2020学年八年级数学上学期期末复习试题(三)(无答案)

合集下载

2020年秋江苏省八年级上册数学期末复习题

2020年秋江苏省八年级上册数学期末复习题

八上数学期末复习精选题一、选择题1.在给出的一组数0,π,,3.14,,中,无理数有()A.4个B.3个C.2个D.1个2.在下列各组数据中,不能作为直角三角形的三边边长的是()A.3,4,6 B.7,24,25 C.6,8,10 D.9,12,153.下列说法正确的是()A.16的平方根是4 B.﹣1的立方根是﹣1 C.是无理数D.的算术平方根是34.对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)5.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣3,0),且两直线与y轴围成的三角形面积为12那么b2﹣b1的值为()A.3 B.8 C.﹣6 D.﹣86.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较7.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>08.如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=5,若点Q是射线OB上一点,OQ=4,则△ODQ的面积是()A.4 B.5 C.10 D.209.设的整数部分用a表示,小数部分用b表示,4﹣的整数部分用c表示,小数部分用d表示,则值为()A.B.C.D.10.如图,若BD为等边△ABC的一条中线,延长BC至点E,使CE=CD=1,连接DE,则DE的长为()A.B.C.D.11.如图,直线y=kx+b(k≠0)经过点(﹣1,3),则不等式kx+b≥3的解集为()A.x>﹣1 B.x<﹣1 C.x≥3D.x≥﹣112.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3)B.(3,5)C.(0,2)D.(2,0)二、填空题13.直线y=﹣2x﹣4与两坐标轴围成的三角形面积是.14.如图,把Rt△ABC(∠C=90°)折叠,使A、B两点重合,得到折痕ED,若CE=DE,则∠A等于.15.等腰三角形一个内角等于70°,则它的底角为.16.如图,在直角坐标系中,点A、B的坐标分别为(2,4)和(3、0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,在运动的过程中,当△ABC是以AB为底的等腰三角形时,OC=.17.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.18.如图,已知直线l:y=x,过点A1(1,0)作x轴的垂线交直线l于点B1,以A1B1为边作正方形A1B1C1A2,过点A2作x 轴的垂线交直线l于点B2,以A2B2为边作正方形A2B2C2A3,…;则点A5的坐标为,点∁n的坐标为.19.如图,已知A(2,2)、B(﹣4,1),点P在y轴上,则当y轴平分∠APB时,点P的坐标为.第17题第18题第19题第20题第21题20.如图,在△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB交BC于点E,EC=1,则三角形ACE的面积为.21.如图,在平面直角坐标系中,长方形OABC的顶点O在坐标原点,顶点A、B分别在x、y轴的正半轴上:OA=3,OC=4,D为OC边的中点,E是OA边上的一个动点,当△BDE的周长最小时,E点坐标为.22.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是千米.23.已知直线l1:y=x+a与直线l2:y=2x+b交于点P(m,4),则代数式a﹣b的值为.24.如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组的解是.三、解答题25.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l₁、l₂分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系.(1)求这两条直线的解析式;(2)当x为什么值时,小敏和小聪两人相距14km?请说明理由.26.如图,长方形ABCD的长AD=9cm,宽AB=3cm,将它折叠,使点D与点B重合,求折叠后BF和C′F的长分别是多少?27.为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.(1)每个文具盒、每支钢笔各多少元?(2)若本次表彰活动,老师决定购买10件作为奖品,若购买x个文具盒,10件奖品共需w元,求w与x的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?28.[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.29.某商店准备购进A、B两种商品,A种商品毎件的进价比B种商品每件的进价多20元,用3000元购进A种商品和用1800元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A、B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件A种商品售价优惠m(10<m<20)元,B种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.30.在平面直角坐标系中,直线l1:y=﹣2x+6与坐标轴交于A,B两点,直线l2:y=kx+2(k>0)与坐标轴交于点C,D,直线l1,l2与相交于点E.(1)当k=2时,求两条直线与x轴围成的△BDE的面积;(2)点P(a,b)在直线l2:y=kx+2(k>0)上,且点P在第二象限.当四边形OBEC的面积为时.①求k的值;②若m=a+b,求m的取值范围.31.已知A、B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示:(1)乙年的速度为千米/时,a=,b=;(2)求甲、乙两车相遇后y与x之间的函数关系式,并写出相应的自变量x的取值范围.32.如图,正比例函数y=x与一次函数y=ax+7的图象相交于点P(4,n),过点A(2,0)作x轴的垂线,交一次函数的图象于点B,连接OB.(1)求a值;(2)求△OBP的面积;(3)在坐标轴的正半轴上存在点Q,使△POQ是以OP为腰的等腰三角形,请直接写出O点的坐标.33.在△ABC中,AB、AC边的垂直平分线分别交BC边于点M、N.(1)如图①,若∠BAC=110°,则∠MAN=°,若△AMN的周长为9,则BC=.(2)如图②,若∠BAC=135°,求证:BM2+CN2=MN2;(3)如图③,∠ABC的平分线BP和AC边的垂直平分线相交于点P,过点P作PH垂直BA的延长线于点H.若AB=5,CB=12,求AH的长.34.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=分钟时甲乙两人相遇,甲的速度为米/分钟;(2)求出线段AB所表示的函数表达式.(3)甲、乙两人何时相距400米?35.解答下列各题(1)如图1,已知OA=OB,数轴上的点A所表示的数为m,且|m+n|=2①点A所表示的数m为;②求代数式n2+m﹣9的值.(2)旅客乘车按规定可以随身携带一定质量的行李,如果超过规定,则需购买行李票,设行李票y(元)是行李质量x(千克)的一次函数,其图象如图2所示.①当旅客需要购买行李票时,求出y与x之间的函数关系式;②如果张老师携带了42千克行李,她是否要购买行李票?如果购买需买多少行李票?36.建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E.求证:△CAD≌△BCE.模型应用:(1)如图2,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.37.如图,在直角坐标系中,点A、B的坐标分别为(2,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上.(1)求过点A、B两点的直线解析式;(2)在运动的过程中,当△ABC周长最小时,求点C的坐标;(3)在运动的过程中,当△ABC是以AB为底的等腰三角形时,求点C的坐标.38.快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发行在同一条公路上,途中快车休息1小时后加速行驶比慢车提前0.5小时到达目的地,慢车没有体息整个行驶过程中保持匀速不变.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米,图中折线OAEC表示y1与x之间的函数关系,线段OD表示y与x之间的函数关系,解答下列问题:(1)甲、乙两地相距千米,快车休息前的速度是千米/时、慢车的速度是千米/时;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.39.如图,直线l₁:y=x+2与直线l₂:y=kx+b相交于点P(1,m)(1)写出k、b满足的关系;(2)如果直线l₂:y=kx+b与两坐标轴围成一等腰直角三角形,试求直线l₂的函数表达式;(3)在(2)的条件下,设直线l₂与x轴相交于点A,点Q是x轴上一动点,求当△APQ是等腰三角形时的Q点的坐标.40.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为°.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG的长.八上数学期末复习精选题一、选择题1.在给出的一组数0,π,,3.14,,中,无理数有()A.4个B.3个C.2个D.1个【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0,=﹣4,是整数,属于有理数;3.14是有限小数,属于有理数;是分数,属于有理数.无理数有:π,共2个.故选:C.2.在下列各组数据中,不能作为直角三角形的三边边长的是()A.3,4,6 B.7,24,25 C.6,8,10 D.9,12,15【解析】根据勾股定理的逆定理,只需验证两较小边的平方和是否等于最长边的平方即可.【解答】解:A、32+42≠62,故A符合题意;B、72+242=252,故B不符合题意;C、62+82=102,故C不符合题意;D、92+122=152,故D不符合题意.故选:A.3.下列说法正确的是()A.16的平方根是4 B.﹣1的立方根是﹣1C.是无理数D.的算术平方根是3【解析】分别根据平方根的定义,立方根的定义,无理数的定义以及算术平方根的定义逐一判断即可.【解答】解:A.16的平方根是±4,故本选项不合题意;B.﹣1的立方根是﹣1,正确,故本选项符合题意;C.=5,是有理数,故本选项不合题意;D.是算术平方根是,故本选项不合题意.故选:B.4.对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【解析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵一次函数y=x+6中k=1>0,∴函数值随自变量增大而增大,故A选项正确;B、∵一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),(0,6),∴此函数与x轴所成角度的正切值==1,∴函数图象与x轴正方向成45°角,故B选项正确;C、∵一次函数y=x+6中k=1>0,b=6>0,∴函数图象经过一、二、三象限,故C选项正确;D、∵令y=0,则x=﹣6,∴一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),故D选项错误.故选:D.5.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣3,0),且两直线与y轴围成的三角形面积为12那么b2﹣b1的值为()A.3 B.8 C.﹣6 D.﹣8【解析】根据直线y=k1x+b1与y轴交于B点,则B(0,b1),直线y=k2x+b2与y轴交于C点,则C(0,b2),根据三角形面积公式即可得出结果.【解答】解:如图,直线y=k1x+b1与y轴交于B点,则B(0,b1),直线y=k2x+b2与y轴交于C点,则C(0,b2),∵△ABC的面积为12,∴OA(OB+OC)=12,即×3×(b1﹣b2)=12,∴b1﹣b2=8,∴b2﹣b1=﹣8,故选:D.6.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较【解析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【解答】解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.7.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>0【解析】根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.【解答】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.8.如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=5,若点Q是射线OB上一点,OQ=4,则△ODQ的面积是()A.4 B.5 C.10 D.20【解析】作DH⊥OB于点H,根据角平分线的性质得到DH=DP=5,根据三角形的面积公式计算,得到答案.【解答】解:作DH⊥OB于点H,∵OC是∠AOB的角平分线,DP⊥OA,DH⊥OB,∴DH=DP=5,∴△ODQ的面积=OQ×DH=×4×5=10,故选:C.9.设的整数部分用a表示,小数部分用b表示,4﹣的整数部分用c表示,小数部分用d表示,则值为()A.B.C.D.【解析】由1<2<4,可知1<<2,然后可求得a、b的值,根据2<4﹣<3,可得c、d的值,最后代入计算即可.【解答】解:∵1<2<4,∴1<<2.∴a=1,b=﹣1,∵2<4﹣<3∴c=2,d=4﹣﹣2=2﹣.∴b+d=1,ac=2.∴=.故选:A.10.如图,若BD为等边△ABC的一条中线,延长BC至点E,使CE=CD=1,连接DE,则DE的长为()A.B.C.D.【解析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【解答】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=DC=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,BD⊥AC,在Rt△BDC中,由勾股定理得:BD==,即DE=BD=,故选:B.11.如图,直线y=kx+b(k≠0)经过点(﹣1,3),则不等式kx+b≥3的解集为()A.x>﹣1 B.x<﹣1 C.x≥3D.x≥﹣1【解析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【解答】解:观察图象知:当x≥﹣1时,kx+b≥3,故选:D.12.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3)B.(3,5)C.(0,2)D.(2,0)【解析】根据轴对称的性质分别写出点P1的坐标为、点P2的坐标、点P3的坐标、点P4的坐标,从中找出规律,根据规律解答.【解答】解:由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.二、填空题13.直线y=﹣2x﹣4与两坐标轴围成的三角形面积是4.【解析】首先求出直线y=﹣2x﹣4与x轴、y轴的交点的坐标,然后根据三角形的面积公式,得出结果.【解答】解:令x=0,则y=﹣4,令y=0,则x=﹣2,故直线y=﹣2x﹣4与两坐标轴的交点分别为(0,﹣4)、(﹣2,0),故直线y=﹣2x﹣4与两坐标轴围成的三角形面积=×|﹣4|×|﹣2|=4.故答案为4.14.如图,把Rt△ABC(∠C=90°)折叠,使A、B两点重合,得到折痕ED,若CE=DE,则∠A等于30°.【解析】如图,运用翻折变换的性质证明∠ABC=2∠A;进而证明3∠A=90°,即可解决问题.【解答】解:由题意得:∠EAD=∠EBD,∠EBD=∠EBC,∴∠ABC=2∠A,∵∠C=90°,∴∠ABC+∠A=3∠A=90°,∴∠A=30.故答案为:30°.15.等腰三角形一个内角等于70°,则它的底角为70°或55°.【解析】分顶角为70°和底角为70°两种情况,结合三角形内角和定理可求得底角.【解答】解:当顶角为70°时,则底角==55°;当底角为70°时,则底角为70°;故答案为:70°或55°.16.如图,在直角坐标系中,点A、B的坐标分别为(2,4)和(3、0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,在运动的过程中,当△ABC是以AB为底的等腰三角形时,OC=.【解析】根据等腰三角形的判定,可得AC=BC,根据解方程,可得C点的坐标,从而求解.【解答】解:设C点坐标为(0,a),当△ABC是以AB为底的等腰三角形时,BC=AC,平方得BC2=AC2,22+(4﹣a)2=32+a2,化简得8a=11,解得a=.故OC=,故答案为:.17.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【解析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.18.如图,已知直线l:y=x,过点A1(1,0)作x轴的垂线交直线l于点B1,以A1B1为边作正方形A1B1C1A2,过点A2作x 轴的垂线交直线l于点B2,以A2B2为边作正方形A2B2C2A3,…;则点A5的坐标为(16,0),点∁n的坐标为(2n,2n﹣1).【解析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2、C1的坐标,以此类推总结规律便可求出点A5、∁n的坐标.【解答】解:直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,可知B1点的坐标为(1,1),以A1B1为边作正方形A1B1C1A2,A1B1=A1A2=1,OA2=1+1=2,点A2的坐标为(2,0),C1的坐标为(2,1),这种方法可求得B2的坐标为(2,2),故点A3的坐标为(4,0),C2的坐标为(4,2),此类推便可求出点点A5的坐标为(16,0),点∁n的坐标为(2n,2n﹣1).故答案为(16,0),(2n,2n﹣1).19.如图,已知A(2,2)、B(﹣4,1),点P在y轴上,则当y轴平分∠APB时,点P的坐标为(0,3).【解析】当y轴平分∠APB时,点A关于y的对称点A'在BP上,利用待定系数法求得A'B的表达式,即可得到点P的坐标.【解答】解:如图,当y轴平分∠APB时,点A关于y的对称点A'在BP上,∵A(2,2),∴A'(﹣2,2),设A'B的表达式为y=kx+b,把A'(﹣2,2),B(﹣4,1)代入,可得,解得,∴y=x+3,令x=0,则y=3,∴点P的坐标为(0,3),故答案为:0,3.20.如图,在△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB交BC于点E,EC=1,则三角形ACE的面积为.【解析】利用线段垂直平分线的性质得到EA=EB,则根据等腰三角形的性质得到∠EAB=∠B=22.5°,根据三角形外角性质得到∠AEC=45°,所以△ACE为等腰直角三角形,从而得到三角形ACE的面积.【解答】解:∵DE垂直平分AB交BC于点E,∴EA=EB,∴∠EAB=∠B=22.5°,∴∠AEC=∠EAB+∠B=45°,∵∠C=90°,∴△ACE为等腰直角三角形,∴CA=CE=1,∴三角形ACE的面积=×1×1=.故答案为.21.如图,在平面直角坐标系中,长方形OABC的顶点O在坐标原点,顶点A、B分别在x、y轴的正半轴上:OA=3,OC=4,D为OC边的中点,E是OA边上的一个动点,当△BDE的周长最小时,E点坐标为(1,0).【解析】作出D的对称点D′连接BD′,将三角形的周长转化为BE+BD,根据两点之间线段最短得到BD'的长即为最短距离,求出BD′的解析式,即可求出E点坐标.【解答】解:作D关于x轴的对称点D′,连接D′B,连接BD′交x轴于E,△BDE的周长为BD+DE+EB=BD+D′E+EB=BD′+BD,∵D为CO的中点,∴CD=OD=2,∵D和D′关于x轴对称,∴D′(0,﹣2),∴易得,B(3,4),设直线BD'的解析式为y=kx+b,把B(3,4),D′(0,﹣2)分别代入解析式得,,解得,,解析式为y=2x﹣2,当y=0时,x=1,故E点坐标为(1,0).故答案为:(1,0).22.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是 1.5千米.【解析】首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得关于k|B的方程组,解出k、b的值,进而可得函数解析式,再把t=45代入即可.【解答】解:设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,∵图象经过(40,2)(60,0),∴,解得:,∴y与t的函数关系式为y=﹣x+6,当t=45时,y=﹣×45+6=1.5,故答案为:1.5.23.已知直线l1:y=x+a与直线l2:y=2x+b交于点P(m,4),则代数式a﹣b的值为2.【解析】把点P(m,4)分别代入y=x+a或y=2x+b即可得到结论.【解答】解:把点P(m,4)分别代入y=x+a或y=2x+b得,4=m+a①,4=2m+b,∴2=m+b②,∴①﹣②得,a﹣b=2,故答案为:2.24.如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组的解是.【解析】根据图象可得两个一次函数的交点坐标为P(4,﹣6),那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:∵一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),∴点P(4,﹣6)满足二元一次方程组,∴方程组的解是.故答案为.三、解答题25.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l₁、l₂分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系.(1)求这两条直线的解析式;(2)当x为什么值时,小敏和小聪两人相距14km?请说明理由.【解析】(1)设直线l1的函数表达式为y1=k1x+b(k1≠0),直线l2的函数表达式为y2=nx(n≠0),根据图象找出点的坐标,再利用待定系数法求出函数解析式即可得出结论;(2)根据小聪和小敏两人相距14km结合两函数表达式即可得出关于x的含绝对值符号的一元一次方程,解方程即可得出结论.【解答】解:(1)依题意设直线l1的解析式为y1=k1x+b1,将点(2,12),(3.5,0)代入,,解得,则直线l1的解析式为y1=﹣8x+28.设直线l2的解析式为y2=nx,将点(2,12)代入,得12=2n,解得n=6,则直线l2的解析式为y2=6x.(2)∵小敏、小聪两人相距14km,∴|y1﹣y2|=14,∴|﹣8x+28﹣6x|=14,∴28﹣14x=14或28﹣14x=﹣14,解得x=1或x=3.所以当x=1h或x=3h时,小敏、小聪两人相距14km.26.如图,长方形ABCD的长AD=9cm,宽AB=3cm,将它折叠,使点D与点B重合,求折叠后BF和C′F的长分别是多少?【解析】设BF长为xcm,则FC=(9﹣x)cm,FC′=(9﹣x)cm,根据勾股定理得到即可得到结论.【解答】解:设BF长为xcm,则FC=(9﹣x)cm,FC′=(9﹣x)cm,∵四边形ABCD是长方形,∴∠C=∠C′=90°,根据勾股定理得:BC′2+FC′2=BF2,即(9﹣x)2+32=x2,解得:x=5,9﹣x=4即BF长为5cm,F C′的长为4cm.27.为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.(1)每个文具盒、每支钢笔各多少元?(2)若本次表彰活动,老师决定购买10件作为奖品,若购买x个文具盒,10件奖品共需w元,求w与x的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?【解析】(1)设每个文具盒x元,每支钢笔y元,由题意可得等量关系:①5个文具盒、2支钢笔共需100元;②个文具盒、1支钢笔共需57元,根据等量关系列出方程即可;(2)根据题意可得等量关系:总花费=文具盒的单价×数量+钢笔的单价×数量,根据等量关系列出函数关系式,然后再根据一次函数的性质可得答案.【解答】解:(1)设每个文具盒x元,每支钢笔y元,由题意得:,解之得:;(2)由题意得:w=14x+15(10﹣x)=150﹣x,∵w随x增大而减小,∴当x=3时,W最大值=150﹣3=147,即最多花147元.28.[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.【解析】[问题初探]利用同角的余角相等判断出∠ADB=∠DEF,进而得出△ABD≌△DFE,得出BD=EF,DF=AB,进而判断出△CEG是等腰直角三角形,即可得出结论;[继续探究]同[问题初探]的方法即可得出结论;[拓展延伸]先判断出点E是过点C垂直于AC的直线上的点,进而判断出BE⊥MN时,BE最小,即可得出结论.【解答】解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.29.某商店准备购进A、B两种商品,A种商品毎件的进价比B种商品每件的进价多20元,用3000元购进A种商品和用1800元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A、B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件A种商品售价优惠m(10<m<20)元,B种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.【解析】(1)设A种商品每件的进价是x元,根据用3000元购进A种商品和用1800元购进B种商品的数量相同,列分式方程,解出可得结论;(2)设购买A种商品a件,根据用不超过1560元的资金购进A、B两种商品共40件,A种商品的数量不低于B种商品数量的一半,列不等式组,解出取正整数可得结论;(3)设销售A、B两种商品共获利y元,根据y=A商品的利润+B商品的利润,根据m的值及一次函数的增减性可得结论.【解答】解:(1)设A种商品每件的进价是x元,则B种商品每件的进价是(x﹣20)元,由题意得:,解得:x=50,经检验,x=50是原方程的解,且符合题意,50﹣20=30,答:A种商品每件的进价是50元,B种商品每件的进价是30元;(2)设购买A种商品a件,则购买B商品(40﹣a)件,由题意得:,解得:,∵a为正整数,∴a=14、15、16、17、18,∴商店共有5种进货方案;(3)设销售A、B两种商品共获利y元,由题意得:y=(80﹣50﹣m)a+(45﹣30)(40﹣a),=(15﹣m)a+600,①当10<m<15时,15﹣m>0,y随a的增大而增大,∴当a=18时,获利最大,即买18件A商品,22件B商品,②当m=15时,15﹣m=0,y与a的值无关,即(2)问中所有进货方案获利相同,③当15<m<20时,15﹣m<0,y随a的增大而减小,∴当a=14时,获利最大,即买14件A商品,26件B商品.30.在平面直角坐标系中,直线l1:y=﹣2x+6与坐标轴交于A,B两点,直线l2:y=kx+2(k>0)与坐标轴交于点C,D,直线l1,l2与相交于点E.(1)当k=2时,求两条直线与x轴围成的△BDE的面积;(2)点P(a,b)在直线l2:y=kx+2(k>0)上,且点P在第二象限.当四边形OBEC的面积为时.①求k的值;②若m=a+b,求m的取值范围.【解析】(1)根据k=2,l2的解析式,就可求出D点坐标,然后求出E点坐标,根据三角形的面积计算公式,就可求出;(3)①连接OE.设E(n,﹣2n+6),由S四边形OBEC=S△EOC+S△EOB,可得×2×n+×3×(﹣2n+6)=,解得n=,求出点E的坐标即可解决问题.②根据k值求出l2与解析式,把P点入l2,求出a与b的关系式,从而确定m的取值范围.。

