高考一轮复习数学理
高考数学知识点总结(全而精-一轮复习必备)
高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=,则C s A= {0})A A ⊆A ⊆φB A ⊆A B ⊆C A C B B A ⊆⊆⊆,那么,+N③空集的补集是全集.④若集合A=集合B,则C B A=,C A B =C S(C A B)=D(注:C A B =).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若应是真命题.,则a+b = 5,成立,所以此命题为真.②.1或y = 2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若.4.集合运算:交、并、补.5.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.∅∅∅}⎩⎨⎧=-=+1323yxyxφ∅⇔⇔325≠≠≠+baba或,则且1≠x3≠y1≠∴yx且3≠+yx21≠≠yx且255xxx或,⇒{|,}{|}{,}A B x x A x BA B x x A x BA x U x A⇔∈∈⇔∈∈⇔∈∉U交:且并:或补:且C,,,,,;,;,.UA A A A U A UA B B C A C A B A A B B A B A A B B⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇CUA B A B A A B B A B U⊆⇔=⇔=⇔=C.;ABBAABBA==)()();()(CBACBACBACBA==)()()();()()(CABACBACABACBA==0-1律:等幂律:求补律:A∩C U A=φA∪C U A=U C U U=φ C Uφ=U反演律:C U(A∩B)= (C U A)∪(C U B) C U(A∪B)= (C U A)∩(C U B)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.基本公式:(3) card( U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.>∆0=∆0<∆二次函数cbxaxy++=2(0>a)的图象,,,A A A U A A U A UΦ=ΦΦ===.,AAAAAA==(1)()()()()(2)()()()()()()()()card A B card A card B card A Bcard A B C card A card B card Ccard A B card B C card C Acard A B C=+-=++---+x)0)((002211><>++++--aaxaxaxa nnnn原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x << ∅∅2.分式不等式的解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)的形式,(2)转化为整式不等式(组)3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
2023年高考数学(理科)一轮复习—— 任意角和弧度制及任意角的三角函数
考点二 弧度制及其应用
例 1 (经典母题)一扇形的圆心角 α=π3,半径 R=10 cm,求该扇形的面积. 解 由已知得 α=π3,R=10, ∴S 扇形=21α·R2=12×π3×102=503π(cm2).
索引
迁移 1 (变所求)若本例条件不变,求扇形的弧长及该弧所在弓形的面积.
解 l=α·R=π3×10=103π(cm),
索引
常用结论
1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦. 2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量
制必须一致,不可混用. 3.象限角
索引
4.轴线角
索引
诊断自测 1.思考辨析(在括号内打“√”或“×”)
(1)小于90°的角是锐角.( ×) (2)锐角是第一象限角,第一象限角也都是锐角.( × ) (3)角α的三角函数值与其终边上点P的位置无关.( √ ) (4)若α为第一象限角,则sin α+cos α>1.( √ )
索引
分层训练 巩固提升
FENCENGXUNLIAN GONGGUTISHENG
A级 基础巩固
1.下列与角94π的终边相同的角的表达式中正确的是( C )
解析 (1)锐角的取值范围是0,π2. (2)第一象限角不一定是锐角.
索引
2.(易错题)时间经过4h(时),时针转了___-__2_3π__弧度.
索引
3. 在 - 720° ~ 0° 范 围 内 , 所 有 与 角 α = 45° 终 边 相 同 的 角 β 构 成 的 集 合 为
_{_-__6__7_5_°__,___-__3_1_5_°___}_.
解析 设 P(x,y),由题设知 x=- 3,y=m, 所以 r2=|OP|2=(- 3)2+m2(O 为原点),即 r= 3+m2,
高考数学一轮复习 考点01 集合必刷题 理(含解析)-人教版高三全册数学试题
考点01 集合1.若集合A={-1,0,1},B={y|y=x2,x∈A},则A∩B=( )A.{0} B.{1}C.{0,1} D.{0,-1}【答案】C【解析】因为B={y|y=x2,x∈A}={0,1},所以A∩B={0,1}.2.设集合,集合,则()A. B. C. D.【答案】B【解析】集合=,集合,则。
故答案为:B.3.已知全集为整数集Z.若集合A={x|y=1-x,x∈Z},B={x|x2+2x>0,x∈Z},则A∩(∁Z B)=( ) A.{-2} B.{-1}C.[-2,0] D.{-2,-1,0}【答案】D【解析】由题意可知,集合A={x|x≤1,x∈Z},B={x|x>0或x<-2,x∈Z},故A∩(∁Z B)={-2,-1,0}.故选D.4.已知集合A={x|0<x≤6},B={x∈N|2x<33},则集合A∩B中的元素个数为( )A.6 B.5C.4 D.3【答案】B【解析】集合A={x|0<x≤6},B={x∈N|2x<33}={0,1,2,3,4,5},∴A∩B={1,2,3,4,5},∴A∩B中元素个数为5.故选B.5.已知集合,,则()A. B. C. D.【答案】A【解析】因为集合,,所以A∩B={0,1}.故答案为:A.6.若集合M={x||x|≤1},N={y|y=x2,|x|≤1},则( )A .M =NB .M ⊆NC .M ∩N =∅D .N ⊆M【答案】D【解析】∵M ={x ||x |≤1}={x |-1≤x ≤1},N ={y |y =x 2,|x |≤1}={y |0≤y ≤1},∴N ⊆M .故选D. 7.已知集合 ,,则( )A .B .C .D .【答案】C 【解析】由题意得,,.故选C.8.已知集合A ={1,a 2},B ={2a ,-1},若A ∩B ={4},则实数a 等于( ) A .-2 B .0或-2 C .0或2 D .2【答案】D【解析】因为A ∩B ={4},所以4∈A 且4∈B ,故⎩⎪⎨⎪⎧a 2=4,2a =4,a =2.故选D.9.已知集合,,则集合( )A .B .C .D .【答案】D 【解析】已知集合,,∴A∩B 中的元素满足:解得: 则A∩B=. 故选D.10.设全集U =R ,已知集合A ={x ||x |≤1},B ={x |log 2x ≤1},则(∁U A )∩B =( ) A .(0,1] B .[-1,1] C .(1,2]D .(-∞,-1]∪[1,2]【答案】C【解析】因为A={x||x|≤1}={x|-1≤x≤1},B={x|log2x≤1}={x|0<x≤2},所以∁U A={x|x>1或x<-1},则(∁U A)∩B=(1,2].11.已知全集U=R,集合A={0,1,2,3,4},B={x|x2-2x>0},则图中阴影部分表示的集合为( )A.{0,1,2} B.{1,2}C.{3,4} D.{0,3,4}【答案】A【解析】∵全集U=R,集合A={0,1,2,3,4},B={x|x2-2x>0}={x|x>2或x<0},∴∁U B={x|0≤x≤2},∴图中阴影部分表示的集合为A∩(∁U B)={0,1,2}.故选A.12.设集合M={x|x<4},集合N={x|x2-2x<0},则下列关系中正确的是( )A.M∩N=M B.M∪(∁R N)=MC.N∪(∁R M)=R D.M∩N=N【答案】D【解析】由题意可得N=(0,2),M=(-∞,4),N⊆M.故选D.13.设集合A={x|y=lg(-x2+x+2)},B={x|x-a>0}.若A⊆B,则实数a的取值X围是( ) A.(-∞,-1) B.(-∞,-1]C.(-∞,-2) D.(-∞,-2]【答案】B【解析】集合A={x|y=lg(-x2+x+2)}={x|-1<x<2},B={x|x-a>0}={x|x>a},因为A⊆B,所以a≤-1.14.已知,则()A. B.C. D.【答案】C【解析】由题可得则故选C.15.已知集合A={x|x<1},B={x|x2-x-6<0},则( )A.A∩B={x|x<1}B.A∪B=RC.A∪B={x|x<2}D.A∩B={x|-2<x<1}【答案】D【解析】集合A={x|x<1},B=x{x|x2-x-6<0}={x|-2<x<3},则A∩B={x|-2<x<1},A∪B={x|x <3}.故选D.16.设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值X围是( ) A.(-∞,1) B.(-∞,1]C.(1,+∞)D.[1,+∞)【答案】A【解析】∵U=R,集合A={x|x≥1}=[1,+∞),∴∁U A=(-∞,1),由B={x|x>a}=(a,+∞)以及(∁U A)∪B=R可知实数a的取值X围是(-∞,1).故选A.17.已知集合,集合,则A. B. C. D.【答案】A【解析】由题得A={x|-2<x<3},所以={x|x≤-2或x≥3},所以=.故答案为:A18.已知集合,,则∁A. B. C. D.【答案】A【解析】由,即,解得或,即,∁,解得,即,则∁,故选A.1.A ,B 为两个非空集合,定义集合A -B ={x |x ∈A 且x ∉B },若A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A -B =( ) A .{2} B .{1,2} C .{-2,1,2} D .{-2,-1,0}【答案】C【解析】∵A ,B 为两个非空集合,定义集合A -B ={x |x ∈A 且x ∉B },A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0}={x |-2<x <1},∴A -B ={-2,1,2}.故选C.20.对于任意两集合A ,B ,定义A -B ={x |x ∈A 且x ∉B },A *B =(A -B )∪(B -A ),记A ={y |y ≥0},B ={x |-3≤x ≤3},则A *B =________. 【答案】[-3,0)∪(3,+∞)【解析】由题意知A -B ={x |x >3},B -A ={x |-3≤x <0},所以A *B =[-3,0)∪(3,+∞). 21.设集合I ={x |-3<x <3,x ∈Z },A ={1,2},B ={-2,-1,2},则A ∩(∁I B )=________. 【答案】{1}【解析】∵集合I ={x |-3<x <3,x ∈Z }={-2,-1,0,1,2},A ={1,2},B ={-2,-1,2},∴∁I B ={0,1},则A ∩(∁I B )={1}.22.(2018某某红色七校联考)集合A ={x |x 2+x -6≤0},B ={y |y =x ,0≤x ≤4},则A ∩(∁R B )=________. 【答案】[-3,0)【解析】∵A ={x |x 2+x -6≤0}={x |-3≤x ≤2},B ={y |y =x ,0≤x ≤4}={y |0≤y ≤2},∴∁R B ={y |y <0或y >2},∴A ∩(∁R B )=[-3,0).23.已知集合A ={y |y 2-(a 2+a +1)y +a (a 2+1)>0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪ y =12x 2-x +52,0≤x ≤3.若A ∩B =∅,则实数a 的取值X 围是________. 【答案】(-∞,-3]∪[3,2]【解析】由题意可得A ={y |y <a 或y >a 2+1},B ={y |2≤y ≤4}.当A ∩B =∅时,⎩⎪⎨⎪⎧a 2+1≥4,a ≤2,∴3≤a ≤2或a ≤-3,∴a 的取值X 围是(-∞,-3]∪[3,2]. 24.已知集合,,则_________.【答案】【解析】因为,,所以,故{0,7},故填. 25.已知集合,.(1)若A∩B=,某某数m的值;(2)若,某某数m的取值X围.【答案】(1)2;(2)【解析】由已知得:,.(1)因为,所以,故,所以.(2).因为,或,所以或.所以的取值X围为.。
计数原理-备战高考数学(理)一轮复习考点
计数原理【命题趋势】两个基本计数原理是高考必考内容,有时会单独考查,有时会出现在解答题的过程之中,我们必须掌握.(1)理解分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.排列组合是高考中的必考内容,必须掌握.有时会是单独一道小题,有时会是在概率统计解答题中涉及,分值至少5分.(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式.(3)能解决简单的实际问题.二项式定理和排列组合在高考中一般交替考查,二者必出其一,二项式定理好拿分,熟练掌握即可.(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题.【重要考向】考向一分类加法、乘法计数原理考向二两个计数原理的综合应用考向三排列与组合的综合应用考向四二项展开式通项的应用考向一分类加法、乘法计数原理(1)分类加法计数原理的特点:①根据问题的特点能确定一个适合于它的分类标准.②完成这件事的任何一种方法必须属于某一类.(2)使用分类加法计数原理遵循的原则:有时分类的划分标准有多个,但不论是以哪一个为标准,都应遵循“标准要明确,不重不漏”的原则.(3)应用分类加法计数原理要注意的问题:①明确题目中所指的“完成一件事”是什么事,完成这件事可以有哪些办法,怎样才算是完成这件事.②完成这件事的n类方法是相互独立的,无论哪种方案中的哪种方法都可以单独完成这件事,而不需要再用到其他的方法.③确立恰当的分类标准,准确地对“这件事”进行分类,要求每一种方法必属于某一类方案,不同类方案的任意两种方法是不同的方法,也就是分类时必须既不重复也不遗漏. (4)应用分步乘法计数原理要注意的问题:①明确题目中所指的“完成一件事”是什么事,单独用题目中所给的某一步骤的某种方法是不能完成这件事的,也就是说必须要经过几步才能完成这件事.②完成这件事需要分成若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少哪一步骤,这件事都不可能完成.③根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步地去做,才能完成这件事,各步骤之间既不能重复也不能遗漏. (5)两个计数原理的区别与联系定义:若数列 {a n } 满足所有的项均由 ﹣1,1 构成且其中-1有m 个,1有p 个 (m +p ≥3) ,则称 {a n } 为“ (m,p) ﹣数列”.(1)a i ,a j ,a k (i <j <k) 为“ (3,4) ﹣数列” {a n } 中的任意三项,则使得 a i a j a k =1 的取法有多少种? (2)a i ,a j ,a k (i <j <k) 为“ (m,p) ﹣数列” {a n } 中的任意三项,则存在多少正整数 (m,p) 对使得 1≤m ≤p ≤100, 且 a i a j a k =1 的概率为 12 .【答案】 (1)解:三个数乘积为1有两种情况:“ ﹣1,﹣1,1 ”,“ 1,1,1 ”,其中“ ﹣1,﹣1,1 ”共有: C 32C 41=12 种, “ 1,1,1 ”共有: C 43=4 种,利用分类计数原理得:a i ,a j ,a k (i <j <k) 为“ (3,4) ﹣数列” {a n } 中的任意三项, 则使得 a i a j a k =1 的取法有: 12+4=16 种.(2)解:与(1)同理,“ ﹣1,﹣1,1 ”共有 C m 2C p 1种, “ 1,1,1 ”共有 C P 3 种,而在“ (m,p) ﹣数列”中任取三项共有 C m+p3种, 根据古典概型有:C m 2C p 1+C p 3C m+p3=12 ,再根据组合数的计算公式能得到: (p ﹣m)(p 2﹣3p ﹣2mp +m 2﹣3m ﹣2)=0 , ①p =m 时,应满足 {1≤m ≤p ≤100m +p ≥3p =m ,∴(m,p)=(k,k),k ∈{2,3,4,…,100} ,共 99 个,②p 2﹣3p ﹣2mp +m 2﹣3m ﹣2=0 时,应满足 {1<m ≤p <100m +p ≥3p 2−3p −2mp +m 2−3m −2=0 , 视 m 为常数,可解得 p =(2m+3)±√24m+12,∵m ≥1, ∴√2m +1≥5 , 根据 p ≥m 可知, p =(2m+3)+√24m+12,∵m ≥1 , ∴√2m +1≥5 , 根据 p ≥m 可知, p =(2m+3)+√24m+12,(否则 p ≤m ﹣1 ),下设 k =√2m +1 ,则由于 p 为正整数知 k 必为正整数, ∵1≤m ≤100 , ∴5≤k ≤49 ,化简上式关系式可以知道: m =k 2−124=(k−1)(k+1)24,∴k ﹣1,k +1 均为偶数,∴设k=2t+1,(t∈N∗),则2≤t≤24,∴m=k2−124=t(t+1)6,由于t,t+1中必存在偶数,∴只需t,t+1中存在数为3的倍数即可,∴t=2,3,5,6,8,9,11,…,23,24,∴k=5,11,13,…,47,49.检验:p=(2m+3)+√24m+12=(k−1)(k+1)24≤48+5024=100,符合题意,∴共有16个,综上所述:共有115个数对(m,p)符合题意.【考点】古典概型及其概率计算公式,分类加法计数原理,组合及组合数公式【解析】(1)易得使得a i a j a k=1的情况只有“ ﹣1,﹣1,1”,“ 1,1,1”两种,再根据组合的方法求解两种情况分别的情况数再求和即可.(2)易得“ ﹣1,﹣1,1”共有C m2C p1种,“ 1,1,1”共有C P3种.再根据古典概型的方法可知C m2C p1+C p3C m+p3=12,利用组合数的计算公式可得(p﹣m)(p2﹣3p﹣2mp+m2﹣3m﹣2)=0,当p=m时根据题意有(m,p)=(k,k),k∈{2,3,4,…,100},共99个;当p2﹣3p﹣2mp+m2﹣3m﹣2=0时求得p=(2m+3)±√24m+12,再根据1≤m≤p≤100,换元根据整除的方法求解满足的正整数对即可.某商场举行元旦促销回馈活动,凡购物满1000元,即可参与抽奖活动,抽奖规则如下:在一个不透明的口袋中装有编号为1、2、3、4、5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次(每次摸出的小球均不放回口袋),编号依次作为一个三位数的个位、十位、百位,若三位数是奇数,则奖励50元,若三位数是偶数,则奖励100m元(m为三位数的百位上的数字,如三位数为234,则奖励100×2= 200元).