第25讲 奇数、偶数与奇偶分析
奇数偶数ppt课件
奇数。
奇数减奇数等于偶数,如 (2n+1)-(2m+1)=2n-
2m=2(n-m)为偶数;奇数减 偶数等于奇数,如(2n+1)2m=2n-2m+1=2(n-m)+1
为奇数。
奇数乘奇数等于奇数,如 (2n+1)*(2m+1)=4nm+2m +2n+1=2(2nm+m+n)+1为 奇数;奇数乘偶数等于偶数
04
奇偶数的趣味案例
奇偶数在自然界中的表现
总结词
自然界中的奇偶数现象
详细描述
自然界中存在着许多奇偶数现象,如蜂巢的六边形结构、树木的分枝、花瓣的数量等,这些现象都与奇偶数的性 质和规律有关。
奇偶数在艺术创作中的应用
总结词
艺术中的奇偶数之美
详细描述
在艺术创作中,奇偶数也有着广泛的应用。例如,在建筑设计、绘画和雕塑等领域,艺术家们常常利 用奇偶数的规律和美感来营造独特的视觉效果。
奇数与偶数之间存在一些基本的数学 性质,例如奇数加奇数等于偶数,奇 数减奇数也等于偶数等。
探讨奇偶数在各个领域的应用价值
数学领域
奇偶数在数学中有着广泛的应用,如 代数、几何、概率论等。例如,在几 何中,奇数和偶数可以用来描述图形 的对称性。
计算机科学领域
物理学领域
在物理学中,波的振动频率可以用奇 偶数来描述,例如正弦波和余弦波的 振动频率可以用奇偶数来表示。
在计算机科学中,奇偶校验是一种常 用的错误检测方法,用于检测数据传 输过程中的错误。
激发对奇偶数进一步探索的兴趣
01
数字的奇偶认识奇数和偶数
数字的奇偶认识奇数和偶数数字的奇偶认识——奇数和偶数数字是我们生活中不可或缺的一部分,它们无处不在,贯穿我们的日常生活。
在数字的世界里,我们常常会听到奇数和偶数这两个名词。
那么,究竟什么是奇数和偶数呢?为什么我们要对它们进行认识呢?本文将以通俗易懂的方式为大家解析数字的奇偶性质。
一、奇数与偶数的定义奇数是指不能被2整除的整数,它们的末位数字通常是1、3、5、7和9。
例如:1、3、5、7、9等。
偶数则是指能够被2整除的整数,这类数字的末位数字通常是0、2、4、6和8。
例如:0、2、4、6、8等。
二、奇偶数的性质比较1. 奇数与奇数相加、相减,结果是偶数;奇数与偶数相加、相减,结果是奇数。
以奇数2和奇数3为例:2 +3 = 5(奇数)2 -3 = -1(奇数)以奇数5和偶数4为例:5 + 4 = 9(奇数)5 - 4 = 1(奇数)2. 奇数与偶数相乘,结果是偶数;奇数与奇数相乘,结果是奇数。
以奇数3和偶数4为例:3 ×4 = 12(偶数)以奇数3和奇数5为例:3 × 5 = 15(奇数)3. 奇数除以奇数,结果是奇数;奇数除以偶数,结果是奇数。
以奇数7除以奇数3为例:7 ÷ 3 = 2余1(奇数)以奇数7除以偶数2为例:7 ÷ 2 = 3余1(奇数)通过以上比较,我们可以发现奇数和偶数在加减乘除的运算过程中都有自己独特的规律。
这些规律的存在不仅仅是为了让我们认识数字的奇偶性质,更是为了让我们在实际生活中更加灵活地运用数字。
三、数字的奇偶性质在生活中的应用1. 分辨数字序列奇偶性质可以帮助我们快速分辨数字序列的规律性。
当我们遇到一系列数字需要进行排序或分类时,我们可以根据数字的奇偶性质将其快速分组。
例如,在一个数列中,我们可以将所有的奇数放在一个组中,将所有的偶数放在另一个组中,从而更好地理清数字的规律。
2. 计算和衍生问题在数学运算中,奇偶性质也起到了重要的作用。
三年级数学认识数的奇偶性与奇偶关系
三年级数学认识数的奇偶性与奇偶关系数学是一门抽象而又精确的学科,它贯穿于我们的日常生活中。
在数学的世界里,数的奇偶性以及奇偶关系是一个非常基础的概念,对于孩子们来说,认识数的奇偶性与奇偶关系不仅仅是为了学习数学知识,更是培养他们逻辑思维的能力。
本文将从理论角度出发,向您介绍三年级孩子如何认识数的奇偶性与奇偶关系,并通过生动的例子来帮助他们更好地理解。
一、什么是奇数与偶数在我们日常生活中,我们经常会遇到一些被2整除的数,比如2、4、6、8等,我们称这些数为偶数。
而有些数无法被2整除,比如1、3、5、7等,我们称这些数为奇数。
奇数与偶数是最基础的数的分类,通过这种分组,我们可以对数进行初步的约束和归类。
二、奇偶数的特征与规律1. 奇数的特征与规律奇数除以2的商一定是一个整数加上1,这是奇数的一个重要特征。
换句话说,奇数可以用2n+1的形式表示,其中n是任意整数。
例如,3=2×1+1,5=2×2+1,7=2×3+1。
另外,奇数在十进制下的个位数一定是1、3、5、7、9之一。
这是因为奇数只能由偶数加上1得到,而偶数的个位数必定是0、2、4、6、8。
2. 偶数的特征与规律偶数除以2的商一定是一个整数,这是偶数的一个重要特征。
换句话说,偶数可以用2n的形式表示,其中n是任意整数。
例如,2=2×1,4=2×2,6=2×3。
偶数在十进制下的个位数一定是0、2、4、6、8之一。
这是因为偶数可以被2整除,而2的倍数的个位数必定是0、2、4、6、8。
三、奇偶关系奇偶关系即奇数与偶数之间的相互联系。
事实上,每一个整数都可以被划分为奇偶数。
我们来看一个例子:对于任意整数n,如果n是奇数,那么n+1就是偶数;如果n是偶数,那么n+1就是奇数。
这种关系可以通过数的定义和性质进行推导得到。
四、巧用奇偶性与奇偶关系1. 判断整数的奇偶性通过数的奇偶性与奇偶关系,可以很方便地判断一个整数是奇数还是偶数。
奇数偶数的讲解方法
奇数偶数的讲解方法奇数和偶数是数学中的基本概念,我们日常生活中也经常会涉及到奇偶性的问题。
了解奇数和偶数的规律和特点,能够帮助我们更好地理解数学知识和解决实际问题。
本文将从基本概念、性质、判断方法和运算规律等几个方面对奇数和偶数进行讲解。
一、基本概念奇数是指不能被2整除的整数,偶数是指能被2整除的整数。
我们将所有的整数分为两个集合,一个集合包含所有的奇数,另一个集合包含所有的偶数。
例如,1、3、5、7是奇数,2、4、6、8是偶数。
二、性质1. 奇数和奇数相加,结果是偶数;偶数和偶数相加,结果也是偶数。
2. 奇数和偶数相加,结果是奇数。
