2019年高考理数全国卷3
2019年全国3卷 理科数学真题(解析版)
19年全国3卷 理数一、选择题:1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =( )A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z =( )A .1i --B .1+i -C .1i -D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A .0.5 B .0.6 C .0.7 D .0.8 4.(1+2x 2 )(1+x )4的展开式中x 3的系数为( ) A .12 B .16 C .20 D .245.已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3=( ) A . 16 B . 8 C .4 D . 2 6.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则( ) A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-7.函数3222x xx y -=+在[]6,6-的图象大致为( )A .B .C .D .8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于( )A.4122-B.5122-C.6122-D.7122-10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( ) A .32 B .32C .22D .3211.设()f x 是定义域为R 的偶函数,且在()0,∞单调递减,则( )A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314)12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是( )A . ①④B . ②③C . ①②③D . ①③④ 二、填空题:本题共4小题,每小题5分,共20分。
2019年新课标全国卷3高考理科数学试题及答案
绝密★启用前2019年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A.3B.3C.3D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
2019年高考理科数学全国卷3含答案
数学试卷第1页(共18页)数学试卷第2页(共18页)绝密★启用前2019年普通高等学校招生全国统一考试·全国Ⅲ卷理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B = ()A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则=z ()A .1i--B .1+i-C .1i-D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A .0.5B .0.6C .0.7D .0.84.()()42121++x x 的展开式中3x 的系数为()A .12B .16C .20D .245.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134=+a a a ,则3=a ()A .16B .8C .4D .26.已知曲线e ln x y a x x =+在点1(,)ae 处的切线方程为2=+y x b ,则()A.–1==,a e bB.1==,a e b C.–11==,a e b D.–11==-a e b ,7.函数3222xxx y -=+在[]6,6-的图象大致为()A.B.C .D.8.如图,点N 为正方形ABCD 的中心,ECD △为正三角形,⊥平面平面ECD ABCD ,M 是线段ED 的中点,则()A.=BM EN ,且直线,BM EN 是相交直线B.≠BM EN ,且直线,BM EN 是相交直线C.=BM EN ,且直线,BM EN 是异面直线D.≠BM EN ,且直线,BM EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于()毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共18页)数学试卷第4页(共18页)A.4122-B.5122-C.6122-D.7122-10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则PFO△的面积为()A .324B .322C .22D .3211.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则()A .23323log 1224ff f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>B .23323124l 2og f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭>>C .23332124log 2f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>D .23323lo 122g 4f f f--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>12.设函数()si 5n f x x ωπ+⎛⎫= ⎪⎝⎭()0ω>,已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是()A .①④B .②③C .①②③D .①③④二、填空题:本题共4小题,每小题5分,共20分.13.已知a ,b 为单位向量,且·0=a b,若2=-c a ,则cos ,=a c .14.记n S 为等差数列{}n a 的前n 项和,12103a a a =≠,,则105S S =.15.设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为.16.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥-O EFGH 后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为30.9 g/cm ,不考虑打印损耗,制作该模型所需原料的质量为g.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
2019年全国卷Ⅲ理数高考试题文档版(有答案)
