中考数学考试大纲(最新版)编辑

合集下载

无锡数学中考考纲

无锡数学中考考纲

13、一次函数 函 (1)一次函数的意义 (2)一次函数的表达式 (3)一次函数的图像和性质 (4)正比例函数 (5)根据一次函数的图像求二元一次 方 程组的近似解 (6)用一次函数解决实际问题 14、反比例函数
√ √ √ √ √ √
式 8、因式分解
(1)因式分解的意义 与 (2)提取公因式法 (3)公式法(直接用公式不超过两 分 次) 9、分式 (1)分式的概念 式 (2)分数的基本性质 (3)约分与通分 (4)分式的加、减、乘、除运算 √ √ √
考试 要求目标 a1 a2 a3 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
考试内容 单元 知 识 条 目
13、图形的相似 (1)比例的基本性质 (2)线段的比、成比例线段 (3)黄金分割 (4)图形相似的概念 (5)相似图形的性质 (6)相似三角形的概念 (7)两个三角形相似的条件 (8)图形的位似 (9)利用位似将一个图形放大或缩小 (10)利用图形的相似解决一些实际问 题 (11)锐角三角函数的意义 (12)特殊角三角函数值 (13)用锐角三角函数解决简单的实际 问题
考试内容 单元 知 识 条 目
考试 要求目标 a1 a2 √ √ √ √ a3
有 理 数

3、数的开方 平方根、算术平方根、立方根的概 4、实数 (1)无理数、实数的概念,实数与数 √ 轴 上的点一一对应 (2)用有理数估计无理数的大致范围 √ (3)近似数与有效数字 √
10、方程与方程组 (1)用观察、画图等手段 估计方程的解 (2)一元一次方程的解法 方 (3)简单的二元一次方程的解法 (4)可化为一元一次方程的分式方程 解法(方程中的分式方程不超 程 的 过 两个) (5)简单数字系数的一元二次方程的 与 解法(公式法、配方法、因式分解法) (6)列方程(组)解应用题

青岛市数学中考大纲

青岛市数学中考大纲

青岛市数学中考大纲一、总体要求青岛市数学中考大纲旨在规范中考数学考试的内容和要求,对考生的数学能力和素质进行全面评价,从而促进数学教学的有效推进和学生数学素养的全面发展。

二、考试范围和内容1. 数与代数(1)有理数的概念与运算(2)整式的概念与运算(3)一元一次方程与一元一次不等式的概念与运算(4)二次根式的概念与运算(5)函数的概念与运算2. 几何与图形(1)角的概念与运算(2)图形的基本性质与判定(3)相似三角形与等腰三角形的性质与运算3. 数据与统计(1)统计调查与统计分析(2)概率的概念与运算三、考试要求1. 知识与技能(1)掌握数与运算、代数式与方程、几何图形的定义、性质;(2)掌握基本的计算技能和应用解题方法;(3)理解并能运用数学中的基本概念、定理和定律。

2. 运用与拓展(1)能运用所学数学知识解决有关实际问题;(2)具备一定的拓展思维能力,能够进行简单的推理与证明。

四、考试形式1. 笔试考试形式主要为纸质笔试,考生需用笔书写答案。

试卷包括选择题、填空题和解答题,以考查考生对数学知识的理解和应用能力。

2. 实际操作考试形式中也将包含一些实际操作的题目,以考查考生对数学知识的应用和解决实际问题的能力。

五、考试评分与评价1. 考试评分(1)选择题部分根据答题卡上的选择选项进行自动评分;(2)填空题和解答题部分根据考生书写的答案进行批改评分。

2. 考试评价(1)以总分作为考生数学水平的评价指标;(2)对考生数学能力的总体评价分为优秀、良好、及格和不及格。

六、考试时间和地点具体的考试时间和地点将由有关部门在考前通知发布。

七、成绩查询与申诉1. 成绩查询考试成绩将在规定时间内发布,考生可通过指定的成绩查询渠道查询自己的成绩。

2. 成绩申诉对于成绩有异议的考生,可在规定时间内提出成绩申诉,有关部门将进行核实与处理。

八、其他注意事项1. 遵守考场规则考生在考试期间需服从考场管理人员的指导,保持安静,不得进行作弊等违规行为。

中考数学考试大纲(最新版)

中考数学考试大纲(最新版)

中考数学考试大纲考试目标【数与代数】1.有理数(1)有理数的意义(2)用数轴上的点表示有理数及有理数的相反数和绝对值(3)有理数的大小比较(4)求有理数的相反数与绝对值(绝对值不含字母)(5)乘方的意义(6)有理数的加、减、乘、除、乘方运算及混合运算(以三步为主)2.实数(1)平方根、算术平方根、立方根和二次根式的概念(2)用根号表示平方根、立方根(3)开方和乘方互为逆运算(4)求某些非负数的算术平方根,数的立方根(5)无理数和实数的概念(6)实数与数轴上的点一一对应关系(7)对含有较大数字的信息作出合理的解释和推断(8)用有理数估计一个无理数的大致围(9)近似数与有效数字的概念(10)二次根式的加、减、乘、除运算法则(11)实数的简单四则运算3.代数式(1)用字母表示数的意义(2)用代数式表示简单问题的数量关系(3)解释一些简单代数式的实际背景或几何意义(4)求代数式的值(5)整数指数幂的意义和基本性质(6)用科学记数法表示数(7)整式和分式的概念3(8)简单的整式加减运算及乘法运算(其中的多项式相乘仅指一次式相乘)(9)平方差、完全平方公式的推导及运用(10)提取公因式法和公式法(用公式不超过两次,指数是正整数)因式分解(11)运用分式基本性质进行约分和通分(12)简单的分式加、减、乘除运算4.方程与方程组(1)根据具体问题中的数量关系,列出方程或方程组(2)解一元一次方程和二元一次方程组(3)解可化为一元一次方程的分式方程(方程中分式不超过两个)(4)用因式分解法、公式法和配方法解简单的数字系数的一元二次方程(5)用观察、画图或计算等方法估计方程的解(6)根据具体问题的实际意义,检验结果是否合理5.不等式与不等式组(1)不等式的意义(2)不等式的基本性质(3)解一元一次不等式及由两个一元一次不等式组成的不等式组,并在数轴上表示出解集(4)不等式与不等式组的简单应用6.函数(1)常量、变量的意义(2)举出函数的实例(3)函数的概念及函数的三种表示方法(4)结合图象对简单实际问题中的函数关系进行分析(5)求简单整式、分式和简单实3际问题中的函数的自变量的取值围(6)求函数值(7)用适当的函数表示法刻画某些实际问题中变量之间的关系(8)结合对函数关系的分析,尝试对变量的变化规律进行初步预测(9)一次函数、反比例函数和二次函数的意义(10)根据已知条件确定一次函数和反比例函数的表示法(11)通过对实际问题情境的分析确定二次函数表达式(12)画一次函数、反比例函数的图象(13)用描点法画二次函数的图象(14)理解一次函数和反比例函数的性质(15)通过图象认识二次函数的性质(16)根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆)(17)运用一次函数图象求二元一次方程组的近似解(18)利用二次函数图象求一元二次方程组的近似解(19)利用一次函数、反比例函数和二次函数解决实际问题【空间与图形】7.图形的认识(1)认识点、线、面(2)角的概念与表示(3)认识度、分、秒,能进行度、分、秒的简单换算(4)角的大小比较或估计(5)角度的和差计算(6)角平分线及其性质38.相交线与平行线(1)补角、余角、对顶角等概念(2)等角的余角相等、等角的补角相等、对顶角相等(3)垂线、垂线段等概念,了解垂线段最短(4)点到直线的距离和两跳平行线之间的距离(5)过一点有且仅有一条直线垂直于已知直线(6)用三角尺或量角器过一点画一条直线的垂线(7)线段垂直平分线及其性质(8)两直线平行同位角相等(9)过直线外一点有且只有一条直线平行于已知直线(10)用三角尺和直尺过已知直线外一点画这条直线的平行线9.三角形(1)三角形的有关概念(角、外角、中线、高、角平分线)(2)画任意三角形的角平分线、中线和高(3)三角形中线及其性质(4)全等三角形的概念(5)三角形全等的条件(6)等腰三角形、等边三角形和直角三角形的有关概念(7)等腰三角形、等边三角形和直角三角形的性质(8)判定等腰三角形、直角三角形的条件(9)勾股定理及其简单运用10.四边形(1)多边形的概念(2)多边形的角和与外角和公式(3)平行四边形、矩形、菱形、正方形、梯形的概念(4)平行四边形、矩形、菱形、正方形、梯形的性质(5)平行四边形、矩形、菱形、正方形、梯形之关系间的3(6)判定平行四边形、矩形、菱形、正方形的条件(7)等腰梯形的有关性质(8)判定等腰梯形的依据11.圆(1)圆及其有关概念(2)弧、弦、圆心角的关系(3)点与圆、直线与圆以及圆与圆的位置关系(4)圆的简单性质(5)圆周角与圆心角的关系,直径所对圆周角的特征(6)三角形的心和外心(7)切线的概念(8)切线与过切点的半径之间的关系,会过圆上一点画圆的切线(9)判定一条直线是否为圆的切线(10)计算弧长和扇形的面积,计算圆锥的侧面积和全面积12.尺规作图(1)基本作图:作一条线段等于已知线段;作一个角等于已知角;作角的平分线;作线段的垂直平分线(2)利用基本作图作三角形;已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形(3)过不在同一直线上的三点作圆(4)对于尺规作图题,应保留作图痕迹(5)13.视图与展开图(1)画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(2)判断简单物体(基本几何体地简单组合)的三视图(3)根据三视图描述简单几何3体或简单物体的实物原型(4)直棱柱、圆锥的侧面展开图(5)基本几何体与其三视图、展开图(球除外)之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物体的包装)(6)根据展开图判断立体模型14.图形与变换(1)轴对称、平移和旋转的概念(2)轴对称、平移和旋转的基本性质(3)按要求作出简单平面图形经过一次或两次轴对称后的图形;作出简单图形平移后的图形;作出简单图形旋转后的图形(4)找出成轴对称的两个图形或轴对称图形的对称轴(5)等腰三角形、矩形、菱形、等腰梯形、正多边形、圆的轴对称性及相关性质(6)平行四边形、圆是中心对称图形(7)探索图形之间的变换关系(轴对称、平移、旋转及其组合)(8)应用轴对称、平移、旋转或他们的组合进行图案设计(9)欣赏现实生活中的轴对称,欣赏平移、旋转在现实生活中的应用15.图形的相似(1)比例的基本性质、线段的比、成比例线段(2)黄金分割(3)图形相似、三角形相似的概念(4)图形相似的简单性质(5)两个三角形相似的判定依据(6)观察和认识现实生活中的物体相似(7)利用图形的相似解决一些3实际问题16.三角函数(1)锐角三角函数sinA,cosA,tanA的概念(2) 30°,45°,60°角的三角函数值(3)运用三角函数解决与直角三角形有关的简单实际问题17.图形与坐标(1)平面直角坐标系的概念(2)在给定的直角坐标系中,由坐标描出点的位置,由点的位置写出它的坐标(3)在方格纸上建立适当的直角坐标系,描述物体的位置(4)在同一坐标系中感受图形变换后点的坐标的变化(5)运用不同的方式确定物体的位置18.图形与证明(1)证明的作用、反例的作用(2)定义、命题、定理的含义(3)命题的构成(区分条件与结论)(4)逆命题的概念(5)两个互逆命题的关系(6)反证法的含义(7)综合法证明的格式(8)掌握下列“证明的依据”一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,若同位角相等,那么这两条直线平行;若两个三角形的两边及其夹角(或两角及其夹边,或三边)分别相等,则这两个三角形全等;全等三角形的对应边、对应角分别相等(9)利用“证明的依据”(上一条目)中的基本事实证明下列命题:平行线的性质定理(错角相等、同旁角互补)平行线的判定定理(错角相等或同旁角互补,则两直线3平行)三角形的角和定理及推论直角三角形全等的判定定理角平分线性质定理及逆定理,三角形三个角的平分线交于一点(心)垂直平分线性质定理及逆定理,三角形三边的垂直平分线交与一点(外心)三角形中位线定理等腰三角形、等边三角形、直角三角形的性质和判定定理平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理【统计与概率】19.统计(1)收集、整理、描述和分析数据(2)抽样的意义(3)总体、个体、样本的概念(4)用样本估计总体的思想(5)用扇形统计图表示数据(6)加权平均数的概念(7)加权平均数的计算(8)选择合适的统计量表示数据的集中程度(9)用样本的平均数估计总体的平均数(10)极差和方差的概念(11)极差和方差的计算(12)用极差和方差表示数据的离散程度(13)用样本的方差估计总体的方差(14)频数、频率的概念(15)频数分布的意义和作用(16)列频数分布表、画频数分布直方图和频数折线图及其应用(17)根据统计结果作出合理的判断和预测3(18)从有关实际问题的资料中获得数据信息,对日常生活中的某些数据发表自己的看法(19)运用统计知识解决一些简单的实际问题20.概率(1)概率的意义(2)运用列表、画树状图计算简单事件发生的概率(3)用概率知识解决一些实际问题(4)通过实验获得事件发生的概率(5)理解大量重复实验的频率可作为事件发生概率的估计值【实践与综合运用(课题学习)】结合“数与代数”“空间与图形”“统计与概率”三个学习领域的容进行课题学习容的考核,要求如下:(1)有初步的研究问题的方法和经验。

