大体积混凝土温度裂缝的产生及预防措施

合集下载

大体积混凝土施工中的裂缝防治范文(2篇)

大体积混凝土施工中的裂缝防治范文(2篇)

大体积混凝土施工中的裂缝防治范文裂缝是大体积混凝土施工中常见的问题之一,严重影响结构的安全性和使用寿命。

为了有效防治裂缝,在施工过程中需要采取一系列的措施。

本文将分析裂缝的产生原因,介绍常见的裂缝防治措施,并提出一些改进方法,以期有效解决大体积混凝土施工中的裂缝问题。

一、裂缝产生原因1. 温度变化:混凝土的体积变化系数较大,在温度变化大的情况下会产生温度裂缝。

2. 干缩:混凝土养护期间由于水分的蒸发和收缩而引起干缩裂缝。

3. 内应力:混凝土内部的应力不均匀,会产生内应力裂缝。

4. 设计和施工缺陷:结构设计和施工质量不合格也会导致裂缝的产生。

二、常见的裂缝防治措施1. 控制温度变化:在混凝土施工过程中,应尽量控制温度变化,避免快速升温或降温。

可以采取覆盖物体、喷水等措施来控制混凝土温度。

2. 加强养护:混凝土在初凝期和养护期需要进行充分的湿养护,以减少干缩引起的裂缝。

可以采用覆盖保温、喷水养护等方法。

3. 合理设计:在结构设计中,应考虑混凝土的体积变化和应力分布,避免产生过大的内应力。

合理控制浇筑量、浇筑层次和结构形式等因素。

4. 施工质量控制:加强施工质量控制,确保混凝土的配合比、浇筑工艺、养护等符合标准要求。

同时,应定期检查施工过程中的缺陷,及时进行整改。

三、改进方法1. 使用控制裂缝剂:控制裂缝剂是一种特殊的添加剂,可以有效抑制混凝土裂缝的产生。

它可以减少混凝土的收缩率,提高其抗裂性能。

2. 采用预应力技术:预应力技术可以通过施加预应力,使混凝土内部产生压应力,从而有效减少裂缝的发生。

同时,预应力技术还可以提高结构的承载能力和抗震性能。

3. 使用高性能混凝土:高性能混凝土具有较低的收缩率和较高的抗裂性能,可以有效减少裂缝的产生。

其强度和耐久性也更高,能够提高结构的使用寿命。

4. 引入复合材料:在混凝土中添加适量的纤维材料,如玻璃纤维、碳纤维等,可以有效增加混凝土的韧性和抗裂性能,减少裂缝的产生。

大体积混凝土温度裂缝的产生原因及控制措施

大体积混凝土温度裂缝的产生原因及控制措施

大体积混凝土温度裂缝的产生原因及控制措施大体积混凝土温度裂缝是在混凝土硬化过程中由于温度变化引起的裂缝。

当混凝土内部受到温度变化的影响,产生热应力时,会造成混凝土的体积变化,如果超过混凝土的变形能力,则会引起温度裂缝的产生。

以下是温度裂缝产生原因及控制措施的详细说明。

产生原因:1.混凝土自结热:在混凝土浆体凝固过程中,水泥水化产生的热量会导致温度升高,进而引起混凝土的收缩和体积变化。

2.外部环境温度变化:混凝土在施工过程中,由于季节或气候变化,外部环境温度的变化会导致混凝土的温度变化,进而引起温度裂缝的产生。

3.混凝土内部温度梯度:混凝土硬化过程中,由于外部冷却或者内部热源的影响,导致混凝土内部产生温度梯度,温度差异引起内部应力分布不均匀,从而引起温度裂缝的产生。

4.限制条件不足:在混凝土施工过程中,如果对混凝土收缩进行限制的条件不足,比如限制混凝土收缩的钢筋数量和间距不足,就会导致混凝土产生温度裂缝。

控制措施:1.充分湿养:在混凝土施工后应及时进行湿养,通过充分的湿养可以使混凝土逐渐保持高湿度,减小混凝土由于温度变化产生的收缩和体积变化,从而降低温度裂缝的产生风险。

2.控制混凝土温度差:在混凝土浇筑过程中,可以通过调整混凝土的配合比,选择低温水泥、修改矿物掺合料的类型和用量等方式,来减少混凝土的内部温度差异,降低混凝土的温度应力,从而控制温度裂缝的产生。

3.使用支撑结构:在混凝土施工中,可以通过使用支撑结构来限制混凝土的变形,减小混凝土的应力集中,从而控制温度裂缝的产生。

4.控制输送温度:在混凝土输送过程中,可以通过使用增温(或降温)设备来控制混凝土的输送温度,在保持混凝土温度适宜的情况下,减少混凝土的温度变化,从而降低温度裂缝的风险。

5.提前浇水降温:在混凝土施工过程中,如果环境温度较高,可以在浇筑后及时进行浇水降温,通过增加混凝土的湿度和降低温度,减小混凝土的热应力,从而降低温度裂缝的产生风险。

大体积混凝土裂缝产生原因及控制措施

大体积混凝土裂缝产生原因及控制措施

大体积混凝土裂缝产生原因及控制措施大体积混凝土造粒的裂缝是指混凝土某一部分中的裂缝,该部分的尺寸比一般的钢筋混凝土结构大得多。

这样的混凝土结构由于自重和重载等的压力,受到了较大的拉应力,容易产生裂纹,影响其使用寿命和结构性能。

本文将探讨大体积混凝土裂缝的产生原因及控制措施。

一、产生原因:1. 温度变化:混凝土构造物受季节变化和日夜变化的影响,会发生温度变化。

由于温度的变化会导致混凝土膨胀和收缩,因此在膨胀和收缩的过程中,如果其能力和约束力不匹配,就会产生应力,从而产生裂缝。

2. 湿度变化:混凝土中水的变化也是裂缝的一个重要原因。

如果混凝土湿度变化过大,会导致水的蒸发和吸收。

水分的吸收会造成混凝土的膨胀,而水的蒸发会使混凝土干缩。

如果混凝土不能够吸收或释放水分,就容易产生裂缝。

3. 材料的反应:如果混凝土中的一些化学受潮或自发燃烧,会在混凝土中产生碱性物质的反应,从而导致混凝土的膨胀和收缩,产生裂缝。

4. 应力集中:混凝土制造和施工过程中涉及到的应力分布是不均匀的,某些区域容易出现应力集中。

应力集中区域因受到超负荷应力而破裂成裂缝。

5. 其他原因:混凝土中存在的空气孔隙,坍落度不合适,水灰比偏高或者混凝土受到的外力等都可能导致裂缝的产生。

二、控制措施:1. 选用合适的混凝土比例和材料:首先,为了避免混凝土的裂缝,应该选择合适的混凝土比例和材料,确保混凝土的坍落度、水灰比和密实度达到最佳水平。

2. 加强混凝土的质量控制:加强混凝土的质量控制,确保混凝土的制作和浇筑过程中不出现任何失误。

结实,未受到外力损害的混凝土在日常使用中容易受到外力的损害而破裂。

3. 选择正确的施工方法:为了避免因施工不当而造成混凝土裂缝,应该根据所建造的混凝土结构采用合适的施工方法,在施工过程中控制混凝土软化或者干缩时间,以确保结构体的完整性。

