221用样本的频率分布估计总体分布

合集下载

2.2.1用样本的频率分布估计总体分布01学案

2.2.1用样本的频率分布估计总体分布01学案

学习课题:2.2.1用样本的频率分布估计总体分布(1)※学习目标1.通过实例体会分布的意义和作用;2. 在表示样本数据的过程中,学会列频率分布表,画频率分布直方图;3. 通过实例体会频率分布直方图的各自特征,从而会用上述方法分析样本的分布,准确地做出总体估计。

※课前准备(阅读课本P65-P67)※探索新知探究1:考察课本表2-1这组数据的最大值、最小值分别是什么?极差是什么?样本数据的范围是多少?探究2:怎样决定一个样本的组距与组数?请你把表2-1进行适当的分组。

探究3:根据你决定的组距与组数,将表2-1数据分组。

探究4:统计各小组的个数,即频数,然后计算各个小组的频率,并列出频率分布表。

探究5:选取适当的单位长度,画频率分布直方图。

试一试:1、频率的计算公式是怎样的?若某个小组的频率是0.3,样本容量是50,则该小组的频数的多少?2、频率分布直方图中的各个小长方形的面积表示相应各组的____________;个小长方形的面积之和为__________,即个小组的频率之和为________。

3、你能从频率分布直方图获取哪些信息?※典型例题下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm)(1)列出样本频率分布表;(2)画出频率分布直方图;(3)试从你所画的频率分布直方图计算[134,138)这一组的频率。

※学习小结1、画频率分布直方图的的步骤是怎样的?2、根据样本数据的频率分布,可以推测总体的频率分布。

※ 当堂检测(ABC 班完成)1、若一个样本的最大值是93,最小值是54,则该样本的极差是( )A .39B .49C .-39D .-492、若一个样本的极差为12.4,组距为2,则该组数据分成的组数是( )A .5B .6C .7D .83、将一组数据分成6组,若第1,2,3,5,6组的频率分别为0.1,0.15,0.2,0.2,0.15,0.05,则第4组的频率是( )A .0.1B .0.15C .0.2D .0.05 4、观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(]2700,3000的频率为 ;如果所观察的新生儿共有2000人,则体重在(]2700,3000的人数是______5、为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数的测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)二小组的频率是多少?样本容量是多少? (2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?※ 延伸拓展(AB 班完成)为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出则______,______,______,______m n M N ====。

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布频率分布是一种用于描述数据集中频次分布情况的统计工具,它描述了每个数值或数值范围出现的频率。

在样本中,我们可以利用频率分布来估计总体的频率分布,从而了解总体的特征。

为了确切估计总体的频率分布,我们需要采取一定的统计方法,下面将介绍一种常用的方法,直方图。

一、直方图的构建构建频率分布的首要任务是将数据分为不同的组或区间。

一般来说,我们会根据数据的特点选择合适的组距,然后根据不同的组距将数据分组。

例如,假设我们有一组数据代表了一些班级学生的测试成绩,我们选择了组距为10,那么我们可以将数据分为以下几个组:然后,我们统计每个组内数据出现的次数,即频次,得到每个组的频次数。

二、计算频率频率是频次的一个重要衍生指标,它反映的是不同数据值或数据范围在总体中的比例。

频率的计算公式为:频率=频次/总样本量在直方图中,我们通常将频率表示为每个组的相对频率。

这样可以更好地反映出组与组之间的差异。

三、绘制直方图绘制直方图是一种直观地表现频率分布的方法。

在直方图上,x轴表示不同的组或区间,y轴表示频率。

我们可以用矩形的高度来表示每个组的频率,矩形的宽度表示组距。

通过绘制多个矩形,可以将频率分布更直观地展示出来。

在绘制直方图时,需要注意以下几点:1.组距应该选择合适,既不过小也不过大,以保证直方图的直观性和准确性。

2.直方图的高度应该符合频率的大小,即高度越高表示频率越大。

3.直方图的矩形之间应该没有间隙,以保证数据的完整性。

四、利用样本频率分布估计总体频率分布样本的频率分布可以提供总体频率分布的一种估计方法。

我们可以基于样本数据构建直方图,并计算每个组的频率。

然后,我们可以将样本频率分布与总体的频率分布进行比较。

如果两个分布形状相似并且没有明显的偏差,那么我们可以认为样本的频率分布可以很好地估计总体的频率分布。

当然,在使用样本频率分布进行总体频率分布估计时,还需要注意以下几点:1.样本的选取应该具有代表性,以避免样本偏差对估计结果的影响。

用样本的频率分布估计总体的分布

用样本的频率分布估计总体的分布
用样本的频率分布估计总体的分布
影响组数与组距的因素
• 因素1:样本容量的大小; • 因素2:原始数据的精细程度; • 当样本容量不超过100时,常分成5-12组。
这是由统计经验获得的。
用样本的频率分布估计总体的分布
理论迁移
例 某地区为了了解知识分子的年龄结构, 随机抽样50名,其年龄分别如下:
42,38,29,36,41,43,54,43,34,44, 40,59,39,42,44,50,37,44,45,29, 48,45,53,48,37,28,46,50,37,44, 42,39,51,52,62,47,59,46,45,67, 53,49,65,47,54,63,57,43,46,58. (1)列出样本频率分布表; (2)画出频率分布直方图; (3)估计年龄在32~52岁的知识分子所占的比例 约是多少.
组距
连接频率分布直方图中 各小长方形上端的中点,
得到频率分布折线图
0.5 0.4 0.3 0.2 0.1
0.5 1 1.5
月均用 水量/t
2 2.5 3 3.5 4 4.5
用样本的频率分布估计总体的分布
总体密度曲线
当样本容量无限增大,分组的组距无限缩小,那么
频率分布折线图就会无限接近一条光滑曲线——总体密
用样本的频率分布估计总体的分布
用样本的频率分布估计总体的分布
练习:某中学高一(2)班甲,乙两 名同学自高中以来每场数学考试成 绩情况如下:
甲的得分:95,81,75,91,86, 89,71,65,76,88,94
乙的得分:83,86,93,99,88, 96,98,98,79,85,97
画出两人数学成绩茎叶图,请根据 茎叶图对两人的成绩进行比较。