(1)求抽奖者在一次抽奖中所得三位数是奇数的概率;(2)求抽奖者在一次抽奖中获奖金额X的概率分布与期望E(X).【答案】(1)解:因为总的基本事件个数n1=A53=60,摸到三位数是奇数的事件数n2=A31A42=36,所以P1=3660=35;所以摸到三位数是奇数的概率35.(2)解:获奖金额 X 的可能取值为50、100、200、300、400、500, P(X =50)=35 , P(X =100)=1×3×260=110, P(X =200)=1×3×160=120,P(X =300)=1×3×260=110 , P(X =400)=1×3×160=120 , P(X =500)=1×3×260=110 ,获奖金额 X 的概率分布为均值 E(X)=50×35+100×110+200×120+300×110+400×120+500×110=150 元. 所以期望是150元.【考点】古典概型及其概率计算公式,离散型随机变量及其分布列,离散型随机变量的期望与方差,分步乘法计数原理【解析】(1)首先利用排列求出摸三次的总的基本事件个数: n 1=A 53=60 ;然后利用分步计数原理求出个位的排法、十位百位的排法求出三位数是奇数的基本事件个数,再利用古典概型的概率计算公式即可求解.(2)获奖金额X 的可能取值为50、100、200、300、400、500,求出各个随机变量的分布列,利用均值公式即可求解考向二 两个计数原理的综合应用(1)利用两个原理解决涂色问题解决着色问题主要有两种思路:一是按位置考虑,关键是处理好相交线端点的颜色问题;二是按使用颜色的种数考虑,关键是正确判断颜色的种数.解决此类应用题,一般优先完成彼此相邻的三部分或两部分,再分类完成其余部分.要切实做到合理分类,正确分步,才能正确地解决问题. (2)利用两个原理解决集合问题解决集合问题时,常以有特殊要求的集合为标准进行分类,常用的结论有123,,,,{}n a a a a 的子集有2n 个,真子集有21n个.对有 n(n ≥4) 个元素的总体 {1,2,3,⋅⋅⋅,n} 进行抽样,先将总体分成两个子总体 {1,2,3,⋅⋅⋅,m} 和 {m +1,m +2,⋅⋅⋅,n} ( m 是给定的正整数,且 2≤m ≤n −2 ),再从每个子总体中各随机抽取2个元素组成样本.用 P ij 表示元素 i 和 j 同时出现在样本中的概率. (1)求 P 1n 的表达式(用m ,n 表示); (2)求所有 P ij (1≤i <j ≤n) 的和.【答案】 (1)解:由题意,从m 和 m −m 个式子中随机抽取2个,分别有 C m 2 和 C n−m2 个基本事件, 所以 P 1n 的表达式为 P 1n =m−1C m2⋅n−m−1C n−m2=4m(n−m) .(2)解:当 i,j 都在 {1,2,⋅⋅⋅,m} 中时,可得 P ij =1C m2 ,而从 {1,2,⋅⋅⋅,m} 中选两个数的不同方法数为 C m 2 ,则 P ij 的和为1;当 i,j 同时在 {m +1,m +2,⋅⋅⋅,n} 中时,同理可得 P ij 的和为1; 当 i 在 {1,2,⋅⋅⋅,m} 中, j 在 {m +1,m +2,⋅⋅⋅,n} 中时, P ij =4m(n−m) ,而从 {1,2,⋅⋅⋅,m} 中选取一个数,从 {m +1,m +2,⋅⋅⋅,n} 中选一个数的不同方法数为 m(n −m) , 则 P ij 的和为4,所以所有 P ij 的和为 1+1+4=6 .【考点】相互独立事件的概率乘法公式,古典概型及其概率计算公式,计数原理的应用,组合及组合数公式【解析】(1)根据组合数的公式,以及古典概型的概率计算公式和相互独立事件的概率计算公式,即可求解;(2)当 i,j 都在 {1,2,⋅⋅⋅,m} 中时求得 P ij 的和为1,当 i,j 同时在 {m +1,m +2,⋅⋅⋅,n} 中时,求得 P ij 的和为1,当 i 在 {1,2,⋅⋅⋅,m} 中, j 在 {m +1,m +2,⋅⋅⋅,n} 中时得到 P ij 的和为4,即可求解.6男4女站成一排,求满足下列条件的排法各有多少种?(用式子表达) (1)男甲必排在首位; (2)男甲、男乙必排在正中间; (3)男甲不在首位,男乙不在末位; (4)男甲、男乙必排在一起; (5)4名女生排在一起; (6)任何两个女生都不得相邻; (7)男生甲、乙、丙顺序一定.【答案】 解:(1)男甲必排在首位,则其他人任意排,故有A 99种, (2)男甲、男乙必排在正中间,则其他人任意排,故有A 22A 77种,(3)男甲不在首位,男乙不在末位,利用间接法,故有A 1010﹣2A 99+A 88种,(4)男甲、男乙必排在一起,利用捆绑法,把甲乙两人捆绑在一起看作一个复合元素和另外全排,故有A 22A 88种,(5)4名女生排在一起,利用捆绑法,把4名女生捆绑在一起看作一个复合元素和另外全排,故有A 44A 77种,(6)任何两个女生都不得相邻,利用插空法,故有A 66A 74种, (7)男生甲、乙、丙顺序一定,利用定序法,A 1010A 33=A 107种【考点】计数原理的应用【解析】(1)男甲必排在首位,则其他人任意排,问题得以解决. (2)男甲、男乙必排在正中间,则其他人任意排,问题得以解决, (3)男甲不在首位,男乙不在末位,利用间接法,故问题得以解决, (4)男甲、男乙必排在一起,利用捆绑法,问题得以解决, (5)4名女生排在一起,利用捆绑法,问题得以解决, (6)任何两个女生都不得相邻,利用插空法,问题得以解决, (7)男生甲、乙、丙顺序一定,利用定序法,问题得以解决.考向三 排列与组合的综合应用先选后排法是解答排列、组合应用问题的根本方法,利用先选后排法解答问题只需要用三步即可完成. 第一步:选元素,即选出符合条件的元素;第二步:进行排列,即把选出的元素按要求进行排列;第三步:计算总数,即根据分步乘法计数原理、分类加法计数原理计算方法总数.7名学生,按照不同的要求站成一排,求下列不同的排队方案有多少种. (1)甲、乙两人必须站两端; (2)甲、乙两人必须相邻.【答案】 (1)甲、乙为特殊元素,先将他们排在两头位置,有 A 22 种站法,其余5人全排列,有 A 55种站法.故共 A 22⋅A 55 有=240种不同站法.(2)(捆绑法):把甲、乙两人看成一个元素,首先与其余5人相当于六个元素进行全排列,然后甲、乙两人再进行排列,所以共 A 66⋅A 22 有=1440种站法.【考点】排列、组合的实际应用,排列、组合及简单计数问题 【解析】(1)运用捆绑法直接求解即可; (2)运用特殊元素分析法直接求解即可.一个笼子里关着10只猫,其中有7只白猫,3只黑猫.把笼门打开一个小口,使得每次只能钻出1只猫.猫争先恐后地往外钻.如果 10 只猫都钻出了笼子,以X 表示7只白猫被3只黑猫所隔成的段数.例如,在出笼顺序为“□■□□□□■□□■”中,则 X =3 . (1)求三只黑猫挨在一起出笼的概率; (2)求X 的分布列和数学期望.【答案】 (1)解:设“三只黑猫挨在一起出笼”为事件A ,将三只黑猫捆绑在一起,与其它7只白猫形成 8 个元素, 所以, P(A)=A 33A 88A 1010=115,因此,三只黑猫挨在一起出笼的概率为 115 ;(2)解:由题意可知,随机变量X 的取值为1、2、3、4, 其中 X =1 时,7只白猫相邻,则 P(X =1)=A 77A 44A 1010=130 ,P(X =2)=(A 32C 21C 21C 61+6A 33+A 32C 61)A 77A 1010=310 ,P(X =3)=(A 31C 21A 62+A 32A 62)A 77A 1010=12 ;P(X =4)=A 63A 77A 1010=16, 所以,随机变量 X 的分布列如下表所示:因此, E(X)=1×130+2×310+3×12+4×16=145.【考点】古典概型及其概率计算公式,离散型随机变量的期望与方差,排列及排列数公式,排列、组合的实际应用【解析】(1)利用捆绑法计算三只黑猫挨在一起出笼的情况种数,再利用古典概型的概率公式可求得所求事件的概率;(2)由题意可知,随机变量X 的可能取值有1、2、3、4,利用排列组合思想求出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,利用数学期望公式可求得随机变量X 的数学期望.考向四 二项展开式通项的应用求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(0,1,2,,k n ).(1)第m 项::此时k +1=m ,直接代入通项.(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程. (3)有理项:令通项中“变元”的幂指数为整数建立方程.已知 f(n)=a 1+a 2C n 1+⋯+arC n r−1+⋯a n+1C n n(n ∈N ∗).(1)若 a n =n −1 ,求 f(n) ;(2)若 a n =3n−1 ,求 f(20) 除以5的余数【答案】 (1)因为 f(n)=0C n 0+1⋅C n 1+2C n 2+3⋅C n 3⋯+nC n n . 所以 f(n)=nC n n +(n −1)C n n−1+(n −2)C n n−2+⋯+1⋅C n 1+0⋅C n0 2f(n)=nC n 0+nC n 1+nC n 2+⋯+nC n n =n(C n 0+C n 1+C n 2+⋯+C n n)=n ⋅2n ,∴f(n)=n ⋅2n−1(2)因为 f(n)=30C n 0+31C n 1+32C n 2+⋯+3n C n n =(1+3)n =4n .f(20)=420=(5−1)20=C 200520−C 201519+C 202518−⋯+C 201852−C 201951+C 202050 除以5余数为1,所以 f(20) 除以5的余数为1. 【考点】二项式系数的性质,二项式定理的应用【解析】(1) 因为f(n)=a 1+a 2C n 1+⋯+arC n r−1+⋯a n+1C n n(n ∈N ∗),再结合a n =n −1 , 得出f(n)=0C n 0+1⋅C n 1+2C n 2+3⋅C n 3⋯+nC n n ,再利用倒序求和法,所以 f(n)=nC n n +(n −1)C n n−1+(n −2)C n n−2+⋯+1⋅C n 1+0⋅C n 0 , 再利用两式求和法结合二项式的系数的性质,得出 f(n) 。
高考数学理一轮复习 X1-4正态分布、线性回归精品课件
备选例题1 设随机变量ξ服从正态分布:ξ~ N(1,4),试求:
(1)P(0<ξ≤2); (2)求常数C,使P(ξ≤C)=32·P(ξ>C).
参考数据:Φ(0)=0.5,Φ(1)=0.8413,Φ(2) =0.9772,Φ(0.5)=0.6915,Φ(1.88)= 0.9697,Φ(3)=0.9987.
2.小概率事件是指事件发生的概率很小的事, 通常认为这些情况在一次试验中几乎是不可 能发生的.
3.统计中假设检验的基本思想:根据小概率 事件在一次试验中几乎不可能发生的原理和 从总体中抽测的个体的数值,对事先所作的 统计假设作出判断,是拒绝假设,还是接受 假设.
4.利用线性回归方程,可由一个变量的值预 测或控制另一个变量的值.借助计算器,特 别是含统计的计算器,能简化手工的计算, 迅速得出正确结果.
(函数Φ(x0)实际上是正态总体N(0,1)的累积分
布函数),即Φ(x0)=
.
(5)两个重要公式:ⅰ.Φ(-x)=1Φ(x)
-
;
Φ(a)
ⅱ.P(a<ξ<b)=Φ(b)-
. 小于
(6)对于任一正态分布总体N(μ,σ2)来说,取
值 x的概率为F(x)=Φ(
).
(7)假设检验的基本思想
ⅰ.提出统计假设,如假设随机变量服从正态 分布等;
5.“回归”和“相关”含义是不同的:如果 两个变量中的一个变量是人为可以控制、非 随机的,另一变量的变化是随机的且随着控 制变量的变化而变化,则这两变量间的关系 就称为回归关系;若两个变量都是随机的, 则称它们之间的关系为相关关系,在本教材 中,两者不加区别.
方法规律·归纳
题型 一
正态分布的基本运算
思维 提示
①P(x<x0)=Φ(x0); ②Φ(x0)=1-Φ(-x0);
高考理科数学一轮复习专题训练:数列(含详细答案解析)
B . 3 2.在正项等比数列{a }中,已知 a 4 = 2 , a = ,则 a 5 的值为( 8= 2 , a = ,可得 8 q 4 = 8 = ,又因为 q > 0 ,所以 q = 1 2 2127B .35063C .28051D . 3502第 7 单元 数列(基础篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的前 n 项和为 S n ,若 a 1=12,S 5=90,则等差数列{a n }公差 d =()A .2【答案】C2 C .3D .4【解析】∵a =12,S =90,∴ 5 ⨯12 + 1 5 5 ⨯ 4 2d = 90 ,解得 d=3,故选 C .n 8 1 )1 1 A . B . - C . -1 D .14 4【答案】D【解析】由题意,正项等比数列{a }中,且 a n 48 1 a 1 a 16 41,则 a = a ⋅ q = 2 ⨯ = 1 ,故选 D .5 43.在等差数列{a n}中, a 5+ a = 40 ,则 a + a + a = ( ) 13 8 9 10A .72B .60C .48D .36【答案】B【解析】根据等差数列的性质可知: a 5 + a 13 = 40 ⇒ 2a 9 = 40 ⇒ a 9 = 20 ,a + a + a = 2a + a = 3a = 60 ,故本题选 B .8 9109994.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”.其大意:现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7 天,共走了 700 里,则这匹马第 7 天所走的路程等于()A .700里里 里【答案】A127里【解析】设马每天所走的路程是 a 1, a 2 ,.....a 7 ,是公比为1的等比数列,a 1 - ( )7 ⎪a = a q 6= 7005.已知等差数列{a n } 的前 n 项和 S n 有最大值,且 a=10(a +a )2= 5(a + a ) = 5(a + a ) > 0 , S =2 = 11a < 0 , (a + 2d - 1)2 = (a + d - 1)(a + 4d - 1) ⎩ d = 2这些项的和为 700, S = 7 ⎛ 1 ⎫ 1 ⎝ 2 ⎭1 - 12 = 700 ⇒ a =1 64 ⨯ 700 127 ,7 1 127 ,故答案为 A .a 5< -1 ,则满足 S 6n> 0 的最大正整数 n 的值为()A .6B .7C .10D .12【答案】C【解析】设等差数列{a n } 的公差为 d ,因为等差数列{a n } 的前 n 项和 S n 有最大值,所以 d < 0 ,a又 a 5 < -1 ,所以 a 5 > 0 , a 6 < 0 ,且 a 5 + a 6 > 0 ,6 所以 S1 101 10 5 6 11 所以满足 S n > 0 的最大正整数 n 的值为 10.11(a + a )1 1166.已知等差数列{a n}的公差不为零, Sn为其前 n 项和, S 3 = 9 ,且 a 2 - 1 , a 3 - 1, a 5 - 1构成等比数列,则 S 5 = ( )A .15B . -15C .30D .25【答案】D【解析】设等差数列{a n}的公差为 d (d ≠ 0),⎧⎪3a + 3d = 9⎧a = 1 由题意 ⎨ 1 ,解得 ⎨ 1 ⎪⎩ 1 1 1.∴ S = 5 ⨯1 +5 5 ⨯ 4 ⨯ 22 = 25 .故选 D .7.在等差数列{a n } 中, a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,则数列{a n } 的前 11 项和等于(A .66B .132C . -66D . -132【答案】D)S = 11⨯ (a + a ) 2 2 2 = 15 ,解得 n = 5 ,( )nC . a = 3n -1D . a =3n【解析】因为 a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,所以 a 3 + a 9 = -24 ,又 a 3 + a 9 = -24 = 2a 6 ,所以 a 6 = -12 ,11⨯ 2a1 11 = 6 = -132 ,故选 D . 118.我国南宋数学家杨辉 1261 年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为 2n -1 ,若去除所有为 1 的项,依次构成数列 2,3,3,4,6,4,5,10,10,5,…,则此数列的前 15 项和为()A .110B .114C .124D .125【答案】B【解析】由题意, n 次二项式系数对应的杨辉三角形的第 n +1行, 令 x = 1 ,可得二项展开式的二项式系数的和 2n ,其中第 1 行为 2 0 ,第 2 行为 21 ,第 3 行为 22 ,L L 以此类推,即每一行的数字之和构成首项为 1,公比为 2 的对边数列,则杨辉三角形中前 n 行的数字之和为 S = n 1- 2n1- 2 = 2n - 1,若除去所有为 1 的项,则剩下的每一行的数字的个数为1,2,3, 4,L ,可以看成构成一个首项为 1,公差为 2 的等差数列,则T =n n (n + 1)2 ,令 n (n + 1)所以前 15 项的和表示前 7 行的数列之和,减去所有的 1,即 27 - 1 - 13 = 114 ,即前 15 项的数字之和为 114,故选 B .9.已知数列{a }的前 n 项和为 S nn,满足 2S n =3a n -1 ,则通项公式 a n 等于()A . a = 2n- 1n【答案】CB . a= 2nn n: , + , + + , + + + , ,那么数列 {b }= ⎧⎨ 1 ⎩ a an n +1 ⎭n + 1 ⎭C . 4 ⨯ ⎝ 2 n + 1 ⎭D .⎝ 1 + 2 + ⋅⋅⋅ + n n2 a an (n + 1) ⎝ n n + 1 ⎭ = = = 4 ⨯ - ⎪ , ∴ S = 4 ⨯ 1 - + - + - + ⋅⋅⋅ + - = 4 ⨯ 1 - ⎪ 2 2 3 3 4 n n + 1 ⎭ ⎝ ⎝⎪ , 1 1 ⎫【解析】当 n = 1 时, 2S 1 = 3a 1 -1 ,∴ a 1 = 1 ,当 n ≥ 2 且 n ∈ N * 时, 2S n -1 = 3a n -1 - 1 ,则 2S n - 2Sn -1 = 2a n = 3a n - 1 - 3a n -1 + 1 = 3a n - 3a n -1 ,即 a n = 3an -1,∴ 数列 {a }是以1 为首项, 3 为公比的等比数列∴ a nn= 3n -1 ,本题正确选项 C . 10.已知数列 满足,且 ,则( )A .B .C .D .【答案】B【解析】利用排除法,因为,当当当当时,时,时,时, ,排除 A ;,B 符合题意;,排除 C ;,排除 D ,故选 B .11.已知数列为()1 12 1 23 1 2 34 2 3 3 4 4 45 5 5 5⋯ n ⎫ ⎬ 前 项和A .1 - 1 ⎛ n + 1B . 4 ⨯ 1 - 1 ⎫ ⎛ 1 ⎪ - 1 ⎫⎪1 1-2 n + 1【答案】B【解析】由题意可知: a =nn (n + 1)= = , n + 1 n + 1 2∴ b = 1n n n +11 4 ⎛ 1 1 ⎫ n n + 1 ⋅2 2⎛ 1 1 1 1 1 ⎛ n本题正确选项 B .1 ⎫n + 1 ⎭12.