2019年普通高等学校招生全国统一考试理科数学&参考答案注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1,0,1,2A =-,{}2|1B x x =≤,则A B =()A.{1,0,1}-B.{}0,1C.{1,1}-D.{}0,1,2 2.若(1)2z i i +=,则z =() A.1i -- B.1i -+ C.1i - D.1i +3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为() A.0.5B.0.6C.0.7D.0.84.24(12)(1)x x ++的展开式中3x 的系数为() A.12B.16C.20D.245.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =() A.16B.8C.4D.26.已知曲线ln x y ae x x =+在(1,)ae 处的切线方程为2y x b =+,则() A.,1a e b ==- B.,1a e b == C.1,1a e b -== D.1,1a e b -==-7.函数3222x xx y -=+在[6,6]-的图像大致为()8.如图,点N 为正方形ABCD 的中心,ECD △为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A.BM EN =,且直线BM ,EN 是相交直线B.BM EN ≠,且直线BM ,EN 是相交直线C.BM EN =,且直线BM ,EN 是异面直线D.BM EN ≠,且直线BM ,EN 是异面直线9.执行右边的程序框图,如果输入的ε为0.01,则输出s 的值等于() A.4122-B.5122- C.6122-D.7122- 10.双曲线22142x y C -=:的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若PO PF =,则PFO △的面积为()A.4 B.2C.11.设()f x 是定义域为R 的偶函数,且在0,+∞()单调递减,则()A.233231(log )(2)(2)4f f f -->>B.233231(log )(2)(2)4f f f -->>C.233231(2)(2)(log )4f f f -->> D.233231(2)(2)(log )4f f f -->>12.设函数()sin()(0)5f x x πωω=+>,已知()f x 在0,2π[]有且仅有5个零点,下述四个结论:①()f x 在(0,2)π有且仅有3个极大值点; ②()f x 在(0,2)π有且仅有2个极小值点; ③()f x 在(0,)10π单调递增;④ω的取值范围是1229[,)510. 其中所有正确结论的编号是() A.①④B.②③C.①②③D.①③④二、填空题:本题共4小题,每小题5分,共20分.13.已知,a b 为单位向量,且0a b ⋅=,若25c a b =-,则cos ,a c <>=_____________. 14.记n S 为等差数列{}n a 的前n 项和,若10a ≠,213a a =,则105S S =_____________. 15.设12F F ,为椭圆22:13620x y C +=的两个焦点,M 为C 上一点且在第一象限,若12MF F △为等腰三角形,则M 的坐标为______________.16.学生到工厂劳动实践,利用3D 打印技术制作模型,如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O E F G H -后所得的几何体,其中O 为长方体的中心,E F G H ,,,分别为所在棱的中点,6AB BC cm ==,14AA cm =.3D 打印所用的材料密度为30.9/gcm ,不考虑打印损耗,制作该模型所需原料的质量为__________g .三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。
2019年高考全国卷Ⅲ理科数学与答案
2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A{x|1,0,1,2},2B{x|x≤1},则A∩B=A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}2.若z(1i)2i,则zA.-1-i B.-1+i C.1-i D.1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古代文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》和《红楼梦》的学生共有90位,阅读过《红楼梦》的学生有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5B.0.6C.0.7D.0.84.24(12x)(1x)的展开式中3x的系数为A.12B.16C.20D.24 5.已知各项为正数的等比数列{a n}的前4项和为15,且a53a34a1,则a3 A.16B.8C.4D.2x6.已知曲线y ae x ln x在点(1,ae)处的切线方程为y2x b,则A.a e,b1B.a e,b1理科数学试题第1页(共4页)C.-1a e,b1D.-1a e,b17.函数32xy在[6,6]的图象大致为x x228.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9.执行右边的程序框图,如果输入的为0.01,则输出s的值为A.21 4 2B.21 5 2C.21 6 2D.21 7 210.双曲线C:22x y421的右焦点为F,点P在C的一条渐近线上,O为坐标原点.若|PO||PF|,则△PFO的面积为A.324B.322C.22D.32 11.设f(x)是定义域为R的偶函数,且在(0,+)单调递减,则A.C.32123f(log)f(2)f(2)B.3432123f(2)f(2)f(log)D.3423132f(log)f(2)f(2)3423132f(2)f(2)f(log)3412.设函数()sin()(0)f x x,已知f(x)在[0,2]有且仅有5个零点,下列四个结论:5①f(x)在(0,2)有且仅有3个极大值点②f(x)在(0,2)有且仅有2个极小值点③f(x)在(0,)单调递增10④在取值范围是1229[,)510理科数学试题第2页(共4页)其中所有正确结论的编号是A.①④B.②③C.①②③D.①③④二、填空题:本题共 4 小题,每小题 5 分,共20 分。
2019年全国卷3(理科数学)含答案
绝密★启用前2019年普通高等学校招生全国统一考试理科数学(全国Ⅲ卷)注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{|1}A B x x =-=≤,,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.84.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12B .16C .20D .245.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=A .16B .8C .4D .26.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-7.函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A .4122-B .5122-C .6122-D .7122-10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .4B .2C .D .11.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④B .②③C .①②③D .①③④二、填空题:本题共4小题,每小题5分,共20分。
【全国卷Ⅲ】2019年普通高等学校全国统一考试理数试题(Word版,含答案)
