有机物分子式的确定规律总结
有机物分子式和结构式的确定
思考?
1、分子式表示的意义? (例:H2SO4)
2、有机化合物中如何确定C、 H元素的存在?
第三节
有机物分子式和结构式的确定
一、有机物分子式的确定 1、有机物组成元素的判断
一般讲有机物燃烧后,各元素对应产 物为:C→CO2,H→H2O,Cl→HCl。
若有机物完全燃烧,产物只有CO2和 H2O,则有机物组成元素可能为C、H或 C、H、O。
;https://
;
;
Hale Waihona Puke 我想这就是我的礼拜方式了。 2人们似乎早已习惯了没有信仰的生活。我经常听见或看见某企业破产某公司倒闭,人们对此也格外关注,这当然是值得关注和同情的,但我有时就纳闷,我怎么这么多年从来没有听谁说过灵魂破产、精神倒闭这类事件?后来我明白了,也许那被称作灵魂和 精神的东西从来就处在破产和倒闭状态,习焉不察,自然就如同没有那回事似的。我也几乎没有听说过有哪一位用汉语写作的作家出现了精神危机之类事儿,只知道他们忙着生产忙着叫卖忙着让自己尽快进入有产者行列,好像一群投机商人,生怕在市场上卖不了好价钱,生怕亏本。当然也有 精神苦闷的,但主要是为把自己卖不出去而苦闷,与源于信仰幻灭的精神危机关系不大或者根本没有关系,那种苦闷与不走运的商人的苦闷是一回事,是物质世界的事儿,与精神世界无涉。 3过了四十岁了,我该把自己的灵魂安妥下来。我不该只是上班和挣钱。职业对于生存是重要的,但职 业并不能解决人生意义问题,恰恰相反,它是时时消解着人生的意义感,你必须在职业之外通过别的途径重建人生的意义。与杀猪、推死尸进焚尸炉相比,我们从事的职业或许要体面些,其实把表面的那点光环剥离掉,至多,我们不过是与杀猪的现场、与焚尸的现场稍微保持了一点距离而已。 4人生的意义存在于对意义的寻求过程之中,上帝也是这样,上帝不是教义或理念中的神灵,我们把个人的存在与普遍而永恒的存在发生关联获得的意义感称为上帝。爱默生说:先人们同上帝和自然面对面地交往,而我们则通过他们的眼睛与之沟通,为什么我们不该同样地保持一种与宇宙的原 始联系呢? 5一种有价值的精神创造活动,一种有深度的生活方式,不过是恢复和保持了“与宇宙的原始联系”。而切断了这种原始联系,我们就成了沉溺于泡沫中的浮游生物,我们被复制的机器俘获,复制着,也被复制着,离本源和真相越来越远,生命的内核渐渐被彻底掏空,像一根 漂木随浪而去,再也找不到意义的地面。 6我选择了南山,不是逃避什么,或仅仅只图精神的逍遥。南山对于我,是眺望宇宙的看台,是回归自然的驿站。在这里,我试图建立一种“与宇宙的原始联系”,建立与自然、与生命、与自身的诗性联系。 7从信仰的角度来说,南山就是我 的神山。 十一)《今夜的泪水》 ? 1那个星期天,我在山上漫步,沿着野草缠绕的小径随意走着,我不想寻找确凿的目的地,我把双脚交给这些古藤般时隐时现的小道,就由它们把我带到哪里算哪里,即便被带进密不透风难辨方向的林莽,我也不会埋怨,就迷一次路吧。这么多年,周而复始 地走着明白无误的路,想迷一次路都没有机会,一切都设计好了,规定好了,人只要一动身,就进入了固定的程序,就踏上了锁定的路线,红灯停,绿灯行,就这么笔直地走来走去,直至终点。一条路走到黑,这使我们失去了对路的感激。这就如同把一个无味的梦做到天亮,而且夜夜重复, 那个梦早就不是梦了,全然没有了梦的神奇浪漫。被同一个梦占据的睡眠与无梦的睡眠并没有什么两样,都是对死亡的提前预演。 2我就在野草杂树中胡乱走着,天渐渐黑了,我正可以在夜色里迷一次路,对黑夜的到来我有了一种隐隐的快感。一条野径把我带入一片竹林。早听人说过, 南山上有一个竹海,与更南的四川相连,在南山的“海域”也有近千亩。那么我是下海了?至少已来到浅海湾。我折了一根干瘦的竹竿作为探路的拐杖,边走边敲敲这根竹子,敲敲那根竹子,既是为自己壮胆,也顺便对寂寞中坚守的竹子们表示敬意和问候。天似乎完全黑下来了,在林子里行 走更能真切地看到夜晚是怎样一笔一笔很快涂染了它漆黑的形象。然而林中似乎又有了亮色,竹子与竹子之间断续传递着神秘的光线,我仰头一看,竹叶交叠的高处,分布着星星点点的小孔,光,正是从那里漏下来的。此时,我体验到自然界那些生灵们有限的幸福,比如野猪、松鼠、刺猬、 山羊、兔子、猫头鹰……虽然,在这严酷的世界上,没有谁帮助它们同情它们,在自生自灭的命运里,它们是何等孤独悲苦,天敌的伤害,饥饿的打击,病痛的折磨,它们每时每刻都在提心吊胆地活着。然而,我似乎夸大了它们的痛苦。至少,阳光雨水对它们是免费供应的,还有,在黑夜降 临的时刻,天上那些伟大的星星绝不因为它们卑微就不关照它们,相反,与它们的实际需求相比,大自然把大额度的光亮赐给它们。 3走了大约两个小时,我折回身,向来时的方向走。我没有迷路,星星们不让我迷路。莫名其妙地,我竟流出了眼泪,我觉得这伟大的宇宙固然充满莫测的 危险和深奥的玄机,但壮阔的宇宙毕竟对人、对生命体现了无微不至的仁慈。此时已是深夜,这寂寞的山野也许只有我一人独行,当然也许还有一些保持着夜游习惯的伙计,比如猫、狗、松鼠也在夜的某个角落散步或恋爱,但是,毕竟此地就我一人呀,宇宙却为我准备了一万盏一千万盏一千 亿盏华灯!整整一条银河都陪着我漫游,天国里全部的照明设施都归我——一个凡夫俗子使用!这是怎样的大恩大德啊。我就想,在如此壮丽无比的夜色下,谁能忍心辜负这皎皎明月盈盈星空?这伟大深邃的星空,正是神的无边胸怀,在这神圣星光的映照下,人只能去热爱,去歌唱,去进行 美好的创造和劳动,去沉思,沉思存在的源头,沉思无限时间和空间向我们暗示的神秘寓意,或者怀着感恩的心情进入睡眠……我想,历史上那些道德高尚智慧卓越心灵伟大的人,除了特殊的禀赋和所传承的高深优美文化影响了他们,他们更重要的道德和心灵源头当是这伟大不朽的宇宙星 空——这浩瀚无涯的时空之海光芒之海召唤和启示了他们心灵里潜藏的浩瀚崇高的道德冲动:必须熔铸一颗崇高清澈的大心,才配面对这星空。经过虔诚的磨砺、修养、吐纳,他们终于有了一颗与宇宙对称的伟大灵魂。 4可是,曾几何时,这崇高的精神的星空渐渐成了物理学的星空,化学的 星空,气象学的星空商业的星空间谍卫星的星空。它渐渐从心灵的天幕暗淡下来。古典的、天真的激情退潮了。人类的目光,更多地锁定在自己制造的符号网络里;人类的心灵,更多地沉溺于物质福利的狭小池塘里。星空依旧如公元前一样浩瀚壮美,星空下,却少有与之对称的伟大激情和壮 美灵魂。