merged two stage power converter architecture with soft charging switched capacitor energy transfer
电气英文缩写
火力发电站常用英语技术词汇(电气部分)A List of Abbreviations and Symbols in English-Chinese(Electric part)ALIGN Alignment 校正AC Alternating Current 交流电ALM Alarm 报警AMP Ampere 安培AX THR BRG Axis Thrust Bearing 轴向推力,轴承AUTO Automation 自动AUX Auxiliary 辅助的BYPS Bypass 旁路BNR Burner 燃烧器CPL Control Pannel Local 就地控制盘CPM Control Pannel Main 主控盘CRT Cathode Ray Tube 屏幕显示CT Current Transformer 变流器CB Cut Breaker 开关CMPR Compressor 压缩机CNDNR Conditioner 调节器CNTL Control 控制CNTLE Controller 控制器CONDTY Conductivity 导电率CIR Circuit 回路COUPI Coupling 藕合,连接CP Condensate Polisher 除盐装置CS Control Switch 控制开关DC Direct Current 直流电DEV Deviation 偏差DIFFRL Y Differential Relay 差动继电器DIST Disturbance 故障DSCH Discharge 排出EP Electrical Static Precipitator 电除尘EFF Efficiency 效率EO Electric Operate 电气操作EQ Equipment 设备ER Error 误差ESC Escape 逃逸ESS Engineering Safety System 保安系统EU Engineering Unit 工程单位FDBK Feedback 反馈FCB Field circuit breaker 灭磁开关FA Failure Alarm 故障报警FD Forced Draft 强制通风FDF Forced Draft Fan 送风机1FLD Field 磁场FLG Flange 法兰FREQ Frequency 频率GND Ground 接地GC Generator Cooling 发电机冷却GEN Generator 发电机GMT Generator Main Trandformer 发电机变压器HS Hand Switch 手动开关H Hand 手动的HMDY Humidity 湿度INTLK Interlock 联锁IC Instrument and Control 仪表与控制(热工)INST Instrument 仪表INVR Inverter 倒相器,转换开关I /O Input/Output 输入/输出JA Power active 有功功率JF Power factor 功率因数JH Power horse load 厂用电率JR Power reactive 无功功率KA KWH active 有功电度Forward KA 正向有功电度Backward KA 反向有功电度KR KWH active 有功电度Forward KR 正向无功电度Backward KR 反向无功电度LUB Lubricate 润滑油LP Low Pressure 低压LSH Local Switch Hand 就地开关LUB OIL Lube Oil 润滑油M Mechanical 机械Motor 马达MAG Magnetic 磁性MOD Mode 方式M/A Manual/Automatic 手动/自动MAN Manual 手动MEAS Measure 测量MFT Master Fuel Trip 主燃料切断MIN Minimal 最小的MKUP (MU) Make-up 补充M.O. Manual Operate 手操MORTE Moter control center 动力控制中心MPT Main Power Transformer 主变压器OL Overload 过载OPER Operation 运行OSC Oscillograph 示波器OTLT Outlet 出口PC Power Centre 动力中心PC Pressure Controller 压力控制器2PF Power Factor 功率因数PMG Permanent Magnet Generater 永磁机PRO Protection 保护PROGR Program 程序RECT Rectifier 整流器RET Return 返回ROT Rotor 转子RPM Revolutions per minite 转/分RTU Remote Telemetry Unit 遥测装置SAT Saturate 饱和的SCN Scanner 控制器Shut-Down 停止运行SG Switchgear 开关装置SH-DN Shut-Down 切除SLS Seals 密封SO Shut Off 关闭SPD Speed 转速SST S stand-up/stand-by transformer 高压起动/备用变压器ST Start 启动,开始STD-BY Stand By 备用ST System 系统STM Steam 蒸汽STR Stator 定子STRNR Strainer 滤器SU Start Up 启动SV Solenoid Valve 电磁阀Shut Off Valve 关断阀SW Switch 开关TE Temperature Element 测量元件TG Turbine-generator 汽轮发电机Turbine-gear 汽机盘车THERM Thermal 热力的TRANS Transfer 转换TRBL Trouble 故障TRKG Tracking 跟踪TURB Turbine 汽机UA T U nit auxiliary transformer 高压厂用变压器UPS 不停电电电源V AC Vacuum 真空V AL Value 数值VB Vibration 振动VLV Valve 阀门WH Watthour 瓦小时WP Work Point 工作点WX Watt Transducer 功率转换器CV Control Valve 控制阀PS Position Switch 状态开关,位置开关3PT Position Transmitter 状态变送器ON …………………………………………………………………………………开(状态)OFF …………………………………………………………………………………关(状态)OPEN……………………………………………………………………开(状态,常指阀门)CLOSE …………………………………………………………………关(状态,常指阀门)START………………………………………………………………………………………启动STOP…………………………………………………………………………………………停止STARTUP …………………………………………………………………………起动;启动SHUTDOWN ………………………………………………………………………………停机STAND BY…………………………………………………………………………………备用ALARM ……………………………………………………………………………………报警OPERATE…………………………………………………………………………运行;操作TRIP………………………………………………………………………………………跳闸TEST………………………………………………………………………………………试验INDICATION;DISPLAY …………………………………………………………指示;显示INLET …………………………………………………………………………………内,入口OUTLET…………………………………………………………………………………外,出口INPUT ………………………………………………………………………………………输入OUTPUT………………………………………………………………………………………输出SIDE ………………………………………………………………………………(某)侧,边A/M:AUTOMATION/MANUAL……………………………………………………自动/手动AUX:AUXILIARY ………………………………………………………………………辅助A/H:AUTOMATION/HAND ………………………………………………………自动/手动LOC:LOCAL …………………………………………………………………………就地REM:REMOTE ……………………………………………………………………………摇控P:PRESSURE………………………………………………………………………………压力T:TEMPERATURE………………………………………………………………………温度F:FLOW……………………………………………………………………………………流量S:SPEED……………………………………………………………………………………速度R:RATE ……………………………………………………………………………比率,速率L:LOAD…………………………………………………………………………负荷,负载R:RISSTANCE ……………………………………………………………………………电阻4POWER………………………………………………………………………………功率,电源R.P.M……………………………………………………………………………………转/分MW:MEGAWATT…………………………………………………………………………兆瓦PARAMETER ………………………………………………………………………………参数KW:KILOWATT……………………………………………………………………………千瓦HIGH……………………………………………………………………………………………高INTERMEDIATE………………………………………………………………………………中LOW……………………………………………………………………………………………低SILENCER ……………………………………………………………………消音器,报警消除ZOOM……………………………………………………………………摄像机镜头,移向目标SYSTEM………………………………………………………………………………………系统BYPASS ……………………………………………………………………………………旁路PIPE;TUBE………………………………………………………………………管道,管子VALVE……………………………………………………………………………………阀门MCS:MANAGMENT COMMAND SYSTEM………………………………管理命令系统UNIT ………………………………………………………………………………………单元PRINT…………………………………………………………………………………………打印SYMBOL……………………………………………………………………………………符号CURVE,LINE………………………………………………………………………曲线,线PANEL …………………………………………………………………………………………盘DESK……………………………………………………………………………………台,桌ROOM …………………………………………………………………………………………室STATION…………………………………………………………………………………………站PLANT………………………………………………………………………………………厂,站I&C:INSTRUMENT AND CONTROL………………………………………仪表与控制MODE ………………………………………………………………………………方式,模式SET POINT ……………………………………………………………………………设定值TRANSMITTIER ;TRANSDUCER………………………………………变送器;传感器COMPUTER …………………………………………………………………………计算机KEYBOARD………………………………………………………………………………键盘CODE ……………………………………………………………………………代码;编码DATA ……………………………………………………………………数据;文件;资料5DISK…………………………………………………………………………………………磁盘DIGIT…………………………………………………………………………………………数字FIGURE………………………………………………………………………………………图示STATIC ……………………………………………………………………………………静态DYNAMIC ;DYNAMICAL……………………………………………………………动态TRIP ACKNOW……………………………………………………………………跳闸确认COLD START—UP ………………………………………………………………冷态启动WARM START—UP…………………………………………………………………温态启动HOT START—UP……………………………………………………………………热态启动RESET ………………………………………………………………………………………复位SELECT ……………………………………………………………………………………选择UNAVAIL……………………………………………………………………不允许(不能投用的) FAST …………………………………………………………………………………………快SLOW …………………………………………………………………………………………慢NORMAL ……………………………………………………………………………………正常INCREASE……………………………………………………………………………………增加DECREAS …………………………………………………………………………………减少RUNBACK................................................................快速减负荷STEAM TURBINE……………………………………………………………………汽轮机TURBINE GENERATOR……………………………………………………………汽轮发电机组STATOR………………………………………………………………………………………定子ROTOR………………………………………………………………………………………转子BEARING……………………………………………………………………………………轴承SHAFT……………………………………………………………………………………………轴BLADE…………………………………………………………………………………………叶片BARRING……………………………………………………………………………………盘车NOZZLE………………………………………………………………………………………喷嘴FLANGE………………………………………………………………………………………法兰SEAL…………………………………………………………………………………………密封BEARING BRASS…………………………………………………………………………轴瓦GEN. SHAFT SEAL &STATOR WIND………………………发电机密封及静子绕组CURRENT…………………………………………………………………………………电流6VOLTAGE…………………………………………………………………………………电压RESISTANCE………………………………………………………………………………电阻REACTANCE………………………………………………………………………………电抗INDUCTANCE……………………………………………………………………………电感CAPACITANCE……………………………………………………………………………电容AMPERE……………………………………………………………………………………安培VOLT(V)……………………………………………………………………………………伏特OHM…………………………………………………………………………………………欧姆WATT………………………………………………………………………………………瓦特KILOWATT…………………………………………………………………………………千瓦MEGAWATT………………………………………………………………………………兆瓦POWER……………………………………………………………………………………功率FREQUENCE………………………………………………………………………………频率SPEED………………………………………………………………………………速率,转速WATTFUL POWER…………………………………………………………………有功功率REACTANCE CAPACITY…………………………………………………………………无功LOAD………………………………………………………………………………………负荷POWER FACTOR……………………………………………………………………功率因数LOSS ………………………………………………………………………………………损耗DIRECT CURRENT (DC)…………………………………………………………………直流ALTERNATING CURRENT (AC)………………………………………………………交流OVER CURRENT…………………………………………………………………………过流OVVER VOLTAGE ………………………………………………………………………过压OVERLOAD………………………………………………………………………………过载EXCITE……………………………………………………………………………………励磁LOAD FLOW …………………………………………………………………负荷潮流分布TRANSMISSION…………………………………………………………………………传输BASE LOAD………………………………………………………………………………基荷PEAK LOAD………………………………………………………………………………峰荷CARRIER……………………………………………………………………………………载波COMMUNICATION………………………………………………………………………通讯TELEPHONE………………………………………………………………………………电话7LIGHT………………………………………………………………………………………照明SIGNAL………………………………………………………………………………………信号FIELD………………………………………………………………………………………磁场LINE ………………………………………………………………………………………线路GENERATOR …………………………………………………………………………发电机AERIAL LINE……………………………………………………………………………架空线CUTERNATOR……………………………………………………………………同步发电机BUS…………………………………………………………………………………………母线EXCITOR…………………………………………………………………………………励磁机BUSBAR FRAME………………………………………………………………………母线架MOTOR…………………………………………………………………………………电动机BUSCOUPLER……………………………………………………………………………母联ASYNCHRONOUS MOTOR………………………………………………………异步电动机INSULATOR……………………………………………………………………………绝缘子BRUSH………………………………………………………………………………………电刷BUSHING …………………………………………………………………………………套管ARMATURE………………………………………………………………………………电枢TRANSFORMER………………………………………………………………………变压器COIL…………………………………………………………………………………………线圈MAIN TRANSFORMER STEP-UP TRANSFORMER………………………………主变WINDING…………………………………………………………………………………绕组UNIT TRANSFORMER…………………………………………………………………单元变CORE………………………………………………………………………………………铁芯START UP TRANSFORMER…………………………………………………………启动变POLE………………………………………………………………………………………电极BACK UP TRANSFORMER…………………………………………………………备用变PHASE…………………………………………………………………………………………相POTENTIAL TRANSFORMER……………………………………………………电压互感器PHASE ANGLE …………………………………………………………………………相角CURRENT TRANSFORMER ……………………………………………………电流互感器CONDUCTOR …………………………………………………………………………导体CABLE …………………………………………………………………………………电缆8ANGLE OF LEAD………………………………………………………………………超前角CIRCUIT BREAKER……………………………………………………………………断路器ANGLE OF LAG………………………………………………………………………滞后角SWITCH…………………………………v………………………………………………开关NEUTRAL POINT………………………………………………………………………中性点AUTOFORMER…………………………………………………………………………自藕变GROUND(EARTH) ………………………………………………………………………接地DISCONNECTOR …………………………………………………………………隔离开关DIESEL GENERATOR …………………………………………………………柴油发电机AUXI TRANSFORMER ……………………………………………………………厂用变SWITCHGEAR ………………………………………………………………………配电盘BULB ……………………………………………………………………………………灯泡CLOSE ……………………………………………………………………………………合闸BATTERY…………………………………………………………………………………电池TRIP ………………………………………………………………………………………跳闸CATHODE ………………………………………………………………………………阴极RECLOSING …………………………………………………………………………重合闸ANODE……………………………………………………………………………………阳极AUTORECLOSING ………………………………………………………………自动重合闸CHARGING EQUIPMENT ………………………………………………………充电设备COMBINED RECLOSING ………………………………………………………综合重合闸BUS SECTION ……………………………………………………………………母线分段COMMON TRANSFORMER.................................................公用变CONNECTING BREAKER.................................................联络开关GAS ………………………………………………………………………………………瓦斯PLUG ……………………………………………………………………………………插头ARC……………………………………………………………………………………………电弧PLUG SOCKET……………………………………………………………………………插座HARDWARE…………………………………………………………………………………硬件CLOSED-LOOP ……………………………………………………………………………闭环OPEN-LOOP ………………………………………………………………………………开环BUS …………………………………………………………………………………………母线9DISK…………………………………………………………………………………………磁盘CPU(CENTARL PROCESSING UNIT)…………………………………………中心处理机RETURN………………………………………………………………………………………回车ABNORMAL CONDITION……………………………………………………………异常状态DLS……………………………………………………………………………………数字逻辑站DIS……………………………………………………………………………………数字显示站DCS ………………………………………………………………………………数字控制站CONFIGURATION……………………………………………………………结构,布置,外形VDU …………………………………………………………………………………可见显示屏SUPERVISORS DESK…………………………………………………………………值长台UNIT CONTROL DESK…………………………………………………………机组控制台EHV MIMIC PANEL ……………………………………………………电气高压模拟屏COMMON SERVICES LOGIC SUITE……………………………………公用系统逻辑柜CRT…………………………………………………………………………………………显示屏ADS(ALARM DISPLAY SELECT PANELS)……………………………报警显示选择屏CIU ……………………………………………………………………………计算机接口单元BATTERY BACKED CLOCK…………………………………………………电池备用时钟INTERFACE…………………………………………………………………………………接口E.W.S. ………………………………………………………………………………工程师工作站DAS…………………………………………………………………………………数据采集系统CCR…………………………………………………………………………………………中控室MCC…………………………………………………………………………………马达控制中心I.C.S…………………………………………………………………………数字控制站终端模件TSE…………………………………………………………………………………汽机监视设备UIU……………………………………………………………………………操作员站接口单元MFC………………………………………………………………………………多功能控制器MONITERING………………………………………………………………………………监测TRANSMITTIER ………………………………………………………………………变送器AUTOMATION FOLLOWING………………………………………………………自动跟踪EXCEPTION REPORT………………………………………………………………例外报告THREE ELEMENT LEVEL CONTROLLER…………………………三冲量水位控制器TIME DELAY…………………………………………………………………………时间延迟10SCR CONTROLLER………………………………………………………可控硅整流控制器DISTRIBUTED CONTROL SYSTEM…………………………………………分散控制系统UN/NTERRUPTED POWER SUPPLY…………………………………………不间断电源THERMOCOUPLES……………………………………………………………………热电偶IND………………………………………………………………………………………指示器RATED…………………………………………………………………………………….额定PANEL……………………………………………………………………………………配电盘SWITCHBOARD…………………………………………………………………………….开关柜LOCAL CONTROL ………………………………………………………………………..就地控制RELAY …………………………………………………………………………………继电器SETING………………………………………………………………………………….定值FUSE……………………………………………………………………………………..熔断器GENERATER………………………………………………………………………………发电机BATTERY…………………………………………………………………………………电池CHARGE …………………………………………………………………………………充电WINDING ………………………………………………………………………………绕组AMORTISSEUR WINGING………………………………………………………………阻尼绕组CONDUIT PACKADE………………………………………………………………………控制箱SHAFT……………………………………………………………………………………轴VENTILATING FAN ………………………………………………………………………通风扇SPACER……………………………………………………………………………………垫片HARMONIC …………………………………………………………………………………谐波HARMONIC CONTENT………………………………………………………………………谐波成分EXCITER……………………………………………………………………………………励磁机INVERTER……………………………………………………………………………………逆变器MOTOR...................................................................电动机INDUCTION MOTOR.........................................................异步电动机SQUIRREL INDUCTION MOTOR................................................鼠笼式异步电动机BEARING ................................................................轴承BEARING SHELL...........................................................轴承套ROLLING BEARING ........................................................滚动轴承SLIP RING...............................................................滑环BRUSH...................................................................电刷EARTHING BRUSH..........................................................接地碳刷CABLE LUG...............................................................电缆鼻子BOLT.....................................................................螺栓NUT......................................................................螺帽SPRING WASHER............................................................弹性垫圈INSULATION................................................................绝缘子INSULATION RESISTANCE.....................................................绝缘电阻PIN INSULATION............................................................针式绝缘子SEAL......................................................................密封圈FILTER....................................................................过滤器PRIME MOVER...............................................................原动机DIESEL GENERATOR..........................................................柴油发电机COMPRESSOR DRIVE..........................................................压缩机POWER SYSTEM..............................................................电力系统PHASE CONECTION...........................................................相序MAINTENANCE ..............................................................维护OVERHAUL..................................................................大修RECONDITIONING............................................................修复POSITIVE..................................................................正序NEGATIVE..................................................................负序ZERO.......................................................................零序RATE OF HOUSE CONSUPTION...................................................厂用电率GROUNDING ISOLATING SWITCH.................................................