人教版初中数学一次函数基础测试题含答案解析

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中数学一次函数基础测试题含答案解析
一、选择题
1.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为()
x(kg)
0
1
2
3
4
5
6
y(cm)
12
12.5
13
13.5
14
14.5
15
A.y=0.5x+12B.y=x+10.5C.y=0.5x+10D.y=x+12
【详解】
解:一次函数y=kx+b过一、二、四象限,
则函数值y随x的增大而减小,因而k<0;
图象与y轴的正半轴相交则b>0,
因而一次函数y=-bx+k的一次项系数-b<0,
y随x的增大而减小,经过二四象限,
常数项k<0,则函数与y轴负半轴相交,
因而一定经过二三四象限,
因而函数不经过第一象限.
故选:A.
A.a>bB.a=bC.a<bD.无法确定
【答案】A
【解析】
【分析】
根据一次函数的图像和性质,k<0,y随x的增大而减小解答.
【详解】
解:∵k=﹣2<0,
∴y随x的增大而减小,
∵1<3,
∴a>b.
故选A.
【点睛】
考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.
5.已知正比例函数y=kx(k≠0)经过第二、四象限,点(k﹣1,3k+5)是其图象上的点,则k的值为( )
∵两函数的交点横坐标为-2,
∴关于x的不等式-x+m>nx+5n>0的解集为-5<x<-2
故整数解为-4,-3,故选B.
【点睛】
此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质.
9.如图,函数 和 的图象相交于点 ,则关于 的不等式 的解集为()
A. B. C. D.
【答案】A
故选C.
【点睛】
本题考查了待定系数法求正比例函数的解析式,掌握正比例函数图象上的点的坐标都满足正比例函数的解析式是解题的关键.
6.下列关于一次函数 的说法,错误的是( )
A.图象经过第一、二、四象限
B. 随 的增大而减小
C.图象与 轴交于点
D.当 时,
【答案】D
【解析】
【分析】
由 , 可知图象经过第一、二、四象限;由 ,可得 随 的增大而减小;图象与 轴的交点为 ;当 时, ;
【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,
故选A.
【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.
故选A.
点睛:本题考查了函数关系,关键在于根据图表信息列出等式,然后变形为函数的形式.
2.正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据图象分别确定 的取值范围,若有公共部分,则有可能;否则不可能.
【详解】
根据图象知:
A、k<0,﹣k<0.解集没有公共部分,所以不可能;
此题主要考查一次函数的图象与性质,既可以根据函数的图象与性质,也可以根据不等式的性质求解,灵活选择简便方法是解题关键.
17.若关于 的一元二次方程 有两个不相等的实数根,则一次函数
的图象可能是:
A. B. C. D.
【答案】B
【解析】
【分析】
【详解】
由方程 有两个不相等的实数根,
可得 ,
解得 ,即 异号,
A.(2,3)B.(2,1)C.(0,3)D.(3,0
【答案】B
【解析】
【分析】
把各点分别代入一次函数y=2x﹣3进行检验即可.
【详解】
A、2×2﹣3=1≠3,原式不成立,故本选项错误;
B、2×2﹣3=1,原式成立,故本选项正确;
C、2×0﹣3=﹣3≠3,原式不成立,故本选项错误;
D、2×3﹣3=3≠0,原式不成立,故本选项错误,
【点睛】
本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0;
一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.
19.下列各点在一次函数y=2x﹣3的图象上的是( )
A.3B.5C.﹣1D.﹣3
【答案】C
【解析】
【分析】
把x=k﹣1,y=3k+5代入正比例函数y=kx解答即可.
【详解】
把x=k﹣1,y=3k+5代入正比例函数的y=kx,
可得:3k+5=k(k﹣1),
解得:k1=﹣1,k2=5,
因为正比例函数的y=kx(k≠0)的图象经过二,四象限,
所以k<0,
所以k=﹣1,
【答案】C
【解析】
【分析】
先根据一次函数 中 , 判断出函数图象经过的象限,进而可得出结论.
【详解】
解: 一次函数 中 , ,
此函数的图象经过一、二、四象限,不经过第三象限.
故答案选:C.
【点睛】
本题考查的是一次函数的性质,即一次函数 中,当 , 时,函数图象经过一、二、四象限.
4.已知点M(1,a)和点N(3,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是( )
A.第一象限B.第二象限C.第三象限D.第四象限
【答案】D
【解析】
【分析】
求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.
【详解】
抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣ =﹣a﹣ ,
纵坐标为:y= =﹣2a﹣ ,
∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+ ,
【解析】
【分析】
直接利用函数图象上点的坐标特征得出m的值,再利用函数图象得出答案即可.
【详解】
解:∵函数y=−4x和y=kx+b的图象相交于点A(m,−8),
∴−8=−4m,
解得:m=2,
故A点坐标为(2,−8),
∵kx+b>−4x时,(k+4)x+b>0,
则关于x的不等式(k+4)x+b>0的解集为:x>2.
8.如图,直线y=-x+m与直线y=nx+5n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+5n>0的整数解为( )
A.-5,-4,-3B.-4,-3C.-4,-3,-2D.-3,-2
【答案】B
【解析】
【分析】
根据一次函数图像与不等式的性质即可求解.
【详解】
直线y=nx+5n中,令y=0,得x=-5
①射线AB表示甲的路程与时间的函数关系;
②甲的速度比乙快1.5米/秒;
③甲让乙先跑了12米;
④8秒钟后,甲超过了乙
其中正确的说法是( )
A.①②B.②③④C.②③D.①③④
【答案】B
【解析】
【分析】
根据函数图象上特殊点的坐标和实际意义即可作出判断.
【详解】
根据函数图象的意义,①已知甲的速度比乙快,故射线OB表示甲的路程与时间的函数关系;错误;
13.如图,过点 作 轴的垂线,交直线 于点 ;点 与点 关于直线 对称;过点 作 轴的垂线,交直线 于点 ;点 与点 关于直线 对称;过点 作 轴的垂线,交直线 于点 ;按 此规律作下去,则点 的坐标为
A.(2n,2n-1)B.( , )C.(2n+1,2n)D.( , )
【答案】B
【解析】
【分析】
∴抛物线的顶点经过一二三象限,不经过第四象限,
故选:D.
【点睛】
本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.
12.将直线 向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()
A. B. C. D.
【答案】A
【解析】
【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.
故选B.
【点睛】
本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标满足一次函数的解析式是解题的关键.解答时只要把四个选项一一代入进行检验即可.
20.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的 , 分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )
先根据题意求出点A2的坐标,再根据点A2的坐标求出B2的坐标,以此类推总结规律便可求出点 的坐标.
【详解】