星空,徒然地照着失去神性失去信仰的现代的荒滩。 5我在竹林里,借着朦胧而亲切的光线一边走着,一边想着,一次次流出了眼泪。 ?十二)《有地可耕是至乐》 ? 1我在南山西侧弄来一小块地,约有四分,一半坡地,一半平地。原来这里是一片杂草,得到附近农民的同意, 我就破土开荒。那位慈祥农家老伯说:原来我种这地,人老了,干不了重活,再说够吃了就行,东边的地我还种着,这点地就撂了,你种吧,反正你也拿不走它,它永远都在这儿,你种着觉得快乐你就种吧,我老汉还可以给你当当参谋。 2我终于有地可种了,有生以来,我第一次做了一 个小小地主,当然是临时的,老天爷才是永远的地主。 3临时就临时吧,在永恒的天空里,谁不是临时的云彩,在永恒的土地上,谁都是临时的庄稼。细想想,这也是奇迹呀,开天辟地以来,这片土地一直就守在这里,长过公元前的荒草,养过春秋时的蝈蝈;汉朝的马蹄从这里踏过去; 说不定,在唐朝,这里曾是一片桃树林,那灼灼桃花,曾把某一首诗照亮、打湿,使它染上了朴素的香气;而在宋朝,这里也许曾有过一个安宁的小山村,竹篱茅舍,鸡鸣狗叫,到夜晚,孩子们就在林子里捉迷藏,在这土地的五尺之下或三米纵深,或许就藏着那夜的月光和那夜孩子们追逐的 脚印、天真的笑声? 4我一镢头一镢头挖着地,竟觉得是在挖掘重要的遗址,顺着镢头刃子涌起的泥土,都是记忆的颗粒呀。其实,哪一寸土地不是时间和生命的遗址呢? 5我终于有地可耕了。瞧,此刻我把赤脚插进湿土,泥土的芳香和潮润的地气捧着我那被皮鞋、水泥娇惯得越来 越苍白纤弱的脚,亲吻着它拍打着它,我的麻木的脚竟有些害羞和颤抖了。 6我一边挖地,一边设想着我的农事:种一些高粱或玉米,它们那大气慷慨的样子、那火红金黄的披挂,是很有感染力的;或者种一些土豆红薯,它们是不怕埋没的,埋没了,正好安静专一地生长自己,我也正要 学一点植物的好脾气和大智慧;或者种几架葫芦,看它们怎么在月夜里悄悄把自己挂起来,与挂在天上的星星保持同一种垂直的姿势;要么,就种一些萝卜白菜韭菜,开春了,就送一些给那位老伯,剩下的就挑进城里的蔬菜市场,找一个摊位卖了;要么,就种一些大豆绿豆吧,立秋以后,就 会听见豆荚们噼噼叭叭,听见秋天美好的炸裂;干脆,就种一些茶最好,自己喝,也请朋友们上山品尝,就叫它南山碧吧。 7就这么一点地,种哪几样好呢?土地是绝不会伤害我嫉妒我抛弃我的,土地是上帝伸出的手掌,它的每一个纹路每一粒细胞都充满水分、营养和情感,都生长礼物 和奇迹。到底种什么呢?我得去请教我的农事参谋,上星期天他还来这地头转过。 十三)《一株野百合开了》 ? 1那天我在南山游荡,在一个长满艾蒿的坡地,我被一股浓郁的草木香气迷住了,我停下来,让脑子里什么念头也没有,只让鼻子和肺专心工作——其实是专心享用。这香气含 着苦味,就比芳香多了些深厚,有点像佛教,很智慧,似乎也有解脱的喜悦,但其底蕴却是苦的。我闭着眼睛深呼吸了一会儿,像做了一个梦似的睁开眼,竟看见一束雪白的光灼灼地、然而又很温柔地在面前闪着,是一株野百合开了。刚才我来到这艾蒿地的时候,只看见它还是含着苞的,我 被草木苦香所陶醉而忘情地闭目呼吸——就趁我走神的时候,它悄悄地完全地绽开了自己。这之前,我知道站在我面前、害羞地躲在艾草身旁的这株美好植物,是会开花的,如一个女孩儿出嫁是迟早的事情。但是我没有想到它这么快、这么奇妙地开了——趁我闭目呼吸的时候,它开放了自己。 我就想,我闭目的时候是否做梦了——这洁白的、鲜美的,就是我的梦啊。 ? 2你可想象我该是怎样地惊喜以至于狂喜,是那种透明的狂喜。心灵被纯粹的美、圣洁的事物打动,连心灵里那些皱褶的部位,藏着细小阴影的部位,都被这突然降临的神一样的光芒完全照亮了。我们这些成人,即 便是善良的人,也早已被社会学经济学伦理学们过于复杂地重塑,心,已经成为一团交叠的欲望或一种混浊的冲动的代称;而透明的心,更是我们日渐远离,终于不知为何物如上古神话一样陌生的东西了。我们似乎懂事了,
有机物分子式的确定
专题有机物分子式的确定【练习】1、验证某有机物属于烃的含氧衍生物,应完成的实验内容是( D )A、只有验证它完全燃烧后产物只有H2O和CO2B、只有测定其燃烧产物中H2O和CO2物质的量的比值C、测定完全燃烧时消耗有机物与生成的CO2、H2O的物质的量之比D、测定该试样的质量及其试样完全燃烧后生成CO2和H2O的质量2、某种有机物2mol在氧气中充分燃烧,共消耗5mol氧气,生成二氧化碳和水各4mol,由此可以得到的结论是( B )A、该有机物分子中不含有氧原子B、该有机物一个分子中含1个氧原子C、该有机物一个分子中含2个氧原子D、不能确定该有机物分子中是否含有氧原子及其个数3、下列有机物分子在核磁共振氢谱中只给出一种信号的是( A )A、HCHOB、CH3OHC、HCOOHD、CH3COOCH34、某有机物A,在相同条件下对甲烷的相对密度为6.5。
0.1 mol A充分燃烧后,产物只有CO2和H2O,将产物依次通过足量浓硫酸和氢氧化钠溶液,浓硫酸增重7.2 g,氢氧化钠增重17.6 g。
回答问题:(1)有机物A的分子式为C4H8O3。
(2)A能与金属钠反应,也能与碳酸氢钠溶液反应。
1 mol A与足量金属钠反应放出氢气22.4 L(标准状况)。
则A中含有的官能团的名称是羟基和羧基。
(3)A与浓硫酸共热时可生成含5元环的酯类化合物,则A的结构简式为CH2OHCH2CH2COOH 。
5、菠萝酯是一种具有菠萝香气的食用香料,是化合物甲与苯氧乙酸发生酯化反应的产物。
(1)甲一定含有的官能团的名称是羟基。
(2)5.8g甲完全燃烧可产生0.3mol CO2和0.3 mol H2O,甲蒸气对氢气的相对密度是29,甲分子中不含甲基,且为链状结构,其结构简式是CH2=CH-CH2-OH 。
6、有机物A的相对分子质量为102,其中含氧的质量百分数为31.4%,完全燃烧只生成二氧化碳和水,且n(CO2)=n(H2O)。
有机物分子式和结构式的确定
有机物分子式和结构式的确定有机物是化学中的一个重要分支,它主要研究含碳元素的化合物。
有机物的分子式和结构式是用来描述有机物化学组成和空间构型的重要工具。
下面我将就有机物分子式和结构式的确定进行详细的介绍。
一、有机物分子式的确定:步骤一:根据元素的相对原子质量及元素在分子式中的相对数量,计算出每个元素的相对原子数目。
