最大公因数和公倍数知识讲解

合集下载

最大公因数和最小公倍数知识点归纳

最大公因数和最小公倍数知识点归纳

【记忆背诵要点】家长签字:姓名:注意:每一个分数无论题目要求没,要约分后才能作为最后的结果。

一:约分的方法:1、先找到分子,分母的最大公因数;2、利用分数的性质约去最大公因数;3、化成最简分数。

(即不能再约分为止)二:比较分数大小的方法:1、分别对每个分数进行约分(或者通分),变成同分母分数, 或者变成同分子分数;2、比较化简后的两个分数的大小;3、比较原数的大小。

三:弄清互质的几种情况互质:两个数的最大公因数为1就叫做这两个数互质。

1.两个连续自然数是互质的。

例如:8与9;15与162.两个质数必然是互质的。

例如:5和7;11和133.一个质数和不是它倍数的合数。

例如:5和14;3和84.尽管两个数都是合数,但一个是2或3的倍数,另一个数是7或5的倍数。

例如:15和8,21和10四:求最大公因数或最小公倍数的方法:1.若两个数是互质的,则最大公因数为1,最小公倍数为这两个数的乘积。

2.若两个数是倍数关系,则较小的数为它们的最大公因数,较大的数为它们的最小公倍数。

当两个数相差较大时,要判断大数是否为小数的倍数。

例如:13与26,39,52,65,78;14与28,42,56,70,84;17与34,51等等。

以上两种情况不需要用分解质因数的方法。

3.两个数不是倍数关系的,也不是互质的才适合用分解质因数去求最大公因数和最小公倍数。

五:应用题中如何识别是求公因数还是公倍数的方法1.分析题意,判断结果应该比所给数量大,则是求公倍数;2.分析题意,判断结果应该比所给数量小,则是求公因数;3.题目中含“最多”或“最长”等字眼,则是求最大公因数;4.题目中含“至少”,“下一次”字眼,则是求最小公倍数;【认真练习】 1.填空75和15 16和30 77和44 6和10 13和91 21和35 12和18 3和14 最大公因数最小公倍数2.比较大小:(1)和(2)和。

最大公因数和最小公倍数讲解

最大公因数和最小公倍数讲解

最大公因数和最小公倍数讲解最大公因数和最小公倍数是数学中常用的概念,它们在我们的日常生活中也有很多应用。

本文将以最大公因数和最小公倍数为主题,分别对它们的定义、性质和应用进行讲解。

一、最大公因数最大公因数也被称为最大公约数,简称为GCD(Greatest Common Divisor)。

它表示两个或多个整数共有的约数中最大的一个数。

例如,对于整数12和16来说,它们的约数分别是1、2、3、4、6和12,其中最大的一个约数为4,因此12和16的最大公因数就是4。

最大公因数的计算方法有很多种,常用的有质因数分解法和辗转相除法。

质因数分解法是将两个或多个数分别进行质因数分解,然后取出它们的公共质因数,并将这些质因数相乘得到最大公因数。

辗转相除法是通过不断用较小数去除较大数,然后用余数代替较大数,再继续进行除法运算,直到余数为0为止,此时较小数就是最大公因数。

最大公因数有很多重要的性质。

首先,最大公因数大于等于1,因为任意一个数都可以被1整除。

其次,最大公因数可以整除两个或多个数的所有公倍数。

最后,最大公因数与最小公倍数的乘积等于这些数的乘积。

这些性质在数论、代数和几何等领域都有广泛的应用。

最大公因数在日常生活中也有很多实际应用。

例如,在化简分数时,可以将分子和分母的最大公因数约掉,从而得到最简分数。

此外,在求解线性方程时,最大公因数可以帮助我们找到方程的整数解。

另外,最大公因数还可以用于求解模运算、密码学等领域的问题。

二、最小公倍数最小公倍数也被称为最小公约数,简称为LCM(Least Common Multiple)。

它表示两个或多个整数公有的倍数中最小的一个数。

例如,对于整数4和6来说,它们的倍数分别是4、8、12、16、20和6、12、18、24,其中最小的一个公倍数为12,因此4和6的最小公倍数就是12。

最小公倍数的计算方法有很多种,常用的有质因数分解法和列表法。

质因数分解法是将两个或多个数分别进行质因数分解,然后取出它们的所有质因数,并将这些质因数相乘得到最小公倍数。

公因数和公倍数知识点

公因数和公倍数知识点

公因数和公倍数知识点公因数和公倍数公因数是指两个或多个数公有的因数,而公倍数是指两个或多个数公有的倍数。

在数学中,我们常常需要求两个数的最大公因数和最小公倍数。

首先,我们需要了解一些基本知识。

两个自然数如果公因数只有1,那么它们就是互素数。

而分子、分母是互素数的分数则被称为简分数。

求最大公因数的方法有分解素因数法和短除法。

最小公倍数的求法有分解素因数和短除法,即用最大公因数乘以各自独有的因数。

对于两个数的最大公因数和最小公倍数,有三种基本情况:特殊互素、较大数是较小数的倍数、一般关系。

对于特殊情况,我们可以直接求解,而对于一般情况,我们可以使用列举法、单列举法、分解质因数法、短除法、除法算式法等方法来求解最大公因数。

对于最小公倍数的求解,我们可以使用列举法、单列举法、大数翻倍法、分解质因数法或短除法等方法。

最后,我们需要记住,当两个数是倍数关系时,最大公因数是较小的数,最小公倍数是较大的数;当两个数是互质关系时,最大公因数是1,最小公倍数是它们的乘积。

12的倍数为12、24、36、48.一种方法是单列举法,比如求18和12的最小公倍数,先找出18的倍数:18、36、54、72,再从小到大找这些倍数中哪个同时也是另一个数的倍数,最小公倍数为36.另一种方法是大数翻倍法,将较大的数翻倍,每次翻倍后检查结果是否也是另一个数的倍数,直到找到最小公倍数为止。