∵过点 作 轴的垂线,交直线 于点



∵过点 作 轴的垂线,交直线 于点

∵点 与点 关于直线 对称

以此类推便可求得点An的坐标为 ,点Bn的坐标为
故答案为:B.
【点睛】
本题考查了坐标点的规律题,掌握坐标点的规律、轴对称的性质是解题的关键.
故选:A.
【点睛】
此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.
10.若正比例函数y=kx的图象经过第二、四象限,且过点A(2m,1)和B(2,m),则k的值为()
A.﹣ B.﹣2C.﹣1D.1
【答案】A
【解析】
【分析】
根据函数图象经过第二、四象限,可得k<0,再根据待定系数法求出k的值即可.
②甲的速度为:64÷8=8米/秒,乙的速度为:52÷8=6.5米/秒,故甲的速度比乙快1.5米/秒,正确;
③甲让乙先跑了12米,正确;
④8秒钟后,甲超过了乙,正确;
故选B.
【点睛】
正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到随着自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.
【详解】
∵ ,
∴图象经过第一、二、四象限,
A正确;
∵ ,
∴ 随 的增大而减小,
B正确;
令 时, ,
∴图象与 轴的交点为 ,
∴C正确;
令 时, ,
当 时, ;
D不正确;
故选:D.
【点睛】
本题考查一次函数的图象及性质;熟练掌握一次函数解析式 中, 与 对函数图象的影响是解题的关键.
7.如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:
当 时,一次函数 的图象过一三四象限,
当 时,一次函数 的图象过一二四象限,故答案选B.
18.若一次函数y=kx+b的图象经过一、二、四象限,则一次函数y=-bx+k的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
【答案】A
【解析】
【分析】
根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,再根据k,b的取值范围确定一次函数y=-bx+k图象在坐标平面内的位置关系,从而求解.
∴不等式3x+b>ax-3的解集为:x>-2,
在数轴上表示为:
故选:A.
【点睛】
本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.
15.如图,已知直线 与 相交于点 ,点 的横坐标为 ,则关于 的不等式 的解集在数轴上表示正确的是().
A. B.
C. D.
【答案】D
【解析】
试题解析:当x>-1时,x+b>kx-1,
即不等式x+b>kx-1的解集为x>-1.
故选A.
考点:一次函数与一元一次不等式.
16.已知一次函数 当 时, 的取值范围为()
A. B. C. D.
【答案】D
【解析】
【分析】
根据不等式的性质进行计算可以求得y的取值范围.
【详解】
解:∵

故选:D.
【点睛】
14.一次函数y=3x+b和y=ax-3的图象如图所示,其交点为P(-2,-5),则不等式3x+b>ax-3的解集在数轴上表示正确的是( )
A. B.
C. D.
【答案】A
【解析】
【分析】
直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.
【详解】
解:∵由函数图象可知,
当x>-2时,一次函数y=3x+b的图象在函数y=ax-3的图象的上方,
【详解】
解:∵正比例函数y=kx的图象经过第二、四象限,
∴k<0.
∵正比例函数y=kx的图象过点A(2m,1)和B(2,m),
∴ ,
解得: 或 (舍去).
故选:A.
【点睛】
本ቤተ መጻሕፍቲ ባይዱ考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键.
11.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在( )
【答案】A
【解析】
分析:由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量.故弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式.
详解:由表可知:常量为0.5;
所以,弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为y=0.5x+12.
B、k<0,﹣k>0.解集有公共部分,所以有可能;
C、k>0,﹣k>0.解集没有公共部分,所以不可能;
D、正比例函数的图象不对,所以不可能.
故选:B.
【点睛】
本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b的图象的四种情况是解题的关键.
3.一次函数 的图象不经过的象限是
A.第一象限B.第二象限C.第三象限D.第四象限
相关文档
最新文档