2.2.1用样本的频率估计总体的分布

2.2.1用样本的频率估计总体的分布

它能够精确地反映了总体在各个范围内取值的百分 比,它能给我们提供更加精细的信息.
总体密度曲线
频率 组距
月均用 水量/t
a
b
(图中阴影部分的面积,表示总体在 某个区间 (a, b) 内取值的百分比)。
总体密度曲线
总体密度曲线反映了总体在各个范围内取值的 百分比,精确地反映了总体的分布规律。是研究 总体分布的工具. 用样本分布直方图去估计相应的总体分布时, 一般样本容量越大,频率分布折线图就会无限接 近总体密度曲线,就越精确地反映了总体的分布 规律,即越精确地反映了总体在各个范围内取值 百分比。
2.2.1用样本的频率分布 估计总体分布(1)
我国是世界上严重缺水的国家之一, 城市缺水问题较为突出。
2000年全国主要城市中缺 水情况排在前10位的城市
探究:某市政府为了节约生活用水,计划在本 市试行居民生活用水定额管理,即确定一个 居民月用水量标准a , 用水量不超过a 的部分 按平价收费,超过a 的部分按议价收费。 ①如果希望大部分居民的日常生活不受影响, 那么标准a 定为多少比较合理呢? ②为了较合理地确定这个标准,你认为需要做 哪些工作?
(2009 福建卷)一个容量 100 的样本,其数据的分组与各组的频数如下表 组别 频数
(0,10]
(20, 20] (20,30) (30, 40)
(40,50]
(50,60]
(60,70]
12
13
24
15
16
13
7
则样本数据落在 (10, 40) 上的频率为 A. 0.13 B. 0.39 C. 0.52 D. 0.64
频率
组距
小长方形的 面积总和=?
0.50 0.40 0.30 0.20 0.10 月均用水量 /t 4.5

高中数学人教新课标B版必修3--《2.2.1用样本的频率分布估计总体的分布》课件4

高中数学人教新课标B版必修3--《2.2.1用样本的频率分布估计总体的分布》课件4

1
解1:总睡眠时间约为 6.25×5+6.75×17 +7.25×33+7.75×37+8.25×6+8.75×2 =739(h)
故平均睡眠时间约为7.39h 解2:求各组中值与对应频率之积的和, 6.25×0.05+6.75×0.17+7.25×0.33+7.75× 37+8.25×0.06+8.75×0.02 =7.39(h)
解:估计该单位职工的平均年收入为 12500×10%+17500×15%+22500×20%+ 27500×25%+32500×15%+37500×10%+ 45000×5%=26125(元) 答:估计该单位人均年收入约为26125元.
练习题: 1.若M个数的平均数是x,N个数的平均数
Mx Ny
(2)中位数不受少数几个极端数据的影 响,容易计算,它仅利用了数据中排在中 间的数据的信息。当样本数据质量比较差, 即存在一些错误数据时,应该用抗极端数 据强的中位数表示数据的中心值。
(3)平均数受样本中的每一个数据的影 响,“越离群”的数据,对平均数的影响 也越大,与众数和中位数相比,平均数代 表了数据更多的信息,当样本数据质量比 较差时,使用平均数描述数据的中心位置 可能与实际情况产生较大的误差。
2.2.2 用样本的数字特征估计 总体的数字特征(一)
一、众数、中位数、平均数
(1)众数:在样本数据中,频率散布最 大值所对应的样本数据或出现次数最多的 那个数据。
(2)中位数:样本数据中,累计频率为 0.5时所对应的样本数据或将数据按大小 排列,位于最中间的数据(如果数据的个 数为偶数,就取当中两个数据的平均数作 为中位数)。

导学案221用样本的频率分布估计总体的分布.doc

导学案221用样本的频率分布估计总体的分布.doc

《样本的频率分布估计总体的分布》(预习案)使用时间:6月13 口主备人:苍安江知识目标:1、能列出频率分布表,能画出频率分布的条形图、直方图、茎叶图和折线图;2、会用样本频率分布去估计总体分布。

学习重点:列出频率分布表、画频率分布直方图、折线图、茎叶图。

学习难点:能通过样本的频率分布估计总体的分布。

新课导学阅读教材58页-63页%1.绘制样本数据的频率分布表,频率分布直方图的步骤:为了解一大片经济林生长情况,随机测量其中100株的底部周长,得到如下数据表(单位:cm)1.计算极差:_____________2.决定组数,组距。

按11组算,组距为:3.决定分点:第一组的起点为,组距为:4.列频率分布表:(分别填上空白单元格的数字)A 、 100B 、 802. 列样本频率分布表时, A 、任意确定 C 、由组距和组数决定下列叙述中正确的是[120,125)11 0.11 0.022 [125,130)0.060.012 1130,135]2 0.020.004合计0.2直方图每个小矩形的高度的含义是:矩形面积的含义是: 所有长方形面积之和等于.估计该片经济林中底部周长小于100c 加的树木约占 周长不小于120两的树木约占 %1. 频率分布折线图,总体密度曲线把上面的频率分布直方图各个长方形上边中点用线段连接起来;就得到. 总体密度曲线的定义与反映数据的特点是什么? %1. 茎叶图一般地,当数据是一位和两位有效数字时,两竖线中间的数字表示,即第一个有 效数字,两边的数字表示,即第二个有效数字. 预习自测1. 从一群学生中收取一个一定容量的样本对他们的学习成绩进行分析,前三组是不超过80分的人,其频数之和为20人,其频率之和(乂称累积频率)为0、4,则所抽取的样本的容量是 ()C 、 40D 、 50决定组数的正确方法是 ()B 、一般分为5—12组D、根据经验法则,灵活掌握A、从频率分布表可以看出样本数据对于平均数的波动大小B、频数是指落在各个小组内的数据C、每小组的频数与样本容量之比是这个小组的频率D、组数是样本平均数除以组距《样本的频率分布估计总体的分布》(课堂案)%1.预习检测:1.在频率分布直方图中,各个小长方形的面积表示()A、落在相应各组的数据的频数B、相应各组的频率C、该样本所分成的组数D、该样本的容量2.一个容量为n的样本,分成若干组,已知某组的频数和频率分别为40, 0. 125,则n的值为()A、640B、320C、240D、160%1.课内探究例1下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位c m)(1)列出样本频率分布表;(2)画出频率分布直方图;(3)画出频率分布折线图;(4)估计身高小于134cm的人数占总人数的百分比变式训练:为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2: 4: 17: 15: 9: 3,第2.已知一个样本 75, 71, 73, 75, 77, 79, 75, 78, 80, 79, 76, 74, 75, 77, 76, 72, 74, 75,二小组频数为12.(1) 第二小组的频率是多少?样本容量是多少?(2) 若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少? (3) 在这次测试中,学生跳绳次数的中位数落在哪个小组内?清说明理由。