2020年八年级第一学期期末考试数学试卷(三)

2020年八年级第一学期期末考试数学试卷(三)

2020年八年级第一学期期末考试数学试卷(三)一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,恰有项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列各式中,属于分式的是()A.x﹣1 B.C.D.(x+y)2.若代数式在实数范围内有意义,则x的取值范围是()A.x<2 B.x>2 C.x≥2 D.x≤23.下列计算,正确的是()A.a2﹣a=a B.a2•a3=a6C.a9÷a3=a3D.(a3)2=a64.在△ABC中,∠ACB=90°,CD是斜边AB上的高,∠A=30°,以下说法错误的是()A.AD=2CD B.AC=2CD C.AD=3BD D.AB=2BC5.下列计算正确的是()A.+=2B.﹣=2C.•=1 D.•=3﹣26.已知如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上.在证明该结论时,需添加辅助线,则以下作法不正确的是()A.取AB中点H,连接PHB.作∠APB的平分线PH交AB于点HC.过点P作PH⊥AB于点H且AH=BHD.过点P作PH⊥AB,垂足为H7.若3n+3n+3n=,则n=()A.﹣3 B.﹣2 C.﹣1 D.08.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为()A.1 B.2 C.4 D.无数9.一组不为零的数a,b,c,d,满足,则以下等式不一定成立的是()A.=B.=C.=D.=10.关于等腰三角形,以下说法正确的是()A.有一个角为40°的等腰三角形一定是锐角三角形B.等腰三角形两边上的中线一定相等C.两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D.等腰三角形两底角的平分线的交点到三边距离相等二、填空题(本大题共8小题,每小题2分,共16分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.点A(11,12)与点B(﹣11,12)关于对称.(填“x轴”或y轴”)12.分解因式:12m2﹣3n2=.13.如图,在△ABC中,PH是AC的垂直平分线,AH=3,△ABP的周长为11,则△ABC的周长为.14.一个正方形的边长增加2cm,它的面积就增加24cm2,这个正方形的边长是cm.15.如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)16.甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间与乙做40个所用的时间相等,则乙每小时所做零件的个数为.17.已知x=a时,多项式x2+6x+k2的值为﹣9,则x=﹣a时,该多项式的值为.18.教材上“阅读与思考”曾介绍“杨辉三角”(如图),利用“杨辉三角”展开(1﹣2x)4=a+a1x+a2x2+a3x3+a4x4,那么a1+a2+a3+a4=.三、解答题(本大题共8小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算或求值(1)计算:(2a+3b)(2a﹣b);(2)计算:(2x+y﹣1)2;(3)当a=2,b=﹣8,c=5时,求代数式的值;(4)先化简,再求值:(m+2),其中m=.20.解方程:.21.已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.(要求:写作法,用尺规作图,保留作图痕迹).22.小江利用计算器计算15×15,25×25,…,95×95,有如下发现:15×15=225=1×2×100+25,25×25=625=2×3×100+2535×35=1225=3×4×100+25,小江观察后猜测:如果用字母a代表一个正整数,则有如下规律:(a×10+5)2=a(a+1)×100+25.但这样的猜测是需要证明之后才能保证它的正确性.请给出证明.23.证明:如果两个三角形有两条边和其中一边上的中线分别相等,那么这两个三角形全等.24.某列车平均提速vkm/h,用相同的时间,列车提速前行驶150km,提速后比提速前多行驶50km,提速前列车的平均速度为多少?(用含v的式子表示)25.定义:到一个三角形三个顶点的距离相等的点叫做该三角形的外心.(1)如图①,小海同学在作△ABC的外心时,只作出两边BC,AC的垂直平分线得到交点O,就认定点O是△ABC的外心,你觉得有道理吗?为什么?(2)如图②,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF,连接DE,EF,DF,得到△DEF.若点O为△ABC的外心,求证:点O也是△DEF的外心.26.已知x+=k,k为正实数.(1)当k=3时,求x2的值;(2)当k=时,求x﹣的值;(3)小安设计一个填空题并给出答案,但被老师打了两个“×”小安没看懂老师为什么指出两个错误?如果你看懂了,请向小安解释一下!2020年八年级第一学期期末考试数学试卷(三)参考答案与试题解析一.选择题(共10小题)1.下列各式中,属于分式的是()A.x﹣1 B.C.D.(x+y)【分析】利用分式的定义判断即可.【解答】解:是分式,故选:B.2.若代数式在实数范围内有意义,则x的取值范围是()A.x<2 B.x>2 C.x≥2 D.x≤2【分析】二次根式的被开方数是非负数.【解答】解:依题意得x﹣2≥0,解得x≥2.故选:C.3.下列计算,正确的是()A.a2﹣a=a B.a2•a3=a6C.a9÷a3=a3D.(a3)2=a6【分析】根据合并同类项、同底数幂的乘除法以及幂的乘方进行计算即可.【解答】解:A、a2﹣a,不能合并,故A错误;B、a2•a3=a5,故B错误;C、a9÷a3=a6,故C错误;D、(a3)2=a6,故D正确;故选:D.4.在△ABC中,∠ACB=90°,CD是斜边AB上的高,∠A=30°,以下说法错误的是()A.AD=2CD B.AC=2CD C.AD=3BD D.AB=2BC【分析】根据在直角三角形中,30°角所对的直角边等于斜边的一半判断即可.【解答】解:∵CD是斜边AB上的高,∴∠ADC=90°,∵∠A=30°,∴AC=2CD,B正确,不符合题意;A错误符合题意;∵∠ACB=90°,∠A=30°,∴AB=2BC,D正确,不符合题意;∵∠ACB=90°,CD是斜边AB上的高,∠A=30°,∴∠BCD=30°,∴BC=2BD,∴AB=4AD,∴AD=3BD,C正确,不符合题意;故选:A.5.下列计算正确的是()A.+=2B.﹣=2C.•=1 D.•=3﹣2【分析】利用二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;利用完全平方公式对D进行判断.【解答】解:A、+==,所以A选项错误;B、﹣==1,所以B选项错误;C、•==1,所以C选项正确;D、•==,所以D选项错误.故选:C.6.已知如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上.在证明该结论时,需添加辅助线,则以下作法不正确的是()A.取AB中点H,连接PHB.作∠APB的平分线PH交AB于点HC.过点P作PH⊥AB于点H且AH=BHD.过点P作PH⊥AB,垂足为H【分析】利用判断三角形全等的方法判断即可得出结论.【解答】解:A、取AB中点H,连接PH,得AH=BH,依据“SSS”证△APH≌△BPH可得;B.作∠APB的平分线PH交AB于点H知∠APH=∠BPH,依据“SAS”证△APH≌△BPH可得;C.过点P作PH⊥AB于点H或作AH=BH,当不能一次作图达到两个目的,此作法错误;D.过点P作PH⊥AB,垂足为H知∠AHP=∠BHP=90°,利用“HL”可证Rt△APH≌Rt △BPH可得;故选:C.7.若3n+3n+3n=,则n=()A.﹣3 B.﹣2 C.﹣1 D.0【分析】直接利用负整数指数幂的性质结合同底数幂的乘法运算法则将原式变形得出答案.【解答】解:∵3n+3n+3n=,∴3n+1=3﹣2,则n+1=﹣2,解得:n=﹣3.故选:A.8.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为()A.1 B.2 C.4 D.无数【分析】直接利用轴对称图形的性质画出对称轴即可.【解答】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.9.一组不为零的数a,b,c,d,满足,则以下等式不一定成立的是()A.=B.=C.=D.=【分析】根据比例的性质,对所给选项进行整理,找到不一定正确的选项即可.【解答】解:∵一组不为零的数a,b,c,d,满足,∴,,即,,但不能得出,故选:C.10.关于等腰三角形,以下说法正确的是()A.有一个角为40°的等腰三角形一定是锐角三角形B.等腰三角形两边上的中线一定相等C.两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D.等腰三角形两底角的平分线的交点到三边距离相等【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【解答】解:A:如果40°的角是底角,则顶角等于100°,故三角形是钝角三角形,此选项错误;B、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,∴等腰三角形的两条中线不一定相等,此选项错误;C、若两个等腰三角形的腰相等,腰上的高也相等.则这两个等腰三角形不一定全等,故此选项错误;D、等腰三角形两底角的平分线的交点到三边距离相等,故此选项正确;二.填空题(共8小题)11.点A(11,12)与点B(﹣11,12)关于y轴对称.(填“x轴”或y轴”)【分析】利用平面内两点关于y轴对称时:纵坐标不变,横坐标互为相反数,关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【解答】解:∵点A(11,12)与点B(﹣11,12),横坐标互为相反数,纵坐标相等,∴点A(11,12)与点B(﹣11,12)关于y轴对称.故答案为:y轴.12.分解因式:12m2﹣3n2=3(2m+n)(2m﹣n).【分析】首先提取公因式3,再利用平方差公式进行分解即可.【解答】解:原式=3(4m2﹣n2)=3(2m+n)(2m﹣n),故答案为:3(2m+n)(2m﹣n).13.如图,在△ABC中,PH是AC的垂直平分线,AH=3,△ABP的周长为11,则△ABC的周长为17 .【分析】根据线段垂直平分线的性质得到PA=PC,AC=2AH=6,根据三角形的周长公式计算,得到答案.【解答】解:∵PH是AC的垂直平分线,∴PA=PC,AC=2AH=6,∵△ABP的周长为11,∴AB+BP+PA=AB+BP+BC=AB+BC=11,∴△ABC的周长=AB+BC+AC=17,故答案为:17.14.一个正方形的边长增加2cm,它的面积就增加24cm2,这个正方形的边长是 5 cm.【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2﹣a2=24,先用平方差公式化简,再求解.【解答】解:设这个正方形的边长为a,依题意有(a+2)2﹣a2=24,(a+2)2﹣a2=(a+2+a)(a+2﹣a)=4a+4=24,解得a=5.15.如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】解法一:取点G、F,构建等腰直角三角形,由正切的值可作判断,或直接根据∠BAC=45°,∠EAD<∠FAG=45°,来作判断;解法二:作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:解法一:在AD上取一点G,在网格上取点F,构建△AFG为等腰直角三角形,∵tan∠BAC==1,tan∠EAD<1,∴∠BAC>∠EAD;解法二:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.16.甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间与乙做40个所用的时间相等,则乙每小时所做零件的个数为8 .【分析】设乙每小时做x个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为;根据甲做60个所用的时间与乙做40个所用的时间相等,列方程求解.【解答】解:设乙每小时做x个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为,列方程为:=,解得:x=8,经检验:x=8是原分式方程的解,且符合题意,答:乙每小时做8个.故答案是:8.17.已知x=a时,多项式x2+6x+k2的值为﹣9,则x=﹣a时,该多项式的值为27 .【分析】把x=a代入多项式,得到的式子进行移项整理,得(a+3)2=﹣k2,根据平方的非负性把a和k求出,再代入求多项式的值.【解答】解:将x=a代入x2+6x+k2=﹣9,得:a2+6a+k2=﹣9移项得:a2+6a+9=﹣k2∴(a+3)2=﹣k2∵(a+3)2≥0,﹣k2≤0∴a+3=0,即a=﹣3,k=0∴x=﹣a时,x2+6x+k2=32+6×3=27故答案为:2718.教材上“阅读与思考”曾介绍“杨辉三角”(如图),利用“杨辉三角”展开(1﹣2x)4=a+a1x+a2x2+a3x3+a4x4,那么a1+a2+a3+a4=0 .【分析】令x=0求出a0的值,再令x=1即可求出所求式子的值.【解答】解:令x=0,得:a0=1,令x=1,得:a0+a1+a2+a3+a4=1,则a1+a2+a3+a4=0,故答案为:0.三.解答题(共8小题)19.计算或求值(1)计算:(2a+3b)(2a﹣b);(2)计算:(2x+y﹣1)2;(3)当a=2,b=﹣8,c=5时,求代数式的值;(4)先化简,再求值:(m+2),其中m=.【分析】(1)利用多项项乘多项式展开,然后合并即可;(2)利用完全平方公式计算;(3)先计算出b2﹣4ac,然后计算代数式的值;(4)先把括号内通分,再把分子分母因式分解后约分得到原式=﹣2m﹣6,然后把m的值代入计算即可.【解答】解:(1)原式=4a2﹣2ab+6ab﹣3b2=4a2+4ab﹣3b2;(2)原式=(2x+y)2﹣2(2x+y)﹣1=4x2+4xy+y2﹣4x﹣2y﹣1;(3)b2﹣4ac=(﹣8)2﹣4×2×5=24,==;(4)原式=•[﹣]=﹣•=﹣2(m+3)=﹣2m﹣6,当m=﹣时,原式=﹣2×(﹣)﹣6=﹣5.20.解方程:.【分析】本题的最简公分母是3(x+1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边都乘3(x+1),得:3x﹣2x=3(x+1),解得:x=﹣,经检验x=﹣是方程的解,∴原方程的解为x=﹣.21.已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.(要求:写作法,用尺规作图,保留作图痕迹).【分析】根据题目要求画出线段a、h,再画△ABC,使AB=a,△ABC的高为h;首先画一条直线,再画垂线,然后截取高,再画腰即可.【解答】解:作图:①画射线AE,在射线上截取AB=a,②作AB的垂直平分线,垂足为O,再截取CO=h,③再连接AC、CB,△ABC即为所求.22.小江利用计算器计算15×15,25×25,…,95×95,有如下发现:15×15=225=1×2×100+25,25×25=625=2×3×100+2535×35=1225=3×4×100+25,小江观察后猜测:如果用字母a代表一个正整数,则有如下规律:(a×10+5)2=a(a+1)×100+25.但这样的猜测是需要证明之后才能保证它的正确性.请给出证明.【分析】根据完全平方公式将左边展开,再将前两项分解因式即可得证.【解答】解:左边=(10a+5)2=100a2+100a+25=a(a+1)×100+25=右边,∴(a×10+5)2=a(a+1)×100+25.23.证明:如果两个三角形有两条边和其中一边上的中线分别相等,那么这两个三角形全等.【分析】求出BM=EN,根据SSS证△ABM≌△DEN,推出∠B=∠E,根据SAS证△ABC≌△DEF即可.【解答】已知:△ABC和△DEF中,AB=DE,BC=EF,AM是△ABC的中线,DN是△DEF的中线,AM =DN,求证:△ABC≌△DEF.证明:∵BC=EF,AM是△ABC的中线,DN是△DEF的中线,∴BM=EN,在△ABM和△DEN中,∵,∴△ABM≌△DEN(SSS),∴∠B=∠E,在△ABC和△DEF中,∵,∴△ABC≌△DEF(SAS).24.某列车平均提速vkm/h,用相同的时间,列车提速前行驶150km,提速后比提速前多行驶50km,提速前列车的平均速度为多少?(用含v的式子表示)【分析】设提速前列车的平均速度为xkm/h,则依题意可得等量关系:提速前行驶150千米所用的时间=提速后行驶(150+50)千米所用的时间,根据等量关系列出方程即可.【解答】解:设提速前列车的平均速度为xkm/h,则依题意列方程得=,解得:x=3v,经检验,x=3v是原分式方程的解,答:提速前列车的平均速度为3vkm/h.25.定义:到一个三角形三个顶点的距离相等的点叫做该三角形的外心.(1)如图①,小海同学在作△ABC的外心时,只作出两边BC,AC的垂直平分线得到交点O,就认定点O是△ABC的外心,你觉得有道理吗?为什么?(2)如图②,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF,连接DE,EF,DF,得到△DEF.若点O为△ABC的外心,求证:点O也是△DEF的外心.【分析】(1)连接OA、OB、OC,如图①,根据线段垂直平分线的性质得到OB=OC,OC =OA,则OA=OB=OC,从而根据三角形的外心的定义判断点O是△ABC的外心;(2)连接OA、OD、OC、OF,如图②,利用等边三角形的性质得到OA=OC,∠AOC=2∠B =120°,再计算出∠OAD=∠OCF=∠OAD=30°,接着证明△AOD≌△COF得到OD=OC,同理可得OD=OE,所以OD=OE=OF,然后根据三角形外心的定义得到点O是△DEF的外心.【解答】(1)解:定点O是△ABC的外心有道理.理由如下:连接OA、OB、OC,如图①,∵BC,AC的垂直平分线得到交点O,∴OB=OC,OC=OA,∴OA=OB=OC,∴点O是△ABC的外心;(2)证明:连接OA、OD、OC、OF,如图②,∵点O为等边△ABC的外心,∴OA=OC,∠AOC=2∠B=120°,∴∠OAD=∠OCF=30°,∴∠OAD=30°,在△AOD和△COF中,∴△AOD≌△COF(SAS),∴OD=OC,同理可得OD=OE,∴OD=OE=OF,∴点O是△DEF的外心.26.已知x+=k,k为正实数.(1)当k=3时,求x2的值;(2)当k=时,求x﹣的值;(3)小安设计一个填空题并给出答案,但被老师打了两个“×”小安没看懂老师为什么指出两个错误?如果你看懂了,请向小安解释一下!【分析】(1)根据x2=(x+)2﹣4代入可得结果;(2)先根据x+=,计算x2=(x+)2﹣4的值,再将x﹣平方后计算;(3)先解方程x+=,无实数解.【解答】解:(1)当k=3时,x+=3,x2=(x+)2﹣4=32﹣4=5;(2)当k=时,x+=,x2=(x+)2﹣4=﹣4=6,∴x﹣=±=±=±=±;(3)∵x+=,两边同时平方得:x2﹣x+2=0,而△=()2﹣4×1×2=﹣2<0,∴此方程x+=无实数根,∴x+不能等于,∴的值也不对,而当x+=时,x2=(x+)2﹣4=2;∴老师指出了两个错误.。