状元考前提醒拿到试卷:熟悉试卷刚拿到试卷一般心情比较紧张,建议拿到卷子以后看看考卷一共几页,有多少道题,了解试卷结构,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。
答题策略答题策略一共有三点:1. 先易后难、先熟后生。
先做简单的、熟悉的题,再做综合题、难题。
2. 先小后大。
先做容易拿分的小题,再做耗时又复杂的大题。
3. 先局部后整体。
把疑难问题划分成一系列的步骤,一步一步的解决,每解决一步就能得到一步的分数。
立足中下题目,力争高水平考试时,因为时间和个别题目的难度,多数学生很难做完、做对全部题目,所以在答卷中要立足中下题目。
中下题目通常占全卷的80%以上,是试题的主要构成,学生能拿下这些题目,实际上就是有了胜利在握的心理,对攻克高档题会更放得开。
确保运算正确,立足一次性成功在答卷时,要在以快为上的前提下,稳扎稳打,步步准确,尽量一次性成功。
不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。
试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,格式是否规范。
要学会“挤”分考试试题大多分步给分,所以理科要把主要方程式和计算结果写在显要位置,文科尽量把要点写清晰,作文尤其要注意开头和结尾。
考试时,每一道题都认真思考,能做几步就做几步,对于考生来说就是能做几分是几分,这是考试中最好的策略。
检查后的涂改方式要讲究发现错误后要划掉重新写,忌原地用涂黑的方式改,这会使阅卷老师看不清。
如果对现有的题解不满意想重新写,要先写出正确的,再划去错误的。
有的同学先把原来写的题解涂抹了,写新题解的时间又不够,本来可能得的分数被自己涂掉了。
考试期间遇到这些事,莫慌乱!绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
2019年高考理科数学全国卷3(附参考答案和详解)
方法!,设调查的!##位学生中阅读过1西游记2的学 生 人 数 为 "!则 ")6#&'#*$#!解得 "*7#! 所以该校阅读过1西游记2的 学 生 人 数 与 该 校 学 生 总 数 比 值
的估计值为!7###*#!7!故选 %!
方法",用 E=:: 图 表 示 调 查 的 !## 位 学 生 中 阅 读 过 1西 游
05 .!#曲线 "+ 是弧.55!
$!%分 别 写 出 "!#"$#"+ 的 极 坐 标 方 程 $$%曲 线 " 由 "!#"$#"+ 构 成 #若 点 1 在 " 上 #且
"31"'槡+#求 1 的极坐标!
第 $$ 题 图
$!!$本小 题 满 分
!$
分 %已 知 曲 线
.,&'
#$ $
#5
为 直 线&'
$ % -!*$$(
+ $
%)*$$(
$ +
%)*
123+
! )
$ % .!*$$(
$ +
%)*$$(
+ $
%)*
123+
! )
第8题图 $! ! %
$ % !$!设
函
数
*$#%'9/:
#0
"
$)#%#已 知 *$#%在 (##$)
有 且 仅 有 " 个 零 点 #下 述 四 个 结 论 ,
$! ! %
8!执行如图 所 示 的 程 序 框 图#如 果 输 入 的7为
2019年普通高等学校招生全国统一考试理科数学(全国卷Ⅲ)(含答案)
高考提醒一轮看功夫,二轮看水平,三轮看士气梳理考纲,进一步明确高考考什么!梳理高考题,进一步明确怎么考!梳理教材和笔记,进一步明确重难点!梳理错题本,进一步明确薄弱点!抓住中低档试题。
既可以突出重点又可以提高复习信心,效率和效益也会双丰收。
少做、不做难题,努力避免“心理饱和”现象的加剧。
保持平常心,顺其自然绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{|1}A B x x =-=≤,,则A B =IA .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.84.(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12B .16C .20D .245.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3= A .16B .8C .4D .26.已知曲线e ln xy a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-7.函数3222x xx y -=+在[]6,6-的图像大致为A.B.C.D.8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9.执行下边的程序框图,如果输入的 为0.01,则输出s的值等于A .4122-B .5122-C .6122-D .7122-10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .4B .2C .D .11.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-) C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314) 12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④B .②③C .①②③D .①③④二、填空题:本题共4小题,每小题5分,共20分。
2019年高考全国3卷理科数学及其答案
2019年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则AB =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7 D .0.8 4.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24 5.已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3= A . 16 B . 8 C .4 D . 2 6.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1C .1e 1a b -==,D .1e a -= ,1b =-7.函数3222x xx y -=+在[]6,6-的图象大致为 A . B .C .D .8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形, 平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则 A .BM =EN ,且直线BM 、EN 是相交直线 B .BM ≠EN ,且直线BM ,EN 是相交直线 C .BM =EN ,且直线BM 、EN 是异面直线 D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于 A .4122- B . 5122-C . 6122-D . 7122-10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为 A .32 B .32C .22D .3211.设()f x 是定义域为R 的偶函数,且在()0,∞单调递减,则A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是A . ①④B . ②③C . ①②③D . ①③④二、填空题:本题共4小题,每小题5分,共20分。
2019年高考理数全国卷3含答案解析
()
A.