用样本的频率分布估计总体的分布

用样本的频率分布估计总体的分布

必修3《2.2.1 用样本的频率分布估计总体的分布》教学设计北京师范大学附属实验中学曹付生一、教学内容分析1.教学主要内容:本节课选自人教B版必修三,第二章第二小节,《用样本的频率分布估计总体的分布》,需要2课时完成,本节课是第一课时。

主要是画出样本的频率分布直方图,并能通过频率分布直方图对总体进行简单的估计。

2.教材编写特点本节是本章教材的第二小节,前面研究了随机抽样的方法及数据收集。

本节课主要研究对收集样本如何进行处理,突出对数据描述、处理的方法,特别是频率分布直方图画法,后面接着研究总体密度曲线、用样本的数字特征估计总体的数字特征以及正态曲线等,可以说本节课内容承上启下,地位非常重要。

从教材编写的角度来看,也正是要体现这一特点。

教材编写,通过对样本分析和总体估计的过程,突出了统计的实用性,从实际出发,收集数据,进行分析整理,再回到实际问题,感受数学对实际生活的需要,体现了统计的思想及其在实际问题中的应用价值,真正体会数学知识与现实生活的联系。

3.教材内容的数学核心思想教材内容的数学核心思想是用样本的频率分布直方图估计总体的统计思想方法。

4.我的思考:本节课重在教会学生绘制频率分布直方图,引导学生通过频率分布直方图分析总体的分布,体会统计的思想、方法。

在通读了教材的基础上,与人教A版的相应内容作了比较,再结合学生的情况,最终选择A版内容,更利于完成教学目标。

(1)人教A版教材中的例子与学生关系紧密,提出的问题更切合学生实际。

背景的熟悉使学生易于课堂参与。

(2)教材中问题的设计利于学生统计思想的建立等。

统计思想方法是数学的一个重要的思想方法,中学学习统计,除了掌握必要的统计知识之处,关键是让学生建立统计在现实生活中具有重要的作用,具有统计意识,同时体会到统计结果随机性、科学性,能作为总体的分布的合理性,是生活中某些问题决策必不可少的依据。

统计教学的核心目标正是让学生体会统计思维的特点和作用。

因此在设计中,从实际问题出发,再回到实际问题的决策,前后呼应,使学生真正体会数据处理的全过程、统计应用于现实生活的全过程,突出统计的思想、方法。

2.2.1用样本的频率分布估计总体的分布课件(刘爱娟,2014.2.26)

2.2.1用样本的频率分布估计总体的分布课件(刘爱娟,2014.2.26)

• • • • • • • • • •
25.39 25.41 25.40 25.37 25.35 25.40 25.36 25.41 25.47 25.40
25.36 25.43 25.39 25.44 25.32 25.43 25.42 25.32 25.34 25.35
25.34 25.44 25.41 25.33 25.45 25.44 25.39 25.38 25.30 25.41
1.将每个数据分为茎(高位)和叶(低位) 两部分,在此例中,茎为十位上的数字, 叶为个位上的数字. 2.将最小茎和最大茎之间的数按大小次序 排成一列,写在中间. 3.将各个数据的叶按大小次序写在其茎的 左(右)侧.
用茎叶图表示数据的优点
一是从统计图上没有原始信息的损失,所 有的数据信息都可以从茎叶图中得到; 二是茎叶图可以在比赛是随时记录,方便 记录与表示。但茎叶图只便于表示两位有 效数字的数据,虽然可以表示两个人以上 的比赛结果(或两个以上的记录),但没 有表示两个记录那么直观、清晰
二、频率分布折线图
把频率分布直方图各个长方形上边的中点用线段 连接起来,就得到分布折线图。
三、总体密度曲线
• 频率分布直方图表明了所抽取的100件产品中, 尺寸落在各个小组内的频率大小.样本容量越大, 所分组数越多,各组的频率就越接近于总体在相 应各组取值的概率.设想样本容量无限增大,分
组的组距无限缩小,则频率分布直方图就会无限 接近于一条光滑曲线——总体密度曲线.它反映 了总体在各个范围内取值的规率.总体密度曲线
3、甲乙两个小组各10名学生的英语口语测试成绩如下(单位:分)
甲组 76 乙组 82 90 84 84 85 86 89 81 79 87 80 86 91 82 89 85 79 83 74