步骤二:将每个元素的原子数目按照化学符号的顺序写在元素符号的右下角。
步骤三:将写出的元素符号及其相对原子数目按照化学符号的习惯顺序排列,并在各元素符号之间加上符号连接符号。
举例来说,对于乙烯分子(C2H4),可以按照以上步骤确定其分子式。
乙烯分子中含有碳和氢两个元素,根据它们的相对原子质量,可以得到碳的相对原子质量为12,氢的相对原子质量为1、根据乙烯分子中碳和氢的相对原子数目,可以得到碳的相对原子数目为2,氢的相对原子数目为4、将这些数据按照步骤二和步骤三的要求排列,可以得到乙烯分子的分子式为C2H4二、有机物结构式的确定:有机物结构式是用来表示有机物分子中原子间连接关系的化学式。
步骤一:确定有机物分子中各原子的相对位置及连接关系。
步骤二:根据有机物分子的分子式和阴离子的电子离对数,确定有机物分子中各原子间的化学键的种类(如单键、双键、三键等)。
步骤三:根据有机物分子中原子间的连接关系,使用化学键的表示方法(如普通线条、斜线、双线等)来表示有机物分子的结构式。
举例来说,对于乙烯分子(C2H4),可以按照以上步骤确定其结构式。
根据乙烯分子的分子式C2H4,可以确定乙烯分子中含有两个碳原子和四个氢原子。
根据碳原子间的相对位置及连接关系,可以知道乙烯分子中两个碳原子之间存在一个双键,碳原子与氢原子之间存在单键。
根据这些信息,可以使用普通线条来表示乙烯分子的结构式,即H-C=C-H。
总结起来,有机物分子式和结构式的确定是通过确定有机物分子中各原子的种类、个数和原子间连接关系,从而准确描述有机物的化学组成和空间构型。
有机物分子式及结构式的确定方法
专题讲座(三) 有机物分子式及结构式的确定方法一、有机物分子式的确定1.最简式的确定。
(1)燃烧法。
则n (C)=m (CO 2)44 g·mol -1,n (H)=m (H 2O )18 g·mol -1×2,n (O)=m 有机物-n (C )×12 g·mol -1-n (H )×1 g·mol -116 g ·mol -1由它们的物质的量之比等于原子个数比可确定最简式。
(2)计算法。
根据有机物中C 和H 的质量分数来计算。
n (C)∶n (H)∶n (O)=w (C )12∶w (H )1∶1-w (C )-w (H )16。
2.相对分子质量的确定。
利用公式:a.M =m n ,b.ρ1ρ2=M 1M 2,c.M =ρ(标况)×22.4 L ·mol -1。
3.分子式的确定。
(1)由最简式和相对分子质量确定。
(2)根据计算确定1 mol 有机物中含有的各原子的数目。
(3)根据相对分子质量计算。
二、有机物结构式的确定1.根据价键规律确定:某些有机物根据价键规律只存在一种结构,则直接根据分子式确定其结构式。
例如C2H6,只能为CH3CH3。
2.通过定性实验确定。
实验→有机物表现的性质及相关结论→官能团→确定结构式。
如能使溴的四氯化碳溶液褪色的有机物分子中可能含有,不能使溴的四氯化碳溶液褪色却能使酸性高锰酸钾溶液褪色的可能是苯的同系物等。
3.通过定量实验确定。
(1)通过定量实验确定有机物的官能团,如乙醇结构式的确定;(2)通过定量实验确定官能团的数目,如1 mol某醇与足量钠反应可得到1 mol气体,则可说明该醇分子中含2个—OH。
4.根据实验测定的有机物的结构片段“组装”有机物。
实验测得的往往不是完整的有机物,这就需要我们根据有机物的结构规律,如价键规律、性质和量的规律等来对其进行“组装”和“拼凑”。
有机化合物分子式的确定
高中化学有机化合物分子式确实定编稿教师佘平平一校林卉二校黄楠审核王慧姝【考点精讲】1. 元素分析①碳、氢元素质量分数的测定一般来说,有机物完全燃烧后,各元素的对应产物为:C―→CO2,H―→H2O,将样品置于氧气流中燃烧,燃烧后生成的水和二氧化碳分别用吸水剂和碱液吸收,称重后即可分别计算出样品中碳、氢元素的质量分数。
②氧元素质量分数确实定。
③依据碳氢氧的质量分数可求出该物的实验式。
2. 相对分子质量的测定〔1〕质谱法①原理样品分子分子离子和碎片离子到达检测器的时间因质量不同而先后有别质谱图②质荷比:分子离子与碎片离子的相对质量与其电荷的比值。
最大的数据即为有机物的相对分子质量。
由质谱图判断该有机物的相对分子质量为92。
〔2〕其他确定相对分子质量的方法:①M=m/n②根据有机蒸气的相对密度D,M1=DM2③标况下有机蒸气的密度为ρg/L,M=22.4L/mol·ρg/L3. 确定有机物分子式的一般方法〔1〕实验式法:①根据有机物各元素的质量分数求出分子组成中各元素的原子个数比〔最简式〕。
②求出有机物的摩尔质量〔相对分子质量〕。
〔2〕直接法:①求出有机物的摩尔质量〔相对分子质量〕。
②根据有机物各元素的质量分数直接求出1mol有机物中各元素原子的物质的量。
【典例精析】例题1某有机物A的实验式为C2H4O,其质谱图如下图:〔1〕该有机物的相对分子质量是。
〔2〕该有机物的分子式为。
思路导航:〔1〕质谱图最右方的E峰是分子离子产生的,所以其相对分子质量为88。
〔2〕有机物表现的性质与相关结论―→官能团―→确定结构式。
如能使溴的四氯化碳溶液褪色的有机物分子中可能含有CC,不能使溴的四氯化碳溶液褪色却能使酸性高锰酸钾溶液褪色的可能是苯的同系物等。
实验式是C2H4O,可推出其分子式为C4H8O2。
答案:〔1〕88〔2〕C4H8O2例题2 某有机物A 3.0 g,完全燃烧后生成3.6 g水和3.36 L CO2〔标准状况〕,该有机物的蒸气对氢气的相对密度为30,求该有机物的分子式。
有机化合物分子式的确定
有机化合物分子式的确定有机化合物是由碳原子与氢原子以及其他元素原子通过共价键结合而成的化合物。
在有机化学中,分子式是一种表达化学式的方法,能够准确地表示出化合物分子中各个元素的原子数目和元素种类。
确定有机化合物的分子式是有机化学研究和实验中非常重要的一步,本文将介绍一些常见的确定有机化合物分子式的方法。
一、化学式法化学式法是最基本的确定有机化合物分子式的方法之一。
在已知有机化合物的结构和组成的情况下,根据组分元素的种类和相对原子数确定分子式。
比如,乙酸的化学式为C2H4O2,可根据实验数据和结构确定该化合物的分子式。
二、质谱法质谱法是一种通过测定有机化合物分子中各元素的相对原子质量以及分子中各种元素的相对丰度,来确认有机化合物分子式的方法。