f
log3
1 4
>f
3 2 2
>f
2 2 3
B.
f
log3
1 4
>f
2 2 3
>f
3 2 2
C.
f
3 2 2
>f
2 2 3
>f
log3
1 4
D.
f
2 2 3
>f
3 2 2
>f
log3
1 4
12.设函数
f
x
sin
x
D.0,1, 2
2.若 z(1 i) 2i ,则 z
()
A. 1 i
B. 1+i
C.1 i
D.1+i
3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为
中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查
了 100 位学生,其中阅读过《西游记》或《红楼梦》的学生共有 90 位,阅读过
2
22
7
.得
BM 7 ,所以 BM EN .连接 BD , BE ,因为四边形 ABCD 为正方形,所
以 N 为 BD 的中点,即 EN , MB 均在平面 BDE 内,所以直线 BM , EN 是相交 直线,故选B.
第9页
【考点】空间线线位置关系
【考查能力】空间想象
9.【答案】C
【解析】执行程序框图 x 1, s 0 , s 0 1 1, x 1 ,不满足 x< 1 ,
坐标.
23.[选修 4–5:不等式选讲](10 分) 设 x, y, z R ,且 x y z 1 . (1)求 (x 1)2 ( y 1)2 (z 1)2 的最小值; (2)若 (x 2)2 ( y 1)2 (z a)2≥ 1 成立,证明: a≤ 3 或 a≥1. 3
2019年高考理科数学全国卷Ⅲ理数(附参考答案和详解)
绝密★启用前 6月7日15:00-17:002019年普通高等学校招生全国统一考试(全国卷Ⅲ)数学(理工农医类)总分:150分 考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。
2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸、答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。
4、考试结束后,将本试卷和答题卡一并上交。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2019全国卷Ⅲ·理)已知集合{1,0,1,2}A =-,2{|1}B x x =≤,则A B =I ()A.{1,0,1}-B.{0,1}C.{1,1}-D.{0,1,2}【解析】因为2{|1}{|11}B x x x x =≤=-≤≤,又{1,0,1,2}A =-,所以A B =I {1,0,1}-.故选A. 【答案】A2.(2019全国卷Ⅲ·理)若(1i)2i z +=,则z =()A.1i --B.1i -+C.1i -D.1i +【解析】由(1i)2i z +=,得2i 2i(1i)2i(1i)i(1i)1i 1i (1i)(1i)2z --====-=+++-.故选D 【答案】D3.(2019全国卷Ⅲ·理)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.8【解析】设调查的100位学生中阅读过《西游记》的学生人数为x ,则806090x +-=,解得70x =,所以该校阅读过《西游记》的学生人数与该校总人数的比值的估计值为700.7100=,故选C.【答案】C4.(2019全国卷Ⅲ·理)24(12)(1)x x ++的展开式中3x 的系数为( )A.12B.16C.20D.24【解析】24(12)(1)x x ++的展开式中3x 的系数为31441C 2C 12⨯+=.故选A.【答案】A5.(2019全国卷Ⅲ·理)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =()A.16B.8C.4D.2【解析】设正数的等比数列{}n a 的公比为q ,则123111142111150,,,,340a a a q a q a q a q q a q a >⎧⎪++==>+⎨⎪+⎩解得11,2,a q =⎧⎨=⎩所以2314a a q ==.故选C.【答案】C6.(2019全国卷Ⅲ·理)已知曲线e ln x y a x x =+在点(1,e)a 处的切线方程为2y x b =+,则() A.e a =,1b =- B.e a =,1b =C.1e a -=,1b =D.1e a -=,1b =-【解析】e ln 1x y a x '=++,1|e 1x k y a ='==+,所以切线方程为e (e 1)(1)y a a x -=+-, 即(e 1)1y a x =+-.又因为切线方程为2y x b =+, 所以e 121a b +=⎧⎨=-⎩,,即1e a -=,1b =-.故选D.【答案】D7.(2019全国卷Ⅲ·理)函数3222x xx y -=+在[]6,6-的图象大致为( ) A. B.C. D.【解析】因为32(),[6,6]22x x x y f x x -==∈-+,所以332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是奇函数,排除选项C.当4x =时,34424128(7,8)1221616y -⨯==∈++,排除选项A ,D.故选B.【答案】B8.(2019全国卷Ⅲ·理)如图,点N 为正方形ABCD 的中心,ECD △为正三角形,平面ECD ABCD ⊥平面,M 是线段ED 的中点,则()A.BM EN =,且直线BM ,EN 是相交直线B.BM EN ≠,且直线BM ,EN 是相交直线C.BM EN =,且直线BM ,EN 是异面直线D.BM EN ≠,且直线BM ,EN 是异面直线【解析】取CD 的中点O ,连接EO ,ON .由ECD △是正三角形,平面ECD ⊥平面ABCD ,知EO ⊥平面ABCD ,所以EO ⊥CD ,EO ⊥ON .又N 是正方形ABCD 的中心,所以ON ⊥CD .以CD 的中点O 为原点,ON u u u r方向为x 正方向建立空间直角坐标系,如图所示. 