接地刀闸DISCONNECTION..............................................................断线EQUIPMENT FAULT............................................................装置故障FAULT TRIP.................................................................事故跳闸VOLTAGE REGULATOR..........................................................电压调整器SENSING ...................................................................感应CONPENSATION...............................................................补偿ZIG-ZAG....................................................................Z型接线PARALLELING OPERATION......................................................并列运行TORQUE.....................................................................转矩GOVERNOR...................................................................调速器SWITCH GEAR................................................................开关设备REVERSE POWER..............................................................逆功率MONITOR....................................................................监视CIRCULATING CURRENT........................................................环流LEADING POWER FACTER.......................................................超前的功率因数LAGGING POWER FACTER.......................................................滞后的功率因数INDUCTIVE..................................................................感性的CAPACITIVE.................................................................容性的CROSS CURRENT..............................................................涡流SECONDARY CURRENT..........................................................二次电流SECONDARY INTERCONNECTION LOOP.............................................二次回路AUXILIARY CONTACT..........................................................辅助接点THYRISTOR..................................................................可控硅整流器SCR........................................................................半导体整流器FIRING CIRCUIT..............................................................触发回路VAIRIABLE FREQUENCY.........................................................变频WAVEFORM....................................................................波形DISTORTED WAVEFORM..........................................................畸波AIR GAP ....................................................................气隙CENTRIFUGAL FORCE...........................................................离心力LINE TO LINE VOLTAGE........................................................线电压LINE TO NEUTRAL VOLTAGE.....................................................相电压NAMEPLATE...................................................................铭牌FLASHING....................................................................强励RHEOSTAT....................................................................变阻器JUMPER......................................................................短路片CONNECTION..................................................................接线柱DRIVE DISC..................................................................驱动轮FLY WHEEL...................................................................飞轮SHEAVE WHHEEL...............................................................皮带轮PLOLARITY...................................................................极性OHMMETER....................................................................欧姆表MEGOHMMETER.................................................................兆欧表MULTIMETER..................................................................万用表FREQUENCY...................................................................频率计TACHOMETER..................................................................转速表MEGGER......................................................................摇表SNAP RING PLIER.............................................................卡簧钳CLAMP ON AMMETER............................................................钳型电流表ALLIGATOR...................................................................鳄鱼夹TAPE........................................................................扎带CRIMPING TOOL...............................................................绕线器CABLE TIE...................................................................电缆卡子STRIPPING TOOL..............................................................压线器CONDUIT.....................................................................导线FLEXIBLE CONDUIT............................................................软线ARCING......................................................................拉弧WRENCH......................................................................扳手Assemblie 集合,集结,组装comment 注释,评论standby 备用detector 探测器bracket 支架interlocks 互锁,连锁axial 轴向的accessory 附件fabrication 制作,构成,伪造物vent 通风孔,出烟孔,出口,放出,排出,发泄tank 桶,箱,罐diagram 图表corrosion 侵蚀,腐蚀状态concentration 集中,集合,浓缩,浓度recommend 推荐,介绍,托付,劝告abnormal and normal conditions 变工况和额定工况scale 范围,水垢,水锈,比例,刻度facilitate 推动,促进,使简化multistage 多级的remote control 遥控manhole 人孔,检修孔equivalent 等价物,相等的forging 锻造seat 部位,座socket welding 管座焊接enthalpy 焓estimate 评价,评估,估价parameters 参数,参量nominal 名义上的,额定的,标称的MS—Main Steam 主蒸汽Cycle循环Intercept截止Gage规,表,压力计Taps接头test wells测点插孔thermometer温度计margin余量friction losses磨擦损失solenoid螺线管modulat调整,调节criteria标准short 短路继电保护DIFFERENTIAL PROTECTION .................................差动保护STATOR GROUNDING /ZERO SEQUENCE PROTECTION...............定子接地/零序保护WATER-BREAK PROTECTION...................................断水保护UNDER FREQUENCE PROTECTION...............................低频保护OVER VOLTAGE PROTECTION..................................过压保护COIL-TO-COIL PROTECTION..................................匝间保护EXCITATION LOSS PROTECTION...............................失磁保护LOSS SYNCHRONISM RAISING PROTECTION......................加速失步保护LOSS SYNCHRONISM REDUCING PROTECTION......................减速失步保护CONVERSE POWER PROTECTION.................................逆功率保护STATOR ONE POINT PROTECTION...............................(发电机)转子一点接地保护DISTANCE PROTECTION.......................................阻抗保护INCOMPLETE PHASE PROTECTION...............................非全相保护FUNCTION LOSS PROTECTION..................................失灵保护ABNORMAL OPERATION PROTECTION.............................误上电保护SYMMETRICAL OVERLOAD (STATE TIME ) PROTECTION.............对称过负荷(定时限)保护SYMMETRICAL OVERLOAD (CONVERSE TIME ) PROTECTION.............对称过负荷(反时限)保护ASYMMETRICAL OVERLOAD (STATE TIME ) PROTECTION.............不对称过负荷(定时限)保护ASYMMETRICAL OVERLOAD (CONVERSE TIME ) PROTECTION.............不对称过负荷(反时限)保护OVER EXCITATION (STATE TIME ) PROTECTION....................过激磁(定时限)保护OVER EXCITATION (CONVERSE TIME ) PROTECTION....................过激磁(反时限)保护START AND STOP PROTECTION....................................起停机保护TRANSFORMER PRESSURE PROTECTION..............................变压器压力释放保护ZERO SEQUENCE OVER CURRENT PROTECTION........................零序电流保护ZERO SEQUENCE CURRENT-VOLTAGE PROTECTION.....................零序电流—电压保护MAIN TRANSFORMER HEAVY GAS PROTECTION........................主变重瓦斯保护MAIN TRANSFORMER LIGHT GAS PROTECTION........................主变轻瓦斯保护FAN OF MAIN TRANSFORMER COOLER START PROTECTION..............主变通风保护BRANCH FAST IN LIMITED TIME PROTECTION ......................分支限时速断保护COMPOUND VOLTAGE-CURRENT PROTECTION..........................复合电压—电流保护。
GL规范是什么
GL规范是什么篇一:GL规范Rules for Classification and ConstructionI Ship Technology1 Seagoing Ships3 Electrical InstallationsEdition 2002The following Rules e into force on 1st March, 2002.The respective latest edition of the "General Terms and Conditions for Classification" are applicable(see Rules for Classification and Construction, I –Ship Technology, Part 0 – Classification and Surveys)Reproduction by printing or photostatic means is only permissible with the consent of Germanischer Lloyd.Germanischer LloydHead OfficeVorsetzen 35, D-20459 HamburgTelephone: 0 40/36 14 9-0, Telefax: 0 40/36 14 92 00 Telex: 21 28 28 glhh d, Cables: klassenlloyd hamburge-mail:Published by: Germanischer Lloyd Printed by: Gebrüder Braasch, Hamburg Alterations to the preceding Edition are marked by beams at the text margin. I - Part 1GL 2002Table of Contents Chapter 3Page 3Table of ContentsSection 1 General Requirements and InstructionsA. General ....... 1- 1B. Definitions .. 1- 1C. Documents forApproval ............................................. ...................................................... ......... 1- 4D. Ship'sDocumentation ........................................ ...................................................... ................... 1- 4E. AmbientConditions ........................................... ...................................................... ................... 1- 7F. Operating...................................................... ................. 1- 10G. Power SupplySystems .............................................. ...................................................... ............ 1- 10H. Voltages andFrequencies .......................................... ...................................................... ........... 1- 11I. Visual and Acoustical SignallingDevices .............................................. .................................... 1- 11J. Materials andInsulation ........................................... ...................................................... ............ 1- 11K. ProtectiveMeasures ............................................. ...................................................... ................. 1- 13Section 2 Installation of Electrical EquipmentA. Availability of Main Power............................................. 2- 1B. Generators .. 2- 1C. StorageBatteries ............................................ ...................................................... ....................... 2- 2D. PowerTransformers ......................................... ...................................................... .................... 2- 3E. Electronics .. 2- 4F. Low-VoltageSwitchboards ......................................... ...................................................... ......... 2- 4G. Appliances for Medium Voltages (> 1 kV - 17,5 kVAC) .................................................. ........ 2- 4Section 3 Power Supply InstallationsA. Electrical Power...................................................... ...... 3- 1B. Main Electrical PowerSupply ............................................... ..................................................... 3- 1C. Emergency Electrical PowerSupply ............................................... ............................................ 3- 5D. Operation of the emergency generator inport ................................................. ........................... 3- 7Section 4 Installation Protection and Power DistributionA. Three-Phase MainGenerators ........................................... ...................................................... ... 4- 1B. Emergency Three-PhaseGenerators ........................................... ................................................ 4- 2C. Direct Current...................................................... .......... 4- 3D. PowerTransformers ......................................... ...................................................... .................... 4- 3E. StorageBatteries ............................................ ...................................................... ....................... 4- 3F. PowerElectronics .......................................... ...................................................... ....................... 4- 3G. ShoreConnection ........................................... ...................................................... ...................... 4- 3H. Consumer ProtectionEquipment ............................................ .................................................... 4- 4 I. Power...................................................... ....................... 4- 4Chapter 3Page 4Table of Contents I - Part 1GL 2002Section 5 Low-Voltage Switchgear AssembliesA. General ....... 5- 1B. Calculations 5- 1C.Construction ......................................... ...................................................... ................................ 5- 2D. Selection ofSwitchgear ........................................... ...................................................... ............. 5- 4E. Choice of Electrical ProtectionEquipment ............................................ .................................... 5- 5F. Conductors and Busbar................................................... 5- 6 G. Measuring Instruments and InstrumentTransformers ......................................... ....................... 5- 8H. Testing of Switchboards andSwitchgear ........................................... ........................................ 5- 8Section 6 Power ElectronicsA. General ....... 6- 1B.Construction ......................................... ...................................................... ................................ 6- 1C. Rating andDesign ............................................... ...................................................... ................. 6- 1D. Cooling ....... 6- 2E. Control andMonitoring ........................................... ...................................................... ............. 6- 2F. ProtectionEquipment ............................................ ...................................................... ............... 6- 2G. Tests ........... 6- 2Section 7 Power equipmentA. SteeringGear ................................................. ...................................................... ....................... 7- 1B. Lateral Thrust Propellers and ManoeuvringAids ................................................. ..................... 7- 3C. Variable Pitch Propellers for Main PropulsionSystems .............................................. .............. 7- 4D. Auxiliary Machinery andSystems .............................................. ................................................ 7- 4 E. DeckMachinery ............................................ ...................................................... ....................... 7- 6F. Electrical Heating Equipment andHeaters .............................................. ................................... 7- 6G. Heel-CompensatingSystems .............................................. ...................................................... .. 7- 7 H. Cross-FloodingArrangements ......................................... ...................................................... ..... 7- 7Section 8 Medium-Voltage InstallationsA. Scope .......... 8- 1B. GeneralProvisions ........................................... ...................................................... .................... 8- 1C. Network Design and ProtectionEquipment ............................................ ................................... 8- 2D. ElectricalEquipment ............................................ ...................................................... ................ 8- 4E. Installation .. 8- 7Section 9 Control, Monitoring and Ship's Safety SystemsA. GeneralRequirements ......................................... ...................................................... ................. 9- 1B. Machinery Control and MonitoringInstallations ........................................ ............................... 9- 2C. Ship ControlSystems .............................................. ...................................................... ............. 9- 4D. Ship SafetySystems .............................................. ...................................................... ............... 9- 7I - Part 1GL 2002Table of Contents Chapter 3Page 5Section 10 Computer SystemsA. General ....... 10- 1B. Requirementclasses .............................................. ...................................................... ................ 10- 1C. SystemConfiguration ........................................ ...................................................... ................... 10- 4D. Testing of ComputerSystems .............................................. ....................................................... 10- 6 Section 11 Lighting and Socket-Outlets篇二:GL船级社规范德国劳氏船级社 2002 第3-1页第3节电源装置A. 电力需求1.须提交电气设备的功率平衡表以验证发电、蓄电和变电装置的定额是足够的。