比如求18和12的最小公倍数,可以将18翻倍,得到36,而36又是12的倍数,因此36是18和12的最小公倍数。

还有一种方法是短除法,先用两个数同时除以一个质数(要能整除),再同时除以另一个质数,直到得到两个互质的商为止,最后将所有的除数和商相乘即可得到最小公倍数。

对于问题1,(1)既是30的因数又是45的因数的数共有4个,其中最大的是15;(2)既是30的倍数又是45的倍数的数最小是90.对于问题2,将168分解质因数得到2×2×2×3×7,其中一个因数必为7,因此这三个连续自然数只有6、7、8和7、8、9两种可能,而7、8、9这三个数任意两个数的公因数都是1,因此这三个连续自然数只能是6、7和8,它们的和为21.随堂练:1、既是30的倍数又是45的倍数还是75的倍数的数最小是450;2、三个连续自然数的最小公倍数是660,这三个连续自然数分别是220、221和222.最小公倍数和最大公因数在数学中有着广泛的应用。

奥数最大公因数、最小公倍数讲义及答案

奥数最大公因数、最小公倍数讲义及答案

数的整除(3)最大公因数、最小公倍数教室______ 姓名_________ 学号________【知识要点】1、几个数公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。

自然数a、b的最大公因数记作(a, b)。

2、几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个叫做这几个数的最小公倍数。

自然数a、b的最小公倍数记作]a, b]。

3、两个自然数的最大公因数和最小公倍数的性质:(1)(a, b)x[ a, b] =a x b;(2)若a>b,则a- b与b的最大公因数就等于a与b的最大公因数。

(3)a+b与b的最大公因数,等于a与b的最大公因数。

【典型例题】例1.甲数是24,甲、乙两数的最小公倍数是168,最大公因数是4,求乙数。

解:由性质(1)得到乙数=168 X 4 - 24 = 28.例2•将长为90厘米,宽为42厘米的长方形铁皮剪成边长是整厘米数,面积相等的正方形铁皮,恰无剩余,问至少剪成多少块?解:把长方形铁皮剪成边长是整厘米数,面积相等的正方形,则正方形的边长应是长方形的长和宽的公因数,又要求所剪正方形铁片块数最少,因此正方形边长是长方形长与宽的最大公因数。

( 90, 42) =6.至少能剪90X 42-( 6 X 6) =105 (块).例3.马鹏和李虎计算甲、乙两个自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473 ;李虎把甲数的十位数字看错了,得乘积407,那么甲、乙两数的乘积应是多少?解:473与407的最大公因数是11,而11是质数,所以乙数是11,又473=43 X 11 , 407 = 37 X 11,所以甲数是47,甲乙两数的乘积应为:47X 11=517 或1X477=477.例4.有一种自然数,它加上1是2的倍数,加上2是3的倍数,加上3是4的倍数,加上4是5的倍数,加上5是6的倍数,加上6是7的倍数,则这种自然数中除1以外,最小数是多少?解:根据已知,若这个数分别加上1、2、3、4、5、6是2、3、4、5、6、7的倍数,求这个数最小是多少,即这个数是2, 3, 4, 5, 6, 7的最小公倍数加上 1. [2, 3, 4, 5, 6, 7] =420, 最小数是:420+1=421。

最大公因数和最小公倍数讲解

最大公因数和最小公倍数讲解

最大公因数和最小公倍数讲解最大公因数和最小公倍数是数学中常见的概念,它们在我们的生活中有着广泛的应用。

本文将以最大公因数和最小公倍数为主题,介绍它们的定义、计算方法以及实际应用。

一、最大公因数的定义和计算方法最大公因数,简称最大公约数,是指两个或多个整数共有的约数中最大的一个。

最大公因数的计算方法有几种常见的方式。

1.1 辗转相除法辗转相除法是一种简单而有效的计算最大公因数的方法。

具体步骤如下:(1)将两个数中较大的数除以较小的数,得到商和余数。

(2)将较小的数除以余数,再次得到商和余数。

(3)重复上述步骤,直到余数为0为止。

此时,较小的数就是最大公因数。

例如,计算30和45的最大公因数:30 ÷ 45 = 0余3045 ÷ 30 = 1余1530 ÷ 15 = 2余0因此,最大公因数为15。

1.2 素因数分解法素因数分解法是一种将数进行质因数分解的方法。

具体步骤如下:(1)将两个数分别进行质因数分解。

(2)将两个数中相同的质因数相乘,得到的结果即为最大公因数。

例如,计算72和96的最大公因数:72 = 2 × 2 × 2 × 3 × 396 = 2 × 2 × 2 × 2 × 2 × 3公共质因数为2 × 2 × 2 = 8,因此,最大公因数为8。