不妨设2AD =,则E ,(0,1,0)N,12M ⎛ ⎝⎭,(1,2,0)B -,所以||2EN =,||BM =所以EN BM ≠. 连接BD ,BE ,因为点N 是正方形ABCD 的中心,所以点N 在BD 上,且BN DN =, 所以BM ,EN 是DBE △的中位线, 所以BM ,EN 必相交.故选B.【答案】B9.(2019全国卷Ⅲ·理)执行如图的程序框图,如果输入的ε为0.01,则输出s 的值等于()A.4122-B.5122-C.6122-D.7122-【解析】0.01ε=,11,0,011,,2x s s x x ε===+==<不成立;111,,24s x x ε=+=<不成立;1111,,248s x x ε=++=<不成立; 11111,,24816s x x ε=+++=<不成立; 111111,,2481632s x x ε=++++=<不成立; 1111111,,248163264s x x ε=+++++=<不成立; 11111111,,248163264128s x x ε=++++++=<成立, 此时输出6122s =-,故选C. 【答案】C10.(2019全国卷Ⅲ·理)双曲线C :22142x y -=的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若||||PO PF =,则PFO △的面积为( )C. D.【解析】双曲线22142x y -=的右焦点坐标为坐标为,一条渐近线的方程为y ,不妨设点P 在第一象限,由于||||PO PF =,则点P =PFO 的底边,所以它的面积为12=故选A. 【答案】A11.(2019全国卷Ⅲ·理)设()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则()A.233231log 224f f f --⎛⎫⎛⎫⎛⎫ ⎪> ⎪> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B.233231log 224f f f --⎛⎫⎛⎫⎛⎫ ⎪>> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C.23323122log 4f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D.23323122log 4f f f --⎛⎫⎛⎫⎛⎫ ⎪> ⎪> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【解析】因为()f x 是定义域为R 的偶函数,所以3331log (log 4)(log 4)4f f f ⎛⎫=-= ⎪⎝⎭,又因为23323(log 4)1220f -->>>>,且函数()f x 在(0,)+∞上单调递增减,所以23323122log 4f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C.【答案】C12.(2019全国卷Ⅲ·理)设函数πsin (0)5()x f x ωω⎛⎫=+> ⎪⎝⎭,已知()f x 在[0,2π]有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点;②()f x 在(0,2π)有且仅有2个极小值点;③()f x 在π0,10⎛⎫ ⎪⎝⎭单调递增;④ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭.其中所有正确结论的编号是( )A.①④B.②③C.①②③D.①③④【解析】已知πsin (0)5()x f x ωω⎛⎫=+> ⎪⎝⎭在[0,2π]上有且仅有5个零点,如图,其图像的右端点的横坐标在区间[,)a b 上,此时()f x 在(0,2π)上有且仅有3个极大值点,()f x 在(0,2π)上可能有2或3个极小值点,所以①正确,②不正确;当[0,2π]x ∈时,πππ,2π555x ωω⎡⎤+∈+⎢⎥⎣⎦,由()f x 在[0,2π]上有且仅有5个零点可得ππ5π2π56ω≤+<,解得ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭,所以④正确;当π0,10x ⎛⎫∈ ⎪⎝⎭时,ππππ49ππ551051002x ωω<+<+<<,所以()f x 在π0,10⎛⎫⎪⎝⎭单调递增,所以③正确.故选D.【答案】D第Ⅱ卷二、填空题:本题共4小题,每小题5分。
【全国Ⅲ卷】(精校版)2019年高等学校招生全国统一考试理数试题(含答案)
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.84.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12B .16C .20D .245.已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3= A . 16B . 8C .4D . 26.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -= ,1b =-7.函数3222x xx y -=+在[]6,6-的图象大致为 A . B .C .D .8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A.4122-B. 5122-C. 6122-D. 7122-10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .4B .2C .D .11.设()f x 是定义域为R 的偶函数,且在()0,∞单调递减,则A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,) 其中所有正确结论的编号是A . ①④B . ②③C . ①②③D . ①③④ 二、填空题:本题共4小题,每小题5分,共20分。
2019年全国卷Ⅲ理科数学高考真题及答案解析(word精编)