该方法利用质谱仪将化合物分子中的分子离子进行分析,得到质谱图。
通过质谱图中的质荷比,可以推测化合物的分子式。
三、元素分析法元素分析法是利用元素分析仪测量有机化合物中各种元素的含量,从而推算出该化合物的分子式。
该方法需要纯净的有机化合物样品,并通过元素分析结果来推算化合物的分子式。
四、红外光谱法红外光谱法是通过测量有机化合物在不同波段下的吸收峰,来推断化合物中的官能团和结构。
通过研究红外光谱图,可以初步确定有机化合物的分子式。
五、核磁共振法核磁共振法是一种通过测定有机化合物中的核磁共振信号,来确定分子的结构和组成的方法。
该方法利用核磁共振仪测量化合物样品在外加磁场作用下,核自旋状态的变化情况,从而得到有机化合物的分子式。
六、质谱联用技术质谱联用技术是将质谱仪与其他分析仪器结合使用,如气相色谱、液相色谱等。
通过质谱联用技术,可以更准确地确定有机化合物的分子式,提高分析结果的精确度。
综上所述,有机化合物分子式的确定是有机化学中的重要一步。
化学式法、质谱法、元素分析法、红外光谱法、核磁共振法以及质谱联用技术等方法,都可用于确定有机化合物的分子式。
在实际应用中,根据不同的条件和需求选择适合的方法进行分析和确认,以获得准确可靠的分子式结果。
有机物确定分子式的方法
有机物分子式确定的方法简述有机物分子式是推导有机物结构的关键,快速准确的推导出分子式能使同学们在有机分析题中事半功倍,以下是我就一些简单、常见的有机物分子式确定的方法作一个简单的归纳: 确定有机物分子式需要两个条件:1、确定分子组成2、确定分子中各元素对应的原子的个数一、确定分子组成确定分子组成最常见的方法就是燃烧法,而燃烧法核心原理就是质量守恒,有机物大多有C H O 构成,判断C H 很简单,而有机物中是否含O 则需要以下方法确定.利用测定燃烧产物得到m (CO 2)→n (C )→m (C )m (H 2O )→n (H )→m (H )m (C )+ m (H )是否等于有机物中质量,如相等就证明有机物只含C H ,反之则必定有O二、确定分子中各元素对应的原子的个数1、 实验式法(最简式法):分子式为实验式的整数倍,利用已知条件找到各个原子的个数比值确定出实验式再结合分子相对分子质量推导出分子式提示:对分子质量的基本求法:1、 列式计算下列有机物的相对分子质量;① 标准状况下某烃A 气体密度为0.717g/L ;② 某有机物B 的蒸气密度是相同条件下氢气的14倍;③ 标准状况下测得0.56g 某烃C 气体的体积为448mL ;【例1】常温下某气态烃A 的密度为相同条件下氢气密度的15倍,该烃中C 的质量分数为80%,则该烃的实验式为 ,分子式为 。
解析:相同条件下不同气体的密度与摩尔质量M (相对分子质量M r )成正比,r r r 2r 22M (A)(A)15M (A)15M (H )15230M (H )(H )ρρ====⨯=80%20%N(C):N(H):1:3121== 该烃的实验式是CH 3。
设该烃A 的一个分子中含n 个CH 3,则: r r 3M (A)30n 2M (CH )15=== 该烃的分子式为C 2H 6。
答案:CH 3、C 2H 6。
2、直接法:直接计算出1mol 气体中各元素原子的物质的量,即可推出分子式【例2】某烃A 0.1 mol ,完全燃烧只生成标况下的CO 24.48L 和水5.4g解析: CO 24.48L →n (C )=0.2mol水5.4g →n (H )=0.6mol有元素守恒得出0.1 mol A 含l C 0.2mol 含H 0.6mo1molA 中有C 2mol 含H 6mo 及一个A 分子中有C 2个 含H 6个所以分子式为C 2H 6【例3】0.1L 某气态烃完全燃烧,在相同条件下测得生成0.1LCO 2和0.2L 水蒸气,该烃的分子式是:A. CH 4B. C 2H 4C. C 2H 2D. C 3H 6解析:在同温、同压条件下,气体的体积比等于其物质的量比,故该烃分子中含碳、氢比为:x y n(C H ):n(C):n(H)0.1:0.1:0.221:1:4=⨯=,1mol 该烃中含C 、H 分别为1mol 、4mol ,即CH 4。
有机物分子式的确定
确定有机物分子式的方法小结一、最简式法根据有机物各元素的质量分数求出分子组成中各元素的原子个数之比(最简式),分子式为最简式的整数倍。
有机物最简式的求法为:c b a O H C O N H N C N ::16)(:1)(:12)()(:)(:)(==ωωω(最简整数比),最简式为C a H b O c ,则分子为(C a H b O c )n ,得c b a M n 1612++=(M 为有机物的相对分子质量)。
【例1】某有机物组成中含碳54.5%, 含氢9.1%,其余为氧,又知其蒸汽在标准状况下的密度为3.94 g·L -1,试求其分子式。
【解析】此有机物的摩尔质量为:M=ρ×V m =3.94 g/L×22.4 L/mol = 88 g/mol 。
C 、H 、O 的个数比为:1:4:216%1.9%5.541:1%1.9:12%5.54)(:)(:)(=--=O N H N C N 此有机物的最简式为C 2H 4O ,设其分子式为(C 2H 4O)n 。
则有:M=(12×2+1×4+16)×n=88,解得:n=2。
所以该有机物的分子式为C 4H 8O 2。
二、直接法直接计算出1mol 气体中各元素原子的物质的量,即可推出分子式。
同例1【解析】此有机物的摩尔质量为:M=ρ×V m =3.94 g/L×22.4 L/mol = 88 g/mol,,所以该有机物的分子式为C 4H 8O 2。
三、燃烧法根据有机物完全燃烧反应的通式及反应物和生成物的质量、物质的量或体积求出 1 mol 有机物所含C 、H 、O 原子的物质的量,从而求出分子式。
如烃和烃的含氧衍生物的通式可设为C x H y O z (z =0为烃),根据燃烧通式:C x H y O z +(x +4y -2z )O 2 −−→−点燃 x CO 2+2y H 2O进行计算,解出x 、y 、z 最后求得分子式。
有机物分子式和结构式的确定方法
有机物分子式和结构式的确定方法有机物分子式和结构式的确定方法是化学研究的重要内容之一,它对有机化学的发展和应用起着重要的推动作用。