高中数学第二章统计221用样本的频率分布估计总体分布练习含解析新人教A版必修

高中数学第二章统计221用样本的频率分布估计总体分布练习含解析新人教A版必修

2.2.1 用样本的频率分布估计总体分布A级基础巩固一、选择题1.没有信息的损失,所有的原始数据都可以从图中得到的统计图是( )A.总体密度曲线B.茎叶图C.频率分布折线图D.频率分布直方图答案:B2.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )B.C.D.解析:数据总个数n=10,又落在区间[22,30)内的数据个数为4,故所求的频率为410=0.4.答案:B3.某雷达测速区规定:凡车速大于或等于70 km/h的汽车视为“超速”,并将受到处罚.下图是某路段的一个检测点对300辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可得出将被处罚的汽车数为( )A.30辆B.40辆C.60辆D.80辆解析:车速大于或等于70 km/h的汽车数为×10×300=60(辆).答案:C4.一个社会调查机构就某地区居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图),为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000)(单位:元)月收入段应抽出的人数为( )A.5 B.25 C.50 D.2 500解析:组距=500,在[2 500,3 000)的频率=0.000 5×500=,样本数为100,则在[2 500,3 000)内应抽100×=25(人).答案:B5.为了了解某校高三学生的视力情况,随机抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,仅知道后5组的频数和为62.设视力在到之间的学生数为a,最大频率为,则a的值为( )A.27 B.48 C.54 D.64解析:由已知,视力在到之间的学生数为100×=32,又视力在到之间的频率为1-+0.5)×-62100=,所以视力在到之间的学生数为100×=22,所以视力在到之间的学生数a =32+22=54.答案:C二、填空题6.某市共有5 000名高三学生参加联考,为了了解这些学生对数学知识的掌握情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:分组/分频数频率[80,90)①②[90,100)[100,110)[110,120)36[120,130)[130,140)12③[140,150]合计④根据上面的频率分布表,可以①处的数值为________,②处的数值为________. 解析:由位于[110,120)的频数为36,频率=36n=,得样本容量n =120,所以[130,140)的频率=12120=,②处的数值=1------=; ①处的数值为×120=3. 答案:37.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在[140,150]内的学生中抽取的人数应为________.解析:所有小矩形的面积和等于10×++0.020+a +0.035)=1,解得a =;100名同学中,身高在[120,130)内的学生数是10××100=30,身高在[130,140)内的学生数是10××100=20,身高在[140,150]内的学生数是10××100=10,则三组内的总学生数是30+20+10=60,抽样比是1860=310,所以身高在[140,150]内的学生中选取的人数应为10×310=3.答案: 38.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:据此可估计该校上学期200名教师中,使用多媒体进行教学次数在[15,25)内的人数为________.答案:60三、解答题9.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量,得到如图所示的茎叶图.(1)甲网站点击量在[10,40]间的频率是多少? (2)甲、乙两个网站哪个更受欢迎?请说明理由.解:(1)甲网站点击量在[10,40]内的有17,20,38,32,共有4天,则频率为414=27. (2)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲网站更受欢迎.10.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少? 解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:42+4+17+15+9+3=0.08.又因为第二小组的频率=第二小组的频数样本容量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由题意估计该学校高一学生的达标率约为17+15+9+32+4+17+15+9+3×100%=88%.B 级 能力提升1.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图所示是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .6B .8C .12D .18解析:志愿者的总人数为20(+)×1=50,所以第三组的人数为50×=18,有疗效的人数为18-6=12.答案:C2.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.解析:由题意可知,这35名运动员的分组情况为,第一组(130,130,133,134,135),第二组(136,136,138,138,138),第三组(139,141,141,141,142),第四组(142,142,143,143,144),第五组(144,145,145,145,146),第六组(146,147,148,150,151),第七组(152,152,153,153,153),故成绩在区间[139,151]上的运动员恰有4组,则运动员人数为4.答案:43.从高一学生中抽取50名参加调研考试,成绩的分组及各组的频数如下(单位:分): [40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计成绩在[70,80)分的学生所占总体的百分比.解:(1)频率分布表如下:成绩分组频数频率[40,50)2[50,60)3[60,70)10[70,80)15[80,90)12[90,100]8合计50(2)由题意知组距为10,取小矩形的高根据表格画出如下的频率分布直方图:(3)由频率分布直方图,可估计成绩在[70,80)分的学生所占总体的百分比是×10==30%.。

人教A版必修3《2.2.1用样本的频率分布估计总体分布》优化训练ppt课件

人教A版必修3《2.2.1用样本的频率分布估计总体分布》优化训练ppt课件

(1)列出样本频率分布表; (2)画出频率分布直方图. 解:(1)在样本数据中,最大值是 518,最小值是 483,极 差为 35.
35 3 若取组距为 4,则 4 =84,要分为 9 组,组数合适,故取
组距为 4,分 9 组,分点比数据多一位小数,故把第一组起点
稍微小一点,故分组如下:
[482.5,486.5],[486.5,490.5],„,[514.5,518.5].
(2)频率分布直方图,如图 D13.
图 D13
【变式与拓展】
2.为了让学生了解环保知识,增强环保意识,某中学举行
了一次“环保知识竞赛”,共有 900 名学生参加了这次竞赛.为 了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为 整数,满分为 100 分)进行统计.请你根据尚未完成并有局部污损 的频率分布表和频率分布直方图(如图 2-2-3),解答下列问题: (1)填充频率分布表的空格(将答案直接填在表格内);
列表如下: 分组 [482.5,486.5) [486.5,490.5) [490.5,494.5) [494.5,498.5) [498.5,502.5) [502.5,506.5) [506.5,510.5) [510.5,514.5) [514.5,518.5] 合计 频数累计 正 正正正 正正正正 正正 正正 正正正 正 频数 8 3 17 20 14 10 19 6 3 100 频率 0.08 0.03 0.17 0.20 0.14 0.10 0.19 0.06 0.03 1.00
当数据由整数部分和小数部分组成时,可以把整数部分作为
________ ,小数部分作为________. 茎 叶
练习 2:为了了解某校教师使用多媒体进行教学的情况,

221用样本频率分布估计总体分布

221用样本频率分布估计总体分布

连接频率分布直方图
组距
中各小长方形上端的
中点,得到频率分布折
线图
0.50
0.40
0.30
0.20
0.10
月均用水量
/t
0.5 1 1.5 2 2.5 3 3.5 4 4.5
利用样本频分布对总体分布进行相应估计
(1)上例的样本容量为100,如果增至1000, 其频率分布直方图的情况会有什么变化?假如增 至10000呢?
图形的意义:频率分布直方图中各小长
方形的面积表示什么?各小长方形的面
积之和为多少? 频率 组距 0.5 0.4 0.3 0.2 0.1
宽度:组距
高度:
频率 组距
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
各小长方形的面积=频率
各小长方形的面积之和=1
3 分析例题:频率分布直方图非常直观地表明
2.2.1 用样本的频率分布估计 总体分布
【问题】 我国是世界上严重缺水的国家之 一,城市缺水问题较为突出,某市政府为了 节约生活用水,计划在本市试行居民生活用 水定额管理,即确定一个居民月用水量标准 a,用水量不超过a的部分按平价收费,超出 a的部分按议价收费.通过抽样调查,获得 100位居民2007年的月均用水量如下表(单 位:t):
如何将随意记录的数据变成可直接 看出规律的图表呢?
知识探究(一):频率分布表
1.极差:样本数据中的最大值和最小 值的差称为极差
0.2~4.3
2.确定组距,组数:.如果将上述 100个数据按组距为0.5进行分组, 那么这些数据共分为多少组?
(4.3-0.2)÷0.5=8.2
3 将数据分组,决定分点:以组距为 0.5进行分组,上述100个数据共分为9组, 各组数据的取值范围可以如何设定?