4. 控制场地温度和湿度:为了控制混凝土结构中水分和温度的变化,在施工过程中需要控制场地的温度和湿度。

大体积混凝土温度裂缝产生机理和控制措施

大体积混凝土温度裂缝产生机理和控制措施

大体积混凝土温度裂缝产生机理和控制措施
大体积混凝土是一种基础建设和工程施工中常用的材料,但在制
作和使用过程中,容易出现温度裂缝现象。

温度裂缝的产生机理主要
是由于混凝土在固结过程中,受到内外部环境因素的影响而发生热胀
冷缩。

随着外界环境温度的变化,混凝土会发生体积变化,导致混凝
土内部产生应力,从而引起玻璃化面内的裂缝。

对于大体积混凝土,为了控制温度裂缝的产生,可以采取以下措施:
1.减缓混凝土固结速度
由于高温促进水泥水化反应,导致混凝土固结速度加快,从而产
生热胀冷缩及温度裂缝等问题。

因此,可以适当减缓混凝土固结速度,延长混凝土内部的温度改变的时间。

2. 控制混凝土内部温度
在混凝土固结的过程中,由于水泥水化反应放热,会导致混凝土
内部的温度升高,进而引起热胀冷缩。

因此,在混凝土固结时,应加
强对混凝土内部温度的监测和控制。

3. 使用防渗剂
在混凝土的制作过程中,添加适量的防渗剂,可以降低混凝土的
水泥含量,从而减缓水泥水化反应放热的速度,减轻热胀冷缩的程度。

4. 合理布置钢筋和预应力筋
通过合理布置钢筋和预应力筋,可以在混凝土受到应力时进行补偿。

有效地阻止混凝土的温度变化对混凝土产生的影响,从而减少了
温度裂缝的风险。

综上所述,大体积混凝土温度裂缝产生的机理主要是由于混凝土
在固结过程中发生的热胀冷缩,因此在混凝土制作和使用中,应采取
一定的控制措施。

适当减缓混凝土固结速度、控制混凝土内部温度、
使用防渗剂,以及合理布置钢筋和预应力筋,可以有效预防和控制温
度裂缝的产生。

大体积混凝土温度裂缝防治措施

大体积混凝土温度裂缝防治措施

大体积混凝土温度裂缝防治措施一、背景介绍在混凝土的浇筑过程中,由于温度的变化,往往会出现温度裂缝。

对于大体积混凝土结构来说,这种情况更加常见。

温度裂缝不仅影响美观,还会降低混凝土的强度和耐久性。

因此,在大体积混凝土结构中,必须采取有效的措施来防止温度裂缝的发生。

二、原因分析1. 混凝土浇筑时内部水分蒸发导致收缩;2. 大体积混凝土结构自身重量压力;3. 气温变化引起的热胀冷缩。

三、预防措施1. 控制水分含量:在混凝土浇筑前应进行充分的调配和搅拌,确保混合物均匀。

同时,应控制好水灰比和砂率等参数,以避免过多的水分蒸发导致收缩。

2. 合理设置伸缩缝:在大体积混凝土结构中设置伸缩缝是必要的措施之一。

通过设置伸缩缝,可以使混凝土结构在温度变化时有一定的伸缩空间,从而避免温度裂缝的发生。

3. 控制浇筑温度:在大体积混凝土结构的浇筑过程中,应控制好混凝土的温度。

一般来说,混凝土的浇筑温度应控制在20℃~30℃之间。

如果温度过高,则会导致混凝土内部产生较大的热胀冷缩变形,从而引起温度裂缝。

4. 采用降温剂:在大体积混凝土结构中,可以采用降温剂来控制混凝土的温度。

降温剂可以有效地降低混凝土内部的温度,从而避免因热胀冷缩引起的裂缝。

5. 加强养护:在大体积混凝土结构浇筑完成后,必须进行充分的养护。

养护时间应不少于28天,并且要保持适宜的湿润环境,以确保混凝土内部完全干燥和固化。

四、治理措施1. 填补温度裂缝:如果出现了温度裂缝,必须及时进行治理。

一般来说,可以采用填补的方式来修复温度裂缝。

填补材料应选择与原混凝土相同的材料,并且要充分保证填补材料与原混凝土的粘结性。

2. 加固结构:在大体积混凝土结构中,如果出现了较大的温度裂缝,可能会影响结构的安全性。

这时,可以采用加固措施来增强结构的承载能力。

加固方法可以根据具体情况选择,比如设置加筋板、加固梁柱等。

五、总结针对大体积混凝土结构中出现的温度裂缝问题,必须从预防和治理两个方面来进行措施。

大体积混凝土防止开裂的措施

大体积混凝土防止开裂的措施

大体积混凝土防止开裂的措施一、引言混凝土是一种常用的建筑材料,具有强度高、耐久性强等优点。

然而,在施工过程中,由于各种因素的影响,混凝土往往容易出现开裂问题。

本文将介绍一些针对大体积混凝土防止开裂的措施。

二、合理控制水灰比水灰比是影响混凝土开裂的重要因素之一。

水灰比过高会导致混凝土内部含水量过大,干燥收缩过程中会产生较大的内应力,从而引起开裂。

因此,在设计混凝土配合比时,应合理控制水灰比,避免过高水灰比对混凝土强度和收缩性能产生不利影响。

三、添加合适的掺合料掺合料的添加可以改善混凝土的性能,减少开裂的风险。

常用的掺合料有矿渣粉、粉煤灰等。

这些掺合料可以填充混凝土内部的空隙,增加混凝土的紧密性和强度,降低干燥收缩。

因此,在混凝土配合比中添加适量的掺合料是防止开裂的有效措施之一。

四、增加混凝土的骨料粒径骨料粒径的选择也会对混凝土的开裂性能产生影响。

较大的骨料粒径可以降低混凝土的干燥收缩性,减少开裂的风险。

因此,在混凝土配合比中适当增加骨料粒径,可以有效防止混凝土的开裂。

