化工原理第六章第二节讲稿

合集下载

化工原理第六章蒸馏

化工原理第六章蒸馏

恒摩尔气流 恒摩尔液流
注意:V不一定等于V′,L不一定等于L′
溶液中两组分的摩尔汽化热相等,即rA rB; 因汽液两相温度不同而传递的热量可忽略; 假定 精馏塔保温良好,其热量损失可以忽略。
三、进料热状态参数q
1.进料热状况的定性分析:
A — — 过冷液体;
B — — 饱和液体;
加料板及其以下 ——提馏段
加料板以上 ——精馏段
间歇精馏:
——只有精馏段, 没有提馏段
第三节 双组分连续精馏的计算与分析
设计型计算: 操作型计算:
一、全塔物料衡算
F、D、W — kmol( A B) h
xF、xD、xW — kmolA kmol( A B) 总物料:F D W
Ln1 温度 易挥发汽化多
Vn yn
气相
液相
yn yn1 xn xn1
Ln1 x n1
Ln xn
n-1 n n+1
塔顶:纯A 塔釜:纯B
Vn1 y n 1
yn+1 tn+1 tn tn-1 xn
G O P
yn
t/℃
xn-1
0
x或y
1.0
加料位置 ——与原料液组成和温度相近的板上进料
240 101.33
pA
pB
0
,kPa ,kPa
101.33 116.9 135.5 155.7 179.2 204.2 40.0 46.0 54.0 63.3 74.3 86.0
0
温度℃
80.1
85
90
95
100
105
110.6 240
pA
0
,kPa

《化工原理教学资料》第六章蒸馏(郭锴)

《化工原理教学资料》第六章蒸馏(郭锴)

m 顶 釜
式中: α 顶: 塔顶的相对挥发度 α 釜: 塔釜的相对挥发度
4.α 的物理意义 气相中两组分组成之比是液相中两组分组成之 比的倍数;
α 标志着分离的难易程度;
若α>1,则 y>x ,可用蒸馏方法分离,且α愈大,
平衡线愈远离对角线,物系愈易分离;
α =1, 无法用普通蒸馏方法分离。
6.3 简单蒸馏和平衡蒸馏
一 、 简单蒸馏 1. 装置 2. 特点: • 间歇非定态 • 一次进料
• xD, xW不是一对平衡 组成
• 适合于大的组分 • 对A部分提出, 粗分
二. 平衡蒸馏(又叫闪蒸) 1. 流程 2. 特点: •一次进料,粗分 •xD, xW是一对平 衡组成 F xF
D xD
1、收率低;
2、设备重复量大,设备投资大; 3、能耗大,过程有相变。 问题:工业上如何实现?
2. 有回流的多次部分汽化和多次部分冷凝
6.4.2 连续精馏装置流程
进料板:原料液进入的 那层塔板
精馏段:进料板以上的 塔段 提馏段:进料板以下 (包括进料板) 的塔段
6.4.3 塔板的作用
特点:
•塔板提供了汽液 分离的场所; •每一块塔板是一 个混合分离器; •足够多的板数可 使各组分较完全分 离。
A pA xA 一般物系: B pB xB
yA xA 理想气体: yB xB
对于二元物系:yB=1-yA xB=1-xA 则
y 1 y x 1 x