2.2.1 用样本的频率分布估计总体分布 课件(人教A版必修3) (1)

2.2.1 用样本的频率分布估计总体分布 课件(人教A版必修3) (1)

)
【做一做 2-2】 在画频率分布直方图时, 某组的频数为 10, 样本容量为 50, 总体容量为 600, 则该组的频率是( A.
1 5
) C.
1 10
B.

1 6 10 1
D.不确定
解析: 该组的频率是50 = 5. 答案: A
3.频率分布折线图和总体密度曲线 ( 1) 类似于频数分布折线图, 连接频率分布直方图中各个小长方形上端的中 点, 就得到频率分布折线图. 一般地, 当总体中的个体数较多时, 抽样时样本容量就不能太小.例如, 如果 要抽样调查一个省乃至全国的居民的月均用水量, 那么样本容量就应比调查一 个城市的时候大.可以想像, 随着样本容量的增加, 作图时所分的组数增加, 组距 减小, 相应的频率折线图会越来越接近于一条光滑曲线, 统计中称这条光滑曲线 为总体密度曲线.
频率分布折线图反映了数据的变化趋势.总体密度曲线反映了总体在各个范围 内取值的百分比, 它能给我们提供更加精细的信息.
( 2) 估计方法: 实际上, 尽管有些总体密度曲线是客观存在的, 但是在实际应 用中我们并不知道它的具体表达形式, 需要用样本来估计.由于样本是随机的, 不同的样本得到的频率分布折线图不同; 即使对于同一个样本, 不同的分组情况 得到的频率分布折线图也不同.频率分布折线图是随样本容量和分组情况的变 化而变化的, 因此不能用样本的频率分布折线图得到准确的总体密度曲线.
2.2
用样本估计总体
2.2.1
用样本的频率分布估计总体分布
1.了解分析数据的方法,知道估计总体频率分布的方法. 2.了解频率分布折线图和总体密度曲线,会画频率分布直方图和茎叶图. 3.理解频率分布直方图和茎叶图及其应用.
1.分析数据的方法 ( 1) 借助于图形. 用图将各个数据画出来, 作图可以达到两个目的, 一是从数据中提取信息; 二是利用图形传递信息. ( 2) 借助于表格. 用紧凑的表格改变数据的构成方式, 为我们提供解释数据的新方式.

2.2.1用样本的频率分布估计总体分布

2.2.1用样本的频率分布估计总体分布

新课导入前面研究学习了三种抽样收集数据,数据收集后,必须从中寻找包含的信息,以使我们能追求样本的估计总体,但是由于数据多而杂,所以需要通过一定的方法去分析.可以通过表、图、计算方法来分析.1. 通过实例体会分布的意义和作用;2. 在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图;3. 通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.知识与技能教学目标过程与方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.情感态度与价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系.重点会列频率分布表,画频率分布直方图、频率折线图和茎叶图.能通过样本的频率分布估计总体的分布. 难点教学重难点我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了了较为合理地确定出这个标准,需要做哪些工作?实际问题为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.假设我们通过抽样,得到100为居民月用水量,如下:100位居民的月均用水量(单位:t)3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.6 3.4 2.6 2.2 2.2 1.5 1.2 0.2 0.4 0.3 0.4 3.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.8 3.3 2.8 2.3 2.2 1.7 1.3 3.6 1.7 0.64.1 3.2 2.9 2.4 2.3 1.8 1.4 3.5 1.9 0.8 4.3 3.0 2.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.0 2.5 2.8 2.3 2.3 1.8 1.3 1.3 1.6 0.9 2.3 2.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4 2.5 2.6 2.3 2.1 1.6 1.0 1.0 1.7 0.8 2.4 2.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2观察?上面的数字能告诉我们什么呢很容易发现的是一个居民月均用水量的最小值是0.2t,最大值是4.3t.其他值在0.2—4.3t之间.除此之外,很难从随意记录下来的数据中直接看出规律.为此,我们需要对统计数据进行整理和分析.知识要点频率分布直方图频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.方法画频率分布直方图的一般步骤为:(1)计算一组数据中最大值与最小值的差,即求极差;(2)决定组距与组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布直方图.(1)求极差 因为用水最小值为0.2t ,最大值为4.3t 所以:4.3-0.2=4.1 说明样本数据的变化范围是4.1t.将上述抽样的100户居民月用水量,画出频率分布直方图.解:(2)决定组距与组数数据分组的组数与样本容量有关,一般样本容量越大,所分组数越多.当样本容量不超过100时,按照数据的多少,常分成5—12组.为了方便起见,组距的选择应力求“取整”.在本问题中,如果取组距为0.5(t),那么组数=极差/组距=4.1/0.5=8.2因此可将数据分成9组,这个组数是较合适的,于是去组距为0.5.组数为9.(3)将数据分组以组距为0.5将数据分组时,可以分成以下9组:[0,0.5),[0.5,1),…,[4,4.5).(4)列频率分布表按照组距为0.5将数据分组,分成以下9组:[0,0.5),[0.5,1),…,[4,4.5). 图如下:100位居民月均用水量的频率分布表分组频数频率[0,0.5)40.04[0.5,1)80.08[1,1.5)150.15[1.5,2)220.22 [2,2.5)250.25 [2.5,3)140.14 [3,3.5)60.06 [3.5,4)40.04 [4,4.5)20.02合计1001频数等于样本数,频率恒为1(5)画频率分布直方图 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/to 0.100.200.300.400.50频率/组距特征频率分布直方图的特征:从频率分布直方图可以清楚的看出数据分布的总体趋势.从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.知识要点频率分布折线图连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.总体密度曲线的定义在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.茎叶图数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.特征茎叶图的特征:1. 用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示.2. 茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.课堂小结1.频率分布直方图的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.2.频率分布折线图的概念连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.高考链接1(2009四川)设矩形的长为a ,宽为b ,其比满足 51b :a 0.6182-=≈这种矩形给人以美感,称为黄金矩形,黄金矩形常应用用于工艺品设计中,下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样品来估计两个批次的总体平均数,与标准值0.618比较,正确结论是()AA.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值跟接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定解析:本题考查平均数的求法,用样本估计总体,经计算甲、乙批次的总体平均数0.6170.613甲乙,x x ==知甲批次的总体平均数与标准值0.618更接近.2(2009湖北)下图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,样本数据落在[6,10]内的频数为_______,数据落在[2,10)内的概率约为_____. 64 0.4解析:本题考查频率分布直方图,样本数据落在[6,10)内的频数为0.08×(10-6)×200=64.样本数据落在[2,10)内的概率约为(0.02+0.08)×4=0.4.区间界限[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)人数5810223320区间界限[146,150)[150,154)[154,158)人数11651.下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位c m)(1)列出样本频率分布表﹔ (2)一画出频率分布直方图;(3)估计身高小于134cm的人数占总人数的百分比.随堂练习分组频数频率[122,126)50.04[126,130)80.07[130,134)100.08[134,138)220.18[138,142)330.28[142,146)200.17[146,150)110.09[150,154)60.05[154,158)50.04合计1201解:(1)样本频率分布表如下:前面的过程省略!122 126 130 134 138 142 146 150 158 154 身高(cm )o 0.010.020.030.040.050.060.07频率/组距(2)其频率分布直方图如下:0.04+0.07+0.08=0.19,所以我们估计身高小于134cm 的人数占总人数的19%.(3)由样本频率分布表可知身高小于134cm 的男孩出现的频率为:2.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.90 100 110 120 130 140 150 次数o 0.0040.0080.0120.0160.0200.0240.028频率/组距0.0320.036解:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1. (1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:40.0824171593=+++++121500.08===第二小组频数样本容量第二小组频率又因为频率=频数/ 样本容量所以 (2)由图可估计该学校高一学生的达标率约为 171593100%88%24171593+++⨯=+++++(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.。