五、控制施工温度和湿度混凝土在施工过程中,会受到环境温度和湿度的影响。

高温和低湿度条件下,混凝土内部的水分挥发速度加快,容易引起干燥收缩和开裂。

因此,在施工过程中,应控制好施工环境的温度和湿度,避免极端条件下对混凝土的不利影响。

六、合理的养护措施混凝土在初凝和硬化过程中需要进行适当的养护,以保证混凝土的强度和耐久性。

养护过程中,应注意控制水分蒸发,避免快速干燥引起的收缩和开裂。

同时,可以采用喷水养护、覆盖湿布等方式,保持混凝土内部的水分充足,有助于减少开裂的发生。

七、采用预应力技术在大体积混凝土结构中,为了进一步增加混凝土的抗裂能力,可以采用预应力技术。

预应力技术通过施加预先施加的压力,使混凝土在受力过程中产生的应力达到一定程度,从而抵抗外部加载引起的开裂。

这种技术可以有效提高大体积混凝土结构的抗裂能力。

八、控制施工过程中的温度变化大体积混凝土结构在施工过程中,由于混凝土内部体积较大,温度变化会引起混凝土内部产生较大的热应力,从而导致开裂。

大体积混凝土裂缝产生原因及控制措施

大体积混凝土裂缝产生原因及控制措施

大体积混凝土裂缝产生原因及控制措施大体积混凝土结构在使用过程中,常常出现裂缝现象,这不仅影响了建筑物的外观,更重要的是可能影响结构的安全性和耐久性。

了解大体积混凝土裂缝产生的原因,并采取相应的控制措施显得尤为重要。

1. 原材料问题混凝土质量的差异可能导致混凝土中存在空鼓等问题,这会在使用过程中引发裂缝。

材料中含有过多的气孔和流动性差也会增加混凝土的收缩性,从而加剧了混凝土裂缝的产生。

2. 温度变化混凝土在硬化过程中会发生收缩,而环境温度的变化也会对混凝土产生影响。

当混凝土中的收缩和环境温度的变化不匹配时,就会导致混凝土内部的应力过大,从而引发裂缝。

3. 设计缺陷如果在混凝土结构的设计和施工中,存在设计缺陷或者施工质量不合格的情况,也有可能导致混凝土结构内部出现裂缝。

4. 荷载变化混凝土结构在使用过程中,受到荷载的作用,比如温度荷载、湿度荷载、机械荷载等,这些荷载的变化都有可能引发混凝土结构内部的应力变化,从而导致裂缝的产生。

5. 施工工艺混凝土结构的施工工艺不当也是混凝土裂缝产生的一个重要原因。

比如浇筑过程中的振捣不足、养护不到位等都可能导致混凝土结构内部的空鼓和裂缝。

以上就是大体积混凝土裂缝产生的一些主要原因,深入了解这些原因,才能更好地采取相应的控制措施。

1. 选材在混凝土的选材过程中,应该选择质量好、掺合比适宜的原材料。

并且要求混凝土的含水量和流动性要符合设计要求,这样有利于减少混凝土中的空鼓和气孔,从而减少裂缝的产生。

2. 设计优化在混凝土结构的设计阶段,应该充分考虑混凝土的收缩性和环境温度变化对混凝土结构的影响,从而在设计阶段就采取相应的措施来减少混凝土结构内部的应力集中,减少裂缝的产生。

4. 预留伸缩缝在混凝土结构设计中,应该根据结构的实际情况,合理设置伸缩缝。

伸缩缝的设置可以有效地减少混凝土结构内部因为温度变化和应力变化而引发的裂缝。

5. 养护混凝土在硬化过程中,需要进行适当的养护。

大体积混凝土裂缝

大体积混凝土裂缝

03
大体积混凝土裂缝预防措 施
材料选择与优化
01
02
03
选用低水化热水泥
使用水化热较低的水泥, 如矿渣水泥、粉煤灰水泥 等,以降低混凝土内部温 升。
控制骨料级配
优化骨料的级配设计,减 少空隙率,提高混凝土的 密实度。
掺加外加剂
适量掺加缓凝剂、减水剂 等外加剂,改善混凝土的 和易性,降低水灰比,减 少收缩。
压力注浆
对于宽度在0.2mm至3mm之间的裂缝,采用压力注浆技术进行修 补,注浆材料可选用水泥浆或化学浆液。
结构加固
对于严重影响结构安全的裂缝,需进行结构加固处理,如粘贴钢板、 碳纤维加固等。
治理效果评价
裂缝处理效果
经过治理后,裂缝得到了有效封闭和修补,不再 对结构安全和使用功能产生影响。
结构安全性评估
05
工程实例分析
工程概况及裂缝情况介绍
工程背景
某大型商业综合体,地下2层,地上4 层,总建筑面积约10万平方米。
裂缝情况
在地下室底板、顶板及部分外墙出现 大量裂缝,宽度从0.1mm到3mm不 等,长度从几十厘米到数米不等。
裂缝成因分析
温度应力
大体积混凝土在浇筑后,由于水 泥水化热作用,内部温度急剧上 升,而表面散热较快,形成内外 温差,导致温度应力产生,进而
裂缝的存在会破坏混凝土结构的整体性, 使得原本连续、均匀的受力状态变得复杂 ,可能导致应力集中和局部破坏。
裂缝为水分、氧气和其他有害物质提供了 侵入混凝土内部的通道,加速了钢筋锈蚀 和混凝土碳化等耐久性问题的发生。
降低结构承载能力
影响结构使用功能
裂缝的发展可能导致混凝土结构承载能力 的降低,尤其是在受拉区和剪切区,裂缝 的存在会显著降低结构的刚度和强度。

大体积混凝土温度裂缝的产生原因及控制措施

大体积混凝土温度裂缝的产生原因及控制措施

大体积混凝土温度裂缝的产生原因及控制措施一、原因分析1.温度梯度差异:混凝土内部在硬化过程中由于外部与内部温度差异较大,会导致混凝土产生温度梯度,从而引起温度裂缝的产生。