x y ——相平衡方程 1 ( 1) x
理想溶液:
p p
o A o xW
6.4 精馏原理
6.4.1 多次部分汽化、部分冷凝

化工原理(第二版)第六章-

化工原理(第二版)第六章-
管道阻力引起的温度差损失 ,其值一般取为1℃。
第三节 多效蒸发
一、多效蒸发的操作原理
由蒸发器的热量恒算可知,在单效蒸发器中每蒸发1㎏的水需要 消耗1㎏多的生蒸汽。在大规模的工业生产中,水分蒸发量很大,需 要消耗大量的生蒸汽。如果能将二次蒸汽用作另一蒸发器的加热蒸汽, 则可减少生蒸汽消耗量。由于二次蒸汽的压力和温度低于生蒸汽的压 力和温度,因此,二次蒸汽作为加热蒸汽的条件是:该蒸发器的操作 压力和溶液沸点应低于前一蒸发器。采用抽真空的方法可以很方便地 降低蒸发器的操作压力和溶液的沸点。每一个蒸发器称为一效,这样, 在第一效蒸发器中通入生蒸汽,产生的二次蒸汽引入第二效蒸发器, 第 二效的二次蒸汽再引入第三效蒸发器,以此类推,末效蒸发器的二 次 蒸汽通入冷凝器冷凝,冷凝器后接真空装置对系统抽真空。于是, 从第 一效到最末效,蒸发器的操作压力和溶液的沸点依次降低,因此 可以 引入前效的二次蒸汽作为后效的加热介质,即后效的加热室成为 前效 二次蒸汽的冷凝器,仅第一效需要消耗生蒸汽,这就是多效蒸发
降。
3
真空蒸发系统要求有造成减压的装置,使系统的
投资费和操作费提高。
第二节 单效蒸发
F,w0,t0,h0
D, T, H
W, T’, H’
蒸发室
加 热 室
(F-W),w1, t1, h1
D, T, hw
图6-2 单效蒸发示意图
第二节 单效蒸发
二、单效蒸发的计算
单效蒸发计算的主要内容有:水分蒸发量;加热蒸气 消耗量;蒸发器的传热面积。 计算的依据是:物料衡算、热量衡算和传热速率方程。
(6-2)
第二节 单效蒸发
式中
Q——蒸发器的热负荷或传热量,kJ/h ; D——加热蒸气消耗量,kg/h; Cp0——原料液比热容,kJ/(㎏·℃); t0——原料液的温度,℃;

化工原理 第六章 蒸发

化工原理 第六章 蒸发


返回
前页
后页
主题
西
安 1、溶液沸点升高――杜林规则
交 大
’:与溶液的种类、浓度、蒸汽压

力有关
工 (1)手册上可以查到常压下的溶液沸点
原 (2)杜林规则:(压强影响)

电 子 课
tA tw

t
0 A
tw0

K

返回
前页
后页
主题
西
安 两种不同压力下溶液的沸点差与另 交 一种标准液体在相应压力下的沸点差的 大 比值为常数。
西


大 化
化工原理 第六章 蒸发







返回
前页
后页
主题
西
第一节 概 述

交 一、蒸发的概念:
大 化 工
挥发性溶剂,不挥发溶质――加热、沸腾 -→ 溶剂部分汽化;溶液浓缩

热量供给→汽化→热量衡算 传热
理特
速率
电 子
点 蒸汽移出→浓缩→物料衡算
方程

沸腾现象 溶液→沸点升高

返回
前页
后页
任务:(1)计算水分蒸发量(二次蒸汽量)
W kg/h

(2) 加热蒸汽消耗量D kg/h

(3)蒸发器传热面积S

返回
前页
后页
主题
西


一、单效蒸发器的计算


物料衡算

热量衡算


传热速率方程

沸点升高关系式


化工原理讲稿8(第六章)(天大版).

化工原理讲稿8(第六章)(天大版).
九、塔高与塔径的计算 (一)塔板效率
指反映实际塔板的气液两相传质的完善程度; 表示方法有总板效率、单板效率等; 1.总板效率(又称全塔效率)ET 指达到指定分离效果所需理论板层数与实际塔板 层数的比值;
ET

NT Np
100%

理论板数 实际板数

Np

NT ET
NT:不包括塔釜再沸器,再沸器相当一块理论板;
问: (1)此时产品组成将有何变化? (2)若维持xD不变,可采用哪些 措施,并比较这些方法的优缺点?
十二、特殊精馏 1.恒沸精馏
原理:在混合液中加入第三组分(称为挟带剂) 形成新的最低恒沸物;
2.萃取精馏 原理:向混合液中加入溶剂(又称萃取剂),萃取剂
不与原料液中任何组分形成恒沸物;
P73页 习题15、16;
xF 对xD, xW 的影响
b. 加料板位置上移
结论:xD , xW
加料板位置对xD, xW 的影响
c. R 结论:xD , xW
R 对xD, xW 的影响
d. q , R 不变, D不变, V’ 结论:xD , xW
q 对xD, xW 的影响
十一、 精馏装置的热量恒算

xn1 xn xn1 f '( yn )


xn1 xn

xn1 f '( xn1 )
习题16
1.y1 xD
F L'
2.