二、最小公倍数的定义和计算方法最小公倍数指的是两个或多个数的公倍数中最小的一个。

最小公倍数的计算方法有几种常见的方式。

2.1 常用倍数法常用倍数法是一种简单而直观的计算最小公倍数的方法。

具体步骤如下:(1)将两个数列出它们的倍数。

(2)找出两个数中相同的倍数,其中最小的一个即为最小公倍数。

例如,计算6和8的最小公倍数:6的倍数:6、12、18、24、...8的倍数:8、16、24、32、...公共倍数为24,因此,最小公倍数为24。

公因数和公倍数讲解

公因数和公倍数讲解

公因数和公倍数讲解以公因数和公倍数为话题,我们来探讨一下这两个概念以及它们在数学中的应用。

公因数是指两个或多个数共有的因数,而公倍数则是指能够同时整除两个或多个数的数。

让我们从公因数开始讲解。

公因数是指能够整除两个或多个数的因数。

比如,对于数字12和18来说,它们的公因数有1、2、3和6。

这是因为这些数都能整除12和18,没有余数。

公因数可以帮助我们找到两个或多个数的共同因数,这在数学运算中是非常有用的。

公因数在分解质因数和求最大公因数的过程中起着重要的作用。

分解质因数是将一个数分解为质数的乘积的过程。

通过找到两个或多个数的公因数,我们可以通过不断分解这些数,最终得到它们的质因数。

例如,我们可以将数字12分解为2 * 2 * 3,而数字18可以分解为2 * 3 * 3。

通过分解质因数,我们可以更好地理解和比较不同数的因数之间的关系。

最大公因数是指能够整除两个或多个数的最大的数。

求最大公因数的方法有很多种,比如质因数分解法、辗转相除法等等。

这些方法都是通过找到两个或多个数的公因数,然后比较它们的大小,最终得到最大的公因数。

最大公因数在简化分数、求最小公倍数等问题中起着关键的作用。

接下来,我们来讨论一下公倍数。

公倍数是指能够同时整除两个或多个数的数。

比如,对于数字4和6来说,它们的公倍数有12、24、36等等。

这是因为这些数都能够同时整除4和6,没有余数。

公倍数可以帮助我们找到两个或多个数的共同倍数,这在数学运算中也是非常有用的。

公倍数在求最小公倍数和比较分数大小的过程中起着重要的作用。

最小公倍数是指能够同时整除两个或多个数的最小的数。

求最小公倍数的方法通常是通过列举两个或多个数的倍数,然后找到它们的共同倍数中的最小值。

最小公倍数在将不同分数转化为相同分母的分数时非常有用。

总结一下,公因数和公倍数在数学中起着重要的作用。

公因数可以帮助我们分解质因数和求最大公因数,而公倍数可以帮助我们求最小公倍数和比较分数大小。

奥数最大公因数、最小公倍数讲义及答案

奥数最大公因数、最小公倍数讲义及答案

数的整除(3)最大公因数、最小公倍数教室姓名学号【知识要点】1、2、几个数公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。

自然数a、b的最大公因数记作(a,b)。

3、4、几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个叫做这几个数的最小公倍数。

自然数a、b的最小公倍数记作[a,b]。

5、(6、7、两个自然数的最大公因数和最小公倍数的性质:(1)(a,b)×[a,b]=a×b;(2)若a>b,则a-b与b的最大公因数就等于a与b的最大公因数。

(3)a+b与b的最大公因数,等于a与b的最大公因数。

【典型例题】¥例1.甲数是24,甲、乙两数的最小公倍数是168,最大公因数是4,求乙数。

解:由性质(1)得到乙数=168×4÷24=28.例2.将长为90厘米,宽为42厘米的长方形铁皮剪成边长是整厘米数,面积相等的正方形铁皮,恰无剩余,问至少剪成多少块解:把长方形铁皮剪成边长是整厘米数,面积相等的正方形,则正方形的边长应是长方形的长和宽的公因数,又要求所剪正方形铁片块数最少,因此正方形边长是长方形长与宽的最大公因数。

(90,42)=6.至少能剪90×42÷(6×6)=105(块).例 3.马鹏和李虎计算甲、乙两个自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473;李虎把甲数的十位数字看错了,得乘积407,那么甲、乙两数的乘积应是多少解:473与407的最大公因数是11,而11是质数,所以乙数是11,又473=43×11,407=37×11,所以甲数是47,甲乙两数的乘积应为:47×11=517或1×477=477.]例4.有一种自然数,它加上1是2的倍数,加上2是3的倍数,加上3是4的倍数,加上4是5的倍数,加上5是6的倍数,加上6是7的倍数,则这种自然数中除1以外,最小数是多少解:根据已知,若这个数分别加上1、2、3、4、5、6是2、3、4、5、6、7的倍数,求这个数最小是多少,即这个数是2,3,4,5,6,7的最小公倍数加上1. [2,3,4,5,6,7]=420,最小数是:420+1=421。

公因数和公倍数知识点

公因数和公倍数知识点

公因数和公倍数【知识点回顾】1、公因数(1)互素数:公因数只有1的两个自然数叫做互素数。

(2)简分数:分子、分母是互素数的分数叫做简分数。

(3)求最大公因数的方法:分解素因数法和短除法。

2、公倍数求最小公倍数的方法:分解素因数和短除法,即用最大公因数×各自独有的因数。

3、求两个数的最大公因数和最小公倍数,有3种基本情况,区别如下:4、求最大公因数和最小公倍数的方法:一、特殊情况:(1)倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。

(如;6和12的最大公因数是6,最小公倍数是12。

)(2)互质关系的两个数,最大公因数是1,最小公倍数是它们的乘积。

(如,5和7的最大公因数时1,最小公倍数是5×7=35)二、一般情况:(1)求最大公因数:列举法、单列举法、分解质因数法、短除法、除法算式法。

①列举法:如,求18和27的最大公因数先找出两个数的所有因数 18的因数有:1、2、3、6、9、18 27的因数有:1、3、9、27 再找出两个数的公因数: 18的因数有:1、2、3、6、9、1827的因数有:1、3、9、271、3、9最后找出最大公因数: 9②单列举法:如,求18和27的最大公因数先找出其中一个数的因数:18的因数有:1、2、3、6、9、18 再找这些因数中那些又是另一个数的因数:1、3、9又是27的因数 最后找出最大公因数: 9③短除法:3 18 273 6 9 2 3 除到商是互质数为止,最后把所有的除数相乘3×3=9④除法算式法:用这两个数同时除以公因数,除到最大公因数为止。