完整版)初中数学中考考试大纲

完整版)初中数学中考考试大纲

完整版)初中数学中考考试大纲初中数学中考考试大纲一、知识与技能1、数与代数考试内容:本部分主要考察有理数、实数、二次根式、代数式、整式、因式分解、分式、方程与方程组、不等式与不等式组、函数及其表示等知识点。

要求目标:学生需要掌握有理数的概念、大小比较、加减乘除乘方运算、数的开方等基本知识;理解实数、无理数的概念,以及近似数和有效数字的概念;掌握代数式、整式的概念和基本运算法则,以及因式分解、分式、方程与方程组、不等式与不等式组等知识;理解函数的概念和表示方法,能够求解一次函数和反比例函数等问题。

2、几何考试内容:本部分主要考察平面图形的性质、三角形的性质、圆的性质、相似与全等等知识点。

要求目标:学生需要掌握平面图形的基本性质,如线段、角、多边形等;掌握三角形的性质,如三角形内角和、中线定理、角平分线定理等;掌握圆的性质,如圆心角、弧长、切线等;理解相似和全等的概念,能够判断两个图形是否相似或全等。

3、数据与统计考试内容:本部分主要考察数据的收集、整理和表示方法,以及统计分析方法等知识点。

要求目标:学生需要掌握数据的收集、整理和表示方法,如频数、频率、累计频率等;掌握统计分析方法,如均值、中位数、众数、极差、方差等;能够进行简单的数据分析和统计。

4、应用题考试内容:本部分主要考察数学知识在实际问题中的应用能力。

要求目标:学生需要能够将数学知识应用到实际问题中,解决生活中的实际问题。

例如,能够解决关于比例、利润、利率、速度等方面的实际问题。

反比例函数的意义是指两个变量之间的关系是反比例关系,即其中一个变量的值增加,另一个变量的值就会相应地减少。

例如,当一个物品的价格上涨时,人们购买该物品的数量会下降。

反比例函数的表达式通常写作y=k/x,其中k是常数。

这个表达式中,y和x分别代表两个变量的值,k是比例系数。

当x增加时,y会相应地减少,反之亦然。

反比例函数的图像是一个开口朝下的双曲线。

反比例函数也可以写成y=k/x^n的形式,其中n是正整数。

(完整版)初中数学中考考试大纲

(完整版)初中数学中考考试大纲

知识与技能注:知识与技能考查分为四个层次(1) 认识)(al);能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象(2) 理解(a2):能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系(3) 掌握(a3):能在理解的基础上,把对象运用到新的情境中(4) 运用(a4):能综合运用知识,合理地选择与运用有关的方法完成特定的数学任务。

上述知识与技能中,属于“运用”层次的有:图形与变换12 (7)、图形与坐标14(5) 、统计与概率1 (12)二、数学思考数学思考特指在面临各种问题情境时,能够从数学的角度去思考问题,能够发现其中所存在的数学现象并运用数学的知识与方法去解决问题,该领域应特别关注学生数感、符号感、空间概念、统计概念、应用意识、推理能力等方面的发展情况,在考试中主要体现在以下几个方面:(1) 实世界中数量关系,具有初步的数感、符号感和抽象思维能力。

这一目标主要包括能够在较复杂的层面上用数字和图表刻画现实生活中的现象,对一些数字信息作出合理解释与推断,并运用代数中的方程、不等式、函数等去刻画具体问题,建立合适的数学模型。

(2) 对现实空间及图形有较丰富的认识,具体初步的空间观念和形象思维能力。

这一目标包括能够通过动手操作、图形变换等多种方式探讨图形的形状、大小、位置关系、等量关系等,进行简单的图案设计、构建几何空间,并尝试用图形去从事推理活动。

(3) 能运用数据描述信息,作出合理推断,具有统计的观念。

这一目标主要包括能够从事教为完整的统计活动,能针对现实情境中呈现的原始数据,并根据需要进行重新整理和分析,对数据作数学处理,按照处理的结果做出合理推断和决策,同时了解在现实情境中收集与表达数据的基本方法,能够运用计算器或计算机处理较为复杂的数据。

(4) 能够通过观察、实验、猜想、证明等数学活动过程,作出合理推理和演绎推理,能有条理地,清晰地阐述自己的观点。

中考数学考试大纲(最新版).doc

中考数学考试大纲(最新版).doc

中考数学考试大纲考试目标【数与代数】有理数有理数的意义用数轴上的点表示有理数及有理数的相反数和绝对值有理数的大小比较求有理数的相反数与绝对值(绝对值内不含字母)乘方的意义有理数的加、减、乘、除、乘方运算及混合运算(以三步为主)实数平方根、算术平方根、立方根和二次根式的概念用根号表示平方根、立方根开方和乘方互为逆运算求某些非负数的算术平方根,求实数的立方根无理数和实数的概念实数与数轴上的点一一对应关系对含有较大数字的信息作出合理的解释和推断用有理数估计一个无理数的大致范围近似数与有效数字的概念二次根式的加、减、乘、除运算法则实数的简单四则运算代数式用字母表示数的意义用代数式表示简单问题的数量关系解释一些简单代数式的实际背景或几何意义求代数式的值整数指数幂的意义和基本性质用科学记数法表示数整式和分式的概念简单的整式加减运算及乘法运算(其中的多项式相乘仅指一次式相乘)平方差、完全平方公式的推导及运用提取公因式法和公式法(用公式不超过两次,指数是正整数)因式分解运用分式基本性质进行约分和通分简单的分式加、减、乘除运算方程与方程组根据具体问题中的数量关系,列出方程或方程组解一元一次方程和二元一次方程组解可化为一元一次方程的分式方程(方程中分式不超过两个)用因式分解法、公式法和配方法解简单的数字系数的一元二次方程用观察、画图或计算等方法估计方程的解根据具体问题的实际意义,检验结果是否合理不等式与不等式组不等式的意义不等式的基本性质解一元一次不等式及由两个一元一次不等式组成的不等式组,并在数轴上表示出解集不等式与不等式组的简单应用函数常量、变量的意义举出函数的实例函数的概念及函数的三种表示方法结合图象对简单实际问题中的函数关系进行分析求简单整式、分式和简单实际问题中的函数的自变量的取值范围求函数值用适当的函数表示法刻画某些实际问题中变量之间的关系结合对函数关系的分析,尝试对变量的变化规律进行初步预测一次函数、反比例函数和二次函数的意义根据已知条件确定一次函数和反比例函数的表示法通过对实际问题情境的分析确定二次函数表达式画一次函数、反比例函数的图象用描点法画二次函数的图象理解一次函数和反比例函数的性质通过图象认识二次函数的性质根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆)运用一次函数图象求二元一次方程组的近似解利用二次函数图象求一元二次方程组的近似解利用一次函数、反比例函数和二次函数解决实际问题【空间与图形】图形的认识认识点、线、面角的概念与表示认识度、分、秒,能进行度、分、秒的简单换算角的大小比较或估计角度的和差计算角平分线及其性质相交线与平行线补角、余角、对顶角等概念等角的余角相等、等角的补角相等、对顶角相等垂线、垂线段等概念,了解垂线段最短点到直线的距离和两跳平行线之间的距离过一点有且仅有一条直线垂直于已知直线用三角尺或量角器过一点画一条直线的垂线线段垂直平分线及其性质两直线平行同位角相等过直线外一点有且只有一条直线平行于已知直线用三角尺和直尺过已知直线外一点画这条直线的平行线三角形三角形的有关概念(内角、外角、中线、高、角平分线)画任意三角形的角平分线、中线和高三角形中线及其性质全等三角形的概念三角形全等的条件等腰三角形、等边三角形和直角三角形的有关概念等腰三角形、等边三角形和直角三角形的性质判定等腰三角形、直角三角形的条件勾股定理及其简单运用四边形多边形的概念多边形的内角和与外角和公式平行四边形、矩形、菱形、正方形、梯形的概念平行四边形、矩形、菱形、正方形、梯形的性质平行四边形、矩形、菱形、正方形、梯形之关系间的判定平行四边形、矩形、菱形、正方形的条件等腰梯形的有关性质判定等腰梯形的依据圆圆及其有关概念弧、弦、圆心角的关系点与圆、直线与圆以及圆与圆的位置关系圆的简单性质圆周角与圆心角的关系,直径所对圆周角的特征三角形的内心和外心切线的概念切线与过切点的半径之间的关系,会过圆上一点画圆的切线判定一条直线是否为圆的切线计算弧长和扇形的面积,计算圆锥的侧面积和全面积尺规作图基本作图:作一条线段等于已知线段;作一个角等于已知角;作角的平分线;作线段的垂直平分线利用基本作图作三角形;已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形过不在同一直线上的三点作圆对于尺规作图题,应保留作图痕迹视图与展开图画基本几何体(直棱柱、圆柱、圆锥、球)的三视图判断简单物体(基本几何体地简单组合)的三视图根据三视图描述简单几何体或简单物体的实物原型直棱柱、圆锥的侧面展开图基本几何体与其三视图、展开图(球除外)之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物体的包装)根据展开图判断立体模型图形与变换轴对称、平移和旋转的概念轴对称、平移和旋转的基本性质按要求作出简单平面图形经过一次或两次轴对称后的图形;作出简单图形平移后的图形;作出简单图形旋转后的图形找出成轴对称的两个图形或轴对称图形的对称轴等腰三角形、矩形、菱形、等腰梯形、正多边形、圆的轴对称性及相关性质平行四边形、圆是中心对称图形探索图形之间的变换关系(轴对(3)运用三角函数解决与直角称、平移、旋转及其组合)三角形有关的简单实际问题应用轴对称、平移、旋转或他们17.图形与坐标的组合进行图案设计(1)平面直角坐标系的概念欣赏现实生活中的轴对称,欣赏(2)在给定的直角坐标系中,平移、旋转在现实生活中的应用由坐标描出点的位置,由点的位图形的相似置写出它的坐标比例的基本性质、线段的比、成(3)在方格纸上建立适当的直比例线段角坐标系,描述物体的位置黄金分割(4)在同一坐标系中感受图形图形相似、三角形相似的概念变换后点的坐标的变化图形相似的简单性质(5)运用不同的方式确定物体两个三角形相似的判定依据的位置观察和认识现实生活中的物体相18.图形与证明似(1)证明的作用、反例的作用利用图形的相似解决一些实际问(2)定义、命题、定理的含义题(3)命题的构成(区分条件与16.三角函数结论)(1)锐角三角函数 sinA,cosA,(4)逆命题的概念tanA 的概念(5)两个互逆命题的关系(2) 30°, 45°, 60°角的(6)反证法的含义三角函数值(7)综合法证明的格式(8)掌握下列“证明的依据”垂直平分线性质定理及逆定理,一条直线截两条平行直三角形三边的垂直平分线交与一线所得的同位角相等;两条直线点(外心)被第三条直线所截,若同位角相三角形中位线定理等,那么这两条直线平行;若两等腰三角形、等边三角形、直角个三角形的两边及其夹角(或两三角形的性质和判定定理角及其夹边,或三边)分别相等,平行四边形、矩形、菱形、正方则这两个三角形全等;全等三角形、等腰梯形的性质和判定定理形的对应边、对应角分别相等(9)利用“证明的依据” (上【统计与概率】一条目)中的基本事实证明下列19.统计命题:(1)收集、整理、描述和分析平行线的性质定理(内错角相等、数据同旁内角互补)(2)抽样的意义平行线的判定定理(内错角相等(3)总体、个体、样本的概念或同旁内角互补,则两直线平行)(4)用样本估计总体的思想三角形的内角和定理及推论(5)用扇形统计图表示数据直角三角形全等的判定定理(6)加权平均数的概念角平分线性质定理及逆定理,三(7)加权平均数的计算角形三个内角的平分线交于一点(8)选择合适的统计量表示数(内心)据的集中程度(9)用样本的平均数估计总体的平均数(10)极差和方差的概念(11)极差和方差的计算(12)用极差和方差表示数据的离散程度(13)用样本的方差估计总体的方差(14)频数、频率的概念(15)频数分布的意义和作用(16)列频数分布表、画频数分布直方图和频数折线图及其应用(17)根据统计结果作出合理的判断和预测(18)从有关实际问题的资料中获得数据信息,对日常生活中的某些数据发表自己的看法(19)运用统计知识解决一些简单的实际问题20.概率(1)概率的意义(2)运用列表、画树状图计算简单事件发生的概率(3)用概率知识解决一些实际问题(4)通过实验获得事件发生的概率(5)理解大量重复实验的频率可作为事件发生概率的估计值【实践与综合运用(课题学习)】结合“数与代数” “空间与图形”“统计与概率”三个学习领域的内容进行课题学习内容的考核,要求如下:有初步的研究问题的方法和经验。