D

V
'

L
'
x1

V
'
yW
WxW
3.yW

1
xW ( 1)xW

化工原理-6章蒸馏

化工原理-6章蒸馏
1 yA 1 xA
y x 1 ( 1)x
——相平衡方程
当 α为已知时,可用相对挥发度表示了气液相平衡关系。
当 1 当 1
y=x, 即相平衡时气相的组成与液相的组成相同, 不能用蒸馏方法分离。
则y>x,α愈大,y比x大的愈多,组分A和B愈易分离。
三、双组分理想溶液的气液平衡相图
双组分理想溶液的汽液平衡关系用相图表示比较直观、 清晰,而且影响蒸馏的因素可在相图上直接反映出来。蒸馏 中常用的相图为恒压下的温度-组成( t-x-y )图和气相-液 相组成( x-y )图。
当生产任务要求将一定数量和组成的原料分离成指定组成 的产品时,精馏塔计算的内容有:出液和塔釜残液的流量、塔 板数、进料口位置、塔高、塔径等。
6.4.1 全塔物料衡算
1.全塔物料衡算
单位时间为基准
总物料衡算: qn,F=qn,D+qn,W 易挥发组分物料衡算:
qn,FxF=qn,DxD+qn,WxW qn,F、qn,D、qn,W——流量,kmol/h
二、蒸馏的分类
1、按蒸馏方法:简单蒸馏、平衡蒸馏(闪蒸)、精馏、特殊精馏。 2、按操作压力:常压;减压;加压。 3、按原料液组分数:双组分蒸馏和多组分蒸馏 4、按操作方式:间歇蒸馏和连续蒸馏。
三、蒸馏操作的特点
优点:* 适用面广,液体混合物和气体混合物均可 * 操作流程较简单,无需其他外加介质
缺点:* 能耗大
一、利用饱和蒸气压计算气液平衡关系
法国物理学家拉乌尔在1887年研究含有非挥发性溶质的 稀溶液的行为时发现的,可表述为:“在某一温度下,稀溶 液的蒸气压等于纯溶剂的蒸气压乘以溶剂的摩尔分数”。
PA PA0 xA ——拉乌尔定律
pA0——纯组分A在溶液温度下的饱和蒸气压,Pa; xA——溶液中组分A的摩尔分数;

化工原理 第六章 吸收

化工原理 第六章 吸收

由 y * mx得,
Y* mX 1 Y * 1 X
*
mX Y 1 (1 m)X
当溶液浓度很低时,X≈0, 分母约等于1. 上式简化为:
Y mX
*
亨利定律的几种表达形式也可改写为
P * x , c HP E y Y * ℃ 下 , 测 得 氨 在 水 中 的 平 衡 数 据 为 : 0.5gNH3/100gH2O浓度为的稀氨水上方的平衡分压为400Pa, 在该浓度范围下相平衡关系可用亨利定律表示,试求亨利系
——逆流吸收塔操作线方程
在m—n截面与塔顶截面之间作组分A的衡算
VY LX 2 VY2 LX
L L Y X (Y2 X 2 ) V V
——逆流吸收塔操作线方程
表明 : 塔内任一截面的气相浓度Y与液相浓度X之间成直线 关系,直线的斜率为L/V。
吸收操作线总是位于平衡线的上方,
s
EM s
1000 7.32 104 kmol / m3 Pa 7.59 10 4 18
E 7.59 10 4 m 3 0.749 P 101.33 10
三、用气液平衡关系分析吸收过程
1、判断过程的方向
例:在101.3kPa,20℃下,稀氨水的气液相平衡关系为 :
L L Y1 X 1 Y2 X 2 V V
吸收率 A 混合气中溶质A 被吸收的百分率
Y2 Y1 (1 A )
2、吸收塔的操作线方程式与操作线
在 m—n截面与塔底截面之间作组分A的衡算
VY LX1 VY1 LX
L L Y X (Y1 X 1 ) V V
操作线位于平衡线下方,则应进行脱吸过程。
并流吸收塔的操作线:

化工原理讲稿8(第六章)(天大版)

化工原理讲稿8(第六章)(天大版)

对 全 回 流 操 作 : y n +1 = x n、 y n = x n −1 y n − y n +1 x n −1 − x n E mV = y * − y = f ( x ) − x n n +1 n n 则: x n −1 − x n E = x n −1 − x n = x n −1 − x n = mL x n −1 − x n * x n −1 − f '( y n ) x n −1 − f '( x n −1 )
习题16 习题
1. y1 = xD F = L ' ⇒ L ' x1 = V ' yW + WxW 2. D = V ' α xW 3. yW = 1 + (α − 1) xW 4.EmV y1 − yW = y1 * − yW
设: F = 1kmol / h Dx D x F − xW x D 0.2 − xW 0.28 η D = 0.8 = = = ⇒ xW = 0.0857 Fx F x D − xW x F 0.28 − xW 0.2 D = 0.57 kmol / h、 W = 0.43kmol / h F = L ' F W ⇒ L ' x1 = V ' y W + Wx W ⇒ y W = x1 − xW D D D = V ' 1 0.43 ⇒ 0.206 = x1 − × 0.094 ⇒ x1 = 0.158 0.57 0.57 y1 = x D = 0.28 y1 − y W α xW 2.5 × 0.094 = = 0.206 由于: E mV = 其中: yW = y1 * − y W 1 + (α − 1) xW 1 + 1.5 × 0.094 α x1 2.5 × 0.158 = = 0.319 y1 * = 1 + (α − 1) x1 1 + 1.5 × 0.158 0.28 − 0.206 E mV = = 0655 0.319 − 0.206