浙教版2020-2021学年八年级上册数学期末复习试题3(含答案)

浙教版2020-2021学年八年级上册数学期末复习试题3(含答案)

2020-2021学年浙教新版八年级上册数学期末复习试题一.选择题1.在平面直角坐标系中,将点(﹣2,﹣4)向下平移3个单位长度后得到的点的坐标是()A.(﹣2,﹣1)B.(﹣5,﹣4)C.(1,﹣4)D.(﹣2,﹣7)2.直线y=﹣2x+6与两坐标轴围成的三角形的面积是()A.8B.6C.9D.23.如图,在△ABC中,画出AC边上的高,正确的图形是()A.B.C.D.4.某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x分钟,以下所列不等式正确的是()A.90×3+2x≥480B.90×3+2x≤480C.90×3+2x<480D.90×3+2x>4805.在等腰△ABC中,∠A=70°,则∠C的度数不可能是()A.40°B.55°C.65°D.70°6.点P(a,b)在函数y=3x+2的图象上,则代数式6a﹣2b+1的值等于()A.5B.3C.﹣3D.﹣17.若不等式组的解集为x<﹣a,则下列各式中正确的是()A.a+b≤0B.a+b≥0C.a﹣b<0D.a﹣b>08.如图,把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换,你认为在滑动对称变换过程中,对应点不在变换直线上的两个对应三角形的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行9.如图,OA和BA分别表示甲乙两名学生运动的一次函数的图象,图中s和t分别表示路程和时间,根据图象判定跑260米时,快者比慢者少用多少秒()A.6秒B.6.5秒C.7秒D.7.5秒10.下列命题中是真命题的有()①面积相等的两个三角形全等;②平方根是它本身的数有1和0;③10的平方根是;④在数轴上可以找到表示的点;⑤已知直角三角形中两边长为3和4,则第三边长为5;⑥若(x﹣y)2+A=(x+y)2成立,则A=4xy.A.1个B.2个C.3个D.4个二.填空题11.请写出适合不等式x<﹣1的一个整数解.12.将点A(2,1)变换到点B(2,﹣1),写出一种轴对称或平移方法:.13.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠C=40°,则∠CDO+∠CFO的度数为.14.已知一次函数y=kx﹣3的图象与x轴的交点坐标为(x0,0),且2≤x0≤3,则k的取值范围是.15.如图,在△ABC中,AB=AC,∠A=50°,EF垂直平分AB,则∠FBC的度数为.16.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.三.解答题17.已知不等式组的解集为﹣1<x<1,求(a+1)(b﹣1)的值.18.已知∠O及其两边上点A和B(如图),用直尺和圆规作一点P,使点P到∠O的两边距离相等,且到点A,B的距离也相等,并保证其距离最短.(不写作法,保留作图痕迹)19.如图,每个小正方形的边长为1,△ABC经过平移得到△A′B′C′.根据下列条件,利用网格点和直尺画图:(1)补全△A′B′C′;(2)作出中线CD;(3)画出BC边上的高线AE;(4)△ABC的面积为.20.若直线y1=k1x+b1(k1≠0),y2=k2x+b2(k2≠0),则称直线y=(k1+k2)x+b1b2为这两条直线的友好直线.(1)直线y=3x+2与y=﹣4x+3的友好直线为.(2)已知直线l是直线y=﹣2x+m与y=3mx﹣6(m≠0)的友好直线,且直线l经过第一、三、四象限.①求m的取值范围;②若直线l经过点(3,12),求m的值.21.定义:若a,b,c是△ABC的三边,且a2+b2=2c2,则称△ABC为“方倍三角形”.(1)对于①等边三角形②直角三角形,下列说法一定正确的是.A.①一定是“方倍三角形”B.②一定是“方倍三角形”C.①②都一定是“方倍三角形”D.①②都一定不是“方倍三角形”(2)若Rt△ABC是“方倍三角形”,且斜边AB=,则该三角形的面积为;(3)如图,△ABC中,∠ABC=120°,∠ACB=45°,P为AC边上一点,将△ABP沿直线BP进行折叠,点A落在点D处,连结CD,AD.若△ABD为“方倍三角形”,且AP=,求△PDC的面积.22.已知一次函数y1=2x+m(m为常数)和y2=﹣x+1.(1)当m=2时,若y1>y2,求x的取值范围;(2)当x1>1时,y1>y2;当x1<1时,y1<y2,则m的值是.(3)判断函数y=y1•y2的图象与x轴的交点个数情况,并说明理由.23.在△ABC和△DBE中,CA=CB,EB=ED,点D在AC上.(1)如图1,若∠ABC=∠DBE=60°,求证:∠ECB=∠A;(2)如图2,设BC与DE交于点F.当∠ABC=∠DBE=45°时,求证:CE∥AB;(3)在(2)的条件下,若tan∠DEC=时,求的值.参考答案与试题解析一.选择题1.解:将点(﹣2,﹣4)向下平移3个单位长度,所得到的点的坐标是(﹣2,﹣7),故选:D.2.解:在直线y=﹣2x+6中,当x=0时,y=6;当y=0时,x=3;∴直线y=﹣2x+6与坐标轴交于(0,6),(3,0)两点,∴直线y=﹣2x+6与两坐标轴围成的三角形面积=×6×3=9.故选:C.3.解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,A、B、C都不符合高线的定义,D符合高线的定义.故选:D.4.解:设张飞后2天平均听课时长为x分钟,根据题意,得:3×90+2x≥480,故选:A.5.解:当∠A=∠C时,∠C=70°;当∠A=∠B=70°时,∠C=180°﹣∠A﹣∠B=40°;当∠B=∠C时,∠C=∠B=(180°﹣∠A)=55°;即∠C的度数可以是70°或40°或55°,故选:C.6.解:∵点P(a,b)在函数y=3x+2的图象上,∴b=3a+2,则3a﹣b=﹣2.∴6a﹣2b+1=2(3a﹣b)+1=﹣4+1=﹣3故选:C.7.解:∵不等式组的解集为x<﹣a,∴﹣a≤b,∴a+b≥0.故选:B.8.解:两个对应三角形的对应点所具有的性质是对应点连线被对称轴平分.故选:B.9.解:如图所示:快者的速度为:64÷8=8(m/s),慢者的速度为:(64﹣12)÷8=6.5(m/s),快者跑260米所用的时间为(m/s),慢者跑260米所用的时间为(m/s),∴快者比慢者少用的时间为(秒).故选:D.10.解:①面积相等的两个三角形全等,是假命题;②平方根是它本身的数有1和0,是假命题;③10的平方根是,是真命题;④在数轴上可以找到表示的点,是真命题;⑤已知直角三角形中两边长为3和4,则第三边长为5,是假命题;⑥若(x﹣y)2+A=(x+y)2成立,则A=4xy,是真命题.真命题共3个,故选:C.二.填空题11.解:适合不等式x<﹣1的一个整数解为﹣2(答案不唯一),故答案为:﹣2.12.解:将点A(2,1)向下平移2个单位得到点B(2,﹣1),点A关于x轴的对称点为B(2,﹣1),故答案为向下平移2个单位或关于x轴对称13.解:∵将△ABC沿DE,EF翻折,顶点A,B均落在点O处,∴∠A=∠DOE,∠B=∠EOF,∴∠DOF=∠A+∠B,∵∠A+∠B+∠C=180°,∴∠A+B=180°﹣∠C,∵∠DOF=∠C+∠CDO+∠CFO=180°﹣∠C,∴∠CDO+∠CFO+40°=180°﹣40°,∴∠CDO+∠CFO=100°,故答案为:100°.14.解:将(2,0)代入y=kx﹣3得:0=2k﹣3,∴k=.将(3,0)代入y=kx﹣3得:0=3k﹣3∴k=1.∵一次函数y=kx﹣3过定点(0,﹣3),函数图象与x轴的交点坐标为(x0,0),且2≤x0≤3,∴1≤k≤.故答案为:1≤k≤.15.解:∵AB=AC,∠A=50°,∴∠ABC=∠C=65°.∵EF垂直平分AB,∴AF=BF,∴∠ABF=∠A=50°.∴∠FBC=∠ABC﹣∠ABF=65°﹣50°=15°.故答案为:15°.16.解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(km/h),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到达A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).三.解答题17.解:由2x﹣a<1得:x<由x﹣2b>3得:x>3+2b∴不等式组的解集为:3+2b<x<又∵﹣1<x<1∴∴,∴(a+1)(b﹣1)=(1+1)(﹣2﹣1)=﹣6.18.解:如图,点P即为所求.19.解:(1)如图,△A′B′C′即为所求.(2)如图线段CD即为所求.(3)如图,线段AE即为所求.=×4×4=8.(4)S△ABC故答案为8.20.解:(1)直线y=3x+2与y=﹣4x+3的友好直线为:y=(3﹣4)x+2×3=﹣x+6,故答案为:y=﹣x+6;(2)①∵直线l是直线y=﹣2x+m与y=3mx﹣6(m≠0)的友好直线,∴直线l的解析式为:y=(﹣2+3m)x﹣6m,∵直线l经过第一、三、四象限,∴,解得;②∵直线l经过点(3,12),∴3(﹣2+3m)﹣6m=12,∴m=6.21.解:(1)对于①等边三角形,三边相等,设边长为a,则a2+a2=2a2,根据“方倍三角形”定义可知:等边三角形一定是“方倍三角形”;对于②直角三角形,三边满足关系式:a2+b2=c2,根据“方倍三角形”定义可知:直角三角形不一定是“方倍三角形”;故选A.故答案为:A;(2)设Rt△ABC其余两条边为a,b,则满足a2+b2=3,根据“方倍三角形”定义,还满足:a2+3=2b2,联立解得,则Rt△ABC的面积为:;故答案为:;(3)由题意可知:△ABP≌△DBP,∴BA=BD,∠ABP=∠DBP,根据“方倍三角形”定义可知:BA2+BD2=2AD2=2BA2,∴AD=AB=BD,∴△ABD为等边三角形,∠BAD=60°,∴∠ABP=∠DBP=30°,∴∠PBC=90°,∵∠CPB=45°,∴∠APB=180°﹣45°=135°,∴∠DPC=90°,∵∠ABC=120°,∠ACB=45°,∴∠BAC=15°,∴∠CAD=45°,∴△APD为等腰直角三角形,∴AP=DP=,∴AD=2,延长BP交AD于点E,如图,∵∠ABP=∠PBD,∴BE⊥AD,PE=AD=AE=1,∴BE===,∴PB=BE﹣PE=﹣1,∵∠CPB=∠PCB=45°,∴△PBC为等腰直角三角形,∴PC=PB=﹣,=PC•PD=(﹣)×=﹣1.∴S△PDC22.解:(1)当m=2时,y1=2x+2,∵y1>y2,y2=﹣x+1,∴2x+2>﹣x+1,解得x>﹣;(2)如果y1>y2,那么2x+m>﹣x+1,解得x>,如果y1<y2,那么2x+m<﹣x+1,解得x<,∵当x1>1时,y1>y2;当x1<1时,y1<y2,∴=1,解得m=﹣2.故答案为:﹣2;(3)y=y1•y2=(2x+m)(﹣x+1),令y=0,则(2x+m)(﹣x+1)=0,解得x1=﹣,x2=1,当﹣=1,即m=﹣2时,该方程有两个相等的实数根,则函数图象与x轴只有一个交点;当﹣≠1,即m≠﹣2时,该方程有两个不相等的实数根,则函数图象与x轴有两个交点.23.(1)证明:∵CA=CB,EB=ED,∠ABC=∠DBE=60°,∴△ABC和△DBE都是等边三角形,∴AB=BC,DB=BE,∠A=60°.∵∠ABC=∠DBE=60°,∴∠ABD=∠CBE,∴△ABD≌△CBE(SAS).∴∠A=∠ECB;(2)证明:∵∠ABC=∠DBE=45°,CA=CB,EB=ED,∴△ABC和△DBE都是等腰直角三角形,∴∠CAB=45°,∴,∴,∵∠ABC=∠DBE,∴∠ABD=∠CBE,∴△ABD∽△CBE,∴∠BAD=∠BCE=45°,∵∠ABC=45°,∴∠ABC=∠BCE,∴CE∥AB;(3)解:过点D作DM⊥CE于点M,过点D作DN∥AB交CB于点N,∵∠ACB=90°,∠BCE=45°,∴∠DCM=45°,∴∠MDC=∠DCM=45°,∴DM=MC,设DM=MC=a,∴a,∵DN∥AB,∴△DCN为等腰直角三角形,∴DN=DC=2a,∵tan∠DEC=,∴ME=2DM,∴CE=a,∴,∵CE∥DN,∴△CEF∽△NDF,∴.。

2019—2020年最新人教版八年级数学上册期末总复习专项测试题(三)含答案.doc

2019—2020年最新人教版八年级数学上册期末总复习专项测试题(三)含答案.doc

八年级数学人教版上册期末总复习专项测试题(三)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、计算的值为,则的值等于( )A.B.C.D.【答案】D【解析】解:先化简由题可得则,解得.故答案为:.2、已知,,则的值为( ).A.B.C.D.【答案】C【解析】解:∵,,∴,故答案应选:.3、已知分式的值为,那么的值是()A. 或B.C.D.【答案】C【解析】解:分式的值为,且,解得.4、在直角坐标平面内,已知在轴与直线之间有一点,如果该点关于直线的对称点的坐标为,那么的值为()A.B.C.D.【答案】D【解析】解:该点关于直线的对称点的坐标为,对称点到直线的距离为,点到直线的距离为,.5、如图,在中,,平分,于.如果,,那么等于()A.B.C.D.【答案】C【解析】解:,,,,,,平分,,.6、如图,设和是镜面平行相对且间距为的两面镜子,把一个小球放在和之间,小球在镜中的像为,在镜是中的像为,则等于()A.B.C.D.【答案】D【解析】解:如图所示,经过反射后,,,.7、如图,在的正方形网格中,已有四个小正方形被涂黑.若将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形,则该小正方形的位置可以是()A. (一,2)B. (二,4)C. (三,2)D. (四,4)【答案】B【解析】解:如图,把(二,4)位置的正方形涂黑,则整个图案构成一个以直线为轴的轴对称图形.8、能够铺满地面的正多边形组合是()A. 正六边形和正方形B. 正五边形和正八边形C. 正方形和正八边形D. 正三角形和正十边形【答案】C【解析】解:正六边形的每个内角是,正方形的每个内角是,,显然取任何正整数时,不能得正整数,故不能铺满;正五边形每个内角是,正八边形每个内角为度,,显然取任何正整数时,不能得正整数,故不能铺满;正方形的每个内角为,正八边形的每个内角为,两个正八边形和一个正方形刚好能铺满地面;正三角形每个内角为,正十边形每个内角为,,显然取任何正整数时,不能得正整数,故不能铺满.9、如图,在中,、分别是、上的点,若,则的度数是( )A.B.C.D.【答案】D【解析】解:,,,又,,,,在中,,,.10、下列三角形:①有两个角等于;②有一个角等于的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A. ①②③B. ①②④C. ①③D. ①②③④【答案】D【解析】解:①两个角为度,则第三个角也是度,则其是等边三角形,故正确;②这是等边三角形的判定,故正确;③三个外角相等则三个内角相等,则其是等边三角形,故正确;④根据等边三角形三线合一性质,故正确.所以都正确.11、如图,在四边形中,,的平分线与的平分线交于点,则()A.B.C.D.【答案】C【解析】解:四边形中,,和分别为、的平分线,,则.12、如图,在中,,分别以点和为圆心,以相同的长(大于)为半径作弧,两弧相交于点和,作直线交于点,交于点,连接,下列结论错误的是()A.B.C.D.【答案】D【解析】解:为的垂直平分线,,;,;,;,,,.13、下面说法中,正确的是()A. 把分式方程化为整式方程,则这个整式方程的解就是这个分式方程的解B. 分式方程中,分母中一定含有未知数C. 分式方程就是含有分母的方程D. 分式方程一定有解【答案】B【解析】分式方程不一定有解;方程必须具备两个条件:①含有未知数;②是等式;把分式方程化为整式方程,这个整式方程的解不一定是这个分式方程的解;答案中正确的只有:分式方程中,分母中一定含有未知数.14、若分式的值为正数,则的取值范围是()A. 且B.C.D.【答案】A【解析】,且.,分式的值为正数,解得,且.15、若与的公因式为,则之值为何?()A.B.C.D.【答案】C【解析】与,公因式为,故.二、填空题(本大题共有5小题,每小题5分,共25分)16、计算:__________.【答案】【解析】解:,,,故答案为:.17、已知,则代数式 .【答案】0.5【解析】解:原式,把代入得:原式.故答案为:.18、已知等腰三角形顶角的度数是底角的倍,则它的顶角是度.【答案】120【解析】解:设此等腰三角形底角的度数为,则它顶角的度数为.由三角形内角和定理可得:,,,,即此等腰三角形项角为.正确答案是:.19、如图,光线照射到平面镜上,然后在平面镜和之间来回反射,这时光线的入射角等于反射角.若已知,,则.【答案】60【解析】解:,,,.20、如图,点关于,的对称点分别是,,分别交,于点,,,则的周长为 .【答案】6【解析】解:点关于、的对称点、,,,的周长等于.三、解答题(本大题共有3小题,每小题10分,共30分) 21、在中,平分,,垂足为,过作,交于,若,求线段的长.【解析】解:平分,,,,,,,,,,,,,.22、化简:结果为______【解析】解:正确答案是:23、如图,在正方形中,点、点分别在边、上,,.(1) 若点在上,且,求证:.【解析】证明:,,又是等边三角形,(已证),点、、、四点共圆,,,延长交的延长线于,,,,又,,,在和中,,(),,,,是等边三角形,,即.。