初三数学中考试卷考纲

初三数学中考试卷考纲

一、考试目的本次考试旨在检测学生对初中阶段数学知识的掌握程度,检验学生的数学思维能力、运算能力和解决问题的能力,为高中阶段的学习奠定基础。

二、考试范围1. 数与代数(1)实数:实数的概念、性质、运算;绝对值;平方根;立方根;实数的大小比较。

(2)代数式:代数式的概念、运算;单项式、多项式、分式的概念、运算;因式分解。

(3)方程与不等式:一元一次方程、一元二次方程、二元一次方程组、不等式及其解集;方程与不等式的应用。

2. 几何(1)平面几何:点、线、面、角、三角形、四边形、圆等基本概念;三角形全等、相似、勾股定理;平行四边形、矩形、菱形、正方形、圆的性质和判定。

(2)空间几何:长方体、正方体、棱柱、棱锥、球的性质和判定;三视图;空间几何问题的计算。

3. 统计与概率(1)统计:统计图表的制作、分析;平均数、中位数、众数、方差、标准差的概念及计算。

(2)概率:概率的基本概念、概率的求法;古典概型、几何概型;随机事件的独立性。

三、考试题型1. 基础题:包括选择题、填空题,主要考查学生对基本概念、性质、公式的掌握程度。

2. 应用题:包括计算题、证明题、应用题,主要考查学生的运算能力、逻辑推理能力、解决问题的能力。

3. 综合题:包括综合应用题、探究题,主要考查学生的综合运用知识的能力、创新思维能力。

四、考试时间本次考试时间为120分钟。

五、评分标准1. 基础题:每题3分,共15分。

2. 应用题:每题5分,共20分。

3. 综合题:每题10分,共30分。

总分:65分。

六、考试注意事项1. 考生在考试过程中应遵守考场纪律,保持安静,认真作答。

2. 考生在考试过程中如遇问题,应及时向监考老师求助。

3. 考生在考试结束后,应将试卷、答题卡和草稿纸交回给监考老师。

4. 考生在考试过程中应保持卷面整洁,字迹清晰。

5. 考生应认真审题,确保答题准确无误。

七、考试说明1. 本试卷严格按照《初中数学课程标准》和《中考数学考试大纲》编写。

广东中考数学大纲

广东中考数学大纲

广东中考数学大纲
广东中考数学大纲主要包括以下内容:
1. 考试性质:初中学业水平考试数学学科考试是义务教化阶段数学学科的终结性考试,目的是全面、精确地反映初中毕业生的数学学业水平。

考试的结果既是评定我省初中毕业生数学学业水平是否达到毕业标准的主要依据,也是中学阶段学校招生的重要依据之一。

2. 指导思想:初中学业水平考试数学学科考试要体现《义务教化数学课程标准(2011年版)》的理念和要求,引导学校教学和学生学习,促进初中数
学课程与高中乃至整个义务教育阶段的数学课程的有机衔接。

3. 考试目标与内容:包括知识与技能、数学思考、问题解决和情感态度等四个方面的内容。

4. 考试形式与试卷结构:包括考试形式、试卷难度、试卷结构等。

5. 试题难度:根据不同层次的要求,试题可分为容易题、中等题和较难题,分别占全卷分数的70%、20%和10%。

6. 评价标准:根据不同的要求,评价标准可分为不同层次,包括了解、理解、掌握、运用等。

总的来说,广东中考数学大纲是为了全面、准确地评估初中毕业生的数学学业水平,引导学校教学和学生学习,促进初中数学课程与高中数学课程的有机衔接。

(完整版)上海中考数学考试大纲

(完整版)上海中考数学考试大纲

上海市初中数学学科教学基本要求第一单元数与运算一、数的整除1.内容要目数的整除性、奇数和偶数、因数和倍数、素数和合数,公因数和最大公因数、公倍数和最小公倍数、分解素因数;能被2和5整除的正整数的特征。

2.基本要求(1)知道数的整除性、奇数和偶数、素数和合数、因数和倍数、公倍数和公因素等的意义;知道能被2、5整除的正整数的特征。

(2)会用短除法分解素因数;会求两个正整数的最大公因素和最小公倍数。

3.重点和难点重点是会正确地分解素因数,并会求两个正整数的最大公因数和最小公倍数.难点是求两个正整数的最小公倍数。

4.知识结构二、实数1.内容要目实数的概念,实数的运算。

近似计算以及科学记数法.2.基本要求(1)理解开方及方根的意义,知道无理数的概念,知道实数与数轴上的点具有一一对应的关系。

(2)理解实数概念,掌握实数的加、减、乘、除、乘方、开方等运算的法制,会正确进行实数的运算。

(3)会用计算器进行实数的运算,初步掌握估算、近似计算的基本方法和科学记数法。

3.重点和难点重点是理解实数概念,会正确进行实数的运算.难点是认识实数与数轴上的点的一一对应关系。

4.知识结构第二单元 方程与代数一、整式与分式 1.内容要目代数式,整式的加减法,同底数幂的乘法和除法,幂的乘方,积的乘方。

单项式的乘法和除法,单项式与多项式的乘法,多项式除以单项式,多项式的乘法。

乘法公式:22222()();()2a b a b a b a b a ab b +-=-±=±+因式分解:提取公因式法,公式法,十字相乘法,分组分解法。

分式,分式的基本性质,约分,最简分式,通分,分式的乘除法,分式的加减法,整数的指数幂,整数指数幂的运算。

2.基本要求(1)理解用字母表示数的意义;理解代数式的有关概念。

(2)通过列代数式,掌握文字语言与数学式子的表述之间的转换,领悟字母“代”数的数学思想;会求代数式的值。

(3)掌握整式的加、减、乘、除及乘方的运算法则,掌握平方差公式、两数和(差)的平方公式.(4)理解因式分解的意义,掌握提取公因式法、公式法、二次项系数为1时的十字相乘法、分组分解法等因式分解的基本方法.(5)理解分式的有关概念及其基本性质,掌握分式的加、减、乘、除运算。

2023年中考数学总复习提纲(人教版)

2023年中考数学总复习提纲(人教版)

2023年中考数学总复习提纲(人教版)第一章:数与代数1. 整数和有理数- 整数的四则运算- 有理数的加减乘除运算2. 分数和小数- 分数的基本概念- 分数的加减乘除运算- 分数与小数的转换3. 数量与单位- 基本数量单位的认识- 不同单位之间的换算- 速度、密度、质量等实际问题的计算第二章:几何与图形1. 平面图形- 点、线、面的基本概念- 直线、点线面的位置关系- 四边形、三角形、圆的特征和性质2. 空间图形- 立体图形的基本概念- 立方体、长方体、圆柱体的特征和性质- 探索立体图形的表面积和体积公式3. 平面坐标系- 直角坐标系的认识- 平面坐标系中的点的位置表示- 利用坐标解决简单几何问题第三章:函数与方程1. 函数的初步认识- 函数的概念与常见例子- 函数的表达式和函数图象2. 一次函数与二次函数- 一次函数的定义和性质- 二次函数的定义和性质- 利用函数图象解决实际问题3. 方程与不等式- 一元一次方程与一元一次不等式- 解方程和不等式的基本步骤- 问题转化为方程或不等式的求解第四章:数据与统计1. 数据的整理和分析- 数据的收集方法与表示方式- 数据的整理和分类- 数据的分析和统计2. 图表的分析与应用- 条形图、折线图的意义与应用- 饼图、直方图的意义与应用- 利用图表解决实际问题3. 概率的初步认识- 事件与概率的概念- 等可能事件的概率计算- 实际问题中的概率计算以上是2023年中考数学总复习提纲(人教版)的大纲目录。

根据这个提纲进行复习将有助于你掌握数学的基础知识和解题技巧。

希望你认真学习,取得优异的成绩!加油!。

最新初中数学中考考试大纲

最新初中数学中考考试大纲

用有理数估计无理数的大致范围

近似数与有效数字

5、二次根式
二次根式的概念

用二次根式的加、减、乘、除运算法则进行实数运算(不要求分母有理化)


附件(二):数
服饰□学习用品□食品□休闲娱乐□小饰品□式
500元以上1224%6、代数式
除了“漂亮女生”形成的价格,优惠等条件的威胁外,还有“碧芝”的物品的新颖性,创意的独特性等,我们必须充分预见到。 用字母表示数的意义、代数式
一、知识与技能
1、数与代数
考试内容
考试
要求目标
单元
知识条目
a1
a2
a3