化工原理 第六章 吸收

化工原理 第六章 吸收

M液 M剂
表6-1某些气体水溶液的亨利系数值(E×10-6/kPa)
由表6-1中的数值可知:不同的物系在同一个温度下 的亨利系数E值不同;当物系一定时,亨利系数随温度升 高而增大,温度愈高,溶解度愈小。所以亨利系数值愈大, 气体愈难溶。在同一溶剂中,难溶气体的值很大,而易溶 气体的值很小。
编辑ppt
体,则混气中的A组分有:
cA
nA V
pA RT
(6-5)
编辑ppt
第二节 吸收中的气液相平衡
二、气液相平衡关系 气液相平衡关系是指气液两相达到平衡时,被吸收的 组分(吸收质)在两相中的浓度关系,即吸收质在吸收剂 中的平衡溶解度。 1.气体在液体中的溶解度 在恒定的压力和温度下,用一定量的溶剂与混合气体 在一密闭容器中相接触,混合气中的溶质便向液相内转移, 而溶于液相内的溶质又会从溶剂中逸出返回气相。随着溶 质在液相中的溶解量增多,溶质返回气相的量也在逐渐增 大,直到吸收速率与解吸速率相等时,溶质在气液两相中 的浓度不再发生变化,此时气液两相达到了动态平衡。平 衡时溶质在气相中的分压称为平衡分压,用符号 表示; 溶质在液相中的浓度称为平衡溶解度,简称溶解度;它们 之间的关系称为相平衡关系。
化工原理
第六章 吸 收
编辑ppt
第一节 概 述
一、吸收综述 吸收就是分离气体混合物的单元操作,即是用适当的液体吸收剂处理 气体混合物,利用混合气中各组分在液体溶剂中溶解度的不同而分离气体 混合物的操作,其实质是一种典型的气、液相扩散传质过程。 吸收系统包括气、液两个相,气相由可溶于吸收剂的气体组分(称为吸 收质或溶质)和不溶或难溶于吸收剂的惰性组分(称为惰性气或载体)组成, 液相则是液体吸收剂(或称为溶剂);吸收操作所得到的溶液称为吸收液, 其成分为吸收剂和溶解于其中的吸收质;排除的气体称为吸收尾气,其主 要成分应为惰性组分和残余的溶质。 吸收的原理:就是利用混气中,各组分在吸收剂中有不同的溶解度的 特点,选择适宜的吸收剂对混合气中组分进行选择性吸收,以达到从混合 气中分离或提纯组分之目的。 与吸收操作相反,使吸收质从吸收剂中分离出来的操作称为解吸或脱 吸。其目的是循环使用吸收剂或回收溶质,实际生产中吸收过程和解吸过 程往往联合使用。 吸收和蒸馏一样也牵涉到气、液两相间的质量传递,但蒸馏是依据混 液中各组分挥发度的不同而得以分离;吸收则基于混气中各组分在吸收剂 中的溶解度不同而得以分离;蒸馏属双向传质,吸收为单相传质。