惠普彩色激光打印机 Pro M454 和惠普彩色激光多功能一体机 Pro M479 维修手册说明书
Table -1 Revision history Revision number 1
Revision date 6/2019
Revision notes HP LaserJet Pro M454 HP LaserJet Pro MFP M479 Repair manual initial release
Additional service and support for HP internal personnel HP internal personnel, go to one of the following Web-based Interactive Search Engine (WISE) sites: Americas (AMS) – https:///wise/home/ams-enWISE - English – https:///wise/home/ams-esWISE - Spanish – https:///wise/home/ams-ptWISE - Portuguese – https:///wise/home/ams-frWISE - French Asia Pacific / Japan (APJ) ○ https:///wise/home/apj-enWISE - English ○ https:///wise/home/apj-jaWISE - Japanese ○ https:///wise/home/apj-koWISE - Korean ○ https:///wise/home/apj-zh-HansWISE - Chinese (simplified)
Find information about the following topics ● Service manuals ● Service advisories ● Up-to-date control panel message (CPMD) troubleshooting ● Install and configure ● Printer specifications ● Solutions for printer issues and emerging issues ● Remove and replace part instructions and videos ● Warranty and regulatory information
PIC16LF1508-ISS;PIC16F1508-ISS;PIC16LF1509-ISS;PIC16F1509-ISS;中文规格书,Datasheet资料
Trademarks The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, , dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, , PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 978-1-61341-726-3
最大集成产品-MAX19000评估板-用户手册说明书
_________________________________________________________________Maxim Integrated Products __1For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at .MAX19000 Evaluation KitEvaluates: MAX19000General DescriptionThe MAX19000 evaluation kit (EV kit) is a fully assembled and tested PCB that evaluates the MAX19000 dual-chan-nel, high-performance pin electronics driver/comparator/load (DCL) with built-in level-setters. The EV kit includes SMA connections for the high-speed digital I/Os and the MAX19000 pin-driver outputs. The MAX19000 EV kit is connected to the PC through the universal serial bus (USB) port. The EV kit also includes Windows M 2000-, Windows XP M -, and Windows Vista M -compatible soft-ware that provides a simple graphical user interface (GUI) for exercising the features of the MAX19000.FeaturesS Internal_Level-Setting_DACsS Heat_Sink_Included_for_Safe_OperationS Windows _2000-,_Windows_XP-,_and_Windows_Vista_(32-Bit)-Compatible_SoftwareS USB-PC_Connection_(Cable_Included)S Proven_PCB_LayoutS Fully_Assembled_and_TestedOrdering InformationComponent List19-5084; Rev 0; 12/09+Denotes lead(Pb)-free and RoHS compliant.Windows, Windows XP, and Windows Vista are registered trademarks of Microsoft Corp.PARTTYPE MAX19000EVKIT+EV KitDESIGNATIONQTY DESCRIPTIONC1–C121210nF Q 10%, 25V X7R ceramic capacitors (0402)Murata GRM155R71E103K C13110F F Q 10%, 25V X5R ceramic capacitor (1206)Murata GRM31CR61E106K C14, C15, C16, C18, C20, C23, C24, C2780.1F F Q 10%, 25V X7R ceramic capacitors (0603)Murata GRM188R71E104K C17, C19, C21, C22, C25, C2661F F Q 10%, 25V X7R ceramic capacitors (0805)Murata GRM21BR71E105K C43, C54, C56310F F Q 20%, 16V X5R ceramic capacitors (1206)Murata GRM31CR61C106M C44, C45222pF Q 5%, 50V C0G ceramic capacitors (0603)Murata GRM1885C1H220J C4610.033F F Q 10%, 16V X5R ceramic capacitor (0603)Taiyo Yuden EMK107BJ333KA C47–C52, C59,C6080.1F F 10%, 16V X7R ceramic capacitors (0603)TDK C1608X7R1C104KDESIGNATION QTY DESCRIPTIONC53, C55, C61–C68101F F Q 10%, 16V X5R ceramic capacitors (0603)Murata GRM188R61C105K C57, C58210pF Q 5%, 50V C0G ceramic capacitors (0603)Murata GRM1885C1H100J D11Red LED (0603)J1–J1818SMA end-launch jack receptaclesJ20, J22, J243Banana jacks, uninsulated (panel jack)J21124-pin header (2 x 12)J231USB type-B right-angle PC-mount receptacleJU1, JU2, JU3, JU15, JU16, JU18–JU23,JU24122-pin headersJU4–JU1183-pin headersL11Ferrite beadTDK MMZ1608R301A (0603)L2, L3210F H Q 10%, 340m I inductors (1210)Panasonic ELJ-EA100KFMAX19000 Evaluation Kit E v a l u a t e s : M A X 190002_________________________________________________________________________________________Component List (continued)*EP = Exposed pad.Note: Indicate that you are using the MAX19000 when contacting these component suppliers.µMAX is a registered trademark of Maxim Integrated Products, Inc.Component SuppliersDESIGNATIONQTY DESCRIPTIONR1, R221k I Q 5% resistors (0603)R31280I Q 1% resistor (0603)R41 2.26k I Q 1% resistor (0603)R5, R82402I Q 1% resistors (0603)R6175I Q 1% resistor (0603)R71249I Q 1% resistor (0603)R9, R18–R220Not installed, resistors—shorted with PCB trace (0603)R10, R11227I Q 5% resistors (0603)R121 1.5k I Q 5% resistor (0603)R131470I Q 5% resistor (0603)R141 2.2k I Q 5% resistor (0603)R15110k I Q 5% resistor (0603)R161169k I Q 1% resistor (0603)R171100k I Q 1% resistor (0603)R231200I SMT cermet trimmer, 9 to 15 turnsR241220I Q 5% resistor (0603)R26–R294243I Q 1% resistors (0603)R321 1.5k I Q 1% resistor (0603)TMPSNS, TP1, TP2, TP3, TP12, TP14–TP179Miniature test points, black U11Dual din driver (64 TQFP-EP*)Maxim MAX19000BECB+U212.5V voltage reference Maxim MAX6126AASA25+DESIGNATIONQTY DESCRIPTIONU31LDO regulator (5 SC70)Maxim MAX8511EXK25+T U41USB-to-UART converter (32 TQFP)U5193C46 type 3-wire EEPROM (8 SO)U61Microcontroller (68 QFN-EP*)Maxim MAXQ2000-RAX+U71Adjustable output LDO regulator (5 SC70)Maxim MAX8512EXK+T U8–U114Level translators (10 F MAX M )Maxim MAX1840EUB+U14–U174LDOs (3 TO263)Y1116MHz crystal Hong Kong X'talsSSM16000N1HK188F0-0Y216MHz crystalHong Kong X'talsSSL60000N1HK188F0-0Y30Not installed —1Heatpad —1Heat sink —20Shunts—1PCB: MAX19000 EVALUATION KIT+SUPPLIERPHONE WEBSITE_Hong Kong X’tals Ltd.852-******** Murata Electronics North America, Panasonic Taiyo Yuden TDK Corp.847-803-6100MAX19000 Evaluation KitEvaluates: MAX19000_________________________________________________________________________________________3MAX19000 EV Kit FilesQuick StartRequired Equipment• MAX19000 EV kit (USB cable included)• User-supplied Windows 2000, Windows XP, or Windows Vista PC with a spare USB port • +15V/0.5A DC power supply (VHH)• -5.25V/0.5A DC power supply (VEE)• LVDS source (RCV0/NRCV0)• Differential output pulse generator • High-speed oscilloscope •Digital voltmeter (DVM)Note: In the following sections, software-related items are identified by bolding. Text in bold refers to items directly from the EV kit software. Text in bold_and_under-lined refers to items from the Windows operating system.ProcedureThe MAX19000 EV kit is fully assembled and test-ed. Follow the steps below to verify board operation. Caution:_Do_not_turn_on_the_power_supply_until_all_connections_are_completed.1) Visit /evkitsoftware to down-load the latest version of the EV kit software, 19000Rxx.ZIP. Save the EV kit software to a tempo-rary folder and uncompress the ZIP file.2) Install the EV kit software on your computer by run-ning the INSTALL.EXE program inside the tempo-rary folder. The program files are copied and icons are created in the Windows Start_|_Programs menu.3) Make sure the shunts of all jumpers are in thedefault positions, as shown in Tables 1 and 2.4) Verify that the heat sink is installed and flush on thetop of the MAX19000 IC.5) Verify the correct polarity, voltage, and current limitof all power supplies.6) Set the differential pulse generator to output Q 200mVcentered at +1.2V common-mode voltage. Ensure the outputs are disabled (high impedance). Set the pulse frequency to 20MHz, 50% duty cycle.7) Connect the +15V power supply between theJ20 (VHH) and J22 (GND) banana jacks on the MAX19000 EV kit.8) Connect the -5.25V power supply between theJ22 (GND) and J24 (VEE) banana jacks on the MAX19000 EV kit. Connect all power-supply grounds to a single ground terminal.9) Connect the positive input of the DVM to TMPSNSand the negative input to ground.10) Connect the differential pulse generator to theDATA0 and NDATA0 SMA connectors on the MAX19000 EV kit with SMA cables of equal length.11) Set the RCV0/NRCV0 to a differential logic-low withV RCV0 = +1V and V NRCV0 = +1.4V to disable the three-state output mode.12) Connect the DUT0 SMA connector on the MAX19000EV kit with a short SMA cable to the high-speed oscilloscope. Set the scope input impedance to 50I .13) Turn on the power supplies in the following order,VHH, VEE. By default, the MAX19000 starts in low-leakage mode.14) Enable the differential pulse generator.15) Connect the USB cable from the PC to the EV kitboard. A New_Hardware_Found window pops up when installing the USB driver for the first time. If a window is not seen that is similar to the one described above after 30s, remove the USB cable from the board and reconnect it. Administrator privi-leges are required to install the USB device driver on Windows.16) Follow the directions of the Found_New_Hardware_window to install the USB device driver. Manually specify the location of the device driver to be C:\Program_Files\MAX19000 (default installation directory) using the Browse button. During device driver installation, Windows may show a warning message indicating that the device driver Maxim uses does not contain a digital signature. This is not an error condition and it is safe to proceed with installation. Refer to the USB_Driver_Help.PDF document included with the software for additional information.FILE DESCRIPTIONINSTALL.EXE Installs the EV kit files on your computerMAX19000.EXE Application program FTD2XX.INF USB device driver file UNINST.INI Uninstalls the EV kit software USB_Driver_Help.PDFUSB driver installation help fileMAX19000 Evaluation Kit E v a l u a t e s : M A X 1900017) Start the MAX19000 EV kit software by openingits icon in the Start_|_Programs menu. The EV kit software main window appears, as shown in Figure 1. The MAX19000 EV kit software places the MAX19000 in drive mode.18) Select the DCL/Channel_0 tab.19) Set VCH to 6.2V by entering 6.2 into the VCH editbox located inside the Voltage group box and press the Enter key on the keyboard.20) Set VCL to -2.2V by entering -2.2 into the VCL editbox located inside the Voltage group box and press the Enter key on the keyboard.21) Set VDH to 1V by entering 1 into the VDH edit boxlocated inside the Voltage group box and press the Enter key on the keyboard.22) Set VDL to 0V by entering 0 into the VDL edit boxlocated inside the Voltage group box and press the Enter key on the keyboard.23) This places channel 0 into the drive-high mode.24) Select the DCL/Channel_1 tab and repeat steps19–22 to place the channel 1 into the drive-high mode.25) The TMPSNS test point monitors the MAX19000junction temperature. Verify that the voltmeter does not read higher than +4.2V (junction temperature < +150N C).26) Set the oscilloscope to 10M I high-impedancemode.27) Set the oscilloscope to trigger on the OUT0 chan-nel, with the trigger level set to +0.5V. Set the time base to 20ns per division. A 0 to +1V square wave of 20MHz appears on the oscilloscope.Table_1._Digital_Interface_Jumper_SettingsMAX19000 Evaluation KitEvaluates: MAX19000_________________________________________________________________________________________5Table_1._Digital_Interface_Jumper_Settings_(continued)Table_2._Power_Supplies_Jumper_Settings*Default position.*Default position.JUMPER SHUNT_POSITION DESCRIPTIONJU181-2*Connects the DGS pin of the MAX19000 to the ground Open Disconnects the DGS pin of the MAX19000 from the ground JU231-2*Connects the GNDDAC0 pin of the MAX19000 to the ground Open Disconnects the GNDDAC0 pin of the MAX19000 from the ground JU241-2*Connects the GNDDAC1 pin of the MAX19000 to the ground OpenDisconnects the GNDDAC1 pin of the MAX19000 from the groundJUMPERSHUNT_POSITIONDESCRIPTIONJU11-2Connects the ADJ pin of the regulator (U15) to ground through a 280I resistor (R3) in parallel with a 402I resistor (R5)Open*Disconnects the ADJ pin of the regulator from R3JU21-2Connects the ADJ pin of the regulator (U15) to ground through a 2.26k I resistor (R4)Open*Disconnects the ADJ pin of the regulator from R4JU31-2*Connects the VT_C to the on-board regulator (U17)Open Disconnects the 1.25V (VT_C) from the on-board regulator (U17)JU151-2Connects the ADJ pin of the regulator (U16) to ground through a 75I resistor (R6) in parallel with a 402I resistor (R8)Open*Disconnects the ADJ pin of the regulator from R6JU161-2*Connects the ADJ pin of the regulator (U16) to ground through a 249I resistor (R7) in parallel with a 402I resistor (R8)OpenDisconnects the ADJ pin of the regulator from R7JU191-2*Connects VCC to the on-board regulator (U14)Open Disconnects VCC from the on-board regulator (U14)JU201-2*Connects VDD to the on-board regulator (U15)Open Disconnects VDD from the on-board regulator (U15)JU211-2*Connects VT_DT to the on-board regulator (U16)Open Disconnects VT_DT from the on-board regulator (U16)JU221-2*Connects VEE to the negative power supply input jack OpenDisconnects VEE from the negative input power supplyMAX19000 Evaluation Kit E v a l u a t e s : M A X 190006_________________________________________________________________________________________Figure 1. MAX19000 EV Kit Software Main Window (DCL/Channel 0 Tab)MAX19000 Evaluation KitEvaluates: MAX19000_________________________________________________________________________________________7Figure 2. MAX19000 EV Kit Software Main Window (DCL/Channel 1 Tab)MAX19000 Evaluation Kit E v a l u a t e s : M A X 190008_________________________________________________________________________________________Detailed Description of SoftwareUser-Interface PanelThe GUI contains two DCL tab sheets for channels 0 and 1 for all level, register, and control-signal settings. The File menu item has save and load functions for all of the settings.Driver/Comparator/Load (DCL) SettingsDCL/Channel_0_and _DCL/Channel_1 tab sheets (Figures 1 and 2) are identical and are for channels 0 and 1, respectively. These tab sheets contain Level_Settings_and DCL_Register group boxes.Level SettingsThe Level_Settings group box contains registers for signal level, calibration, and gain settings for VDH, VDL, VDT, VCH, VCL, VCPH, VCPL, VCOM, VLDH, and VLDL. Each setting is controlled by a scrollbar with a value label to its right. Finer adjustments can be made by clicking on the arrows on each side of the scrollbar. The scrollbars in the Level group box have 16,384 steps corresponding to 14 bits. In the Calibration group box, the Offset scroll-bars have 256 steps corresponding to 8 bits, and the Gain scrollbars have 64 steps corresponding to 6 bits. The corresponding voltage levels are also calculated and shown in the edit boxes inside the Voltage group box. The value, calibration, and gain selections become effective immediately after an adjustment without hav-ing to press the LOAD button. The value can also be typed into the edit boxes inside the Voltage_group box. Pressing the Enter key on the keyboard loads the values to the device.DCL RegisterThe DCL_Register group box contains eight checkboxes to control the DCL register. A checked checkbox repre-sents a logic-high and an unchecked checkbox repre-sents a logic-low. Any change in state of the checkbox immediately sends the new bit setting to the device.The DCL_Register