18 ÷ 9就是18和27的最大公因数 27(2)求最小公倍数:列举法、单列举法、大数翻倍法、分解质因数法或短除法。

①列举法:如,求18和12的最小公倍数先按从小到大的顺序找出这两个数的倍数: 18的倍数:18、36、54、7212的倍数:12、24、36、48再找出两个数的最小公倍数: 18的倍数:18、36、54、7212的倍数:12、24、36、48②单列举法:如,求18和12的最小公倍数先找出一个数的倍数: 18的倍数有:18、36、54、72再按从小到大的顺序找这些倍数中那个又是另一个数的倍数,找出最小公倍数: 36③大数翻倍法:如,求18和12的最小公倍数把较大的数翻倍(2倍开始),每次翻倍后看结果是不是另一个数的倍数,直到找到最小公倍数为止。

公因数、最大公因数、公倍数和最小公倍数

公因数、最大公因数、公倍数和最小公倍数

公因数、最大公因数、公倍数和最小公倍数公因数、最大公因数、公倍数和最小公倍数在数学中,我们常常需要求出多个数的公因数、最大公因数、公倍数和最小公倍数。

掌握这些概念和求法是非常重要的。

最大公因数是几个数公有的因数中最大的那个,可以用列举法、观察法和短除法等方法求得。

例如,求8和6的最大公因数,我们可以先列出它们的因数,然后找出它们的公因数,最后找出它们的最大公因数,即2.观察法可以应用于特殊情况,例如两个数具有倍数关系时,它们的最大公因数就是其中较小的数;两个数是互质数时,它们的最大公因数就是1.如果两个数不是倍数和互质关系,我们可以用小数缩小法,即把较小的数缩小,每次缩小后看得到的商是不是另一个数的因数,直到所得的商是另一个数的因数为止。

短除法是一般情况下求最大公因数的常用方法。

我们可以用这两个数除以它们的公因数,一直除到所得的两个商只有公因数1为止。

然后把最后所有的除数连乘,就得到了二个数最大公因数。

除了最大公因数,我们还需要掌握最小公倍数的求法。

最小公倍数是几个数公有的倍数中最小的那个,可以用列举法、分解质因数法和公式法等方法求得。

例如,求6和8的最小公倍数,我们可以先列出它们的倍数,然后找出它们的公倍数,最后找出它们的最小公倍数,即24.最后,我们需要学会如何解有关最大公因数和最小公倍数的应用题,例如求某些数的最大公因数或最小公倍数,或者求某些数的倍数关系等。

通过练,我们可以更好地掌握这些知识点,并在实际问题中灵活运用。

12和24的最大公因数是4,可以表示为(12,24)=4.互质数是指公因数只有1的两个数,例如1和任何自然数都是互质数,相邻两个自然数如2和3、8和9也是互质数。

两个质数一定是互质数,而两个合数可能是互质数,例如8和9、25和49.2和所有奇数都是互质数,质数与比它小的合数也是互质数。

需要注意的是,质数是对一个数来说,而互质数是对两个数的关系来说的。

在练中,需要判断每组数是不是互质关系或倍数关系,并求出它们的最大公因数。

公因数、最大公因数、公倍数和最小公倍数

公因数、最大公因数、公倍数和最小公倍数

公因数、最大公因数、公倍数和最小公倍数1、掌握最大公因数和最小公倍数的求法;2、会解有关最大公因数和最小公倍数的应用题;【知识点1】最大公因数几个数公有的因数叫这些数的公因数。

其中最大的那个就叫它们的最大公因数。

【知识点2】最大公因数求法1、列举法先找出两个数的(因数),再找出两个数的(公因数),最后找出二个数的(最大公因数)找8和6的最大公因数8的因数有1、2、4、86的因数有1、2、3、68和6的最大因数数是2。

2、观察法(特殊情况)1)两个数具有倍数关系的,它们的最大公因数就是其中较小的数。

2)两个数是互质数的(互质数就是两个数只有公因数1),它们的最大公因数就是1。

3)两个数不是倍数和互质关系,用小数缩小法案件分解:两个数具有倍数关系的,它们的最大公因数是其中较小的数。

8和16的最大公因数( 8 ) 4和8的最大公因数( 4 )9和3的最大公因数( 3 ) 28和7的最大公因数( 7 )两个数是互质数的(互质数就是两个数只有公因数1),它们的最大公因数就是1。

相邻两个自然数(0除外)2和3的最大公因数是( 1 ) 8和9的最大公因数是( 1 ) 99和98的最大公因数是( 1 )两个不同的质数5和7的最大公因数是( 1 ) 17和29的最大公因数是( 1 ) 11和19的最大公因数是( 1 )两个互质的合数4和9的最大公因数是( 1 ) 20和49的最大公因数( 1 ) 25和69的最大公因数是( 1 )两个数不是倍数和互质关系,用小数缩小法把较小的数缩小(除以2、3、4……)每次缩小后看得到的商是不是另一个数的因数,直到所得的商是另一个数的因数为止。