2019-2020年八年级上学期期末考试数学试卷(III)

2019-2020年八年级上学期期末考试数学试卷(III)

第8题图B DCA第7题图DFCEBA 2019-2020年八年级上学期期末考试数学试卷(III)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答; 2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色签字笔完成; 4.考试结束,由监考人员将答题卡收回.一、选择题:(本大题共12个小题,每小题4分,共48分),在每个小题的下面都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填涂在对应题号的答题卡上.1.以下为正方体的展开图,在这些展开图中,为轴对称图形的是2. 的计算结果是A .B .C .D .3. 下列等式从左到右的变形是因式分解的是A .B .()14218222+-=+-x x x x C . D . 4.正八边形的每个外角的度数是A . 18°B . 36°C . 45°D . 60° 5.分式有意义的条件是A. B. C. D. 为任意实数6.到三角形三个顶点的距离都相等的点是这个三角形的A .三条中线的交点B .三条高的交点C .三条边的垂直平分线的交点D .三条角平分线的交点7. 如图,B ,C ,E ,F 四点在一条直线上,下列条件不能判定△ABC 与△DEF 全等的是 A .B .C .D . 8. 若是完全平方式,则的值是A. B. C. 3 D. 6 9.若整式不含的一次项,则的值为A . ﹣3B . ﹣2C . ﹣1D .2 10.如图,△ABC 中,∠C =90°,∠BAC =60°,AD 平分 ∠BAC ,若BC =6,则点D 到线段AB 的距离等于 A. 5 B. 4 C. 3 D.2 第10题图11.按照如图所示的方法排列黑色小正方形地砖,则第13个图案中黑色小正方形地砖的块EFDBCA第12题图第18题图DE ACB数是A.273B. 293C. 313D. 333 12.如图,在△ABC 和△DBC 中,∠ACB =∠DBC =90°,E 是BC 的中点,DE ⊥AB ,垂足为点F ,且AB =DE .若BD =8cm ,则AC 的长为 A .2 cm B .3 cm C .4 cmD .6 cm二、填空题:(本大题6个小题,每小题4分,共24分),请将答案直接填在答题卡中对应的横线上.13. 因式分解的结果是_____________. 14. 氧原子的直径约为0.000 000 0016米,数据0.000 000 0016用科学记数法表示为______. 15. 计算的结果是_____________.16. 若分式的值为零,则的值是_____________.17. 已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为__________.18. 如图,△ABC 和△CDE 都是等边三角形,连接BE,AE,BD,若∠EBD =14°,则∠AEB 的度数是 ______________.第18题图 三、解答题:(本大题8个小题,共78分),解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上. 19.(本小题满分7分)解方程:20.(本小题满分7分) 已知,求代数式的值 21.(本小题满分10分)如图,在平面直角坐标系中,已知两点A (1,2),B (﹣1,﹣1),(1)画出以点B 为顶角顶点,对称轴平行于y 轴的等腰△ABC ,并写出满足条件的C 点 坐标_____________(2)A 点关于y 轴的对称点为M ,平移 △ABC ,使A 点平移至M 点位置,B 点的对 应点为N 点,C 点的对应点为点P ,画出平移 后的△MNP ,并求出△MNP 的面积.22. (本小题满分10分)计算下列各式:(1)()()()a b b a b b ab b a +--÷--222322(2)21)113(4422+++-+÷++-a a a aa a a 23. (本小题满分10分)计算下列各式:如图,在△中,是上一点,, 是△外一点,CAE BAD ADE B ∠=∠∠=∠,.(1)求证:(2)若∠BAD =30°,AB =6,BD =4,DE =9,求△ADC 的面积. 第23题图24.(本小题满分10分)随着人们节能意识的增强,节能产品进入千家万户,今年10月萌萌家将天然气热水器换成了太阳能热水器.9月份萌萌家的燃气费是96元,已知 10月份起天然气价格每立方米上涨25%,萌萌家11月份的用气量比9月份少10立方米,11月份的燃气费是90元.问萌萌家11月份用气多少立方米.25.(本小题满分12分)阅读材料:如果一个花坛的长,宽分别是m 、n ,且m 、n 满足m 2﹣2mn +2n 2﹣4n +4=0,求花坛的面积.解:∵m 2﹣2mn +2n 2﹣4n +4=0,∴(m 2﹣2mn +n 2)+(n 2﹣4n +4)=0∴(m ﹣n )2+(n ﹣2)2=0,∴(m ﹣n )2=0,(n ﹣2)2=0,∴m = n ,n =2. ∴mn=4根据你的观察和思考,探究下面的问题: (1)若x 2﹣2xy +5y 2+4y +1=0,求xy 的值; (2)若0245222=-+++xz xy z y x ,求代数式的值;(3)若△ABC 的三边长a 、b 、c 都是正整数,且满足a 2+b 2﹣10a ﹣12b +61=0,求△ABC的周长的最大值.26.(本小题满分12分)如图,∠MAN =45°,点C 在射线AM 上,AC =10,过C 点作CB ⊥AN 交AN 于点B ,P 为线段AC 上一个动点,Q 点为线段AB 上的动点,且始终保持PQ =PB . (1)如图1,若∠BPQ =45°,求证:△ABP 是等腰三角形;(2)如图2, DQ ⊥AP 于点D ,试问:此时PD 的长度是否变化?若变化,请说明理由;若不变,请计算其长度;(3)当点P 运动到AC 的中点时,将△PBQ 以每秒1个单位的速度向右匀速平移,设运动时间为t 秒,B 点平移后的对应点为E ,求△ABC 和△PQE 的重叠部分的面积.AMBCPQ N26题图(2)DQPCB NMA26题图(1)xx 学年度上学期期末考试 八年级数学参考答案及评分意见一、选择题:1—5:BBDCA 6—10:CBBDD 11—12:CC 二、填空题:13. 14. 15.10 16.17.120°或20° 18. 46°三、解答题:19.解:()()()()32236+---=+x x x x x ………………………2分 623218622++---=+x x x x x x ………………………4分………………………6分经检验,是原方程的解………………………7分20.解:()ab b a b ab a 3222-+=+- ………………………3分=52– 3×2………………………5分=19………………………7分 21.解:(1)C (-3,2),………………………3分 (2)图形略,………………………7分△MNP 的面积=×4×3=6………………………10分22.解:(1)原式=)4(22222b a b ab a ----………………………2分 =………………………3分 =………………………5分(2)原式=()211113)1(222++⎪⎪⎭⎫ ⎝⎛+--+÷+-a a a a a a a ………………………6分 ==21)2)(2(1)1()2(2++-++⋅+-a a a a a a a ………………………8分==………………………10分 23.(1)证明:∵∠BAD=∠CAE,G F∴∠BAD +∠DAC =∠CAE +∠DAC即∠BAC =∠DAE ………………………3分 ∵AB =AD, ∠B =∠ADE∴△ABC ≌△ADE(ASA) ………………………4分 ∴AC =AE ………………………5分(2) 解1(面积法):由(1)可知,△ABC ≌△ADE ∴AB =AD =6,BC =DE =9 ∵BD =4,∴DC =BC -BD =5过点D,F 分别作DF⊥AB ,AG ⊥BC ,垂足分别为F,G,. ∵∠BAD =30°, ∴DF =AD =3∵BD =4, AG ·BD =AB ·DF ∴AG =………………………8分 ∴S △ADC =DC ·AG =×5×=………………………10分解2(勾股定理):过点A 作AG 垂直于BD 于G ………..6分 由已知知AB =AD ,∴BG=DG=2,AG=………8分 ∴S △ADC =DC ·AG =×5×=………………………10分 24.解:设萌萌家11月份用气立方米.由题意得 ………………………5分解得,………………………8分经检验,是原方程的解. ………………………9分答:萌萌家11月份用气30立方米………………………10分25.解:(1)012,0,0)12()(22=+=-∴=++-y y x y y x∴,∴………………………4分(2) 06,05,0)6()5(22=-=-∴=-+-b a b a∴.∴∵c 为整数,∴c 的最大值为10,∴△ABC 的周长的最大值为21. ………………………8分(3)0,02,0)()2(22=-=+∴=-++z x y x z x y x∴∴0323=-+=--x x x z y x ………………………12分26.(1)证明:∵∠BPQ=45°,PQ=PB,F EQPCBA图1图2FEQ P CBA∴∠PBQ=∠PQB=67.5°. ∵∠MAN=45°,∴ ∠APB=180°-45°-67.5°=67.5° ∴∠APB= ∠PBQ∴AP=AB 即三角形ABP 为等腰三角形。

2020学年八年级(上)期末数学复习试卷

2020学年八年级(上)期末数学复习试卷

2020学年八年级(上)期末数学复习试卷一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组线段的长为边,能组成三角形的是()A.2cm,3cm,4cm B.2cm,3cm,5cm C.2cm,5cm,10cm D.8cm,4cm,4cm2.计算0的结果是()A.0 B.1 C.2004﹣πD.π﹣20043.如果把分式中的x、y都扩大到原来的5倍,那么分式的值()A.扩大到原来的25倍B.扩大到原来的5倍C.不变 D.缩小到原来的4.计算(a3)2÷a4的结果是()A.1 B.a C.a2D.a105.下列图形不是轴对称图形的是()A.B.C.D.6.在建筑工地我们经常可看见如图所示用木条EF固定长方形门框ABCD的情形,这种做法根据是()A.两点之间线段最短 B.两点确定一条直线C.长方形的四个角都是直角D.三角形的稳定性7.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形8.一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.79.如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为()A.9 B.8 C.6 D.1210.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°二、填空题:本大题共6小题,每小题3分,共18分.11.使分式的值为零的条件是x=.12.如图,BD是△ABC的中线,AB=6cm,BC=4cm,则△ABC和△BCD的周长差为cm.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.14.△ABC中,∠B=30°,∠C=90°,AC=4,则AB=.15.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.16.对于实数a、b,定义运算⊗如下:a⊗b=,例如,2⊗4=2﹣4=.计算[2⊗2]×[(﹣3)⊗2]=.三、解答题:本大题共7题,共62分.解答应写出文字说明、证明过程或演算步骤.17.计算:(1)(a+3)(a﹣1)+a(a﹣2);(2)(2x﹣3)2﹣(x+y)(x﹣y)﹣y2.18.因式分解(1)ax2﹣4a;(2)2pm2﹣12pm+18p.19.计算:(1)(2).20.在平面直角坐标系中,P点坐标为(2,6),Q点坐标为(2,2),点M为y轴上的动点.(1)在平面直角坐标系内画出当△PMQ的周长取最小值时点M的位置.(保留作图痕迹)(2)写出点M的坐标.21.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.22.甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?23.在等边△ABC中,D为线段BC上一点,CE是∠ACB外角的平分线,∠ADE=60°,EF⊥BC 于F.求证:(1)AD=DE;(2)BC=DC+2CF.。

2020年人教版八年级上学期期末数学试卷(解析版)

2020年人教版八年级上学期期末数学试卷(解析版)