2.外部温度变化:外部环境的温度变化会对混凝土的温度产生影响,特别是大范围的温度变化,会加剧混凝土的收缩和膨胀,从而导致温度裂缝的产生。

3.混凝土内部收缩:混凝土在硬化过程中,会因为水分蒸发、水化反应等原因而产生收缩,从而引起温度裂缝的产生。

4.冷凝水的影响:在高温高湿环境中,混凝土表面易出现冷凝水,冷凝水在与混凝土接触后会快速蒸发,产生蒸发冷却效应,从而导致混凝土产生温度梯度而引发温度裂缝。

二、控制措施1.控制浇筑温度:合理控制混凝土的浇筑温度,一般建议控制在20℃~35℃范围内,避免过高或过低的浇筑温度。

2.采取保温措施:在混凝土浇筑后,可以采取保温措施,如铺设保温材料、喷水保湿等,以减缓混凝土的温度变化速率,避免温度裂缝的产生。

3.合理控制混凝土收缩:通过控制混凝土中的水灰比、选择适当的外加剂等措施,可以减小混凝土的收缩性质,从而降低温度裂缝的产生。

4.控制施工方法:在施工过程中,应严格控制施工方法,防止混凝土在浇筑、振捣和固化过程中产生温度裂缝。

如避免大范围连续浇筑、控制振捣时间和强度等。

5.增加凝结热的散发:可以在混凝土中加入适量的骨料,增加混凝土的导热性,加快凝结热的散发,从而减小温度梯度差异,减少温度裂缝的产生。

总结起来,控制大体积混凝土温度裂缝的产生,需要从浇筑温度、保温措施、混凝土收缩控制、施工方法和增加凝结热散发等方面综合考虑,采取合理的控制措施,在施工过程中注意监测和调整,以确保混凝土的质量和安全。

分析大体积混凝土裂缝原因及温控措施

分析大体积混凝土裂缝原因及温控措施

分析大体积混凝土裂缝原因及温控措施1 沉缩裂缝混凝土沉缩裂缝在体积混凝土施工中也是非常多的。

主要原因是振捣不密实, 沉实不足, 或者骨料下沉, 表层浮浆过多, 且表面覆盖不及时, 受风吹日晒, 表面水份散失快, 产生干缩, 混凝土早期强度又低, 不能抵抗这种变形而导致开裂。

在施工中采用缓凝型泵送剂, 延缓混凝土的凝结硬化速度, 充分利用外加剂( 特别是缓凝剂) 的特性, 适时增加抹加次数, 消除表面裂缝( 特别是沉缩裂缝和初期温度裂缝) , 特别是初凝前的抹压。

2 温度裂缝(1) 原因: 一是由于温差较引起的, 混凝土结构在硬化期间水泥放出量水化热, 内部温度不断上升, 使混凝土表面和内部温差较, 混凝土内部膨胀高于外部, 此时混凝土表面将受到很的拉应力, 而混凝土的早期抗拉强度很低, 因而出现裂缝。

这种温差一般仅在表面处较, 离开表面就很快减弱, 因此裂缝只在接近表面的范围内发生, 表面层以下结构仍保持完整。

二是由结构温差较, 受到外界的约束引起的, 当体积混凝土浇筑在约束地基上时, 又没有采取特殊措施降低, 放松或取消约束, 或根本无法消除约束, 易发生深进, 直至贯穿的温度裂缝。

(2) 过程: 一般( 人为) 分为三个时期: 一是初期裂缝———就是在混凝土浇筑的升温期, 由于水化热使混凝土浇筑后2- 3 天温度急剧上升, 内热外冷引起“ 约束力”, 超过混凝土抗拉强度引起裂缝。

二是中期裂缝———就是水化热降温期, 当水化热温升到达峰值后逐渐下降, 水化热散尽时结构物的温度接近环境温度, 此间结构物温度引起“ 外约束力”, 超过混凝土抗拉强度引起裂缝。

三是后期裂缝, 当混凝土接近周围环境条件之后保持相对稳定, 而当环境条件下剧变时, 由于混凝土为不良导体,形成温度梯度, 当温度梯度较时, 混凝土产生裂缝。

3 控温措施和改善约束3.1 温控措施(1) 降低混凝土内部的水化热, 采用中低热的矿渣水泥, 控制水泥的使用温度, 添加一定量的优质粉煤灰, 以降低混凝土的水化热, 同时选用高效外加剂。

大体积混凝土裂缝防治措施

大体积混凝土裂缝防治措施

大体积混凝土裂缝防治措施1.合理的设计和施工技术:在大体积混凝土结构的设计和施工过程中,应充分考虑结构的变形和收缩问题。

尽量采用合理的构造形式、减小构件的尺寸变化和设计适当的缝隙,同时选择合适的混凝土配合比。

此外,在混凝土施工过程中,需要注意控制混凝土的水灰比、保持适当的温度和湿度,避免混凝土快速干燥引起的收缩裂缝。

2.使用适当的防裂材料:在大体积混凝土结构施工中,可以添加一些适当的防裂材料,以增加混凝土的韧性和延展性,减少裂缝的发生。

常见的防裂材料有纤维素短纤维、钢纤维、聚丙烯纤维等。

3.加强混凝土的抗渗性:渗透裂缝是大体积混凝土结构中常见的问题,为了增强混凝土的抗渗性,可以在混凝土中添加一些防渗剂或使用特殊的混凝土,如高性能混凝土、微细矿物掺合料等。

防渗剂可以通过充填细微裂缝和孔隙,减少水分和气体的渗透,从而提高混凝土的抗渗性能。

4.安装预应力和钢筋:预应力和钢筋是大体积混凝土结构中常用的防裂措施。

预应力技术可以通过施加预应力,使混凝土在受力时保持压力状态,减少裂缝的发生。

钢筋可以有效增强混凝土的抗拉强度,防止裂缝的扩展。

5.加强结构的支撑和加固:在大体积混凝土结构出现裂缝时,可以采取加固措施来加强结构的支撑能力和稳定性。

常见的加固措施包括添加附加支撑、安装横向和纵向拉杆、加固工程缝、采取预应力加固等。

6.定期检查和维修:定期检查大体积混凝土结构的裂缝情况是非常重要的,可以及时发现和修复裂缝。

对于小裂缝可以采取简单的维修措施,如填充密封剂或涂刷防水涂料等;对于较大的裂缝,需要采取更加复杂的维修措施,如加固、重建等。

总之,大体积混凝土结构裂缝的防治是一个综合性工作,需要在设计、施工、材料选择等方面做好充分的准备工作。

通过采取合理的措施和技术,可以有效降低大体积混凝土结构裂缝的发生率,提高结构的安全性和耐久性。

大体积混凝土温度裂缝的产生及预防措施

大体积混凝土温度裂缝的产生及预防措施

大体积混凝土温度裂缝的产生及预防措施大体积混凝土在现代工程建设中占有重要的地位,特别是工业建筑工程中应用十分广泛,如火力发电厂的汽机基础,就是一个大型的大体积混凝土特例。