group box also has six drop-down lists that control the driver output impedance, compara-tor hysteresis, and driver/comparator cable-droop com-pensation.Save/Load SettingsAll settings specified by the GUI can be saved to a file by selecting the File_|_Save_Setup menu item located at the front of the menu bar. Settings saved in a file can also be loaded to the GUI and the MAX19000 using the same procedure of selecting the File_|_Load_Setup menu item. Use the save-and-load feature to save many different setups, which can be recalled at a later time.Advanced User InterfaceThere are two methods for communicating with the MAX19000. The first is through the windows shown in Figures 1 and 2. The second is through the Advanced_User_Interface window. The Advanced_User_Interface window, available by selecting the Option_|_Interface_(Advanced_User) menu item, allows execution of serial commands manually.The Advanced_User_Interface window can also be used as a debug tool since it is capable of manually reading and writing to every register of the MAX19000.Detailed Description of HardwareThe MAX19000 evaluation kit (EV kit) is a fully assembled and tested PCB that evaluates the MAX19000 dual pin driver. The EV kit includes SMA connections for the high-speed digital I/Os and the MAX19000 pin-driver outputs. The MAX19000 EV kit is connected to the PC through the universal serial bus (USB) port.Power SuppliesConnect the power supplies using the high-current-rated banana jacks, J24 (-5.25V) and J20 (+15V). Common to all power supplies should be the GND banana jack, J22 (GND) on the MAX19000 EV kit. All power supplies should be within the range specified on the MAX19000 IC data sheet. The MAX19000 needs only two supplies attached to the board. All other supplies are generated through regulators on the EV kit board.MAX19000 Evaluation KitEvaluates: MAX19000_________________________________________________________________________________________9Figure 3. Advanced User Interface Window (3-Wire Interface Tab)MAX19000 Evaluation Kit E v a l u a t e s : M A X 1900010________________________________________________________________________________________High-Speed Digital I/OsThe top and bottom edges of the PCB are populated with end-launch SMA connectors, and are the high-speed digital I/Os of the MAX19000. The inputs are terminated internally to the MAX19000 IC. The outputs require termi-nation (nominally 50I ) at the end of the attached cable.The board power supply (VRCV) is the voltage used to terminate the comparator outputs on the MAX19000 IC. Setting VRCV to +1.2V makes the high-speed digital I/Os compatible with LVDS levels.The high-speed digital inputs (DATA0/NDATA0, RCV0/NRCV0, DATA1/NDATA1, and RCV1/NRCV1) are intend-ed for use with a high-speed differential signal source such as LVDS, LVPECL, etc. If only a single-ended stim-ulus source is available, a converter consisting of a 1:1 ratio transformer can be used to produce a differential pair of inputs for DATA0/NDATA0 or DATA1/NDATA1. A tri-resistor network can be used to produce a differential logic level for RCV0/NRCV0 or RCV1/NRCV1 inputs.The high-speed digital outputs (CL0/NCL0, CH0/NCH0, CL1/NCL1, and CH1/NCH1) are intended for use with a high-speed differential logic analyzer. These outputs are internally pulled up to the VCTV voltage through internal 50I resistors. These outputs can be double-terminated at the measurement source by external 50I resistors.Pin-Driver OutputsThe two pin-driver outputs (DUT0 and DUT1) are through end-launch SMA connectors on the right-edge of the PCB. The outputs have a typical output impedance of 50I , but this can be adjusted by software.Test PointsThere are nine test points on the MAX19000 EV kit to facilitate performance analysis and circuit modification. These test points are listed in Table 3.Device Ground SenseThe MAX19000 IC has the ability to sense the ground potential at the device under test (DUT). The MAX19000 EV kit is preconfigured to have the device ground sense (DGS) pin connected to the ground plane. If remote sensing is desired, remove the shunt on jumper JU18 and connect the pin 1 of JU18 to the remote DUT ground.Temperature SensingThe MAX19000 EV kit provides the means to deter-mine the MAX19000 IC’s die temperature through the TMPSNS test point. During operation, TMPSNS should be continuously monitored to ensure that the junction temperature does not exceed +150N C, which corre-sponds with +4.2V. During normal operation, a voltage of +3V to +3.6V is typical.Table_3._Test_Points_and_Their_FunctionsTEST_POINT SIGNAL FUNCTIONTMPSNS TEMPSNS MAX19000 die temperature indicatorTP1DIN Serial-data inputTP2LLEAKP0Low-leakage enable, channel 0TP3LLEAKP1Low-leakage enable, channel 1TP12DOUT Serial-data output TP14SCLK Serial clock TP15CS Chip select TP16LOAD Load TP17RSTSerial resetMAX19000 Evaluation KitEvaluates: MAX19000Figure 4a. MAX19000 EV Kit Schematic (Sheet 1 of 4)________________________________________________________________________________________11MAX19000 Evaluation KitE v a l u a t e s : M A X 1900012________________________________________________________________________________________MAX19000 Evaluation KitEvaluates: MAX19000Figure 4c. MAX19000 EV Kit Schematic (Sheet 3 of 4)________________________________________________________________________________________13MAX19000 Evaluation KitE v a l u a t e s : M A X 1900014________________________________________________________________________________________MAX19000 Evaluation KitEvaluates: MAX19000 Array________________________________________________________________________________________15MAX19000 Evaluation KitE v a l u a t e s : M A X 1900016________________________________________________________________________________________MAX19000 Evaluation KitEvaluates: MAX19000 Array________________________________________________________________________________________17MAX19000 Evaluation KitE v a l u a t e s : M A X 1900018________________________________________________________________________________________Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 19© 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.MAX19000 Evaluation KitEvaluates: MAX19000。
模板SBR毕业设计
目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)引言 (1)1设计任务及设计资料 (2)1.1设计任务与内容 (2)1.2设计原始资料 (2)1.2.1城市气象资料 (2)1.2.2地质资料 (3)1.2.3工程资料 (3)1.2.4水文资料 (3)1.2.5进出水水质 (3)2设计说明书 (4)2.1去除率计算 (4)2.1.1 BOD5的去除率 (4)2.1.2 COD Cr的去除率 (4)2.1.3 SS的去除率 (4)2.1.4 氨氮的去除率 (5)2.2城市污水处理工艺选择 (5)2.3污水厂总平面图的布置 (7)2.4处理构筑物设计流量(二级) (8)2.5污水处理构筑物设计 (8)2.5.1中格栅和提升泵房(两者合建在一起) (8)2.5.2细格栅 (9)2.5.3沉沙池 (10)2.5.4 SBR池 (11)2.5.5 滗水器 (12)2.6污泥浓缩池 (13)2.7、污水厂平面,高程布置 (14)2.7.1平面布置 (14)2.7.2管线布置 (14)2.7.3 高程布置 (15)3 污水厂设计计算书 (15)3.1污水处理构筑物设计计算 (15)3.1.1中格栅 (15)3.1.2污水提升泵房 (17)3.1.3泵后细格栅 (19)3.1.4沉砂池 (22)3.1.5 SBR池 (25)3.1.6滗水器 (31)3.2污泥处理部分构筑物计算 (31)3.2.1污泥浓缩池设计计算 (31)3.2.2 储泥灌与污泥脱水机房设计计算 (34)3.3污水处理站的平面布置与高程布置 (35)3.3.1 污水处理站的平面布置 (35)3.3.2 污水处理站的高程布置 (36)参考文献 (40)致谢词 (42)CONTENTSAbstract (1)Keyword (1)Abstract (1)Keywords (2)Introduction (2)1 The task and the materials of design (3)1.1 The task and content of design (3)1.2 The firsthand information of design (3)1.2.1 Meteorological data of the city (3)1.2.2 Geological data (3)1.2.3 Engineering data (3)1.2.4 Hydrology data (4)1.2.5 Quality of influent and effluent (4)2 Design illumination (5)2.1 Calculation of the getting rid of rate (5)2.1.1 Getting rid of rate of dissolving BOD5 (5)2.1.2 Getting rid of rate of COD cr (5)2.1.3 Getting rid of rate of SS (5)2.1.4 Getting rid of rate of Total nitroge (5)2.2 Sewage disposal craft choice of the city (6)2.3Layout drawing of the wastewater treatment plant (8)2.4 Design dischargeof structures (Second ) (8)2.5 Design of disposal structures (9)2.5.1 Mid Grid and pump house (9)2.5.2 Thin Grid (10)2.5.3 Grit chamber (10)2.5.4 SBR (12)2.5.5 Decanter (13)2.6 Sludge concentration tank (14)2.7General layout and elevation distribution of the wastewater treatment plant 15 2.7.1 General layout (15)2.7.2 Layout of pipeline (15)2.7.3 Elevation distribution (16)3 The book of Design and calculate (16)3.1 The calculation of the build (16)3.1.1 Mid-Grid (16)3.1.2 Pump house (18)3.1.3 Thin-Grid (23)3.1.4 Grit chamber (23)3.1.5 SBR (26)3.1.6 Decanter (32)3.2 The design of the sludge treatment building (33)3.2.1 The design of sludge concentration tank (33)3.2.2The design of sludge dewatering house (36)3.3General layout and elevation distribution of the wastewater treatment plant 37 3.3.1 General layout of the wastewater treatment plant (37)3.3.2Elevation distribution of the wastewater treatment plant (37)List of references (42)Thanks (44)某城市污水处理厂SBR工艺初步设计摘要:本设计采用活性污泥法中较为经济合理的SBR工艺,对进入污水厂的污水进行处理。
三自由度机械手毕业设计
摘要机械手是在自动化生产过程中使用的一种具有抓取和移动工件功能的自动化装置,由其控制系统执行预定的程序实现对工件的定位夹持。
完全取代了人力,节省了劳动资源,提高了生产效率。
本设计以实现铣床自动上下料为目的,设计了个水平伸缩距为200mm,垂直伸缩距为200mm具有三个自由度的铣床上下料机械手。
机械手三个自由度分别是机身的旋转,手臂的升降,以及机身的升降。
在设计过程中,确定了铣床上下料机械手的总体方案,并对铣床上下料机械手的总体结构进行了设计,对一些部件进行了参数确定以及对主要的零部件进行了计算和校核。
以单片机为控制手段,设计了机械手的自动控制系统,实现了对铣床上下料机械手的准确控制。
关键词:机械手;三自由度;上下料;单片机AbstractManipulator , an automation equipment with function of grabbing and moving the workpiece ,is used in an automated production process.It perform scheduled program by the control system to realize the function of the positioning of the workpiece clamping. It completely replace the human, saving labor resources, and improve production efficiency.This design is to achieve milling automatic loading and unloading .Design a manipulator with three degrees of freedom and 200mm horizontal stretching distance, 120mm vertical telescopic distance. Three degrees of freedom of the manipulator is body rotation, arm movements, as well as the movements of the body. In the design process, determine the overall scheme of the milling machine loading and unloading manipulator and milling machine loading and unloading manipulator, the overall structure of the design parameters of some components as well as the main components of the calculation and verification. In the means of Single-chip microcomputer for controlling, design the automatic control system of the manipulator and achieve accurate control of the milling machine loading and unloading.Key words: Manipulator; Three Degrees of Freedom; Loading and unloading; single chip microcomputer目录摘要.........................................................................I第1章绪论.............................................................11.1选题背景................................................... (1)1.2设计目的.........................................................11.3国内外研究现状和趋势............................................21.4设计原则.........................................................2第2章设计方案的论证..................................................32.1 机械手的总体设计...............................................32.1.1机械手总体结构的类型....................................32.1.2 设计具体采用方案........................................42.2 机械手腰座结构设计.............................................52.2.1 机械手腰座结构设计要求.................................52.2.2 具体设计采用方案........................................52.3 机械手手臂的结构设计...........................................62.3.1机械手手臂的设计要求....................................62.3.2 设计具体采用方案........................................72.4 设计机械手手部连接方式.........................................72.5 机械手末端执行器(手部)的结构设计...........................82.5.1 机械手末端执行器的设计要求.............................82.5.2 机械手夹持器的运动和驱动方式..........................92.5.3 机械手夹持器的典型结构.................................92.6 机械手的机械传动机构的设计..................................102.6.1 工业机械手传动机构设计应注意的问题...................102.6.2 工业机械手传动机构常用的机构形式.....................102.6.3 设计具体采用方案.......................................122.7 机械手驱动系统的设计.........................................122.7.1 机械手各类驱动系统的特点..............................122.7.2 机械手液压驱动系统.....................................132.7.3机身摆动驱动元件的选取................................132.7.4 设计具体采用方案.......................................142.8 机械手手臂的平衡机构设计.....................................14第3章理论分析和设计计算............................................163.1 液压传动系统设计计算..........................................163.1.1 确定液压传动系统基本方案...............................163.1.2 拟定液压执行元件运动控制回路...........................173.1.3 液压源系统的设计........................................173.1.4 确定液压系统的主要参数.................................173.1.5 计算和选择液压元件......................................243.1.6机械手爪各结构尺寸的计算...................................26 第4章机械手控制系统的设计..........................................284.1 系统总体方案..................................................284.2 各芯片工作原理................................................284.2.1 串口转换芯片............................................284.2.2 单片机...................................................294.2.3 8279芯片...............................................304.2.4 译码器...................................................314.2.5 放大芯片................................................324.3 电路设计..................................................334.3.1 显示电路设计............................................334.3.2 键盘电路设计............................................334.4 复位电路设计..................................................334.5 晶体振荡电路设计.............................................344.6 传感器的选择..................................................34结论.....................................................................36致谢.....................................................................37参考文献................................................................38CONTENTS Abstract (I)Chapter 1 Introduction (1)1.1 background (1)1.2 design purpose (1)1.3 domestic and foreign research present situation and trends (2)1.4 design principles (2)Chapter 2 Design of the demonstration (3)2.1manipulator overall design (3)2.1.1 manipulator overall structure type (3)2.1.2 design adopts the scheme (4)2.2 lumbar base structure design of mechanical hand (5)2.2.1 manipulator lumbar base structure design requirements (5)2.2.2specific design schemes (5)2.3mechanical arm structure design (6)2.3.1 manipulator arm design requirements (6)2.3.2 design adopts the scheme (7)2.4 design of mechanical hand connection mode (7)2.5 the manipulator end-effector structure design (8)2.5.1 manipulator end-effector design requirements (8)2.5.2 manipulator gripper motion and driving method (9)2.5.3 manipulator gripper structure (9)2.6 robot mechanical transmission design (10)2.6.1 industry for transmission mechanism of manipulator design shouldpay attention question (10)2.6.2 industrial machinery hand transmission mechanism commonlyused form of institution (10)2.6.3 design adopts the scheme (12)2.7 mechanical arm drive system design (12)2.7.1 manipulator of various characteristics of the drive system (12)2.7.2 hydraulic drive system for a manipulator (13)2.7.3 Body swing the selection of drive components (13)2.7.4 Design the specific use of the program (14)2.8 mechanical arm balance mechanism design (14)Chapter 3 Theoretical analysis and design calculation (16)3.1 hydraulic system design and calculation (16)3.1.1 the basic scheme of hydrauic transmission system (16)3.1.2 formulation of the hydraulic actuator control circuit (17)3.1.3 hydraulic source system design (17)3.1.4 determine the main parameters of the hydraulic system (17)3.1.5 calculation and selection of hydraulic components (24)3.1.6 Manipulator calculation of the structural dimensions (26)Chapter 4 The robot control system design (28)4.1 Overall scheme (28)4.2 Chip works (28)4.2.1 serial conversion chip (28)4.2.2 MCU (29)4.2.3 8279 chip (30)4.2 .4 decoder (31)4.2.5 amplifier chip (32)4.3 Circuit design (33)4.3.1 show the circuit design (33)4.3.2 The keyboard circuit design (33)4.4 Reset circuit design (33)4.5 crystal oscillation circuit design (34)4.6 sensor selection (34)Conclusion (36)Acknowledgements (37)References (38)第1章绪论1.1选题背景机械手是在自动化生产过程中使用的一种具有抓取和移动工件功能的自动化装置,它是在机械化、自动化生产过程中发展起来的一种新型装置。