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =I A .{}1,0,1- B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.84.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12B .16C .20D .245.已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3= A . 16B . 8C .4D . 26.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-7.函数3222x xx y -=+在[]6,6-的图象大致为 A . B .C .D .8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A.4122-B.5122-C.6122-D.7122-10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .324B .322C .22D .3211.设()f x 是定义域为R 的偶函数,且在()0,∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,) 其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④ 二、填空题:本题共4小题,每小题5分,共20分。
2019年高考理科数学全国卷3(附参考答案和详解)
!!请 考 生 在 第 $$$+ 题 中 任 选 一 题 作 答如 果 多 做则 按 所 做 的 第 一 题 计 分 !作 答 时 请 写 清 题 号 ! $$!$本 小 题 满 分 !# 分 %选 修 )2),坐 标 系 与 参 数 方 程
$ % 如 图#在 极 坐 标 系 3# 中#+ $$##%#0 槡$#) # $ % . 槡$#+) #5$$#%#弧+50#05 .!#.55所 在 圆 的 圆 心 分 别 是 $ % $!##%# !#$ #$!#%#曲 线 "! 是 弧+50#曲 线 "$ 是 弧
甲离子残留百分比直方图
乙离子残留百分比直方图 第 !7 题 图
记. 为事件,&乙离子残留在体内的百分比不低于"!"'#根 据直方图得到 1$.%的估计值为#!7#! $!%求 乙 离 子 残 留 百 分 比 直 方 图 中 '#( 的 值 $$%分别估计甲/乙离子残留 百 分 比 的 平 均 值$同 一 组 中 的 数 据 用 该 组 区 间 的 中 点 值 为 代 表 %!
记 2和 1红 楼 梦 2的 人 数 之 间 的 关 系 如 图 ,
易知调查的 !## 位 学 生 中 阅
读 过 1西 游 记 2的 学 生 人 数
为 7#!
所以该校阅读 过 1西 游 记2的
学生人数与该校学生总数比
值的估 计 值 为!7###*#!7!故
第(题图
选 %!
2!答 案 !;
解析!方法!,"!)"""#"!)"#2 的 展 开 式 中 "( 的 系 数 为 !
(!答 案 !% 解析!
【全国Ⅲ卷】(精校版)2019年高等学校招生全国统一考试理数试题(含答案)
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.84.(1+2x 2 )(1+x )4的展开式中x 3的系数为A .12B .16C .20D .245.已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3= A . 16B . 8C .4D . 26.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -= ,1b =-7.函数3222x xx y -=+在[]6,6-的图象大致为 A . B .C .D .8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A.4122-B. 5122-C. 6122-D. 7122-10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO的面积为A .324B .322C .22D .3211.设()f x 是定义域为R 的偶函数,且在()0,∞单调递减,则A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,) 其中所有正确结论的编号是A . ①④B . ②③C . ①②③D . ①③④ 二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年普通高等学校招生全国统一考试·全国Ⅲ卷
理科数学
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.已知集合2
{1,0,1,2}{1}A B x x =-=≤,,则A B =I
( ) A .{}1,0,1- B .{}0,1
C .{}1,1-
D .{}0,1,2
2.若(1i)2i z +=,则=z
( ) A .1i --
B .1+i -
C .1i -
D .1+i
3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 ( ) A .0.5
B .0.6
C .0.7
D .0.8 4.()()4
2121++x x 的展开式中3x 的系数为
( )
A .12
B .16
C .20
D .24
5.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134=+a a a ,则3=a
( )
A .16
B .8
C .4
D .2
6.已知曲线e ln x y a x x =+在点1(,)ae 处的切线方程为2=+y x b ,则
( )
A.–1==,a e b
B.1==,a e b
C.–1
1==,a e b
D.–11==-a e b , 7.函数3
222
x x
x y -=+在[]6,6-的图象大致为
( )
A .