大体积混凝土施工的工艺要求很高,在施工过程中,如何控制大体积混凝土的温度裂缝就是施工工艺的关键点,也是大体积混凝土施工的难点。

尽管在施工中采取各种措施,小心谨慎,但裂缝仍时有出现。

混凝土中裂缝的出现严重影响到混凝土结构的整体性和耐久性。

从而影响到混凝土结构的使用功能及安全性能。

因此在大体积混凝土施工过程中,温度应力及温度的控制十分重要。

一、温度裂缝产生的原因分析混凝土裂缝产生的原因有很多种,一是由外荷载引起的,这是发生最为普遍的一种情况,二是结构次应力引起的裂缝,这是由于结构的实际工作状态与计算假设模型的差异引起的;三是变形应力引起的裂缝,这是由温度、收缩、膨胀、不均匀沉降等因素引起结构变形,当变形受到约束时便产生应力,当此应力超过混凝土抗拉强度时就产生裂缝。

建筑工程中的大体积混凝土结构中,由于结构截面大,水泥用量多,水泥水化所释放的水化热会产生较大的温度变化和收缩作用,由此形成的温度收缩应力是导致大体积混凝土产生裂缝的主要原因。

表面裂缝是由于混凝土表面和内部的散热条件不同,温度外低内高,形成了温度梯度,使混凝土内部产生压应力,表面产生拉应力,表面拉应力超过混凝土抗拉强度而引起的;通裂缝是由于大体积混凝土在强度发展到一定程度,混凝土逐渐降温,这个降温差引起的变形加上混凝土失水引起的体积收缩变形,受到地基和其他结构边界条件的约束时引起的拉应力,超过混凝土抗拉强度时所可能产生的贯通整个截面的裂缝。

这两种裂缝不同程度上,都属有害裂缝。

因此,掌握温度应力的变化规律及温度控制对于进行大体积混凝土施工极为重要。

二、温度应力的分析(一)温度应力的形成过程温度应力的形成可分为以下三个阶段: 早期:自浇筑混凝土开始至水泥放热基本结束,一般约30天。

大体积混凝土防裂措施

大体积混凝土防裂措施

大体积混凝土防裂措施在现代建筑工程中,大体积混凝土的应用越来越广泛。

然而,由于其体积较大,水泥水化热释放集中,混凝土内部温度升高较快,容易产生温度裂缝,从而影响混凝土的结构性能和耐久性。

因此,采取有效的防裂措施至关重要。

一、优化混凝土配合比1、选用低水化热水泥水泥在水化过程中会释放出大量的热量,选用低水化热的水泥品种,如大坝水泥、矿渣硅酸盐水泥等,可以有效降低混凝土内部的温度升高。