PH21 27 Powerhouse 双生成器并行连接套件操作指南说明书
PH21/27 POWERHOUSE®Dual Generator Parallel Kit Operating InstructionsPLEASE READ THIS MANUAL CAREFULLYBEFORE USINGTABLE OF CONTENTSTABLE OF CONTENTS (2)1.SAFETY INSTRUCTIONS: (2)2.Parallel Operating Features: (2)3 Parallel Operation Procedure: (3)3.1 Parallel Output and Overload Lights (4)3.2 Shutting off the generators: (5)3.3 Air Conditioning Operation (5)4 Troubleshooting Parallel Operation (6)1. SAFETY INSTRUCTIONS:▪Follow all safety and operating instruction for proper use of thegenerator.▪Never Connect or Disconnect the parallel kit cables from thegenerators while running. Doing so will cause perminate damagenot covered under warranty.▪The load requirement of the electrical appliance cannot exceed thecombined continual output of the paralleled generators.▪The special parallel cables for the PH2100PRi and PH2700PRi arespecific to the parallel operation of two POWERHOUSE® generators.DO NOT use them for other brands of generators or other applications.▪This kit cannot be used for paralleling three or more generators orrunning two different brands of generators.▪ONLY the POWERHOUSE® Dual Generator Parallel Kit and cablesmay be connected to the parallel signal port. DO NOT CONNECT TOOTHER ELECTRONICS OR USE OTHER CABLES. Permanentdamage not covered by the warranty will occur.2. Parallel Operating Features:1. Two PH2100PRi or PH2700PRi model generators can run in parallel to increase the total output to amaximum load of.∙4200 W (Continual output, 4000 W) with the PH2100PRi.∙5200 W (Continual output, 5000 W) with the PH2700PRi.2. You can also run a PH2100PRi and a PH2700PRi in parallel. The maximum output will be 4200 W(Continual output, 4000 W).3 Parallel Operation Procedure:1. Prepare two POWERHOUSE® generators for operation.2. Parallel power and signal connections MUST be done with the generator engine NOT running.DO NOT connect or disconnect the parallel power or signal cables while the engine is running. Irreparable inverter damage WILL result and is not covered under warranty.3. Connect the 15-pin signal cable between the parallel kit and each generator ’s signal ports and securewith the thumb screws. Do not over tighten.4. Connect the 3-pin parallel power cable from the parallel kit into each generator ’s parallel powersockets making sure that the cables for generator ‘A’ and generator ‘B’ are not switched.5. Start both generators and confirm that both green "RUN" lights are illuminated on the generators andon the front panel of the parallel kit.6. Start both generators. The starting procedure is the same as the normal starting procedure.7. Securely plug the electrical appliance plug into the appropriate receptacles and switch on theelectrical appliance.When running the generators in parallel, the economy function will automatically be turned off and both units will be running at the higher engine speed.3-Pin Parallel Cable ‘A’3-Pin Parallel Cable ‘B’CoverParallel Signal Port3-Pin Parallel Power SocketCoverPH2100PRi/PH2700PRiControl Panel3.1 Parallel Output and Overload LightsTo prevent electrical shock from faulty appliances, the parallel kit should be grounded. Connect a length of heavy cable between the parallel ground terminal and an external ground source.1. During normal operating conditions, the output indicator lights (Green) will remain illuminated.2. If the generators are overloaded (in excess of 4200W when using two PH2100PRi units or5200W when using two PH2700PRi units) the overload indicator light (red) will flash slowly on only one generator. The indicator lights on the other unit and the parallel kit will all be off. 3. At this time, there will be no electrical output from the parallel panel and the connected applianceor load will be shut off. 4. Remove all electrical loads from the generators and/or parallel kit and then determine andcorrect the cause of the overload. 5. To reset the overload condition (Red light), press and release the (Green) overload reset buttonon the parallel panel. The (Green) indicator lights should be illuminated on both generators and on the parallel panel within 15 seconds.Grounding Terminal120V-30 amp Locking Receptacle120V-20 amp ReceptacleOverload Reset Button (Green)120V Short Indicator (Red) Output Indicator(Green)20 and 30 amp Circuit Breakers6. If there is a direct electrical short between either of the 120V receptacles on the parallel paneland the connected appliance or load, the output indicator light (green) will go out and the red short indicator will illuminate. The generators will continue to run although the indicator lights on both units and the parallel kit will all be off, and all electrical output will cease.7. Remove all electrical loads from the 120V 20A and 30A receptacles and then determine andcorrect the cause of the short.8. To reset the short light (red ) on the parallel panel, press the (green) overload reset button on theparallel panel. The (green) indicator light should be illuminated within 15 seconds.The 120 volt receptacles on each of the generator control panels can alsobe used in conjunction with the 20 and 30 amp receptacles on the parallelkit, as long as the combined loads from the parallel kit and the receptacleon the generator do not exceed the generator rating of a single unit.PH2100PRi (2000W) / PR2700PRI (2600W).3.2 Shutting off the generators:1. Turn off all electrical appliances.2. Turn off both generators.3. Unplug the appliance power cords from the receptacles.4. Disconnect the power and signal cables from the parallel power and signal sockets of the twogenerators. Make certain that the engines of both generators have been turned off, BEFORE disconnecting these cables.3.3 Air Conditioning Operation1. When running in parallel, two PH2100PRi or PH2700PRi models can start and run most 15,000BTU Air conditioners.2. Bring the generators to normal operating temperatures before applying the air conditioning load.Always allow a 2 minute wait period when manually cycling an air conditioner off and on. Alonger wait period may be required under unusually hot weather conditions. Additionally, all other loads should be turned off until the air conditioner has started and is performing normally.3. It is also important to follow the air conditioner manufacturer's instructions for starting andrestarting for proper operation. Some air conditioner manufacturers offer a start capacitor orrapid start kit as an extra cost option. The lack of a start capacitor can cause the air conditioner to draw too much starting current and overload the generator.4 Troubleshooting Parallel Operation。
llama 2的开源框架的使用手册
Llama 2的开源框架使用手册如下:
1. 安装Llama 2:首先,您需要从官方网站或GitHub上获取Llama 2的源代码。
然后,按照官方提供的指南进行安装。
这可能涉及到下载和安装特定版本的Python,以及安装一些依赖项。
2. 了解Llama 2的架构:Llama 2使用标准的Transformer架构,其中包括预归一化、SwiGLU激活函数和旋转位置嵌入等组件。
3. 训练模型:在训练模型之前,您需要准备训练数据。
然后,使用预训练设置和模型架构进行训练。
Meta使用AdamW优化器进行训练,其中β_1=0.9,β_2=0.95,eps=10−5。
同时使用余弦学习率计划(预热2000步),并将最终学习率衰减到峰值学习率的10%。
4. 微调模型:对于特定任务,您可能需要对模型进行微调。
这通常涉及到使用监督微调或强化学习人类反馈进行优化。
Llama 2-Chat通过监督微调和强化学习人类反馈进行了优化。
5. 使用模型:一旦模型训练完毕,您就可以使用它来理解自然语言并生成相应的回复了。
这可以通过调用模型的API或使用Python 代码实现。
6. 注意版权问题:根据Llama 2的使用条款,日活大于7亿的产品需要单独申请商用权限,不得使用Llama材料或Llama材料的任何输出或结果来改进任何其他大型语言模型。
请注意,本回答中的信息仅是摘要,具体使用手册的内容可能会根据Llama 2的版本和文档有所不同。
建议您参考官方文档以获取最准确和最新的信息。
Indradrive 系列 故障代码
Error MessagesF9001 Error internal function call.F9002 Error internal RTOS function callF9003 WatchdogF9004 Hardware trapF8000 Fatal hardware errorF8010 Autom. commutation: Max. motion range when moving back F8011 Commutation offset could not be determinedF8012 Autom. commutation: Max. motion rangeF8013 Automatic commutation: Current too lowF8014 Automatic commutation: OvercurrentF8015 Automatic commutation: TimeoutF8016 Automatic commutation: Iteration without resultF8017 Automatic commutation: Incorrect commutation adjustment F8018 Device overtemperature shutdownF8022 Enc. 1: Enc. signals incorr. (can be cleared in ph. 2) F8023 Error mechanical link of encoder or motor connectionF8025 Overvoltage in power sectionF8027 Safe torque off while drive enabledF8028 Overcurrent in power sectionF8030 Safe stop 1 while drive enabledF8042 Encoder 2 error: Signal amplitude incorrectF8057 Device overload shutdownF8060 Overcurrent in power sectionF8064 Interruption of motor phaseF8067 Synchronization PWM-Timer wrongF8069 +/-15Volt DC errorF8070 +24Volt DC errorF8076 Error in error angle loopF8078 Speed loop error.F8079 Velocity limit value exceededF8091 Power section defectiveF8100 Error when initializing the parameter handlingF8102 Error when initializing power sectionF8118 Invalid power section/firmware combinationF8120 Invalid control section/firmware combinationF8122 Control section defectiveF8129 Incorrect optional module firmwareF8130 Firmware of option 2 of safety technology defectiveF8133 Error when checking interrupting circuitsF8134 SBS: Fatal errorF8135 SMD: Velocity exceededF8140 Fatal CCD error.F8201 Safety command for basic initialization incorrectF8203 Safety technology configuration parameter invalidF8813 Connection error mains chokeF8830 Power section errorF8838 Overcurrent external braking resistorF7010 Safely-limited increment exceededF7011 Safely-monitored position, exceeded in pos. DirectionF7012 Safely-monitored position, exceeded in neg. DirectionF7013 Safely-limited speed exceededF7020 Safe maximum speed exceededF7021 Safely-limited position exceededF7030 Position window Safe stop 2 exceededF7031 Incorrect direction of motionF7040 Validation error parameterized - effective thresholdF7041 Actual position value validation errorF7042 Validation error of safe operation modeF7043 Error of output stage interlockF7050 Time for stopping process exceeded8.3.15 F7051 Safely-monitored deceleration exceeded (159)8.4 Travel Range Errors (F6xxx) (161)8.4.1 Behavior in the Case of Travel Range Errors (161)8.4.2 F6010 PLC Runtime Error (162)8.4.3 F6024 Maximum braking time exceeded (163)8.4.4 F6028 Position limit value exceeded (overflow) (164)8.4.5 F6029 Positive position limit exceeded (164)8.4.6 F6030 Negative position limit exceeded (165)8.4.7 F6034 Emergency-Stop (166)8.4.8 F6042 Both travel range limit switches activated (167)8.4.9 F6043 Positive travel range limit switch activated (167)8.4.10 F6044 Negative travel range limit switch activated (168)8.4.11 F6140 CCD slave error (emergency halt) (169)8.5 Interface Errors (F4xxx) (169)8.5.1 Behavior in the Case of Interface Errors (169)8.5.2 F4001 Sync telegram failure (170)8.5.3 F4002 RTD telegram failure (171)8.5.4 F4003 Invalid communication phase shutdown (172)8.5.5 F4004 Error during phase progression (172)8.5.6 F4005 Error during phase regression (173)8.5.7 F4006 Phase switching without ready signal (173)8.5.8 F4009 Bus failure (173)8.5.9 F4012 Incorrect I/O length (175)8.5.10 F4016 PLC double real-time channel failure (176)8.5.11 F4017 S-III: Incorrect sequence during phase switch (176)8.5.12 F4034 Emergency-Stop (177)8.5.13 F4140 CCD communication error (178)8.6 Non-Fatal Safety Technology Errors (F3xxx) (178)8.6.1 Behavior in the Case of Non-Fatal Safety Technology Errors (178)8.6.2 F3111 Refer. missing when selecting safety related end pos (179)8.6.3 F3112 Safe reference missing (179)8.6.4 F3115 Brake check time interval exceeded (181)Troubleshooting Guide | Rexroth IndraDrive Electric Drivesand ControlsI Bosch Rexroth AG VII/XXIITable of ContentsPage8.6.5 F3116 Nominal load torque of holding system exceeded (182)8.6.6 F3117 Actual position values validation error (182)8.6.7 F3122 SBS: System error (183)8.6.8 F3123 SBS: Brake check missing (184)8.6.9 F3130 Error when checking input signals (185)8.6.10 F3131 Error when checking acknowledgment signal (185)8.6.11 F3132 Error when checking diagnostic output signal (186)8.6.12 F3133 Error when checking interrupting circuits (187)8.6.13 F3134 Dynamization time interval incorrect (188)8.6.14 F3135 Dynamization pulse width incorrect (189)8.6.15 F3140 Safety parameters validation error (192)8.6.16 F3141 Selection validation error (192)8.6.17 F3142 Activation time of enabling control exceeded (193)8.6.18 F3143 Safety command for clearing errors incorrect (194)8.6.19 F3144 Incorrect safety configuration (195)8.6.20 F3145 Error when unlocking the safety door (196)8.6.21 F3146 System error channel 2 (197)8.6.22 F3147 System error channel 1 (198)8.6.23 F3150 Safety command for system start incorrect (199)8.6.24 F3151 Safety command for system halt incorrect (200)8.6.25 F3152 Incorrect backup of safety technology data (201)8.6.26 F3160 Communication error of safe communication (202)8.7 Non-Fatal Errors (F2xxx) (202)8.7.1 Behavior in the Case of Non-Fatal Errors (202)8.7.2 F2002 Encoder assignment not allowed for synchronization (203)8.7.3 F2003 Motion step skipped (203)8.7.4 F2004 Error in MotionProfile (204)8.7.5 F2005 Cam table invalid (205)8.7.6 F2006 MMC was removed (206)8.7.7 F2007 Switching to non-initialized operation mode (206)8.7.8 F2008 RL The motor type has changed (207)8.7.9 F2009 PL Load parameter default values (208)8.7.10 F2010 Error when initializing digital I/O (-> S-0-0423) (209)8.7.11 F2011 PLC - Error no. 1 (210)8.7.12 F2012 PLC - Error no. 2 (210)8.7.13 F2013 PLC - Error no. 3 (211)8.7.14 F2014 PLC - Error no. 4 (211)8.7.15 F2018 Device overtemperature shutdown (211)8.7.16 F2019 Motor overtemperature shutdown (212)8.7.17 F2021 Motor temperature monitor defective (213)8.7.18 F2022 Device temperature monitor defective (214)8.7.19 F2025 Drive not ready for control (214)8.7.20 F2026 Undervoltage in power section (215)8.7.21 F2027 Excessive oscillation in DC bus (216)8.7.22 F2028 Excessive deviation (216)8.7.23 F2031 Encoder 1 error: Signal amplitude incorrect (217)VIII/XXII Bosch Rexroth AG | Electric Drivesand ControlsRexroth IndraDrive | Troubleshooting GuideTable of ContentsPage8.7.24 F2032 Validation error during commutation fine adjustment (217)8.7.25 F2033 External power supply X10 error (218)8.7.26 F2036 Excessive position feedback difference (219)8.7.27 F2037 Excessive position command difference (220)8.7.28 F2039 Maximum acceleration exceeded (220)8.7.29 F2040 Device overtemperature 2 shutdown (221)8.7.30 F2042 Encoder 2: Encoder signals incorrect (222)8.7.31 F2043 Measuring encoder: Encoder signals incorrect (222)8.7.32 F2044 External power supply X15 error (223)8.7.33 F2048 Low battery voltage (224)8.7.34 F2050 Overflow of target position preset memory (225)8.7.35 F2051 No sequential block in target position preset memory (225)8.7.36 F2053 Incr. encoder emulator: Pulse frequency too high (226)8.7.37 F2054 Incr. encoder emulator: Hardware error (226)8.7.38 F2055 External power supply dig. I/O error (227)8.7.39 F2057 Target position out of travel range (227)8.7.40 F2058 Internal overflow by positioning input (228)8.7.41 F2059 Incorrect command value direction when positioning (229)8.7.42 F2063 Internal overflow master axis generator (230)8.7.43 F2064 Incorrect cmd value direction master axis generator (230)8.7.44 F2067 Synchronization to master communication incorrect (231)8.7.45 F2068 Brake error (231)8.7.46 F2069 Error when releasing the motor holding brake (232)8.7.47 F2074 Actual pos. value 1 outside absolute encoder window (232)8.7.48 F2075 Actual pos. value 2 outside absolute encoder window (233)8.7.49 F2076 Actual pos. value 3 outside absolute encoder window (234)8.7.50 F2077 Current measurement trim wrong (235)8.7.51 F2086 Error supply module (236)8.7.52 F2087 Module group communication