人教版八年级上学期期末数学试卷一、单项选择题(每小题3分,共9分).1.(3分)的值等于()A.3B.﹣3 C.±3 D.2.(3分)下列运算正确的是()A.a3•a2=a6B.(x3)3=x6C.x5+x5=x10D.(﹣ab)5÷(﹣ab)2=﹣a3b33.(3分)以下列各组数据为边组成的三角形,不是直角三角形的是()A.3,3,5 B.1,1,C.5,4,3 D.5,12,13二、填空题(每小题4分,共28分).4.(4分)﹣27的立方根是.5.(4分)比较大小:3.6.(4分)用科学记数法表示:0.0000314=.7.(4分)计算:(5ax2+15x)÷5x=.8.(4分)当x时,分式有意义.9.(4分)化简:=.10.(4分)已知数据:,,,π,﹣2,其中无理数出现的频率是.三、解答题(每小题9分,共36分).11.(9分)因式分解:(1)25x2﹣16y2(2)2a2+4ab+2b2.12.(9分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.13.(9分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.14.(9分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题.(1)本次参与调查的学生共有人,m=,n=;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是多少度;(3)请补全条形统计图.一、单项选择题(每小题3分,共9分).15.(3分)等腰三角形的顶角为80°,那么它的一个底角的大小为()A.20°B.50°C.80°D.50°或20°16.(3分)下列各式,正确的是()A.=0 B.C.=1 D.17.(3分)如图,在△ABC中,AB=AC,AE是∠BAC的平分线,点D是AE上的一点,则下列结论错误的是()A.A E⊥BC B.△BED≌△CED C.△BAD≌△CAD D.∠ABD=∠DBE二、填空题(每小题4分,共8分).18.(4分)命题“全等三角形的对应角相等”的逆命题是,这个逆命题是(填“真”或“假”).19.(4分)如图,在△ABC中,已知边AC的垂直平分线DE交BC于点D,连结AD,AD=3,BD=4,则BC=.三、解答题(每小题9分,共27分).20.(9分)计算:+﹣20150.21.(9分)解分式方程:=.22.(9分)如图,将长为2.5米长的梯子AB斜靠在墙上,BC长为0.7米.(1)求梯子上端A到墙的底端C的距离(即AC的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AA′=0.4米),则梯脚B将外移(即BB′的长)多少米?一、选择题(每小题3分,共3分).23.(3分)如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.a2+ab=a(a+b)二、填空题(每小题4分,共4分).24.(4分)如图是一个长为4cm,宽为3cm,高为5cm的长方体纸箱,则AC=cm.若一只蚂蚁要从A点沿纸箱外表面爬行到B点,那么它所行走的最短路径的长是cm.(保留根号)三、解答题(共26分).25.(12分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=3,BC=4,点E在AB 边上,BE=3,∠CED=90°.(1)求CE的长度;(2)求证:△ADE≌△BEC;(3)设点P是线段AB上的一个动点,求DP+CP的最小值是多少?26.(14分)在△ABC中,D是边BC的中点.(1)①如图1,求证:△ABD和△ACD的面积相等;②如图2,延长AD至E,使DE=AD,连结CE,求证:AB=EC.(2)当∠BAC=90°时,可以结合利用以上各题的结论,解决下列问题:①求证:AD=BC(即:直角三角形斜边上的中线等于斜边的一半);②已知BC=4,将△ABD沿AD所在直线翻折,得到△ADB′,若△ADB′与△ABC重合部分的面积等于△ABC面积的,请画出图形(草图)并求出AC的长度.参考答案与试题解析一、单项选择题(每小题3分,共9分).1.(3分)的值等于()A.3B.﹣3 C.±3 D.考点:算术平方根.分析:此题考查的是9的算术平方根,需注意的是算术平方根必为非负数.解答:解:∵=3,故选A.点评:此题主要考查了算术平方根的定义,一个正数只有一个算术平方根,0的算术平方根是0.2.(3分)下列运算正确的是()A.a3•a2=a6B.(x3)3=x6C.x5+x5=x10D.(﹣ab)5÷(﹣a b)2=﹣a3b3考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项、幂的乘方与积的乘方、同底数幂的除法与乘法等知识点进行作答即可求得答案.解答:解:A、a3•a2=a5,故A错误;B、(x3)3=x9,故B错误;C、x5+x5=2x5,故C错误;D、(﹣ab)5÷(﹣ab)2=﹣a5b5÷a2b2=﹣a3b3,故D正确.故选:D.点评:本题考查了合并同类项,同底数的幂的除法与乘法,积的乘方等多个运算性质,需同学们熟练掌握.3.(3分)以下列各组数据为边组成的三角形,不是直角三角形的是()A.3,3,5 B.1,1,C.5,4,3 D.5,12,13考点:勾股定理的逆定理.专题:计算题.分析:根据勾股定理的逆定理对四个选项进行逐一判断即可.解答:解:A、32+32=18≠52=25,不符合勾股定理的逆定理,故本选项错误;B、12+12=2=()2,符合勾股定理的逆定理,故本选项正确;C、32+42=25=(5)2,符合勾股定理的逆定理,故本选项正确;D、52+122=169=132,符合勾股定理的逆定理,故本选项正确.故选A.点评:本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.二、填空题(每小题4分,共28分).4.(4分)﹣27的立方根是﹣3.考点:立方根.分析:根据立方根的定义求解即可.解答:解:∵(﹣3)3=﹣27,∴=﹣3故答案为:﹣3.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.5.(4分)比较大小:>3.考点:实数大小比较.分析:先求出3=,再比较即可.解答:解:∵32=9<10,∴>3,故答案为:>.点评:本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.6.(4分)用科学记数法表示:0.0000314=3.14×10﹣5.考点:科学记数法—表示较小的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:0.0000314=3.14×10﹣5.故答案为:3.14×10﹣5.点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(4分)计算:(5ax2+15x)÷5x=ax+3.考点:整式的除法.分析:运用整式的除法法则求解即可.解答:解:(5ax2+15x)÷5x=ax+3.故答案为:ax+3.点评:本题主要考查了整式的除法,解题的关键是熟记整式的除法法则.8.(4分)当x≠﹣2时,分式有意义.考点:分式有意义的条件.分析:根据分式的意义的条件:分母不等于0,就可以求解.解答:解:根据题意得:x+2≠0,解得:x≠﹣2,故答案是:≠﹣2.点评:本题主要考查了分式有意义的条件是分母不等于0.9.(4分)化简:=1.考点:分式的加减法.专题:计算题.分析:同分母分式相加,分母不变,分子相加,然后约分即可.解答:解:=.故答案为:1.点评:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.10.(4分)已知数据:,,,π,﹣2,其中无理数出现的频率是0.6.考点:频数与频率.分析:直接利用无理数的定义结合频率的求法得出答案.解答:解:∵数据:,,,π,﹣2,其中无理数有:,,π,∴无理数出现的频率是:=0.6.故答案为:0.6.点评:此题主要考查了频率的求法以及无理数的定义,正确把握无理数的定义是解题关键.三、解答题(每小题9分,共36分).11.(9分)因式分解:(1)25x2﹣16y2(2)2a2+4ab+2b2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:(1)原式利用平方差公式分解即可;(2)原式提取2,再利用完全平方公式分解即可.解答:解:(1)原式=(5x+4y)(5x﹣4y);(2)原式=2(a2+2ab+b2)=2(a+b)2.点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(9分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.考点:整式的混合运算—化简求值.专题:探究型.分析:先把整式进行化简,再把x=4代入进行计算即可.解答:解:原式=x2﹣9﹣x2+2x=2x﹣9,当x=4时,原式=2×4﹣9=﹣1.点评:本题考查的是整式的混合运算﹣化简求值,在有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.13.(9分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.解答:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM,∵M是BC的中点,∴BM=CM,在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质.14.(9分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题.(1)本次参与调查的学生共有400人,m=15%,n=35%;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是多少度;(3)请补全条形统计图.考点:条形统计图;扇形统计图.专题:图表型.分析:(1)用A的人数除以所占的百分比,计算即可求出被调查学生总人数,用B的人数除以被调查的学生总人数计算即可求出m,再根据各部分的百分比的和等于1计算即可求出n;(2)用D的百分比乘360°计算即可得解;(3)求出D的学生人数,然后补全统计图即可.解答:解:(1)20÷5%=400,×100%=15%,1﹣5%﹣15%﹣45%=35%,故答案为:400;15%;35%;(2)360°×35%=126°;(3)∵D等级的人数为:400×35%=140,∴补全条形统计图如图所示.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.一、单项选择题(每小题3分,共9分).15.(3分)等腰三角形的顶角为80°,那么它的一个底角的大小为()A.20°B.50°C.80°D.50°或20°考点:等腰三角形的性质.分析:由已知顶角为80°,根据等腰三角形的两底角相等的性质及三角形内角和定理,即可求出它的一个底角的值.解答:解:∵等腰三角形的顶角为80°,∴它的一个底角为(180°﹣80°)÷2=50°.故选B.点评:此题主要考查了等腰三角形的性质及三角形内角和定理.通过三角形内角和,列出方程求解是正确解答本题的关键.16.(3分)下列各式,正确的是()A.=0 B.C.=1 D.考点:分式的基本性质.分析:根据分式的基本性质作答.解答:解:A、只有当分子为0,分式才为0,题中没有这个条件,故A错误;B、当分子分母异号时,两边都平方等式不成立,故B错误;C、不能约分,故C错误;D、,故D正确.故选D.点评:本题主要考查了分式的基本性质,需要熟练掌握分式的基本性质.17.(3分)如图,在△ABC中,AB=AC,AE是∠BAC的平分线,点D是AE上的一点,则下列结论错误的是()A.A E⊥BC B.△BED≌△CED C.△BAD≌△CAD D.∠ABD=∠DBE考点:等腰三角形的性质;全等三角形的判定与性质.分析:根据等腰三角形顶角的平分线也是底边的中线即可确定正确的结论.解答:解:∵在△ABC中,AB=AC,AE是∠BAC的平分线,∴AE垂直平分BC,∴A、B、C正确,∵点D为AE上的任一点,∴∠ABD=∠DBE不正确,故选D.点评:本题考查了等腰三角形的性质及全等三角形的判定与性质,属于等腰三角形的基础题,比较简单.二、填空题(每小题4分,共8分).18.(4分)命题“全等三角形的对应角相等”的逆命题是对应角相等的三角形是全等三角形,这个逆命题是假(填“真”或“假”).考点:命题与定理.分析:根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题,进而判断它的真假.解答:解:命题“全等三角形对应角相等”的题设是“全等三角形”,结论是“对应角相等”,故其逆命题是对应角相等的三角形是全等三角形,它是一个假命题.故答案为:对应角相等的三角形是全等三角形,假.点评:此题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.19.(4分)如图,在△ABC中,已知边AC的垂直平分线DE交BC于点D,连结AD,AD=3,BD=4,则BC=7.考点:线段垂直平分线的性质.分析:根据线段垂直平分线求出AD=DC=3,代入BC=BD+DC求出即可.解答:解:∵边AC的垂直平分线DE,AD=3,∴AD=DC=3,∵BD=4,∴BC=BD+DC=4+3=7,故答案为:7.点评:本题考查了线段垂直平分线性质的应用,解此题的关键是得出AD=DC,注意:线段垂直平分线上的点到线段两个端点的距离相等.三、解答题(每小题9分,共27分).20.(9分)计算:+﹣20150.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用立方根定义计算,第二项利用平方根定义计算,最后一项利用零指数幂法则计算即可得到结果.解答:解:原式=﹣2+4﹣1=1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.(9分)解分式方程:=.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得2(2x+1)=3(x﹣1),去括号得:4x+2=3x﹣3,解得:x=﹣5,检验:当x=﹣5时,(x﹣1)(2x+1)≠0,则原方程的解为x=﹣5.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22.(9分)如图,将长为2.5米长的梯子AB斜靠在墙上,BC长为0.7米.(1)求梯子上端A到墙的底端C的距离(即AC的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AA′=0.4米),则梯脚B将外移(即BB′的长)多少米?考点:勾股定理的应用.分析:(1)在Rt△ABC中利用勾股定理求出AC的长即可;(2)由(1)可以得出梯子的初始高度,下滑0.4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为0.7米,可以得出,梯子底端水平方向上滑行的距离.解答:解:(1)在Rt△ABC中,∠C=90°,AC==2.4(米);(2)∵A′C=AC﹣AA′=2.4﹣0.4=2(米),A′B′=2.5(米),∴B′C==1.5(米),∴B′B=B′C﹣BC=1.5﹣0.7=0.8(米)答:梯脚B将外移(即BB′的长)0.8米.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.一、选择题(每小题3分,共3分).23.(3分)如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.a2+ab=a(a+b)考点:完全平方公式的几何背景.分析:用两种方法正确的表示出阴影部分的面积,再根据图形阴影部分面积的关系,即可直观地得到一个关于a、b的恒等式.解答:解:方法一阴影部分的面积为:(a﹣b)2,方法二阴影部分的面积为:(a+b)2﹣4ab,所以根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为(a﹣b)2=(a+b)2﹣4ab.故选:C.点评:本题主要考查了完全平方公式的几何背景,解题的关键是用两种方法正确的表示出阴影部分的面积.二、填空题(每小题4分,共4分).24.(4分)如图是一个长为4cm,宽为3cm,高为5cm的长方体纸箱,则AC=5cm.若一只蚂蚁要从A点沿纸箱外表面爬行到B点,那么它所行走的最短路径的长是cm.(保留根号)考点:平面展开-最短路径问题.分析:先根据勾股定理求出AC的长,再将纸箱平面展开,利用勾股定理求解即可.解答:解:∵长方体纸箱的长是4cm,宽是3cm,∴AC==5(cm).当如图1所示时,AB==(cm);,当如图2所示时,AB==(cm),∵<,∴它所行走的最短路径的长是cm.故答案为:5,.点评:本题考查的是平面展开﹣最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.三、解答题(共26分).25.(12分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=3,BC=4,点E在AB 边上,BE=3,∠CED=90°.(1)求CE的长度;(2)求证:△ADE≌△BEC;(3)设点P是线段AB上的一个动点,求DP+CP的最小值是多少?考点:全等三角形的判定与性质;勾股定理;轴对称-最短路线问题.分析:(1))由∠B=90°,BC=4,BE=3,根据勾股定理求出CE;(2)先证出∠DEA=∠ECB,即可证明△ADE≌△BEC;(3)作点D关于AB的对称点F,连接CF交AB于点P,再用勾股定理求出CF的长即为DP+CP的最小值.解答:解:(1)∵∠B=90°,BC=4,BE=3,根据勾股定理可得:;(2)∵∠CED=90°,∴∠CEB+∠DEA=90°,∵∠B=90°,∴∠CEB+∠ECB=90°,∴∠DEA=∠ECB,∵AD∥BC,∠B=90°,∴∠A=∠B=90°,在△ADE和△BEC中,∴△ADE≌△BEC(AAS);(3)延长DA至F,使得AD=AF,并连接CF,此时CF与AB的交点为点P,连接PD;∵AB⊥AD,且AD=AF,∴△DFP是等腰三角形,∴DP=FP,∴DP+CP的最小值为CF,过点F作FH垂直CB的长线,垂足为H,如图所示:根据题意得:CH=7,FH=7,根据勾股定理可得,CF=,即DP+CP的最小值为.点评:本题考查了勾股定理、轴对称以及最短路线问题;熟练掌握勾股定理和最短路线的作图是解决问题的关键.26.(14分)在△ABC中,D是边BC的中点.(1)①如图1,求证:△ABD和△ACD的面积相等;②如图2,延长AD至E,使DE=AD,连结CE,求证:AB=EC.(2)当∠BAC=90°时,可以结合利用以上各题的结论,解决下列问题:①求证:AD=BC(即:直角三角形斜边上的中线等于斜边的一半);②已知BC=4,将△ABD沿AD所在直线翻折,得到△ADB′,若△ADB′与△ABC重合部分的面积等于△ABC面积的,请画出图形(草图)并求出AC的长度.考点:全等三角形的判定与性质;直角三角形斜边上的中线;翻折变换(折叠问题).分析:(1)如图,作辅助线;运用三角形的面积公式即可解决问题;(2)①证明△ABD≌△ECD,即可解决问题.②画出图形,运用分类讨论的数学思想,逐一分类解析,即可解决问题.解答:解:(1)证明:①过点A作AH⊥BC,垂足为H,则S△ABD=BD•AH,S△ACD=CD•AH,∵点D是BC中点,∴BD=CD,∴△ABD和△ACD的面积相等.②在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴AB=EC.(2)①∵△ABD≌△ECD(已证)∴∠B=∠ECD;∵∠B+∠ACB=90°,∴∠ECD+∠ACB=90°,∴∠ACE=∠BAC=90°;在△ABC与△CEA中,,∴△ABC≌△CEA(SAS),∴BC=AE;∵AD=AE,∴AD=BC.②画草图如下:(Ⅰ)当AB>AC时,如图3,由△ADB′与△ABC重合部分的面积等于△ABC面积的,结合(1)①题的结论,可以得到点O既即是ABˊ的中点,也是CD的中点,故四边形ADB′C为平行四边形,∴AC=BˊD=BD=BC=2.(Ⅱ)当AB<AC时,如图4,类比第(Ⅰ)题,同理可证△AOBˊ≌△COD,∴ABˊ=CD=2,∠Bˊ=∠CDO,又∵∠Bˊ=∠B,∴∠B=∠CDO,∴AB∥OD,∴∠COD=∠A=90°,又∵DO=OBˊ=1,由勾股定理可得CO=,∴AC=2CO=.(Ⅲ)当AB=AC时,由等腰三角形的性质可知,折叠后重合的面积等于△ABC面积的,不可能等于,所以不合题意,舍去.综上所述:AC=2或2.点评:该题主要考查了直角三角形的性质、全等三角形的判定及其性质的应用等几何知识点问题;牢固掌握全等三角形的判定定理是解题的关键.。

2020年第一学期期末复习试卷八年级数学

2020年第一学期期末复习试卷八年级数学

2020年第一学期期末复习试卷八年级数学 本试卷分选择题和非选择题两部分,共三大题23小题,共4页,满分100分.考试时间90分钟,可以使用计算器.一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.用科学记数法表示0.00000506 =( )A .5.06×106B .5.06×10-6C .50.6×10-7D .506×10-82.如果把分式x x y+的x 和y 都扩大3倍,那么分式的值( ). A .扩大3倍 B .缩小为原来的13 C .不变 D . 扩大6 倍 3.要使x 2+4x +m 是完全平方式,那么m 的值是( ).A .4B .8C .±4D . 164.计算223(-)(3)4x y z xy ÷-正确的是( ). A . 14xyz B . 94xyz C .294x z D . 214x z 5.下面是一些著名汽车品牌的标志,其中不是轴对称的图形是( ).A .B .C .D .6.三角形的一个外角是锐角,则这个三角形的是( ).A .锐角三角形B .直角三角形C .钝角三角形D .不能确定7.以下长度的线段为边,可以作为一个三角形的是( ).A .10cm ,20cm ,30cmB .10cm,20cm ,40cmC .10cm,40cm,50cmD .20cm,30cm,40cm8.如图,AB=DB ,BC=BE ,要使AEB DCB ∆≅∆,则需添加的条件是( ).A .AB=BCB .AE=CDC .AC=CD D .AE=AC第8题 第9题 第10题9.如图,若OAD OBC ∆≅∆,且∠O =65°,∠C =20°,则∠OAD =( ).A .20°B .65°C .86°D .95°10.如图,若ABC ∆是等边三角形,AB =6,BD 是∠ABC 的平分线,延长BC 到E ,使CE =CD ,则BE =( ).A .7B .8C .9D .10二、填空题(本大题共6小题,每小题3分,共18分.)11.计算:3-3=_______.12.如图,垂直平分线段AB ,且垂足为M ,则图中一定相等的线段有_______对.13.如果点A 的坐标是(3,-2),点B 的坐标是(3,2),那么点A 和点B 关于________轴对称.14.一个多边形的每一个外角为30°,那么这个多变形的边数是__________.15.如果10m =4,10n =12,那么10m+n =__________.16.如图,在Rt ABC ∆中,∠C =90°,AC =3,BC =4,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,则BDE ∆的周长等于__________.一、解答题(本大题共7小题,共62分.解答应写出文字说明、证明过程或演算步骤.)17.(每小题4分,本题满分8分)计算:(1) (2x -3)(x -5)(2) (3a 2)2-5a 2(2a 2+3a 2b 4)18.(每小题5分,本题满分10分)分解因式:第12题第16题(1) 4ma 2-4mb 2(2) 7(x 2-y 2)-6x (x -y )+16y 219.(每小题5分,本题满分10分)计算:(1) 2212--y x y x y- (2) 22269--34a a a a a +-+-20.(本题满分8分)如图,已知∠A =∠D ,∠ABC =∠DCB ,求证:AC =DB .21.(本题满分8分)如图,在ABC ∆中,点D 在BC 上,A C=CD ,∠B=30°,∠ADB=100°.(1) 作AB 的垂直平分线EF ,分别交BC 、AB 于E 、F (不写作法,保留作图痕迹);(2) 连结AE ,求∠C 与∠AED 的大小.22.(本题满分8分)列方程解应用题: 汛期将至,解放军某连兵官为驻地民众着想,计划加固驻地附近18千米的河堤.根据气象部门预测,今年的汛期有可能提前,因此,官兵们发扬我军不怕苦、不怕累的优良传统,早出晚归,使实际施工速度提高到原计划的1.5倍,结果比计划提前6天完成.求该连队实际每天加固河堤多少千米?第20题第21题23.(本题满分10分)为等边三角形,点D由点C出发,在BC的延长线上运动,连结AD,以如图,已知ABCAD为边作等边三角形ADE,连结CE.(1)请写出AC、CD、CE之间的数量关系,并证明;(2) 若AB=6cm,点D的运动速度为每秒2cm,运动时间为t秒,则t为何值时,CE⊥AD?第23题第23题备用图。