18和48的最大公因数先用小数 18÷2=9,9不是48的因数,18÷3=6,6是48的因数,那么18和48的最大公因数6。

16和36的最大公因数16÷2=8,8不是36的因数,16÷4=4,4是36的因数,那么16和36的最大公因数4。

最大公因数和最小公倍数

最大公因数和最小公倍数

第三讲最大公因数和最小公倍数一.基本概念和知识1.公因数和最大公因数几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做这几个数的最大公因数。

2.公倍数和最小公倍数几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

3.互质数如果两个数的最大公因数是1,那么这两个数叫做互质数。

二.例题例1:用一个数去除30、60、75,都能整除,这个数最大是多少?分析∵要求的数去除30、60、75都能整除,∴要求的数是30、60、75的公因数。

又∵要求符合条件的最大的数,∴就是求30、60、75的最大公因数。

解:(30,60,75)=15所以,这个数最大是15。

例2:一个数用3、4、5除都能整除,这个数最小是多少?分析由题意可知,要求求的数是3、4、5的公倍数,且是最小公倍数。

解:∵ [3,4,5] =60,∴用3、4、5除都能整除的最小的数是60。

例3:有三根铁丝,长度分别是120厘米、180厘米和300厘米。

现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?分析∵要截成相等的小段,且无剩余,∴每段长度必是120、180、300的公因数;又∵每段要尽可能长,∴要求的每段长度就是120、180、300的最大公因数。

解:∵(120,180,300)=60,∴每小段最长60厘米。

120÷60+180÷60+300÷60=2+3+5=10(段)答:每段最长60厘米,一共可以截成10段。

例4:加工某种机器零件,要经过三道工序。

第一道工序每个工人每小时可完成3个零件,第二道工序每个工人每小时可完成10个,第三道工序每个工人每小时可完成5个。

要使加工生产均衡,三道工序至少各分配几个工人?分析要使加工生产均衡,各道工序生产的零件总数应是3、10和5的公倍数。

要求三道工序“至少”要多少工人,要先求3、10和5的最小公倍数。

解:∵[3,10,5]=30∴各道工序均应加工30个零件。

最大公因数和最小公倍数

最大公因数和最小公倍数

最大公因数和最小公倍数一.教学重点和难点:教学重点:1.掌握计算三个数的最大公因数和最小公倍数的方法。

2.介绍辗转相除的方法计算最大公因数和最小公倍数。

3.最大公因数和最小公倍数的性质。

4.利用最大公因数和最小公倍数解决生活中的实际问题。

5.利用最大公因数和最小公倍数解决一些有特点的数字的问题。

教学难点:1.掌握计算三个数的最大公因数和最小公倍数的区别。

2.能够通过分解质因数方法的分析,理解最大公因数和最小公倍数之间存在的性质。

3.利用最大公因数和最小公倍数解决问题时,对数字特点的观察。

二简要知识介绍:最大公因数和最小公倍数在计算的时候我们一般采用的方法是短除的方法,它们在计算时的最大区别在于所需要的质因数是不同的,最大公因数是取公有的质因数,最小公倍数是公有的质因数(代表)和独有的质因数都要。

但是在两个数不容易看出公因数的时候,我们也可以采取辗转相除的方法进行计算。

具体的方法是:先用小的一个数除大的一个数,得第一个余数,再用第一个余数除小的一个数,得到第二个余数;又用第二个余数除第一个余数,得第三个余数,这样逐次用后一个余数去除前一个余数,直到余数是0为止。

那么最后一个除数就是所求的最大公约数。

最大公因数和最小公倍数之间还存在着性质:两个自然数的乘积等于这两个自然数的最大公约数和最小公倍数的乘积。

若a、b表示两个自然数,则a×b=(a,b)×[a,b]在利用最大公因数和最小公倍数解决实际生活中的问题的时候,首先要分清计算的是哪个?然后再进行计算。

三.知识教学:(一)求三个数的最大公因数和最小公倍数的方法。

例1.求20、30和36的最大公因数和最小公倍数(1)我们先来计算这三个数的最大公因数列举法20的因数有:1、2、4、5、10、2030的因数有:1、2、3、5、6、10、15、3036的因数有:1、2、3、4、6、9、12、18、36三个数的最大公因数是2分解质因数的方法20=2×2×530=2×5×336=2×2×3×3(20,30,36)=2短除的方法(20,30,36)=2(2)我们再来计算它们的最小公倍数列举法20的倍数有:20、40、60、80……30的倍数有:30、60、90、……36的倍数有:36、72、……分解质因数的方法20=2×2×530=2×5×336=2×2×3×3[20,30,36]=2×2×3×5×3=180短除的方法(20,30,36)=2[20,30,36]=2×2×3×5×3=180(3)对比比较分解质因数的方法20=2×2×530=2 ×5×336=2×2 ×3×3(20,30,36)=2[20,30,36]=2×2×3×5×3=180比较短除的方法(20,30,36)=2 [20,30,36]=2×2×3×5×3=180(4)小结:在计算三个数的最大公因数和最小公倍数的时候,最大公因数要找三个数的公有的质因数,如果其中的两个商还有质因数的话,也不要往下除。