化工原理--第六章 蒸 发

化工原理--第六章 蒸  发

由于蒸发过程中,加热面处溶液中的水分 汽化,浓度上升,因此溶液很易超过饱和状态, 溶质析出并包裹固体杂质,附着于表面,形成 污垢,所以Rs往往是蒸发器总热阻的主要部分。 为降低污垢热阻,工程中常采用的措施有:加 快溶液循环速度,在溶液中加入晶种和微量的 阻垢剂等。影响 i的因素很多,如溶液的性质, 沸腾传热的状况,操作条件和蒸发器的结构等; 及时排除不凝气体以降低热阻,增大o。
主要从改进加热管表面形状等思路出发来提高
传热效果。
2、改善蒸发器内液体的流动状况
这方面的工作主要有:其一是设法提高蒸发器
循环速度;其二是在蒸发器管内装入多种形式
的湍流元件。
3、改进溶液的性质 例如,加适量表面活性剂;加适量阻垢剂可减 少结垢等。 4、优化设计和操作 在装置中采用先进的计算机测控技术,这是使 装置在优化条件下进行操作的重要措施。
总的温度差损失
' ' ' ' ' '
考虑了上述因素后,操作条件下溶液的沸点t1,即 可用下式求取,
——冷凝器操作压力下的饱和水蒸汽温度,℃; 式中:t c
(6-6) T——加热用饱和蒸汽的饱和温度
t1 t c '
t T t1
蒸发计算中,通常把(6-6)的温度差 t 称为有 效传热温度差。 例6-1 教材p/290
第三节 蒸发计算基础
一、蒸发中的温度差损失 传热平均温度差Δtm的确定 在蒸发操作中,蒸发器加热室一侧是 蒸汽冷凝,另一侧为液体沸腾,因此其传 热平均温度差应为:
t m T t
式中: T ——加热蒸汽的温度,℃; t ——操作条件下溶液的沸点,℃ 。
1、由溶液蒸汽压下降而引起的温度损失△′ 溶液中由于含有溶质,因此其蒸汽分压 低于同温度下纯溶剂的蒸汽分压,故在同一 外压下,其沸点高于纯溶剂的,即高于蒸发 室压力下溶剂的饱和蒸汽温度。其高出的值 △′和溶液的种类、浓度及蒸发操作的压强有 关,可由下述方法求出:

化工原理下册吸收

化工原理下册吸收

m3
小结
• 1、溶解度曲线图 • 2、有利于吸收的条件 • 3、亨利定律不同的表达形式 • 4、相际传质方向的判断
作业
• P.63 6-7 6-8 6-9
第四节 吸收过程的传质速率
定常吸收过程的相传质包括三个步骤: (1)A由气相主体到相界面,气相内传递; (2)A在相界面上溶解,溶解过程; (3)A自相界面到液相主体,液相内传递。 单相内传递方式:分子扩散;对流扩散 。
35
(二)亨利定律其它形式
1)p
* A
cA H
H——溶解度系数, kmol/(m3·kPa)
cA——摩尔浓度,kmol/m3;
H与E的关系:
pA*
cA H
c c
c H
x
E c H
36
c
S
M L MS(1 x) M A x MS
E S
HM S
H的讨论:1)H大,溶解度大,易溶气体 2)P对H影响小,
质量比与质量分数
WA
mA mB
wA 1 wA
wA wB
摩尔比与摩尔分数
液相
XA
nA nB
nxA nxB
xA xB
xA 1 xA
x X 1 X
气相
YA
yA yB
yA 1 yA
PA PB
PA P PA
理想混合气体组成的表示方法
理想气体状态方程 物质量之比等于压力之比 摩尔分数等于体积分数
c A
2、吸收操作过程常用术语 (1)吸收剂:吸收过程所用的液体,S; (2)吸收质:混合气中能被溶剂吸收组分, A; (3)惰性气:混合气中不能被溶剂吸收组分, B; (4)吸收液:吸收操作所得溶液,A+S; (5)吸收尾气:排除的气体,B+(A)