已知数列{a }满足递推关系: a , a = ,则 a 2017= (12016B . 12018D . 1=a 2 -= 1 . ⎩ a∴ 1=1}满足 a 2 q ,可设三数为 , a , aq ,可得 ⎪⎨ a⎪ q 求出 ⎨ ,公比 q 的值为 1.=3an n +1 = a 1 n a + 12 n)A .12017C .12019【答案】C【解析】∵ ana + 1 n1, a = ,∴ 1 1 1 a a n +1 n⎧ 1 ⎫∴数列 ⎨ ⎬ 是等差数列,首项为 2,公差为 1.n ⎭a2017= 2 + 2016 = 2018 ,则 a2018 .故选 C .第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知等比数列{a n 1 = 12 ,且 a 2a 4 = 4(a3 - 1) ,则 a 5 = _______.【答案】8【解析】∵ a 2a 4 = 4(a 3 - 1) ,∴ a 3 = 4(a 3 -1) ,则 a 3 = 2 ,∴ a = 5 a 2 3 = a122 1 2= 8 ,故答案为 8.14.若三数成等比数列,其积为 8,首末两数之和为 4,则公比 q 的值为_______.【答案】1【解析】三数成等比数列,设公比为⎧a = 2⎩ q = 1⎧ a3 = 8 a q + aq =4 ⎩,15.在数列 {an}中,a 1= 1 , an 3 + a n(n ∈ N *)猜想数列的通项公式为________.=3a4 3 + a 53 + a 6 3a 3a 32 数列的通项公式为 a = 3n + 2 n + 2+ = (m + n) + ⎪ = 10 + + ⎪ ≥ 10 + 2 ⋅ ⎪⎪ = 2 , n m ⎭ 8 ⎝ n m ⎭【答案】3n + 2【解析】由 an 3 + a n, a = 1 ,可得 a = 1 2 3a 1 3 + a 13 3 3= , a = = , a == ,……,∴ 猜想 3 4 2 33,本题正确结果 .n16.已知正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,若存在两项 a m , a n ,使得 8 a m a n = a 1 ,则9 1+ 的最小值 mn为__________.【答案】2【解析】Q 正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,∴ 2a 1q 4 +a 1q 3 =a 1q 2 ,整理得 2q 2 +q - 1 = 0 ,又 q > 0 ,解得 q = 12,Q 存在两项 a , a 使得 8 a ⋅ a = a ,∴ 64a 2 q m +n -2 = a 2 ,整理得 m + n = 8 ,m nmn111∴则 9 1 1 ⎛ 9 1 ⎫ 1 ⎛ m 9n ⎫ 1 ⎛ m 9n ⎫ m n 8 ⎝ m n ⎭ 8 ⎝9 1 m 9n+ 的最小值为 2,当且仅当 = 取等号,但此时 m , n ∉ N * .m n n m又 m + n = 8 ,所以只有当 m = 6 , n = 2 时,取得最小值是 2.故答案为 2.三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.(10 分)已知等差数列{a n(1)求 {a}的通项公式;n}的公差不为 0, a 1= 3 ,且 a , a , a 成等比数列.2 4 7(2)求 a 2 + a 4 + a 6 + L + a 2n .【答案】(1) a n = n + 2 ;(2) n 2 + 3n .【解析】(1)Q a 2 , a 4 , a 7成等比数列,∴a42= a a ,2 7即 (a 1 + 3d )2 = (a 1 + d )(a 1 + 6d ) ,化简得 (a 1 - 3d )d = 0 ,∵公差 d ≠ 0 ,∴ a 1 = 3d ,6=n (a +a ) (2)若b= 4 { ⎪ 12 由题意得 ⎨,则 ⎨ , ⎩ 7 ⎪(a + 6d )2 = (a + d )(a + 21d )⎩ 1化简得 ⎨⎧a + 2d = 7(2)证明: b = 42n (2n + 4) n (n + 2) 2 ⎝ n n + 2 ⎭ - + - + - + L +⎪1 + - - = - ⎪ < . ⎪Q a = 3 ,∴ d = 1,∴ a = a + (n - 1)d = n + 2 .1 n1(2)由(1)知 a 2n = 2n + 2 ,故{a 2n } 是首项为 4、公差为 2 的等差数列,所以 a + a + a + L + a2 4 6 n (4 + 2n + 2)2 2n = = n 2 + 3n . 2 218.(12 分)已知公差不为零的等差数列{a n } 满足 S 5 = 35 ,且 a 2 , a 7 , a 22 成等比数列.(1)求数列{a n } 的通项公式;n nn(a - 1)(a + 3) ,且数列 b n }的前 n 项和为 T n ,求证: T < 3n 4.【答案】(1) a n = 2n + 1;(2)见详解.【解析】(1)设等差数列{a n } 的公差为 d ( d ≠ 0 ),⎧ 5 ⨯ 4⎧S = 355a + d = 35 5a 2 = a a2 221 11 ⎩2a 1 = 3d ⎧a = 3 ,解得 ⎨ 1⎩d = 2,所以 a = 3 + 2 (n -1) = 2n +1. nn nn(a -1)(a + 3) =4 11⎛1 1 ⎫ = = - ⎪ ,所以 T = n 1 ⎛ 1 1 1 1 1 1 1 1 1 1 ⎫- + - 2 ⎝ 1 3 2 4 3 5 n - 1 n + 1 n n + 2 ⎭= 1 ⎛ 1 1 1 ⎫ 3 1 ⎛ 1 1 ⎫ 3 + 2 ⎝ 2 n + 1 n + 2 ⎭ 4 2 ⎝ n + 1 n + 2 ⎭ 419.(12 分)已知数列{a n}的前 n 项和为 Sn且 S = 2a - 1 (n ∈ N * ) .n n(1)求数列{a n}的通项公式;(2)求数列{na n}的前 n 项和 T n.【答案】(1) a = 2n- 1 ;(2) T = n ⋅ 2n - 2n + 1 .nn【解析】(1)因为 S = 2a - 1 ,当 n ≥ 2 时, S = 2a - 1 ,7= 2a + 1 , n ∈ N * .+1),数列 ⎨ 15 ≤ T n < ; 即 a ∴ 数列 {a }的通项公式为 a = 2n - 1 n ∈ N * .(2n + 1)(2n + 3) 2⎝ 2n + 1 2n + 3⎪⎭ , - ⎪ + - ⎪ +⋅⋅⋅+⎪⎥ 2 ⎢⎣⎝ 3 5 ⎭ ⎝ 5 7 ⎭ ⎝ 2n + 2n + 3 ⎭⎦ 6 4n + 6整理可得 a n = 2a n -1 ,Q a = S = 2a - 1 ,解得 a = 1 ,1 111所以数列 {a n}为首项为1 ,公比为 2 的等比数列,∴a = 2n -1 .n(2)由题意可得:T = 1⨯ 20 + 2 ⨯ 21 + ⋅⋅⋅ + n ⋅ 2n ,n所以 2T = 1⨯ 21 + 2 ⨯ 22 + ⋅⋅⋅ + (n - 1)2n -1 + n ⋅ 2n ,n两式相减可得 -T = 1 + 21 + 22 + ⋅⋅⋅+ 2n -1 - n ⋅ 2n = n∴ T = n ⋅ 2n - 2n + 1 .n1 - 2n 1 - 2- n ⋅ 2n = 2n - 1 - n ⋅ 2n ,20.(12 分)已知数列{a n}满足 a 1= 1 , an +1n(1)求证数列{a n +1}是等比数列,并求数列{a n } 的通项公式;(2)设 b = log (a n 2 2n +1 ⎧ 1 ⎫ 1 1b b ⎬ 的前 n 项和 T n ,求证:6 ⎩ n n +1 ⎭.【答案】(1)证明见解析, a = 2n - 1(n ∈ N * )(2)见解析. n【解析】(1)由 an +1 = 2a n + 1 ,得 a n +1 + 1 = 2 (a + 1),n+ 1n +1 a + 1n= 2 ,且 a + 1 = 2 ,1∴ 数列 {a +1}是以 2 为首项, 2 为公比的等比数列,n∴ a + 1 = 2 ⨯ 2n -1 = 2n ,n( )nn(2)由(1)得: b = logn2(a2n +1+ 1) = log (22n +1- 1 + 1)= 2n + 1 ,2∴1b bn n +11 1 ⎛ 1 1 ⎫ = = -∴T = n1 ⎡⎛ 1 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫⎤ 1 1 - = - (n ∈ N * ),8又 0 < 1即 1n (2)设数列满足 b = a sin a π2的前 项和 .⎪⎩n,2 3 L 2 3 L 2 (a + 4) = S + S 2a = d + 4 d = 2 ⎪ ⎩= asin n π + ⎪ = a cos (n π ) , 2 ⎭ ⎝n +1,2n -1,⎪⎩n, 2 3 L 2 3 L a ⋅ a1 1 1 1 1 1 1≤ ,∴- ≤- < 0 ,∴ ≤ - < ,4n + 6 10 10 4n + 6 15 6 4n + 6 61≤ T < .15 621.(12 分)已知等差数列的前 项和为 ,且 是 与 的等差中项.(1)求的通项公式;n ,求n n【答案】(1)⎧⎪- (n + 2), ;(2) T = ⎨n n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .⎧a = 7⎧a + 2d = 7 ⎧a = 3 【解析】(1)由条件,得 ⎨ 3 ,即 ⎨ 1 , ⎨ 1⎪715⎩1⎩,所以{a n }的通项公式是(2)由(1)知, b = a sinnn.(2n + 1)π 2n n⎛ π ⎫(1)当 n = 2k -1 (k =1,2,3,…)即 n 为奇数时, b = -a , b nnn +1= aT = -a + a - a + L + a n 1 2 3 n -1 - a = -a + (-2) n - 1= -n - 2 ;n 1(2)当 n = 2k (k =1,2,3,…):即 n 为偶数时, b = a , bnnn -1= -aT = -a + a - a +⋯- a n 1 2 3 n -1+ a = 2 ⋅ n n 2= n ,⎧⎪- (n + 2), 综上所述, T = ⎨n22.(12 分)设正项数列n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .的前 n 项和为 ,已知 .(1)求证:数列 是等差数列,并求其通项公式;(2)设数列的前 n 项和为 ,且 b = 4n nn +1,若对任意 都成立,求实数 的取值范围.9(2)由(1)可得 b = 1 n (n + 1) n n + 1∴ T = 1 - ⎪ + - ⎪ + L + - ⎛ 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫1 n = 1 -= , ⎪ 2 ⎭ ⎝ 2 3 ⎭⎝ n n + 1 ⎭n + 1 n + 1⎝,即 nλ < n + (-1)n ⋅ 2 对任意⎢⎣ ⎥⎦n 恒成立,令 f (n ) = (n + 2)(n + 1)Q f (n + 1)- f (n ) = n (n + 1)- 2②当 为奇数时, λ < (n - 2)(n + 1)又 (n - 2)(n + 1)= n - - 1 ,易知:f (n ) = n - 在【答案】(1)见证明,【解析】(1)证明:∵;(2),且.,当当即时,时,有,解得 .,即.,于是,即.∵ ,∴为常数,∴数列是 为首项, 为公差的等差数列,∴.1 1= - ,nnn + 1都成立⎡ n (n + 1)+ (-1)n ⋅ 2 (n + 1)⎤⇔ λ <⎢⎥ nmin(n ∈ N *),①当 为偶数时, λ < (n + 2)(n + 1) = n + 2+ 3 ,n nn (n + 1) > 0 ,在 上为增函数,;n 恒成立,2 2 n n n为增函数,,102⨯ 4 ⨯ 3 = 0 ⎧a = -3 ⎪S 4 = 4a 1 + ⎪⎩a = a + 4d = 516 4⎩q3 (a + a + a ) = 120 ∴由①②可知:,综上所述 的取值范围为.第 7 单元 数列(提高篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.记 S 为等差数列{a } 的前 n 项和.已知 S = 0 , a = 5 ,则()n n45A . a n = 2n - 5B . a n = 3n - 10C . S = 2n 2 - 8nD . S = 1n nn 2 - 2n【答案】A2.已知等比数列{a }中, a n 3 ⋅ a = 20 , a = 4 ,则 a 的值是( )13 6 10A .16B .14C .6D .5【答案】D【解析】由等比数列性质可知 a ⋅ a = a 2 = 20 ,3138由 a 6 = 4 ,得 q 4= a 2 8 = a 2620 5= ,∴ a = a q 4 = 5 ,本题正确选项 D .10 63.等比数列{a } 中, a + a + a = 30 , a + a + a = 120 ,则 a + a + a = ( )n123456789A .240B .±240C .480D .±480【答案】C【解析】设等比数列{a } 中的公比为 q ,由 a + a + a = 30 , a + a + a = 120 ,n 1 2 3 4 5 6⎧ 得 ⎨a + a + a = 301 2 31 2 3,解得 q 3 = 4 ,∴ a + a + a = q 3 (a + a + a ) = 480.7 8 9 4 5 6112 , N = 4.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9 填入3 ⨯ 3 的方格内,使三行,三列和两条对角线上的三个数字之和都等于 15.一般地,将连续的正整数1,2,3,L , n 2 填入 n ⨯ n 个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记 n 阶幻方的对角线上的数字之和为 N n ,如图三阶幻方的 N 3 = 15 ,那么 N 9 的值为()A .369B .321C .45D .41【答案】A【解析】根据题意可知,幻方对角线上的数成等差数列,根据等差数列的性质可知对角线的两个数相加正好等于1 + n 2,根据等差数列的求和公式 S = n (1+ n 2 ) 9 9 ⨯ (1+ 92 ) 2 = 369 ,故选 A .5.已知 1, a 1 , a 2 ,9 四个实数成等差数列,1, b 1 , b 2 , b 3 ,9 五个数成等比数列,则b 2 (a 2 - a 1 ) = ( A .8 B .-8 C .±8 D .98【答案】A)【解析】由 1, a 1 , a 2 ,9 成等差数列,得公差 d = a 2 - a 1 = 9 - 1 84 - 1 = 3 ,由 1, b , b , b ,9 成等比数列,得 b 2 = 1⨯ 9 ,∴ b = ±3 ,12322当 b = -3 时,1, b , -3 成等比数列,此时 b 2 = 1⨯ (-3) 无解,2 11所以 b = 3 ,∴ b (a - a 2 2 2 1 ) = 3 ⨯ 8= 8 .故选 A .36.已知数列{a n }是公比不为 1 的等比数列, S n为其前 n 项和,满足 a = 2 ,且16a , 9a , 2a2 1 4 7成等差数列,则 S = ()3A . 5B .6C .7D .9【答案】C【解析】数列{a n } 是公比 q 不为 l 的等比数列,满足 a 2 = 2 ,即 a 1q = 2 ,122 ⨯ 2 + 3)⨯ 2 ; 2 ⨯ 2 + 4 )⨯3 ;22- 5 =,且 A n =7n + 45a7= (10B .172C . 143A . 93【解析】因为 7 = 7 = a + a a 2a A = 13 = 7 ⨯13 + 45 = 17 1 13 2 且16a , 9a , 2a 成等差数列,得18a = 16a + 2a ,即 9a q 3 = 8a + a q 6 ,1 47417111解得 q = 2,a = 1 ,则 S = 1 3 1 - 23 1 - 2= 7 .故选 C .7.将石子摆成如图的梯形形状,称数列 5,9,14,20,L ,为“梯形数”.根据图形的构成,此数列的第 2016 项与 5 的差,即 a 2016- 5 = ()A . 2018⨯ 2014B . 2018⨯ 201C .1011⨯ 2015D .1010⨯ 2012【答案】C【解析】由已知的图形我们可以得出图形的编号与图中石子的个数之间的关系为:n =1 时, a = 2 + 3 = 11(n =2 时, a = 2 + 3 + 4 = 2…,由此我们可以推断:1 (a = 2 + 3 + L + (n + 2 ) = 1n⎡⎣2 + (n + 2)⎤⎦ ⨯ (n + 1),∴ a 1⨯ ⎡⎣2 + (2016 + 2)⎤⎦ ⨯ (2016 + 1)- 5 = 1011⨯ 2015 .故选 C .20168.已知两个等差数列{a }和 {b }的前 n 项和分别为 A 和 BnnnnB n + 3 b n 7)17D .15【答案】B771131313(a + a )1 131 13= 2 b 2b b + b 13(b + b ) B 13 + 3 2,故答案选 B .9.已知数列{ }的前 n 项和为 , , ( ),则 ( )A.32B.64C.128D.25613,∴ S B .C . 1a - 1 a - 1,n⎧B . 2019 ) =+ = + = + =2 ,1 1 + 1 + a 2a 2【答案】B【解析】由,得,又,∴- 1 n +1 S - 1n= 2 ,即数列{则∴10.数列1}是以 1 为首项,以 2 为公比的等比数列,,则 ..故选 B .满足: ,若数列 是等比数列,则 的值是()A .1 【答案】B2 D .【解析】数列为等比数列 ⇒ a- 1λa - 2上式恒成立,可知 ⎨λ =q⎩-2 = -q⇒ λ = 2 ,本题正确选项 B .11.已知函数 f (x ) =2( 1 + x 2x ∈ R ),若等比数列满足 a a1 2019= 1 ,则A .2019【答案】A ( )2 C .2D . 1 2【解析】∴ f (a )+ f (a12019,1 + a2 1 + a 2 1 + a 2 1 + a 21 2019 1 1 1为等比数列,则,14b b3B . 16 C . 115D . 2b b= = - ⎭ 数列 的前 项和 T = - + - ⎪ ⎪ , 2 ⎝ 3 5 5 72n + 1 2n + 3 ⎭ 2 ⎝ 3 2n + 3 ⎭可得 λ ≤ 12,即12.已知是公比不为 1 的等比数列,数列.满足: , , 成等比数列,c =1n2n 2n +2,若数列的前 项和对任意的恒成立,则 的最大值为( )A .115【答案】C【解析】由 , ,成等比数列得 a 2 =a a ,2 2nb n又是公比不为 1 的等比数列,设公比为 q ,则 a 2 q2b n-2 = a 2 q 2n ,整理得 b = n + 1,c =111n n2n 2n +21 1 ⎛ 1 1 ⎫ (2n + 1)(2n + 3)2 ⎝ 2n + 1 2n +3 ⎪ ,1 ⎛ 1 1 1 11 1 ⎫ 1 ⎛ 1 1 ⎫+ ⋅⋅⋅ +- = - n数列 是单调递增数列,则当 n =1 时取到最小值为1151 ,即 的最大值为,故选 C .1515,第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 ,则 S 9 = _________.