★试卷3套精选★济南市2020届八年级上学期期末复习能力测试数学试题

★试卷3套精选★济南市2020届八年级上学期期末复习能力测试数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.BC∥EF C.∠A=∠EDF D.AD=CF【答案】D【分析】根据“SSS”可添加AD=CF使△ABC≌△DEF.【详解】解:A、添加∠BCA=∠F是SSA,不能证明全等,故A选项错误;B、添加. BC∥EF得到的就是A选项中的∠BCA=∠F,故B选项错误;C、添加∠A=∠EDF是SSA,不能证明全等,故C选项错误;D、添加AD=CF可得到AD+DC=CF+DC,即AC=DF,结合题目条件可通过SSS得到△ABC≌△DEF,故D选项正确;故选D.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边2.如图,在△ABC 中,点D 是边BC 上的点(与B、C 两点不重合),过点D作DE∥AC,DF∥AB,分别交AB、AC 于E、F 两点,下列说法正确的是()A.若AD 平分∠BAC,则四边形AEDF 是菱形B.若BD=CD,则四边形AEDF 是菱形C.若AD 垂直平分BC,则四边形AEDF 是矩形D.若AD⊥BC,则四边形AEDF 是矩形【答案】A【分析】由矩形的判定和菱形的判定即可得出结论.【详解】解:A选项:若AD平分∠BAC,则四边形AEDF是菱形;正确;B选项:若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;错误;C选项:若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;错误;D选项:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;错误;故选A.【点睛】本题考查了矩形的判定、菱形的判定;熟记菱形和矩形的判定方法是解决问题的关键.3.“高高兴兴上学,平平安安回家”,交通安全与我们每一位同学都息息相关,下列四个交通标志中,属于轴对称图形的是()A.B.C.D.【答案】D【分析】将一个图形一部分沿一条直线对折,能与另一部分完全重合,则这个图形叫轴对称图形,据此判断即可求解.【详解】解:根据轴对称图形的定义,只有D选项图形是轴对称图形.故选:D【点睛】本题考查了轴对称图形的概念,熟知轴对称图形定义是解题关键.4.正常情况下,一个成年人的一根头发大约是0.0000012千克,用科学记数法表示应该是( )A.1.2×10﹣5B.1.2×10﹣6C.0.12×10﹣5D.0.12×10﹣6【答案】B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000012=1.2×10﹣1.故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15°B.20°C.25°【答案】C【解析】根据角平分线的定义和三角形的外角的性质即可得到∠D=12∠A . 解:∵∠ABC 的平分线与∠ACB 的外角平分线相交于D 点,∴∠1=12∠ACE ,∠2=12∠ABC , 又∠D=∠1﹣∠2,∠A=∠ACE ﹣∠ABC , ∴∠D=12∠A=25°. 故选C .6.如图所示,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B .下列结论中不一定成立的是( ).A .PA PB =B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP【答案】D 【分析】根据角平分线上的点到角的两边距离相等可得出PA=PB ,再利用“HL ”证明△AOP 和△BOP 全等,可得出APO BPO ∠=∠,OA=OB ,即可得出答案.【详解】解:∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥∴PA PB =,选项A 正确;在△AOP 和△BOP 中,PO PO PA PB =⎧⎨=⎩, ∴AOP BOP ≅∴APO BPO ∠=∠,OA=OB ,选项B ,C 正确;由等腰三角形三线合一的性质,OP 垂直平分AB ,AB 不一定垂直平分OP ,选项D 错误.故选:D .本题考查的知识点是角平分线的性质以及垂直平分线的性质,熟记性质定理是解此题的关键. 7.若关于x 的分式方程1x a a x -=+无解,则a 的值为( ) A .1B .1-C .1或0D .1或1- 【答案】D 【分析】化简分式方程得21a x a=-,要是分式方程无解有两种情况,当分式方程有增根时,1x =-,代入即可算出a 的值,当等式不成立时,使分母为0,则1a =. 【详解】解:1x a a x -=+ 化简得:21a x a=- 当分式方程有增根时,1x =-代入得1a =-.当分母为0时,1a =.a 的值为-1或1.故选:D.【点睛】本题主要考查的是分式方程无解的两种情况①当分式方程有增根时,此方程无解,②当等式不成立时,此方程无解.8.某机加工车间共有26名工人,现要加工2100个A 零件,1200个B 零件,已知每人每天加工A 零件30个或B 零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x 人加工A 零件,由题意列方程得( )A .210012003020(26)x x =- B .2100120026x x =- C .210012002030(26)x x =-D .21001200302026x x⨯=⨯- 【答案】A 【解析】设安排x 人加工A 零件,加工B 零件的是26-x,()21001200302026x x =-,所以选A. 9.在下列长度的各组线段中,能组成直角三角形的是( )A .5,6,7B .5,12,13C .1,4,9D .5,11,12【答案】B【解析】试题分析:解:A 、∵52+62≠72,故不能围成直角三角形,此选项错误;C 、∵12+42≠92,故不能围成直角三角形,此选项错误;B 、∵52+122=132,能围成直角三角形,此选项正确;D 、∵52+112≠122,故不能围成直角三角形,此选项错误.故选B .考点:本题考查了勾股定理的逆定理点评: 此类试题属于基础性试题,考生直接一招勾股定理把各项带入验证即可10.若实数a 、b 、c 满足a+b+c =0,且a <b <c ,则函数y =-cx-a 的图象可能是( )A .B .C .D .【答案】B【分析】先判断出a 是负数,c 是正数,然后根据一次函数图象与系数的关系确定图象经过的象限即可.【详解】解:∵a +b +c =0,且a <b <c ,∴a <0,c >0,(b 的正负情况不能确定),∴-c <0,-a >0,∴函数y =-cx -a 的图象经过第一、二、四象限.故选B .【点睛】本题主要考查了一次函数图象与系数的关系,先确定出a 、c 的正负情况是解题的关键,也是本题的难点.二、填空题11.已知(x+y+2)24x y +--=0,则x y 的值是____. 【答案】13-.【分析】利用平方和算术平方根的意义确定(x+y+2)2⩾040x y --,从而确定x+y+2=0且x−y−4=0,建立二元一次方程组求出x 和y 的值,再代入求值即可.【详解】解:∵(x+y+2)2≥04x y --≥0,且(x+y+2)24x y +--=0, ∴(x+y+2)2=0,4x y --=0,即2040x y x y ++=⎧⎨--=⎩①② 解得:13x y =⎧⎨=-⎩则13x y =-. 故答案为:13-.【点睛】本题重点考查偶次方和算术平方根的非负性,是一种典型的“0+0=0”的模式题型,需重点掌握;另外此题结合了二元一次方程组的运算,需熟练掌握“加减消元法”和“代入消元法”这两个基本的运算方法. 12.阅读材料后解决问题,小明遇到下面一个问题:计算()()()()24821212121++++.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用方差公式解决问题,具体解法如下:()()()()24821212121++++()()()()()2482121212121=-++++()()()()224821212121=-+++()()()448212121=-++()()882121=-+()()882121=-+1621=-请你根据小明解决问题的方法,试着解决以下的问题:()()()()24851515151++++=__________. 【答案】()161514⨯- 【分析】原式变形后,利用平方差公式计算即可求出值. 【详解】解:根据题意得:()()()()()248151515151514⨯-++++ ()()()()22481515151514=⨯-+++ ()()()44815151514=⨯-++ ()()88151514=⨯-+ ()161514=⨯-, 故答案为:()161514⨯- 【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.13=______.【答案】【分析】按照二次根式的性质化简二次根式即可.3=23.故答案为:【点睛】本题考查了二次根式的化简,熟悉相关性质是解题的关键.14.因式分解:a3-a=______.【答案】a(a-1)(a + 1)【解析】分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:a3-a,=a(a2-1),=a(a+1)(a-1).15.已知一个三角形的三条边长为2、7、x,则x的取值范围是_______.【答案】5<x<9【解析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和得:7−2<x<7+2,即5<x<9.16.已知15a ba-=,则aa b=+_______________.【答案】59【分析】依据比例的性质,即可得到a=54b,再代入分式化简计算即可.【详解】解:∵15a ba-=,∴a=5a-5b,∴a=54b,∴554594baa b b b==++,故答案为:59.【点睛】本题主要考查了比例的性质,解题时注意:内项之积等于外项之积.17.如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为_______厘米/秒时,能够在某一时刻使△BPD与△CQP全等.【答案】4或6【分析】求出BD,根据全等得出要使△BPD与△CQP全等,必须BD=CP或BP=CP,得出方程12=16-4x或4x=16-4x,求出方程的解即可.【详解】设经过x秒后,使△BPD与△CQP全等,∵AB=AC=24厘米,点D为AB的中点,∴BD=12厘米,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即12=16-4x或4x=16-4x,x=1,x=2,x=1时,BP=CQ=4,4÷1=4;x=2时,BD=CQ=12,12÷2=6;即点Q的运动速度是4或6,故答案为:4或6【点睛】本题考查了全等三角形的判定的应用,关键是能根据题意得出方程.三、解答题18.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(3,3),B(﹣3,﹣3),C(1,﹣3).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是,点B的对应点B1的坐标是,点C的对应点C1的坐标是;(3)请直接写出第四象限内以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标___________.【答案】(1)见解析;(2)(-3,3),(3,-3),(-1,-3);(3)(3,-1)【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平面直角坐标系写出各点的坐标即可;(3)根据以AB为公共边且与△ABC全等的三角形的第三个顶点的位置,写出其坐标即可.【详解】(1)如图所示,△A1B1C1即为所求;(2)A 1(-3,3),B 1(3,-3),C 1(-1,-3),故答案为:(-3,3),(3,-3),(-1,-3);(3)如图,△ABC ≅△BAC ',且点C '在第四象限内,∴C '(3,-1);故答案为:(3,-1).【点睛】本题主要考查了运用轴对称变换进行作图、坐标确定位置的运用以及全等三角形的性质,熟练掌握网格结构并准确找出对应点的位置是解题的关键.19.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为a 的大正方形,两块是边长都为b 的小正方形,五块是长为a ,宽为b 的全等小矩形,且a b >.(1)观察图形,将多项式22252a ab b ++分解因式;(2)若每块小矩形的面积为10,四个正方形的面积和为58.求下列代数式的值:①+a b .②22a b ab +.【答案】(1)()()2225222a ab b a b a b ++=++;(2)①7,②1. 【分析】(1)整个图形的面积一方面可以表示为两个大正方形的面积+两个小正方形面积+五个小矩形的面积,另一方面又可表示为边长分别为2a+b 与a+2b 的矩形的面积,据此解答即可;(2)①根据题意可得:10ab =,222258a b +=,然后根据完全平方公式即可求出结果;②先将所求式子分解因式,然后把由①得到的关系式整体代入计算即可.【详解】解:(1)观察图形可知:()()2225222a ab b a b a b ++=++; (2)根据题意,得:10ab =,222258a b +=,∴22a b 29+=.①∵()22222921049a b a ab b +=++=+⨯=,又∵0a b +>,∴7a b +=;②()2210770ab a a b ab b ==⨯=++. 【点睛】本题考查了因式分解在几何图形中的应用,属于常见题型,利用图形面积不同的表示方法是解(1)题的关键,熟练掌握完全平方公式和分解因式的方法是解(2)题的关键.20.如图,在Rt ABC ∆中,AB AC =,90BAC ∠=︒,D 是BC 中点,AE BF =.求证:(1)DE DF =;(2)DEF ∆是等腰直角三角形.【答案】(1)见解析;(2)见解析【分析】(1)连接AD ,证明△BFD ≌△AED 即可得出DE=DF ;(2)根据三线合一性质可知AD ⊥BC ,由△BFD ≌△AED 可知∠BDF=∠ADE ,根据等量代换可知∠EDF=90°,可证△DEF 为等腰直角三角形.【详解】证明:(1)如图,连接AD ,∵Rt △ABC 中,∠BAC=90°,AB=AC ,∴∠B=∠C=45°,∵AB=AC ,D 是BC 中点,∴∠DAE=∠BAD=45°∴∠BAD=∠B=45°∴AD=BD ,∠ADB=90°,在△DAE 和△DBF 中,45AE BF DAE B AD BD =⎧⎪∠=∠=︒⎨⎪=⎩,∴△DAE ≌△DBF (SAS ),∴DE=DF ;(2)∵△DAE ≌△DBF∴∠ADE=∠BDF ,DE=DF ,∵∠BDF+∠ADF=∠ADB=90°,∴∠ADE+∠ADF=90°.∴△DEF 为等腰直角三角形.【点睛】本题主要考查了全等三角形的判定与性质和等腰三角形的判定,考查了学生综合运用数学知识的能力,连接AD ,构造全等三角形是解决问题的关键.21.已知,在 ABC ∆中,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为,D E .(1)如图1,求证:DE AD BE =+;(2)如图2,点O 为AB 的中点,连接,OD OE .请判断ODE ∆的形状?并说明理由.【答案】(1)见解析;(2)ODE ∆是等腰直角三角形,理由见解析.【分析】(1)根据余角的性质可得∠DAC=∠BCE ,进而可根据AAS 证明△ADC ≌△CEB ,可得DC=BE ,AD=CE ,进一步即可得出结论;(2)延长EB 、DO 交于点F ,如图3,易得AD ∥EF ,然后根据平行线的性质和AAS 可证△ADO ≌△BFO ,可得AD=BF ,DO=FO ,进而可得ED=EF ,于是△DEF 为等腰直角三角形,而点O 是斜边DF 的中点,于是根据等腰直角三角形的性质和判定可得结论.【详解】解:(1)证明:如图1,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥DE,BE⊥DE,∴∠D=∠E=90°,∠ACD+∠DAC=90°,∴∠DAC=∠BCE,∵AC=BC,∴△ADC≌△CEB(AAS),∴DC=BE,AD=CE,∴DE=DC+CE=AD+BE;是等腰直角三角形.(2)ODE理由:延长EB、DO交于点F,如图3,∵AD⊥DE,BE⊥DE,∴AD∥EF,∴∠ADO=∠F,∠DAO=∠FBO,∵点O是AB中点,∴AO=BO,∴△ADO≌△BFO(AAS),∴AD=BF,DO=FO,∴EF=EB+BF=EB+AD,∴ED=EF,∴EO⊥DF,即∠EOD=90°,∵∠DEF=90°,∴∠EDO=45°=∠DEO,∴OD=OE,∴△DOE是等腰直角三角形.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的判定和性质以及等腰三角形的性质等知识,利用中点构造全等三角形、熟练掌握全等三角形的判定和性质是解题的关键.22.如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC ;(2)若CD=1,求AF 的长.【答案】(1)详见解析;(2)2.【分析】(1)根据题意易得AD=BD ,∠BFD=∠ACD ,进而得到△BDF ≌△ACD ,问题得证;(2)连接CF ,由(1)易得DF=DC ,然后利用垂直平分线的性质定理可求解.【详解】解:(1)AD ⊥BD ,∠BAD=45°,∴AD=BD ,∵∠BFD=∠AFE ,∠AFE+∠CAD=90°,∠CAD+∠ACD=90°,∴∠BFD=∠ACD ,在△BDF 和△ACD 中,BFD ACD BDF ADC BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF ≌△ACD (AAS ),∴BF=AC ;(2)连接CF ,∵△BDF ≌△ADC ,∴DF=DC ,∴△DFC 是等腰直角三角形∵CD=1,∴2∵AB=BC ,BE ⊥AC ,∴AE=EC ,BE 是AC 的垂直平分线.∴AF=CF ,∴2.【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形及线段的垂直平分线的性质定理,关键是根据题意得到三角形全等,然后得到线段的等量关系.23.如图,在△ABC 中,∠A=90°,BC 的垂直平分线交BC 于E ,交AC 于D ,且AD=DE(1)求证:∠ABD=∠C;(2)求∠C的度数.【答案】(1)证明见解析(2)30°【分析】(1)依据线段垂直平分线的性质可知DB=DC,故此可得到∠C=∠DBC,然后利用角平分线的性质定理的逆定理可得到BD平分∠ABC,故此可证得∠ABD=∠C;(2)依据∠C+∠ABC=90°求解即可.【详解】(1)证明:∵DE⊥BC,∠A=90°即DA⊥AB且AD=DE,∴BD平分∠ABC.∴∠ABD=∠DBC.∵DE垂直平分BC,∴BD=CD.∴∠DBC=∠C.∴∠ABD=∠C.(2)∵∠ABC+∠C=90°,∠ABD=∠CBD=∠C,∴3∠C=90°.∴∠C=30°.【点睛】本题主要考查的是线段垂直平分线和角平分线的性质,熟练掌握相关定理是解题的关键.24.两个工程队共同参与一项筑路工程,若先由甲、乙两队合作30天,剩下的工程再由乙队单独做15天可以完成,共需施工费810万元;若由甲、乙合作完成此项工程共需36天,共需施工费828万元.(1)求乙队单独完成这项工程需多少天?(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过840万元,则乙队最少施工多少天?【答案】(1)乙队单独完成这项工程需90天;(2)甲队每天的施工费为15万元,乙队每天的施工费为8万元;(3)乙队最少施工30天【分析】(1)设乙队单独完成这项工程需x天,根据“甲、乙合作30天的工作量+乙队15天的工作量=1”列分式方程即可;(2)设甲队每天的施工费为a万元,乙队每天的施工费为b万元,根据题意列二元一次方程组即可求出a、b的值;(3)先求出甲的效率,设乙队施工y天,则甲队还需施工119060y⎛⎫-÷⎪⎝⎭天完成任务,然后根据“总费用不超过840万元”列出不等式即可得出结论.【详解】解:(1)设乙队单独完成这项工程需x天由题意可得:11×30+151 36x⨯=解得:x=90经检验:x=90是原方程的解答:乙队单独完成这项工程需90天.(2)设甲队每天的施工费为a万元,乙队每天的施工费为b万元由题意可知:()() 3015810 36828a b ba b⎧++=⎪⎨+=⎪⎩解得:158 ab=⎧⎨=⎩答:甲队每天的施工费为15万元,乙队每天的施工费为8万元.(3)甲的效率为111 369060 -=设乙队施工y天,则甲队还需施工119060y⎛⎫-÷⎪⎝⎭天完成任务根据题意可得15×119060y⎡⎤⎛⎫-÷⎪⎢⎥⎝⎭⎣⎦+8y≤840解得:y≥30答:乙队最少施工30天.【点睛】此题考查的是分式方程的应用、二元一次方程组的应用和不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.25.已知:如图①所示的三角形纸片内部有一点P.任务:借助折纸在纸片上画出过点P与BC边平行的线段FG.阅读操作步骤并填空:小谢按图①~图④所示步骤进行折纸操作完成了画图任务.在小谢的折叠操作过程中,(1)第一步得到图②,方法是:过点P 折叠纸片,使得点B 落在BC 边上,落点记为B ',折痕分别交原AB ,BC 边于点E ,D ,此时∠EDB '即∠EDC =__________°;(2)第二步得到图③,参考第一步中横线上的叙述,第二步的操作指令可叙述为:_____________,并求∠EPF 的度数;(3)第三步展平纸片并画出两次折痕所在的线段ED ,FG 得到图④.完成操作中的说理:请结合以上信息证明FG ∥BC .【答案】(1)90;(2)过点P 折叠纸片,使得点D 落在PE 上,落点记为D ,折痕交原AC 边于点F ;(3)见解析【分析】(1)根据折叠得到'EDB EDB ∠=∠,利用邻补角的性质即可得结论;(2)根据(1)的操作指令即可写出第二步; (3)根据(1)(2)的操作过程即可证明结论.【详解】解:(1)因为:''180,EDB EDB EDB EDB ∠+∠=︒∠=∠所以:90EDC ∠=︒故答案为90︒ .(2)过点P 折叠纸片,使得点D 落在PE 上,落点记为D ,折痕交原AC 边于点F .由折叠过程可知∠D PF '=∠EPF=∠DPF ,∵,,D P D '三点共线,∴∠D PF '+∠DPF=180°,∴∠D PF '=90°,∴∠EPF=90°.(3)完成操作中的说理:∵∠EDC=90°,∠EPF=90°,∴∠EDC=∠EPF ,∴FG ∥BC .【点睛】本题考查了作图-复杂作图、平行线的判定和性质、邻补角的性质,解决本题的关键是理解操作过程.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下面四个图形中,属于轴对称图形的是( )A .B .C .D .【答案】C【分析】由定义可知,如果将一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形是轴对称图形;接下来,根据上述定义对各选项中的图形进行分析,即可做出判断.【详解】根据轴对称图形的定义可知:选项A 、B 、D 所给的图形均不是轴对称图形,只有选项C 的图形是轴对称图形.故选C.【点睛】此题考查轴对称图形的判断,解题关键在于握判断一个图形是否为轴对称图形的方法.2.下列函数中,y 随x 的增大而减小的函数是( )A .21y x =-B .52y x =+C .3y x =-D .53y x =-【答案】D【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】解:A 、∵k=2>0,∴y 随x 的增大而增大,故本选项错误;B 、∵k=5>0,∴y 随x 的增大而增大,故本选项错误;C 、∵k=1>0,∴y 随x 的增大而增大,故本选项错误;D 、∵k=-3<0,∴y 随x 的增大而减小,故本选项正确;故选D .【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小是解答此题的关键.3.端午节期间,某地举行龙舟比赛.甲、乙两支龙舟在比赛时路程y(米)与时间x(分钟)之间的函数图象如图所示.根据图象,下列说法正确的是( )A .1分钟时,乙龙舟队处于领先B .在这次龙舟赛中,甲支龙舟队比乙支龙舟队早0.5分钟到达终点C .乙龙舟队全程的平均速度是225米/分钟D .经过103分钟,乙龙舟队追上了甲龙舟队 【答案】D【解析】A 、B 、C 根据图象解答即可;D 先求乙队加速后,路程y(米)与时间x(分钟)之间的函数关系式,然后求出两条线段的交点坐标即可.【详解】A 、在前2分钟时甲的图象一直在乙的图象上方,所以1分钟时,甲龙舟队处于领先位置,故选项A 错误;B 、在这次龙舟赛中,乙支龙舟队比甲支龙舟队早0.5分钟到达终点,故选项B 错误;C 、乙龙舟队全程的平均速度是105021004.59=,故选项C 错误; D 、设乙队加速后,路程y(米)与时间x(分钟)之间的函数关系式为y kx b =+,根据题意得{2k b 3004.5k b 1050+=+=,解得{k 300b 300==-, 故y 300x 300=-,;设甲队路程y(米)与时间x(分钟)之间的函数关系式为y kx =,根据题意得5k 1050=,解得k 210=,故y 210x =,解方程组y 300x 300y 210x =-⎧=⎨⎩得103700x y ⎧=⎪⎨⎪=⎩, 所以经过103分钟,乙龙舟队追上了甲龙舟队,故选项D 正确. 故选:D .【点睛】考查函数图象问题,解决图象问题时首先要判断准横轴和纵轴表示的意义,然后要读明白图象所表示的实际意义.4.若一个多边形的外角和与它的内角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【答案】B【分析】任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可.【详解】解:设多边形的边数为n.根据题意得:(n-2)×180°=360°,解得:n=1.故选:B.【点睛】本题主要考查的是多边形的内角和和外角和,掌握任意多边形的外角和为360°和多边形的内角和公式是解题的关键.5.已知二元一次方程组28212a ba b+=⎧⎨-=⎩,则a的值是()A.3 B.5 C.7 D.9 【答案】B【分析】直接利用加减消元法解二元一次方程组即可.【详解】解:28212a ba b+=⎧⎨-=⎩①②,①+②得:4a=20,解得:a=1.故选:B.【点睛】本题考查了加减消元法解二元一次方程组.6.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【答案】C【详解】要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.7.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离s(km)与慢车行驶时间t(h)之间的函数图象如图所示,则下列说法中:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km;正确的是( )A.①②B.①③C.①④D.①③④【答案】B【分析】根据函数图象直接得出甲乙两地之间的距离;根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;设慢车速度为3xkm/h,快车速度为4xkm/h,由(3x+4x)×4=560,可得x=20,从而得出快车的速度是80km/h,慢车的速度是60km/h.由题意可得出:快车和慢车相遇地离甲地的距离,当慢车行驶了7小时后,快车已到达甲地,可求出此时两车之间的距离即可.【详解】由题意可得出:甲乙两地之间的距离为560千米,故①正确;由题意可得出:慢车和快车经过4个小时后相遇,出发后两车之间的距离开始增大直到快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,故②错误;∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20∴快车的速度是80km/h,慢车的速度是60km/h.由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,故④错误,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240-3×60=60km,故③正确.故选B.【点睛】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,读懂图,获取正确信息是解题关键.8.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.7 cm、5 cm、10 cm B.4 cm、3 cm、7 cmC.5 cm、10 cm、4 cm D.2 cm、3 cm、1cm【答案】A【分析】根据三角形边的性质即可得出答案.【详解】A :7-5<10<7+5,故选项A 正确;B :4+3=7,故选项B 错误;C :4+5<10,故选项C 错误;D :3-2=1,故选项D 错误;故答案选择A.【点睛】本题主要考查的是三角形边的性质:两边之和大于第三边,两边之差小于第三边.9.对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,若1min ,1⎧⎫⎨⎬-⎩⎭x x 1=,则x 的值为( ).A .1,1-,2B .1-,2C .1-D .2 【答案】D 【分析】结合题意,根据分式、绝对值的性质,分111x =-、1x =两种情况计算,即可得到答案. 【详解】若111x =-,则11x -= ∴2x = ∴2x = ∴{}1min ,min 1,211⎧⎫==⎨⎬-⎩⎭x x ,符合题意; 若1x =,则1x =±当1x =时,11x -无意义 当1x =-时,1111112x ==---- ∴111min ,min ,1122⎧⎫⎧⎫=-=-⎨⎬⎨⎬-⎩⎭⎩⎭x x ,故不合题意 ∴2x =故选:D .【点睛】本题考查了分式、绝对值的知识;解题的关键是熟练掌握分式、绝对值的性质,从而完成求解. 10.小明学了利用勾股定理在数轴上作一个无理数后,于是在数轴上的2个单位长度的位置找一个点D ,然后过点D 作一条垂直于数轴的线段CD ,CD 为3个单位长度,以原点为圆心,OC 的长为半径作弧,交数轴正半轴于一点,则该点位置大致在数轴上( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】B 【解析】利用勾股定理列式求出OC ,再根据无理数的大小判断即可.解答:解:由勾股定理得,222313+=∵9<13<16, 134,∴该点位置大致在数轴上3和4之间.故选B .“点睛”本题考查了勾股定理,估算无理数的大小,熟记定理并求出OC 的长是解题的关键.二、填空题11.某同学在解关于x 的分式方程3622x m x x -+=--去分母时,由于常数6漏乘了公分母,最后解得1x =-.1x =-是该同学去分母后得到的整式方程__________的解,据此可求得m =__________,原分式方程的解为__________.【答案】x-3+6=m ; 2; 17x 7= 【分析】根据题意,常数6没有乘以(x-2),即可得到答案;把1x =-代入方程,即可求出m 的值;把m 的值代入,重新计算原分式方程,即可得到原分式方程的解.【详解】解:根据题意,由于常数6漏乘了公分母,则3(2)6(2)22x m x x x x -⨯-+=⨯--- ∴36x m -+=;把1x =-代入36x m -+=,得:136m --+=,解得:2m =; ∴32622x x x -+=--, ∴36(2)2x x -+-=,∴717x =, ∴17x 7=. 经检验,17x 7=是原分式方程的解.故答案为:36x m -+=;2;17x 7=. 【点睛】 本题考查了解分式方程,解题的关键是熟练掌握解分式方程的方法和步骤.注意不要漏乘公分母,解分式方程需要检验.12.计算11x x x+-的结果为__________. 【答案】1【分析】根据分式的加减法法则计算即可得答案.【详解】11x x x +- =11x x+- =1.故答案为:1【点睛】本题考查分式的加减,同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母分式,再加减;熟练掌握运算法则是解题关键.13.一个多边形的内角和是它的外角和的5倍,则这个多边形的边数为____________.【答案】1【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】设这个多边形是n 边形,根据题意得,(n-2)•180°=5×360°,解得n=1.故答案为1.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.14.如图,=30∠︒AOB ,点P 在AOB ∠的内部,点C ,D 分别是点P 关于OA 、OB 的对称点,连接CD 交OA 、OB 分别于点E 、F ;若PEF 的周长的为10,则线段=OP _____.【答案】1【分析】连接OD ,OC ,根据对称得出DOC ∆是等边三角形,进而得出答案.。