用样本的频率分布估计总体分布(一)

用样本的频率分布估计总体分布(一)
本文介绍了如何通过样本的频率分布来估计总体的分布。首先,强调了统计的核心问题,即如何根据样本情况推断总体情况,并简述了简单随机抽样、系统抽样和分层抽样等随机抽样方法。接着,工具来估计总体分布的方法,以及如何通过样本的数字特征如平均数、中位数等来估计总体的相应特征。此外,还通过一个关于居民生活用水定额管理的实际案例,探讨了如何收集和分析样本数据来估计全市居民用水量的分布情况。在介绍频率分布直方图的绘制步骤时,详细说明了如何求极差、决定组距与组数、将数据分组、列频率分布表以及画频率分布直方图等过程。这些内容不仅有助于理解样本数据的分布情况,也为进一步分析样本均数的分布特点,如形状、中心位置、离散程度等提供了重要的背景和工具。

2.2.1用样本的频率分布估计总体

2.2.1用样本的频率分布估计总体
0.6 0.5
频率/组距
0.4 0.3 0.2 0.1 0 0-0.5 0.5-1 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5
用水量范围
连接频率分布直方图中各个小长方形上端的中点,频率分布折线图
随着样本容量的增加,作图时所分的组数也会增加,相应的频 率折线图会越来越接近于一条光滑的曲线,统计学中称这条光滑的 曲线为总体密度曲线
(3)根据频率分布直方图估计,数据落在[15.5, 24.5)的百分比是多少?
解:(1)组距为3,列频率分布表
分组 频数 频率 频率/ 组距
[12.5, [15.5, [18.5, [21.5, [24.5, [27.5, [30.5,
15.5) 3 18.5) 8 21.5) 9 24.5) 11 27.5) 10 30.5) 5 33.5) 4
甲 8 4 6 3 3 6 8 3 8 9 1 0 1

2 5 5 4 1 1 6 6 7 9 4 9 0
2
3 4 5
茎叶图的特征:
(1)用茎叶图表示数据有两个优点:一是从统计图上没 有原始数据信息的损失,所有数据信息都可以从茎叶图 中得到;二是茎叶图中的数据可以随时记录,随时添加, 方便记录与表示; (2)茎叶图只便于表示两位(或一位)有效数字的数据, 对位数多的数据不太容易操作;而且茎叶图只方便记录 两组的数据,两个以上的数据虽然能够记录,但是没有 表示两个记录那么直观,清晰; (3)茎叶图对重复出现的数据要重复记录,不能遗漏.
[0,0.5 ),[0.5,1 ),…,[4,4.5]
分组时,通常对组内数值所在区间取左 闭右开区间,最后一组取闭区间,当然也 可以采用其他分组方法。
4.列频率分布表

