b a b a d +++=-=--=-.所以当3i d ≥时,数列{}i d 是公差为3的等差数列.------------------------------12分 当3i d =时,由上述分析可得10i d +=,此时1113i i i a b ca b c +++++=== 所以存在3dn =,满足(,,)n f a b c 的极差0n d =.----------------------------------13分。

北京市海淀区2014年高三二模数学(理)含答案

北京市海淀区2014年高三二模数学(理)含答案

海淀区高三年级第二学期期末练习数学(理科) 2014.5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.sin(150)-的值为A .12-B .12C. D2.已知命题:p “0a ∀>,有e 1a≥成立”,则p ⌝为A. 0a ∃≤,有e 1a≤成立B. 0a ∃≤,有e 1a≥成立 C. 0a ∃>,有e 1a<成立D. 0a ∃>,有e 1a≤成立3. 执行如图所示的程序框图,若输出的S 为4,则输入的x 应为 A.-2 B.16 C.-2或8D.-2或164. 在极坐标系中,圆θρsin 2=的圆心到极轴的距离为A .1D. 25.已知(,)P x y 是不等式组10,30,0x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩表示的平面区域内的一点,(1,2)A ,O 为坐标原点,则OA OP ⋅的最大值A.2B.3C.5D.66.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径为30m ,AM =2BP =m ,巨轮逆时针旋转且每12分钟转动一圈.若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为()h t m ,则()h t =A.ππ30sin()30122t -+ B.ππ30sin()3062t -+ C.ππ30sin()3262t -+D.ππ30sin()62t -7.已知等差数列{}n a 单调递增且满足1104a a +=,则8a 的取值范围是A. (2,4)B. (,2)-∞C. (2,)+∞D.(4,)+∞8.已知点,E F 分别是正方体1111ABCD A B C D -的棱1,AB AA 的中点,点,M N1D分别是线段1D E 与1C F 上的点,则满足与平面ABCD 平行的直线MN 有 A.0条 B.1条 C.2条 D.无数条二、填空题:本大题共6小题,每小题5分,共30分. 9.满足不等式20x x -<的x 的取值范围是________.10.已知双曲线22221x y a b-=的一条渐近线为2y x =,则双曲线的离心率为________.11.已知5(1)ax +的展开式中3x 的系数是10,则实数a 的值是12.已知斜三棱柱的三视图如图所示,该斜三棱柱的体积为______.13.已知12,l l 是曲线1:C y x=的两条互相平行的切线,则1l 与2l 的距离的最大值为_____.14.已知集合{1,2,3,,100}M =,A 是集合M 的非空子集,把集合A 中的各元素之和记作()S A .①满足()8S A =的集合A 的个数为_____;②()S A 的所有不同取值的个数为_____.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. 15.(本小题满分13分)在锐角ABC ∆中,a A =且b .(Ⅰ)求B 的大小;(Ⅱ)若3a c =,求c 的值.16.(本小题满分14分)如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,AB AC ⊥,1AC AB AA ==,,E F 分别是棱BC ,1A A 的中点,G 为棱1CC 上的一点,且1C F //平面AEG .(Ⅰ)求1CGCC 的值;(Ⅱ)求证:1EG A C ⊥;(Ⅲ)求二面角1A AG E --的余弦值.17.(本小题满分13分) 主视图俯视图1某单位有车牌尾号为2的汽车A 和尾号为6的汽车B ,两车分属于两个独立业务部门.对一段时间内两辆汽车的用车记录进行统计,在非限行日,A 车日出车频率0.6,B 车日出车频率0.5.该地区汽车限行规定如下:现将汽车日出车频率理解为日出车概率,且A ,B 两车出车相互独立. (Ⅰ)求该单位在星期一恰好出车一台的概率;(Ⅱ)设X 表示该单位在星期一与星期二两天的出车台数之和,求X 的分布列及其数学期望E (X ).18.(本小题满分13分)已知函数()()sin cos ,(0,)f x x a x x x π=-+∈.(Ⅰ)当π2a =时,求函数()f x 值域; (Ⅱ)当π2a >时,求函数()f x 的单调区间.19.(本小题满分14分)已知椭圆G(0,1),(0,1)A B -. (Ⅰ)求椭圆G 的方程; (Ⅱ)若,C D 是椭圆G 上关于y 轴对称的两个不同点,直线,AC BD 与x 轴分别交于点,M N .判断以MN 为直径的圆是否过点A ,并说明理由.20.(本小题满分13分)对于自然数数组(,,)a b c ,如下定义该数组的极差:三个数的最大值与最小值的差.如果(,,)a b c 的极差1d ≥,可实施如下操作f :若,,a b c 中最大的数唯一,则把最大数减2,其余两个数各增加1;若,,a b c 中最大的数有两个,则把最大数各减1,第三个数加2,此为一次操作,操作结果记为1(,,)f a b c ,其级差为1d .若11d ≥,则继续对1(,,)f a b c 实施操作f ,…,实施n 次操作后的结果记为(,,)n f a b c ,其极差记为n d .例如:1(1,3,3)(3,2,2)f =,2(1,3,3)(1,3,3)f =.(Ⅰ)若(,,)(1,3,14)a b c =,求12,d d 和2014d 的值; (Ⅱ)已知(,,)a b c 的极差为d 且a b c <<,若1,2,3,n =时,恒有n d d =,求d 的所有可能取值;(Ⅲ)若,,a b c 是以4为公比的正整数等比数列中的任意三项,求证:存在n 满足0n d =.海淀区高三年级第二学期期末练习参考答案数学(理科) 2014.5阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