error (236)8.7.53 F2100 Incorrect access to command value memory (237)8.7.54 F2101 It was impossible to address MMC (237)8.7.55 F2102 It was impossible to address I2C memory (238)8.7.56 F2103 It was impossible to address EnDat memory (238)8.7.57 F2104 Commutation offset invalid (239)8.7.58 F2105 It was impossible to address Hiperface memory (239)8.7.59 F2110 Error in non-cyclical data communic. of power section (240)8.7.60 F2120 MMC: Defective or missing, replace (240)8.7.61 F2121 MMC: Incorrect data or file, create correctly (241)8.7.62 F2122 MMC: Incorrect IBF file, correct it (241)8.7.63 F2123 Retain data backup impossible (242)8.7.64 F2124 MMC: Saving too slowly, replace (243)8.7.65 F2130 Error comfort control panel (243)8.7.66 F2140 CCD slave error (243)8.7.67 F2150 MLD motion function block error (244)8.7.68 F2174 Loss of motor encoder reference (244)8.7.69 F2175 Loss of optional encoder reference (245)Troubleshooting Guide | Rexroth IndraDrive Electric Drivesand Controls| Bosch Rexroth AG IX/XXIITable of ContentsPage8.7.70 F2176 Loss of measuring encoder reference (246)8.7.71 F2177 Modulo limitation error of motor encoder (246)8.7.72 F2178 Modulo limitation error of optional encoder (247)8.7.73 F2179 Modulo limitation error of measuring encoder (247)8.7.74 F2190 Incorrect Ethernet configuration (248)8.7.75 F2260 Command current limit shutoff (249)8.7.76 F2270 Analog input 1 or 2, wire break (249)8.7.77 F2802 PLL is not synchronized (250)8.7.78 F2814 Undervoltage in mains (250)8.7.79 F2815 Overvoltage in mains (251)8.7.80 F2816 Softstart fault power supply unit (251)8.7.81 F2817 Overvoltage in power section (251)8.7.82 F2818 Phase failure (252)8.7.83 F2819 Mains failure (253)8.7.84 F2820 Braking resistor overload (253)8.7.85 F2821 Error in control of braking resistor (254)8.7.86 F2825 Switch-on threshold braking resistor too low (255)8.7.87 F2833 Ground fault in motor line (255)8.7.88 F2834 Contactor control error (256)8.7.89 F2835 Mains contactor wiring error (256)8.7.90 F2836 DC bus balancing monitor error (257)8.7.91 F2837 Contactor monitoring error (257)8.7.92 F2840 Error supply shutdown (257)8.7.93 F2860 Overcurrent in mains-side power section (258)8.7.94 F2890 Invalid device code (259)8.7.95 F2891 Incorrect interrupt timing (259)8.7.96 F2892 Hardware variant not supported (259)8.8 SERCOS Error Codes / Error Messages of Serial Communication (259)9 Warnings (Exxxx) (263)9.1 Fatal Warnings (E8xxx) (263)9.1.1 Behavior in the Case of Fatal Warnings (263)9.1.2 E8025 Overvoltage in power section (263)9.1.3 E8026 Undervoltage in power section (264)9.1.4 E8027 Safe torque off while drive enabled (265)9.1.5 E8028 Overcurrent in power section (265)9.1.6 E8029 Positive position limit exceeded (266)9.1.7 E8030 Negative position limit exceeded (267)9.1.8 E8034 Emergency-Stop (268)9.1.9 E8040 Torque/force actual value limit active (268)9.1.10 E8041 Current limit active (269)9.1.11 E8042 Both travel range limit switches activated (269)9.1.12 E8043 Positive travel range limit switch activated (270)9.1.13 E8044 Negative travel range limit switch activated (271)9.1.14 E8055 Motor overload, current limit active (271)9.1.15 E8057 Device overload, current limit active (272)X/XXII Bosch Rexroth AG | Electric Drivesand ControlsRexroth IndraDrive | Troubleshooting GuideTable of ContentsPage9.1.16 E8058 Drive system not ready for operation (273)9.1.17 E8260 Torque/force command value limit active (273)9.1.18 E8802 PLL is not synchronized (274)9.1.19 E8814 Undervoltage in mains (275)9.1.20 E8815 Overvoltage in mains (275)9.1.21 E8818 Phase failure (276)9.1.22 E8819 Mains failure (276)9.2 Warnings of Category E4xxx (277)9.2.1 E4001 Double MST failure shutdown (277)9.2.2 E4002 Double MDT failure shutdown (278)9.2.3 E4005 No command value input via master communication (279)9.2.4 E4007 SERCOS III: Consumer connection failed (280)9.2.5 E4008 Invalid addressing command value data container A (280)9.2.6 E4009 Invalid addressing actual value data container A (281)9.2.7 E4010 Slave not scanned or address 0 (281)9.2.8 E4012 Maximum number of CCD slaves exceeded (282)9.2.9 E4013 Incorrect CCD addressing (282)9.2.10 E4014 Incorrect phase switch of CCD slaves (283)9.3 Possible Warnings When Operating Safety Technology (E3xxx) (283)9.3.1 Behavior in Case a Safety Technology Warning Occurs (283)9.3.2 E3100 Error when checking input signals (284)9.3.3 E3101 Error when checking acknowledgment signal (284)9.3.4 E3102 Actual position values validation error (285)9.3.5 E3103 Dynamization failed (285)9.3.6 E3104 Safety parameters validation error (286)9.3.7 E3105 Validation error of safe operation mode (286)9.3.8 E3106 System error safety technology (287)9.3.9 E3107 Safe reference missing (287)9.3.10 E3108 Safely-monitored deceleration exceeded (288)9.3.11 E3110 Time interval of forced dynamization exceeded (289)9.3.12 E3115 Prewarning, end of brake check time interval (289)9.3.13 E3116 Nominal load torque of holding system reached (290)9.4 Non-Fatal Warnings (E2xxx) (290)9.4.1 Behavior in Case a Non-Fatal Warning Occurs (290)9.4.2 E2010 Position control with encoder 2 not possible (291)9.4.3 E2011 PLC - Warning no. 1 (291)9.4.4 E2012 PLC - Warning no. 2 (291)9.4.5 E2013 PLC - Warning no. 3 (292)9.4.6 E2014 PLC - Warning no. 4 (292)9.4.7 E2021 Motor temperature outside of measuring range (292)9.4.8 E2026 Undervoltage in power section (293)9.4.9 E2040 Device overtemperature 2 prewarning (294)9.4.10 E2047 Interpolation velocity = 0 (294)9.4.11 E2048 Interpolation acceleration = 0 (295)9.4.12 E2049 Positioning velocity >= limit value (296)9.4.13 E2050 Device overtemp. Prewarning (297)Troubleshooting Guide | Rexroth IndraDrive Electric Drivesand Controls| Bosch Rexroth AG XI/XXIITable of ContentsPage9.4.14 E2051 Motor overtemp. prewarning (298)9.4.15 E2053 Target position out of travel range (298)9.4.16 E2054 Not homed (300)9.4.17 E2055 Feedrate override S-0-0108 = 0 (300)9.4.18 E2056 Torque limit = 0 (301)9.4.19 E2058 Selected positioning block has not been programmed (302)9.4.20 E2059 Velocity command value limit active (302)9.4.21 E2061 Device overload prewarning (303)9.4.22 E2063 Velocity command value > limit value (304)9.4.23 E2064 Target position out of num. range (304)9.4.24 E2069 Holding brake torque too low (305)9.4.25 E2070 Acceleration limit active (306)9.4.26 E2074 Encoder 1: Encoder signals disturbed (306)9.4.27 E2075 Encoder 2: Encoder signals disturbed (307)9.4.28 E2076 Measuring encoder: Encoder signals disturbed (308)9.4.29 E2077 Absolute encoder monitoring, motor encoder (encoder alarm) (308)9.4.30 E2078 Absolute encoder monitoring, opt. encoder (encoder alarm) (309)9.4.31 E2079 Absolute enc. monitoring, measuring encoder (encoder alarm) (309)9.4.32 E2086 Prewarning supply module overload (310)9.4.33 E2092 Internal synchronization defective (310)9.4.34 E2100 Positioning velocity of master axis generator too high (311)9.4.35 E2101 Acceleration of master axis generator is zero (312)9.4.36 E2140 CCD error at node (312)9.4.37 E2270 Analog input 1 or 2, wire break (312)9.4.38 E2802 HW control of braking resistor (313)9.4.39 E2810 Drive system not ready for operation (314)9.4.40 E2814 Undervoltage in mains (314)9.4.41 E2816 Undervoltage in power section (314)9.4.42 E2818 Phase failure (315)9.4.43 E2819 Mains failure (315)9.4.44 E2820 Braking resistor overload prewarning (316)9.4.45 E2829 Not ready for power on (316)。
犀牛教程-MERGE融合命令
犀牛教程-MERGE融合命令(1)犀牛教程-MERGE融合命令(1)融合命令我想很多人都用过。
好处不言而喻,一是化复合面为单一面,二是边界线精简了。
与JOIN命令相比,处理后尽管结果一样,但实质效果是完全不一样的。
而且MERGE面后还非常方便于后期的工作。
整理了一下 Merge (融合)命令,对在融合过程中常提示“Edges are too far apart to merge”“要融合的边距离太大”导致两块面不能融合的情况做了整理,并相应的提供了解决方法,供大家参考。
有融合可能的先决条件是:1.两块面原本就在一个面上的,只是后来被SPLIT了。
如下图 A B面2.两块面的成面方法一致,且首尾G1以上衔接,ISO对应。
如下图,两块面A B都是单独做的,方法都是SWEEP2本帖隐藏的内容需要回复才可以浏览现在讲“Edges are too far apart to merge. ”的发生情况。
1.从一个面上SPLIT的两个面,有时不能融合。
看下图,打开控制点看看就知道了。
要融合的两条边的控制点确实距离太远了。
解决办法:用Shrink (收缩)命令,把跑的太远的点缩回去,当然就可以融合了2. ISO 没对整齐,不能融合。
象下图的情况,两个面成面方法不一样,ISO数目,ISO对应也不一样,所以根本不需要去考虑融合它们有可能融合的情况下,但由于ISO偏差导致不能融合。
见下图,由于A面先MATCH了前轮包,B面再去MATCH A面,结果发现了ISO错开了。
解决办法:把公差放大,图中0.01 改为 0.1 ,就解决融合问题了。
有点类似于POLY中的WELD,不能焊接的点通过放大容差值焊接一样。
3. 用剪切边去融合面一般这样被剪切的边是没办法融合的但通过2D拉伸剪切边所在的面,使ISO对齐了,就能融合2评分次数掌聲響起modern。
discovery studio libdock打分 -回复
discovery studio libdock打分-回复Discovery Studio LibDock是一种分子对接计算工具,用于预测和评估小分子与靶点蛋白之间的相互作用。
它通过计算和比较多个配体(ligand)与目标蛋白的结合自由能,能够快速筛选候选药物,并提供药物设计和优化方案。
本文将介绍LibDock的基本原理、应用领域以及其在药物研发中的价值。
首先,让我们了解一下LibDock背后的基本原理。
LibDock基于分子力场和蛋白-配体相互作用的物理原理,通过计算结合位点中的蛋白残基与配体之间的相互作用能量,来预测配体的结合自由能。
该计算方法可以分为两个步骤:寻找合适的配位位点和评估配位模式。
寻找合适的配位位点常常包括挑选靶标蛋白结构中的关键残基或基团,并利用一定的算法搜索具有高度亲和性的配体-蛋白复合物。
评估配位模式时,LibDock使用其内嵌的评分函数来计算每个配体的结合自由能,并根据其得分进行排序。
LibDock在药物研发中有着广泛的应用领域。
首先,它可以用于药物筛选。
通过对大规模化合物库进行LibDock计算,可以快速筛选出具有较高结合亲和力的潜在药物分子。
其次,LibDock还可以用于药物分子的设计和优化。
利用计算中得到的结合位点信息,药物分子可以被改变,以提高其与靶标蛋白的结合能力和选择性,从而增加药物的疗效和减少副作用。
此外,LibDock还可以用于解析结构活性关系(SAR)和药物毒性预测等领域。
在药物研发中,LibDock的使用具有重要的价值。
首先,它可以显著节省时间和成本。
相比传统的实验方法,LibDock能够高效地筛选和评估药物候选分子,从而减少实验周期和资源投入。
同时,LibDock的计算结果具有较高的准确性和预测性,这意味着通过LibDock筛选出的候选分子更有可能具有理想的药物特性。
此外,LibDock还可以提供对药物分子和靶标蛋白相互作用通路的深入了解,从而为药物研发提供更多的信息和指导。
3GPP 5G基站(BS)R16版本一致性测试英文原版(3GPP TS 38.141-1)
4.2.2
BS type 1-H.................................................................................................................................................. 26
4.3
Base station classes............................................................................................................................................27
1 Scope.......................................................................................................................................................13
All rights reserved. UMTS™ is a Trade Mark of ETSI registered for the benefit of its members 3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM Association
mergetree原理
mergetree原理Mergetree原理简介1. 什么是Mergetree?Mergetree是一种用于处理多方数据合并的算法,常用于分布式系统中。
它能够高效地合并多个分布式数据副本,确保数据的一致性和完整性。
2. Mergetree的基本原理Mergetree的基本原理是通过将多个数据副本进行拆分,然后根据设计的规则进行合并,最终得到合并后的数据。
3. Mergetree的数据结构Mergetree通过一种树状结构来表示数据。
树中的每个节点都代表数据的某个部分,叶子节点存储实际的数据值,而内部节点则存储对应叶子节点的数据的摘要。
这种结构能够快速定位到需要合并的部分,提高了合并的效率。
4. Mergetree的合并策略Mergetree的合并策略主要有两种:全并和增并。
全并全并是指将所有数据副本的对应部分全部合并成一个新的数据。
这种策略适用于数据相对简单且变动较小的情况下,能够保证数据一致性。
增并增并是指只合并更新或新增的数据,不合并已经存在的不变数据。
这种策略适用于大规模数据且变动频繁的情况下,能够减少合并的开销。
5. Mergetree的合并过程Mergetree的合并过程一般包括以下几个步骤:拆分数据将要合并的数据副本拆分成多个部分,每个部分对应一个叶子节点。
拆分的方式可以根据实际情况进行设计,可以按照数据的关键字段进行拆分,也可以按照数据的时间戳进行拆分等。
计算摘要对每个叶子节点的数据计算摘要,并存储到对应的内部节点中。
摘要可以是数据的哈希值或其他简要描述,用于快速比较和定位。
根据合并策略,将需要合并的数据按照指定的规则进行合并。
合并的过程可以是并行的,也可以是顺序的,具体取决于系统的需求和性能。
更新摘要对合并后的数据重新计算摘要,并更新到对应的内部节点中。
这样可以保证合并后的数据的一致性和完整性。
6. Mergetree的性能和优化Mergetree的性能和效率主要取决于数据的拆分方式、合并策略和合并过程的实现等。
亚特兰蒂斯生成器并行连接指南说明书
Step by Step Atlas Copco Paralleling ProcedureThe first generator requires the following steps, press theAOP button:Turn on application 2:Turn on end unit:Returned to the home screen:Press the up arrow:Press the menu button:Press setup:Turn on power management:Press controller settings:On the left side of the screen is a search button press and type in parameter 8023.Enter:Password for customer is 2003, then press Enter:Move to slide bar to enable and press enter—then wait for your messages:On the right of Easy Connect is a pencil—press:and wait:Connect the communication cable and proceed to the next unit. All the middle generators 2 -31 require the following steps:First connect the communication cable.Press the AOP button.:Turn on application 2:Return to the home screen:Leave middle unit on return to home screen:Press the up arrowPress the menu button. Press setup.Turn on power management.Press controller settings.Press the search button on the left of the screen.Type in parameter 8023, then enter.Enter customer password 2003, then enter.Move to slide bar to enable and press enter.To the right of Easy Connect, press the pencil.Now, wait.Press the checkmark to add DG to plant.Now, wait.Return to home.Press the AOP button,Press the X in the upper right cornerto clear all communication messages.The last generator requires the following steps, first connect the communications cable.Turn on application 2Turn on end unit.Return to the home screen.And turn on power management.Press the menu button.Press the up arrow.Press setup.Press controller settings.Press the search button on the left side of the screen and type in parameter number 8023 and press enter.To the right of the easy connect parameter, touch the pencilEnter customer password 2003 and press enterMove to slide bar to enable and press enter.Press the check mark to add to add DG plant and then wait.In the upper right corner, Press the X to clearout all communication messages.In the lower right corner touched the button with the four arrows and switch it from Sem-Auto to AutoReturn to home.Confirm. Your plant is now set up and ready to produce power.22Atlas Copco AB X X X X X X X X X X © A t l a s C o p c o P o w e r a n d F l o w d i v i s i o n . 2021。
星环 inceptor merge函数
星环(Arks)Inceptor 是一个基于SQL 的实时数据仓库,支持大规模数据存储和高效查询。
在处理数据时,我们可能需要合并多个数据源或分区的数据,这时候就需要用到Merge 函数。
一般来说,Inceptor 的Merge 函数会根据一定的条件(如时间戳、ID 等)将多个分区或数据源的数据合并在一起。
这样可以实现在一个查询中处理多个分区或数据源的数据,提高查询效率。
具体来说,Inceptor 的Merge 函数可以根据以下步骤使用:
1.确定需要合并的数据源或分区。
2.确定合并的依据,如时间戳、ID 等。
3.编写SQL 查询语句,使用Merge 函数将数据合并在一起。
4.根据需要选择要保留的数据,可以使用Where 子句过滤掉不需要的数据。
5.执行查询语句,得到合并后的数据。
需要注意的是,Merge 函数的具体使用方法可能会根据星环Inceptor 的版本和具体需求而有所不同。
因此,在使用Merge 函数时,建议参考星环Inceptor 的官方文档或咨询相关技术支持人员,以确保正确使用该函数。
TiLT ii转换器唤醒器和Quick-Check转换器电容器测试器说明书