3. 奇数和奇数相乘,结果是奇数;偶数和偶数相乘,结果是偶数。
4. 奇数和偶数相乘,结果是偶数。
5. 偶数加上1可以得到奇数,奇数减1可以得到偶数。
三、判断方法1. 末位判断法:一个整数,如果它的个位数是0、2、4、6、8中的任意一个,则它是一个偶数;如果它的个位数是1、3、5、7、9中的任意一个,则它是一个奇数。
2. 除2余数法:对一个整数进行除2运算,如果余数为0,则该整数是偶数;如果余数为1,则该整数是奇数。
四、运算规律1. 奇数加(或减)偶数的结果是奇数。
2. 奇数加(或减)奇数的结果是偶数。
3. 偶数加(或减)偶数的结果是偶数。
4. 奇数乘以偶数的结果是偶数。
5. 奇数乘以奇数的结果是奇数。
6. 偶数乘以偶数的结果是偶数。
综上所述,奇数和偶数在数学中具有一定的规律和特点。
通过掌握奇数和偶数的基本概念、性质、判断方法和运算规律,我们能够更加深入地理解数学知识,并能够运用到实际问题中。
在解题过程中,我们可以根据所涉及的问题选择合适的方法和运算规律,提高问题解决的效率和准确性。
希望本文对读者理解奇数和偶数的讲解方法有所帮助,也希望读者能够进一步探索和应用数学知识,提升自己的数学水平和解决实际问题的能力。
让我们一起愉快地学习数学吧!。
偶数和奇数的概念详解
偶数和奇数的概念详解
偶数和奇数是数学中常见的概念,用于描述整数的特性。
当我们考虑整数时,
可以将它们分为两个不重叠的集合:偶数和奇数。
首先,我们来介绍偶数。
偶数是指可以被2整除的整数。
换句话说,当一个整
数能够被2整除时,它就是一个偶数。
例如,4、-12、0都是偶数。
其中,正偶数
和负偶数都属于偶数的范畴。
在数轴上,偶数通常位于格点上。
接下来,我们来了解奇数。
奇数是指不能被2整除的整数。
换句话说,当一个
整数不能被2整除时,它就是一个奇数。
例如,3、-7、11都是奇数。
与偶数一样,奇数也包括正奇数和负奇数。
在数轴上,奇数通常位于格点之间。
偶数和奇数有一些有趣的特性。
首先,任何一个整数都可以被2整除,因此,
任何整数都可以归类为偶数或奇数。
其次,两个偶数相加或相乘的结果仍然是偶数。
同样,两个奇数相加或相乘的结果也是偶数。
然而,奇数和偶数之间的加法和乘法运算的结果均为奇数。
在实际生活中,我们常常会遇到偶数和奇数的概念。
例如,分配座位号时,我
们通常将偶数分配给一个组,奇数分配给另一个组。
此外,在游戏规则中,有时候也会要求根据偶数或奇数来决定行动顺序。
总结一下,偶数和奇数是整数的两个不同的集合。
偶数是可以被2整除的整数,而奇数则是不能被2整除的整数。
它们在数轴上有特定的位置,同时也有一些有趣的特性。
了解偶数和奇数的概念,有助于我们更好地理解和应用数学知识。
奇数偶数与奇偶性分析
奇数偶数与奇偶性分析【奇数和偶数】例1 用l、2、3、4、5这五个数两两相乘,可以得到10个不同的乘积。
问乘积中是偶数多还是奇数多?讲析:如果两个整数的积是奇数,那么这两个整数都必须是奇数。
在这五个数中,只有三个奇数,两两相乘可以得到3个不同的奇数积。
而偶数积共有7个。
所以,乘积中是偶数的多。
例2 有两组数,甲组:1、3、5、7、9……、23;乙组:2、4、6、8、10、……24,从甲组任意选一个数与乙组任意选出一个数相加,能得到______个不同的和。
讲析:甲组有12个奇数,乙组有12个偶数。
甲组中任意一个数与乙组中任意一个数相加的和,必为奇数,其中最大是47,最小是3。
从3到47不同的奇数共有23个。
所以,能得到23个不同的和。
本题中,我们不能认为12个奇数与12个偶数任意搭配相加,会得到12×12=144(个)不同的和。
因为其中有很多是相同的。
【奇偶性分析】例1 某班同学参加学校的数学竞赛。
试题共50道。
评分标准是:答对一道给3分,不答给1分,答错倒扣1分。
请你说明:该班同学得分总和一定是偶数。
讲析:如果50道题都答对,共可得150分,是一个偶数。
每答错一道题,就要相差4分,不管答错多少道题,4的倍数总是偶数。
150减偶数,差仍然是一个偶数。
同理,每不答一道题,就相差2分,不管有多少道题不答,2的倍数总是偶数,偶数加偶数之和为偶数。
所以,全班每个同学的分数都是偶数。
则全班同学的得分之和也一定是个偶数。
例2 5只杯子杯口全都朝上。
规定每次翻转4只杯子,经过若干次后,能否使杯口全部朝下?讲析:一只杯口朝上的杯子,要想使杯口朝下,必须翻转奇数次。
要想5只杯口全都朝上的杯子,杯口全都朝下,则翻动的总次数也一定是奇数次才能办得到。
现在每次只翻转4只杯子,无论翻多少回,总次数一定是偶数。
所以,不能使杯口全部朝下。
例3 某班共有25个同学。
坐成5行5列的方阵。
我们想让每个同学都坐到与他相邻的座位上去。
数的奇偶性奇数和偶数
数的奇偶性奇数和偶数“数的奇偶性”是数学里一个常见的概念。
数学中的数可以分为奇数和偶数两类。
在本文中,我们将详细介绍奇数和偶数以及它们的性质和特点。
一、奇数的定义和性质奇数是指不能被2整除的整数。
具体来说,奇数可以表示为2n+1的形式,其中n是整数。
例如,1、3、5、7、9等都是奇数。
奇数具有以下几个性质:1. 奇数加奇数等于偶数。
例如,3+3=6,5+5=10,7+7=14等。
2. 奇数与偶数的乘积等于偶数。
例如,3×2=6,5×4=20,7×6=42等。
3. 奇数与奇数的乘积等于奇数。
例如,3×3=9,5×5=25,7×7=49等。
二、偶数的定义和性质偶数是指能够被2整除的整数。
具体来说,偶数可以表示为2n的形式,其中n是整数。
例如,2、4、6、8、10等都是偶数。
偶数具有以下几个性质:1. 偶数加偶数等于偶数。
例如,2+2=4,4+4=8,6+6=12等。
2. 偶数与偶数的乘积等于偶数。
例如,2×2=4,4×4=16,6×6=36等。
3. 偶数与奇数的乘积等于偶数。
例如,2×3=6,4×5=20,6×7=42等。
三、数的奇偶性在数学中的应用数的奇偶性在数学中有着广泛的应用。
以下是数的奇偶性的一些典型应用:1. 确定整数的奇偶性:通过判断一个整数是否能被2整除,可以迅速确定其奇偶性。