1、有理数的概念
有理数的意义、数轴、相反数、绝对值等概念

有理数大小的比较

2、有理数的运算
有理数的加、减、乘、除、乘方运算

有理数的混合运算

很大的数与很小的数



3、数的开方
平方根、算术平方根、立方根的概念
4、实数
无理数、实数的概念、实数与数轴上的点一一对应

作简单平面图形平移后的图形

利用平移进行图案设计

平移在现实生活中的应用

12、图形的旋转
旋转的概念

旋转的基本性质

平行四边形、圆的对称性

作简单平面图形旋转后的图形

旋转在现实生活中的应用

图形之间的变换关系(轴对称、平移、旋转及其组合)

用轴对称、平移和旋转的组合进行图案设计

作角的平分线

初中数学中考考试大纲

初中数学中考考试大纲
单元
知识条目
a1
a2
a3






10、方程与方程组
①用观察、画图等手段估计方程的解

②一元一次方程的解法

③简单的二元一次方程的解法

④可化为一元一次方程的分式方程的解法(方程中的分式方程不超过两个)

⑤简单数字系数的一元二次方程的解法(公式法、配方法、因式分解法)

⑥列方程(组)解应用题

11、不等式与不等式组
⑧图形的位似

⑨利用位似将一个图形放大或缩小

⑩利用图形的相似解决一些实际问题

⑾锐角三角形函数的意义

⑿特殊角三角函数值

⒀用锐角三角形函数解决简单的实际问题

图形与坐标
14、图形与坐标
①平面直角坐标系的有关概念

②画平面直角坐标系,点的位置与坐标

③在方格上建立直角坐标系,描述物体的位置

④图形坐标与坐标变化

考试内容
考试
要求目标
单元
知识条目
a1
a2
a3
图形的认识与证明
8、尺规作图
①作一条线段等于已知线段

②作一个角等于已知角

③作角的平分线

④作线段的垂直平分线

⑤利用基本作图作三角形

⑥过一点、两点和不在同一直线上的三点作圆

9、视图与投影
①画基本几何体的三视图

②判断简单物体的三视图,根据三视图描述基本几何体或实物原型

⑾运用三角形、四边形、正六边形进行镶嵌设计

(完整版)上海中考数学考试大纲

(完整版)上海中考数学考试大纲
说明①关于二次根式的性质,包括:
②不出现繁难的二次根式的运算;在求解其系数或常数项含二次根式的一元一次方程和一元一次不等式时,所涉及的计算不繁难。
3.重点和难点
重点是二次根式的性质,二次根式的加、减、乘、除及其混合运算,分数指数幂的知识结构
(5)理解分式的有关概念及其基本性质,掌握分式的加、减、乘、除运算。
(6)理解正整数指数幂、零指数幂、负整数指数幂的概念,掌握有关整数指数幂的乘(除)、乘方等运算的法则。
说明①在求代数式的值时,不涉及繁难的计算;②不涉及繁难的整式运算,多项式除法中的除式限为单项式;③在因式分解中,被分解的多项式不超过四项,不涉及添项、拆项等技巧;④不涉及繁复的分式运算。
2.基本要求
(1)理解用字母表示数的意义;理解代数式的有关概念。
(2)通过列代数式,掌握文字语言与数学式子的表述之间的转换,领悟字母“代”数的数学思想;会求代数式的值。
(3)掌握整式的加、减、乘、除及乘方的运算法则,掌握平方差公式、两数和(差)的平方公式。
(4)理解因式分解的意义,掌握提取公因式法、公式法、二次项系数为1时的十字相乘法、分组分解法等因式分解的基本方法。
(2)理解实数概念,掌握实数的加、减、乘、除、乘方、开方等运算的法制,会正确进行实数的运算。
(3)会用计算器进行实数的运算,初步掌握估算、近似计算的基本方法和科学记数法。
3.重点和难点
重点是理解实数概念,会正确进行实数的运算。
难点是认识实数与数轴上的点的一一对应关系。
4.知识结构
第二单元方程与代数
一、整式与分式
3.重点和难点
重点是整式与分式的运算,因式分解的基本方法,整数指数幂的运算。
难点是选择适当的方法因式分解及代数式的混合运算。

武汉市中考数学大纲

武汉市中考数学大纲

武汉市中考数学大纲一、考试性质武汉市中考数学考试是义务教育阶段的终结性考试,目的是全面、准确地评估初中毕业生在数学学科方面达到的水平,考试结果既是衡量学生是否达到毕业标准的主要依据,也是高中阶段学校招生的重要依据。

二、考试目标1. 知识技能(1)数学基础知识与基本技能- 数与式:有理数及其运算、实数及其运算、代数式、整式与分式。

- 方程与不等式:一元一次方程、一元二次方程、不等式与不等式组。

- 函数:一次函数、反比例函数、二次函数。

- 图形与几何:相交线与平行线、三角形、四边形、圆。

- 图形与变换:图形的平移、旋转与轴对称。

- 相似与全等:相似图形、全等图形。

- 尺规作图:基本作图、五种尺规作图。

(2)数学思想方法- 分类讨论思想。

- 函数与方程思想。

- 数形结合思想。

- 转化与化归思想。

(3)数学基本活动经验- 数学实验。

- 数学探究。

2. 数学思考(1)运用数学思维方式进行思考。

(2)发展数学应用意识。

(3)有条理地思考,有根有据地表达自己思考的过程。

(4)形成坚持真理、修正错误的科学态度。

3. 问题解决(1)提出问题并尝试用数学语言加以表述。

(2)分析问题并寻找解决策略。

(3)掌握分析与综合、归纳与演绎的基本方法。

(4)能根据问题提供的信息,自觉应用所学数学知识寻求解决问题的途径与方法,并有效地进行表达和交流。

(5)能主动应用所学数学知识解决生活中简单的实际问题,并在解决复杂问题时具有初步的判断和选择能力。

(6)能从多角度寻求解决问题的方法,并考虑问题的全面性。

(7)能对解决问题的过程进行反思,获得解决问题的经验,形成初步的探究和解决问题的能力。

4. 情感态度(1)积极参与数学学习活动,对数学有好奇心和求知欲。

(2)在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。

(3)初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

2024年全国中考数学考试大纲

2024年全国中考数学考试大纲

2024年全国中考数学考试大纲一、考试目标和要求2024年全国中考数学考试旨在全面评估学生对数学知识和技能的掌握程度,培养学生的逻辑思维和问题解决能力。

考试内容涵盖数学的基本概念、运算技巧、应用能力和数学思维方法。

具体考试目标和要求如下:1. 理解与应用知识学生应掌握数与代数、几何、函数、统计与概率等方面的基本概念和基本原理,并能灵活运用这些知识解决实际问题。

2. 计算与推理能力学生应具备基本的计算能力,能熟练运用数与代数、几何、函数等方面的运算技巧。

同时,学生应具备良好的逻辑思维和推理能力,能运用数学方法和思维解决实际问题。

3. 建模与解决问题能力学生应具备基本的建模能力,能从具体问题中抽象出数学模型,并能利用数学模型解决实际问题。

4. 快速反应与解决问题能力学生应具备较强的计算与推理能力,能在一定时间内迅速反应和解决问题,提高解决问题的效率。

二、考试内容2024年全国中考数学考试内容包括数与代数、几何、函数、统计与概率四个方面。

其中,数与代数占30%,几何占30%,函数占20%,统计与概率占20%。

具体内容如下:1. 数与代数(1)整数、有理数和无理数的概念与性质;(2)代数式及其运算;(3)一元一次方程及其应用;(4)比例与比例方程;(5)四则运算和整式的运算;(6)一元二次方程及其应用。

2. 几何(1)相交线与平行线;(2)三角形的性质与构造;(3)多边形的性质与构造;(4)相似与全等三角形;(5)三角形的面积;(6)圆的性质与构造;(7)平面图形的投影与旋转。

3. 函数(1)函数的概念与性质;(2)一次函数与二次函数的图象与性质;(3)函数的运算与复合函数;(4)函数方程与应用。

4. 统计与概率(1)统计调查与统计表的分析;(2)图表的绘制与分析;(3)样本调查与抽样方法;(4)概率的概念与计算。

三、考试要求和评分标准2024年全国中考数学考试采用闭卷形式,考试时间为120分钟。

考试试卷分为选择题和解答题两部分。

(完整版)初中数学中考考试大纲

(完整版)初中数学中考考试大纲
V
⑤三角形的内心与外心
V
⑥切线的概念
V
⑦切线与过切点的半径之间的关系
V
⑧切线的判定
V
⑨过圆上一点画圆的切线
V
⑩弧长及扇形面积的计算
V
(11)圆锥的侧面积和全面积的计算
V
考试内容
考试 要求目标


知识条目
a1
a2
a3
图 形 的 认 识 与 证 明
&尺规作图
①作一条线段等于已知线段
V
②作一个角等于已知角
V
⑥平行四边形的性质和判定
V
⑦矩形、菱形、正方形的性质和判定
V
⑧梯形的概念
V
⑨等腰梯形的性质和判定
V
⑩线段、矩形、平行四边形、三角形 的中心及物理意义
V
(11)运用三角形、四边形、正六边形进 行镶嵌设计
V
7、圆
①圆的有关概念
V
②弧、弦、圆心角的关系
V
③圆的性质
V
④圆周角与圆心角的关系、直径所对 圆周角的特征
V
⑥列方程(组)解应用题
V
11、不等式与不等式组
①不等式的意义
V
②不等式的基本性质
V
③简单的一兀一次不等式的解法
V
④两个一兀一次不等式组成的不等 式组的解法
V
⑤在数轴上表示不等式(组)的解 集
V
⑥列不等式(组)解简单的应用题
V
函 数
12、函数及其表示
①常量、变量的意义
V
②函数的概念和表示方法
V
③简单实际问题中的函数关系
V
③估计、比较角的大小
V
④计算角度的和与差

2024年中考数学考试大纲更新版

2024年中考数学考试大纲更新版

2024年中考数学考试大纲更新版中考作为学生学业生涯中的一次重要考试,数学科目一直占据着重要的地位。

为了更好地引导学生学习数学,提高数学素养,适应时代发展的需求,2024 年中考数学考试大纲进行了更新。

以下将对更新后的考试大纲进行详细解读。

一、考试目标2024 年中考数学考试旨在考查学生的数学基础知识、基本技能、基本思想和基本活动经验,以及运用所学知识分析问题和解决问题的能力。

注重考查学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想,同时关注学生的创新意识和实践能力的发展。

二、考试内容1、数与代数(1)数的认识理解有理数、无理数、实数的概念,掌握它们的性质和运算。

能比较实数的大小,能用数轴上的点表示实数,会求实数的相反数、绝对值。

(2)数的运算掌握有理数的加、减、乘、除、乘方运算,以及简单的混合运算。

理解整式、分式的概念,掌握整式的加减乘除运算,以及分式的化简和运算。

能进行二次根式的化简和运算。

(3)方程与不等式能解一元一次方程、二元一次方程组、一元二次方程,会用方程解决实际问题。

能解一元一次不等式(组),并用数轴表示解集。

(4)函数理解函数的概念,能确定函数自变量的取值范围。

掌握一次函数、反比例函数、二次函数的图象和性质,能用函数解决实际问题。

2、图形与几何(1)图形的认识认识点、线、面、角、相交线与平行线,掌握三角形、四边形、圆的基本性质和相关定理。

了解视图与投影的基本知识。

(2)图形的变换掌握平移、旋转、轴对称的性质,能进行简单的图形变换。

(3)图形的相似与全等理解相似三角形、全等三角形的判定和性质,能运用它们解决问题。

(4)解直角三角形掌握锐角三角函数的概念,能运用三角函数解决与直角三角形相关的实际问题。

(5)图形与坐标理解平面直角坐标系的概念,能在坐标系中表示点的位置,会用坐标表示图形的变换。

3、统计与概率(1)数据的收集、整理与描述了解普查和抽样调查的区别,会收集、整理和分析数据,能用统计图(条形统计图、扇形统计图、折线统计图)描述数据。

(完整版)年深圳市中考数学考试大纲

(完整版)年深圳市中考数学考试大纲

年深圳市中考数学考试大纲深圳市初中数学学业考试,是义务教育阶段的终结性考试,目的是全面、准确地评估初中毕业生达到《全日制义务教育数学课程标准》(以下简称《标准》)所规定的数学毕业水平的程度,是高中阶段学校招生的重要依据之一。