《化工原理》第六章 蒸发

《化工原理》第六章  蒸发
Fw0 = ( F − W ) w1

w W = F 1 − 0 w1
(6-1)
第二节 单效蒸发
式中 ——原料液的流量,kg/h; ——单位时间从溶液中蒸发的水分量,即蒸 发量,kg/h; ——原料液中溶质的质量分数; ——完成液中溶质的质量分数。 2.加热蒸汽消耗量 加热蒸汽消耗量通过热量衡算求得。通常,加热蒸汽 为饱和蒸汽,且冷凝后在饱和温度下排出,则加热蒸汽仅 放出潜热用于蒸发。若料液在低于沸点温度下进料,对热 量衡算式整理得: Q = Dr = Fc (t − t ) + Wr + Q (6-2)
第二节 单效蒸发
沸点升高对蒸发操作的传热推动力温度差不利,例如 用120℃的饱和水蒸汽分别加热20%(质量分数)NaOH水溶 液和纯水,并使之沸腾,有效温度差分别为 20%(质量分数)NaOH水溶液 ∆t ∆t =T − t =120-108.5=11.5℃ ∆t = T − T =120-100=20℃ 纯水 由于溶液的沸点升高,致使蒸发溶液的传热温度差较 蒸发纯水的传热温度差下降了8.5℃,下降的度数称为温 度差损失,用 ∆ 表示。由于 ∆ = ∆t − ∆t = (T − T ) − (T − t ) = t − T (6-8)
' p0 1 0 损
第二节 单效蒸发
式中 Q——蒸发器的热负荷或传热量,kJ/h ; D——加热蒸气消耗量,kg/h; Cp0——原料液比热容,kJ/(㎏·℃); t0——原料液的温度,℃; t1——溶液的沸点,℃; r ——加热蒸汽的汽化潜热,kJ/㎏; r’——二次蒸汽的汽化潜热,kJ/㎏; Q损 ——蒸发器的热损失,kJ/h 。
第二节 单效蒸发
工业上的蒸发操作经常在减压下进行,减压操作具有 下列特点: (1)减压下溶液的沸点下降,有利于处理热敏性的物 料,且可利用低压的蒸汽或废蒸汽作为加热剂。 (2)溶液的沸点随所处的压强减小而降低,故对相同 压强的加热蒸汽而言,当溶液处于减压时可以提高传热总 温度差;但与此同时,溶液的黏度加大,使总传热系数下 降。 (3)真空蒸发系统要求有造成减压的装置,使系统的 投资费和操作费提高。

化工原理第六章(概述、双组分溶液的气液相平衡)

化工原理第六章(概述、双组分溶液的气液相平衡)

甲醇—水溶液平衡数据(101.3kPa)
t(℃) 100 96.4 91.2 87.7 81.7 78.0 75.3
x
0 0.02 0.06 0.10 0.20 0.30 0.40
y
0 0.134 0.304 0.418 0.579 0.665 0.729
t(℃) 73.1 71.2 69.3 67.6 66.0 65.0 64.5
2020/3/18
(2)在相同温度下,不同液体的饱和蒸气压不同。 液体的挥发能力越大,其饱和蒸气压就越大。 【例如】25 ℃时,乙醇(A)、水(B)的饱和蒸气 压分别为: pA0=7.86kPa pB0=3.17kPa 【结论】饱和蒸气压是表示液体挥发能力的属性之 一。
2020/3/18
(3)液体混合物在一定温度下也具有一定的蒸气压 ,但其中各组分的蒸气压(分压pA)与其单独存在 时的饱和蒸气压(pA0)不同。 (4)对于二组分混合物,由于B组分的存在,使A组 分在气相中的蒸气分压比其在纯态时的饱和蒸气压 要小。
0.2031
0.3801
100
95
90
102℃
85
80
0.0
0.2
0.4 x y0.6
0.8
1.0
常压下苯-甲苯体系的温度组成图(t-x-y)
2020/3/18
汽液共存区 泡点线
泡点 液相区
P=101.3kPa
过热蒸 汽区
露点
露点线
【相关信息】压力(P), 温度(t),组成(x,y)。
【结构特点】两条线;两个点;三个区。
2020/3/18
(4)按操作压力 【常压蒸馏】常压下泡点为室温至150℃左右的液体 混合液,一般采用常压(大约1atm)蒸馏; 【加压蒸馏】常压下为气态(如空气、石油气)或 常压下泡点为室温的混合物,常采用加压(操作压 力高于1atm)蒸馏; 【减压蒸馏】对于常压下泡点较高或热敏性混合物 (高温下易发生分解,聚合等变质现象),宜采用 减压(操作压力低于1atm)蒸馏。

优秀工程类本科课件《化工原理》第6章 蒸馏

优秀工程类本科课件《化工原理》第6章 蒸馏
10
拉乌尔定律: pA=pAo xA pB= pBo xB= pBo(1- xA)
pA , pB — 溶液上方A和B两组分的平衡分压,Pa pao , pBo — 同温度下,纯组分A和B的饱和蒸汽压,Pa; xA , xB — 分别为混合液组分A和B的摩尔分率
11
二、 理想溶液气液相平衡
(一)理想溶液 t ~ y ~ x 关系式
组分的挥发度: 是该物质挥发难易程度的标志,表示。
纯组分的挥发度: = pAo
混合液某组分挥发度:
A
pA xA
,
理想溶液:
A
pA xA
pAo xA xA
pAo
B
pB xB
B
pB xB
pBo xB xB
pBo
15
2. 相对挥发度(以α表示)
一般物系:
pA
A xA
B
pB xB
理想气体: 或:
46
确定最佳进料位置
• 图解法求最佳进料板:跨越两操作线交点的梯级。 • 以此为进料板时NT最少。 例 6-9
47
(二)理论板数的逐板计算法 塔顶全凝器 泡点回流 泡点进料 塔釜间接蒸汽加热
精馏段:
x1
F, xF x2
xn
xm-1
y1 1 y2 2
n ym-1
m-1
yW
D, xD W, xW
y1=xD 平 衡 关 系 x1 操 作 关 系 y2 平 衡 关 系 x2 • • • xn xF
q线方位
L与L’
V与V’
L' L F L' L F
V V' V V'
L' L
V V'