最大公因数与最小公倍数应用(较难含有部分的讲解)教学文案

最大公因数与最小公倍数应用(较难含有部分的讲解)教学文案

最大公因数与最小公倍数应用(一)一、知识要点:1、性质1:如果a、b两数的最大公因数为d,则a=md,b=nd,并且(m,n)=1。

例如:(24,54)=6,24=4×6,54=9×6,(4,9)=1。

2、性质2:两个数的最小公倍数与最大公因数的乘积等于这两个数的乘积。

a与b的最小公倍数[a,b]是a与b的所有倍数的最大公因数,并且a×b=[a,b]×(a,b)。

例如:(18,12)= ,[18,12]= (18,12)×[18,12]=3、两个数的公因数一定是这两个数的最大公因数的因数。

3、辗转相除法二、热点考题:例1 两个自然数的最大公因数是6,最小公倍数是72。

已知其中一个自然数是18,求另一个自然数。

练一练:甲数是36,甲、乙两数的最大公因数是4,最小公倍数是288,求乙数。

例2 两个自然数的最大公因数是7,最小公倍数是210。

这两个自然数的和是77,求这两个自然数。

分析与解:如果将两个自然数都除以7,则原题变为:“两个自然数的最大公因数是1,最小公倍数是30。

这两个自然数的和是11,求这两个自然数。

”例3 已知a与b,a与c的最大公因数分别是12和15,a,b,c的最小公倍数是120,求a,b,c。

分析与解:因为12,15都是a的因数,所以a应当是12与15的公倍数,即是[12,15]=60的倍数。

再由[a,b,c]=120知,a只能是60或120。

[a,c]=15,说明c没有质因数2,又因为[a,b,c]=120=23×3×5,所以c=15。

练一练:已知两数的最大公因数是21,最小公倍数是126,求这两个数的和是多少?例4已知两个自然数的和是50,它们的最大公因数是5,求这两个自然数。

例5 已知两个自然数的积为240,最小公倍数为60,求这两个数。

习题四1.已知某数与24的最大公因数为4,最小公倍数为168,求此数。

求最大公因数、最小公倍数方法课件

求最大公因数、最小公倍数方法课件

最小公倍数的性质和特点
总结词
最小公倍数具有一些重要的性质和特点,这些性质和 特点有助于更好地理解最小公倍数的概念和应用。
详细描述
最小公倍数是两个或多个整数的最小正整数倍数。它具 有一些重要的性质和特点,如最小公倍数是公共倍数、 是所有倍数中最小的一个、是所有倍数的因数的乘积等 。此外,最小公倍数还可以通过一些特定的运算性质进 行计算,如两数的乘积等于它们的最大公因数与最小公 倍数的乘积、两数的最小公倍数等于其中一数与两数的 最大公因数的乘积等。这些性质和特点有助于更好地理 解最小公倍数的概念和应用。
最小公倍数的定义
最小公倍数
两个或多个整数的最小的公倍数。
举例
对于数字12和15,它们的最小公倍数是60,因为60是12和15都能被整除的最 小的正整数。
最大公因数和最小公倍数的关系
互为倒数的倍数关系
最大公因数和最小公倍数之间存在一 种互为倒数的倍数关系,即两数的乘 积等于它们的最大公因数与最小公倍 数的乘积。
求最大公因法数课、件最小公倍数方
contents
目录
• 最大公因数和最小公倍数的概念 • 求最大公因数的方法 • 求最小公倍数的方法 • 最大公因数和最小公倍数的应用 • 练习题和答案
01
最大公因数和最小公倍数 的概念
最大公因数的定义
最大公因数
两个或多个整数共有的最大的正 整数因子。
举例
对于数字24和36,它们的最大公 因数是12,因为12是24和36都能 被整除的最大的正整数。
使用公式计算最小公倍数
总结词
通过使用特定的公式,可以直接计算出两个数的最小公倍数。
详细描述
这种方法需要使用特定的数学公式来计算最小公倍数。对于两个互质的整数a和b,它们的最小公倍数是它们的乘 积除以它们的最大公因数,即lcm(a, b) = (a * b) / gcd(a, b)。对于任意整数a和b,可以先求出它们的最大公因 数,再使用上述公式计算最小公倍数。

公因数与最大公因数、公倍数与最小公倍数 1

公因数与最大公因数、公倍数与最小公倍数 1

第二讲:公因数与最大公因数、公倍数与最小公倍数第一部分:公因数与最大公因数知识点归纳:1:公因数和最大公因数的意义几个数公有的因数,叫做这几个数的公因数,其中最大的一个,称为这几个数的最大公因数。