【2014海淀二模】北京市海淀区2014届高三下学期期末练习 理科4份(语数英理综) Word版含答案

【2014海淀二模】北京市海淀区2014届高三下学期期末练习 理科4份(语数英理综) Word版含答案

海淀区高三年级第二学期期末练习语文2014.5本试卷共8页,150分。

考试时长150分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

一、本大题共7小题,共15分.阅读下面文字,按要求完成1-4题。

武侠小说大师古龙说过一句经典的话:一个人如果【】,就放他去菜市场,他会重新①(萌发/激发)对生活的热爱。

作家雪小禅对菜市场②(一见钟情/情有独钟),她说:“我有一个癖.好,就是每到一个地方都会去菜市场逛逛,因为那里充满了烟火气息和旺盛的生命力……”这与古龙先生所见大抵③(相同/略同)。

走进菜市场,你会发现这真是一个生龙活虎的世界:摆摊者撸起袖子大声吆喝,迅速装袋、过秤、收钱、找零,整个过程极富节奏感。

买菜的大都是主妇,为一日三餐的性价比,她们使出浑身解.数,在这里“斗智”一番。

就连平素较弱的女性,为了准备一桌丰盛可控的饭菜,一进菜市场,便也仔细地【】蔬菜,麻利地装进大袋小袋……菜市场蕴含着无穷的生活哲理。

姜昆的相声段子就巧妙地拿“菜市场”说事:“生活就是大白菜,④,内容丰富,层出不穷。

”通俗易懂,又让人忍俊不禁。

1.填入文中两处【】内词语的字形和加点字的读音全都正确的一项是(2分)A.走头无路癖好(pǐ)浑身解数(jiè)挑拣B.走投无路癖好(pì)浑身解数(xiè)挑捡C.走投无路癖好(pǐ)浑身解数(xiè)挑拣D.走头无路癖好(pì)浑身解数(jiè)挑捡2.依次填入文中横线①-③处的词语,最恰当的一项是(3分)A.①萌发②情有独钟③相同B.①激发②情有独钟③略同C.①萌发②一见钟情③略同D.①激发②一见钟情③相同3.对文中的女性形象特点概括不正确的一项是(2分)A.精明能干B.持家有道C.世俗小气D.热爱生活4.填入文中横线④处的句子,与上下文衔接最恰当的一项是(2分)A.种了一茬又一茬B.吃了一顿有一顿C.品了一遍又一遍D.扒了一层又一层5.有顾客在超市买菜时把大白菜剥得只剩菜芯儿,把芹菜叶子择得干干净净。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6 .--------------------------------14 分 6
设该单位在星期一恰好出一台车的事件为 C ,-------------------------------1 分 因为 A, B 两车是否出车相互独立,且事件 A1 B1 , A1 B1 互斥 ----------------2 分 所以 P (C ) P ( A1 B1 A1 B1 ) P( A1 B1 ) P ( A1 B1 ) P ( A1 ) P ( B1 ) P( A1 ) P ( B1 )
b2 c2 a 2 1 0 可得 A 90 ,不符合题意, 2bc 2 7
z A1 B1 G F
所以 c 3 舍去.--------------------13 分 16.解: (Ⅰ)因为 C1 F / / 平面 AEG 又 C1 F 平 面 ACC1 A1 , 平 面 ACC1 A1 平 面
CG 1 .------------------------4 分 CC1 2