2、减少水泥用量在满足混凝土强度和工作性能的前提下,尽量减少水泥用量。

可以通过掺入适量的粉煤灰、矿渣粉等矿物掺合料来替代部分水泥,不仅可以降低水泥水化热,还能改善混凝土的和易性和耐久性。

3、控制骨料级配选用级配良好的粗、细骨料,既能减少水泥浆用量,又能提高混凝土的密实度,降低混凝土的收缩。

4、优化水胶比合理控制水胶比,在保证混凝土强度的前提下,尽量减少用水量,降低混凝土的干缩。

二、控制混凝土浇筑温度1、降低原材料温度在混凝土搅拌前,对骨料进行遮阳、洒水降温,对水泥储罐进行喷水降温等措施,降低原材料的温度。

2、冰水搅拌在搅拌混凝土时,采用冰水代替常温水,可以有效降低混凝土的出机温度。

3、选择适宜的浇筑时间尽量避免在高温时段进行混凝土浇筑,宜选择在气温较低的夜间或清晨进行施工。

三、加强施工过程中的温度控制1、分层浇筑大体积混凝土应采用分层浇筑的方法,每层厚度不宜过大,以利于混凝土内部热量的散发。

2、埋设冷却水管在混凝土内部埋设冷却水管,通过循环通水来降低混凝土内部的温度。

冷却水管的布置间距和通水流量应根据混凝土的体积、厚度等因素进行合理设计。

3、保温保湿养护混凝土浇筑完成后,及时进行保温保湿养护。

可以采用覆盖塑料薄膜、草帘、麻袋等保温材料,保持混凝土表面湿润,减少混凝土内外温差,防止混凝土表面开裂。

养护时间应根据混凝土的性能和环境条件确定,一般不少于 14 天。

四、设置后浇带在大体积混凝土结构中,合理设置后浇带可以有效地释放混凝土前期的收缩应力,减少裂缝的产生。

大体积混凝土裂缝产生原因及控制措施

大体积混凝土裂缝产生原因及控制措施

大体积混凝土裂缝产生原因及控制措施
大体积混凝土常常出现裂缝,这是由于混凝土固化过程中各种外力和内部因素作用的
结果。

以下是一些常见的大体积混凝土裂缝产生原因及相应的控制措施。

1. 温度变化
混凝土的体积随温度变化而变化,从而导致应力和应变的变化。

如果混凝土早期膨胀
过快,后来突然收缩,就可能产生裂缝。

冬季施工的混凝土容易受到冻融循环的影响而产
生裂缝。

控制措施:在混凝土中加入一些减缩剂,保持混凝土温度稳定。

2. 沉降
混凝土的沉降常常导致裂缝的产生。

大体积混凝土从浇注到完全固化需要一定的时间,这个时间内混凝土会不断地进行沉降和变形,而这个过程中土壤或基础可能承受不住混凝
土的重量,导致裂缝的产生。

控制措施:在混凝土中加入一些增粘剂,增加混凝土的粘性,减少沉降。

3. 加载
混凝土承受的载荷过大也可能导致裂缝的产生。

当混凝土受到过载而形成应力过大时,就会产生裂缝。

控制措施:合理规划混凝土的厚度和稳定度,使其能够承受所需的载荷。

4. 不均匀收缩
混凝土在固化过程中,其不同区域的收缩量不同,从而产生应力差异。

这种差异使得
混凝土产生裂缝。

控制措施:在混凝土中加入一些控制混凝土收缩的化学剂。

5. 板与柱之间的连接
不充分的预制混凝土连接也可能导致裂缝的产生。

板与柱之间连接的强度达不到要求时,应力集中在连接处,从而导致裂缝的产生。

控制措施:增强连接强度,保持连接部分
完整。

总之,裂缝的发生对混凝土的强度和耐久性都会产生影响,所以应采取相应的控制措施,避免或减少裂缝的产生。

大体积混凝土温度裂缝控制措施

大体积混凝土温度裂缝控制措施

大体积混凝土温度裂缝控制措施随着建筑工程日益发展,对于大体积混凝土的使用需求也越来越多。

大体积混凝土在施工过程中容易受到温度裂缝的影响,给工程质量和安全带来不小的隐患。

控制大体积混凝土温度裂缝成为了施工过程中的一个重要问题。

下面,本文将详细介绍大体积混凝土温度裂缝的形成原因和控制措施。

一、大体积混凝土温度裂缝的形成原因1. 混凝土收缩混凝土在施工初期水分干燥、固化过程中会发生收缩,尤其是在高温时,混凝土的收缩程度更为明显。

这种收缩会导致混凝土表面产生张力,从而引发温度裂缝。

2. 温度变化混凝土在温度变化过程中会发生体积膨胀或收缩,当混凝土体积受到限制时,就会出现温度裂缝。

特别是在大体积混凝土中,由于体积较大,温差较大时,更容易出现温度裂缝。

3. 混凝土质量不良如果混凝土的配比不合理,或者含水量过大,会导致混凝土质量较差,抗张强度不足,进而容易出现温度裂缝。

4. 外部环境因素如果混凝土受到外部环境因素的影响,如高温、低温、风力等,会导致混凝土内部应力失衡,产生温度裂缝。

1. 正确控制混凝土配比必须对混凝土的配比进行正确的控制,保证混凝土具有较高的抗张强度和抗裂性能。

合理的水灰比和骨料的选择都能对混凝土抗裂性能产生重要影响,因此在设计配比时必须进行充分的考虑。

2. 控制混凝土收缩采用控制混凝土收缩的方法是避免混凝土裂缝的有效手段。

可以采用减少水泥掺量、增加外加剂、采用外加张裂抑制剂等方法来有效控制混凝土收缩。

3. 控制混凝土浇筑温度在施工过程中,应该控制混凝土的浇筑温度,尽量使混凝土温度均匀一致。

可以采用多次浇筑、采用预冷或预热等方法来控制混凝土浇筑温度。

4. 预留伸缩缝在设计时,应该合理预留混凝土伸缩缝,以便混凝土在温度变化过程中有一定的空间可以自由伸缩,避免产生温度裂缝。

5. 温度监测在混凝土施工过程中,必须通过温度监测数据来掌握混凝土的温度变化情况,及时调整施工工艺,确保混凝土施工质量。

6. 采用降温措施对于大体积混凝土,可以采用降温措施来减少混凝土的温度,如喷水降温、覆盖保温措施等。

大体积混凝土产生裂缝的原因及预防措施

大体积混凝土产生裂缝的原因及预防措施

大体积混凝土产生裂缝的原因及预防措施混凝土结构物实体最小尺寸不小于1米的混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土称为大体积混凝土。

类似这种混凝土结构在现代建筑中时常涉及到,如高层楼房基础、大型设备基础、水利大坝等。

这种混凝土内外温差较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用。

所以必须从根本上分析它,来保证施工质量。

标签:大体积混凝土裂缝;原因;预防措施1、大体积混凝土产生裂缝的原因1.1水泥水化热水泥在水化过程中要产生大量的热量,是大体积砼内部热量的主要来源。

由于大体积砼截面厚度大,水化热聚集在结构内部不易散失,使砼内部的温度升高。

当砼的内部与表面温差过大时,就会产生温度应力和温度变形。

温度应力与温差成正比,温差越大,温度应力也越大。

当砼的抗拉强度不足以抵抗该温度应力时,便开始产生温度裂缝。

这是大体积砼容易产生温度裂缝的主要原因。

1.2约束条件大体积钢筋砼与地基浇筑在一起,当早期温度上升时产生的膨胀变形受到下部地基的约束而形成压应力。

由于砼的弹性模量小,徐变和应力松弛度大,使砼与地基连接不牢固,因而压应力较小。

但当温度下降时,产生较大的拉应力,若超过砼的抗拉强度,砼就会出现垂直裂缝。

1.3外界气温变化大体积砼在施工期间,外界气温的变化对大体积砼的开裂有重大影响。

砼内部温度是由浇筑温度、水泥水化热的绝热温度和砼的散热温度三者的叠加。

外界温度越高,砼的浇筑温度也越高。

外界温度下降,尤其是骤降,大大增加外层砼与砼内部的温度梯度,产生温差应力,造成大体积砼出现裂缝。

因此控制砼表面温度与外界气温温差,也是防止裂缝的重要一环。

1.4砼的收缩变形混凝土的拌合水中,只有约20%的水分是水泥水化所必需的,其余80%要被蒸发。

砼中多余水分的蒸发是引起砼体积收缩的主要原因之一。

这种收缩变形不受约束条件的影响,若存在约束,就会产生收缩应力而出现裂缝。

2、控制大体积混凝土裂缝的预防措施2.1技术措施大体积混凝土施工阶段所产生的温度裂缝,一方面是混凝土内部因素:由于内外温差而产生的;另一方面是混凝土的外部因素,为了有效地控制有害裂缝的出现和发展,必须从控制混凝土的水化升温、延缓降温速率、减小混凝土收缩、提高混凝土的极限拉伸强度、改善约束条件和设计构造等方面全面考虑。

大体积混凝土温度裂缝原因分析及控制措施

大体积混凝土温度裂缝原因分析及控制措施

大体积混凝土温度裂缝原因分析及控制措施在现代建筑工程中,大体积混凝土的应用越来越广泛。

然而,由于其体积较大,水泥水化热释放集中,混凝土内部温度升高较快,与表面形成较大温差,容易产生温度裂缝。

这些裂缝不仅影响混凝土的外观质量,更严重的是会降低混凝土的结构性能和耐久性,给工程带来安全隐患。

因此,深入分析大体积混凝土温度裂缝的原因,并采取有效的控制措施,具有重要的现实意义。

一、大体积混凝土温度裂缝的原因(一)水泥水化热水泥在水化过程中会释放出大量的热量,对于大体积混凝土来说,由于其结构厚实,水泥水化热难以迅速散发,导致混凝土内部温度升高。