注意:几个数的公因数必须包含它们公有的素因数(至少一个),而几个数的最大公因数必须包含它们全部公有的素因数。

2:互素的意义若两个数的公因数只有1 ,则称这两个数互素,它和素数、素因数是绝对不同的概念,素数是指一个数除了1和本身以外没有别的因数的数。

当素数是一个合数的因数时,则称这个素数为这个合数的素因数。

3:求公因数和最大公因数的方法若两个数互素,则它们的公因数为1.若两个数之间存在倍数关系,则它们的最大公因数是其中较小的那个数。

若两个数既不互素,也不存在倍数关系,则一般可用短除法或者分解素因数法找到它们全部公有的素因数,这些素因数的积就是这两个数的最大公因数。

典例练习1、用边长为6厘米、4厘米的正方形纸片分别铺长为18厘米、宽为12厘米的矩形。

哪种纸片能将矩形铺满?2、两个数的和是60 ,且它们的最大公因数为12 ,求这两个数。

3、若甲数= a×b×c ,乙数= a×c ×d (a、b 、c 、d 是不同的素数),则甲、乙两数的最大公因数是什么?4、有12米长的铁丝8根,18米长的铁丝7根,要把它们截成一样长的铁丝,不浪费,截下的铁丝要最长,铁丝长几米?可以截多少根?5、小华在制作船模时,将三根长分别为12厘米,18厘米,和30厘米的木条截成同样长的若干段,且都没有剩余,请你算一算每段最长是几厘米,一共截了多少段?6、把一张长42厘米,宽30厘米的长方形,剪成大小一样的正方形而无剩余,剪成的正方形至少有几个?7、甲、乙、丙三人是朋友,他们每隔不同的天数去图书馆一次,甲3天去一次,乙4天去一次,丙5天去一次,有一天,他们三人恰好在图书馆相会,问至少再经过多少天他们三人又在图书馆相会?8、1路、2路和5路公交车都从东站发车,1路车每隔10分钟发一辆,2路车每隔15分钟发一辆,而5路每隔20分钟发一辆,当这三种线路的车同时发车后,至少要过多少分钟又有这三种路线同时发车?9、有一个长方体木块,长60厘米,宽40厘米,高24厘米,如果要切成同样大小的小立方体,这些小立方体的棱长最长是多少厘米?10、一个数除253余1,除299余2,这个数最大是多少?11、一条成直角形状的街道,一条街道长840米,另一条街道长720米,要在这条街道的右侧等距离的装上路灯,且要求两端和转弯处都必须装灯,那么这条街道最少要装多少盏灯?12、有三个素数,它们的乘积是1001,求这三个素数分别是多少?13、某校购进72台同型号的录音机,由于发票上的字迹太淡,首尾两个数看不清楚,只能看出应付的钱数是 5928元,你能推算出这次学校购买的录音机的单价和总价吗?第二部分:公倍数与最小公倍数知识点归纳:1:公倍数和最小公倍数的意义几个数共有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

数学教育的最大公因数和最小公倍数

数学教育的最大公因数和最小公倍数

数学教育的最大公因数和最小公倍数
为了让大家明白数学里的最大公因数和最小公倍数概念,我先用下面一个图片给大家科普一下。

左侧这个是求12和18的最大公约数,右侧这个是求12,30,50的最小公倍数,有了这个图片解释,我就不用再详细解读了,只就要点说明一下。

看不懂,你就多看几遍,对于只有小学数学知识就可以明白的东西,为了明白教育的最大公因数和最小公倍数,费这点心应该是最小的应该。

我的解读是:
最大公因数:两个事物中,最大的共同点。

最小公倍数:两个事物中,融合了所有不同点和共同点,但是,共同点只被融合一次,不叠加。

很显然,高一要学的集合,其中最重要的交集和并集,本质上,就是最大公因数和最小公倍数。

只不过,更加抽象和具象化了。

下面谈谈数学教育里的最大公因数:
先说说解题过程中的最大公因数。

要得到解题的最大公因数,最好的方式,是把同类型题放一起。

所谓同类型题,就是条件或者结论类似。

条件类似,思考和解题过程是完全可以类比进行的。

结论类似,虽然解题过程不一定能够类比,但是,思考过程,却是可以类比的。

条件类似的题目,其最大公约数,就是条件了。

如果我们学会了分析条件,并且学会了分析条件的一般规律,那这种题目就会迎刃而解了。

结论类似的题目,其最大公约数,就是寻找其得到结论的需要。

奥数最大公因数最小公倍数讲义及答案

奥数最大公因数最小公倍数讲义及答案

数的整除(3)最大公因数、最小公倍数教室姓名学号【知识要点】1、几个数公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。

自然数a、b的最大公因数记作(a,b)。

2、几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个叫做这几个数的最小公倍数。

自然数a、b的最小公倍数记作[a,b]。

3、两个自然数的最大公因数和最小公倍数的性质:(1)(a,b)×[a,b]=a×b;(2)若a>b,则a-b与b的最大公因数就等于a与b的最大公因数。

(3)a+b与b的最大公因数,等于a与b的最大公因数。

【典型例题】例1.甲数是24,甲、乙两数的最小公倍数是168,最大公因数是4,求乙数。

解:由性质(1)得到乙数=168×4÷24=28.例2.将长为90厘米,宽为42厘米的长方形铁皮剪成边长是整厘米数,面积相等的正方形铁皮,恰无剩余,问至少剪成多少块?解:把长方形铁皮剪成边长是整厘米数,面积相等的正方形,则正方形的边长应是长方形的长和宽的公因数,又要求所剪正方形铁片块数最少,因此正方形边长是长方形长与宽的最大公因数。

(90,42)=6.至少能剪90×42÷(6×6)=105(块).例 3.马鹏和李虎计算甲、乙两个自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473;李虎把甲数的十位数字看错了,得乘积407,那么甲、乙两数的乘积应是多少?解:473与407的最大公因数是11,而11是质数,所以乙数是11,又473=43×11,407=37×11,所以甲数是47,甲乙两数的乘积应为:47×11=517或1×477=477.例4.有一种自然数,它加上1是2的倍数,加上2是3的倍数,加上3是4的倍数,加上4是5的倍数,加上5是6的倍数,加上6是7的倍数,则这种自然数中除1以外,最小数是多少?解:根据已知,若这个数分别加上1、2、3、4、5、6是2、3、4、5、6、7的倍数,求这个数最小是多少,即这个数是2,3,4,5,6,7的最小公倍数加上1.[2,3,4,5,6,7]=420,最小数是:420+1=421。

最大公因数和最小公倍数知识点

最大公因数和最小公倍数知识点

最大公因数和最小公倍数知识点
1. 嘿,知道吗?最大公因数就像是几个数的“最大公约数”呀!比如说找 12 和 18 的最大公因数,那就是 6 呀!就好像是它们之间最紧密的联系
纽带呢!想想看,如果没有这个最大公因数,我们怎么能快速找到它们的共性呢?
2. 哎呀呀,最小公倍数啊,就如同是几个数的“共同小目标”!好比说4 和 6 的最小公倍数是 12,这就是它们要一起走到的那个关键点呀!不是
很有趣吗?要是不知道这个,很多问题可不好解决呀!
3. 你想想看,最大公因数不就是在一堆数里找出那个最“核心”的数嘛!就像从一堆玩具里找出大家都最喜欢的那个一样。