C (2,0,0), B (0, 2,0), C1 (2,0, 2), A1 (0,0, 2) -----------------------------6 分
因为 E, G 分别是 BC , CC1 的中点, 所以 E (1,1,0), G (2,0,1) . -----------------------------7 分
因为 a 2 7 sin A, b 21
所以 sin B
b sin A 21 sin A 3 a 2 2 7 sin A
---------------------------5 分
在锐角 ABC 中, B 60 (Ⅱ)由余弦定理可得 b 2 a 2 c 2 2ac cos B 又因为 a 3c
0.6 (1 0.5) (1 0.6) 0.5 --------------------------4 分 0.5 所以该单位在星期一恰好出一台车的概率为 0.5 . --------------------------5 分 {答题与设事件都没有扣 1 分,有一个不扣分} (Ⅱ) X 的可能取值为 0,1,2,3 ----------------------------6 分 P( X 0) P( A1 B1 ) P ( A2 ) 0.4 0.5 0.4 0.08 P ( X 1) P(C ) P ( A2 ) P ( A1 B1 ) P ( A2 ) 0.5 0.4 0.4 0.5 0.6 0.32 P ( X 2) P ( A1 B1 ) P ( A2 ) P(C ) P ( A2 ) 0.6 0.5 0.4 0.5 0.6 0.42

(Ⅲ)设平面 AEG 的法向量 n ( x, y, z ) ,则 n AE 0, x y 0, 即 --------------------------10 分 2 x z 0. n AG 0, 令 x 1 ,则 y 1, z 2 ,所以 n (1, 1, 2) .--------------------------11 分 由已知可得平面 A1 AG 的法向量 m (0,1,0) -------------------------------11 分 所以 cos n, m
C1
x C E y B
A
AEG AG ,
所以 C1 F / / AG .
---------------------------------3 分
因为 F 为 AA1 中点,且侧面 ACC1 A1 为平行四边形 所以 G 为 CC1 中点,所以 (Ⅱ)因为 AA1 底面 ABC , 所以 AA1 AB , AA1 AC , 又 AB AC , 如图,以 A 为原点建立空间直角坐标系 A xyz ,设 AB 2 ,则由 AB AC AA1 可得 ----------------------------------5 分
---------------------------7 分 ----------------------------9 分
所以 21 9c 2 c 2 3c 2 ,即 c 2 3 -------------------------------11 分 解得 c 3 -------------------------------12 分 经检验,由 cos A
数学(理科)参考答案 2014.5
阅卷须知: 1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。 2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.
1.A 2.C 3.D 4.A. 5.D 6.B 7.C 8.D
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.
9. 0 x 1 {或 (0,1) } 10. 5 11.1 12.2 13. 2 2
14.6,5050{本题第一空 3 分,第二空 2 分}
三、解答题: 本大题共 6 小题,共 80 分.
15.解: (Ⅰ)由正弦定理可得
a b sin A sin B
----------------------------2 分
EG CA1 (1, 1,1) (2, 0, 2) 0 .--------------------------------8 分
所以 EG CA1 , 所以 EG A1C . --------------------------------9 分

nm 6 --------------------------------13 分 | n || m | 6
由题意知二面角 A1 AG E 为钝角, 所以二面角 A1 AG E 的余弦值为 16.解: (Ⅰ)设 A 车在星期 i 出车的事件为 Ai , B 车在星期 i 出车的事件为 Bi , i 1,2,3,4,5 由已知可得 P ( Ai ) 0.6, P ( Bi ) 0.5
相关文档
最新文档