2. 判断数字的位值:在二进制和十进制计算中,通过判断最后一位数字是0还是1,可以判断一个数字的奇偶性。
3. 判断数列中的规律:在数列中,奇数和偶数往往会出现规律性的交替分布,通过观察奇偶性可以推测数列的一般规律。
四、奇偶性的实际应用举例奇偶性的概念不仅仅在数学中有用,它也在现实生活中有着实际的应用。
以下是一些奇偶性的实际应用举例:1. 交通规划:在城市交通规划中,奇数和偶数车牌的车辆可能被要求在特定日期或时间段禁止上路行驶,以减少交通拥堵。
四年级上册数学奥数讲义-奇数、偶数与奇偶分析 含解析
奇数、偶数与奇偶分析整数按能否被2整除分为两大类:奇数和偶数,奇数与偶数有下列基本性质:1.奇数≠偶数2.两个整数相加(减)或相乘,结果的奇偶性如下表所示3.若干个奇数之积是奇数,偶数与任意整数之积是偶数;偶数个奇数的和为偶数,若干个偶数的和为偶数.4.设m、n是整数,则m土n,nm±的奇偶性相同.5.设m是整数,则m与m,m n的奇偶性相同.奇偶性是整数的固有属性,通过分析整数的奇偶性来解决问题的方法叫奇偶分析法.例题【例1】三个质数之和为86,那么这三个质数是.思路点拨运用奇数、偶数、质数、合数性质,从分析三个加数的奇偶性人手.注:18世纪的哥尼斯堡,有7座桥把这儿的普雷格尔河中两个小岛与河岸联系起来,在这迷人的地方,人们议论着一个有趣的问题.一个游人怎样才能不重复地一次走遍7座桥,而最后又回到出发点.1736年彼得堡院士欧拉巧妙地解决了这个问题.欧拉把一个复杂的实际问题化为一个简单的几何图形,他指出只要我们能从一点出发,不重复地一笔把这样的图形画出来,那么就可说明游人能够不重复地一次走遍这7座桥,这就是著名的“一笔画”问题的来历.利用奇偶分析不难得到一般的结论:凡是能一笔画成的图形,它上面除了起点和终点外的每一个点总是一笔进来,一笔出去.因此,除了起点和终点外的每一个点都有偶数条线和它相连.简单地说,当且仅当图形中的奇结点(每点出发有奇数字线)的个数不大于2时,这个图形才能一笔画.【例2】如果a、b、c是三个任意的整数,那么222accbba+++、、().A.都不是整数B.至少有两个整数C.至少有一个整数D.都是整数思路点拨举例验证或从a、b、c的奇偶性说明.【例3】(1)设1,2,3,…,9的任一排列为a l,a2,a3…,a9.求证:(a l l一1)( a2—2)…(a9—9)是一个偶数.(2)在数11,22,33,44,54,…20022002,20032003,这些数的前面任意放置“+”或“一”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003.思路点拨(1)转换角度考察问题,化积的奇偶性为和的奇偶性来研究;(2)由于任意添“十”号或“一”号,形式多样,因此不可能一一尝试再作解答,从奇数、偶数的性质人手.【例4】已知n x x x x 、、、、Λ321都是+1或一1,并且011433221=+++++-x x x x x x x x x x n n n Λ,求证:n 是4的倍数.思路点拨 可以分两步,先证n 是偶数2k ,再证明k 是偶数,解题的关键是从已知等式左边各项的特点受到启发,挖掘隐含的一个等式.【例5】 游戏机的“方块”中共有下面?种图形.每种“方块”都由4个l ×l 的小方格组成.现用这7种图形拼成一个7× 4的长方形(可以重复使用某些图形).问:最多可以用这7种图形中的几种图形?思路点拨 为了形象化地说明问题,对7×4的长方形的28个小方格黑白相间染色,除“品字型”必占3个黑格1个白格或3个白格1个黑格,其余6个方格各占2个黑格2个白格.注:对同一个数学对象,从两个方向考虑(n 项和与积),再将这两个方面合在一起整体考虑,得出结论,这叫计算两次原理,通过计算两次可以建立方程,证明恒等式等.在一定的规则下,进行某种操作或变换,问是否(或证明)能够达到一个预期的目的,这就是所谓操作变换问题,此类问题变化多样,解法灵活,解题的关键是在操作变换中,挖掘不变量,不变性.一些非常规数字问题需要恰当地数学化,以便计算或推理.引入字母与赋值法是数学化的两种常用方式方法.所谓赋值法就是在解题时,将问题中的某些元素用适当的数表示,然后利用这些数值的大小,正负性、奇偶性等进行推理论证的一种解题方法.【例6】桌上放着七只杯子;杯口全朝上,每次翻转四个杯子:问能否经过若干次这样的翻动,使全部的杯子口都朝下?思路点拨 这不可能.我们将口向上的杯于记为:“0”,口向下的杯子记为“1”.开始时,由于七个杯子全朝上,所以这七个数的和为0,是个偶数.一个杯子每翻动一次,所记数由0变为1,或由l 变为0,改变了奇偶性.每一次翻动四个杯子,因此,七个之和的奇偶性仍与原来相同.所以,不论翻动多少次,七个数之和仍为偶数.而七个杯子全部朝下,和为7,是奇数,因此,不可能.整数可以分为奇数和偶数两类.【例7】在1,2,3,…,2005前面任意添上一个正号或负号,它们的代数和是奇数还是偶数?思路点拨 两个整数之和与这两个整数之差的奇偶性相同,只要知道1+2+3+…+2005的奇偶性即可.因两个整数的和与差的奇偶性相同,所以,在1,2,3,…,2005中每个数前面添上正号或负号,其代数和应与1+2+3+…+2005的奇偶性相同,而1+2+3+…+2005=21(1+ 2005)×2005=1003 ×2005为奇数;因此,所求代数和为奇数.注:抓住“a+b 与a —b 奇偶性相同”,通过特例1十2十3十…十2005得到答案.【例8】“ 元旦联欢会上,同学们互赠贺卡表示新年的:良好祝愿.“无论人数是什么数,用来交换的贺卡的张数总是偶数.”这句话正确吗?试证明你的结论.思路点拨 用分类讨论的思想方法,从“无论人数是什么数”入手,考虑人数为奇数或偶数的两种情况.这句话是正确的.下面证明之.若联欢会上的人数为偶数,设为2m (m 为整数),则每个人赠送给同学们的贺卡张数为奇数,即(2m —1).那么,贺卡总张数为2m(2m —1)=4m 2-2m ,显然是偶数.