【答案】36【解析】{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 , a 2 + a 8 = a 4 + a 6 = 2a 5 ,得出 a 5 = 4 ,又由 S = 9 ⋅ (a 1 + a 9 )9 = 9a = 36 .514.在数列 {a }中, a n 1= 1,an +1- a = 2n + 1 ,则数列的通项 a = ________.n n15x【答案】 n 2【解析】当 n ≥ 2 时,a = (a - a ) + (ann n -1n -1- a n -2) + (an -2- a n -3) + L + (a - a ) + (a - a ) + a ,3 2 2 1 1⇒ a = (2n - 1) + (2n - 3) + (2 n - 5) + L + 5 + 3 + 1 = n当 n = 1 , a 也适用,所以 a = n 2 .1nn (2n - 1 + 1) 2= n 2 ,15.设数列{a n } 的前 n 项和为 S n ,且 ∀n ∈ N *, a n +1a = ________.n【答案】 n - 6(n ∈ N * ) (答案不唯一)> a , S ≥ S .请写出一个满足条件的数列{a } 的通项公式n n 6 n【解析】 ∀n ∈ N * , a n +1> a ,则数列{a } 是递增的, ∀n ∈ N * , S ≥ S ,即 S 最小,n n n 6 6只要前 6 项均为负数,或前 5 项为负数,第 6 项为 0,即可,所以,满足条件的数列{a n } 的一个通项公式 a n = n - 6(n ∈ N * ) (答案不唯一).16.已知函数 f ( x ) = x 2 cosπx2,数列 {a }中, a = f (n )+ f (n + 1)(n ∈ N * ) ,则数列{a }的n n n前 40 项之和 S 40 = __________.【答案】1680【解析】函数 f (x ) = x 2 cos π 2且数列 {a }中, a = f (n )+ f (n +1),n n可得 a = f (1)+ f (2) = 0 - 4 = -4 ; a = f (2)+ f (3) = -4 + 0 = -4 ;12a = f (3)+ f (4) = 0 +16 = 16 ; a = f (4)+ f (5) = 16 ;3 4a = f (5)+ f (6) = 0 - 36 = -36 ; a = f (6)+ f (7) = -36 ;…,5 6可得数列 {a n 即有数列 {a n}为 -4 , -4 , 16 ,16 , -36 , -36 , 64 , 64 , -100 , -100 ,…, }的前 40 项之和:S = (-4 - 4 +16 +16)+ (-36 - 36 + 64 + 64)+ (-100 -100 +144 +144)+ 40⋅⋅⋅+ (-1444 -1444 +1600 +1600) = 24 + 56 + 88 +⋅⋅⋅+ 31216= ⨯10 ⨯ (24 + 312 ) = 1680 , ( a b a 1 - 22n 2 + n (n ∈ N * ).2 2 222212本题正确结果1680 .三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.10 分)已知数列{a n}是等比数列,数列 {b }是等差数列,且满足: n 1= b = 1 , + b = 4a , - 3b = -5 .1 2 3 2 3 2(1)求数列{a n }和 {b }的通项公式;n(2)设 c n = a n + b n ,求数列 {c n}的前 n 项和 S n .【答案】(1) a = 2n -1 , n ∈ N * , b = 2n - 1,n ∈ N * ;(2) S = 2n + n 2 - 1 .nn n【解析】(1)设 {an}的公比为 q , {b }的公差为 d ,由题意 q > 0 ,n⎧(1+ d ) + (1+ 2d ) = 4q ⎧-4q + 3d = -2由已知,有 ⎨ ,即 ⎨⎩q 2 - 3(1+ d ) = -5 ⎩ q 2 - 3d = -2⇒ q 2 - 4q + 4 = 0 ⇒ d = q = 2 ,所以 {a n }的通项公式为 an= 2n -1 , n ∈ N * , {b }的通项公式为 b = 2n - 1,n ∈ N * .n n(2) c = a + b = 2n -1 + 2n - 1 ,分组求和,分别根据等比数列求和公式与等差数列求和公式得到nnn1 - 2nn (1+ 2n - 1)S =+= 2n + n 2 - 1 .n18.(12 分)己知数列{a }的前 n 项和为 S n(1)求 {a}的通项公式;nn且 S = n 1 12 2(2)设 b n =1a an n +1,求数列 {b n}的前 100 项和.【答案】(1) a n = n ;(2) T100 =100 101.【解析】(1)当 n ≥ 2 时, S =n两式相减得 a n = S n - S n -1 = n , n 2 + n , S = (n - 1)2 + (n - 1)= n 2 + n- n ,17当 n =1时, a = S = + = 1,满足 a = n ,\ a = n . 2 2骣 1 骣 1 骣1 1 1 1 1001 - + - +L + - +2 = - , n +1 =2 n∈ N * ). ⎧⎬(2)若数列{b }满足: ba + 1 3n4 4 == 3 +n⎩ a n +1⎭a + 1 = 3n ,所以 a =1 - 1 . 3n ( )⇒ S = 2n - 144(2)令 b = 2n + 1,求数列 {b }的前 n 项和 T 及 T 的最小值.a + 2 nn1 11 1 n n(2)由(1)可知 b n =1 1 1= - ,n (n + 1) n n + 1所以数列 {b n}的前 100 项和 T100= b +b +?1 2b100= 琪 琪 琪 琪 - = 1 - = .桫 2桫 3 ? 99 100100 101 101 10119.(12 分)已知数列{a }满足: a n 1 3a -2a n - 3 ( 3a + 4 n(1)证明数列 ⎨ 1 ⎫ 为等差数列,并求数列{a n }的通项公式;⎩ a n + 1⎭nn =3n (n ∈ N * ),求 {b }的前 n 项和 S . nn n【答案】(1)证明见解析, a = n1 2n - 1 9- 1;(2) S = ⨯ 3n +2 + .n【解析】(1)因为 an +1+ 1 = -2a - 3 a + 1 1 3a + 4 1 n + 1 = n ,所以 , 3a + 4 3a + 4 a + 1 a a + 1 n n n +1 n +1 n⎧ 1 ⎫所以 ⎨ ⎬ 是首项为 3,公差为 3 的等差数列,所以n1 n(2)由(1)可知: a =n 1 3n- 1,所以由 b = n 3n a + 1 nn ∈ N * ⇒ b = n ⋅ 3n +1 , nS = 1 ⨯ 32 + 2 ⨯ 33 + L + (n - 1) ⨯ 3n + n ⨯ 3n +1 ①;n3S = 1 ⨯ 33 + 2 ⨯ 34 + L + (n - 1) ⨯ 3n +1 + n ⨯ 3n +2 ②,n①-②得 -2S = 32 + 33 + L + 3n +1 - n ⨯ 3n +2 = n 32 (3n - 1)3 - 1 - n ⨯ 3n +2n9⨯ 3n +2+ .20.(12 分)已知数列{a n}的前 n 项和为 Sn,且 S n = 2a n - 2n -1 .(1)求数列{a n}的通项公式;n nn185 ⨯ 2n -1 (2)Q b = 2n + 1 1 1 1 ⎛ 3 5 7 2n + 1 ⎫ ,则 T n = ⎪ , a + 2 52n -1 5 ⎝ 20 21 22 2n -1 ⎭ T = ⎪ 两式作差得 1 - T = ⨯ ⎢3 + ⎛ 1 ⎫ 1 ⎡ ⎛ 2 2 2 ⎫ 2n + 1⎤ 2n + 5 + +⋅⋅⋅+ - = 1 -2n ⎥⎦ ⎝ 2 ⎭ n 5 ⎣21 22 2n -1 ⎭ 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⎧( ⎧ n - 1)2n + , n 是奇数 3 - 3n ⎪b n = 2 2 , n 是奇数2 , b = ⎨ ;(2) T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数 n -2 ⎪b = 2 2 , n 是偶数n n【答案】(1)a = 5 ⨯ 2n -1- 2 (n ∈ N *);(2) T = 2 - 2n +5 3,最小值 . 5【解析】(1)当 n =1 时, a 1 = S 1 = 2a 1 - 2 - 1 ,解得 a 1 = 3 ,当 n ≥ 2 时, a n = S n - S n -1 = 2a n - 2a n -1 - 2 ,解得 a n = 2 a n -1 + 2 .则 a + 2 = 2 (an n -1+ 2),故 {a n + 2}是首项为 a 1 + 2 = 5 ,公比为 2 的等比数列,∴ a = 5 ⨯ 2n -1 - 2 (n ∈ N * ). n = ⨯ (2n + 1)⨯ + + + ⋅⋅⋅ +nn1 1 ⎛2 n 5 ⎝3 5 7 2n - 1 2n + 1 ⎫+ + + ⋅⋅⋅ + +21 22 23 2n -1 2n ⎭⎪ ⎪⎝,所以 T = 2 - n 2n + 5 5 ⨯ 2n -1,2n + 5 2n + 7 2n + 5 -2n - 3令 c = ,有 c - c =- = < 0 ,对 n ∈ N * 恒成立, n n +1 n则数列{c n }是递减数列,故{T n } 为递增数列,则 (T n )min 3= T = . 121.(12 分)已知正项数列且.的前 项和为 ,且 , ,数列 满足 ,(1)求数列(2)令【答案】(1), 的通项公式;,求数列 的前 项和 .n +1 ⎪⎪ n n⎩ n ⎪⎩ 2【解析】(1)当时, ,即 ,,19⎧⎪S + S = a 2 由 ⎨ ,可得= a 2 (n ≥ 2) ,⎪⎩ n由 ⎨ 两式相除,得 n +1 = 2 (n ≥ 2 ),⎧b b = 2n b⎪⎩b n -1b n = 2n -1 (n ≥ 2)综上:b = ⎨ n ⎪b = 2 n -22 , n 是偶数 ⎩ ⎧ 3n ⎪⎪ 2 , 的前 项和为 B ,∴ B = ⎨ , -3n + 1 ⎪ , n 是奇数 ⎧(n - 1)2n + , n 是奇数 ⎪⎪ 2综上: T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数n +1 n n +1 S + S n -1 n即,又是公差为 ,首项为 的等差数列,,由题意得:,n n +1 b n -1是奇数时,是公比是 ,首项 的等比数列,∴ b = 2nn +1 2 ,同理 是偶数时是公比是 ,首项的等比数列,∴ b = 2nn -2 2 ,n ⎧ n +1⎪b = 2 2 , n 是奇数n.(2)令,即 ,⎧⎪ A = 1⋅ 20 + 2 ⋅ 21 + 3 ⋅ 22 + ⋅⋅⋅ + n ⋅ 2n -1的前 项和为 ,则 ⎨ n⎪⎩2 A n = 1⋅ 21 + 2 ⋅ 22 + 3 ⋅ 23 + ⋅⋅⋅ + n ⋅ 2n,两式相减得 - A = 20 + 21 + 22 + 2n -1 - n ⋅ 2n = n,1 - 2n 1 - 2- n ⋅ 2n ,令n n⎪⎩ 2n 是偶数3 - 3nn⎪⎩ 220ln 22 ln 32 ln n 2 (n - 1)(2n + 1) (当 x ≥ a 时, f '( x ) = 1 - = ,此时要考虑 a 与 1 的大小.(2)由(1)可知当 a = 1 , x > 1 时, x -1 - ln x > 0 ,即 ln x > 1 - x ,所以 ln x = n - 1 - = n - 1 - - ⎪ < n - 1 - + + L + ⎝ 2 n 2 ⎭ ⎝ 2 ⨯ 3 3 ⨯ 4 n(n + 1) ⎭ 1 ⎫ n - 1 = (n - 1) - n + 1 ⎭ 2(n + 1) ⎛ 122.(12 分)已知函数 f ( x ) =| x - a | - ln x(a > 0) .(1)讨论 f ( x ) 的单调性;(2)比较 + +⋯+ 与 的大小 n ∈ N * 且 n > 2) ,并证明你的结论.22 32 n 2 2(n + 1)【答案】(1)见解析;(2)见解析.⎧ x - ln x - a, 【解析】(1)函数 f ( x ) 可化为 f ( x ) = ⎨⎩a - x - ln x,x ≥ a0 < x < a ,当 0 < x < a 时, f '( x ) = -1 - 1 x< 0 ,从而 f ( x ) 在 (0, a) 上总是递减的,1 x - 1x x①若 a ≥ 1 ,则 f '( x ) ≥ 0 ,故 f ( x ) 在 [a, +∞ ) 上递增;②若 0 < a < 1 ,则当 a ≤ x < 1 时, f '( x ) < 0 ;当 x > 1 时, f '( x ) > 0 ,故 f ( x ) 在 [a,1) 上递减,在 (1, +∞) 上递增,而 f ( x ) 在 x = a 处连续,所以当 a ≥ 1 时, f ( x ) 在 (0, a) 上递减,在[a, +∞ ) 上递增;当 0 < a < 1 时, f ( x ) 在 (0,1) 上递减,在[1, +∞ ) 上递增.1< 1 - .x x所以 ln 22 ln 32 ln n 2 1 1 1+ + L + < 1 - + 1 - + L 1 -22 32 n 2 22 32 n 2⎛ 1 1 + ⎝ 22 32 + L + 1 ⎫ 1 1 ⎫ ⎛ 1 ⎪ ⎪2n 2 - 2 - n + 1 (n - 1)(2n + 1) = = .2(n + 1) 2(n + 1)21。
2022高考数学(理)一轮复习单元测试(配最新高考+重点)第一章集合与常用逻辑用
2022高考数学(理)一轮复习单元测试(配最新高考+重点)第一章集合与常用逻辑用第一章集合与常用逻辑用语单元能力测试一、选择题(本大题共12小题,每小题5分,共60分)1、(2020山东理)已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则()UC A B 为( ) A .{}1,2,4B .{}2,3,4C .{}0,2,4 D .{}0,2,3,42 .(2020浙江理)设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)3、【2020韶关第一次调研理】若集合M 是函数lg y x =的定义域,N 是函数y =的定义域,则M ∩N 等于( )A .(0,1]B .(0,)+∞C .φD .[1,)+∞ 4、【2020厦门期末质检理2】“φ=2π”是“函数y=sin(x +φ)为偶函数的”A .充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件5.(2020湖南理)命题“若α=4π,则tanα=1”的逆否命题是( )A .若α≠4π,则tanα≠1B .若α=4π,则tan α≠1C .若tanα≠1,则α≠4πD .若tanα≠1,则α=4π6、【2020泉州四校二次联考理】命题:R p x ∀∈,函数2()2cos 23f x x x =+≤,则( )A .p 是假命题;:R p x ⌝∃∈,2()2cos 23f x x x =+≤B .p 是假命题;:R p x ⌝∃∈,2()2cos 23f x x x =+> C .p 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+≤ D .p 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+> 7、(2020湖北理)命题“0x ∃∈R Q ,30x ∈Q ”的否定是( )A .0x ∃∉R Q ,30x ∈QB .0x ∃∈R Q ,30x ∉QC .x ∀∉RQ ,3x ∈Q D .x ∀∈RQ ,3x ∉Q8、【2020深圳中学期末理】设集合A={-1, 0, 1},集合B={0, 1, 2, 3},定义A *B={(x, y)| x ∈A ∩B, y ∈A ∪B},则A *B 中元素个数是()A.7B.10C.25D.529、【2020粤西北九校联考理3】下列命题错误..的是( ) A. 2"2""320"x x x >-+>是的充分不必要条件;B. 命题“2320,1x x x -+==若则”的逆否命题为“21,320若则x x x =-+≠”;C.对命题:“对0,k >方程20x x k +-=有实根”的否定是:“ ∃k >0,方程20x x k +-=无实根”;D. 若命题:,p x A B p ∈⋃⌝则是x A x B ∉∉且;10、【江西省新钢中学2020届高三第一次考试】在△ABC 中,设命题,sin sin sin :Ac C b B a p ==命题q:△ABC 是等边三角形,那么命题p 是命题q 的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件11、(2020浙江宁波市期末)已知()f x 是定义在实数集R 上的增函数,且(1)0f =,函数()g x 在(,1]-∞上为增函数,在[1,)+∞上为减函数,且(4)(0)0g g ==,则集合{|()()0}x f x g x ≥= ( )(A ) {|014}x x x ≤≤≤或(B ){|04}x x ≤≤(C ){|4}x x ≤ (D ) {|014}x x x ≤≤≥或 12.定义:设A 是非空实数集,若∃a ∈A ,使得关于∀x ∈A ,都有x ≤a (x ≥a ),则称a 是A 的最大(小)值 .若B 是一个不含零的非空实数集,且a 0是B 的最大值,则( )A .当a 0>0时,a -10是集合{x -1|x ∈B }的最小值B .当a 0>0时,a -10是集合{x -1|x ∈B }的最大值C .当a 0<0时,-a -10是集合{-x -1|x ∈B }的最小值D .当a 0<0时,-a -10是集合{-x -1|x ∈B }的最大值二、填空题(本大题共4小题,每小题5分,共20分,把正确答案填在题中横线上) 13、(2020上海理)若集合}012|{>+=x x A ,}21|{<-=x x B ,则A ∩B=_________ .14、【2020江西师大附中高三下学期开学考卷】若自然数n 使得作加法(1)(2)n n n ++++运算均不产生进位现象,则称n 为“给力数”,例如:32是“给力数”,因323334++不产生进位现象;23不是“给力数”,因232425++产生进位现象.设小于1000的所有“给力数”的各个数位上的数字组成集合A ,则集合A 中的数字和为__________ 15、【2020三明市一般高中高三上学期联考】下列选项叙述:①.命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =” ②.若命题p :2,10x R x x ∀∈++≠,则p ⌝:2,10x R x x ∃∈++= ③.