2020学年八年级数学上学期期末复习检测试卷4

2020学年八年级数学上学期期末复习检测试卷4
20.(8分)计算下列各小题.
(1)a(1-a)+(a+1)(a-1)-1; (2) ·(1+ ).
21.(8分)解下列分式方程:
(1) - =1; (2) -1= .
22.(10分)(1)已知x= ,y= ,求(2x+3y)2-(2x-3y)2的值;
(2)先化简,再求值:( - )÷ ,请在2,-2,0,3当中选一个合适的数作为m的值,代入求值.
八年级数学上学期期末复习检测试卷
(时间:120分钟 满分:120分)
一、选择题(本大题共16小题,共42分.1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)
1.下列每组数分别是三根小木棒的长度,它们首尾相接,能摆成三角形的是()
A.3 cm,4 cm,8 cm B.8 cm,7 cm,15 cm
A.40°B.30°C.20°D.10°
13.如图,在△OBC中,延长BO到点D,延长CO到点A,要证明OD=OA,则应添加条件中错误的是()
A.△ABC≌△DCBB.OB=OC,∠A=∠D
C.OB=OC,AB=DCD.∠A=∠D,∠ABC=∠DCB
14.将正五边形ABCDE与正六边形AGHDMN按照如图所示的位置摆放,则∠EAN的度数为()
(2)先化简,再求值:( - )÷ ,请在2,-2,0,3当中选一个合适的数作为m的值,代入求值.
解:(1)原式=(4x2+12xy+9y2)-(4x2-12xy+9y2)=4x2+12xy+9y2-4x2+12xy-9y2=24xy,当x= ,y= 时,原式=24× × = .(2)原式= · = .又∵m取±2,0原式无意义.∴m只能取3.∴当m=3时,原式=3.
23.(9分)如图,在△ABC中,点A的坐标为(-4,3),点B的坐标为(-3,1),BC=2,BC∥x轴.

2020-2021学年新人教版八年级(上)期末数学检测卷3

2020-2021学年新人教版八年级(上)期末数学检测卷3

2020-2021学年新人教版八年级(上)期末数学检测卷3一、选择题(每小题3分,共24分)1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.2.(3分)下列各式中计算正确的是()A.x+x3=x4B.(x﹣4)2=x8C.x﹣2•x5=x3D.x8÷x2=x4(x≠0)3.(3分)下列各式中与分式相等的是()A.B.C.D.﹣4.(3分)一个四边形,截一刀后得到新多边形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能5.(3分)(2012•陕西)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()A.1:2 B.2:3 C.1:3 D.1:46.(3分)等腰三角形腰上的高与底边的夹角等于()A.底角B.底角的一半C.顶角D.顶角的一半7.(3分)下列各式是最简分式的是()A.B.C.D.8.(3分)若关于x 的方程=有正数根,则k的取值范围是()A.k<2 B.k≠3 C.﹣3<k<﹣2 D.k<2且k≠﹣3二、填空题(每小题3分,共24分)9.(3分)观察图形规律:(1)图①中一共有_________个三角形,图②中共有_________个三角形,图③中共有_________个三角形.(2)由以上规律进行猜想,第n个图形共有_________个三角形.10.(3分)计算:(﹣)﹣2÷(﹣2)2=_________.11.(3分)若(2x+3)0=1,则x满足条件_________.12.(3分)a2+b2=5,ab=2,则a﹣b=_________.13.(3分)如图,在△ABC中,AB=AC,D,E分别是AC,AB上的点,且BC=BD,AD=DE=EB,则∠A=_________度.14.(3分)若分式=0,则x=_________.15.(3分)在公式E=+Ir中,所有字母都不等于零,则用E、n、R、r表示I为_________.16.(3分)如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为_________.三、解答题(其中17、18题各9分,19,21,22,24,26题各l0分,20-N12分,23题8分,25题14分,共102分)17.(9分)先化简,再求值:(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b),其中a=2,b=1.18.(9分)(1)计算:1﹣÷.(2)解方程:+=﹣1.19.(10分)如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(2,3),点C的坐标是(0,3).(1)作出四边形OABC关于y轴对称的图形,并标出点B对应点的坐标.(2)在y轴上找一点P,使PA+PB的值最小,并求出点P的坐标.(要求不写作法,保留作图痕迹)20.(12分)如图,将Rt△ABC的直角顶点C置于直线l上,AC=BC,过A、B两点分别作直线l的垂线,垂足分别是点D、E.若BE=3,DE=5,求AD的长.21.(10分)甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.(1)甲、乙所购饲料的平均单价各是多少?(2)谁的购货方式更合算?22.(10分)如图,在△ABC中,AB=AC,∠BAC=45°,AD和CE是△ABC的高,且AD和CE相交于点H,求证:AH=2BD.23.(8分)甲、乙两工程队分别承担一条2千米公路的维修工作,甲队有一半时间每天维修公路x千米,另一半时间每天维修公路y千米.乙队维修前1千米公路每天维修x千米;维修后1千米公路时,每天维修y千米(x≠y).(1)求甲、乙两队完成任务需要的时间(用含x、y的代数式表示);(2)问甲、乙两队哪队先完成任务?24.(10分)已知将边长分别为a和2b(a>b)的长方形分割成四个全等的直角三角形,如图1,再用这四个三角形拼成如图2所示的正方形,中间形成一个正方形的空洞.经测量得长方形的面积为24,正方形的边长为5.试通过你获取的信息,求a2+b2和a2﹣b2的值.25.(14分)数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE_________DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE_________DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).26.(10分)如图1,在△ABC中,AB=AC,D是AC延长线上一点,点E在射线DB上,且有∠BAC=∠CED=α,连接EA.求证:EA平分∠BEC.(说明:如果反复探索没有解题思路,可以从下列条件中选取一个加以解决:①如图2,α=60°;②如图3,α=90°.)2020-2021学年新人教版八年级(上)期末数学检测卷3参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)下列各式中计算正确的是()A.x+x3=x4B.(x﹣4)2=x8C.x﹣2•x5=x3D.x8÷x2=x4(x≠0)考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;同底数幂的除法;负整数指数幂.分析:根据同底数幂的乘除法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解即可.解答:解:A、不是同类项,不能合并,故本选项错误;B、(x﹣4)2=x﹣8,故本选项错误;C、x﹣2•x5=x3,故本选项正确;D、x8÷x2=x6(x≠0),故本选项错误;故选C.点评:本题考查了同底数幂的除法,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.3.(3分)下列各式中与分式相等的是()A.B.C.D.﹣考点:分式的基本性质.专题:计算题.分析:根据分式的基本性质对选项进行判断即可得出答案.解答:解:根据分式的基本性质只有C符合要求.故选C.点评:本题主要考查了分式的基本性质,比较简单.4.(3分)一个四边形,截一刀后得到新多边形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能考点:多边形内角与外角.分析:根据一个四边形截一刀后得到的多边形的边数即可得出结果.解答:解:∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和可能减少180°,可能不变,可能增加180°.故选D.点评:本题考查了多边形,能够得出一个四边形截一刀后得到的图形有三种情形,是解决本题的关键.5.(3分)(2012•陕西)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()A.1:2 B.2:3 C.1:3 D.1:4考点:相似三角形的判定与性质;三角形中位线定理.分析:在△ABC中,AD、BE是两条中线,可得DE是△ABC的中位线,即可证得△EDC∽△ABC,然后由相似三角形的面积比等于相似比的平方,即可求得答案.解答:解:∵△ABC中,AD、BE是两条中线,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∴△EDC∽△ABC,∴S△EDC:S△ABC=()2=.故选D.点评:此题考查了相似三角形的判定与性质与三角形中位线的性质.此题比较简单,注意中位线的性质的应用,注意掌握相似三角形的面积的比等于相似比的平方定理的应用是解此题的关键.6.(3分)等腰三角形腰上的高与底边的夹角等于()A.底角B.底角的一半C.顶角D.顶角的一半考点:等腰三角形的性质.分析:先根据三角形内角和定理求出底角的度数,再利用直角三角形两锐角互余即可求出.解答:解:设等腰三角形的顶角为α,根据题意得底角=(180°﹣α)=90°﹣α,∴夹角为90°﹣(90°﹣α)=α.即等腰三角形腰上的高与底边的夹角等于顶角的一半.故选D.点评:本题考查了等腰三角形的性质及三角形内角和定理和直角三角形的两锐角互余;本题的结论可以记住,分析别的问题时可直接应用.7.(3分)下列各式是最简分式的是()A.B.C.D.考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:A、=;B、分子、分母都不能再分解,且不能约分,是最简分式;C、=﹣;D、=;故选B.点评:本题考查了最简分式的定义及求法,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.8.(3分)若关于x的方程=有正数根,则k的取值范围是()A.k<2 B.k≠3 C.﹣3<k<﹣2 D.k<2且k≠﹣3考点:分式方程的解.专题:计算题.分析:分式方程去分母转化为整式方程,表示出x,根据方程有正数根列出关于k的不等式,求出不等式的解集即可得到k的范围.解答:解:去分母得:2x+6=3x+3k,解得:x=6﹣3k,根据题意得:6﹣3k>0,且6﹣3k≠﹣3,解得:k<2且k≠3.故选A.点评:此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.二、填空题(每小题3分,共24分)9.(3分)观察图形规律:(1)图①中一共有3个三角形,图②中共有6个三角形,图③中共有10个三角形.(2)由以上规律进行猜想,第n个图形共有个三角形.考点:三角形.专题:规律型.分析:(1)根据图形直接数出三角形个数即可;(2)根据(1)中所求得出数字变化规律,进而求出即可.解答:解:(1)如图所示:图①中一共有3个三角形,图②中共有6个三角形,图③中共有10个三角形.故答案为:3,6,10;(2)∵1+2=3,1+2+3=6,1+2+3+4=10,∴第n个图形共有:1+2+3+…+(n+1)=.故答案为:.点评:此题主要考查了数字变化规律,根据已知得出数字是连续整数的和是解题关键.10.(3分)计算:(﹣)﹣2÷(﹣2)2=1.考点:负整数指数幂.分析:根据负整数指数幂的运算法则进行计算即可.解答:解:原式=4÷4=1.故答案为:1.点评:本题考查的是负整数指数幂,熟知负整数指数幂等于该数正整数指数幂的倒数是解答此题的关键.11.(3分)若(2x+3)0=1,则x满足条件x≠﹣.考点:零指数幂.分析:根据0指数幂的运算法则进行计算即可.解答:解:∵(2x+3)0=1,∴2x+3≠0,即x≠﹣.故答案为:x≠﹣.点评:本题考查的是0指数幂,即非0数的0次幂等于1.12.(3分)a2+b2=5,ab=2,则a﹣b=±1.考点:完全平方公式.专题:计算题.分析:将所求式子平方,利用完全平方公式展开,将各自的值代入计算,开方即可求出a﹣b的值.解答:解:∵a2+b2=5,ab=2,∴(a﹣b)2=a2+b2﹣2ab=5﹣4=1,则a﹣b=±1.故答案为:±1.点评:此题考查了完全平方公式,熟练掌握公式是解本题的关键.13.(3分)如图,在△ABC中,AB=AC,D,E分别是AC,AB上的点,且BC=BD,AD=DE=EB,则∠A=45度.考点:等腰三角形的性质;三角形内角和定理.分析:根据已知条件结合图形,列出相关角的关系,然后利用三角形的内角和求解.解答:解:∵AB=AC,BC=BD,∴∠C=∠ABC=∠BDC,∵AD=DE=EB,∴∠EBD=∠EDB,∠A=∠AED,又∠EBD+∠EDB=∠AED,即2∠EDB=∠A,又∠A+∠AED=∠EDB+∠BDC,即2∠A=∠EDB+∠BDC,由⇒∠A=⇒∠A=∠C,又由三角形内角和定理得:∠A+∠ABC+∠C=180°,即4∠A=180°,∴∠A=45°.故答案为:45.点评:本题考查了等腰三角形的性质,及三角形内角和定理;此题需灵活运用等腰三角形的性质,通过寻找相关角之间的关系求解是正确解答本题的关键.14.(3分)若分式=0,则x=﹣3.考点:分式的值为零的条件;解一元二次方程-因式分解法.分析:分式的值为零时,分子等于零,且分母不等于零.解答:解:由题意,得x2﹣9=0,且x2﹣x﹣6≠0,即(x+3)(x﹣3)=0,(x+2)(x﹣3)≠0所以x+3=0,解得,x=﹣3.故答案是:﹣3.点评:本题考查了分式的值为零的条件以及解一元二次方程﹣因式分解法.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.(3分)在公式E=+Ir中,所有字母都不等于零,则用E、n、R、r表示I为.考点:分式的加减法.专题:计算题.分析:将I看着未知数,其他字母为常数,求出I即可.解答:解:E=+Ir,去分母得:nE=IR+nIr,解得:I=.故答案为:.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.16.(3分)如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为(1,﹣1),(5,3)或(5,﹣1).考点:全等三角形的性质;坐标与图形性质.分析:根据题意画出符合条件的图形,根据图形结合A、B、C的坐标即可得出答案.解答:解:如图所示,共有3个符合条件的点,∵△ABD与△ABC全等,∴AB=AB,BC=AD或AC=AD,∵A(2,1)、B(4,1)、C(1,3).∴D1的坐标是(1,﹣1),D2的坐标是(5,3),D3的坐标是(5,﹣1),故答案为:(1,﹣1),(5,3)或(5,﹣1).点评:本题考查了全等三角形的判定和坐标与图形性质,注意要进行分类讨论,能求出符合条件的所有情况是解此题的关键.三、解答题(其中17、18题各9分,19,21,22,24,26题各l0分,20-N12分,23题8分,25题14分,共102分)17.(9分)先化简,再求值:(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b),其中a=2,b=1.考点:整式的混合运算—化简求值;平方差公式.专题:计算题.分析:先去括号,再合并,最后把a、b的值代入计算即可.解答:解:原式=b2﹣2ab+4a2﹣b2=2a(2a﹣b),当a=2,b=1时,原式=2×2×(2×2﹣1)=12.点评:本题考查了整式的化简求值,解题的关键是掌握多项式除以单项式的法则、去括号、合并同类项.18.(9分)(1)计算:1﹣÷.(2)解方程:+=﹣1.考点:解分式方程;分式的混合运算.专题:计算题.分析:(1)原式利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后通分并利用同分母分式的减法法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=1﹣•=1﹣=﹣;(2)去分母得:4﹣(x+2)(x+1)=1﹣x2,整理得:3x=1,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,以及分式的混合运算,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(10分)如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(2,3),点C的坐标是(0,3).(1)作出四边形OABC关于y轴对称的图形,并标出点B对应点的坐标.(2)在y轴上找一点P,使PA+PB的值最小,并求出点P的坐标.(要求不写作法,保留作图痕迹)考点:作图-轴对称变换;轴对称-最短路线问题.专题:作图题.分析:(1)延长BC至B′,使B′C=BC,在x轴负半轴上截取OA′,使OA′=OA,然后顺次连接A′B′CO即可,再根据关于y轴对称的点的横坐标互为相反数,纵坐标相等写出点B的对应点的坐标;(2)根据轴对称确定最短路线问题,连接AB′与y轴的交点即为点P.解答:解:(1)四边形OABC关于y轴对称的图形如图所示;点B的对应点的坐标为(﹣2,3);(2)使PA+PB的值最小的点P如图所示.点评:本题考查了利用轴对称变换作图,轴对称确定最短路线问题,熟练掌握轴对称的性质找出对应点的位置是解题的关键.20.(12分)如图,将Rt△ABC的直角顶点C置于直线l上,AC=BC,过A、B两点分别作直线l的垂线,垂足分别是点D、E.若BE=3,DE=5,求AD的长.考点:全等三角形的判定与性质.专题:计算题.分析:由AD⊥CE,BE⊥CE得到∠ADC=∠CEB=90°,根据等角的余角相等得到∠CAD=∠BCE,则根据“AAS”可判断△ACD≌△CBE,所以CD=BE=3,AD=CE=CD+DE=3+5=8.解答:解:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∴∠ACD+∠CAD=90°,∵∠ACB=90°,即∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=3,AD=CE,∵CE=CD+DE=3+5=8,∴AD=8.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.21.(10分)甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.(1)甲、乙所购饲料的平均单价各是多少?(2)谁的购货方式更合算?考点:分式的混合运算.专题:应用题.分析:这是一道分式应用题,不但要进行分式的运算,更重要的是要根据题中的文字列是分式,由题中可设两次购买的饲料单价分别为m元/千克和n元/千克(m,n是正数,且m≠n),然后依题列式即可.解答:解:(1)设两次购买的饲料单价分别为m元/千克和n元/千克(m,n是正数,且m≠n),甲两次购买饲料的平均单价为=(元/千克),乙两次购买饲料的平均单价为=(元/千克).(2)甲、乙两种饲料的平均单价的差是:﹣=﹣==,由于m、n是正数,因为m≠n时,也是正数,即﹣>0,因此乙的购货方式更合算.点评:这是一道分式在实际生活中的运用,所以学生平时一定要联系生活学习,不可死学.22.(10分)如图,在△ABC中,AB=AC,∠BAC=45°,AD和CE是△ABC的高,且AD和CE相交于点H,求证:AH=2BD.考点:全等三角形的判定与性质.专题:证明题.分析:由在△ABC中,AB=AC,∠BAC=45°,可得AE=CE,∠EAH=∠ECB,继而证得△AEH≌△CEB,然后由全等三角形的性质,证得结论.解答:证明:在△ABC中,∵∠BAC=45°,CE⊥AB,∴AE=CE,∠EAH=∠ECB,在△AEH和△CEB中,,∴△AEH≌△CEB(ASA),∴AH=BC,∵BC=2BD,∴AH=2BD.点评:此题考查了全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.23.(8分)甲、乙两工程队分别承担一条2千米公路的维修工作,甲队有一半时间每天维修公路x千米,另一半时间每天维修公路y千米.乙队维修前1千米公路每天维修x千米;维修后1千米公路时,每天维修y千米(x≠y).(1)求甲、乙两队完成任务需要的时间(用含x、y的代数式表示);(2)问甲、乙两队哪队先完成任务?考点:一元一次不等式的应用;列代数式.专题:应用题.分析:(1)甲队完成任务需要的时间=工作总量2÷工作效率;乙队完成任务需要的时间=前一千米所用的时间+后一千米所用的时间.(2)让甲队所用时间﹣减去乙队所用时间看是正数还是负数即可.解答:解:(1)甲队完成任务需要的时间为=,乙队完成任务需要的时间为=,所以甲、乙两队完成任务需要的时间分别为天,天.(2)=∵x≠y,x>0,y>0,∴(x﹣y)2>0,xy(x+y)>0∴﹣(x﹣y)2<0,∴,即t1﹣t2<0,∴t1<t2∴甲队先完成任务.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.比较两个代数式,通常让这两个代数式相减看是正数还是负数.24.(10分)已知将边长分别为a和2b(a>b)的长方形分割成四个全等的直角三角形,如图1,再用这四个三角形拼成如图2所示的正方形,中间形成一个正方形的空洞.经测量得长方形的面积为24,正方形的边长为5.试通过你获取的信息,求a2+b2和a2﹣b2的值.考点:勾股定理.分析:根据勾股定理,长方形的面积为24,正方形的面积计算方法,列出关于a、b方程组,然后求解.解答:解:根据题意得a2+b2=52=25,a•2b=24,∴a2+b2+2ab49,∴a+b=7,∵a>b,∴a=4,b=3,∴a2+b2=25,a2﹣b2=7.点评:本题考查正方形、直角三角形的性质及分析问题的推理能力和运算能力.解答该题的关键是根据图示找出大正方形、四个直角三角形、小正方形间的数量关系.25.(14分)数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE=DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).考点:等边三角形的判定与性质;三角形的外角性质;全等三角形的判定与性质;等腰三角形的性质.专题:计算题;压轴题.分析:(1)根据等边三角形性质和等腰三角形的性质求出∠D=∠ECB=30°,求出∠DEB=30°,求出BD=BE即可;(2)过E作EF∥BC交AC于F,求出等边三角形AEF,证△DEB和△ECF全等,求出BD=EF即可;(3)当D在CB的延长线上,E在AB的延长线式时,由(2)求出CD=3,当E在BA的延长线上,D在BC的延长线上时,求出CD=1.解答:解:(1)故答案为:=.(2)过E作EF∥BC交AC于F,∵等边三角形ABC,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF,∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,∵DE=EC,∴∠D=∠ECD,∴∠BED=∠ECF,在△DEB和△ECF中,∴△DEB≌△ECF,∴BD=EF=AE,即AE=BD,故答案为:=.(3)解:CD=1或3,理由是:分为两种情况:①如图1过A作AM⊥BC于M,过E作EN⊥BC于N,则AM∥EN,∵△ABC是等边三角形,∴AB=BC=AC=1,∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,∵AM∥EN,∴△AMB∽△ENB,∴=,∴=,∴BN=,∴CN=1+=,∴CD=2CN=3;②如图2,作AM⊥BC于M,过E作EN⊥BC于N,则AM∥EN,∵△ABC是等边三角形,∴AB=BC=AC=1,∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,∵AM∥EN,∴=,∴=,∴MN=1,∴CN=1﹣=,∴CD=2CN=1,即CD=3或1.点评:本题综合考查了等边三角形的性质和判定,等腰三角形的性质,全等三角形的性质和判定,三角形的外角性质等知识点的应用,解(2)小题的关键是构造全等的三角形后求出BD=EF,解(3)小题的关键是确定出有几种情况,求出每种情况的CD值,注意,不要漏解啊.26.(10分)如图1,在△ABC中,AB=AC,D是AC延长线上一点,点E在射线DB上,且有∠BAC=∠CED=α,连接EA.求证:EA平分∠BEC.(说明:如果反复探索没有解题思路,可以从下列条件中选取一个加以解决:①如图2,α=60°;②如图3,α=90°.)考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:作AM⊥BD于M,AN⊥CE于N,根据三角形内角和定义可得到∠ABD=∠DCE,在根据等角的补角相等得∠ABM=∠ACN,则可根据“AAS”可判断△ABM≌△ACN,所以AM=AN,然后根据角平分线的判定定理即可得到结论.解答:证明:作AM⊥BD于M,AN⊥CE于N,如图,∵α+∠BAD+∠D=180°,α+∠DCE+∠D=180°,∴∠ABD=∠DCE,∴∠ABM=∠ACN,∵∠AMB=∠ANC=90°,在△ABM和△ACN中,,∴△ABM≌△ACN(AAS),∴AM=AN,∴EA平分∠BEC.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了角平分线的判定定理.感谢您的使用。