一、考试命题的指导思想1.数学学业考试体现《标准》的评价理念,引导和促进数学教学全面落实《标准》所设立的课程目标,改善学生的数学学习方式、丰富学生的数学学习体验、提高学生学习数学的效益和效率,有利于高中阶段学校综合、有效地评价学生的数学学习状况。

2.数学学业考试既重视对学生学习数学知识与技能的结果和过程的评价,也重视对学生在数学思考能力和解决问题能力方面发展状况的评价,还重视对学生数学认识水平的评价。

3.数学学业考试命题面向全体学生,根据学生的年龄特征、个性特点和生活经验编制试题!使具有丕同韵数学认知特点,一不同的数学发展程度的学生都能表现自己的数学学习状况,力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得相应发展。

二、考试命题原则数学学科毕业考试的命题遵循以下基本原则。

1.考查内容依据《标准》,体现基础性命题突出对学生基本数学素养的评价。

试题首先关注《标准》中最基础和最核心的内容,即所有学生在学习数学和应用数学解决问题过程中最为重要的、必须掌握的核心观念、思想方法,基本概念和常用的技能。

所有试题求解过程中所涉及的知识与技能以《标准》为依据,不扩展范围与提高要求。

2.试题素材、求解方式等体现公平性数学学业考试的内容、试题素材和试卷形式对每一位学生是公平的。

试题不需要特殊背景知识也能够理解。

对于具有特殊才能和需要特殊帮助的学生,试题允许学生用各自的数学认知特征、已有的数学活动经验,来表达自己的数学才能。

制定评分标准系统时以开放的态度对待合理的、但没有预见到的答案形式,尊重不同的解答方法和表述方式。

3.试题背景具有现实性试题背景来自于学生所能理解的生活现实,符合学业所具有的数学现实和其它学科现实。

福建省中考数学考试大纲

福建省中考数学考试大纲

初中学业考试大纲(数学)一、考试性质初中数学学业考试是义务教育初中阶段的终结性省级考试,目的是全面、准确地反映初中毕业生是否达到《义务教育数学课程标准(版)》(以下简称《数学课程标准》)所规定的学业水平.考试结果不仅是衡量学生是否达到毕业标准的主要依据,也是高一级学校招生的重要依据,还是检测区域和群体的数学教学质量一项依据.《数学课程标准》及本考试大纲.2.公平性:试题素材、背景应符合学生所能理解的生活现实、数学现实和其他学科现实,考虑城乡学生认知的差异性,避免出现偏题、怪题.四、考试范围《数学课程标准》(7—9年级)中:数与代数、图形与几何、统计与概率、综合与实践四个部分的内容.凡是《数学课程标准》中标有*的选学内容,不作为考试要求.五、内容目标(一)基础知识与基本技能考查的主要内容(二)“数学基本能力”考查的主要内容数学基本能力指学生在运算能力、推理能力、空间观念、数据分析观念、应用意识、创新意识等方面的发展情况,其内容主要包括:1.运算能力:主要是指能够根据法则和运算律正确地进行运算的能力.2.推理能力:凭借经验和直觉,通过观察、尝试、归纳、类比等活动获得数学猜想,并能进一步从已有的事实和确定的规则出发,按照逻辑推理的法则进行证明和计算.3.空间观念:主要指能依据语言的描述画出图形,懂得描述图形的运动和变化,并利用图形描述和分析问题,研究基本图形性质.4.数据分析观念:指会收集、分析数据,并根据数据中蕴涵的信息选择合适的方法做出判断,体验随机性.5.应用意识:认识到现实生活中蕴含着大量与数量和图形有关的问题可以抽象成数学问题,并有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题.6.创新意识:主要指能发现和提出简单数学问题,初步懂得应用所学的数学知识、技能和基本思想进行独立思考;能归纳概括得到猜想和规律,并加以验证.(三)“数学基本思想”考查的主要内容数学基本思想着重考查学生对函数与方程思想、数形结合思想、分类与整合思想、特殊与一般思想、化归与转化思想、或然与必然思想等的领悟程度.1.函数与方程思想函数思想的实质是抛开所研究对象的非数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立各变量之间固有的函数关系,通过函数形式,利用函数的有关性质,使问题得到解决.方程思想是将所求的量设成未知数,用它表示问题中的其它各量,根据题中隐含的等量关系,列方程(组),通过解方程(组)或对方程(组)进行研究,以求得问题的解决.函数与方程是整体与局部、一般与特殊、动态与静止等相互联系的,在一定条件下,它们可以相互转化.2.数形结合思想数形结合思想就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,包含“以形助数”和“以数辅形”两个方面.其中“以形助数”是指借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的.“以数辅形”是指借助于数的精确性和规范严密性来阐明形的某些属性,即以数为手段,形作为目的.3.分类与整合思想在解某些数学问题时,当被研究的问题包含了多种情况时,就必须抓住主导问题发展方向的主要因素,在其变化范围内,根据问题的不同发展方向,划分为若干部分分别研究.这里集中体现的是由大化小,由整体化为部分,由一般化为特殊的解决问题的方法,其研究的基本方向是“分”,但分类解决问题之后,还必须把它们整合在一起,这种“合—分—合”的解决问题的思想,就是分类与整合思想.4.特殊与一般思想人们对一类新事物的认识往往是通过对某些个体的认识与研究,逐渐积累对这类事物的了解,逐渐形成对这类事物总体的认识,发现特点,掌握规律,形成共识,由浅入深,由现象到本质,由局部到整体,这种认识事物的过程是由特殊到一般的认识过程.但这并不是目的,还需要用理论指导实践,用所得到的特点和规律解决这类事物中的新问题,这种认识事物的过程是由一般到特殊的认识过程.于是这种由特殊到一般再由一般到特殊反复认识的过程,就是人们认识世界的基本过程之一.数学研究也不例外,这种由特殊到一般,由一般到特殊的研究数学问题的思想,就是数学研究中的特殊与一般思想.5.化归与转化思想化归与转化思想是指在研究解决数学问题时采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种解题策略.数学题中的条件与条件、条件与结论之间存在着差异,差异即矛盾,解题过程就是有目的地不断转化矛盾,最终解决矛盾的过程.6.必然与或然思想人们发现事物或现象可以是确定的,也可以是模糊的,或随机的.随机现象有两个最基本的特征,一是结果的随机性,即重复同样的试验,所得到的结果未必相同,以至于在试验之前不能预料试验的结果;二是频率的稳定性,即在大量重复试验中,每个试验结果发生的频率“稳定”在一个常数附近.概率与统计研究的对象均是随机现象,研究的过程是在“或(偶)然”中寻找“必然”,然后再用“必然”的规律去解决“或然”的问题,这其中所体现的数学思想就是必然与或然思想.(四)对考查目标的要求层次依据数学课程标准,考试要求的知识技能目标分为四个不同层次:了解;理解;掌握;运用.具体涵义如下:了解:从具体事例中知道或举例说明对象的有关特征;根据对象的特征,从具体情境中辨认或者举例说明对象.理解:描述对象的特征和由来,阐述此对象与相关对象之间的区别和联系.掌握:在理解的基础上,把对象用于新的情境.运用:综合使用已掌握的对象,选择或创造适当的方法解决问题.(五)考试内容与要求统计与概率综合与实践六、考试形式、时间初中毕业生数学学业考试采用闭卷笔试形式,全卷满分150分,考试时间120分钟.七、试卷难度合理安排试题难度结构.试题易、中、难的比例约为8:1:1,其中容易题难度值范围为0.7以上、中等题难度值范围为0.5~0.7、稍难题难度值范围为0.3~0.5.考试合格率达80%.八、试卷结构试卷包含有选择题、填空题和解答题三种题型.三种题型的占分比例约为:选择题约占25%,填空题约占15%,解答题约占60%.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推证过程;解答题包括计算题、证明题、应用题、作图题等,解答题应写出文字说明、演算步骤、推证过程或按题目要求正确作图.全卷总题量控制在25~28题,适当控制试卷长度.九、试题示例一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.(容易题)1.数轴上到原点的距离等于1的数是( ).A .1±B .0C .1D .-1(容易题)2. 下列各式中能用完全平方公式进行因式分解的是( ).A .21x x ++B .221x x +-C .21x -D .269x x -+(容易题)3. 下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地后正面朝上; ③任取两个正整数,其和大于1;④长分别为3、5、9厘米的三条线段能围成一个三角形. 其中确定事件的个数是( ). A .B .C .D .(容易题)4.为筹备班级毕业晚会,班长对全班同学爱吃哪几种水果作了民意调查.根据调查数据决定最终买什么水果应参照的统计量是( ).A .平均数B .中位数C .众数D .方差(容易题)5. 下列计算中,正确的是( ).A .a +a 11=a 12B .5a -4a =aC .a 6÷a 5=1D .(a 2)3=a 5(容易题)6.一个多边形的内角和是它的外角和的2倍,则这个多边形是( ).A .四边形B .五边形C .六边形D .七边形(容易题)7.如图,无法..保证△ADE 与△ABC 相似的条件是( ). A .∠1=∠C B .∠A =∠C C .∠2=∠B D .AD AEAC AB=(容易题)8.如图,某个函数的图象由线段AB 和BC 组成, 其中点A (0,43),B (1,12),C (2,53),则此函数的最小值是A .0B .12C .1D .53(中等题)9.