有机物的分子式和结构式表示了有机物分子中原子的种类、数量以及它们之间的连接方式。
下面将介绍几种确定有机物分子式和结构式的常用方法。
一、元素分析元素分析是确定有机物分子式的最基本方法,其原理是分析有机物样品中的碳、氢、氧、氮、硫等元素的含量,并据此计算出分子中不同元素的比例,从而得到该有机物的分子式。
例如,对于一个有机物样品经元素分析得到的结果为:C62.14%、H10.43%、O27.43%,可以根据C:H:O的比例计算出其分子式为C4H8O。
二、质谱分析质谱分析是一种通过测定有机分子在高真空条件下,通过电子轰击产生的碎片离子的质荷比,以及测定碎片离子的相对丰度,从而确定有机物的分子式和结构的方法。
质谱仪测定到的质荷比,往往能反映出有机分子的相对分子量或碎片离子的相对原子量,通过测出的质谱图的特征峰的相对丰度,可以进一步得到有机物的分子式和一些结构信息。
三、红外光谱分析红外光谱是确定有机物结构的常用方法之一、有机分子在吸收红外辐射时,会引起分子内部化学键的振动、扭转和拉伸等。
每种具有特定化学键类型的振动都会对应产生一个特定的红外吸收峰,从而提供了有机物分子中特定键的信息。
根据吸收峰的位置和强度,可以初步推断有机物中存在的官能团,从而确定有机物的结构类型。
四、核磁共振(NMR)分析核磁共振是一种利用分子中的核自旋能级差异导致的能量吸收和释放现象以及核自旋与周围电子的相互作用来研究分子结构的分析方法。
核磁共振仪测定得到的谱图,包括质子谱、碳谱、氮谱等。
通过对NMR谱图的分析,可以确定有机物中原子的化学环境和化学位移,从而进一步获得有机物分子的结构信息。
五、X射线衍射分析X射线衍射是一种利用波长短于可见光的X射线对物质进行结构表征的方法。
通过对物质样品进行X射线的照射,观察并测定样品产生的衍射图样,然后运用数学方法对衍射峰的位置和强度进行分析,可以确定有机物的晶体结构和分子结构。
有机物分子式的确定方法
有机物分子式的确定方法一,“单位物质的量”法根据有机物的摩尔质量(分子量)和有机物中各元素的质量分数,推算出1 mol 有机物中各元素原子的物质的量,从而确定分子中各原子个数,最后确定有机物分子式。
1.某化合物由碳、氢两种元素组成,其中含碳的质量分数为85.7%,在标准状况下11.2L 此化合物的质量为14g ,求此化合物的分子式.二,最简式法根据有机物各元素的质量分数求出分子组成中各元素的原子个数之比(最简式),然后结合该有机物的摩尔质量(或分子量)求有机物的分子式。
三,燃烧通式法根据有机物完全燃烧反应的通式及反应物和生成物的质量或物质的量或体积关系利用原子个数守恒来求出1 mol 有机物所含C 、H 、O 原子的物质的量从而求出分子式。
如烃和烃的含氧衍生物的通式可设为C xHy O z (Z=0为烃),燃烧通式为CxHyO z +(x+y/4-z/2)O 2 → xCO 2+y/2H 2O【例2】某有机物0.6g 完全燃烧后生成448mL (标准状况)CO2和0.36g 水。
已知该物质的蒸气对氢气的相对密度为30,求有机物的分子式。
四,平均值法根据有机混合物中的平均碳原子数或氢原子数确定混合物的组成。
平均值的特征为: C 小≤C ___≤C 大 H 小≤H __≤H 大【例3】某混合气体由两种气态烃组成,取0.1 mol 该混合气态烃完全燃烧后得4.48LCO 2(标准状况)和3.6gH2O 则这两种气体可能是( )A .CH4和C 3H 8B .CH4和C 3H 4 C .C2H4和C 3H 4D .C2H2和C 2H 6五,商余通式法(适用于烃类分子式的求法)根据烷烃(CnH2n +2),烯烃和环烷烃(CnH2n ),炔烃和二烯烃(CnH2n -2),苯和苯的同系物(CnH2n -6)的通式可以看出这些烃类物质的分子中都有一个共同的部分为CnH 2n ,这部分的式量为14n ,因此用烃的分子量除以14就可以得到分子所含碳原子数即n 值,再根据余数就可以求得烃的分子式。
期末君之讲稿(十八)有机物分子式和结构式的确定
【知识梳理】 有机物分子式的确定----------八种方法一、摩尔质量法(相对分子质量法) 直接计算出1mol 气体中各元素原子的物质的量,即可推出分子式。
如给出一定条件下的密度(或相对密度)及各元素的质量比(或质量分数比),求算分子式的途径为: 密度(或相对密度)-- 摩尔质量 1mol --气体中各元素原子物质的量 -- 分子式二、商余法(只适用于烃的分子式的求法)(1) 用烃的相对分子质量除以12,商为碳数和余数为氢数。
如:CxHy ,可用相对分子质量M 除以12,看商和余数。
即余y ,分子式为CxHy 。
(2)增减法:由一种烃的分子式,求另一种烃可能的分子式可采用增减法推断。
即减少一个碳原子必增加12个氢原子;反之,增加一个碳原子要减少12个氢原子。
三、最简式法根据分子式为最简式的整数倍,因此利用相对分子质量及求得的最简式可确定其分子式。
如烃的最简式的求法为C :H = (碳的质量分数/12):(氢的质量分数/1)= a :b (最简整数比)最简式为CaHb ,则分子式为(CaHb )n ,n=M/(12a+b ),其中M 为烃的式量。
四、燃烧通式法(1)两混合气态烃,充分燃烧后,生成CO 2气体的体积小于2倍原混合烃的体积,则原混合烃中必有CH 4;若生成水的物质的量小于2倍原混合烃的物质的量,则原混合烃中必有C 2H 2。
(2)气体混合烃与足量的氧气充分燃烧后,若总体积保持不变,则原混合烃中的氢原子平均数为4;若体积扩大,则原混合烃中的氢原子平均数大于4;若体积缩小,则原混合烃中氢原子平均数小于4,必有C 2H 2。
(温度在100℃以上)五、讨论法当条件不足时,可利用已知条件列方程,进而解不定方程,结合烃CxHy 中的x 、y 为正整数,烃的三态与碳原子数相关规律(特别是烃为气态时,x≤4)及烃的通式和性质,运用讨论法,可简捷地确定烃的分子式。
六、平均分子式法平均分子式法求判断混合烃的组成(分子式)和物质的量之比使用条件:由两种或两种以上的烃组成的混合气,欲确定各烃的分子式时,可采用此法。
有机物分子式的确定
3.商余法
①:若烃的类别不确定:CxHy,可用相 对分子质量M除以12,看商和余数.商数 和余数就是碳氢原子个数。