若联欢会上的人数为奇数,设为2m+1(m 为整数,则每个人赠送给同学们的贺卡张数应是2m ,为偶数.贺卡总张数为(2m+1)·2m ,仍为偶数.故“用来交换的贺卡张数总是偶数”是对的.注:按奇数和偶数分类考虑问题是常见的解决此类问题的策略之一.【例9】桌面上放有1993枚硬币,第1次翻动1993枚,第2次翻动其中的1992枚,第3次翻动其中的1991枚,…,第1993次翻动其中一枚,试问:能否使桌面上所有的1993枚硬币原先朝下的一面都朝上?并说明理由.思路点拨 若要把一枚硬币原先朝下的一面朝上,应该翻动该硬币奇数次.因此,要把1993枚硬币原先朝下的一面都朝上,应该翻动这1993枚硬币的总次数为奇数.现在1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997是个奇数,故猜想可以使桌面上1993枚硬币原先朝下的一面都朝上.理由如下:按规定,1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997,所以翻动的次数为奇数,而且可见每个硬币平均翻动了997次.而事实上,只要翻动一枚硬币奇数次,就能使这枚硬币原先朝下的一面朝上.按如下的方法进行翻动: 第1次翻动全部1993枚,第2次翻动其中的1992枚,第1993次翻动第2次未翻动的那1枚,第3次翻动其中的1991枚,第1992次翻动第3次未翻动的2枚,第997次翻动其中的997枚,第998次翻动第997次未翻动的996枚.这样,正好每枚硬币被翻动了997次,就能使每一枚硬币原来朝下的一面都朝上. 注:灵活、巧妙地利用奇俩性分析推理,可以解决许多复杂而有趣的问题,并有意想不到的效果.【例10】在6张纸片的正面分别写上整数:1、2、3、4、5、6,打乱次序后,将纸片翻过来,在它们的反面也随意分别写上1-6这6个整数,然后,计算每张纸片的正面与反面所写数字之差的绝对值,得出6个数.请你证明:所得的6个数中至少有两个是相同的. 思路点拨 从反面人手,即设这6个数两两都不相等,利用bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同,引入字母进行推理证明.设6张卡片正面写的数是654321a a a a a a 、、、、、,反面写的数对应为654321b b b b b b 、、、、、,则这6张卡片正面写的数与反面写的数的绝对值分别为11b a -,22b a -,33b a -,44b a -,55b a -,66b a -.设这6个数两两都不相等,则它们只能取0,1,2,3,4,5这6个值.于是11b a -+22b a -+33b a -+44b a -+55b a -+66b a -=0+1+2+3+4+5=15是个奇数. 另一方面,bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同.所以11b a -+22b a -+33b a -+44b a -+55b a -+66b a -与(a 1一b 1)+(a 2一b 2)+(a 3一b 3)+(a 4一b 4)+(a 5一b 5)+(a 6一b 6)= )(654321a a a a a a +++++一)(654321b b b b b b +++++ =(1+2+3+4+5+6)一(1+2+3+4+5+6)=O 的奇偶性相同,而0是个偶数,15是奇数,两者矛盾.所以,11b a -,22b a -,33b a -,44b a -,55b a -,66b a -这6个数中至少有两个是相同的.注:反证法是解决奇、偶数问题中常用的方法.【例11】有一只小渡船往返于一条小河的左右两岸之间,问:(1)若最初小船是在左岸,往返若干次后,它又回到左岸,那么这只小船过河的次数是奇数还是偶数?如果它最后到了右岸,情况又是怎样呢?(2)若小船最初在左岸,它过河99次之后,是停在左岸还是右岸?思路点拨 (1)小船最初在左岸,过一次河就到了右岸,再过一次河就由右岸回到左岸,即每次由左岸出发到右岸后再回到左岸,都过了两次河.因此,小船由左岸开始,往返多次后又回到左岸,则过河的次数必为2的倍数,所以是偶数.同样的道理,不难得出,若小船最后停在右岸,则过河的次数必为奇数.(2)通过(1),我们发现,若小船最初在左岸,过偶数次河后,就回到左岸;过奇数次河后,就停在右岸.现在小船过河99次,是奇数次.因此,最后小船该停在右岸.注 关键是对过河次数的理解:一个单程,即由左岸到右岸(或由右岸到左岸)就过河一次;往返一个来回就过河两次.【例12】黑板上写了三个整数,任意擦去其中一个,把它改写成另两个数的和减去1,这样继续下去,得到1995、1996、1997,问原来的三个数能否是2、2、2?思路点拨 如果原来的三个整数是2、2、2,即三个偶数,操作一次后,三个数变成二偶一奇,这时如果擦去其中的奇数,操作后三个数仍是二偶一奇.如果擦去的是其中的一个偶数,操作后三个数仍是二偶一奇.因此,无论怎样操作,得到的三个数都是二偶一奇,不可能得到1995、1996、1997.所以,原来的三个数不可能是2、2、2.注 解决本题的诀窍在于考查数字变化后的奇偶性.【例13】将正偶数按下表排成五列:第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8第2行 16 14 12 10第3行 18 20 22 24… … 28 26根据上面的排列规律,则2000应位于( )A .第125行,第1列B .第125行,第2列C .第250行,第1列D .第250行,第2列思路点拨 观察表格,第1行最右边的数为8,第2行最左边的数为16,第3行最右边的数为24,于是可猜测:当行数为奇数时,该行最右边的数为8×行数;当行数为偶数时,该行最左边的数为8×行数.通过验证第4行、第5行、第6行知,上述猜想是正确的,因为2000=8×250,所以2000应在第250行,又因为250为偶数,故2000应在第250行最左边,即第250行第1列,故应选C .注:观察、寻找规律是解决这类问题的妙招.