若p q ∨为真命题,则p ,q 均为真命题④.“2x >”是“2320x x -+>”的充分不必要条件 其中正确命题的序号有_______ 16、【2020泉州四校二次联考理】已知集合22{(,)||||1|1},{(,)|(1)(1)1}A x y x a y B x y x y =-+-≤=-+-≤,若A B φ⋂≠,则实数a 的取值范畴为 .三、解答题(本大题共6小题,共70分,解承诺写出文字说明、证明过程或演算步骤)17.(本小题满分12分) (2011年朝阳区高三上学期期中)设关于x 的不等式(1)0()x x a a --<∈R 的解集为M ,不等式2230x x --≤的解集为N .(Ⅰ)当1a =时,求集合M ;(Ⅱ)若M N ⊆,求实数a 的取值范畴.18、(本小题满分12分) 【山东省潍坊一中2020届高三时期测试理】已知集合{}}0)1(2|{,0)13(2)1(3|22<+--=<+++-=a x a x x B a x a x x A ,(Ⅰ)当a=2时,求B A ⋂;(Ⅱ)求使A B ⊆的实数a 的取值范畴19.(本小题满分10分) 【2020北京海淀区期末】若集合A 具有以下性质: ①A ∈0,A ∈1;②若A y x ∈,,则A y x ∈-,且0≠x 时,Ax∈1.则称集合A 是“好集”. (Ⅰ)分别判定集合{1,0,1}B,有理数集Q 是否是“好集”,并说明理由; (Ⅱ)设集合A 是“好集”,求证:若A y x ∈,,则A y x ∈+; (Ⅲ)对任意的一个“好集”A ,分别判定下面命题的真假,并说明理由. 命题p :若A y x ∈,,则必有A xy ∈; 命题q :若A y x ∈,,且0≠x ,则必有Axy∈;20、(本小题满分12分)(山东省潍坊市2020届高三上学期期中四县一校联考) 已知集合{}{}R x x B x x x R x A x x ∈<=++≥+∈=-,42|,)23(log )126(log |32222.求⋂A (C R B ).21.(本小题满分12分)已知c >0,设命题p :函数y =c x为减函数,命题q :当x ∈[12,2]时,函数f (x )=x +1x >1c 恒成立.假如p 或q 为真命题,p 且q 为假命题,求c 的取值范畴.22.(本小题满分12分) 【山东省微山一中2020届高三10月月考理】设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a )(x +4)≤0的解集. (1)求A ∩B ; (2)若C ⊆∁R A ,求a 的取值范畴.祥细答案 一、选择题 1、【答案】C【解析】}4,0{=A C U,因此{0,24}U C A B =() ,,选C.2. 【答案】B【解析】A =(1,4),B =(-1,3),则A ∩(C R B )=(3,4).【答案】B 3、【答案】A【解析】因为集合M 是函数lg y x =的定义域,;0>x N 是函数y = 因此01≥-x ,(](](0,),,1,0,1M N M N =+∞=-∞⋂=4、【答案】A【解析】φ=2π时,y=sin(x +φ)=x cos 为偶函数;若y=sin(x +φ)为偶函数,则k=ϕZk ∈+,2ππ;选A;5、【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,因此 “若α=4π,则tanα=1”的逆否命题是 “若tanα≠1,则α≠4π”.6、【答案】D【解析】3)62sin(212sin 32cos 12sin 3cos 2)(2≤++=++=+=πx x x x x x f ;P 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+>;7、【答案】D解析:依照对命题的否定知,是把谓词取否定,然后把结论否定.因此选D 8、【答案】B【解析】解:A ∩B ={ 0, 1},A ∪B {-1, 0, 1, 2, 3},x 有2种取法, y 有5种取法由乘法原理得2×5=10,故选B 。
高考数学一轮复习 考点50 椭圆必刷题 理(含解析)-人教版高三全册数学试题
考点50 椭圆1.(市昌平区2019届高三5月综合练习二模理)嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在某某卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里.已知月球的直径为3476公里,则该椭圆形轨道的离心率约为A.125B.340C.18D.35【答案】B 【解析】如下图,F为月球的球心,月球半径为:12×3476=1738,依题意,|AF|=100+1738=1838,|BF|=400+1738=2138. 2a=1838+2138,a=1988,a+c=2138,c=2138-1988=150,椭圆的离心率为:1503198840cea==≈,选B.2.(某某省实验中学等四校2019届高三联合考试理)已知椭圆C :22221x y a b+=,()0a b >>的左、右焦点分别为1F ,2F ,M 为椭圆上异于长轴端点的一点,12MF F ∆的内心为I ,直线MI 交x 轴于点E ,若2MI IE=,则椭圆C 的离心率是( )A .22B .12C .32D .13【答案】B 【解析】解:12MF F ∆的内心为I ,连接1IF 和2IF , 可得1IF 为12MF F ∠的平分线,即有11MF MI F EIE=,22MF MI F EIE=,可得12122MF MF MI F E F E IE===,即有1212222MF MF aF EEF c===, 即有12e =, 故选:B .3.(某某2019届高三高考一模试卷数学理)以椭圆的两个焦点为直径的端点的圆与椭圆交于四个不同的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为( )A .32-B .31-C .22D .32【答案】B 【解析】解:设椭圆的两个焦点为1F ,2F ,圆与椭圆交于A ,B ,C ,D 四个不同的点, 设122F F c =,则1DF c =,23DF c =. 椭圆定义,得122||||3a DF DF c c =+=+, 所以23131c e a ===-+, 故选:B .4.(某某省某某市高级中学2019届高三适应性考试(6月)数学理)在平面直角坐标系xOy 中,已知点, A F分别为椭圆2222:1(0)x y C a b a b+=>>的右顶点和右焦点,过坐标原点O 的直线交椭圆C 于,P Q 两点,线段AP 的中点为M ,若, , Q F M 三点共线,则椭圆C 的离心率为( ) A .13B .23C .83D .32或83【答案】A 【解析】 如图设()()0000,,,P x y Q x y --,又(,0),(,0)A a F c ,00,22x a y M +⎛⎫∴ ⎪⎝⎭,,,Q F M 三点共线,MF QF k k =000022y y x a c x c -∴=++-, 即00002y y c x x a c=++-, 002c x x a c ∴+=+-,3a c ∴=,13c e a ∴==,故选A. 5.(某某省某某市2019届高三全真模拟考试数学理)已知1F 、2F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点A 是1F 关于直线bx ay ab +=的对称点,且2AF x ⊥轴,则椭圆C 的离心率为_________.【解析】1F 、2F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点A 是1F 关于直线bx ay ab +=的对称点,且2AF x ⊥轴,可得2AF 的方程为x c =,1AF 的方程()a y x c b =+,可得2(,)acA c b, 1AF 的中点为(0,)acb ,代入直线bx ay ab +=,可得:222ac b c a ==-,1c e a=<, 可得210e e --=,解得12e =.6.(某某省某某市2018-2019学年高二5月质量检测(期末)数学(理)已知F 是椭圆()222210x y a b a b+=>>的右焦点,A 是椭圆短轴的一个端点,直线AF 与椭圆另一交点为B ,且2AF FB =,则椭圆的离心率为______.【答案】33【解析】设()0,A b -,(),0F c ,作BC y ⊥轴,垂足为C ,如下图所示:则:22AF b c a =+=由2AF FB =得:23AF c ABBC==32BC c ∴=,即:32B x c = 由椭圆的焦半径公式可知:B BF a ex =-232B AF a ac c a ex FBa a ∴===--⋅,整理可得:223a c =213e ∴=,即3e =本题正确结果:337.(某某省某某市2019届高三第三次教学质量检测数学理)如图是数学家Germinal Dandelin 用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin 双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球1O ,球2O 的半径分别为3和1,球心距离128OO =,截面分别与球1O ,球2O 切于点E ,F ,(E ,F 是截口椭圆的焦点),则此椭圆的离心率等于______.25【解析】如图,圆锥面与其内切球1O ,2O 分别相切与B,A ,连接12,O B O A 则1O BAB ,2O A AB ,过1O 作12O D O A 垂直于D ,连接12,O F O E ,EF 交12O O 于点C设圆锥母线与轴的夹角为α ,截面与轴的夹角为β 在12Rt O O D 中,2312DO ,22182215O D11221515cos84O O O D 128O O = 218CO O C21EO CFO C11218O C O CO E O F 解得1=2O C 222211213CFO FO C即13cos2CF O C则椭圆的离心率3cos 252cos 5154e8.(某某省某某市师X 大学某某市附属中学2019届高三第四次模拟考试)已知椭圆()2222:10x y E a b a b+=>>与y 轴正半轴交于点(3M ,离心率为12.直线l 经过点()(),00P t t a <<和点()0,1Q .且与椭图E 交于A 、B 两点(点A 在第二象限). (1)求椭圆E 的标准方程; (2)若AP PB λ=,当230t <≤时,求λ的取值X 围. 【答案】(1)22143x y +=(2)35λ⎛+∈ ⎝⎦【解析】解析:(1).由题意,12c e a ==且3b =2a =,所以椭圆E 的标准方程为22143x y +=.(2).因为直线l 经过点()(),00P t t a <<和点()0,1Q ,所以直线l 的斜率为1t -,设1:1l y x t=-+,将其代入椭圆方程22143x y +=中,消去x 得()22223463120t y t y t +-+-=,当∆>0时,设()11,A x y 、()22,B x y ,则2122634t y y t +=+……①,212231234t y y t -=+……②因为AP PB λ=,所以()()1122,,t x y x t y λ--=-,所以12y y λ=-……③ 联立①②③,消去1y 、2y ,整理得()222124141t λλ⎛⎫=+- ⎪⎝⎭-.当0t <≤时,()[)2221241412,1t λλ⎛⎫=+-∈+∞ ⎪⎝⎭-,解351,2λ⎫⎛+∈⎪ ⎪ ⎣⎭⎝⎦由()2122261034t y y y t λ+=-=>+且20y <,故1λ>,所以λ⎛∈ ⎝⎦. 9.(某某省威海市2019届高三二模考试数学理)在直角坐标系xOy 中,设椭圆2222:1(0)x y C a b a b+=>>的左焦点为1F ,短轴的两个端点分别为,A B ,且160AF B ∠=︒,点1)2在C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线:(0)l y kx m k =+>与椭圆C 和圆O 分别相切于P ,Q 两点,当OPQ ∆面积取得最大值时,求直线l 的方程.【答案】(Ⅰ) 2214x y +=.(Ⅱ) y x =【解析】(Ⅰ)由160AF B ∠=︒,可得2a b =,①由椭圆C经过点1)2,得2231144b b+=,② 由①②得224,1a b ==,所以椭圆C 的方程为2214x y +=.(Ⅱ)由2214x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 整理得()222148440k x kmx m +++-=(*),由直线l 与椭圆相切得,()()222264161140k m m k ∆=--+=,整理得2241m k =+,故方程(*)化为2228160m x kmx k ++=,即2(4)0mx k +=, 解得4kx m-=, 设()11,P x y ,则124414km k x k m--==+,故111y kx m m =+=, 因此41(,)k P m m-. 又直线:(0)l y kx m k =+>与圆O相切,可得||OQ =所以||PQ ==所以1||||2OPQS PQ OQ ∆=⋅= 将2241m k =+式代入上式可得OPQS ∆===21321k k =⋅+3112k k=⋅+, 由0k >得12k k+≥,所以313124OPQ S k k∆=⋅≤+,当且仅当1k =时等号成立,即1k =时OPQ S ∆取得最大值.由22415m k =+=,得5m =±, 所以直线l 的方程为5y x =±.10.(某某省日照市2019届高三5月校际联合考试数学理)如图,已知椭圆()222210x y E a b a b +=:>>,()4,0A 是长轴的一个端点,弦BC 过椭圆的中心O ,且213213cos OA CA OC OB BC BA 〈〉=-=-,,.(1)求椭圆E 的方程.(2)过椭圆E 右焦点F 的直线,交椭圆E 于11,A B 两点,交直线8x =于点M ,判定直线11,,CA CM CB 的斜率是否依次构成等差数列?请说明理由.【答案】(1)2211612x y +=;(2)是,理由见详解. 【解析】 (1)由2OC OB BC BA -=-,得2B A C C =,即2O A C C =,所以AOC ∆是等腰三角形, 又4a OA ==,∴点C 的横坐标为2;又213cos OACA 〈〉=,, 设点C 的纵坐标为C y 222132C y =+,解得3C y =±, 应取(2,3)C ,又点C 在椭圆上,∴22222314b +=,解得212b =,∴所求椭圆的方程为2211612x y +=;(2)由题意知椭圆的右焦点为(2,0)F ,(2,3)C , 由题意可知直线11,,CA CM CB 的斜率存在, 设直线11A B 的方程为(2)y k x =-,代入椭圆2211612x y +=并整理,得2222(34)1616480k x k x k +-+-=;设11(,)A x y ,22(,)B x y ,直线11,,CA CM CB 的斜率分别为123,,k k k ,则有21221634k x x k+=+,2122164834k x x k -=+, 可知M 的坐标为(8,6)M k ;∴()()12121312122323332222k x k x y y k k x x x x ------+=+=+---- 1212124232142()x x k k x x x x +-=-•=-+-+,又263222182k k k -=•=--; 所以1322k k k +=,即直线11,,CA CM CB 的斜率成等差数列.11.(某某市某某区2019届高三一模数学理)已知椭圆C :22221(0)x y a b a b +=>>过点()2,1,且离心率为(Ⅰ)求椭圆C 的方程;(Ⅱ)若过原点的直线1l 与椭圆C 交于P 、Q 两点,且在直线2:0l x y -+=上存在点M ,使得MPQ 为等边三角形,求直线1l 的方程。
2022年高考数学理科第一轮复习资料:1-1
识 梳 理
【例3】 设集合A={(x,y)|y≥ 1 |x-2|},B={(x, 2
《 走 向 高
y)|y≤-|x|+b},A∩B≠∅.
考 》
课
高
堂 题 型 设 计
(1)b的取值范围是________;
考 总
(2)若(x,y)∈A∩B,且x+2y的最大值为9,则b的值是
复 习
·
________.
数 学
学
规 律 方
{1,3,5,6,7},∁U(A∪B)={2,4,8}.
法
提 炼
答案:{2,4,8}
课 后 强 化 作 业
2022/1/4
首页
上页
下页
末页
13
知
识 梳 理
《 走 向
高
考
课
【例1】
(2006·江苏高考,7)若A、B、C为三个集合,
》 高
堂 题
A∪B=B∩C,则一定有
型
设 计
A.A⊆C
B.C⊆A
识
梳 理
B={n∈U|n是3的倍数},则∁U(A∪B)=________.
《 走 向 高
考
课
解析:本题主要考查考生对集合的表示方法与意义的 》 高
堂
考
题 型
理解、交集、并集及补集的含义.依题意得U=
设
计 {1,2,3,4,5,6,7,8},A={1,3,5,7},B={3,6},A∪B=
·
总 复 习 数
高
考
课
(2)∵U=R,B∩C={x|-1<x<6},
》 高
堂
考
题 型 设
∴∁U(B∩C)={x|x≤-1或x≥6},
2023年高考数学(理科)一轮复习课件——推理与证明
常用结论
1.合情推理包括归纳推理和类比推理,其结论是猜想,不一定正确,若要确定 其正确性,则需要证明.
2.在进行类比推理时,要从本质上去类比,只从一点表面现象去类比,就会犯 机械类比的错误.
3.分析法是执果索因,实际上是寻找使结论成立的充分条件;综合法是由因导 果,就是寻找已知的必要条件.
4.用反证法证题时,首先否定结论,否定结论就是找出结论的反面的情况,然 后推出矛盾,矛盾可以与已知、公理、定理、事实或者假设等相矛盾.
B.3(2n+2) D.(n+2)(n+3)
索引
解析 由已知中的图形可以得到: 当n=1时,图形的顶点个数为12=3×4, 当n=2时,图形的顶点个数为20=4×5, 当n=3时,图形的顶点个数为30=5×6, 当n=4时,图形的顶点个数为42=6×7,…… 由此可以推断:第n个图形的顶点个数为(n+2)(n+3).
,则8 771用算筹应表
示为( ) C
中国古代的算筹数码
A.
B.
C.
D.
索引
解析 由算筹的定义,得
所以8 771用算筹应表示为
.
索引
(2)“正三角形的内切圆半径等于此正三角的高的31”,拓展到空间,类比平面
几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的( C )
1
1
A.2
B.3
1
1
索引
感悟提升
1.归纳推理问题的常见类型及解题策略 (1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号. (2)与式子有关的推理.观察每个式子的特点,注意纵向对比,找到规律. (3)与图形变化有关的推理.合理利用特殊图形归纳推理出结论,并用赋值检验 法验证其真伪性. 2.类比推理常见的情形有:平面与空间类比;低维与高维类比;等差与等比数 列类比;运算类比(加与乘,乘与乘方,减与除,除与开方).数的运算与向量运 算类比;圆锥曲线间的类比等. 3.演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问 题,应当首先明确什么是大前提和小前提.