2.2.1用样本的频率分布估计总体分布

2.2.1用样本的频率分布估计总体分布
(1)列出样本频率分布表﹔ )列出样本频率分布表﹔ (2)一画出频率分布直方图 一画出频率分布直方图; 一画出频率分布直方图 (3)估计身高小于 134cm的人数占总人数的百分比 。 cm的人数占总人数的百分比 估计身高小于 cm的人数占总人数的百分比.。 分析:根据样本频率分布表、频率分布直方图的一般步骤解题。 分析:根据样本频率分布表、频率分布直方图的一般步骤解题。 (1 样本频率分布表如下: 解: 1)样本频率分布表如下: (
1
板出课题 1 分钟
让学生展开讨论 2 分钟
填空 2 分钟
以课本 P66 制定 居民用水标准问 题为例, 题为例,经过以 上几个步骤画出 频率分布直方 图。 学生动手作 ( 图)10 分钟 让学生仔细观察 表和图, 表和图,得出结 论 2 分钟
心灵寄语 :后悔过去,不如奋斗将来。——马克思 (1) 从频率分布直方图可以清楚的看出数据分布的总体趋势。 ) 从频率分布直方图可以清楚的看出数据分布的总体趋势。 不出原始的数据内容, (2) 从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有 ) 从频率分布直方图得不出原始的数据内容 把数据表示成直方图后, 的具体数据信息就被抹掉了。 的具体数据信息就被抹掉了。 探究〗 同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同。 :同样一组数据 〖探究〗 同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同。 : 不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断, 不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以 0.1 和 1 为组距 重新作图,然后谈谈你对图的印象? 重新作图,然后谈谈你对图的印象? 思考〗 :如果当地政府希望使 以上的居民每月的用水量不超出标准, 〖思考〗 如果当地政府希望使 85%以上的居民每月的用水量不超出标准,根据频率分布表 2-2 : 以上的居民每月的用水量不超出标准 和频率分布直方图 2.2-1,你能对制定月用水量标准提出建议吗? ,你能对制定月用水量标准提出建议吗? 频率分布折线图、 〈二〉频率分布折线图、总体密度曲线 1.频率分布折线图的定义: .频率分布折线图的定义: 连接频率分布直方图中各小长方形上端的中点 就得到频率分布折线图。 中各小长方形上端的中点, 连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图。 2.总体密度曲线的定义: .总体密度曲线的定义: 在样本频率分布直方图中, 相应的频率折线图会越来越接近于一条光滑曲线, 在样本频率分布直方图中, 相应的频率折线图会越来越接近于一条光滑曲线, 统计中 称这条光滑曲线为总体密度曲线。它能够精确地反映了总体在各个范围内取值的百分比, 称这条光滑曲线为总体密度曲线。它能够精确地反映了总体在各个范围内取值的百分比, 它能给我们提供更加精细的信息。 它能给我们提供更加精细的信息。 思考〗 〖思考〗 : 对于任何一个总体,它的密度曲线是不是一定存在?为什么? 1.对于任何一个总体,它的密度曲线是不是一定存在?为什么? 对于任何一个总体,它的密度曲线是否可以被非常准确地画出来? 2.对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么 实际上,尽管有些总体密度曲线是饿、客观存在的, 实际上,尽管有些总体密度曲线是饿、客观存在的,但一般很难想函数图象那样准确 地画出来,我们只能用样本的频率分布对它进行估计 一般来说,样本容量越大, 进行估计, 地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估 计就越精确. 计就越精确. 〈三〉茎叶图 茎叶图的概念: 1.茎叶图的概念: 当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字, 当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数 字表示个位数,即第二个有效数字,它的中间部分像植物的茎, 字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出 来的叶子,因此通常把这样的图叫做茎叶图。 来的叶子,因此通常把这样的图叫做茎叶图。 2.茎叶图的特征: .茎叶图的特征: 用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失, (1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据 信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加, 信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记 录与表示。 录与表示。 茎叶图只便于表示两位有效数字的数据, 且茎叶图只方便记录两组的数据, (2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个 以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰。 以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰。 三、典型例题 例题精析】 【例题精析】 人的身高(单位cm cm) 例 1 下表给出了某校 500 名 12 岁男孩中用随机抽样得出的 120 人的身高(单位cm) 观察表和图, 观察表和图,得 出结论 2 分钟

用样本估计总体221用样本的频率分布估计总体分布

用样本估计总体221用样本的频率分布估计总体分布
9.5~11.5 11.5~13. 5
合计
2
0.1
6
0.3
8
0.4
4
0.2
20精选课件ppt 1.0
2 8 16
20
16
3.一个容量为100的样本,数据的分组和各组的相 关信息如下表,试完成表中每一行的两个空格.
分组
频数
频率
频率累计
[12,15) [15,18) [18,21) [21,24) [24,27) [27,30) [30,33) [33,36] 合计
某个区间 (a, b) 内取值的百分比)。
精选课件ppt
20
总体密度曲线
总体密度曲线反映了总体在各个范围内取值的 百分比,精确地反映了总体的分布规律。是研究总 体分布的工具.
用样本分布直方图去估计相应的总体分布时, 一般样本容量越大,频率分布直方图就会无限接 近总体密度曲线,就越精确地反映了总体的分布 规律,即越精确地反映了总体在各个范围内取值 百分比。
频率
0.06 0.16 0.18 0.22 0.20 0.10 0.08
频率/ 组距
0.020 0.053 0.060 0.073 0.067 0.033 0.027
精选课件ppt
14
频率分布直方图如下:
频率
组距
0.070 0.060 0.050 0.040 0.030 0.020 0.010
12.5 15.5
精选课件ppt
10
❖ 思考 :
如果当地政府希望使 85% 以上的居民每 月的用水量不超出标准,根据频率分布表 和频率分布直方图,你能对制定月用水量 标准提出建议吗?
注意
1、小正方形的面积=组距×频率/组距=频率 2、各小正方形的面积之和等于1. 3、每一小组频率实际上反映样本数据落在 各个小组的比例大小。

221用样本的频率分布估计总体分布二

221用样本的频率分布估计总体分布二

练习:
下表一组数据是某车间30名工人加工零件的个数, 设计一个 茎叶图表示这组数据,并说明这一车间的生产情况.
134 112 117 126 128 124 122 116 113 107 116 132 127 128 126 121 120 118 108 110 133 130 124 116 117 123 122 120 112 112
组距
0
ab
月均用水量/t
思考
1.对于任何一个总体,它的密度曲线是不是一定存在?它 的密度曲线是否可以被非常准确地画出来? 2.图中阴影部分的面积表示什么?
频率 组距
0
ab
月均用水量/t
2.总体在范围(a,b)内取值的百分比
频率 组距
0
ab
月均用水量/t
1.实际上,尽管有些总体密度曲线是客观存在的, 但一般很难象函数图象那样准确地画出来,我们只 能用样本的频率分布对它进行估计,一般来说,样 本容量越大,这种估计就越精确
回忆:绘制频率分布直方图有哪几个步骤呢?
画频率分布直方图的步骤: 第一步: 求极差: (数据组中最大值与最小值的差距) 第二步: 决定组距与组数: (强调取整)
组距:指每个小组的两个端点的距离,组距
组数:将数据分组,当数据2组。
组数=
极差 组距
4.1 0.5
8.2
引入:某篮球运动员在某赛季各场比赛 的得分情况如下: 12,15,24,25,31,31,36,37,39, 44,49,50.
问题1:如何分析该运动员的整体水平 及发挥的稳定程度?
问题2:初中统计部分曾学过用什么来 反映总体的水平?用什么来考察稳定 程度?
在初中我们学过用平均数、众数和中 位数反映总体的水平,用方差考察稳定程 度。