DESCRIPTIONThe TiLT ii Transformer Testers and the Quick-Check Transformerand Capacitor Testers provide quick and easy tests for opens and shorts on power distribution systems. They operate with a single push-button and provide clear indications of open circuits,short circuits and confirmation that the test results are ok.The TiLT ii (Transformer initial Livening Tester) Transformer Tester is a versatile tool for quick and easy checks of transformers and the connections made to them. in the field, the TiLT ii is used to test the primary and secondary sides of a new or reworked, single or three-phase transformer installation for short circuits prior to energizing. The TiLT ii can test the secondary sides of transformers and all the connections made to them, up to and including the meter, prior to energizing. unlike a simple ohmmeter,the TiLT ii can differentiate a true short from the low istance of a transformer winding.in the shop, the TiLT ii can be used for quick screening of incoming and outgoing transformers for both primary and secondary shorts or opens (including internal fuses and breakers). The TiL T ii tests both 1Ø and 3Ø transformers, including potential transformers and other instrument transformers.The Quick-Check performs all the same transformer tests as the TiLT ii, and also tests capacitors and capacitor banks.The Quick-Check uses the same single push-button operation as the TiLT ii and automatically distinguishes betweentransformers and capacitors. The Quick-Check tests capacitors individually or connected in capacitor banks. The Capacitor o.k. indication confirms that the capacitor is not internally shorted or open.Both units are available with either manual self-test tabs on the side of the unit or automatic self-test. The units will automatically perform a complete self-test of the battery, lights, beeper and all electronics every time the TesT button is pushed. a magnetis also available for hands-free operation.TEST, MEASUREMENT & SAFETYTransformer & Capacitor TestersTILTII AND QUICK-CHECK®Transformer Tester Transformer and Capacitor TesterBENEFITS•Tests transformers and capacitors for majordefects before energizing•Tests overhead, pad-mount and other distribution transformers as well as capacitors and capacitor banks •Tests the primary and secondary sides of de-energized transformers without disconnecting•prevents line workers from installing a fuse on a shorted transformer or capacitor•Quickly verifies the secondary connections are not shortedFEATURES•Large copper alligator clips with heavy duty boots •heavy duty rubber insulated coiled test leads •Compact, lightweight and easy-to-use •powered by a 9v alkaline battery •super bright Led indicators•audible alarm confirms successful test •Built-in self-test feature available•Continuous testing while button is pressedOPERATIONThe TiLT ii and Quick-Check are versatile testers for a wide variety of test configurations and applications.a 3Ø overhead transformer installation is an ideal application for the TiLT ii or Quick-Check. after all the secondary wiring is completed and the phases are connected to the meter box, use the TiLT ii or Quick-Check to verify that all of the secondary connections are correct, that no phases are grounded or crossed.They can also be used to test pad-mount transformers by testing each phase to neutral and each pair of phases for shorts or opens in the windings.The TiLT ii and Quick-Check will not detect a partially shorted transformer coil or an improper transformer ratio. The Quick-Check will not detect a capacitor with a partial short or open with the wrong kvar.The TiLT ii and Quick-Check are intended for quick and simple testing of transformers and capacitors for shorts or opens. The TiLT ii and Quick-Check should be used only on equipment known to be de-energized. The Quick-Check will not leave a significant charge on a capacitor. using the TiLT iior Quick-Check on the secondary sides oftransformers may generate high voltages on the primary sides. stay clear of all primary side connections while testing.SPECIFICATIONSSHORT:≤ 10Ω varies with battery voltage OPEN:≥ 10Ω varies with battery voltage Transformer O.K.:Minimum inductance 800µh Capacitor O.K.:Minimum capacitance 0.5µf Maximum capacitance 300µfDimensions:5.75” x 3.5” x 1.5”(14.60 cm x 8.89 cm x 3.81cm)Test Leads:21” (53.34 cm) retracted,54” (137.16 cm) fully extendedBattery:powered by a 9v alkaline batteryWeight:TiLT ii/Quick-Check 1lb.,1oz. (0.47 kg)TiLT ii/Quick-Check with magnet 1lb., 2 oz. (0.51 kg)Quick-Check patent no. 6130530All sales are subject to the terms and conditions of the Limitation of Warrantyand Liability found at .Users must read and agree to the Limitation terms, as stated, before using the product.HD Electric Company is committed to ongoing review and improvement of its product lines,and thus reserves the right to modify product design and specifications without notice.HD Electric Company products are available through HDE sales representatives worldwide.Printed in U.S.A. © HD Electric Company 2011 • Bulletin No. TILT/QC-100Single push-button operation with clear indications of open circuits, short circuits and confirmation that test results are OK.Quick and simpletesting of transformers and capacitors for shorts or opens.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Robert C.N.Pilawa-Podgurski,David M.Giuliano,David J.Perreault Laboratory for Electromagnetic and Electronic Systems MASSACHUSETTS INSTITUTE OF TECHNOLOGY,CAMBRIDGE,USAEMAIL:pilawa@Abstract—This paper presents a two-stage architecture that combines a large step-down switched-capacitor transformation stage with a high-bandwidth magnetic regulation stage.The proposed design is particularly well-suited for an integrated CMOS process,as it makes use of the available on-die device characteristics.In such a process,the two-stage architecture presented offers high efficiency,high power density,and high-bandwidth regulation.We show that by merging the switched-capacitor stage and the regulation stage in a specific manner,further performance im-provements can be attained.When the fast-switching regulation stage is used to provide soft charging of the switched-capacitor stage,a substantial improvement in performance is possible.An experimental prototype,implemented using discrete components, validates the approach.Index Terms—switched capacitor circuits,two-stage architec-tures,soft charging,dc-dc converters,charge pumps,voltage regulator module.I.I NTRODUCTIONT HE advent of low-voltage digital circuitry has created a need for improved dc-dc converters.Dc-dc converters that can provide a low-voltage output(<2V)regulated at high bandwidth,while drawing energy from a higher(5-12V) input voltage are desirable.In addition,the size,cost,and performance benefits of integration make it advantageous to integrate as much of the dc-dc converter as possible,including control circuits and power switches.Moreover,it would be desirable-if possible-to integrate the power converter or portions thereof with the load electronics.One common approach is the use of a switched-mode power converter(e.g.synchronous buck converter,interleaved synchronous buck,three-level buck,and like designs[1]–[8]).For magnetics-based designs operating at low,narrow-range input voltages,it is possible to achieve extremely high switching frequencies(up to hundreds of MHz[3],[6],[7]), along with correspondingly high control bandwidths and small passive components(e.g.,inductors and capacitors).It also becomes possible to integrate portions of the converter with a microprocessor load in some cases.These opportunities arise from the ability to use fast,low-voltage,process-compatible transistors in the power converter.However,at higherThe authors acknowledge the support of the Interconnect Focus Center, one offive research centers funded under the Focus Center Research Pro-gram,a DARPA and Semiconductor Research Corporation program.D.M.G. acknowledges the support of Draper Laboratory.voltages and wider input voltage ranges,much lower switching frequencies(on the order of a few MHz and below)are the norm,due to the need to use slow extended-voltage transis-tors(on die)or discrete high-voltage This results in much lower control bandwidth,and large,bulky passive components(especially magnetics)which are not suitable for integration or co-packaging with the devices.Another conversion approach that has received attention for low-voltage electronics is the use of switched-capacitor(SC) based dc-dc converters[9]–[15].This family of converters is well-suited for integration and/or co-packaging of passive components with semiconductor devices,because they do not require any magnetic devices(inductors or transformers).A SC circuit consists of a network of switches and capacitors, where the switches are turned on and off periodically to cycle the network through different topological states.Depending on the topology of the network and the number of switches and capacitors,efficient step-up or step-down power conversion can be achieved at different conversion ratios.There are,however,certain limitations of the SC dc-dc converters that have prohibited their widespread use.Chief among these is the relatively poor output voltage regulation in the presence of varying input voltage.The efficiency of SC converters drops quickly as the conversion ratio moves away from the ideal(rational)ratio of a given topology and operating mode.In fact,in many topologies the output voltage can only be regulated for a range of input voltages while maintaining an acceptable conversion efficiency[11], [12],[16].One means to partially address these limitations is to cascade a SC converter having afixed step-down ratio with a low-frequency switching power converter having a wide input voltage range[1]to provide efficient regulation of the output. Other techniques[17],[18]integrate a SC circuit within a buck or boost converter to achieve large conversion ratios.However, the regulation bandwidth of these techniques is still limited by the slow switching of the SC stage.Another approach that has been employed is to use a SC topology that can provide efficient conversion for multiple specific conversion ratios(under different operating modes) and select the operating mode that gives the output voltage that is closest to the desired voltage for any given input voltageMerged Two-Stage Power ConverterArchitecture with Soft Charging Switched-Capacitor Energy Transfer[12].None of these approaches are entirely satisfactory in achieving the desired levels of performance and integration. Section II presents a two-stage architecture that addresses the challenges outlined above.In Section III,a method to further improve efficiency and power density of this archi-tecture is outlined,together with simulated results.Section IV presents experimental results from a prototype using discrete components,Section V concludes the paper.II.T WO-STAGE A RCHITECTUREFig.1shows a block diagram of a two-stage converter that combines a high efficiency switched-capacitor transformation stage with a high-frequency,low-voltage regulation stage.This strategy makes use of on-die device characteristics available in CMOS processes.As examined in the appendix,low-voltage submicron CMOS processes inherently provide far higher achievable switching frequencies than higher-voltage processes.In a given process,one often has access to both slow,moderate-blocking-voltage devices and fast,low-voltage devices.The converter architecture of Fig.1is well-suited to the available devices in such a process:The SC transformation stage can achieve a large voltage step-down,and can be designed for very high power density and efficiency using slow,moderate-voltage devices at relatively low switching frequency.The unregulated voltage,V unreg is low so that the regulating stage can utilize fast,low-voltage devices operating at a high switching frequency to provide high-bandwidth regulation and a small additional voltage step-down.Since the regulation stage operates at a high frequency,the size of its passive components can be made small.By separating the transformation and regulation stage in this manner,the benefits typically associated with SC converters(i.e.high efficiency,high power density)can be preserved,while the main drawback(poor regulation)is done away with by the use of a separate magnetic regulation stage.Furthermore,since the regulation stage only sees a very low voltage,it can operate at a much higher frequency and control bandwidth than a single, conventional switching power converter that needs to provide a large step-down in voltage.It should also be noted that if a switched-capacitor stage capable of multiple conversion ratios(e.g.1:1,2:1,and3:1) is utilized,one can dynamically change the conversion ratio of the transformation stage(e.g.as a function of input voltage). This enables such a system to function over a wide range of input voltages,while preserving a low and relatively narrow voltage range on the regulation stage.III.M ERGED T WO-STAGE C ONVERTER-S OFT C HARGING In addition to the benefits listed above,yet another advan-tage can be realized by a suitable implementation of the two-stage approach.To understand this concept,it is illustrative tofirst consider the fundamental tradeoffs in efficiency,ca-pacitance,and frequency in a conventional switched-capacitor converter.The circuit shown in Fig.2is a simple example which illustrates the loss mechanism for charging of the capacitorsout+-VFig.1.Block diagram illustrating a two-stage converter.The transformation stage can be constructed using slow,high voltage devices and operated at a slow switching frequency,while the regulation stage can be constructed with fast,low-voltage devices and operated at a high switching frequency.V in V C+-(a)Hard charging.V in(b)Soft charging.Fig.2.Capacitor charging in a switched capacitor system.(a)Hard charging in a conventional SC system.(b)Soft charging with energy recovery.in the SC stage.Fig.2(a)shows an example of the resistive charging process of a capacitor C(as in a conventional SC circuit),where the resistor R represents the combined ESR of the capacitor and switch on-state resistance.The capacitor has an initial charge of V C,and the switch is closed at t=0.After t=0+,the difference between voltage V in and the capacitor voltage at each instance in time appears across the parasitic resistor R.If charging is allowed to continue for a sufficient period of time,the voltage across the capacitor will charge up to V in,and the voltage across the resistor will become0V.The voltage across the resistor and the current through it results in a power loss during the charging phase of the capacitor which depends on the capacitance and the net charge on the capacitor. It is this loss which limits the efficiency of an SC converter. It is important to note that thisfixed charge-up loss can-not be reduced by employing switches with lower on-state resistance.A lower parasitic R will only in larger peak currents of shorter duration,but the total power loss in each charge cycle will remain the same.Thus,for a conventional SC circuit,afixed amount of charge-up energy loss proportionalto12C(V2final−V2initial)will result at each switch interval, where V final and V initial correspond to thefinal and initial values of the capacitor voltage.Consequently,conventional SC converters require either large capacitors or high switching frequencies to minimizeΔV=V final−V initial and achieve high efficiency and power levels[10],[19].However,as is shown below,this tight dependence of efficiency on capac-itance and switching frequency in the SC converter can be mitigated through the appropriate merging between the SC (transformation)stage and the regulating stage in our two-stage converter.Fig.2(b)illustrates the proposed method to improve the charge-up efficiency of the SC circuit.In this circuit,an auxiliary converter operating at a much higher switching frequency than the SC stage is used to reduce the energy lossV out+-VFig. 3.Example of the switched-capacitor transformation stage circuit coupled with a fast regulating stage which provides soft charging of the switched-capacitor stage.associated with capacitor charging.The auxiliary converter may be the regulating converter used to supply the output,or it may be a separate converter.The system is designed such that the majority of the difference between the input voltage V in and the capacitor stack voltage V C appears across the input of the auxiliary converter when the capacitor is charging.Instead of being dissipated as heat in the resistor,the energy associated with charging the capacitor stack is delivered to the output of the auxiliary converter.By using an auxiliary converter to absorb the effectiveΔV of the capacitor,the impulse-like charging current spikes typically associated with conventional SC converters is replaced with a smooth and steady charging current.We term this technique soft charging1.Fig.3illustrates how soft charging can be implemented in the two-stage converter.The fast regulating converter(in this case a synchronous buck converter)serves as both the auxiliary converter and the regulating converter stage for the system.It operates at a switching frequency much higher than that of the switched capacitor stage.As the capacitor C small serves only as afilter and bypass for the fast regulating converter,its numerical value can be much smaller than the capacitors C1 and C2of the SC stage.When the SC stage is configured for charging of C1and C2 (switches S closed),the difference between V in and the sum of the voltages across capacitors C1and C2appears across the input terminal of the fast regulating converter.C1and C2thus charge with low loss(soft charging),and at a rate determined by the powerdrawn from the regulating converter to control the system output.Likewise,when the SC stage is configured for discharging C1and C2in parallel(switches P closed),the discharge is at a rate based on the power needed to regulate the output.In operating the system,the SC stage can be controlled to provide a specified maximum voltage V X at the input of the regulating converter.Fig.4illustrates a control strategy utilizing this technique,where two separate reference voltages are used to ensure that the input voltage of the auxiliary converter does not exceed V X,max.The reference voltages can be expressed in terms of V X,max and V IN:1Likewise,we will use the term hard charging to denote a SC converter operating in a conventionalmanner.t VVVFig.4.Example of control strategy based on maximum input voltage of regulating converter.