【例14】如图18—1,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字.若左轮子上方的箭头指着的数字为a ,右轮子上方的箭头指着的数字为b ,数对(a ,b)所有可能的个数为n ,其中a+b 恰为偶数的不同数对的个数为m ,则nm 等于( ) A .21 B .61 C .125 D .43 思路点拨 依题意可知所有的数对n=4×3=12,其中a+b 恰为偶数的数对m=3×1+1×2=5.因此,n m =125,故选C . 【例15】已知a 、b 、c 中有两个奇数、一个偶数,n 是整数,如果S=(a+2n+1)(b+2n 十2)(c+2n 十3),那么( )A .S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D . S 的奇偶性不能确定思路点拨 弄清a+2n+1,b+2n+2,c+2n+3的奇偶性即可.依题得:(a+2n+1)+(b+2n+2)+(c+2n+3)=a+b+c+6(n+1).∵a+b+c 为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴a+2n+1,b+2n+2,c+2n+3中至少有一个为偶数,∴S 是偶数.故选A .注:三个数的和为偶数,则至少有一个为偶数;三个数中有一个为偶数,则三数之和为偶数.学力训练 1.若按奇偶性分类,则12+22+32+…+20022002是 数.2.能不能在下式, 的各个方 框中分别填人“+”号或“一”号,使等式成立?答: .3.已知三个质数a 、b 、c 满足a+b+c+abc =99,那么a c c b b a -+-+-的值等于 .4.已知n 为整数,现有两个代数式:(1)2n+3,(2)4n 一1,其中,能表示“任意奇数”的( )A .只有(1)B .只有(2)C .有(1)和(2)D .一个也没有5.如果a ,b ,c 都是正整数,且a ,b 是奇数,则3a +(b 一1)2c 是( ).A .只当c 为奇数时,其值为奇数B .只当c 为偶数时,其值为奇数C .只当c 为3的倍数,其值为奇数D .无论c 为任何正楚数,其值均为奇数6.已知a ,b ,c 三个数中有两个奇数、一个偶数,n 是整数,如果S=(a+n+1)(b+ 2n+2)(c+3n+3),那么( ).A . S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D .S 的奇偶性不能确定7.(1)是否有满足方程x 2-y 2=1998的整数解x 和y?如果有,求出方程的解;如果没有,说明理由.(2)一个立方体的顶点标上+1或一1,面上标上一个数,它等于这个面的4个顶点处的数的乘积,这样所标的14个数的和能否为0?8.甲、乙两人玩纸牌游戏,甲持有全部的红桃牌(A 作1,J ,Q ,K 分别作11,12,13,不同),乙持有全部的黑桃牌,两人轮流出牌,每次出一张,得到一对牌,出完为止,共得到13对牌,每对牌彼此相减,问这13个差的乘积的奇偶性能否确定?9.在1,2,3,…,1998之前任意添上“十”或“一”号,然后相加,这些和中最小的正整数是 .10.1,2,3,…,98共98个自然数,能够表示成两整数平方差的数的个数是 .11.在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分,今有4个人统计百这次比赛中全部得分总数,由于有的人粗心,其数据各不相同,分别为1979,1980,1984,1985,经核实,其中有一人统计无误,则这次比赛共有 名选手参加.12.已知p 、q 、pq+1都是质数,且p 一q>40,那么满足上述条件的最小质数p = ; q = .13.设a ,b 为整数,给出下列4个结论(1)若a+5b 是偶数,则a 一3b 是偶数;(2)若a 十5b 是偶数,则a 一3b 是奇数;(3)若a+5b 是奇数,则a 一3b 是偶数;(4)若a+5b 是奇数,则a 一3b 是奇数,其中结论正确的个数是( ).A .0个B .2个C .4个D . 1个或3个14.下面的图形,共有( )个可以一笔画(不重复也不遗漏;下笔后笔不能离开纸) .A .0B .1C .2D .315.π的前24位数值为3.14159265358979323846264…,在这24个数字中,随意地逐个抽取1个数字,并依次记作a1,a2,…a24,则(a1一a2)( a3一a4)…(a23一a24)为( ).A.奇数B.偶数C.奇数或偶数D.质数16.没标有A、B、C、D、C、F、G记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A、C、E、G 4盏灯开着,其余3盏灯是关的,小刚从灯A开始,顺次拉动开关,即从A 到G,再从A始顺次拉动开关,即又从A到G…,他这样拉动了1999次开关后,问哪几盏是开的?17.有1997枚硬币,其中1000枚国徽朝上,997枚国徽朝下.现要求每一次翻转其中任意6枚,使它们的国徽朝向相反,问能否经过有限次翻转之后,使所有硬币的国徽都朝上?给出你的结论,并给予证明.18.对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为l的数有多少个?19.高为50cm,底面周长为50cm的圆柱,在此圆柱的侧面上划分(如图所示)边长为lcm的正方形,用四个边长为lcm的小正方形构成“T”字形,用此图形是否能拼成圆柱侧面?试说明理由.参考答案。
偶数和奇数认识偶数和奇数的特点和判断方法
偶数和奇数认识偶数和奇数的特点和判断方法偶数和奇数的特点和判断方法偶数和奇数是数学中常见的概念,它们在日常生活中的运用也非常广泛。
了解偶数和奇数的特点以及它们的判断方法,可以帮助我们更好地理解数字的性质和运算规则。
本文将详细探讨偶数和奇数的特点,并介绍如何准确地判断一个数字是属于偶数还是奇数。
一、偶数和奇数的定义偶数是能够被2整除的整数,它们可以用2的倍数表示,例如2、4、6、8等。