B .
C .
D .
8.如图,点N 为正方形ABCD 的中心,
ECD △为正三角形,⊥平面平面ECD ABCD ,M 是线段ED 的中点,则 ( )
A.=BM EN ,且直线,BM EN 是相交直线
B.≠BM EN ,且直线,BM EN 是相交直线
C.=BM EN ,且直线,BM EN 是异面直线
D.≠BM EN ,且直线,BM EN 是异面直线
9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于
( )
A.4
122-
B.5
122-
C.6
122-
D.7
122-
10.双曲线C :
22
42x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF
,则PFO △的面积为
( )
A
.
4
B
.
2
C
.D
.11.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则
( )
A .233
2
3log 1224f
f f --⎛⎫⎛⎫⎛
⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>> B .23323124l 2og f f
f --⎛⎫⎛⎫⎛
⎫ ⎪ ⎪ ⎪⎝
⎭⎝⎭
⎝⎭
>> C .233
32124log 2f f
f --⎛⎫⎛⎫
⎛
⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>
D .23323lo 122g 4f f f
--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝
⎭⎝⎭
⎝⎭
>>
12.设函数()si 5n f x x ωπ+⎛
⎫= ⎪⎝⎭
()0ω>,已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:
①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,
10
π
)单调递增 ④ω的取值范围是[
1229510
,) 其中所有正确结论的编号是 ( )
A .①④
B .②③
C .①②③
D .①③④
二、填空题:本题共4小题,每小题5分,共20分.
13.已知a ,b 为单位向量,且·
0=a b
,若2=c a ,则cos ,=a c . 14.记n S 为等差数列{}n a 的前n 项和,12103a a a =≠,,则10
5
S S = .
15.设12F F ,为椭圆C :22
+
13620
x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为 .
16.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体
1111ABCD A B C D -挖去四棱锥-O EFGH 后所得的几何体,其中O 为长方体的中
心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为30.9 g/cm ,不考虑打印损耗,制作该模型所需原料的质量为 g.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
第17~21题为
必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)
为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:
记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70.
(1)求乙离子残留百分比直方图中a ,b 的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的
中点值为代表). 18.(12分)
ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sin
sin 2
A C
a b A +=. (1)求B ;
(2)若ABC △为锐角三角形,且1=c ,求ABC △面积的取值范围.
19.(12分)
图1是由矩形ADEB ,Rt ABC △和菱形BFGC 组成的一个平面图形,其中1=,AB 260==∠=︒,BE BF FBC .将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,
如图2.
(1)证明:图2中的A ,C ,G ,D 四点共面,且⊥平面平面ABC BCGE ; (2)求图2中的二面角--B CG A 的大小.
20.(12分)
已知函数32()2=-+f x x ax b . (1)讨论()f x 的单调性;
(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存
在,求出,a b 的所有值;若不存在,说明理由. 21.(12分)
已知曲线C :2
2=x y ,D 为直线12=-y 上的动点,过D 作C 的两条切线,切点
分别为A ,B .
(1)证明:直线AB 过定点:
(2)若以E 205⎛⎫
⎪⎝⎭
,为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按
所做的第一题计分。
22.[选修4–4:坐标系与参数方程](10分)
如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π
,(2,)D π,弧»AB ,
»BC ,»CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧»AB ,曲线2M 是弧»BC
,曲线3M 是弧»CD . (1)分别写出1M ,2M ,3M 的极坐标方程;
(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极
坐标.
23.[选修4–5:不等式选讲](10分) 设,,x y z ∈R ,且1x y z ++=.
(1)求222(1)(1)(1)x y z -++++的最小值;
(2)若222
1(2)(1)()3
x y z a -+-+-≥成立,证明:3a -≤或1a -≥.。