尤其是在浇筑后的最初几天,水泥水化热释放最为集中,内部温度可高达 50℃至 80℃,而混凝土表面散热较快,从而形成较大的内外温差。

当温差超过一定限度时,混凝土内部产生压应力,表面产生拉应力,一旦拉应力超过混凝土的抗拉强度,就会产生温度裂缝。

(二)混凝土收缩混凝土在硬化过程中会发生体积收缩,主要包括化学收缩、干燥收缩和自收缩等。

大体积混凝土由于水泥用量较大,水灰比较小,其收缩变形相对较大。

而且,收缩变形在混凝土内部受到约束时,也会产生拉应力,当拉应力超过混凝土的抗拉强度时,就会导致裂缝的产生。

(三)外界气温变化大体积混凝土在施工过程中,外界气温的变化对其温度场分布有显著影响。

在混凝土浇筑初期,外界气温越高,混凝土的入模温度就越高,水泥水化热的释放速度也越快,从而导致混凝土内部温度升高。

而在混凝土养护期间,外界气温骤降会使混凝土表面温度迅速下降,而内部温度下降相对较慢,形成较大的内外温差,从而产生温度裂缝。

(四)约束条件大体积混凝土在浇筑过程中,由于基础、垫层或相邻结构的约束,使其在温度变化时不能自由伸缩。

当混凝土内部产生的温度应力超过其约束所能承受的极限时,就会产生裂缝。

约束越强,产生的温度裂缝就越严重。

(五)施工工艺施工工艺不当也是导致大体积混凝土产生温度裂缝的重要原因之一。

大体积混凝土防止裂缝的措施

大体积混凝土防止裂缝的措施

大体积混凝土防止裂缝的措施
一、合理的混凝土配合比
混凝土配合比是指混凝土中水泥、砂、石和水等各组分的比例关系。

合理的配合比可以提高混凝土的抗裂性能。

首先,应适当增加水泥的用量,增强混凝土的抗压强度,防止裂缝的产生。

其次,应控制砂、石的粒径和粒形,使其分布均匀,减小内部缺陷的产生。

最后,添加适量的外加剂,如减水剂、粉煤灰等,可以改善混凝土的流动性和耐久性,减少裂缝的生成。

二、科学的施工技术
混凝土的施工技术对于防止裂缝的产生至关重要。

首先,应合理安排浇筑顺序,避免过早浇筑上层混凝土,导致下层混凝土的收缩不均匀而产生裂缝。

其次,应采用适当的浇筑方法,如分层浇筑、振捣等,确保混凝土密实均匀。

此外,还应注意控制施工温度和冷却速率,避免温度差引起的热裂缝。

三、科学的养护措施
混凝土的养护是防止裂缝产生的重要环节。

养护主要包括湿养护和温养护两个方面。

湿养护是通过保持混凝土表面湿润,延缓水分的蒸发,促使混凝土的水化反应充分进行,提高混凝土的强度和抗裂性能。

温养护是通过控制混凝土的温度,避免温度变化引起的收缩和热应力,减少裂缝的产生。

此外,还应注意避免外界环境的影响,如风、雨、阳光等,对混凝土进行有效的保护。

要防止大体积混凝土裂缝的产生,需要在混凝土配合比、施工技术和养护措施等方面进行科学合理的控制。

只有在配合比合理、施工技术科学、养护措施到位的情况下,才能有效地提高混凝土的抗裂性能,保证工程的质量和使用寿命。

因此,在进行大体积混凝土施工时,应严格按照相关要求进行操作,确保每个环节的质量控制,以期达到防止裂缝的目的。

大体积混凝土温度裂缝的产生及预防措施

大体积混凝土温度裂缝的产生及预防措施

多外加剂都有缓凝 、 加和易性 、 增 改善塑性 的功能 , 外加 1 第三版) 编写组. 筑施工手册【 . 建 M】 北京 中 剂 的正确合理使用 , 比单纯地靠改善外部条件 , 可能会更 [】建筑施工手册 (
国建筑工业 出版社,9 7 19 . 加简捷 、 经济 。 2 修 [ 北京 中 M] 水灰 比是影响混凝土收缩 的重要 因素 ,使用减水防 【]现行建筑施工 规范大全( 订缩印本) . : 国建筑 工业 出版社 , 0 . 2 5 0 裂剂可使混凝土用水量减少 2 %;水泥用量也是混凝土 5 3 建筑工程质量通病 防治手册( 三版) . 第 【 北京: M] 中 收缩率的重要 因素 ,掺加减水 பைடு நூலகம்裂剂的混凝 土在保持混 []鼓圣浩. 国建筑工业 出版社,0 2 20 . 凝土强度的条件下可减少 1%的水泥用量 ,其体积用增 5
大体积混凝土施工 的工艺要求很高 , 在施 工过程 中 ,
量水化热 , 二是混凝土弹性模量的急剧变化 。 由于弹性模
这 中期 : 自 如何控制大体积混凝土 的温度裂缝就是施工工艺的关键 量 的变 化 , 一 时 期 在 混 凝 土 内形 成 残 余 应 力 。 点, 也是大体积混凝土施工 的难点 。 尽管在施 工中采取各 水泥放 热作用基本结束时起至混凝 土冷却到稳定温度 时
还必 须 考 虑 徐 变 的影 响 。
3 温度裂缝控制措施
部产生压应力 , 表面产生拉应力 , 表面拉应力超过混凝土 为 了有 效 地 控制 有 害裂 缝 的 出现 和 发 展 ,必 须 从 控 抗拉强度而引起 的;通裂缝是 由于大体积混凝土在强度 制混凝 土 的水化 升温 、 延缓降温速率 、 小混凝土收缩 、 减 发展 到一定程度 , 混凝土逐渐降温 , 这个 降温差 引起 的变 提高混凝土 的极 限拉伸强度 、改善约束条件等方面全 面 形加上混凝 土失水 引起 的体积收缩变形 ,受 到地基 和其 考虑 , 结合实际采取相应措施。 他结 构边界条件 的约束时引起的拉应力 ,超 过混凝土抗 31 降低 水 泥水 化 热 和 变 形 . 拉强度 时所 可能产生 的贯通整个截面的裂缝 。这两种裂 选用低水化热的水泥品种配制混凝土 ,如矿渣硅酸 火 粉煤灰水泥 、 复合水泥等 ; 缝不 同程度上 , 属有害裂缝 。 都 因此 , 掌握温 度应力 的变 盐水泥 、 山灰质硅酸盐水泥 、 化规 律及温度 控制对 于进 行大体 积混凝 土施 工极 为重 充分利用混凝土 的后期强度 ,减少每立方米混凝土 中水 要。 泥用量 ; 使用粗 骨料 , 尽量选用粒径较大 、 级配 良好的粗
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大体积混凝土温度裂缝的产生及预防措

大体积混凝土温度裂缝的产生及预防措施有哪些呢,
大体积混凝土在现代工程建设中占有重要的地位,特别是工业建
筑工程中应用十分广泛,如火力发电厂的汽机基础,就是一个大型的
大体积混凝土特例。

大体积混凝土施工的工艺要求很高,在施工过程中,如何控制大体积混凝土的温度裂缝就是施工工艺的关键点,也是
大体积混凝土施工的难点。

尽管在施工中采取各种措施,小心谨慎,
但裂缝仍时有出现。

混凝土中裂缝的出现严重影响到混凝土结构的整体性和耐久性。

从而影响到混凝土结构的使用功能及安全性能。

因此在大体积混凝土施工过程中,温度应力及温度的控制十分重要。

一、温度裂缝产生的原因分析
混凝土裂缝产生的原因有很多种,一是由外荷载引起的,这是发生最
为普遍的一种情况,二是结构次应力引起的裂缝,这是由于结构的实
际工作状态与计算假设模型的差异引起的;三是变形应力引起的裂缝,这是由温度、收缩、膨胀、不均匀沉降等因素引起结构变形,当变形
受到约束时便产生应力,当此应力超过混凝土抗拉强度时就产生裂缝。