②:由一种烃的分子式,求另一可能烃的分子式可采用
例1. 某烃含碳92.3%,已知280 ml烃蒸气的质量是 0.975g(换算到标态),求该烃的分子量和分子式。 例2. 已知某有机物中含有6.67%的氢和53.33%的氧, 该有机物的蒸气对氢气的相对密度为15,求它的 分子式。
例3. 某气态烃 2.2g 在空气中充分燃烧,生成6.6gCO2 和3.6g水 。 在S.T.P下,该烃的密度为1.96g/L, 求该烃的分子式。
C2H4O2
练习4:1924年我国药物学家从中药麻黄中提取了 麻黄素,并证明麻黄素具有平喘作用。将10克麻黄 素完全燃烧可得26.67gCO2和8.18gH2O.测得麻黄 素中含氮8.48%,它的实验式为CxHyNzOn,已知 C10H15NO 其实验式即为分子式,求麻黄素的分子式。
某些特殊组成的最简式,在不知化合物的相对分 子质量时,也可根据组成特点确定其分子式。 例如:最简式为CH3的烃,其分子式可表示为 (CH3)n 当n=2时,氢原子已达饱和,故其分子式 为 C 2H 6。
A 、CH4
B、C2H4
C、C3H4
D、C6H6
( 2)质量相同的烃燃烧时,y/x越大,耗氧量越大
例2:下列质量相同的烃完全燃烧时消耗氧气的量由多到少的顺 ① ④ ② ③ ⑤。 序是----------------
①CH4
②C2H4
③C3H4
④C2H6
有机物分子式的确定
③M
=
m总 n总
.
3、化合物B含有C、H、O三种元素,分子量
为60,其中碳的质量分数为60%,氢的质量分
数为13.3%。,则B的分子式是
。
n(C ):n(H ):n(O )60 % : 13.3 % : 160%13.3%
12
1
16
=3:8:1
最简式:C3H8O 分子式:(C3H8O)n
(12×3+1×8+16×1)n=60
C4H10O3等有机物,其. 实验式即为分子式。
常见最简式相同的有机物
① (CH)n
C2H2、
、
-CH=CH2 等
② (CH2O)n
CH2O、C2H4O2、C3H6O3、C6H12O6 等
③ (CH2)n 烯烃、环烷烃
④ (C2H4O)n C2H4O、C4H8O. 2
3、余数法
烃的通式:CxHy, M=12x+y 若知道烃的相对分子质量M除以12, 商值为烃中碳原子个数,余数为H原子个数.
若 m(有机物)>m(C)+m(H) 含有氧 m(有机物)=m(C)+m(H) 不含氧
.
❖ 5.8g某有机物完全燃烧,生成CO2 13.2g , H2O 5.4g , 求该有机物的 0.3mol
5 .4
n(H2O)=
0.3mol
18
m(C)+m(H)=12×0.3+0.3×2×1 =4.2g <5.8g
=2:6:(46-12×2-6)/16
=2:6:1
.
答案:C2H6O
2.最简式法:
最简式又称实验式,与分子式在数 值上相差n倍.
①C、H等元素的质量 ②C、H等元素的质量比 ③C、H等元素的质量分数 ④燃烧产物的质量
有机物分子式的确定
有机物分子式的确定1.有机物组成元素的判断一般来说,有机物完全燃烧后,各元素对应产物为:C→CO2,H→H2O,Cl→HCl。
某有机物完全燃烧后若产物只有CO2和H2O,则其组成元素可能为C、H或C、H、O。
欲判定该有机物中是否含氧元素,首先应求出产物CO2中碳元素的质量及H2O中氢元素的质量,然后将碳、氢元素的质量之和与原有机物质量比较,若两者相等,则原有机物的组成中不含氧;否则,原有机物的组成含氧。
2.实验式(最简式)和分子式的区别与联系(1)最简式是表示化合物分子所含各元素的原子数目最简单整数比的式子。
不能确切表明分子中的原子个数。
注意:①有机物的元素组成简单,种类繁多,具有同一最简式的物质往往不止一种;②最简式相同的物质,所含各元素的质量分数是相同的,若相对分子质量不同,其分子式就不同。
例如,苯(C6H6)和乙炔(C2H2)的最简式相同,均为CH,故它们所含C、H元素的质量分数是相同的。
(2)分子式是表示化合物分子所含元素的原子种类及数目的式子。
注意:①由于有机物中存在同分异构现象,故分子式相同的有机物,其代表的物质可能有多种;N(C) :N(H)=碳的质量分数12:氢的质量分数1=a:b(最简整数比)。
最简式为C a H b则分子式为(C a H b)n,分子式=(最简式)n即分子式是在实验式基础上扩大n倍,。
3.确定分子式的方法(1)实验式法由各元素的质量分数→求各元素的原子个数之比(实验式)→相对分子质量→求分子式。
(2)物质的量关系法由密度或其他条件→求摩尔质量→求1mol分子中所含各元素原子的物质的量→求分子式。
(标况下M=d g/cm3×103·22.4L/mol)(3)化学方程式法利用燃烧反应方程式时,要抓住以下关键:a.气体体积变化;b.气体压强变化;c.气体密度变化;d.混合物平均相对分子质量等,同时可结合适当方法,如平均值法、十字交叉法、讨论法等技巧来速解有机物的分子式。
有机物分子式和结构式的确定
2. 实验式和分子式的区别
2. 实验式和分子式的区别
实验式(即最简式)表示化合物分子所 含元素的原子数目最简单整数比的式子。 分子式表示化合物分子所含元素的原子种 类及数目的式子。
2. 实验式和分子式的区别
实验式(即最简式)表示化合物分子所 含元素的原子数目最简单整数比的式子。 分子式表示化合物分子所含元素的原子种 类及数目的式子。
4. 已知有机物的相对分子质量或摩尔质量求分 子式的方法: (1) 最简式法 先求最简式 n(C):n(H):n(O)
(C) : (H) : (O)
12 1 16
= m:n:p
由此得该有机物的最简式为CmHnOp 后求分子式,设为(CmHnOp)x
x
Hale Waihona Puke 相对分子质量 最简式量 12m
M n
16p
4. 已知有机物的相对分子质量或摩尔质量求分 子式的方法:
3. 化合物相对分子质量的确定
2. 实验式和分子式的区别
实验式(即最简式)表示化合物分子所 含元素的原子数目最简单整数比的式子。 分子式表示化合物分子所含元素的原子种 类及数目的式子。
3. 化合物相对分子质量的确定
Mm n
M=22.4
d 1 M1 2 M2
例题:
3. 某混合气体在标准状况下的密度为0.821g/L, 该混合气体的平均相对分子质量为______.