陈敏恒版化工原理PPT第六章02

陈敏恒版化工原理PPT第六章02

α滴状约为α膜状的10倍 工业上滴状不能持久 安全起见, 不能持久, 工业上滴状不能持久,安全起见,按α膜状计
2.垂直壁液膜层流的平均α冷凝 WM:单位宽度冷凝量 热衡算 Q=WMBr=αLB(tS-tW) αL( t s − t w )
WM =
ρ 2 gδ 3 力平衡 W M = 3µ λ αL∆t ρ 2 gδ 3 ρ 2 g( cαλ )3 取α =c , WM = = = δ r 3µ 3µ 1 4 2 3 即 α = c' ρ grλ µL∆t 1 4 2 3 ρ grλ α 垂直 = 1.13 实验测定: 实验测定:C’ , µL∆t

d
1)经验关联式应用时要注意: 经验关联式应用时要注意: ①适用范围: Re>104, 0.7<Pr<160, µ<2µ水, L/d>30~40 定性温度: ②定性温度:主体平均温度
1 1 (T1 + T2 ) 或 (Biblioteka t1 + t 2 ) 2 2
③特性尺寸:管径 d
影响因素分析: 影响因素分析:
如何实验测定α
dQ=qdA=α(tW-t)πddL=qmCpdt 积分得 Q=α∆tmπdL=qmCp(t2-t1)
( tW 2 − t 2 ) − ( tW 1 − t1 ) ∆t m = tW 2 − t 2 ln tW 1 − t1
测量 tW1, tW2, t1, t2, qm 可求得α
3.4 无相变对流α经验关联式 1. 圆形直管内强制湍流α Nu=0.023Re0.8Prb b=0.4流体被加热, b=0.3流体被冷却 或 α = 0.023 λ Re 0.8 Pr b
r
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016/1/24
2.1.2、亨利定律
1、亨利定律
p Ex
*
E——亨利常数,单位与压强单位一致 。
*1 E值取决于物系的特性及温度;温度T上升,E值增大E值越 大的气体越难溶,即E=f(t. p). t↑E↑溶解度↓难溶.
*2总压不太高,稀溶液时E可视为常数
2016用溶质A的摩尔浓度和气相分压表示的亨利定律
实际组成y和x,在x-y坐标
图中确定状态点,若点在 平衡曲线上方,则发生吸 收过程;若点在平衡曲线 下方,则发生解吸过程。
2016/1/24
2、计算过程的推动力
当气液相的组成均用摩尔分数表示时,吸收的推动力可 表示为:
y y *:以气相组成差表示的吸收推动力;
x * x:以液相组成差表示的吸收推动力。
H
s
EM s
1000 4 3 7 . 32 10 kmol / m Pa 4 7.59 10 18
E 7.59 10 4 m 3 0.749 P 101.33 10
2016/1/24
2.1.3.吸收剂的选择
1.溶解度 2.选择性 对溶质组分有较大的溶解度 对溶质组分有良好的选择性, 即对其它组分基本不吸收或吸收甚微, 3.挥发性 应不易挥发 4.粘性 粘度要低 5.其它 无毒、无腐蚀性、不易燃烧、不发泡、 价廉易得,并具有化学稳定性等要求。
2016/1/24
1000kg/m3)
解:
* p 由亨利定律表达式知:E x
0.5 / 17 x 0.00527 0.5 / 17 100 / 18
2016/1/24
∴亨利系数为 E
p 400 7.59 10 4 Pa x 0.00527 400 p * * 0.00395 又 y mx,而 y 5 P 1.01 10
∴氨从气相转入液相,发生吸收过程。
若含氨0.02摩尔分数的混合气和 x=0.05的氨水接触,则
x * y / 0.94 0.02 / 0.94 0.021
2016/1/24
x 0.05 x* 0.021
气液相接触时,氨由液相转入气相,发生解吸过程。 此外,用气液相平衡曲线图也可判断两相接触时的传质方向 具体方法: 已知相互接触的气液相的
c p H
*
H——溶解度系数 ,单位:kmol/m3· Pa或kmol/m3· atm。
H是温度的函数,H值随温度升高而减小。
易溶气体H值大,难溶气体H值小。即t↓H↑易溶 ,浓度为 C总kmol / m ,则 设溶液的密度为 kg / m 3
3
H与E的关系
C总