而奇数则是不能被2整除的整数,它们的个位数总是1、3、5、7、9。
例如1、3、5、7、9等。
二、偶数和奇数的特点1. 偶数的特点:- 偶数加偶数等于偶数。
例如2 + 4 = 6。
- 偶数加奇数等于奇数。
例如2 + 3 = 5。
- 偶数乘以任何整数都是偶数。
例如2 × 5 = 10。
- 偶数的个位数一定是0、2、4、6、8。
2. 奇数的特点:- 奇数加奇数等于偶数。
例如3 + 5 = 8。
- 奇数加偶数等于奇数。
例如3 + 4 = 7。
- 奇数乘以任何整数都是奇数。
例如3 × 2 = 6。
- 奇数的个位数一定是1、3、5、7、9。
三、判断方法1. 末位数字法:一个数字的奇偶性可以通过观察它的末位数字来判断。
如果末位数字是0、2、4、6、8,则该数字是偶数;如果末位数字是1、3、5、7、9,则该数字是奇数。
例如:42是偶数,因为它的末位数字是2;57是奇数,因为它的末位数字是7。
2. 除以2法:直接将给定的数字除以2,如果余数为0,则该数字是偶数;如果余数为1,则该数字是奇数。
例如:18除以2等于9,余数为0,所以18是偶数;21除以2等于10,余数为1,所以21是奇数。
综上所述,本文详细介绍了偶数和奇数的定义、特点以及判断方法。
通过了解它们的特点和判断方法,我们能够更好地理解数字的性质和运算规则。
偶数和奇数是数学中基础且重要的概念,我们在日常生活和学习中常常会用到,因此熟练掌握它们的特点和判断方法对我们的数学学习会有很大帮助。
数的奇偶性及判断方法
数的奇偶性及判断方法奇偶性是数学中一个重要的概念,用来描述一个数是偶数还是奇数。
在日常生活和数学运算中,判断一个数的奇偶性是非常常见的操作。
本文将介绍奇偶性的概念、判断奇偶性的方法以及一些相关的数学性质。
一、奇数和偶数的概念在自然数中,每个数可以被分为两类:奇数和偶数。
奇数是指不能被2整除的数,而偶数则是能够被2整除的数。
例如,3、5、7是奇数,因为它们不能被2整除;而2、4、6是偶数,因为它们可以被2整除。
二、判断数的奇偶性的方法1. 除以2法最简单直观的方法是通过除以2来判断数的奇偶性。
如果一个数除以2的余数为0,那么这个数就是偶数;如果余数为1,那么这个数就是奇数。
例如,我们来判断数10的奇偶性:10 ÷ 2 = 5,余数为0,所以10是偶数。
再例如,判断数7的奇偶性:7 ÷ 2 = 3,余数为1,所以7是奇数。
2. 观察个位数法另一个简单的方法是通过观察数的个位数来判断奇偶性。
如果一个数的个位数为0、2、4、6、8中的任意一个,那么这个数就是偶数;如果个位数为1、3、5、7、9中的任意一个,那么这个数就是奇数。
例如,观察个位数来判断数32的奇偶性:个位数为2,所以32是偶数。
再例如,判断数97的奇偶性:个位数为7,所以97是奇数。
3. 数学性质法奇数和偶数之间存在一些有趣的数学性质,通过利用这些性质也可以判断数的奇偶性。
首先,任何数的平方都是偶数。
如果一个数为奇数,那么它的平方是奇数乘奇数,结果还是奇数。
而如果一个数为偶数,那么它的平方是偶数乘偶数,结果也是偶数。
其次,任何奇数加上或者减去一个偶数的结果都是奇数。
这是因为奇数加上或者减去偶数实际上就是奇数加上或者减去0,而奇数加上或者减去0的结果还是奇数。
利用这些性质,可以通过数学运算来判断一个数的奇偶性。
三、奇偶性的应用奇偶性不仅仅是一个数学概念,也有一些实际的应用。
1. 计算机编程在计算机编程中,奇偶性经常被用来判断数的范围和性质。
竞赛专题:奇数、偶数及奇偶分析
奇数、偶数及奇偶分析一、填空题(共8小题,每小题4分,满分32分)1.若按奇偶性分类,则12+22+32+…+20022002是_________数.2.能不能在下式的各个方框中分别填入“+”号或“一”号,使等式成立?答:_________.3.已知三个质数a、b、c满足a+b+c+abc=99,那么|a﹣b|+|b﹣c|+|c﹣a|的值等于_________.4.在1,2,3,…,1998之前任意添上“十”或“一”号,然后相加,这些和中最小的正整数是_________.5.1,2,3,…,98共98个自然数中,能够表示成两整数的平方差的个数是_________.6.在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分,今有4个人统计百这次比赛中全部得分总数,由于有的人粗心,其数据各不相同,分别为1979,1980,1984,1985,经核实,其中有一人统计无误,则这次比赛共有_________名选手参加.7.已知p、q、pq+1都是质数,且p﹣q>40,那么满足上述条件的最小质数p=_________,q=_________.8.三个质数之和为86,那么这三个质数是_________.二、选择题(共10小题,每小题3分,满分30分)9.已知n为整数,现有两个代数式:(1)2n+3,(2)4n﹣1,其中,能表示“任意奇数”的()A.只有(1)B.只有(2)C.有(1)和(2)D.一个也没有10.如果a,b,c都是正整数,且a,b是奇数,则3a+(b﹣1)2c是()A.只当c为奇数时,其值为奇数B.只当c为偶数时,其值为奇数C.只当c为3的倍数,其值为奇数D.无论c为任何正楚数,其值均为奇数11.设a,b为整数,给出下列4个结论:(1)若a+5b是偶数,则a﹣3b是偶数;(2)若a+5b是偶数,则a﹣3b是奇数;(3)若a+5b是奇数,则a﹣3b是偶数;(4)若a+5b是奇数,则a﹣3b是奇数,其中结论正确的个数是()A.0个B.2个C.4个D.1个或3个12.下面的图形,共有()个可以一笔画(不重复也不遗漏;下笔后笔不能离开纸)A.0 B.1 C.2 D.313.π的前24位数值为3.14159265358979323846264…,在这24个数字中,随意地逐个抽取1个数字,并依次记作a1,a2,…a24,则(a1﹣a2)(a3﹣a4)…(a23﹣a24)为()A.奇数B.偶数C.奇数或偶数D.质数14.如a、b、c是三个任意整数,那么、、()A.都不是整数B.