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布



ቤተ መጻሕፍቲ ባይዱ
ii.组距:各组数据左右两各端点之间的距离。 (3)分组:各组数据所在区间取左闭右开区间,最后一个 区间取闭区间。 (4)填表:统计各组数据频数、计算频率,将频数和频率 填在表格相应空格内。 2、例题 (1)讲与练P36 类型一 画样本的频率分布直方图 (例1) (2 )讲与练P36 类型一 画样本的频率分布直方图 (变式训练1)
(2)将茎按由小到大的顺序排成一列,写在左侧或右侧; (3)将共茎的表示叶的数据按由小到大的顺序排成一行写 在茎的左侧。
3、注意 (1)对于重复出现的叶不能省略; (2)若有双叶则应对称,即左边的叶按由小到大的顺序排 列,则右边的叶则应按由大到小的顺序排列。 4、例题 (1)讲与练P37 类型三 茎叶图及其应用 (例3) (2)讲与练P37 类型三 茎叶图及其应用 (变式训练3) 四、课堂作业
三、频率分布直方图
1、概念:用直方图的形式来表示频率分布规律的方图叫频
率分布直方图
2、制作 (1)取一直角标架,将直角标架的横轴连续分成几段; (2)以各段为边做矩形,其中矩形的底表示组距,高表示
频率 组距
(3)在各矩形中的底和高所对应的轴相应位置标注相应数据。 3、意义
频率 (1)各矩形面积为频率与 组距
用样本的频率分布 估计总体的频率分布
一、基本概念
1、频数:将全部数据分成几组后,各组数据的个数叫这组数据的频数。
2、频率:各组数据的频数除以全部数据的商叫这组数据的频率。
二、频率分布表
1、画频率分布表的步骤 (1)求极差(极差是全部数据的最大值与最小值之差) (2)求组距和组数
极差 极差 极差 整数,则 组数 整数 ,则 组数 1 i.若 极差 ,若 组距 组距 组距 组距
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.1用样本的频率分布估计总体分布
[自我认知]:
1.在频率分布直方图中,小矩形的高表示 ( )
A.频率/样本容量
B.组距×频率
C.频率
D.频率/组距
2.频率分布直方图中,小长方形的面积等于 ( )
A.相应各组的频数
B.相应各组的频率
C.组数
D.组距
3.从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8人,其累计频率为0.4,则这样的样本容量是 ( )
A. 20人
B. 40人
C. 70人
D. 80人
4.研究统计问题的基本思想方法是 ( )
A.随机抽样
B.使用先进的科学计算器计算样本的频率等
C.用小概率事件理论控制生产工业过程
D.用样本估计总体
5.下列说法正确的是 ( )
A.样本的数据个数等于频数之和
B.扇形统计图可以告诉我们各部分的数量分别是多少
C.如果一组数据可以用扇形统计图表示,那么它一定可以用频数分布直方图表示
D.将频数分布直方图中小长方形上面一边的一个端点顺次连结起来,就可以得到频数折线图
6.一个容量为n 的样本,分成若干组,已知某组的频数和频率分别是40,0.125,则n 的值为
A. 640
B.320
C.240
D. 160 ( )
7.一个容量为20的样本数据,分组后组距为10,区间与频数分布如下:
(]10,20,2; (]20,30,3; (]30,40,4; (]40,50,5;(]50,60,4; (]60,70,2. 则样本在(],50-∞上的频率为 ( ) A. 120 B. 14 C.12 D.710
8已知样本:12,7,11,12,11,12,10,10,9,8,13,12,10,9,6,11,8,9,8,10,那么频率为0.25的样本的范围是 ( )
A. [)5.5,7.5
B. [)7.5,9.5
C. [)9.5,11.5
D. [)11.5,13.5
9.个容量为32的样本,已知某组样本的频率为0.125,则该组样本的频数为.
A. 2
B. 4
C. 6
D. 8 ( )
10.在抽查产品尺寸的过程中,将其尺寸分成若干组. [),a b 是其中的一组,抽查出的个体在该组上的频率为m,该组上的直方图的高为h,则||a b -= ( )
A. hm
B. m h
C. h m
D. h m + 班次 姓名
[课后练习]:
11.对50个求职者调查录用情况如下:12人录用在工厂;8人录用在商店;2人录用在市政公
司;3人录用在银行;25人没有被录用.那么工厂和银行录用求职者的总概率为________.
12.若1x ,2x ,…n x ,和1y ,2y ,…n y 的平均数分别是x 和y ,那么下各组的平均数各为多少。

①21x ,22x ,…2n x ②1x +1y ,2x +2y ,…n x +n y
③1x +a ,2x +a ,…n x +a (a 为常数)
13.为了了解中学生的身高情况,对育才中学同龄的50名男学生的身高进行了测量,结果如下:(单位:cm )
175 168 180 176 167 181 162 173 171 177
171 171 174 173 174 175 177 166 163 160
166 166 163 169 174 165 175 165 170 158
174 172 166 172 167 172 175 161 173 167
170 172 165 157 172 173 166 177 169 181
列出样本的频率分布表,画出频率分布直方图.
14.某中学高二(2)班甲、乙两名同学自高中以来每场数学考试成绩如下:
甲的得分:95,81,75,91,86,89,71,65,76,88,94,110,107;
乙的得分:83,86,93,99,88,130,98,114,98,79,101.
画出两人数学成绩茎叶图,请根据茎叶图对两人的成绩进行比较.
2.2.1用样本的频率分布估计总体分布
1.D
2.B
3.A
4.D
5.C
6.B
7.D
8.D 9.B 10.B 11. 0.3
12.①2x ②x y + ③x a +
13.在这个样本中,最大值为181,最小值为157,它们的差是24,可以取组距为4,分成7组,
频率分布直方图(略)
14.甲、乙两人数学成绩的茎叶图如下图:
甲 乙
5 6
5 6 1 7 9
8 9 6 1 8 6 3 8
4 1
5 9 3 9 8 8
7 10 3 1
0 11 4
从这个茎叶图上可看出,乙同学的得分情况是大致对称的,中位数是99;甲同学的得分情况除一个特殊得分外,也大致对称,中位数是89.因此乙同学发挥比较稳定,总体得分情况比甲同学好.。

相关文档
最新文档