高三数学人教版A版数学(理)高考一轮复习教案直线的倾斜角与斜率、直线方程1
第一节 直线的倾斜角与斜率、直线方程直线及其方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素. (2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系. 知识点一 直线的倾斜角与斜率 1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫作直线l 的倾斜角.(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0. (3)范围:直线的倾斜角α的取值范围是[0,π). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫作这条斜线的斜率,斜率通常用小写字母k 表示,即k =tan_α.(2)斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.易误提醒 任意一条直线都有倾斜角,但只有与x 轴不垂直的直线才有斜率(当直线与x 轴垂直,即倾斜角为π2时,斜率不存在)[自测练习]1.若经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 等于( )A .-1B .-3C .0D .2解析:由k =-3-2y -12-4=tan 3π4=-1.得-4-2y =2.∴y =-3.答案:B2.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3 B .k 3<k 1<k 2 C .k 3<k 2<k 1D.k1<k3<k2解析:由题图可知k1<0,k2>0,k3>0,且k2>k3,∴k1<k3<k2.答案:D知识点二直线方程名称几何条件方程适用条件斜截式纵截距、斜率y=kx+b与x轴不垂直的直线点斜式过一点、斜率y-y0=k(x-x0)两点式过两点y-y1y2-y1=x-x1x2-x1与两坐标轴均不垂直的直线续表截距式纵、横截距xa+yb=1不过原点且与两坐标轴均不垂直的直线一般式Ax+By+C=0(A2+B2≠0)所有直线易误提醒(1)利用两点式计算斜率时易忽视x1=x2时斜率k不存在的情况.(2)用直线的点斜式求方程时,在斜率k不明确的情况下,注意分k存在与不存在讨论,否则会造成失误.(3)直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式.(4)由一般式Ax+By+C=0确定斜率k时易忽视判断B是否为0,当B=0时,k不存在;当B≠0时,k=-AB.[自测练习]3.过点(-1,2)且倾斜角为30°的直线方程为()A.3x-3y-6+3=0B.3x-3y+6+3=0C.3x+3y+6+3=0D.3x+3y-6+3=0解析:直线斜率k=tan 30°=3 3,直线的点斜式方程为y-2=33(x+1),整理得3x -3y +3+6=0,故选B. 答案:B4.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1解析:由题意可知a ≠0.当x =0时,y =a +2. 当y =0时,x =a +2a.∴a +2a =a +2,解得a =-2或a =1. 答案:D考点一 直线的倾斜角与斜率|1.直线x +3y +m =0(m ∈R )的倾斜角为( ) A .30° B .60° C .150°D .120°解析:∵直线的斜率k =-33,∴tan α=-33. 又0≤α<180°,∴α=150°.故选C. 答案:C2.直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________. 解析:当a =-1时,直线l 的倾斜角为90°,符合要求:当a ≠-1时,直线l 的斜率为-aa +1,则有-a a +1>1或-a a +1<0, 解得-1<a <-12或a <-1或a >0.综上可知,实数a 的取值范围是⎝⎛⎭⎫-∞,-12∪(0,+∞).答案:⎝⎛⎭⎫-∞,-12∪(0,+∞) 3.(2016·太原模拟)已知点A (2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 有交点,则直线l 的斜率k 的取值范围为________.解析:如图,k P A =1+31-2=-4,k PB =1+21+3=34. 要使直线l 与线段AB 有交点,则有k ≥34或k ≤-4.答案:(-∞,-4]∪⎣⎡⎭⎫34,+∞ 求倾斜角α的取值范围的一般步骤(1)求出tan α的取值范围;(2)利用三角函数的单调性,借助图象,确定倾斜角α的取值范围. 注意已知倾斜角θ的范围,求斜率k 的范围时注意下列图象的应用: 当k =tan α,α∈⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫π2,π时的图象如图:考点二 直线的方程|根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12.[解] (1)由题设知,该直线的斜率存在,故可采用点斜式.设倾斜角为α,则sin α=1010(0<α<π),从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4),即x +3y +4=0或x -3y +4=0.(2)由题设知截距不为0,设直线方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0.(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件. (2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用.求直线过点(5,10)且到原点的距离为5的直线方程.解:当斜率不存在时,所求直线方程为x -5=0,适合题意,当斜率存在时,设斜率为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点到直线的距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.考点三 直线方程的综合应用|直线方程的综合应用是高考常考内容之一,它经常与不等式、导数、平面向量、数列等有关知识进行交汇,考查学生综合运用直线知识解决问题的能力.归纳起来常见的命题探究角度有: 1.与最值相结合问题.2.与导数的几何意义相结合问题. 3.与平面向量相结合问题. 4.与数列相结合问题. 探究一 与最值相结合问题1.(2015·高考福建卷)若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )C .4D .5解析:法一:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1,所以1=1a +1b ≥21a ·1b=2ab(当且仅当a =b =2时取等号),所以ab ≥2.又a +b ≥2ab (当且仅当a =b =2时取等号),所以a +b ≥4(当且仅当a =b =2时取等号),故选C.法二:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1,所以a +b =(a +b )⎝⎛⎭⎫1a +1b =2+a b +ba≥2+2a b ·ba=4(当且仅当a =b =2时取等号),故选C. 答案:C探究二 与导数的几何意义相结合问题2.已知函数f (x )=x -4ln x ,则曲线y =f (x )在点(1,f (1))处的切线方程为________. 解析:由f ′(x )=1-4x ,则k =f ′(1)=-3,又f (1)=1,故切线方程为y -1=-3(x-1),即3x +y -4=0.答案:3x +y -4=0探究三 与平面向量相结合问题3.在平面直角坐标平面上,OA →=(1,4),OB →=(-3,1),且OA →与OB →在直线的方向向量上的投影的长度相等,则直线l 的斜率为( )A .-14B.25 C.25或-43D.52解析:直线l 的一个方向向量可设为h =(1,k ),由题⎪⎪⎪⎪⎪⎪OA →·h |h |=⎪⎪⎪⎪⎪⎪OB →·h |h |⇒|1+4k |=|-3+k |,解得k =25或k =-43,故选C.答案:C探究四 与数列相结合问题4.已知数列{a n }的通项公式为a n =1n (n +1)(n ∈N *),其前n 项和S n =910,则直线xn +1+yn=1与坐标轴所围成三角形的面积为( ) A .36B .45解析:由a n =1n (n +1)可知a n =1n -1n +1,∴S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1, 又知S n =910,∴1-1n +1=910,∴n =9. ∴直线方程为x 10+y9=1,且与坐标轴的交点为(10,0)和(0,9),∴直线与坐标轴所围成的三角形的面积为12×10×9=45,故选B.答案:B(1)与函数相结合的问题:解决这类问题,一般是利用直线方程中的x ,y 的关系,将问题转化为关于x (或y )的某函数,借助函数的性质解决.(2)与方程、不等式相结合的问题:一般是利用方程、不等式的有关知识(如方程解的个数、根的存在问题,不等式的性质、基本不等式等)来解决.17.忽视零截距致误【典例】 设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围.[解] (1)当直线过原点时,该直线在x 轴和y 轴上的截距为零.∴a =2,方程即为3x +y =0.当直线不经过原点时,截距存在且均不为0, ∴a -2a +1=a -2,即a +1=1, ∴a =0,方程即为x +y +2=0.综上,l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,∴⎩⎪⎨⎪⎧ -(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0.∴a ≤-1. 综上可知a 的取值范围是a ≤-1.[易误点评] 本题易错点求直线方程时,漏掉直线过原点的情况.[防范措施] (1)在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.(2)常见的与截距问题有关的易误点有:“截距互为相反数”;“一截距是另一截距的几倍”等,解决此类问题时,要先考虑零截距情形,注意分类讨论思想的运用.[跟踪练习] 若直线过点P (2,1)且在两坐标轴上的截距相等,则这样的直线的条数为( )A .1B .2C .3D .以上都有可能解析:当截距均为零时,显然有一条;当截距不为零时,设直线方程为x +y =a ,则a =2+1=3,有一条.综上知,直线过点P (2,1)且在两坐标轴上的截距相等的直线有两条,故选B.答案:BA 组 考点能力演练1.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B. 3 C .- 3D .-33解析:设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.答案:A2.在等腰三角形AOB 中,AO =AB ,点O (0,0),A (1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)解析:因为AO =AB ,所以直线AB 的斜率与直线AO 的斜率互为相反数,所以k AB =-k OA =-3,所以直线AB 的点斜式方程为:y -3=-3(x -1).3.直线2x -my +1-3m =0,当m 变动时,所有直线都通过定点( ) A.⎝⎛⎭⎫-12,3 B.⎝⎛⎭⎫12,3 C.⎝⎛⎭⎫12,-3D.⎝⎛⎭⎫-12,-3 解析:∵(2x +1)-m (y +3)=0恒成立, ∴2x +1=0,y +3=0,∴x =-12,y =-3.∴定点为⎝⎛⎭⎫-12,-3. 答案:D4.(2016·海淀一模)已知点A (-1,0),B (cos α,sin α),且|AB |=3,则直线AB 的方程为( )A .y =3x +3或y =-3x - 3B .y =33x +33或y =-33x -33C .y =x +1或y =-x -1D .y =2x +2或y =-2x - 2 解析:|AB |= (cos α+1)2+sin 2α=2+2cos α=3,所以cos α=12,sin α=±32,所以k AB =±33,即直线AB 的方程为y =±33(x +1),所以直线AB 的方程为y =33x +33或y =-33x -33,选B. 答案:B5.(2016·贵阳模拟)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A .-1<k <15B .k >1或k <12C .k >15或k <1D .k >12或k <-1解析:设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k ,令-3<1-2k<3,解不等式可得.也可以利用数形结合.选D.6.(2016·温州模拟)直线3x -4y +k =0在两坐标轴上的截距之和为2,则实数k =________.解析:令x =0,得y =k 4;令y =0,得x =-k 3.则有k 4-k3=2,所以k =-24.答案:-247.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2]. 答案:[-2,2]8.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________________________________________________________________________.解析:设直线的斜率为k (k ≠0), 则直线方程为y -2=k (x +2), 由x =0知y =2k +2. 由y =0知x =-2k -2k .由12|2k +2|⎪⎪⎪⎪⎪⎪-2k -2k =1. 得k =-12或k =-2.故直线方程为x +2y -2=0或2x +y +2=0. 答案:x +2y -2=0或2x +y +2=09.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解:法一:设直线方程为x a +yb =1(a >0,b >0),点P (3,2)代入得3a +2b=1≥26ab,得ab ≥24,从而S △ABO =12ab ≥12,当且仅当3a =2b时等号成立, 这时k =-b a =-23, 从而所求直线方程为2x +3y -12=0.法二:依题意知,直线l 的斜率k 存在且k <0.则直线l 的方程为y -2=k (x -3)(k <0),且有A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), ∴S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4(-k ) ≥12⎣⎢⎡⎦⎥⎤12+2(-9k )·4(-k )=12×(12+12)=12. 当且仅当-9k =4-k ,即k =-23时,等号成立, 即△ABO 的面积的最小值为12.故所求直线的方程为2x +3y -12=0.10.已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求:(1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程;(3)BC 边的垂直平分线DE 的方程.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2, 即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ),则x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y 2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12, 则直线BC 的垂直平分线DE 的斜率k 2=2.由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0),即2x -y +2=0.B 组 高考题型专练1.(2014·高考安徽卷)过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π3 C.⎣⎡⎦⎤0,π6 D.⎣⎡⎦⎤0,π3解析:法一:如图,过点P 作圆的切线P A ,PB ,切点为A ,B .由题意知OP =2,OA =1,则sin α=12,所以α=30°,∠BP A =60°.故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3.选D. 法二:设过点P 的直线方程为y =k (x +3)-1,则由直线和圆有公共点知|3k -1|1+k2≤1. 解得0≤k ≤ 3.故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3. 答案:D2.(2014·高考江苏卷)在平面直角坐标系xOy 中,若曲线y =ax 2+b x(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.解析:∵y =ax 2+b x ,∴y ′=2ax -b x 2, 由题意可得⎩⎨⎧ 4a +b 2=-5,4a -b 4=-72解得⎩⎪⎨⎪⎧a =-1,b =-2.∴a+b=-3.答案:-33.(2014·高考四川卷)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx -y-m+3=0交于点P(x,y),则|P A|·|PB|的最大值是________.解析:易知A(0,0),B(1,3),且P A⊥PB,∴|P A|2+|PB|2=|AB|2=10,∴|P A|·|PB|≤|P A|2+|PB|22=5(当且仅当|P A|=|PB|时取“=”).答案:5。
高考一轮总复习数学(理)课件 第2章 函数、导数及其应用 2-11 板块一 知识梳理 自主学习ppt版本
第2章 函数、导数及其应用 第11讲 导数在研究函数中的应用
板块一 知识梳理·自主学习
[必备知识] 考点1 函数的导数与单调性的关系 函数y=f(x)在某个区间内可导: (1)若f′(x)>0,则f(x)在这个区间内 单调递增 ; (2)若f′(x)<0,则f(x)在这个区间内 单调递减 ; (3)若f′(x)=0,则f(x)在这个区间内是 常数函数 .
1
-
a.
∴
f′(x)
=
1 x
-
ax
+
a
-
1
=
-ax2+1+ x
ax-x.①若
a≥0,当
0<x<1
时,f′(x)>0,f(x)
单调递增;当 x>1 时,f′(x)<0,f(x)单调递减,所以 x=1
是 f(x)的极大值点.②若 a<0,由 f′(x)=0,得 x=1 或 x
=-1a.因为 x=1 是 f(x)的极大值点,所以-1a>1,解得-
命题角度2 根据函数的单调性求参数范围
例2 已知a≥0,函数f(x)=(x2-2ax)ex,若f(x)在[-1,1]
上是单调减函数,则a的取值范围是(
)
A.0,34
C.34,+∞
B.12,34 D.0,12
[解 析 ] f′(x)= (2x- 2a)ex + (x2 - 2ax)ex = [x2 + (2 - 2a)x-2a]ex,由题意知当 x∈[-1,1]时,f′(x)≤0 恒成立, 即 x2+(2-2a)x-2a≤0 恒成立.
①当-a2≤1 时,即-2≤a<0 时,f(x)在[1,4]上的最小
值为 f(1),由 f(1)=4+4a+a2=8,得 a=±2 2-2,均不符
2023届北京市高考数学(理)一轮复习模拟收官卷(一)(解析版)
A B =( 1,2.(2022·北京房山( ) 5.(2022·北京|23MN ,那143k -403k0k 或43k -403k 2022·北京·首都师范大学附属中学三模)下列函数中,既是偶函数又在()0,2上单调递减的是( )2x = 3y x =- cos 2x =2ln2xy x-=+ 2022·北京·首都师范大学附属中学三模)设函数()1sin f x x =∈R ,其中A .直线11A D 与直线EF 相交B .当E 为棱BC 上的中点时,则点E 在平面1AD F 的射影是点F C .存在点E ,使得直线1AD 与直线EF 所成角为30 D .三棱锥E ADF -的体积为定值9.(2022·北京师大附中高二期中)当N n ∈时,将三项式()21nx x ++展开,可得到如图所示的三项展开式和“广义杨辉三角形”:若在()()5211ax x x +++的展开式中,8x 的系数为75,则实数a 的值为( )A .1B .1-C .2D .2-10.(2022·北京市第三十五中学高三阶段练习)如图,△11OB A ,△122A B A 是全等的等腰直角三角形,12,B B 为直角顶点,12,,O A A 三点共线.若点12,P P 分别是边1122,A B A B 上的动点(不包含端点).记12=m OB OP ⋅,21=n OB OP ⋅,则( )A .m n >B .m n <C .m n =D .,m n 大小不能确二、填空题(共5小题,每小题5分,共25分.)cos60,请写出一组符合题意的北京八十中模拟预测)同学们,你们是否注意到:自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深涧的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这1,2),描清华附中模拟预测)在ABC中,这三个条件中选择一个作为已知,使ABC存在且唯一确定,求ABC的:ABC的周长为A B =( 1,2【答案】D【详解】解:因为A B ={0,1,2故选:D..(2022·北京房山5 【答案】A【详解】由题意知,|23,那143k -403k0k 或43k -403k 【答案】D【详解】圆化简为标准方程为()22x -+,圆心()2,0到直线y 的距离2d k =22243k k ⎛- ⎝,4n S 成立,即项和中的最大值,10635a a .北京市大兴区兴华中学三模)李明开发的小程序在发布时已有【详解】经过又小程序在发布时已有又小程序发布经过A.直线A D与直线相交30C CB当点E 为BC 的中点时,//EF CB ,又AD CB ⊥,所以EF AD ⊥,设正方体的棱长为2,若存在点(,2,0)(02)E a a ≤≤使得EF 与1BC 所成角为30︒,(2,2,0)(2,2,1)(0,2,2)F ,,所以1(2,0,1)(2,0,2)EF a BC =-=-,所以12EF BC a ⋅=-,又11cos30EF BC EF BC ︒⋅=,322212a -=⨯+⨯,解得43a =±, 不符合题意,故不存在点E 使得EF 与1AD 所成角为30︒,故C 错误;:如图,ADESBF ⋅为定值,所以ADF -()()5a 是全等的等腰直角三角形,12,B B 为直角顶点,,O A 12=OB OP ⋅,21=OB OP ⋅,则(A .m n >B .m n <C .m n =D .,m n 大小不能确232122 2=OB OP⋅=1232 2=OB OP⋅= m n<.故选:B.二、填空题(共5分,共25分.).(2022·北京·清华附中模拟预测)函数)lg xx=的定义域为cos60,请写出一组符合题意的()cos9030sin30os60=-=,sin30,1,2),描1,2),两式作差得,{}n b 为正实数数列,故,因为11a b -清华附中模拟预测)在ABC 中,这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求ABC 的:ABC 的周长为3342; 选择条件22cos a c b B +-=所以存在两个ABC ,不符合题意; ,(0,πA ∈由正弦定理知,sin a A =所以ABC 的面积选择条件③:因为ABC 的周长为23c ac +-所以ABC 的面积(2022·北京市十一学校高三阶段练习)ABCD ,求证:Q 为求平面ACQ 求直线PB 到平面【答案】(1)证明见解析 PBD平面ACQ 的法向量为(),,n x y z =20n AQ y z n AC x ⎧⋅=+⎨⋅=+=⎩,故可设(1,1,n =--ABCD 的法向量为()0,0,1m =, ACQ 与平面ABCD 夹角为θ, 1333m n m nθ⋅===⋅. 由于//PB 平面ACQ ,则()0,2,0BC AD ==,23BC n n⋅==的距离为23318.(2022·北京·人大附中模拟预测)某家电专卖店试销A B C 、、三种新型空调,销售情况如下表所示:a ⎧,都是32时,由于k a,都是3的倍数;2综上所述,若集合M存在一个元素是。
高考数学理一轮总复习 必修部分开卷速查31 数列求和(含解析)新人教A版-新人教A版高三必修数学试题