建筑工程中的大体积混凝土结构中,由于结构截面大,水泥用量多,
水泥水化所释放的水化热会产生较大的温度变化和收缩作用,由此形
成的温度收缩应力是导致大体积混凝土产生裂缝的主要原因。

表面裂
缝是由于混凝土表面和内部的散热条件不同,温度外低内高,形成了
温度梯度,使混凝土内部产生压应力,表面产生拉应力,表面拉应力超
过混凝土抗拉强度而引起的;通裂缝是由于大体积混凝土在强度发展
到一定程度,混凝土逐渐降温,这个降温差引起的变形加上混凝土失
水引起的体积收缩变形,受到地基和其他结构边界条件的约束时引起
的拉应力,超过混凝土抗拉强度时所可能产生的贯通整个截面的裂缝。

这两种裂缝不同程度上,都属有害裂缝。

因此,掌握温度应力的变化规律及温度控制对于进行大体积混凝土施工极为重要。

二、温度应力的分析
(一)温度应力的形成过程
温度应力的形成可分为以下三个阶段:
早期:自浇筑混凝土开始至水泥放热基本结束,一般约30天。

这个阶段有两个特征,一是水泥放出大量水化热,二是混凝土弹性模量的急
剧变化。

由于弹性模量的变化,这一时期在混凝土内形成残余应力。

中期:自水泥放热作用基本结束时起至混凝土冷却到稳定温度时止,
这个时期中,温度应力主要是由于混凝土的冷却及外界气温变化所引起,这些应力与早期形成的残余应力相叠加,在此期间混凝土的弹性
模量变化不大。

晚期:混凝土完全冷却以后的服役时期。

温度应力主要是外界气温变化所引起,这些应力与前两种的残余应力相叠加。

(二)温度应力引起的原因
对于边界上没有任何约束或完全静止的结构,如果内部温度是非线
性分布的,由于结构本身互相约束而出现的温度应力。

因为大体积混凝土结构尺寸相对较大,混凝土冷却时表面温度低,内部温度高,在表面出现拉应力,在中间过程出现压应力,这种应力成为自身应力。

结构的全部或部分边界受到外界的约束,不能自由变形而引起的应力,此时的应力称为约束应力。

这两种温度应力往往和混凝土的干缩所引起的应力共同作用。

温度应力的分布及大小是比较复杂的,在大多数情况下,需要依靠模型试验或数值计算。

混凝土的徐变使温度应力有相当大的松弛,所以分析计算温度应力时,还必须考虑徐变的影响。

三、温度裂缝控制措施
为了有效地控制有害裂缝的出现和发展,必须从控制混凝土的水化升温、延缓降温速率、减小混凝土收缩、提高混凝土的极限拉伸强度、改善约束条件等方面全面考虑,结合实际采取相应措施。

(一)降低水泥水化热和变形
1.选用低水化热的水泥品种配制混凝土,如矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰水泥、复合水泥等。

2.充分利用混凝土的后期强度,减少每立方米混凝土中水泥用量。

3.使用粗骨料,尽量选用粒径较大、级配良好的粗细骨料;控制砂石含泥量。

4.在混凝土内部预埋冷却水管,能入循环冷却水,强制降低混凝土水化热温度。

5.允许设置后浇缝时,合理地设置后浇缝。

大体积混凝土平面尺寸过
大时,可以适当设置后浇缝,以减小外应力和温度应力;同时也有利于散热,降低混凝土的内部温度。

(二)降低混凝土温度差
选择较适宜的气温浇筑大体积混凝土,尽量避开炎热天气浇筑混凝土。

夏季可采用低温水或冰水搅拌混凝土,可对骨料喷冷水雾或冷气进行预冷,或对骨料进行覆盖或设置遮阳装置避免日光直晒,以降低混凝土拌合物的入模温度。

(三)加强施工中的温度控制
1.在混凝土浇筑之后,做好混凝土的保温保湿养护,缓缓降温,充分发挥徐变特性,减低温度应力,夏季应注意避免曝晒,注意保湿,冬期应采取措施保温覆盖,以免发生急剧的温度梯度发生。

2.采取长时间“应力松弛效应”。

3.加强测温和温度监测与管理,采取信息化控制,随时控制混凝土内的温度变化,内外温差控制在25度以内,基面温差和基底面温差均控制在20度以内,及时调整保温及养护措施,使混凝土的温度梯度和湿度不至过大,以有效控制有害裂缝的出现。

(四)提高混凝土的极限拉伸强度
1.选择良好级配的粗骨料,严格控制其含泥量,加强混凝土的振捣,提高混凝土密实度和抗拉强度,减小收缩变形,保证施工质量。

2.采取二次投料法,二次振捣法,浇筑后及时排除表面积水,加强早期养护,提高混凝土早期或相应龄期的抗拉强度和弹性模量。

(五)外加剂的使用
使用外加剂也是控制温度裂缝的重要措施之一,许多外加剂都有缓凝、增加和易性、改善塑性的功能,外加剂的正确合理使用,比单纯地靠改善外部条件,可能会更加简捷、经济。

1.水灰比是影响混凝土收缩的重要因素,使用减水防裂剂可使混凝土用水量减少25%。

2.水泥用量也是混凝土收缩率的重要因素,掺加减水防裂剂的混凝土在保持混凝土强度的条件下可减少15%的水泥用量,其体积用增加骨料用量来补充。

3.减水防裂剂可以改善水泥浆的稠度,减少混凝土泌水,减少沉缩变形。

提高水泥浆与骨料的黏结力,提高的混凝土抗裂性能。

4.混凝土在收缩时受到约束产生拉应力,当拉应力大于混凝土抗拉强度时裂缝就会产生。

减水防裂剂可有效地提高混凝土抗拉强度,大幅提高混凝土的抗裂性能。

5.掺加外加剂可使混凝土密实性好,可有效地提高混凝土的抗碳化性,减少碳化收缩。

6.掺减水防裂剂后混凝土缓凝时间适当,在有效防止水泥迅速水化放热基础上,避免因水泥长期不凝而带来的塑性收缩增加。

7.掺外加剂混凝土和易性好,表面易抹平,形成微膜,减少水分蒸发,减少干燥收缩。

相关文档
最新文档