如图,C ,D 分别是线段AB ,AC 的中点,分别以点 C ,D 为圆心,BC 长为半径画弧,两弧交于点M ,测量∠AMB 的度数, 结果为A .︒80B .︒90C .︒100D .︒1051234AD BCE 1 2(第7题)AB(第8题)(第9题)(稍难题)10.A ,B ,C ,D 四支足球队分在同一小组进行单循环足球比赛,争夺出线权.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队(有且只有两个队)出线.小组赛结束后,如果A 队没有全胜,那么A 队的积分至少要( )分才能保证一定出线.【注:单循环比赛就是小组内的每一个队都要和其他队赛一场】 A .7 B . 6C .4D .3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置.(容易题)11.-2015的倒数是 .(容易题)12.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是 .(容易题)13.已知m 、n 为两个连续的整数,且11m n <<,则m n += . (容易题)14.如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是 . (中等题)15.如图,在小山的东侧点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成角的方向飞行,25分钟后到达处,此时热气球上的人测得小山西侧点的俯角为,则小山东西两侧,两点间的距离为 米.(稍难题)16.设[)x 表示大于..x 的最小整数,如[)3=4,[)2.1-=-1,则下列结论中正确..的是 .(填写所有正确结论的序号)① [)00=; ② )[)f x x x =-的最小值是0;③ )[)f x x x =-的最大值是1; ④ 存在实数x ,使)[)f x x x =-=0.5成立. A 75°C B 30°A B (第14题)(第15题) (第12题)三、解答题:本大题共10小题,共86分.解答应写出文字说明,证明过程或演算步骤.(容易题)17.(6分)计算:1 02145tan2)2014(-⎪⎭⎫⎝⎛+︒--π.(容易题)18.(6分)化简:222252531x y xy x y xy--+++,并说出化简过程中所用到的运算律.(容易题)19.(6分)求不等式组⎩⎨⎧->>+②52①12xxx的正整数解.(容易题)20.(6分)解分式方程:03632=+-+-xxxx.(容易题)21.(8分)如图,在ABC△中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF. 求证:四边形BCFE是菱形.(容易题)22.(8分)果农老张进行桃树科学管理试验.把一片桃树林分成甲、乙两部分,甲地块用新技术管理,乙地块用老方法管理,管理成本相同.在甲、乙两地块上各随机选取40棵桃树,根据每棵树的产量把桃树划分成A B C D E,,,,五个等级(甲、乙两地块的桃树等级划分标准相同,每组数据包括左端点不包括右端点).画出统计图如下:(1)补齐直方图,求a的值及相应扇形的圆心角度数;(2)选择合适的统计量,比较甲乙两地块的产量水平,并说明试验结果;(3)若在甲地块随机抽查1棵桃树,求该桃树产量等级是B级的概率.s (米)t (分)0 515 35 25 45 55 150300450 (中等题)23.(10分)如图,已知AB 是⊙O 的直径,AB=4,点C 在线段AB 的延长线上,点D 在圆O 上,连接CD ,且CD=OA ,OC=. 求证:CD 是⊙O 的切线.24.(10分)甲乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走. 设甲乙两人相距s (米),甲行走的时间为t (分),s 关于t 的函数函数图像的一部分如图所示.(容易题)(1)求甲行走的速度;(容易题)(2)在坐标系中,补画s 关于t 函数图象的其余部分; (中等题)(3)问甲、乙两人何时相距360米?25.(12分)已知点A (-2,n )在抛物线y =x 2+bx +c 上. (中等题)(1)若b =1,c =3,求n 的值;(稍难题)(2)若此抛物线经过点B (4,n ),且二次函数y =x 2+bx +c 的最小值是-4,请画出点P (x -1,x 2+bx +c )的纵坐标随横坐标变化的图象,并说明理由.26.(14分)定义:三边长和面积都是整数的三角形称为“整数三角形”.数学学习小组的同学从32根等长的火柴棒(每根长度记为1个单位)中取出若干根,首尾依次相接组成三角形,进行探究活动.小亮用12根火柴棒,摆成如图所示的“整数三角形”; 小颖分别用24根和30根火柴棒摆出直角“整数三角形”;小辉受到小亮、小颖的启发,分别摆出三个不同的等腰“整数三角形”. (容易题)⑴请你画出小颖和小辉摆出的“整数三角形”的示意图;⑵你能否也从中取出若干根,按下列要求摆出“整数三角形”,如果能,请画出示意图;如果不能,请说明理由.(中等题)①摆出等边“整数三角形”;(稍难题)②摆出一个非特殊(既非直角三角形,也非等腰三角形)“整数三角形”.22(第23题)43 5参考答案:一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A ; 2.D ; 3.B ; 4.C ; 5.B ; 6.C ; 7.B ; 8.B ; 9.B ; 10.A .二、填空题:本大题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置.11.抽样调查 ;12.乙; 13.7 ;14.4 ; 15.; 16.③ ④ . 三、解答题:本大题共10小题,共86分.解答应写出文字说明,证明过程或演算步骤. 17.解:原式=1-2×1+2=118.解:原式=222253251x y x y xy xy +-+-+=2222(53)(2)(51)x y x y xy xy ++-++-+ =2284x y xy --所用到的运算律有加法交换律、加法结合律、乘法分配律 19.解:由①得 由②得 则不等式组的解集为 ∴此不等式组的正整数解为1,2,3,420.解法一:原方程化为0)6()3)(3(2=-++-x x x x∴06922=-+-x x x 解得 x =23 经检验,x =23是原分式方程的解. ∴原方程的解是x =23解法二:原方程化为0)6()3(3)3(2=-++-+x x x x x(以下与解法一相同) 21.证明:D 、E 是AB 、AC 的中点,,2.DE BC BC DE ∴=∥又2,,BE DE EF BE ==,BC BE EF EF BC ∴==∥.∴四边形BCFE 是菱形.22.解:(1)画直方图:略10a =,相应扇形的圆心角为:36010%36︒⨯=︒.12x >-5x <152x -<<(2)95108512751065655280.540x ⨯+⨯+⨯+⨯+⨯==甲,9515%8510%7545%6520%5510%75x =⨯+⨯+⨯+⨯+⨯=乙.x x >乙甲,由样本估计总体的思想,说明通过新技术管理甲地块桃树平均产量高于乙地块桃树平均产量.(3)120.340P ==. 23.证明:连接OD ,由题意可知CD =OD =OA =21AB =2 ∴OD 2+CD 2=OC 2∴△OCD 为直角三角形,则OD ⊥CD 又∵点D 在⊙O 上,∴CD 是⊙O 的切线24.解:(1)甲行走的速度为:150530÷=(米/分);(2)补画s 关于t 函数图象如图所示(横轴上对应的时间为50): (3)设甲出发t 小时与乙相遇,由3050(5)t t =-,解得12.5t =;当35t =时,乙行进了50(355)1500⨯-=米; 当50t =时,甲行进了30501500⨯=米.结合函数图象可知,当12.5t =和50t =时,0s =;当35t =时,450s =, (2)①当12.535t ≤≤时,由待定系数法可求:20250s t =-,令360s =,即20250360t -=,解得30.5t =;②当35<50t ≤时,由待定系数法可求:301500s t =-+,令360s =,即301500360t -+=,解得38t =. ∴甲行走30.5分钟或38分钟时,甲、乙两人相距360米.25.(1)解:∵ b =1,c =3,∴ y =x 2+x +3.∵点A (-2,n )在抛物线y =x 2+x +3上, ∴n =4-2+3 =5.(2)解:∵点A (-2,n ),B (4,n )在抛物线y =x 2+bx +c 上,∴⎩⎨⎧4-2b +c =n ,16+4b +c =n .∴b =-2.∴顶点的横坐标是-b2=1.s (米)t (分)0 515 35 25 45 55 150300 450即顶点为(1,-4). ∴-4=1-2+c . ∴c =-3.∴P (x -1,x 2-2x -3).∵将点(x ,x 2-2x -3)向左平移一个单位得点P (x -1,x 2-2x -3), ∴将点(x ,x 2-2x -3)的纵坐标随横坐标变化的函数的图象向左平移一个单位后可得点P (x -1,x 2-2x -3)的纵坐标随横坐标变化的函数的图象. 设p =x -1,q =x 2-2x -3,则q =p 2-4.画出抛物线q =p 2-4的图象.26.解:⑴小颖摆出如图1所示的“整数三角形”:小辉摆出如图2所示三个不同的等腰“整数三角形”:⑵①不能摆出等边“整数三角形”.理由如下: 设等边三角形的边长为a ,则等边三角形面积为243a . 因为,若边长a 为整数,那么面积243a 一定非整数. 所以不存在等边“整数三角形”.②能摆出如图3所示一个非特殊“整数三角形”:86 1012513图14 3 35 55 54 43 8 10 106 6图24 5121513图3。