开卷速查(三十一) 数列求和A 级 基础巩固练1.数列{a n }的前n 项和为S n ,若a n =1n n +1,则S 6等于( )A.142B.45C.56D.67解析:因为a n =1nn +1=1n -1n +1,所以S 6=1-12+12-13+…+16-17=1-17=67. 答案:D2.已知数列{a n }是等差数列,a 1=tan225°,a 5=13a 1,设S n 为数列{(-1)na n }的前n 项和,则S 2 014=( )A .2 014 B.-2 014 C .3 021 D.-3 021 解析:∵a 1=tan225°=1, ∴a 5=13a 1=13, 则公差d =a 5-a 15-1=13-14=3,∴a n =3n -2.方法一:∵(-1)na n =(-1)n(3n -2),∴S 2 014=(a 2-a 1)+(a 4-a 3)+(a 6-a 5)+…+(a 2 012-a 2 011)+(a 2 014-a 2 013)=1 007d =3 021.方法二:(错位相减)由于(-1)n a n =(-1)n(3n -2),则S 2 014=1×(-1)1+4×(-1)2+7×(-1)3+…+6 037×(-1)2 013+6 040×(-1)2 014,①①式两边分别乘以-1,得(-1)×S 2 014=1×(-1)2+4×(-1)3+7×(-1)4+…+6 037×(-1)2 014+6 040×(-1)2 015,②①-②得2S 2 014=-1+3×1--12 0131--1-6 040(-1)2 015=6 042,∴S 2 014=3 021.答案:C3.在数列{a n }中,已知a 1=1,a n +1-a n =sin n +1π2,记S n 为数列{a n }的前n 项和,则S 2 016=( )A .1 006 B.1 007 C .1 008 D.1 009解析:由题意,得a n +1=a n +sinn +1π2,所以a 2=a 1+sinπ=1,a 3=a 2+sin 3π2=0,a 4=a 3+sin2π=0,a 5=a 4+sin 5π2=1,…,因此,数列{a n }是一个以4为周期的周期数列,而2 016=4×504,所以S 2 016=504×(a 1+a 2+a 3+a 4)=1 008,故选C.答案:C4.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为( )A.100101B.99101 C.99100D.101100解析:设等差数列{a n }的首项为a 1,公差为d .∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+5×5-12d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =n .∴1a n a n +1=1n n +1=1n -1n +1,∴数列{1a n a n +1}的前100项和为1-12+12-13+…+1100-1101=1-1101=100101. 答案:A5.已知等比数列的各项都为正数,且当n ≥3时,a 4a 2n -4=102n,则数列lg a 1,2lg a 2,22lg a 3,23lg a 4,…,2n -1lg a n ,…的前n 项和S n 等于( )A .n ·2nB.(n -1)·2n -1-1C .(n -1)·2n+1 D.2n+1解析:∵等比数列{a n }的各项都为正数,且当n ≥3时,a 4a 2n -4=102n,∴a 2n =102n,即a n=10n,∴2n -1lg a n =2n -1lg10n =n ·2n -1,∴S n =1+2×2+3×22+…+n ·2n -1,①2S n =1×2+2×22+3×23+…+n ·2n,② ∴①-②得-S n =1+2+22+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )·2n-1,∴S n =(n -1)·2n+1. 答案:C6.数列{a n }满足a 1=2,a 2=1,并且a n ·a n -1a n -1-a n =a n ·a n +1a n -a n +1(n ≥2),则数列{a n }的第100项为( )A.12100 B.1250 C.1100 D.150解析:∵a n ·a n -1a n -1-a n =a n ·a n +1a n -a n +1(n ≥2),∴数列{a n -1a na n -1-a n}是常数数列,设a n -1a na n -1-a n=k ,∴1a n -1a n -1=1k .∴1k =1-12=12. ∴1a n =1a n -1a n -1+1a n -1-1a n -2+…+1a 2-1a 1+1a 1=12(n -1)+12,∴1a 100=992+12=50. ∴a 100=150.故选D.答案:D7.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=19,a 5+b 3=9,则数列{a n b n }的前n 项和S n =__________.解析:由条件易求出a n =n ,b n =2n -1(n ∈N *).∴S n =1×1+2×21+3×22+…+n ×2n -1,①2S n =1×2+2×22+…+(n -1)×2n -1+n ×2n.②由①-②,得-S n =1+21+22+…+2n -1-n ×2n,∴S n =(n -1)·2n+1. 答案:(n -1)·2n +1 8.在数列{a n }中,a n =1n +1+2n +1+…+n n +1,又b n =2a n a n +1,则数列{b n }的前n 项和为__________.解析:∵a n =n n +12n +1=n2, ∴b n =8nn +1=8⎝ ⎛⎭⎪⎫1n -1n +1. ∴b 1+b 2+…+b n =8⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=8n n +1.答案:8n n +19.若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+3n (n ∈N *),则a 12+a 23+…+a nn +1=__________.解析:令n =1,得a 1=4,∴a 1=16.当n ≥2时,a 1+a 2+…+a n -1=(n -1)2+3(n -1). 与已知式相减,得a n =(n 2+3n )-(n -1)2-3(n -1)=2n +2.∴a n =4(n +1)2.∴n =1时,a 1适合a n . ∴a n =4(n +1)2.∴a nn +1=4n +4,∴a 12+a 23+…+a n n +1=n 8+4n +42=2n 2+6n .答案:2n 2+6n10.[2014·大纲全国]等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解析:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数,又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52.因此d =-3.数列{a n }的通项公式为a n =13-3n . (2)b n =113-3n10-3n =13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎣⎢⎡⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…⎦⎥⎤+⎝ ⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n1010-3n.B 级 能力提升练11.已知数列{a n }的通项公式为a n =1n +1n +n n +1(n ∈N *),其前n 项和为S n ,则在数列S 1、S 2、…、S 2 014中,有理数项的项数为( )A .42B .43C .44D .45 解析:1a n=(n +1)n +n n +1=n +1n (n +1+n )=n +1n⎝ ⎛⎭⎪⎫1n +1-n , a n =n +1-n n +1n =1n -1n +1,S n =a 1+a 2+a 3+…+a n =1-12+12-13+…+1n -1n +1=1-1n +1问题等价于在2,3,4,…,2 015中有多少个数可以开方设2≤x 2≤2 015且x ∈N ,因为442=1 936,452=2 025,所以2≤x ≤44且x ∈N ,共有43个.选B.答案:B12.在数列{a n }中,已知a 1=1,a n +1=-1a n +1,记S n 为数列{a n }的前n 项和,则S 2 014=__________.解析:a 2=-1a 1+1=-11+1=-12,a 3=-1a 2+1=-1-12+1=-2,a 4=-1a 3+1=-1-2+1=1,因此a 4=a 1,依次下去,得到a n +3=a n ,因此数列{a n }是以3为周期的周期数列, ∵2 014=3×671+1,∴S 2 014=671×(a 1+a 2+a 3)+a 1=671×⎝ ⎛⎭⎪⎫1-12-2+1=-2 0112. 答案:-2 011213.[2015·某某某某三中、某某一中统考]已知数列{a n }的前n 项和S n 和通项a n 满足2S n+a n =1,数列{b n }中,b 1=1,b 2=12,2b n +1=1b n +1b n +2(n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)数列{}满足=a n b n ,求证:c 1+c 2+c 3+…+<34.解析:(1)由2S n +a n =1,得S n =12(1-a n ).当n ≥2时,a n =S n -S n -1=12(1-a n )-12(1-a n -1)=-12a n +12a n -1,即2a n =-a n +a n -1,∴a n a n -1=13(由题意可知a n -1≠0). {a n }是公比为13的等比数列,而S 1=a 1=12(1-a 1),∴a 1=13,∴a n =13×⎝ ⎛⎭⎪⎫13n -1=⎝ ⎛⎭⎪⎫13n,由2b n +1=1b n +1b n +2,1b 1=1,1b 2=2,得d =1b 2-1b 1=1(d 为等差数列⎩⎨⎧⎭⎬⎫1b n 的公差), ∴1b n =n ,∴b n =1n.(2)=a n b n =n ⎝ ⎛⎭⎪⎫13n,设T n =c 1+c 2+…+,则T n =1×⎝ ⎛⎭⎪⎫131+2×⎝ ⎛⎭⎪⎫132+3×⎝ ⎛⎭⎪⎫133+…+n ×⎝ ⎛⎭⎪⎫13n ,13T n =1×⎝ ⎛⎭⎪⎫132+2×⎝ ⎛⎭⎪⎫133+…+(n -1)×⎝ ⎛⎭⎪⎫13n +n ×⎝ ⎛⎭⎪⎫13n +1,由错位相减,化简得:T n =34-34×⎝ ⎛⎭⎪⎫13n -12n ⎝ ⎛⎭⎪⎫13n =34-2n +34×13n <34.14.[2014·某某]已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .解析:(1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12, 由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)b n =(-1)n -14na n a n +1=(-1)n -14n 2n -12n +1=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝⎛⎭⎪⎫12n -3+12n -1-⎝⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n2n +1.当n 为奇数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝⎛⎭⎪⎫12n -3+12n -1+⎝⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.(或T n =2n +1+-1n -12n +1)。
高考数学(理)一轮复习学案:§7.2 一元二次不等式及其解法+(新课标含解析)
§7.2一元二次不等式及其解法1.解不等式的有关理论(1)若两个不等式的解集相同,则称它们是;(2)一个不等式变形为另一个不等式时,若两个不等式是同解不等式,这种变形称为不等式的;(3)解不等式变形时应进行同解变形;解不等式的结果,一般用集合表示.2.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式.当a>0时,解集为;当a<0时,解集为.若关于x的不等式ax>b的解集是R,则实数a,b满足的条件是.3.一元二次不等式及其解法(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.(2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.(3)若一元二次不等式经过同解变形后,化为一元二次不等式ax2+bx+c>0(或ax2+bx+c <0)(其中a>0)的形式,其对应的方程ax2+bx+c=0有两个不相等的实根x1,x2,且x1<x2(此时Δ=b2-4ac>0),则可根据“大于号取,小于号取”求解集.4.分式不等式解法(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为f (x )g (x )的形式.(2)将分式不等式转化为整式不等式求解,如:f (x )g (x )>0 ⇔ f (x )g (x )>0; f (x )g (x )<0 ⇔ f (x )g (x )<0; f (x )g (x )≥0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≥0,g (x )≠0; f (x )g (x )≤0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≤0,g (x )≠0. 自查自纠1.(1)同解不等式 (2)同解变形2.⎩⎨⎧⎭⎬⎫x |x >b a ⎩⎨⎧⎭⎬⎫x |x <b a a =0,b <0 3.(1)一元二次 (2)解集 (3)两边 中间(4)①{}x |x <x 1或x >x 2 ②⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-b 2a ③∅(2014·课标Ⅰ)已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( ) A .[-2,-1] B .[-1,2) C .[-1,1]D .[1,2)解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2}, ∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A .设f (x )=x 2+bx +1且f (-1)=f (3),则f (x )>0的解集为( ) A .{x |x ∈R } B .{x |x ≠1,x ∈R } C .{x |x ≥1}D .{x |x ≤1}解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b , 由f (-1)=f (3),得2-b =10+3b ,解出b =-2,代入原函数,f (x )>0即x 2-2x +1>0, x 的取值范围是x ≠1.故选B .已知-12<1x<2,则x 的取值范围是( )A .(-2,0)∪⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫-12,2 C.⎝⎛⎭⎫-∞,-12∪(2,+∞) D .(-∞,-2)∪⎝⎛⎭⎫12,+∞ 解:当x >0时,x >12;当x <0时,x <-2.所以x 的取值范围是x <-2或x >12,故选D .不等式2x 2-x <4的解集为____________.解:由2x 2-x <4得x 2-x <2,解得-1<x <2,即不等式2x 2-x <4的解集为{x |-1<x <2}.故填{x|-1<x<2}.(2014·武汉调研)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.解:显然k ≠0.则⎩⎪⎨⎪⎧2k <0,Δ<0,解得k ∈(-3,0).故填(-3,0).类型一 一元一次不等式的解法已知关于x 的不等式(a +b )x +2a -3b <0的解集为⎝⎛⎭⎫-∞,-13,则关于x 的不等式(a -3b )x +b -2a >0的解集为________.解:由(a +b )x <3b -2a 的解集为⎝⎛⎭⎫-∞,-13, 得a +b >0,且3b -2a a +b=-13,从而a =2b ,则a +b =3b >0,即b >0, 将a =2b 代入(a -3b )x +b -2a >0, 得-bx -3b >0,x <-3,故填{x|x <-3}.【点拨】一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2a a +b=-13是解本题的关键.解关于x 的不等式:(m 2-4)x <m +2.解:(1)当m 2-4=0即m =-2或m =2时, ①当m =-2时,原不等式的解集为∅,②当m =2时,原不等式的解集为R .(2)当m 2-4>0,即m <-2或m >2时,x <1m -2.(3)当m 2-4<0,即-2<m <2时,x >1m -2.类型二 一元二次不等式的解法解下列不等式:(1)x 2-7x +12>0; (2)-x 2-2x +3≥0; (3)x 2-2x +1<0; (4)x 2-2x +2>0.解:(1)方程x 2-7x +12=0的解为x 1=3,x 2=4.而y =x 2-7x +12的图象开口向上,可得原不等式x 2-7x +12>0的解集是{x |x <3或x >4}.(2)不等式两边同乘以-1,原不等式可化为x 2+2x -3≤0. 方程x 2+2x -3=0的解为x 1=-3,x 2=1.而y =x 2+2x -3的图象开口向上,可得原不等式-x 2-2x +3≥0的解集是{x |-3≤x ≤1}. (3)方程x 2-2x +1=0有两个相同的解x 1=x 2=1.而y =x 2-2x +1的图象开口向上,可得原不等式x 2-2x +1<0的解集为∅.(4)因为Δ<0,所以方程x 2-2x +2=0无实数解,而y =x 2-2x +2的图象开口向上,可得原不等式x 2-2x +2>0的解集为R .【点拨】解一元二次不等式的步骤:(1)将二次项系数化为正数;(2)解相应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向画图;(4)写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合.(2015·贵州模拟)关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则实数a 的取值范围是________.解:原不等式可化为(x -1)(x -a )<0,当a >1时,得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5;当a <1时,得a <x <1,此时解集中的整数为-2,-1,0.则-3≤a <-2,故a ∈[-3,-2)∪(4,5].故填[-3,-2)∪(4,5].类型三 二次不等式、二次函数及二次方程的关系(2015·贵州模拟)已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A.⎩⎨⎧⎭⎬⎫x|x <-1或x >12 B.⎩⎨⎧⎭⎬⎫x |-1<x <12C .{x |-2<x <1}D .{x |x <-2或x >1}解:由题意知x =-1,x =2是方程ax 2+bx +2=0的两根,且a <0.由韦达定理得⎩⎨⎧-1+2=-ba ,(-1)×2=2a⇒⎩⎪⎨⎪⎧a =-1,b =1.∴不等式2x 2+bx +a <0,即2x 2+x -1<0.解得-1<x <12.故选B .【点拨】已知一元二次不等式的解集,就能够得到相应的一元二次方程的两根,由根与系数的关系,可以求出相应的系数.注意结合不等式解集的形式判断二次项系数的正负.已知不等式ax 2+bx +c >0的解集为{x |2<x <3},则不等式cx 2-bx +a >0的解集为________.解:∵不等式ax 2+bx +c >0的解集为{x |2<x <3},∴a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系得⎩⎨⎧-ba=2+3,c a =2×3,a <0.即⎩⎪⎨⎪⎧b =-5a ,c =6a ,a <0.代入不等式cx 2-bx +a >0,得6ax 2+5ax +a >0(a <0).即6x 2+5x +1<0,解得-12<x <-13.故填⎩⎨⎧⎭⎬⎫x|-12<x <-13.类型四 含有参数的一元二次不等式解关于x 的不等式:mx 2-(m +1)x +1<0.解:(1)当m =0时,不等式为-(x -1)<0,得x -1>0,不等式的解集为{x |x >1};(2)当m ≠0时,不等式为m ⎝⎛⎭⎫x -1m (x -1)<0. ①当m <0,不等式为⎝⎛⎭⎫x -1m (x -1)>0, ∵1m <1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1m 或x >1. ②当m >0,不等式为⎝⎛⎭⎫x -1m (x -1)<0. (Ⅰ)若1m<1,即m >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1m <x <1;(Ⅱ)若1m>1,即0<m <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1m ;(Ⅲ)若1m=1,即m =1时,不等式的解集为∅.【点拨】当x 2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m ≠0与m =0进行讨论,这是第一层次;第二层次:x 2的系数正负(不等号方向)的不确定性,对m <0与m >0进行讨论;第三层次:1m 与1大小的不确定性,对m <1、m >1与m =1进行讨论.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:不等式整理为ax 2+(a -2)x -2≥0, 当a =0时,解集为(-∞,-1].当a ≠0时,ax 2+(a -2)x -2=0的两根为-1,2a,所以当a >0时,解集为(-∞,-1]∪⎣⎡⎭⎫2a ,+∞;当-2<a <0时,解集为⎣⎡⎦⎤2a ,-1; 当a =-2时,解集为{x |x =-1}; 当a <-2时,解集为⎣⎡⎦⎤-1,2a . 类型五 分式不等式的解法(1)不等式x -12x +1≤1的解集为________.解:x -12x +1≤1 ⇔ x -12x +1-1≤0 ⇔ -x -22x +1≤0 ⇔ x +22x +1≥0.解法一:x +22x +1≥0 ⇔⎩⎪⎨⎪⎧(x +2)(2x +1)≥0,2x +1≠0.得{x|x >-12或x ≤-2}.解法二:x +22x +1≥0 ⇔⎩⎪⎨⎪⎧x +2≥0,2x +1>0 或 ⎩⎪⎨⎪⎧x +2≤0,2x +1<0.得{x |x >-12或x ≤-2}.故填{x|x >-12或x ≤-2}.(2)不等式x -2x 2+3x +2>0的解集为 .解:x -2x 2+3x +2>0⇔x -2(x +2)(x +1)>0⇔(x -2)(x +2)(x +1)>0,数轴标根得{x |-2<x <-1或x >2}, 故填{x|-2<x <-1或x >2}.【点拨】分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,则要注意分式的分母不能为零.※用“数轴标根法”解不等式的步骤:(1)移项:根据不等式的性质对不等式进行移项,使得右端为0,化为不等式的标准形式(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根.①若是整式不等式,将其分解因式,求出所有根;②若是分式不等式,用积和商的符号法则,将其转化为整式不等式,再求出所有根.(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根”的右上方向左下方画线,穿过此根,再往左上方穿过“次右根”,一上一下依次穿过各根.但画线时遇偶重根不穿过(即线画至此根时,不穿过此根,而向左依次穿过其余的根),遇奇重根要穿过,可用口诀:“奇穿偶不穿”来记忆.(5)写出不等式的解集:若不等号为“>”,则取数轴上方穿根线以内的范围;若不等号为“<”,则取数轴下方穿根线以内的范围;若不等式中含有“=”号,就连根一同取,但若是分式不等式,写解集时要考虑分母不能为零.(1)若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,则A ∩B =( ) A .{x |-1≤x <0} B .{x |0<x ≤1} C .{x |0≤x ≤2}D .{x |0≤x ≤1}解:易知A ={x |-1≤x ≤1},B 集合就是不等式组⎩⎪⎨⎪⎧x (x -2)≤0,x ≠0的解集,求出B ={}x |0<x ≤2,所以A ∩B ={x |0<x ≤1}.故选B .(2)不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1 B.⎣⎡⎦⎤-12,1 C.⎝⎛⎭⎫-∞,-12∪[1,+∞) D.⎝⎛⎦⎤-∞,-12∪[1,+∞) 解:x -12x +1≤0⇔⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0得-12<x ≤1.故选A .类型六 和一元二次不等式有关的恒成立问题(1)若不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎤0,12成立,则实数a 的最小值为( ) A .0B .-2C .-52D .-3解法一:不等式可化为ax ≥-x 2-1,由于x ∈⎝⎛⎦⎤0,12, ∴a ≥-⎝⎛⎭⎫x +1x .∵f (x )=x +1x 在⎝⎛⎦⎤0,12上是减函数, ∴⎝⎛⎭⎫-x -1x max=-52.∴a ≥-52.