+-V X Fig.5.Schematic diagram of simulation setup.V ref1=V IN−2V X,max(1)V ref2=V IN−V X,max2(2) In this example,the switches S of Fig.3are on(series charging of the capacitors)until V X falls below V ref1.At this time,switches S turn off,and switches P turn on(parallel discharging of capacitors),until V X falls below V ref2,at which time the cycle repeats.A.Simulated Switched-Capacitor ResultsTo investigate the promise of the soft charging strategy,a 2W,3-to-1switched-capacitor stage was simulated in SPICE, using device characteristics from a90nm CMOS process and discrete capacitors.In the analysis presented here,only the performance of the switched-capacitor stage is considered. Fig.5shows a schematic diagram of the simulated circuit, which consists of a a3-to-1stepdown SC stage with a resistive load.The input voltage is 5.5V,R load=1.68Ω,and the switching frequency is1MHz.In a full two-stage converter, a regulating converter(switching at a frequency much higher than1MHz)would replace the load resistor.For hard charging operation,capacitors C1−C3are all10μF,while for soft charging operation C1and C2are1.5μF each,and C3is0.01μF.Table I presents one metric of the im-provement offered by the merged two-stage converter.Listed is the required capacitance for a98%efficient transformation stage,for both a conventional(hard charging)SC converter and one implementing the soft charging technique.For theTABLE IC APACITANCE REQUIREMENTS FOR TWO-STAGE CONVERTERConverter Hard Charging Soft Charging Total Capacitance30μF3μF(10%) Total Capacitor V olume 3.072mm30.5mm3(16%)Total Capacitor Area 3.84mm21mm2(26%)Discrete Capacitor Sizes3x06032x0402Fig.6.Simulated current waveforms(I M1of Fig.5)for the SC converter stage,illustrating reduced peak currents(and,correspondingly,reduced loss) for the soft charging case.same efficiency,the soft charging implementation enables a10x reduction in required capacitance compared to hard charging transformation stage.If total capacitance is instead kept constant in the comparison,overall efficiency gains can be realized using the soft charging technique.The soft charging characteristics of the merged two-stage converter is best illustrated by the waveform of the switch current.In a conventional SC converter,this current will have a large,exponentially decaying peak on top of a steady-state charging current.This peak corresponds to capacitor charging loss,which can be a substantial part of the overall converter loss.Fig.6shows the switch current(I M1of Fig.5)for a conventional SC converter,and that for a converter utilizing the soft charging techniques.As is evident from thefigure,the soft charging technique enables a drastic reduction in peak and rms switch current and the associated loss.The output voltage of the SC stage(V X of Fig.5)is shown in Fig.7. The substantially larger voltage ripple associated with the soft charging technique is evident from the two waveforms.This would be undesirable in a SC converter operating as a single stage(whose output voltage is the system output voltage), but in the merged two-stage topology this voltage merely corresponds to an input voltage to the regulating converter that changes slowly(compared to the switching frequency of the regulating converter).The regulating stage is designed to provide a steady output voltage despite a time-varying input voltage such as that shown in Fig.7.IV.E XPERIMENTAL R ESULTSA.Discrete Prototype ImplementationIn order to verify the validity of the two-stage strategy,an experimental prototype was designed.It should be noted that while the ultimate target platform of the proposed converter is a low-voltage integrated process,this initial prototype isFig.7.Simulated output voltage waveforms(V X of Fig.5)for the SC converter stage,illustrating increased voltage ripple for the soft charging case.Switched Capacitor StageC1C2Regulation (Buck) StageFig.8.Photograph of experimental prototype with switched-capacitor stage and regulation stage outlined.U.S.quarter shown for scale.not implemented in such a process,and thus does not achieve the design scaling and power density that is expected to be possible.The purpose of this discrete prototype is purely to validate the concept and provide design insights for future designs based on integrated processes.Fig.8shows a photograph of the prototype converter,which consists of a3-to-1switched-capacitor stage coupled with a commercial synchronous buck converter(LTC3418).The SC stage is controlled in the manner described in Fig.4using a microcontroller(ATtiny24)with a built-in comparator to sense the different thresholds,and to provide the logic signals for the gate drive chips.These components are placed on the backside of the board(not shown).A schematic drawing of the converter is shown in Fig.9,and component values are listed in Table II.The relatively large values of C IN and C OUT are used to ensure steady input and output voltages for more precise efficiency measurements.Resistors R1-R4 are used to set the reference voltages V ref1and V ref2(Fig.4) which determine the discharge level of the capacitors.Thefloating high-side gate drive chips are powered from the energy stored on the capacitors C1and C2,while the low-side gate drive chips and the microcontroller are powered from a separate,low-voltage supply.In addition to implementing the control strategy,the microcontroller initiates the startup sequence,which coordinates the turn-on of the SC switches to provide power to the gate drive chips,and to ensure thatL Fig.9.Schematic of experimental prototype.The microcontroller samples the output voltage through the voltage dividers,and alternates the SC stagebetween parallel and series configuration.TABLE IIC OMPONENT V ALUES FOR P ROTOTYPE C ONVERTERComponent ValueC IN5x22μF1x2200μFM1-M7Si7236DPC110μFC210μFC3hard charging10μFsoft charging1μFC SMALL4x0.1μFL BUCK 1.5μHC OUT1x100μF1x2200μFR1&R247kΩR3&R40-50kΩGate Drive(high side)LTC4440-5Gate Drive(M2&M6)LM5111the output voltage of this stage(V X)stays below its allowed maximum value.The synchronous buck converter,LTC3418 from Linear Technology,is set to operate at a switching frequency of1MHz,and an output voltage of2V.B.Hard and Soft Charging ComparisonTo evaluate the merits of soft charging operation in the merged two-stage converter architecture,we compare it to traditional hard charging operation.By placing capacitor C3in the circuit of Fig.9that is the same size as C1and C2(10μF), the SC stage implements regular hard charging operation. For soft charging operation,C3instead consists of a small capacitor(1μF)tofilter the1MHz input current ripple of the LTC3418.Fig.10shows the measured input and output voltage of the buck converter(corresponding to V X in Fig.3),for V IN=12V, V OUT=2V,and I OUT=0.4A for soft and hard charging operation.The switching of the SC stage can be clearly seen in the V X waveform,with alternating series charging and parallel discharging of the capacitors.Since the switching frequency of the buck converter is much higher(1MHz) thanthe frequency of the SC stage(∼20kHz for this load), V OUT can be well regulated with small ripple despite the(a)Soft Charging.(b)Hard Charging.Fig.10.Measured input and output voltage of the buck converter in the experimental prototype for soft and hard charging implementation.large ripple seen at V X,as illustrated by the V out waveforms.Fig.10also illustrates the larger ripple of V X for soft charging compared to hard charging,which is consistent with our earlierdiscussion.Note that in the case presented in Fig.10,C1 and C2have the same values for both soft and hard charging operation,and the frequencies of the two modes of operationare made to be approximately equal.In contrast,the simulated waveforms shown in Fig.7shows the case where C1and C2are drastically smaller in the soft charging case while overall efficiency is the parameter that is kept constant for the two modes of operation.Consequently,the voltage rippleis significantly larger for soft charging compared to hard charging in Fig.7.In addition to decreased capacitance requirement and re-duced current spikes,efficiency improvement is a key benefit of soft charging operation.To estimate the efficiency gains realized by soft charging operation in the discrete implemen-tation presented here,a comparison to hard charging operation was made over a wide load range.It is important to note that the objective of the discrete prototype presented here is not to obtain the highest efficiency achievable,but rather to investigate the feasibility of the soft charging architecture for cases where total capacitance is limited.Thus,absolute measures of efficiency is not the metric with which to evaluate(a)Measured Overall Converter Efficiency.(b)Estimated SC Efficiency.Fig.11.Efficiency measurements for discrete prototype converter for soft and hard charging operation.the proposed converter,but rather the relative improvements offered by soft charging.2The resulting efficiency measurements shown in Fig.11 illustrate the efficiency improvements offered by the soft charging implementation.The efficiency of the SC stage alone is estimated by measuring the efficiency of the buck converter across the load range,and subtracting its loss from the overall converter loss.The resulting estimated SC stage efficiency is shown in Fig.11(b).It is clear from this plot that soft charging offers a noticeable improvement in efficiency.At1W load, the estimated power loss in the SC stage is25%higher for hard charging than for soft charging.V.C ONCLUSIONWe have presented a two-stage dc-dc converter architecture in which a switched-capacitor transformation stage and a fast, magnetic regulation stage are utilized to achieve both large voltage step-down and high-bandwidth regulation.The trans-formation stage provides a significant voltage step-down,while the regulation stage provides high-bandwidth control.This architecture is particularly suitable for an integrated design where one has access to both slow devices that can block large voltages,and fast,low-voltage devices.The dramatic increase in achievable switching frequncy at reduced CMOS device voltages(as examined in the appendix)makes this approach advantageous.2Absolute efficiency can,in this case,be improved by utilizing larger energy transfer capacitors(C1−C3).We also show that through the proper merging of the twostages,soft charging of the switched-capacitor stage can be achieved.Soft charging enables more efficient operation of the SC stage and/or a drastic reduction in the required capacitiveenergy storage compared to a conventional,hard charged converter.We have validated this approach with experimentalmeasurements of a merged two-stage,soft-charging converter prototype.A PPENDIXCMOS S CALING FOR P OWER C ONVERSIONIn this appendix we explore how the achievable switchingfrequency of dc-dc converters in deep sub-micron CMOS processes scale with process voltage.For simplicity,we focus on CMOS synchronous buck converters.First,consider howthe required device length(L),oxide thickness(t OX),channel resistivity(ρCH),and channel depth(t CH)vary with device blocking voltage(V SW).If one assumes constant electricfieldscaling,then L∝V SW,ρCH∝1,t OX∝V SW,t CH∝1and wefind the followingC g=εOXt OXA g=εOXt OXLW⇒C g∝W,(3) R on=ρCH LA g=ρCHt CHLW⇒R on∝V SWW,(4)R on C g∝V SW.(5) Where R on is the device on-resistance,C g is the gate capacitance,and W is the device width.The R on C g produce is ideally proportional to blocking voltage under this model.The R on C g,eff product is shown vs supply voltage in Fig.12and Fig.13for NMOS and PMOS devices in various processes. In these plots,the effective capacitance(C g,eff)is the combi-nation of the gate capacitance(C g),fringing capacitance,and Miller capacitance.Typically,the gate capacitance is dominant contributor to dynamic loss in low-voltage CMOS processes. All of these devices are minimum feature size and available in commercial foundries.It can be seen that in fact the R on C g,eff product is proportional to supply voltage as eqn.(5)predicts. There is some deviation from the linearfit and this may be due to the fact that the devices are not scaled with a constant electricfield,and in some cases may also be derated due to hot carrier effects.Now consider how this device scaling characteristic influ-ences converter performance.As shown in[20]the MOSFET losses in a synchronous buck converter can be modeled using an effective bridge capacitance(C b)and an effective bridge resistance(R b),as illustrated in Fig.14.The converter is composed of a low-side switch(S L)and a high-side switch (S H)where W L,W H,C L0,C H0,R L0,R H0are the widths, effective capacitances and on-resistances of the MOSFETs. Defining:D=V OUTV IN,(6)0.00000.00050.00100.00150.00200.00250.00300.01.02.03.04.05.06.0V DD (V)R o n C g ,e f f (ȍ*n F )Fig.12.R on C g,ef f vs.Supply V oltage (V DD )forNMOS0.00000.00200.00400.00600.00800.01000.01200.01.02.03.04.05.06.0V DD (V)R o n C g ,e f f (ȍ*n F )Fig.13.R on C g,ef f vs.Supply V oltage V DD for PMOSC b =W L C L 0+W H C H 0,(7)R b =R L 0W L (1−D )+R H 0W HD .(8)The optimal width ratio of the high-side device width to thelow-side device width (α)[20]can be found by a constrained minimization of C b at a constant R b ,yieldingα=W HW L =DR H 0C L 0(1−D )R L 0C H 0.(9)+V OUT_S HR bI OUTFig.14.Buck Converter ModelThe total power loss is a combination of the static loss (P res )and switching loss (P cap );P loss =P cap +P res =W b C 0V 2INf S +R 0W b I 2OUT(10)whereC 0=C b W b =C L 0+C H 0α1+α(11)andR 0=R b W b =(1+α)(1−D )R R 0+DR H 0α.(12)assuming that the power loss is only in the MOSFETs.The optimal bridge width (W opt )can be found by minimizing P loss (eqn.10)and isW opt =I OUTV INR 0C 0f S (13)while the minimum power loss isP min =2W opt C 0V 2IN f S =2I OUT V INR 0C 0f S .(14)An optimal switching frequency (f opt )can be chosen given a desired power loss (P min )or equivalently,a desired effi-ciency.This optimum isf opt =P 2loss (min )4I 2OUT V 2IN R 0C 0.(15)Additionally,by combining eqn.(6),(9),(11),(12),(15),hold-ing I OUT and P min constant,and assuming R H 0C H 0∝V INand R L 0C L 0∝V IN (in line with eqn.5),it can be shown that the optimal switching frequency isf opt ∝ΓV 2IN (V IN Γ−V OUT Γ+V OUT b )(1+Γ)(16)whereb =R H 0C H 0R L 0C L 0,(17)Γ=V OUT bV IN −V OUT.(18)In eqn.17,b represents a relative performance factor for high-side and low-side devices.If both high-side and low-side devices exhibit the same RC product (e.g.are both NMOS)then b =1.If,more typically,the high-side device is a PMOS and the low-side device is a NMOS,a b value closer to 3might be found for a given process.Furthermore,it can be shown empirically that if βand αare both functions of b and V OUT given V IN >2V OUT then the optimal switching frequency (f opt )fits a power lawf opt =αV βIN .(19)。