中考数学考试大纲及要求明细

中考数学考试大纲及要求明细

中考考试目标及考试要求 考试内容考试要求ABC有理数 理解有理数的意义会比拟有理数的大小无理数 了解无理数的概念 能根据要求用有理数估计一个无理数的大致X 围了解平方根及算术平方根的概念,了解开方与乘方互平方根、算术 为逆运算,了解平方根及算会用平方运算的方法,求某平方根术平方根的概念,会用根号些非负数的平方根 表示非负数的平方根及算术平方根立方根 了解立方根的概念,会用根会用立方运算的方法,求某号表示数的立方根些数的立方根实数了解实数的概念 会进展简单的实数运算能用数轴上的点表示有理 会借助数轴比拟有理数的 数轴 数;知道实数与数轴上的点 大小 一一对应的对应关系会用有理数表示具有相反相反数 意义的量,借助数轴理解相 掌握相反数的性质数与数与 反数的意义,会XX 数的相代数 式 反数借助数轴理解绝对值的意 会利用绝对值的知识解决 绝对值 简单的化简问题和计算问 义,会XX 数的绝对值 题掌握有理数的加、减、乘、 能运用的有理数的运算解 有理数运算 理解乘方的意义 除、乘方及简单的混合运算 决简单问题 〔以三步为主〕有理数的运算 理解有理数的运算律 能用有理数的运算律简化 律 有理数运算近似数、有效 了解近似数和有效数字的 在解决实际问题中,能按问 题的要求对结果取近似值; 数字和科学记 概念;会用科学记数法表示 能对含有较大数字的信息 数法 数 作出合理的解释和推断会列代数式表示简单的数代数式理解用字母表示数的意义量关系;能解释一些简单代数式的实际意义或几何意义代数式的值了解代数式的值的概念会求代数式的值;能根据代能根据特定的问题所提供数与 代数数式的值或特征,推断这些的资料,合理选用知识和 代数式反映的一些规律 方法,通过代数式的适当变形求代数式的值整式 了解整式的有关概念整式的加减运 会进展简单的整式加、减运 能运用整式的加减运算对 理解整式加、减运算的法那么 多项式进展变形,进一步算算 解决有关问题整数指数幂了解整数指数幂的意义和 能用幂的性质解决简单问 根本性质 题理解整式乘法的运算法那么,整式的乘法 会进展简单的整式乘法运 会进展简单的整式乘法与 能选用恰当的方法进展相算〔其中的多项式相乘仅指 加法的混合运算 应的代数式的变形一次式相乘〕平方差公式、 理解平方差公式、完全平方能用平方差公式、完全平方能根据需要,运用公式进完全平方公式 公式,了解其几何背景 公式进展简单计算 行相应的代数式的变形会用提公因式法、公式法 能运用因式分解的知识进了解因式分解的意义及其 〔直接用公式不超过两次〕 因式分解 行代数式的变形,解决有与整式乘法之间的关系 进展因式分解〔指数是正整关问题 数〕分式的概念了解分式的概念,能确定分能确定使分式的值为零的式有意义的条件 条件分式的性质理解分式的根本性质,并能能用分式的根本性质进展进展简单的变形 约分和通分理解分式的加、减、乘、除 会进展简单的分式加、减、 分式的运算 乘、除运算;会选用恰当方运算法那么 法解决与分式有关的问题二次根式及其 了解二次根式的概念,会确 能根据二次根式的性质对代数式作简单变形;能在给性质 定二次根式有意义的条件 定的条件下,确定字母的值会进展二次根式的化简,会二次根式的化 理解二次根式的加、减、乘、简和运算 除运算法那么进展二次根式的混合运算〔不要求分母有理化〕知道方程是刻画现实世界 能够根据具体问题中的数方程 数量关系的一个有效的数 能运用方程解决有关问题量关系,列出方程学模型 方程的解 了解方程的解的概念 会用观察、画图等方法估计 方程的解方程 与不 了解一元一次方程的有关 会根据具体问题列出一元 一元一次方程 概念 一次方程 等式 熟练掌握一元一次方程的一元一次方程 理解一元一次方程解法中 解法;会解含有字母系数 会运用一元一次方程解决的解法 的各个步骤 〔无需讨论〕的一元一次方简单的实际问题 程〔无需讨论〕二元一次方程 了解二元一次方程〔组〕的能根据具体问题列出二元〔组〕有关概念一次方程〔组〕二元一次方程 知道代入消元法、加减消元 掌握代入消元法和加减消会运用二元一次方程组解元法;能选择适当的方法解 组的解法 法的意义 决简单的实际问题 二元一次方程组 会解可化为一元一次方程分式方程及其了解分式方程的概念的分式方程〔方程中的分式会运用分式方程解决简单解法不超过两个〕;会对分式方的实际问题程的解进展检验了解一元二次方程的概念,会将一元二次方程化为一一元二次方程般形式,并指出各项的系数;了解一元二次方程根的意义能由一元二次方程的概念 确定二次项系数中所含字 母的取值X 围;会由方程的 根求方程中待定系数的值能利用根的判别式说明含理解配方法,会用直接开平 有字母系数的一元二次方 能选择适当的方法解一元 程根的情况及由方程根的 方法、配方法、公式法、因 一元二次方程 二次方程;会用一元二次方情况确定方程中待定系数式分解法解简单的数字系 的解法 程根的判别式判断根的情的取值X 围;会用配方法数的一元二次方程,理解各 况 对代数式作简单的变形; 种解法的依据 会运用一元二次方程解决 简单的实际问题不等式〔组〕能根据具体问题中的大小 能根据具体问题中的数量 关系了解不等式的意义 关系列出不等式〔组〕不等式的性质 理解不等式的根本性质会利用不等式的性质比拟 两个实数的大小了解一元一次不等式〔组〕 会解一元一次不等式和由 能根据具体问题中的数量解一元一次不 两个一元一次不等式组成 的解的意义,会在数轴上表 关系,用列出一元一次不等式〔组〕 的不等式组,并会根据条件示或判定其解集 等式解决简单问题 求整数解了解常量和变量的意义;了 能探索具体问题中的数量解函数的概念和三种表示 关系和变化规律,并用函方法;能举出函数的实例; 能用适当的函数表示法刻 数加以表示;结合函数关函数及其图象 会确定简单的整式、分式和 画某些实际问题中变量之 系的分析,能对变量的变简单实际问题中的函数的 间的关系 化趋势进展初步推测;能自变量取值X 围,并会求函 结合图象对简单实际问题函数 数值 中的函数关系进展分析会根据条件确定一次理解正比例函数;能结合具函数的解析式;会根据一次一次函数 体情境了解一次函数的意 函数的解析式求其图象与能用一次函数解决实际问义,会画一次函数的图象; 坐标轴的交点坐标;能根据题理解一次函数的性质 一次函数的图象求二元一次方程组的近似解能结合具体情境了解反比 能根据条件确定反比 反比例函数 例函数的意义;能画出反比例函数的解析式;能用反比例函数的图象;理解反比例例函数的知识解决有关问函数的性质 题能通过分析实际问题的情境确定二次函数的表达式;能从图象上认识二次函数能用二次函数解决简单的 能结合实际问题情境了解的性质;会根据二次函数的实际问题;能解决二次函二次函数 二次函数的意义;会用描点解析式求其图象与坐标轴 数与其他知识综结合的有 法画出二次函数的图象 的交点坐标,会确定图象的 关问题 顶点、开口方向和对称轴;会利用二次函数的图象求 一元二次方程的近似解了解定义、命题、定理的含义,会区分命题的条件和结论;了解逆命题的概念,会图形命题 识别两个互逆命题,并知道原命题成立时其逆命题不与证 一定成立;理解反例的作明 用,知道列举反例可以判断一个命题是假命题推理与证明 理解证明的必要性;了解反掌握用综合法证明的格式, 会用归纳和类比进展简单 证法的含义 证明的过程要步步有据 的推理能在方格纸上建立适当的认识并能画出平面直角坐 直角坐标系,描述物体的位图形标系;在给定的直角坐标系 置和变化;会由点的特殊位 平面直角坐标 中,会根据坐标描出点的位 置,求点的坐标中相关字母 灵活运用不同的方式确定 空间与坐 置、由点的位置写出它的坐 的X 围;会求点到坐标轴的 物体在坐标平面内的位置 系 与图 标 标;了解特殊位置的点的坐 距离;在同一直角坐标系形 标特征 中,会求图形变换后点的坐标 会画根本几何体〔直棱柱、圆柱、圆锥、球〕的三视图〔主视图、左视图、俯视图〕;能根据三视图描述基会判断简单物体的三视图,本几何体;了解直棱柱、圆图形立体图形、视 能根据三视图描述实物原锥的侧面展开图;了解根本 的认图和展开图 型;能根据直棱柱、圆锥的几何体与其三视图、展开图识 展开图判断立体模型 〔球除外〕三者之间的关系;观察与现实生活有关的图片,并能对形状、大小和 相互位置作简单的描述中心投影与平 能根据光线的方向识别实行投影 物的阴影;了解视点、视角的涵义,并能在简单的平面图和立体图中表示;了解中心投影和平行投影会表示点、线段、射线、直会用尺规作图:作一条线段 线,知道它们之间的联系与等于线段,作线段的垂线段、射线和 区别;结合图形理解两点之会运用两点之间的距离解直平分线;会用线段中点的直线 间距离的概念;会比拟两条 决有关问题线段的大小,并能进展与线 知识解决简单问题;结合图 形认识线段间的数量关系 段有关的简单计算考试要求考试内容ABC空间图形 与图的认 形识 会识别角并会表示;认识度、分、秒,并会进展简单换算;会度量 会用尺规作图:作一个角等于已 知角,作角的平分线;会用角的大小及进展简单的计算;会 角与角平分线 角平分线的性质解决简单问题;比拟角的大小,能估计一个角的 结合图形认识角与角之间的数 大小;了解角平分线的概念并会 量关系表示 了解补角、余角、对顶角,知道等角〔同角〕的余角相等、等角〔同角〕的补角相等、对顶角相等;了解垂线、垂线段等概念, 会用三角尺和直尺过直线 了解垂线段最短的性质,理解点 外一点画这条直线的平行线; 会 相交线与平行 到直线的距离的意义;了解线段 用三角尺或量角器过一点画一 线 垂直平分线及其性质;知道过直 条直线的垂线;会用线段垂直平 线外一点有且仅有一条直线平行 分线的性质解决简单问题; 掌握 于直线;知道过一点有且仅 平行线的性质与判定 有一条直线垂直于直线;理 解两条平行线之间距离的意义, 会度量两条平行线之间的距离会用尺规作给定条件的三角形;了解三角形的有关概念;了解三 掌握三角形内角和定理及推论;角形的稳定性;会按边或角对三 会按要求解决三角形的边、 角的 角形进展分类;理解三角形的内 计算问题;能用三角形的内心、三角形角和、外角和及三边关系;会画 外心的知识解决简单问题; 掌握 三角形的主要线段;知道三角形 会证明三角形的中位线定理,并的内心、外心和重心 会用三角形中位线性质解决有关问题了解等腰三角形、等边三角形、 能用等腰三角形、等边三角形、 会运用等腰三等腰三角形与直角三角形的概念,会识别这三 直角三角形的性质和判定解决 角形、等边三角 直角三角形简单问题 形、直角三角形种图形;理解等腰三角形、等边三角形、直角三角形的性质和判的知识解决有定关问题勾股定理及其 直角三角形的两边长,会求 会用勾股定理解决简单问题; 会 用勾股定理的逆定理判定三角逆定理 第三边长 形是否为直角三角形会利用相似三角形的性质与判相似三角形 了解两个三角形相似的概念 定进展简单的推理和计算; 会利用三角形的相似解决一些实际 问题会运用全等三角形的知识和了解全等三角形的概念,了解相 掌握两个三角形全等的条件和 方法解释或证 全等三角形的性质;会应用全等明经过图形变全等三角形 似三角形与全等三角形之间的关 三角形的性质与判定解决有关 换后得到的图 系 问题 形与原图形对应元素间的关系 了解多边形及正多边形的概念; 会用多边形的内角和与外角和 了解多边形的内角和与外角和公 公式解决计算问题;能用正三角 式;知道用任意一个三角形、四 多边形 形、正方形、正六边形进展简单边形或正六边形可以镶嵌;了解 的镶嵌设计;能依据条件分解与 四边形的不稳定性;了解特殊四 拼接简单图形 边形之间的关系掌握平行四边形的概念、判定和会运用平行四平行四边形 会识别平行四边形 性质,会用平行四边形的性质和 边形的知识解判定解决简单问题 决有关问题掌握矩形、菱形、正方形的概念、 会运用矩形、菱 特殊的平行四 会识别矩形、菱形、正方形 判定和性质,会用矩形、菱形、 形和、正方形的边形 正方形的性质和判定解决简单 知识解决有关问题 问题梯形 会识别梯形、等腰梯形;了解等 掌握梯形的概念,会用等腰梯形腰梯形的性质和判定 的性质和判定解决简单问题由某个锐角的一个三角函数值, 能运用三角函锐角三角函数 了解锐角三角函数〔,,〕;会求这个角的其余两个三角函 数解决与直角 知道,,角的三角函数值 数值;会计算含有 ,,角的三角形有关的三角函数式的值简单问题会解直角三角形;能根据问题的能综合运用直解直角三角形 知道解直角三角形的含义 需要添加辅助线构造直角三角角三角形的性形;会解由两个特殊直角三角形 质解决有关问构成的组合图形的问题 题会过不在同一直线上的三点作圆的有关概念 理解圆及其有关概念 圆;能利用圆的有关概念解决简单问题知道圆的对称性,了解弧、弦、能运用圆的性能用弧、弦、圆心角的关系解决圆的性质 圆心角的关系 简单问题 质解决有关问题能综合运用几了解圆周角与圆心角的关系;知 会求圆周角的度数,能用圆周角圆周角 的知识解决与角有关的简单问 何知识解决与 道直径所对的圆周角是直角 圆周角有关的 题 问题垂径定理 会在相应的图形中确定垂径定理 能用垂径定理解决有关问题的条件和结论弧长会计算弧长能利用弧长解决有关问题 