4. 某卤代烃的蒸气密度是相同状况下甲烷密度 的11.75倍,该卤代烃的摩尔质量为:
___1_8_8_g_/_m__o_l___。
5. 如果ag某气体中含b个分子,则1摩该气体的 质量为_____a_N_A_/_b_g_____。
4. 已知有机物的相对分子质量或摩尔质量求分 子式的方法: (1) 最简式法
分子式的确定
例题2:
2.3 g某有机物A完全燃烧后,测得D增重2.7 g,E增 重4.4 g。该化合物对空气的相对密度为1.6,求该有机 物的分子式。
碱石灰
【方法三】余数法
若烃的类别不确定CxHy,可以用相对分子质量M 除以12,看商和余数,即M/12=x……余y,分子式为 CxHy
例题3:
分别写出相对分子质量为128、72的烃的分子式。
有机物分子式的推算方式 【方法一】直接法
已知1 mol 有机物中各元素原子为多少摩尔,从而求 得分子式。
例1:
0.1 mol某烃完全燃烧,生成CO2 0.2 mol ,H2O 0.3 mol, 请求出该烃的分子式 。
【方法二】最简式法
根据分子式为最简式的整数倍,因此利用相对分子质 量的最简式可确定其分子式。
【方法四】燃烧通式法 例题4:
10 mL某气态烃在535 mL的混合气体,气体体积在同温同压下测定, 则该烃的分子式可能为( ) A CH4 B C2H6 C C3H8 D C3H6
例题5:
在常温、常压下,50ml三种气态烃的混合物在足量 的 O2里,点燃爆炸,恢复到原来的温度和压强,体积共 缩小100ml,则三种烃的可能组合是 ①. CH4 ②. C2H4 ③C3H6 ④ C3H4 ⑤C3H8 ⑥C4H6
【方法五】平均值法 例题6:
两种气态烃组成的混合物0.1 mol完全燃烧,得0.16 mol CO2 ,0.2 mol H2O, 则该混合物中( ) A.一定有CH4 C2H4 B. 一定没有C2H4
C.一定有 C2H2 D. 一定有CH4 例题7: 一种气态烷烃一种气态烯烃,其分子式中碳原子数 相等。1体积的混合气体完全燃烧,生成 CO2 2体积,水 蒸气 2.4 体积。 (1)求烷烃、烯烃的分子式 (2)两种烃的体积比 答案:n(C2H6) ︰n(C2H4) = 2 ︰3
有机物实验式和分子式的确定
有机物实验式和分子式的确定
1)实验式的确定:通过燃烧法测定水和二氧化碳的质量比,从而测出碳、氢、氧三种元素在该有机物的最简比。
2)分子式的确定
(1)直接法
如果给出一定条件下的密度(或相对密度)及各元素的质量比(或百分比),可直接求算出1mol气体中各元素原子的物质的量,推出分子式。
密度(或相对密度)﹣﹣→摩尔质量﹣﹣→1mol气体中各元素原子各多少摩﹣﹣→分子式。
(2)最简式法
根据分子式为最简式的整数倍,因此利用相对分子质量(可用质谱法测定)及求得的最简式可确定其分子式。
如烃的最简式的求法为:
C:H:a:b,最简式为C a H b,则分子式为(C a H b)n,n=M/(12a+b)(M为烃的相对分子质量,12a+b为最简式的式量)。
(3)商余法
①用烃的相对分子质量除14,视商数和余数。
A…
其中商数A为烃中的碳原子数。
此法运用于具有确定通式的烃(如烷、烯、炔、苯的同系物等)。
②若烃的类别不确定:C x H y,可用相对分子质量M除以12,看商和余数。
(4)化学方程式法
利用燃烧反应方程式,抓住以下关键:①气体体积变化;②气体压强变化;③气体密度变化;④混合物平均相对分子质量等,同时可结合差量法、平均值法、十字交叉法、讨论法等技巧来求得有机物的分子式。
根据题意给的条件依据下列燃烧通式所得的CO2和H2O的量求解x、y:
C x H y+(x)O2xCO2H2O
C x H y O z+(x)O2xCO2H2O。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有机物分子式的确定
一.有机物组成元素的判断
某有机物完全燃烧后若产物只有CO2和H2O,则其组成元素可能为C、H或C、H、O。
欲判定该有机物中是否含氧元素,首先应求出产物CO2中碳元素的质量及H2O中氢元素的质量,然后将碳、氢元素的质量之和与原有机物质量比较,若两者相等,则原有机物的组成中不含氧;否则,原有机物的组成含氧。
二、有机物分子式的确定
1、根据最简式和分子量确定分子式
例1:某有机物中含碳40%、氢6.7%、氧53.3%,且其分子量为90,求其分子式。
例2:某烃中碳和氢的质量比是24∶5,该烃在标准状况下的密度是2.59g/L,写出该烃的分子式。
注意:(1)某些特殊组成的最简式,在不知化合物相对分子质量时,也可根据组成特点确定其分子式。
例如最简式为CH3的在机物,其分子式可表示为(CH3)n,仅当n=2时,氢原子已达饱和,故其分子式为C2H6。
同理,最简式为CH3O的有机物,当n=2时,其分子式为C2H6O2 (2)部分有机物的最简式中,氢原子已达饱和,则该有机物的最简式即为分子式。
例如最简式为CH4、CH3Cl、C2H6O、C4H10O3等有机物,其最简式即为分子式。
2、根据各元素原子个数确定分子式
例1:吗啡分子含C:71.58% H:6.67% N :4.91% , 其余为氧,其分子量不超过300。
试确定其分子式。
例2:实验测得某烃A中含碳85.7%,含氢14.3%。
在标准状况下11.2L此化合物气体的质量为14g。
求此烃的分子式。
3、根据通式确定分子式
烷烃CnH2n+2 烯烃或环烷烃CnH2n
炔烃或二烯烃CnH2n-2 苯及同系物CnH2n-6
用CnH2n-x(-2≤x≤6)和相对分子量可快速确定烃或分子式
如某烃的相对分子质量为M,则有:12n+2n-x=M,整理得x=14n-M,
当x=-2时,则为烷烃;
当x=0时,则为烯烃或环烷烃;
当x=2时,则为炔烃或二烯烃;
当x=6时,则为苯及同系物。
例:已知某烃的相对分子量为56,且此烃碳原子数为4,确定此烃的结构简式?