至少有两个整数C.至少有一个整数D.都是整数15.(2001•荆州)将正偶数按下表排成五列:第1列第2列第3列第4列第5列第1行 2 4 6 8第2行16 14 12 10第3行18 20 22 24………28 26根据上面排列规律,则2000应在()A.第125行第1列B.第125行第2列C.第250行第1列D.第250行第2列16.如图,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字,若左图轮子上方的箭头指着的数字为a,右图轮子上方的箭头指着的数字为b,数对(a,b)所有可能的个数为n,其中a+b恰为偶数的不同数对的参数为m,则m/n等于()A.B.C.D.17.已知a、b、c中有两个奇数、一个偶数,n是整数,如果S=(a+2n+1)(b+2n+2)(c+2n+3),那么()A.S是偶数B.S是奇数C.S的奇偶性与n的奇偶性相同D.S的奇偶性不能确定三、解答题(共16小题,满分88分)18.(1)是否有满足方程x2﹣y2=1998的整数解x和y?如果有,求出方程的解;如果没有,说明理由.(2)一个立方体的顶点标上+1或一1,面上标上一个数,它等于这个面的4个顶点处的数的乘积,这样所标的14个数的和能否为0?19.甲、乙两人玩纸牌游戏,甲持有全部的红桃牌(A作1,J,Q,K分别作11,12,13,不同),乙持有全部的黑桃牌,两人轮流出牌,每次出一张,得到一对牌,出完为止,共得到13对牌,每对牌彼此相减,问这13个差的乘积的奇偶性能否确定?20.没标有A、B、C、D、C、F、G记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A、C、E、G4盏灯开着,其余3盏灯是关的,小刚从灯A开始,顺次拉动开关,即从A到G,再从A始顺次拉动开关,即又从A到G…,他这样拉动了1999次开关后,问哪几盏是开的?21.有1997枚硬币,其中1000枚国徽朝上,997枚国徽朝下.现要求每一次翻转其中任意6枚,使它们的国徽朝向相反,问能否经过有限次翻转之后,使所有硬币的国徽都朝上?给出你的结论,并给予证明.22.对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为l的数有多少个?23.高为50cm,底面周长为50cm的圆柱,在此圆柱的侧面上划分(如图所示)边长为lcm的正方形,用四个边长为lcm的小正方形构成“T”字形,用此图形是否能拼成圆柱侧面?试说明理由.24.(1)设1,2,3,…,9的任一排列为a l,a2,a3…,a9.求证:(a l l一1)(a2﹣2)…(a9﹣9)是一个偶数.(2)在数11,22,33,44,54,…20022002,20032003,这些数的前面任意放置“+”或“一”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003.25.已知x1、x2、x3、…、x n都是+1或﹣1,并且,求证:n是4的倍数.26.游戏机的“方块”中共有下面7种图形.每种“方块”都由4个l×l的小方格组成.现用这7种图形拼成一个7×4的长方形(可以重复使用某些图形).问:最多可以用这7种图形中的几种图形?27.桌上放着七只杯子;杯口全朝上,每次翻转四个杯子:问能否经过若干次这样的翻动,使全部的杯子口都朝下_________(能或不能)?28.在1,2,3,…,2005前面任意添上一个正号或负号,它们的代数和是奇数还是偶数_________?29.“元旦联欢会上,同学们互赠贺卡表示新年的:良好祝愿.“无论人数是什么数,用来交换的贺卡的张数总是偶数.”这句话正确吗?试证明你的结论.30.桌面上放有1993枚硬币,第1次翻动1993枚,第2次翻动其中的1992枚,第3次翻动其中的1991枚,…,第1993次翻动其中一枚,试问:能否使桌面上所有的1993枚硬币原先朝下的一面都朝上?并说明理由.31.在6张纸片的正面分别写上整数:1、2、3、4、5、6,打乱次序后,将纸片翻过来,在它们的反面也随意分别写上1﹣6这6个整数,然后,计算每张纸片的正面与反面所写数字之差的绝对值,得出6个数.请你证明:所得的6个数中至少有两个是相同的.32.有一只小渡船往返于一条小河的左右两岸之间,问:(1)若最初小船是在左岸,往返若干次后,它又回到左岸,那么这只小船过河的次数是奇数还是偶数?如果它最后到了右岸,情况又是怎样呢?(2)若小船最初在左岸,它过河99次之后,是停在左岸还是右岸?33.黑板上写了三个整数,任意擦去其中一个,把它改写成另两个数的和减去1,这样继续下去,得到1995、1996、1997,问原来的三个数能否是2、2、2?新课标七年级数学竞赛培训第25讲:奇数、偶数及奇偶分析参考答案与试题解析一、填空题(共8小题,每小题4分,满分32分)1.若按奇偶性分类,则12+22+32+…+20022002是奇数.考点:整数的奇偶性问题。
奇数和偶数认识和区分奇偶数
奇数和偶数认识和区分奇偶数在数学领域中,奇数和偶数是我们经常接触到的基本概念。
了解奇数和偶数的概念,以及它们的区别和应用,不仅对数学学习有帮助,也能拓展我们的思维。
一、奇数和偶数的定义奇数是一个自然数,不能被2整除,即除以2的余数不为0的数。
我们可以用符号n来表示奇数,其中n为自然数,例如1、3、5、7等。
而偶数则是可以被2整除的数,即除以2的余数为0。
同样,我们用符号m来表示偶数,其中m为自然数,例如2、4、6、8等。
二、奇数和偶数的特性1. 奇数和奇数相加(减)的结果一定是偶数,偶数和偶数相加(减)的结果也一定是偶数。
例如,3 + 5 = 8,4 + 6 = 10。
2. 奇数和偶数相加(减)的结果一定是奇数。
例如,3 + 4 = 7,5 -2 = 3。
3. 奇数乘以奇数的结果一定是奇数,偶数乘以偶数的结果一定是偶数。
例如,3 * 3 = 9,4 * 4 = 16。
4. 奇数乘以偶数的结果一定是偶数。
例如,3 * 4 = 12。