比如 8 和 12,最大公因
数 4 就是它们最特别的存在!
4. 哇塞,最小公倍数可是很重要的哦!它就像一个团队的“共同终点线”。

举个例子,3 和 5 的最小公倍数是 15,这就是它们要一起抵达的地
方呀,难道不神奇吗?
5. 嘿,难道你不觉得最大公因数像是打开数学宝库的一把钥匙吗?看
10 和 15,最大公因数 5 就是开启那扇门的关键呀!没有它可不行呢!
6. 呀,最小公倍数简直就是数之间的“秘密约定”!比如说 6 和 9 的
最小公倍数是 18,这就是它们之间心照不宣的约定地点呢!是不是很有意思!
7. 你说,最大公因数是不是数世界里的“明星”呀!就像找 14 和 21 的最大公因数 7 一样,一下子就脱颖而出了!这多让人惊叹!
8. 哇哦,最小公倍数真的是太奇妙啦!它就如同是数世界的“灯塔”。

就拿 2 和 3 来说,它们的最小公倍数 6 就是指引它们前行的光呀!
总之,最大公因数和最小公倍数是数学中非常重要的概念呀,它们可帮了我们不少忙呢!掌握了它们,就能更好地理解和解决好多数学问题呢!。

最大公因数与最小公倍数的实际应用

最大公因数与最小公倍数的实际应用

最⼤公因数与最⼩公倍数的实际应⽤最⼤公因数和最⼩公倍数基础知识与实际应⽤相关基础知识⼏个数公有的因数叫做这⼏个数的公因数,其中最⼤的⼀个叫做这⼏个数的最⼤公因数。

⼏个数公有的倍数叫做这⼏个数的公倍数,其中最⼩的⼀个叫做这⼏个数的最⼩公倍数。

最⼤公因数和最⼩公倍数的性质(1)两个数分别除以它们的最⼤公因数,所得的商⼀定是互质数。

(2)两个数的最⼤公因数的因数,都是这两个数的公因数,(3)两个⾃然数的最⼤公因数与最⼩公倍数的乘积等于这两个数的乘积。

两个⾃然数的最⼤公因数与最⼩公倍数关系是:(a,b)×[a,b]=a×b。

6是12和18的最⼤公因数,记作(12,18)=6。

36是12和18的最⼩公倍数,记作[12,18]=36。

这样,求两个数的最⼩公倍数的问题,即可转化成先求两个数的最⼤公因数,再⽤最⼤公因数除两个数的积,其结果就是这两个数的最⼩公倍数。

两个数A,B,①如果A是B的倍数,那么最⼤公因数就是B,最⼩公倍数是A;②如果AB互质,那么最⼤公因数就是1,最⼩公倍数是A*B;欧⼏⾥得⽤辗转相除法求两个数的最⼤公因数。

如果(a,b)来表⽰a和b的最⼤公因数。

有定理:已知a,b,c为正整数,若a除以b余c,则(a,b)=(b,c)。

辗转相除法(欧⼏⾥得算法)定义:所谓辗转相除法,就是对于给定的两个数,⽤较⼤的数除以较⼩的数。

若余数不为零,则将余数和较⼩的数构成新的⼀对数,继续上⾯的除法,直到⼤数被⼩数除尽,则这时较⼩的数就是原来两个数的最⼤公因数。

步骤:S1,⽤⼤数除以⼩数S2,除数变成被除数,余数变成除数S3,重复S1,直到余数为0 时,较⼩的数就是原来两个数的最⼤公因数。

例1:求15750 与27216的最⼤公因数。

解:∵27216=15750×1+11466 ∴(15750,27216)=(15750,11466)∵15750=11466×1+4284 ∴(15750,11466)=(11466,4284)∵11466=4284×2+2898 ∴(11466,4284)=(4284,2898)∵4284=2898×1+1386 ∴(4284,2898)=(2898,1386)∵2898=1386×2+126 ∴(2898,1386)=(1386,126)∵1386=126×11∴(1386,126)=126所以(15750,27216)=126例2.求(1397,2413)2413=1397*1+1016,1397=1016*1+381,1016=381*2+254,381=254*1+127,254=127*2+0,所以(1397,2413)=127。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最大公因数和公倍数
精锐教育学科教师辅导讲义
讲义编号
学员编号:年级:预初课时数:3
学员姓名:王奕辅导科目:数学学科教师:刘森授课类型T素数和合数T 最大公因数和最大公倍数
授课时间2014
教学目标掌握素数和合数的概念和区别、掌握如何求最大公因数和最大公倍数
教学内容
一、质数和合数
质数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

最小的质数是2,2是唯一的偶质数,没有最大的质数。

合数的意义:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

最小的合数是4,没有最大的合数
分解质因数
质因数:每个合数都可以写成几个质数相乘的形式。

其中每个质数都是这个合数的因数,叫做这个合数的质因数
分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数
分解质因数的方法:把一个合数分解质因数,通常运用短除法。

分解质因数时,先用这个合数的质因数(通常从最小的开始)去除,得出的商如果是质数,就把除数和商写成相乘的形式;得出的商如果是合数,就照上面的方法继续除下去,直到得出的商是质数为止,然后把各个除数和最后的商写成连成的形式。

例1、 50以内最大质数与最小合数的乘积是()。

例2、有两个数都是质数,这两个数的和是8,两个数的积是15,这两个数是:()和()。

相关文档
最新文档