根据燃烧产物CO2和H2O的相对大小来判断烃或混合烃的组成.
分析主要各类烃燃烧生成的CO2和H2O量的关系:
烷烃C n H2n+2~nCO2 ~(n+1)H2O
烯烃C n H2n~nCO2~nH2O
炔烃C n H2n-2~nCO2 ~(n-1)H2O
苯及其共同物C n H2n-6~nCO2~(n-3)H2O
4、商余法确定分子式
①M/12得整数商和余数,商为可能的最大碳原子数,余数为最小的H原子数。
②若H原子个数未达到饱和,则将碳原子数依次减少一个,每减少1个碳原子即增加12个H原子,直到分子中H原子数达到饱和。
例:相对分子量为128的烃的分子式是什么?
5、根据化学方程式确定分子式
利用燃烧的化学方程式进行计算推断,要抓住以下关键:
①气体体积的变化②气体压强的变化③气体密度的变化④混合物平均式量。
同时可结合适当的方法,如平均值法、十字交叉法、讨论法等技巧。
规律如下:
(1)当烃为混合物时,一般是设平均分子式,结合反应方程式和体积求出平均组成,利用平均值的含义确定混合烃可能的分子式。
有时也利用平均分子量来确定可能的组成,此时,采用十字交叉法计算较为简捷。
例有A、B两种气态烃组成的混合气体,对H2的相对密度为17.常温常压下,取这种混合气体10 mL与80 mL O2(过量)混合,当完全燃烧后恢复到原状态,测得气体的体积为70 mL.
求:(1)混合气体的平均组成;(2)两种烃的可能组成及体积比.
解得x=2.5.
平均组成为C2.5H4.由此可知一定含有炔烃.
可能的组合及体积比为:
(2)两混合烃,若平均分子量小于或等于26,则该烃中必含甲烷。
(3)两混合气态烃,充分燃烧后,生成CO2气体的体积小于2倍原混合烃的体积,则原混合烃中必有CH4;若生成水的物质的量小于2倍原混合烃的物质的量,则原混合烃中必有C2H2。
(4)(温度在100℃以上)气体混合烃与足量的氧气充分燃烧后,若总体积保持不变,则原混合烃中的氢原子平均数为4;若体积扩大,则原混合烃中的氢原子平均数大于4;若体积缩小,则原混合烃中氢原子平均数小于4,必有C2H2。
根据混合链烃完全燃烧生成的nCO2和nH2O的多少来判断混合烃的可能组成.(1)当nH2O>nCO2时,一定会有烷烃,也可能有烯烃、炔烃.
可能组合及各类烃的关系:
(2)当nH2O=nCO2,其可能的组合为
①均为烯烃
(3) 当nCO2>nH2O可能组合,则一定有炔烃.
思考:以上的各种关系如何推出?
提示:设烷烃含x mol,烯烃含y mol,炔烃z mol.
每一种烃燃烧生成的nH2O-nCO2=△n
C n H2n+2~nCO2+(n+1)H2O △n1
1 1
x x
C n H2n~nCO2+nH2O △n2
1 0
y 0
C n H2n-2~nCO2+(n-1)H2O △n3
1 -1
z -z
(1)若组成为烷烃和烯烃的混合物
总:nH2O-nCO2=△n1+△n2=x=n烷
(2)若组成为烷烃和炔烃的混合物
总:nH2O-nCO2=△n1+△n3=x-z=n烷-n炔
其它同理可得.
例充分燃烧3L甲烷、乙烯、乙炔组成的混合物气体,生成7LCO2和4.82g水(气体体积为S.T.P测定),则原混合物气体中甲烷、乙烯、乙炔的体积比可能是()
A.1:1:1 B.1:2:3 C.3:2:1 D.3:1:2
∵nCO2>nH2O
∴n烷<n炔∴正确答案:B.
(5)当条件不足时,可利用已知条件列方程,进而解不定方程,结合烃C x H y中的x、y为正整数,烃的三态与碳原子数相关规律(特别是烃为气态时,x≤4)及烃的通式和性质,运用讨论法,可简捷地确定烃的分子式。
6、运用等效原理推断有机物的分子组成
进行等量代换确定出同式量其他烃或烃的衍生物的化学式:
(1)1个C原子可代替12个H原子;
(2)1个O原子可代替16个H原子或1个“CH4”基团;
(3)1个N原子可代替14个H原子或1个“CH2”基团,注意H原子数要保持偶数。
例:某有机物分子中含有40个电子,它燃烧时只生成等体积的CO2和H2O(g),该有机物若为烃,分子式为______________________
若为烃的衍生物,分子式为______________
解析:①先求出烃的分子式. 根据题意,生成的CO2和H2O(g)体积相等,可设该烃分子式为(CH2)n,而CH2含8e.故为C5H10.
②推断烃的含氧衍生物
一个O原子含8e,正好相当于CH2所含电子数(等效原理)即O~CH2 故可用一个O代替一个CH2进行变换
若已知有机物的式量、耗氧量、电子数,均可据CH2的式量(14)、耗氧量(1.5)、电子数(8)确定有机物的分子式。
如:
(1)某烃的式量是128,则128/14=9……2,则此烃则此烃含9个CH2和2个H,其分子式为C9H20、C10H8
(2)某烃1mol充分燃烧耗氧7.5mol则7.5/1.5=5,则此烃分子含5个CH2,其分子式为C5H10,由等量变换(4个H耗氧量与1个C同)可得变式C6H6。
(3)某烃分子中含42个电子,则42/8=5……2,5表示该烃含5个CH2,2表示余2个电子即表示除5个CH2外还有2个H,其分子式为C5H12,由等量变换(6个H含电子数与1个C同)可得变式C6H6。
例:常温有A、B两份混和气体,A是烷烃R与足量O2的混合气体;B是烷烃R与炔烃Q及足量O2的混合气体,各取2.24升A、B引燃,充分燃烧后气体总体积A仍为2.24升,B为2.38升.(同温同压且t>100℃)
求:①烷烃R和炔烃Q的分子式
②2.24升B中,R所允许最大值.
解∵A燃烧前后△Vg=0且t>100℃
∴烷烃R中H原子数为4,可推出R一定为CH4.
又B燃烧V后-V前=△Vg>0,设B的平均组成为CxHy.则y>4
Q的通式为C n H2n-2.
∵Q为气态(常温).∴n≤4而y>4.
即2n-2>4.n>3
∴Q只能为C4H6.
设C4H6为xL,CH4为yL.C4H6完全燃烧耗O2 zL.
2C4H6+11O2→ 8CO2+6H2O(g) △Vg
2 11 1
x z 2.38-2.24
x=0.28L z=1.54L
CH4~2O2
y 2y
3y≤2.24-0.28-1.54=0.42
y≤0.14L
答:(1)R为CH4.Q为C4H6.
(2)2.24LB中,R所允许的最大值为0.14L.。