2020-2021学年最新人教版八年级上学期期末考试数学试题3及答案-精品试题

2020-2021学年最新人教版八年级上学期期末考试数学试题3及答案-精品试题

初级班姓名考号顺序号密封线内不能答题数学上学期期末考试数 学 试 题(全卷共五个大题,满分150分,考试时间120分钟) 亲爱的同学:当你走进考场,你就是这里的主人。

只要心境平静,细心、认真地阅读、思考,你就会感到成功离你并不远。

一切都在你掌握之中,请相信自己! 一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了 代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将各小题所选答案的代号填入题后的表格内. 1.下列实数中是无理数的是 A.3 B.0 C.-1 D.9 2.下面四个图形中,不是中心对称图形的是 A . B . C . D . 3.在平面直角坐标系中,点A (2,-1)在 A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中,是假命题的是 A.对顶角相等 B .同旁内角互补 C .两点确定一条直线 D .角平分线上的点到这个角的两边的距离相等 5.函数1-=x y 自变量x 的取值范围为 A.1>x B.1≥x C.1<x D.1≤x 6.甲、乙、丙、丁四人参加训练,方差如下表,则这四人中发挥最稳定的是 选手 甲 乙 丙 丁 方差(秒2) 0.020 0.019 0.021 0.022 7.二元一次方程32=+y x 的解的个数是A .1个B .2个C .3个D .无数个12题图 8.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为A .8或10B .8C .10D .6或129.直线b ax y +=经过第一、二、四象限,则直线a bx y -=的图象只能是图中的A .B .C .D .10.设30<<k ,关于x 的一次函数)1(3x kx y -+=,当21≤≤x 时的最大值是A.32-kB.1+kC.kD.311.如图,AC 平分∠DAB ,AD=AC=AB,如下四个结论:①AC ⊥BD ;②BC=DE ;③∠DBC=21∠DAC ;④△ABC 是正三角形,正确的结论有 A .1个 B .2个C .3个D .4个 12.如图,在直角坐标系中,已知点0P 的坐标为(1,0),进行如下操作:将线段0OP 按逆时针方向旋转60°,再将其长度伸长为0OP 的2倍,得到线段1OP ;又将线段1OP 按逆时针方向旋转60°,长度伸长为1OP 的2倍,得到线段2OP ,如此重复操作下去,得到线段3OP ,4OP ,…则32P 的坐标为A.(312-,3123⨯)B.(312,3123⨯)C.(322-,3223⨯)D.(322,3223⨯) (请把填空题和选择题的答案填在下面表格内)答案填在上面表格内.13.一组数据2,3,x ,5,7的平均数是4,则这组数据的众数是 .题号1 2 3 4 5 6 7 8 9 10 11 12 答案题号13 14 15 16 17 18 答案 11题图17题图 14.()()203200521681-⎪⎭⎫⎝⎛---++-π= .15.已知点A (-2,3)与A 1关于点P (0,2)成中心对称,A 1的坐标是 .16.如果关于x 、y 的方程组⎩⎨⎧-=-=133x y ax y 无解,那么a = .17.如图,直线343+-=x y 与y 轴、x 轴分别交于点A 、B ,x 轴上有点P ,使得△ABP 为等腰三角形,则P 的坐标为 .18.如图,在△ABC 中,BC=22,∠ABC=45°=2∠ECB ,BD ⊥CD ,则()22BD = .三、解答题:(本大题2个小题,每小题7分,共14分)解答时必须给出必要的演算过程或推理步骤.19.解不等式组:()⎪⎩⎪⎨⎧-≥->+2213322x xx20.已知△ABC 如图所示,A (-4,1),B (-1,1),C (-4,3),在网格中按要求画图:(1)画出△ABC 关于y 轴对称的△111C B A ;(2)画出△ABC 绕点A 顺时针旋转90°后的△22C AB .四、解答题:(本大题4个小题,每题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.一次函数b x y +-=与正比例函数x y 2=图象交于点A (1,n ):(1)求一次函数解析式;(2)将(1)中所求一次函数图象进行平行移动,平移后图象过(2,7),求平移后图象的函数解析式.22.为绿化校园,重庆一中计划购进A 、B 两种树苗,若购买A 树苗10棵,B 树苗20棵,需要2300元,若购买A 树苗20棵,B 树苗10棵,需要2500元:(1)求A 、B 两种树苗单价各是多少?(2)学校计划购买A 、B 两种树苗,共21棵,且购买B 种树苗的数量少于A 种树苗的数量,设购买B 种树苗x 棵,购买两种树苗所需费用为y 元,请给出一种费用最省的方案,并求出该方案所需费用.23.甲车从A 地出发匀速向B 地行驶,同时乙车从B 地出发匀速向A 地行驶,甲车行驶速度比乙车快,甲、乙两车距A 地的路程y (千米)与行驶时间x (小时)之间的关系如图所示,请结合图象回答下初级班姓名考号顺序号 密封线内不能答题数学列问题:(1)甲车速度为 km/h ;乙车速度为 km/h ;(2)请写出乙车行驶过程中,y (千米)与x (小时)的函数关系式,并写出自变量x 的取值范围;(3)在行驶过程中,两车出发多长时间,两车相距160千米?24.如图,△ABC ,△DCE 都为等腰直角三角形,B 、C 、E 三点在同一直线上,BF ∥DE ,DF 交BE 于G ,且G 为BE 的中点: (1)若AB=2,CE=2,求△ACD 的面积; (2)求证:DG=FG ; (3)探索AG 与FD 的位置关系,并说明理由.五、解答题:(本大题2个小题,每题12分,共24分)解答时每小题必须给出必要的演算过程或推密封线内不能答题理步骤.25.如图,直线AB :1+=x y 与直线CD :42+-=x y 交于点E :(1)求E 点坐标;(2)在x 轴上找一点F 使得FB+FE 最小,求OF 的长;(3)若P 为直线CD 上一点,当△AEP 面积为6时,求P 的坐标.,25题图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学第一学期期末复习试卷 一、选择题
1.将(a-4)b+(4-a)c 分解因式,结果是( )
A 、(a-4)(b+c)
B 、(a-4)(b-c)
C 、(a-4)2bc
D 、-(a-4)2bc
2.下列多项式是完全平方式的是( )
A 、x 2-4x-4
B 、-a 2-6a+9
C 、4a 2-10ab+9b 2
D 、x 2+x+41 3.若x 2-x-a=(x-a)(x+1),则a 等于( )
A 、1
B 、-1
C 、2
D 、0
4.如果分式x 211
-的值为正数,那么x 的取值范围是( )
A 、x>0
B 、x<21
C 、x>21
D 、x ≠21
5.若分式2||6
2--+x x x 的值为零,则x 的值是( )
A 、-3
B 、3
C 、-2
D 、-3或2
6.若把分式xy y
x -中的x 和y 都扩大3倍,则分式的值( )
A 、不变
B 、扩大3倍
C 、缩小3倍
D 、缩小9倍
7.下列说法中正确的是( )
A 、只有正数才有平方根
B 、任何实数的平方根都有两个
C 、16的平方根是4
D 、16的平方根是±2
8.一个三角形的三个内角中,至少有( )
A 、三个锐角
B 、两个锐角
C 、一个锐角
D 、一个直角
9.下列说法错误的是( )
A 、一个命题一定有逆命题
B 、假命题的逆命题不一定是假命题
C 、一个定理不一定有逆定理
D 、真命题的逆命题一定是真命题
10.如图1,△ABC 中,AB=AC ,∠A=40°,∠DBA=∠DCB ,则∠BDC 等于( )
A 、110°
B 、120°
C 、130°
D 、100°
11.下列图形中,不一定是轴对称图形的是( )
A 、线段
B 、直角
C 、等腰三角形
D 、直角三角形
12.如图2,在△ABC 中,∠C=90°,两外角平分线AD ,BD 相交于点D ,则∠D 的度数是(

A 、30°
B 、45°
C 、60°
D 、75°
二、填空题
13.分解因式-a+a 3=__________; xy+x-y-1=__________________.
A B
C
D 图1A
B
C
D
图2
14.当x_______时,分式231-+x x 的值为零;当x________时,分式2
31-+x x 无意义。

15.不改变分式的值,使分子、分母的第一项系数都是正数,则
____________2
1________;2=---=--+-a a y x y x 16.在公式S=Vt 中,已知S 、V 且V ≠0,则t=____________;在公式V=V 0+at 中,已知V 、V 0、t 且t ≠0,则a=_______________.
17.已知x 2-3x+1=0,则.________1
_______;1
22=+=+x x x x
18.三角形三条角平分线的交点到__________的距离相等。

三角形三边的垂直平分线的交点到____________________的距离相等。

19.等腰三角形底边长为8cm ,其上的高为4cm ,则底角是______,顶角是_______。

20.如图3,在△ABC 中,D 为AC 中点,DF ∥BC ,DE ∥AB ,
若AF=4cm ,则DE=_____。

21.已知两条线段分别为3cm 、4cm ,那么当第三条线段长为________cm
时,这三条线段可构成直角三角形。

22.已知1+a 与互1-b 为倒数,且ab ≠0,则_______1
1
=-b a 。

三、解答题
23.作图题(尺规作图,不写作法,保留作图痕迹)
(1)已知:线段a,∠α(如图4)
求作:等腰三角形,使一腰长为a ,底角为∠α.
(2)已知:C 、D 分别为∠AOB 两边上的点(如图5)
求作:点P ,使P 到∠AOB 两边的距离相等,且P 到C 、D 两点的距离也相等。

24.计算
(1)b a b
a b a -+-222 (2)25
6
44111072222+++÷++-⋅-++x x x x x x x x x
(3))25
2(423--+÷--m m m m
(4)在x n x
m y -+=中,已知y ≠-1,求x
25.解下列关于x 的方程
(1)62
5--=-x x x x
(2))(,b a b b x
a a x
≠+=+
A
B C
D
E F 图3
a
α
图4B
C
D O
图5
26.列方程解应用题
某工厂长跑队去离厂36千米的A 城集训,服务人员骑自行车先走,半小时后,长跑队出发,结果服务人员比长跑队早到10分钟到达A 城。

已知长跑队的速度是服务人员速度的1.2倍,求长跑队速度。

27.已知:如图,在△ABC 中,AB=AC ,∠BAC=120°,AC 的垂直平分线交BC 于D 、交AC 于E ,且DC=4cm ,求DE 和BC 的长度。

28.求证:等腰三角形底边中点到两腰的距离相等。

29.已知:如图,△ABC 中,∠ACB =90°,BD 是∠ABC 的平分线,DE ⊥AB ,垂足为E ,求证:(1)BC=BE (2)BD 是CE 的垂直平分线。

30.已知:如图,C 是AB 上的一点,△ACD 和△CBE 都是等边三角形,直线AE 、BD 相交于点M ,(1)求证:∠AMD=60°
(2)若△ACD 的位置固定,△CBE 绕C 点逆时针旋转,试判断∠AMD 的大小变化情况。

如果要证明你的结论,至少应画出哪几种图形?请你将这几种图形大致画出来。

A
B C
D E 图6A B C D E 图7A
B
C D
E
M 图8。

相关文档
最新文档