解法二:令f (x )=x 2+ax +1,对称轴为x =-a2.①⎩⎪⎨⎪⎧-a 2≤0,f (0)≥0⇒a ≥0.(如图1) ②⎩⎨⎧0<-a 2<12,f ⎝⎛⎭⎫-a 2≥0⇒-1<a <0.(如图2)③⎩⎨⎧-a 2≥12,f ⎝⎛⎭⎫12≥0⇒-52≤a ≤-1.(如图3)图1图2图3综上 ①②③,a ≥-52.故选C .(2)已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( )A .1<x <3B .x <1或x >3C .1<x <2D .x <1或x >2解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],依题意,只须⎩⎪⎨⎪⎧g (1)>0,g (-1)>0⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,故选B .【点拨】(1)一元二次不等式恒成立问题,对于x 变化的情形,解法一利用参变量分离法,化成a >f (x )(a <f (x ))型恒成立问题,再利用a >f (x )max (a <f (x )min ),求出参数范围.解法二化归为二次函数,由于是轴动区间定,结合二次函数对称轴与定义域的位置关系、单调性等相关知识,求出参数范围.(2)对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.(1)(2015·甘肃模拟)若不等式a ·4x -2x +1>0对一切x ∈R 恒成立,则实数a 的取值范围是________.解:不等式可变形为a >2x -14x =⎝⎛⎭⎫12x -⎝⎛⎭⎫14x ,令⎝⎛⎭⎫12x =t ,则t >0.∴y =⎝⎛⎭⎫12x -⎝⎛⎭⎫14x =t -t 2=-⎝⎛⎭⎫t -122+14,因此当t =12时,y 取最大值14,故实数a 的取值范围是a >14.故填⎝⎛⎭⎫14,+∞.(2)对于满足|a |≤2的所有实数a ,使不等式x 2+ax +1>2x +a 成立的x 的取值范围为________.解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,则f (a )在[-2,2]上恒大于0,故有:⎩⎪⎨⎪⎧f (-2)>0,f (2)>0 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0 解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1.∴x <-1或x >3.故填(-∞,-1)∪(3,+∞).类型七 二次方程根的讨论若方程2ax 2-x -1=0在(0,1)内有且仅有一解,则a 的取值范围是( ) A .(-∞,-1) B .(1,+∞) C .(-1,1)D .[0,1)解法一:令f (x )=2ax 2-x -1,则f (0)·f (1)<0,即-1×(2a -2)<0,解得a >1.解法二:当a =0时,x =-1,不合题意,故排除C ,D ;当a =-2时,方程可化为4x 2+x +1=0,而Δ=1-16<0,无实根,故a =-2不适合,排除A.故选B .【点拨】本题考查一元二次方程的根的分布与系数的关系,画出相应函数的图象后“看图说话”,主要从以下四个方面分析:①开口方向;②判别式;③区间端点函数值的正负;④对称轴x =-b2a与区间端点的关系.本书2.4节有较详细的讨论,可参看.(2015·贵州模拟)已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为________.解:根据题意有f (-2)f (-1)<0,∴(6a +5)(2a +3)<0.∴-32<a <-56.又a ∈Z ,∴a =-1.检验知合要求.不等式f (x )>1即为-x 2-x +1>1,解得-1<x <0. ∴故填{x|-1<x <0}.类型八 一元二次不等式的应用(2013·上海)甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得利润是100⎝⎛⎭⎫5x +1-3x 元. (1)要使生产该产品2小时获得的利润不低于3 000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.解:(1)根据题意,200⎝⎛⎭⎫5x +1-3x ≥3 000⇒5x -14-3x≥0⇒5x 2-14x -3≥0⇒(5x +1)(x -3)≥0,又1≤x ≤10,可解得3≤x ≤10.(2)设利润为y 元,则y =900x ·100⎝⎛⎭⎫5x +1-3x =9×104⎝⎛⎭⎫-3x 2+1x +5=9×104⎣⎡⎦⎤-3⎝⎛⎭⎫1x -162+6112. 故x =6时,y max =457 500元.【点拨】和一元二次不等式有关的实际应用题是高考考查的重点,这类题目往往与实际生活结合紧密,应予以重视.(2015·河南模拟)某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价. (1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.解: (1)由题意得y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . ∵售价不能低于成本价,∴100⎝⎛⎭⎫1-x 10-80≥0. ∴y =f (x )=20(10-x )(50+8x ),定义域为[0,2].(2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134.∴x 的取值范围是⎣⎡⎦⎤12,2.1.一元二次不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的解集的确定,受二次项系数a 的符号及判别式Δ=b 2-4ac 的符号制约,且与相应的二次函数、一元二次方程有密切联系,可结合相应的函数y =ax 2+bx +c (a ≠0)的图象,数形结合求得不等式的解集;二次函数y =ax 2+bx +c 的值恒大于0的条件是a >0且Δ<0;若恒大于或等于0,则a >0且Δ≤0.若二次项系数中含参数且未指明该函数是二次函数时,必须考虑二次项系数为0这一特殊情形.2.解分式不等式要使一边为零;求解非严格分式不等式时,要注意分母不等于0,转化为不等式组.(注:形如f (x )g (x )≥0或f (x )g (x )≤0的不等式称为非严格分式不等式)3.解含参数的不等式的基本途径是分类讨论,能避免讨论的应设法避免讨论.对字母参数的逻辑划分要具体问题具体分析,必须注意分类不重、不漏、完全、准确.4.解不等式的过程,实质上是不等式等价转化的过程.因此保持同解变形是解不等式应遵循的基本原则.5.各类不等式最后一般都要化为一元一次不等式(组)或一元二次不等式(组)来解,这体现了转化与化归的数学思想.6.对给定的一元二次不等式,求解的程序框图是:1.不等式x -2x +1≤0的解集是( ) A .(-∞,-1)∪(-1,2]B .[-1,2]C .(-∞,-1)∪[2,+∞)D .(-1,2]解:x -2x +1≤0⇔()x +1()x -2≤0,且x ≠-1,即x ∈(-1,2],故选D .2.(2015·湖北模拟)不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )解:由题意得⎩⎨⎧-2+1=1a ,-2×1=-c a , 解得⎩⎪⎨⎪⎧a =-1,c =-2.则f (x )=-x 2-x +2,∴f (-x )=-x 2+x +2.故选C .3.(2013·安徽)已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >12,则f (10x )>0的解集为( )A .{x |x <-1或x >lg2}B .{x |-1<x <lg2}C .{x |x >-lg2}D .{x |x <-lg2}解:可设f (x )=a (x +1)⎝⎛⎭⎫x -12(a <0),由f (10x )>0可得(10x +1)⎝⎛⎭⎫10x -12<0,从而10x <12,解得x <-lg2,故选D .4.(2013·陕西)在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( )A .[15,20]B .[12,25]C .[10,30]D .[20,30]解:设矩形的另一边为y m ,依题意得x 40=40-y 40,即y =40-x ,所以x (40-x )≥300,解得10≤x ≤30.故选C .5.若关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,则实数a 的取值范围是( )A .(-∞,-12)B .(-4,+∞)C .(-12,+∞)D .(-∞,-4)解:关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,即a <2x 2-8x -4在(1,4)内有解,令f (x )=2x 2-8x -4=2(x -2)2-12,当x =2时,f (x )取最小值f (2)=-12;当x =4时,f (4)=2(4-2)2-12=-4,所以在(1,4)上,-12≤f (x )<-4.要使a <f (x )有解,则a <-4.故选D .6.若关于x 的方程3x 2-5x +a =0的一个根大于-2且小于0,另一个根大于1且小于3,则实数a 的取值范围是( )A .(-∞,2)B .(-12,+∞)C .(-22,0)D .(-12,0)解:设f (x )=3x 2-5x +a ,则由题意有⎩⎪⎨⎪⎧f (-2)>0,f (0)<0,f (1)<0,f (3)>0.即⎩⎪⎨⎪⎧22+a >0,a <0,-2+a <0,12+a >0. 解得-12<a <0.故选D .7.(2015·浙江模拟)不等式log 2⎝⎛⎭⎫x +1x +6≤3的解集为________. 解:log 2⎝⎛⎭⎫x +1x +6≤3⇔log 2⎝⎛⎭⎫x +1x +6≤log 28⇔0<x +1x +6≤8⇔-6<x +1x≤2.当x >0时,x +1x ≥2,此时x =1;当x <0时,x +1x ≤-2,此时x +1x>-6,解得-3-22<x <-3+2 2.故填(-3-22,-3+22)∪{1}.8.(2015·昆明模拟)已知a 为正的常数,若不等式1+x ≥1+x 2-x 2a对一切非负实数x 恒成立,则a 的最大值是__________. 解:原不等式可化为x 2a ≥1+x 2-1+x (*),令1+x =t ,t ≥1,则x =t 2-1,所以(*)即(t 2-1)2a ≥1+t 2-12-t =t 2-2t +12=(t -1)22,对t ≥1恒成立,所以(t +1)2a ≥12对t ≥1恒成立,又a 为正的常数,所以a ≤[2(t +1)2]min =8,故a 的最大值是8.故填8.9.若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,求实数a 的取值范围.解法一:设f (x )=x 2-ax -a .则关于x 的不等式x 2-ax -a ≤-3的解集不是空集⇔f (x )min≤-3,即f ⎝⎛⎭⎫a 2=-4a +a 24≤-3,解得a ≤-6或a ≥2. 解法二:x 2-ax -a ≤-3的解集不是空集⇔x 2-ax -a +3=0的判别式Δ≥0,解得a ≤-6或a ≥2.10.汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速为40 km/h 的弯道上,甲、乙两辆车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场勘查测得甲车的刹车距离略超过12 m ,乙车的刹车距离略超过10 m ,又知甲、乙两种车型的刹车距离s (m)与车速x (km/h)之间分别有如下关系:s 甲=0.1x +0.01x 2, s 乙=0.05x +0.005x 2.问甲、乙两车有无超速现象?解:由题意知,对于甲车,有0.1x +0.01x 2>12,即x 2+10x -1200>0,解得x >30或x <-40(舍去).这表明甲车的车速超过30 km/h ,又由甲车刹车距离略超12 m ,可判断甲车车速不会超过限速40 km/h.对于乙车有0.05x +0.005x 2>10,即x 2+10x -2000>0,解得x >40或x <-50(舍去).这表明乙车超过40 km/h ,超过规定限速.11.已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).(1)若方程f (x )+6a =0有两个相等的实根,求f (x )的解析式;(2)若f (x )的最大值为正数,求a 的取值范围.解:(1)∵f (x )+2x >0的解集为(1,3),∴f (x )+2x =a (x -1)(x -3),且a <0.因而f (x )=a (x -1)(x -3)-2x=ax 2-(2+4a )x +3a .①由方程f (x )+6a =0得ax 2-(2+4a )x +9a =0.②因为方程②有两个相等的实根,所以Δ=[-(2+4a )]2-4a ·9a =0,即5a 2-4a -1=0,解得a =1或a =-15. 由于a <0,舍去a =1,将a =-15代入①得f (x )的解析式 f (x )=-15x 2-65x -35. (2)由f (x )=ax 2-2(1+2a )x +3a=a ⎝ ⎛⎭⎪⎫x -1+2a a 2-a 2+4a +1a , 及a <0,可得f (x )的最大值为-a 2+4a +1a. 由⎩⎨⎧-a 2+4a +1a >0,a <0,解得a <-2-3或-2+3<a <0. 故当f (x )的最大值为正数时,实数a 的取值范围是 (-∞,-2-3)∪(-2+3,0).解关于x 的不等式:a (x -1)x -2>1(a <1). 解:(x -2)[(a -1)x +2-a ]>0,当a <1时有(x -2)⎝ ⎛⎭⎪⎫x -a -2a -1<0, 若a -2a -1>2,即0<a <1时,解集为{x |2<x <a -2a -1}; 若a -2a -1=2,即a =0时,解集为∅; 若a -2a -1<2,即a <0时,解集为{x |a -2a -1<x <2}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前 试卷类型:A山东省2014届高三高考仿真模拟冲刺考试(五)数学(理)试题满分150分 考试用时120分钟参考公式:如果事件A ,B 互斥,那么P (A+B )=P (A )+P (B ); 如果事件A ,B 独立,那么P (AB )=P (A )·P (B ).如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概 率:).,,2,1,0()1()(n k p p C k P k n k knn =-=-第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每题5分,共50分.在每小题给出的四个选项中选择一个符合题目要求的选项) 1.已知条件2:340p x x --≤;条件22:690q x x m -+-≤若p 是q 的充分不必要条件,则m 的取值范围是( )A .[]1,1-B .[]4,4-C .(][),44,-∞-+∞D .(][),11,-∞-+∞2.已知11xyi i=-+,其中,x y 是实数,i 是虚数单位,则x yi +的共轭复数为 ( ) A .12i + B .12i - C .2i + D .2i -3.等差数列{}n a 中,10590,8S a ==,则4a =( )A .16B .12C .8D .6 4.函数21()ln 2f x x x =-的大致图像是( )5.某班班会准备从含甲、乙的7名学生中选取4人发言,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序种类为( )A .600B .520C .720D .3606.已知函数()f x 是R 上的偶函数,若对于0≥x ,都有)()2(x f x f =+,且当[0,2)x ∈时,)1(log )(2+=x x f ,则)2012()2011(f f +-的值为 ( )A .2-B .1-C .1D .27.将函数πcos()3y x =-的图象上各点的横坐标伸长到原2倍(纵坐标不变),再向左平移π6个单位,所得函数图象的一条对称轴是( )A .π9x =B .π2x =C .πx =D .π8x = 8.已知α∈R ,则“2a <”是“|2|||x x a -+>恒成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.函数2()31,[1,2]f x x x x =--∈-,任取一点0[1,2]x ∈-,使0()1f x ≥的概率是( ) A .23B .59 C .14D .4910.函数()f x 的定义域为A ,若存在非零实数t ,使得对于任意()x C C A ∈⊆有,x t A +∈且()()f x t f x +≤,则称()f x 为C 上的t 度低调函数.已知定义域为[)0+∞,的函数()=3f x mx --,且()f x 为[)0+∞,上的6度低调函数,那么实数m 的取值范围是( ) A .(][),01,-∞+∞B .[)+∞1,C .(],0-∞D .[]0,1第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5小题,每题5分,共25分)11.已知圆2210240x y x +-+=的圆心是双曲线2221(0)9x y a a -=>的一个焦点,则此双曲线的渐近线方程为 .12.已知一个三棱锥的三视图如图所示,其中主视图、俯视图是全等的等腰直角三角形,则该三棱锥的外接球体积为 . 13.已知a 、b 均为单位向量,它们的夹角为3π,那么3a b +等于 .14.已知O 是坐标原点,点(1,0)A ,若点(,)M x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≥⎩上的一个动点,则||OA OM +的最小值是 . 15.关于函数()x x x f 2cos 2sin -=有下列命题:①函数()x f y =的周期为π;②直线4π=x 是()x f y=的一条对称轴;③点⎪⎭⎫⎝⎛0,8π是()x f y =的图象的一个对称中心; ④将()x f y =的图象向左平移4π个单位,可得到x y 2sin 2=的图象. 其中真命题的序号是_________________.(把你认为真命题的序号都写上) 三、解答题(本大题共6小题,共75分.应写出文字说明、证明过程或演算步骤) 16.(本小题满分12分)设△ABC 的内角,,A B C 所对的边分别为,,a b c ,且6a c +=,2b =,7cos 9B =. (Ⅰ)求,a c 的值; (Ⅱ)求sin()A B -的值.17.(本小题满分12分)如图,在多面体ABCDE 中,AE ABC ⊥面,DB ∥AE ,且1A C A B B C A E ====,2BD =,F 为CD 中点。
(Ⅰ)求证:EF ⊥平面BCD ;(Ⅱ)求平面ECD 和平面ACB所成的锐二面角的余弦值。
某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为45,第二、第三种产品受欢迎的概率分别为,()p q p q >,且不同种产品是否受欢迎相互独立.记ξ为公司向市场投放三种新型产品受欢迎的数量,其分布列为 (Ⅰ)求该公司至少有一种产品受欢迎的概率; (Ⅱ)求,p q 的值; (Ⅲ)求数学期望E ξ.设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记cn nS b n n +=2,*N n ∈,其中c 为实数. (Ⅰ)若0=c ,且421b b b ,,成等比数列,证明k nk S n S 2=(*,N n k ∈);(Ⅱ)若}{n b 是等差数列,证明0=c .已知函数2()ln ,f x x ax x a R =+-∈.(Ⅰ)若函数()f x 在[1,2]上是减函数,求实数a 的取值范围; (Ⅱ)令2()()g x f x x =-,是否存在实数a ,当(0,]x e ∈(e 是自然常数)时,函数()g x 的最小值是3,若存在,求出a 的值;若不存在,说明理由.设点P 是曲线2:2(0)C xpy p =>上的动点,点P 到点(0,1)的距离和它到焦点F 的距离之和的最小值为54. (Ⅰ)求曲线C 的方程;(Ⅱ)若点P 的横坐标为1,过P 作斜率为(0)k k ≠的直线交C 于点Q ,交x 轴于点M ,过点Q 且与PQ 垂直的直线与C 交于另一点N ,问是否存在实数k ,使得直线MN 与曲线C 相切?若存在,求出k 的值;若不存在,请说明理由.理科数学(五)17.解:(1)找BC 中点G 点,连接AG ,FG,∴F ,G 分别为DC ,BC 中点,∴FG EA DB ////21==,∴四边形EFGA 为平行四边形,∴AG EF //,∵AE AE BD ABC //,平面⊥, ∴ABC DB 平面⊥,又∵BCD DB 平面⊂, ∴平面ABC ⊥平面BCD .又∵G 为BC 中点且AC=AB=BC ,∴AG ⊥BC, ∴AG ⊥平面BCD, ∴EF ⊥平面BCD .(2)以H为原点建立如图所示的空间直角坐标系则113131,1),ED(,,1),CF(,,1)2424----设平面CEF 的法向量为n (x,y,z)=,由31CE n y z 0231CF n y z 04⎧∙=--+=⎪⎪⎨⎪∙=--+=⎪⎩ 得n (3,1,1)=- ,平面ABC 的法向量为u (0,0,1)=,则n u cos(n,u)|n ||u |5⋅===.∴平面角ECD 和平面ACB 所成的锐二面角的余弦值为55.18.解:设事件i A 表示“该公司第i 种产品受欢迎”,1,2,3,i =由题意知124(),()5P A P A p ==,3()P A q = , (Ⅰ)由于事件“该公司至少有一种产品受欢迎”与事件“0ξ=”是对立的,所以该公司至少有一种产品受欢迎的概率是2431(0)1,4545P ξ-==-=. (Ⅱ)由题意知12312312(0)()(1)(1),(3)()545P P A A A p q P P A A A ξξ===--=== 48545pq ==,整理得29pq =且1p q +=,由p q >,可得21,33p q ==.(Ⅲ)由题意知123123123(1)()()()a P P A A A P A A A P A A A ξ===++41113(1)(1)(1)(1)55545p q p q p q =--+-+-=,22(2)1(0)(1)(3)45b p p P p ξξξξ===-=-=-==,因此270(0)1(1)2(2)3(3)15E P P P P ξξξξξ=⨯=+⨯=+⨯=+⨯==.(2)∵}{n b 是等差数列∴设公差为1d ,∴11)1(d n b b n -+=带入cn nS b nn +=2得11)1(d n b -+cn nS n +=2∴)()21()21(11121131b d c n cd n d a d b n d d -=++--+-对+∈N n 恒成立 ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+--=-0)(0021021111111b d c cd d a d b d d 由①式得d d 211= ∵ 0≠d ∴ 01≠d 由③式得0=c法二证(1)若0=c ,则d n a a n )1(-+=,2]2)1[(a d n n S n +-=,22)1(ad n b n +-=.当421b b b ,,成等比数列,4122b b b =,即⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+2322d a a d a ,得ad d 22=,又0≠d ,故a d 2=.由此a n S n 2=,a k n a nk S nk 222)(==,a k n S n k 222=. 故k nk S n S 2=(*,N n k ∈).(2)c n a d n n c n nS b n n ++-=+=22222)1(, cn a d n c a d n c a d n n ++--+-++-=2222)1(22)1(22)1( cn a d n ca d n ++--+-=222)1(22)1(. (※) 若}{n b 是等差数列,则Bn An b n +=型. 观察(※)式后一项,分子幂低于分母幂,故有022)1(2=++-cn a d n c,即022)1(=+-ad n c ,而22)1(ad n +-≠0, 故0=c . 经检验,当0=c 时}{n b 是等差数列.20.(Ⅰ)2121()20x ax f x x a x x+-'=+-=≤在[1,2]上恒成立. 令2()21h x x ax =+-,有(1)0(2)0h h ≤⎧⎨≤⎩得172a a ≤-⎧⎪⎨≤-⎪⎩ ,得72a ≤-. (Ⅱ)假设存在实数a ,使()l n ((g x a x x x e =-∈有最小值3,11()ax g x a x x-'=-=,①当0a ≤时,()g x 在(0,]e 上单调递减,min 4()()13,g x g e ae a e==-==(舍去),②当10e a<<时,()g x 在1(0,)a 上单调递减,在1(,]e a 上单调递增,∴2min 1()()1ln 3,g x g a a e a==+==,满足条件.③当1e a ≥时,()g x 在(0,]e 上单调递减,min 4()()13,g x g e ae a e==-==(舍去),综上,存在实数2a e =,使得当(0,]x e ∈时()g x 有最小值3.。