M
M M A x A M S xS
*
P * x , c HP E y Y * * x , X m m
*
2016/1/24
例:在常压及20℃下,测得氨在水中的平衡数据为: 0.5gNH3/100gH2O浓度为的稀氨水上方的平衡分压为400Pa, 在该浓度范围下相平衡关系可用亨利定律表示,试求亨利系
数 E,溶解度系数 H,及相平衡常数 m。(氨水密度可取为
A A+B (气体)
2016/1/24
S (液体)
2.1.4、用气液平衡关系分析吸 收过程
1、判断过程的方向
例:在101.3kPa,20℃下,稀氨水的气液相平衡关系为 :
y* 0.94 x ,若含氨0.094摩尔分数的混合气和组成 x A 0.05
的氨水接触,确定过程的方向。 解: 用相平衡关系确定与实际气相组成 y 0.094 成平衡的液相组成
3、确定过程的极限
所谓过程的极限是指两相充分接触后,各相组成变化的 最大可能性。
2016/1/24
增加塔高 组成为y1的混合气 塔底 x1增加 减少吸收剂用量
极限
组成为: x1 max
x1*
y1 m
塔顶y2降低 极限
组成为y1的混合气
增加塔高 增加吸收剂用量
*
组成为:y
2 min
y2 mx2
m与E的关系: 由分压定律知 : p P y
p y* P
由亨利定律: p * E x
E y x P

即:
2016/1/24
E m P
3)用摩尔比Y和X分别表示气液两相组成的亨利定律
a) 摩尔比定义:
液相中溶质的摩尔数 x X 液相中溶剂的摩尔数 1 x
第2章 吸收
2.1.1、气体的溶解度
2.1.2、亨利定律
2.1.3 吸收剂的选择
气液相平衡
2.1.4、用气液平衡关系分析 吸收过程
2016/1/24
2.1.1、气体的溶解度
1、气体在液体中溶解度的概念
气体在液相中的溶解度 : 气体在液体中的饱和浓度 C
表明一定条件下吸收过程可能达到的极限程度。
* A
2016/1/24
对于稀溶液, M
M S , S
H
C总 E

s
MsE
*
2) 气液相中溶质的摩尔分数表示的亨利定律
y mx
m——相平衡常数 ,是温度和压强的函数。m=f(t. p). 温度升高、总压下降则m值变大, m值越大,表明气体的溶解度越小。即t↑P↓m↑,难溶
2016/1/24
2、溶解度曲线
对于单组分物理吸收,由相律知
f c 2 3 2 2 3
2016/1/24
2016/1/24
2016/1/24
2016/1/24
•吸收剂、温度T、P 一定时,不同物质的溶解度不同。
•温度、溶液的浓度一定时,溶液上方分压越大的物质越难溶。
•对于同一种气体,分压一定时,温度T越高,溶解度越小。 •对于同一种气体,温度T一定时,分压P越大,溶解度越大。 •加压和降温对吸收操作有利。
∴相平衡常数 m 0.00395 0.75 0.00527
c p H
*
0.5 / 17 3 c 0 . 293 kmol / m 0.5 100 1000
2016/1/24
∴溶解度系数为:
0.293 H 7.33 10 4 kmol / m3 Pa 400
或由各系数间的关系求出其它系数
气相中溶质的摩尔数 y Y 气相中惰性组分的摩尔数 1 y
X Y x ,y 1 X 1 Y
由 y * mx得,
2016/1/24
Y* mx * 1 x 1 Y
mx Y 1 (1 m) x
*
当溶液浓度很低时,X≈0, 上式简化为:
Y mX
亨利定律的几种表达形式也可改写为
x y / 0.94 0.1
*
2016/1/24
将其与实际组成比较 : x 0.05 x* 0.1 ∴气液相接触时,氨将从气相转入液相,发生吸收过程。 或者利用相平衡关系确定与实际液相组成成平衡的气相组成
y * 0.94 x 0.94 0.05 0.047
将其与实际组成比较:y 0.094 y * 0.047
相关文档
最新文档