扇形 会计算扇形面积能利用扇形面积解决有关的简单问题圆锥的侧面积 会求圆锥的侧面积和全面积能解决与圆锥有关的简单实际和全面积 问题点与圆的位置了解点与圆的位置关系关系了解直线与圆的位置关系;了解 能判定直线和圆的位置关系;会切线的概念,理解切线与过切点 直线与圆的位 根据切线长的知识解决简单的能解决与切线 的半径之间的关系;会过圆上一 置关系 问题;能利用直线和圆的位置关有关的问题 点画圆的切线;了解切线长的概系解决简单问题念圆与圆的位置能利用圆与圆的位置关系解决 了解圆与圆的位置关系 简单问题关系 能按要求作出简单平面图形经过一次或两次轴对称后的图形;了解图形的轴对称,理解对应点 掌握简单图形之间的轴对称关 能运用轴对称 轴对称 所连的线段被对称轴垂直平分的 系,并能指出对称轴;掌握根本的知识解决简性质;了解物体的镜面对称 图形〔等腰三角形、矩形、菱形、单问题 等腰梯形、正多边形、圆〕的轴对称性及其相关性质了解图形的平移,理解平移中对能按要求作出简单平面图形平 能运用平移的 空间图形平移 应点连线平行〔或在同一条直线移后的图形;能依据平移前、后知识解决简单与图与变上〕且相等的性质的图形,指出平移的方向和距离 问题形换了解图形的旋转,理解对应点到能按要求作出简单平面图形旋能运用旋转的旋转中心的距离相等、对应点与旋转转后的图形,能依据旋转前、后知识解决简单旋转中心连线所成的角彼此相等的图形,指出旋转中心和旋转角问题的性质;会识别中心对称图形了解比例的根本性质,了解线段会用比例的根本性质解决有关的比、成比例线段,会判断四条问题;会用相似多边形的性质解相似线段是否成比例,会利用线段的决简单的问题;能利用位似变换比例关系求未知线段;了解黄金将一个图形放大或缩小分割;知道相似多边形及其性质;统计与概率认识现实生活中物体的相似;了解图形的位似关系了解普查和抽样调查的区别;知能根据有关资料,获得数据信数据的收集道抽样的必要性及不同的抽样可息;能对日常生活中的某些数据能得到不同的结果进展简单的分析和推测总体、个体、在具体问题中,能指出总体、个样本和样本容体、样本和样本容量;理解用样量本估计总体的思想能用样本的平均数、方差来估计根据统计结果理解平均数的意义,会求一组数作出合理的判统计总体的平均数和方差;根据具体断和预测,并能数据的处理据的平均数〔包括加权平均数〕、众数、中位数、极差与方差问题,能选择适宜的统计量表示比拟清晰地表数据的集中程度或离散程度达会列频数分布表,画频数分布直能利用统计图统计图表会用扇形统计图表示数据表解决简单的方图和频数折线图实际问题频数与频率理解频数、频率的概念;了解频能利用频数解决简单的实际问数分布的意义和作用题事件了解不可能事件、必然事件和随机事件的含义概率了解概率的意义;知道大量重复会运用列举法〔包括列表、画树概率实验时,可以用频率估计概率状图〕计算简单事件发生的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学考试大纲考试目标【数与代数】1.有理数(1)有理数的意义(2)用数轴上的点表示有理数及有理数的相反数和绝对值(3)有理数的大小比较(4)求有理数的相反数与绝对值(绝对值内不含字母)(5)乘方的意义(6)有理数的加、减、乘、除、乘方运算及混合运算(以三步为主)2.实数(1)平方根、算术平方根、立方根和二次根式的概念(2)用根号表示平方根、立方根(3)开方和乘方互为逆运算(4)求某些非负数的算术平方根,求实数的立方根(5)无理数和实数的概念(6)实数与数轴上的点一一对应关系(7)对含有较大数字的信息作出合理的解释和推断(8)用有理数估计一个无理数的大致范围(9)近似数与有效数字的概念(10)二次根式的加、减、乘、除运算法则(11)实数的简单四则运算3.代数式(1)用字母表示数的意义(2)用代数式表示简单问题的数量关系(3)解释一些简单代数式的实际背景或几何意义(4)求代数式的值(5)整数指数幂的意义和基本性质(6)用科学记数法表示数(7)整式和分式的概念(8)简单的整式加减运算及乘法运算(其中的多项式相乘仅指一次式相乘)(9)平方差、完全平方公式的推导及运用(10)提取公因式法和公式法(用公式不超过两次,指数是正整数)因式分解(11)运用分式基本性质进行约分和通分(12)简单的分式加、减、乘除运算4.方程与方程组(1)根据具体问题中的数量关系,列出方程或方程组(2)解一元一次方程和二元一次方程组(3)解可化为一元一次方程的分式方程(方程中分式不超过两个)(4)用因式分解法、公式法和配方法解简单的数字系数的一元二次方程(5)用观察、画图或计算等方法估计方程的解(6)根据具体问题的实际意义,检验结果是否合理5.不等式与不等式组(1)不等式的意义(2)不等式的基本性质(3)解一元一次不等式及由两个一元一次不等式组成的不等式组,并在数轴上表示出解集(4)不等式与不等式组的简单应用6.函数(1)常量、变量的意义(2)举出函数的实例(3)函数的概念及函数的三种表示方法(4)结合图象对简单实际问题中的函数关系进行分析(5)求简单整式、分式和简单实际问题中的函数的自变量的取值范围(6)求函数值(7)用适当的函数表示法刻画某些实际问题中变量之间的关系(8)结合对函数关系的分析,尝试对变量的变化规律进行初步预测(9)一次函数、反比例函数和二次函数的意义(10)根据已知条件确定一次函数和反比例函数的表示法(11)通过对实际问题情境的分析确定二次函数表达式(12)画一次函数、反比例函数的图象(13)用描点法画二次函数的图象(14)理解一次函数和反比例函数的性质(15)通过图象认识二次函数的性质(16)根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆)(17)运用一次函数图象求二元一次方程组的近似解(18)利用二次函数图象求一元二次方程组的近似解(19)利用一次函数、反比例函数和二次函数解决实际问题【空间与图形】7.图形的认识(1)认识点、线、面(2)角的概念与表示(3)认识度、分、秒,能进行度、分、秒的简单换算(4)角的大小比较或估计(5)角度的和差计算(6)角平分线及其性质8.相交线与平行线(1)补角、余角、对顶角等概念(2)等角的余角相等、等角的补角相等、对顶角相等(3)垂线、垂线段等概念,了解垂线段最短(4)点到直线的距离和两跳平行线之间的距离(5)过一点有且仅有一条直线垂直于已知直线(6)用三角尺或量角器过一点画一条直线的垂线(7)线段垂直平分线及其性质(8)两直线平行同位角相等(9)过直线外一点有且只有一条直线平行于已知直线(10)用三角尺和直尺过已知直线外一点画这条直线的平行线9.三角形(1)三角形的有关概念(内角、外角、中线、高、角平分线)(2)画任意三角形的角平分线、中线和高(3)三角形中线及其性质(4)全等三角形的概念(5)三角形全等的条件(6)等腰三角形、等边三角形和直角三角形的有关概念(7)等腰三角形、等边三角形和直角三角形的性质(8)判定等腰三角形、直角三角形的条件(9)勾股定理及其简单运用10.四边形(1)多边形的概念(2)多边形的内角和与外角和公式(3)平行四边形、矩形、菱形、正方形、梯形的概念(4)平行四边形、矩形、菱形、正方形、梯形的性质(5)平行四边形、矩形、菱形、正方形、梯形之关系间的(6)判定平行四边形、矩形、菱形、正方形的条件(7)等腰梯形的有关性质(8)判定等腰梯形的依据11.圆(1)圆及其有关概念(2)弧、弦、圆心角的关系(3)点与圆、直线与圆以及圆与圆的位置关系(4)圆的简单性质(5)圆周角与圆心角的关系,直径所对圆周角的特征(6)三角形的内心和外心(7)切线的概念(8)切线与过切点的半径之间的关系,会过圆上一点画圆的切线(9)判定一条直线是否为圆的切线(10)计算弧长和扇形的面积,计算圆锥的侧面积和全面积12.尺规作图(1)基本作图:作一条线段等于已知线段;作一个角等于已知角;作角的平分线;作线段的垂直平分线(2)利用基本作图作三角形;已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形(3)过不在同一直线上的三点作圆(4)对于尺规作图题,应保留作图痕迹(5)13.视图与展开图(1)画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(2)判断简单物体(基本几何体地简单组合)的三视图(3)根据三视图描述简单几何体或简单物体的实物原型(4)直棱柱、圆锥的侧面展开图(5)基本几何体与其三视图、展开图(球除外)之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物体的包装)(6)根据展开图判断立体模型14.图形与变换(1)轴对称、平移和旋转的概念(2)轴对称、平移和旋转的基本性质(3)按要求作出简单平面图形经过一次或两次轴对称后的图形;作出简单图形平移后的图形;作出简单图形旋转后的图形(4)找出成轴对称的两个图形或轴对称图形的对称轴(5)等腰三角形、矩形、菱形、等腰梯形、正多边形、圆的轴对称性及相关性质(6)平行四边形、圆是中心对称图形(7)探索图形之间的变换关系(轴对称、平移、旋转及其组合)(8)应用轴对称、平移、旋转或他们的组合进行图案设计(9)欣赏现实生活中的轴对称,欣赏平移、旋转在现实生活中的应用15.图形的相似(1)比例的基本性质、线段的比、成比例线段(2)黄金分割(3)图形相似、三角形相似的概念(4)图形相似的简单性质(5)两个三角形相似的判定依据(6)观察和认识现实生活中的物体相似(7)利用图形的相似解决一些实际问题16.三角函数(1)锐角三角函数sinA,cosA,tanA的概念(2)30°,45°,60°角的三角函数值(3)运用三角函数解决与直角三角形有关的简单实际问题17.图形与坐标(1)平面直角坐标系的概念(2)在给定的直角坐标系中,由坐标描出点的位置,由点的位置写出它的坐标(3)在方格纸上建立适当的直角坐标系,描述物体的位置(4)在同一坐标系中感受图形变换后点的坐标的变化(5)运用不同的方式确定物体的位置18.图形与证明(1)证明的作用、反例的作用(2)定义、命题、定理的含义(3)命题的构成(区分条件与结论)(4)逆命题的概念(5)两个互逆命题的关系(6)反证法的含义(7)综合法证明的格式(8)掌握下列“证明的依据”一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,若同位角相等,那么这两条直线平行;若两个三角形的两边及其夹角(或两角及其夹边,或三边)分别相等,则这两个三角形全等;全等三角形的对应边、对应角分别相等(9)利用“证明的依据”(上一条目)中的基本事实证明下列命题:平行线的性质定理(内错角相等、同旁内角互补)平行线的判定定理(内错角相等或同旁内角互补,则两直线平行)三角形的内角和定理及推论直角三角形全等的判定定理角平分线性质定理及逆定理,三角形三个内角的平分线交于一点(内心)垂直平分线性质定理及逆定理,三角形三边的垂直平分线交与一点(外心)三角形中位线定理等腰三角形、等边三角形、直角三角形的性质和判定定理平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理【统计与概率】19.统计(1)收集、整理、描述和分析数据(2)抽样的意义(3)总体、个体、样本的概念(4)用样本估计总体的思想(5)用扇形统计图表示数据(6)加权平均数的概念(7)加权平均数的计算(8)选择合适的统计量表示数据的集中程度(9)用样本的平均数估计总体的平均数(10)极差和方差的概念(11)极差和方差的计算(12)用极差和方差表示数据的离散程度(13)用样本的方差估计总体的方差(14)频数、频率的概念(15)频数分布的意义和作用(16)列频数分布表、画频数分布直方图和频数折线图及其应用(17)根据统计结果作出合理的判断和预测(18)从有关实际问题的资料中获得数据信息,对日常生活中的某些数据发表自己的看法(19)运用统计知识解决一些简单的实际问题20.概率(1)概率的意义(2)运用列表、画树状图计算简单事件发生的概率(3)用概率知识解决一些实际问题(4)通过实验获得事件发生的概率(5)理解大量重复实验的频率可作为事件发生概率的估计值【实践与综合运用(课题学习)】结合“数与代数”“空间与图形”“统计与概率”三个学习领域的内容进行课题学习内容的考核,要求如下:(1)有初步的研究问题的方法和经验。

.(2)能探讨一些较简单的具有挑战性的研究课题,体验从实际问题中抽象出数学问题、建立数学模型、综合应用已有的知识解决问题的过程。

.(3)体验数学知识之间的内在联系,对数学有整体性的认识。

.(4)能积极思考所面临的课题,清楚的表达自己的观点,并解决问题。

欢迎下载,用心收集有用文档欢迎下载,用心收集有用文档欢迎下载,用心收集有用文档欢迎下载,用心收集有用文档欢迎下载,用心收集有用文档欢迎下载,用心收集有用文档欢迎下载,用心收集有用文档欢迎下载,用心收集有用文档欢迎下载,用心收集有用文档欢迎下载,用心收集有用文档。

相关文档
最新文档