三、区分奇偶数的方法我们可以通过以下几种方法来区分奇偶数:1. 除法法:将一个数除以2,余数为0则为偶数,余数为1则为奇数。
例如,6除以2,余数为0,故6是偶数;7除以2,余数为1,故7是奇数。
2. 数字尾部法:观察一个数的个位数字,如果是0、2、4、6、8中的任意一个,则该数为偶数;如果是1、3、5、7、9中的任意一个,则该数为奇数。
例如,26的个位数字是6,因此26是偶数;33的个位数字是3,因此33是奇数。
3. 算术法:将一个数减去1,然后再除以2,如果结果为整数,则该数为偶数;如果结果为小数,则该数为奇数。
例如,21减去1得到20,20除以2得到10,因此21是奇数;16减去1得到15,15除以2得到7.5,因此16是偶数。
四、奇偶数的应用奇偶数在日常生活中有着广泛的应用,例如:1. 电子设备的编号:在一些电子设备的序列编号中,我们常常会将奇数和偶数分别用于不同的用途。
数的奇偶性判断
数的奇偶性判断在数学中,我们经常会遇到需要判断一个数是奇数还是偶数的情况。
奇偶性判断是数学中的基本概念之一,也是很容易理解和应用的。
本文将介绍数的奇偶性判断的方法和应用。
一、奇偶数的定义奇数是指不能被2整除的自然数,例如1、3、5等。
偶数是指能够被2整除的自然数,例如2、4、6等。
二、奇偶性判断的方法1. 除法法则判断一个数的奇偶性最简单的方法就是用该数除以2,如果能整除,那么这个数就是偶数,否则就是奇数。
例如,对于数7来说,用7除以2,得到的商是3余1,不能整除,所以7是奇数。
而对于数12来说,用12除以2,得到的商是6,可以整除,所以12是偶数。
这种方法简单直观,适用于任何自然数。
但对于大数来说,可能需要进行较复杂的运算,效率较低。
2. 末位法则我们发现,一个数是奇数还是偶数,主要取决于它的末位数字。
奇数的末位数字一定是1、3、5、7、9中的一个,而偶数的末位数字一定是0、2、4、6、8中的一个。
因此,判断一个数的奇偶性,只需要查看它的末位数字即可。
例如,对于数27来说,它的末位数字是7,属于奇数,所以27是奇数。
对于数48来说,它的末位数字是8,属于偶数,所以48是偶数。
这种方法简单快捷,适用于任何自然数。
对于大数来说,只需查看末位数字,无需进行除法运算,效率较高。
三、奇偶性判断的应用1. 奇偶性判断在计算机科学中的应用在计算机科学中,奇偶性判断常常作为编程语言中的基本操作。
比如,在循环中判断某个数的奇偶性,可以通过位运算操作来实现,提高程序的执行效率。
2. 奇偶性判断在数学问题中的应用奇偶性判断在解决数学问题时也经常会用到。
比如,判断两个数的和、差、积、商的奇偶性,可以根据奇偶性的性质来进行推导和分析。
四、总结通过除法法则和末位法则,我们可以方便地判断一个数的奇偶性。
奇偶性判断在数学中有广泛的应用,也是计算机科学中的基本操作之一。
在实际应用中,我们根据具体问题的需要,选择合适的方法进行奇偶性判断,以提高计算效率和问题求解的准确性。
数字的奇偶性奇数和偶数的区分
数字的奇偶性奇数和偶数的区分数字的奇偶性:奇数和偶数的区分数字是我们日常生活中经常遇到的一种数学概念。
而数字的奇偶性是数字的一个重要属性,用于区分任意给定的数值。
本文将介绍奇数和偶数的定义、特性以及如何判断一个数字是奇数还是偶数。
一、奇数的定义和特点奇数是指不能被2整除的自然数。
具体来说,如果一个数字除以2的余数为1,那么这个数字就是奇数。
奇数的特点如下:1. 奇数可以表示为2n+1的形式,其中n是整数。
2. 任意奇数都可以写为连续的奇数之和,例如3=1+1+1,5=1+1+1+1+1等。
3. 任意两个奇数的和是偶数,例如3+5=8,7+9=16等。
二、偶数的定义和特点偶数是指可以被2整除的自然数。
具体来说,如果一个数字除以2的余数为0,那么这个数字就是偶数。
偶数的特点如下:1. 偶数可以表示为2n的形式,其中n是整数。
2. 任意偶数都可以写为连续的偶数之和,例如4=2+2,6=2+2+2等。
3. 任意两个偶数的和仍然是偶数,例如4+6=10,8+10=18等。
三、判断数字的奇偶性为了判断一个数字是奇数还是偶数,我们只需要计算该数字除以2的余数即可。
如果余数为0,则说明这个数字是偶数;如果余数为1,则说明这个数字是奇数。
例如,我们要判断数字7的奇偶性,7除以2的余数为1,因此7是一个奇数。
同理,我们要判断数字10的奇偶性,10除以2的余数为0,因此10是一个偶数。
四、数字的奇偶性在实际生活中的应用数字的奇偶性在现实生活中有着广泛的应用。
1. 在数学中,奇数和偶数是很基础的概念,经常被用于解决各种数论问题。
例如在证明数学定理中,需要利用奇偶性的性质进行推理。
2. 在计算机科学中,奇偶性被广泛应用于位运算。
计算机中所有的数字都是以二进制表示的,而判断一个二进制数的最低位是0还是1,就可以判断其奇偶性。
3. 在日常生活中,奇偶性被用于进行交替排列或分组。
例如,餐厅座位的安排通常会交替安排奇数和偶数座位,以方便服务员行走和顾客交流。
奇数偶数的讲解方法
奇数偶数的讲解方法在数学中,奇数和偶数是一对重要的概念。
学好奇数偶数的概念和判断方法,对于学习数学以及解决实际问题都具有重要意义。
本文将为大家介绍奇数和偶数的定义、性质以及判断方法。
一、奇数的定义和性质奇数是自然数中不能被2整除的数,用符号n表示。
奇数的性质有以下几个方面:1. 奇数与2的关系:任何奇数n都可以表示为2k+1的形式,其中k为整数。
例如,3是奇数,可以表示为2×1+1。
2. 奇数的特点:奇数末尾的数字只能是1、3、5、7、9。
3. 奇数相加的结果:任何两个奇数相加,其结果一定是偶数。
例如,3+5=8。
4. 奇数相乘的结果:任何两个奇数相乘,其结果仍然是奇数。
例如,3×5=15。
二、偶数的定义和性质偶数是自然数中可以被2整除的数,用符号n表示。
偶数的性质有以下几个方面:1. 偶数与2的关系:任何偶数n都可以表示为2k的形式,其中k为整数。
例如,4是偶数,可以表示为2×2。
2. 偶数的特点:偶数末尾的数字只能是0、2、4、6、8。
3. 偶数相加的结果:任何两个偶数相加,其结果仍然是偶数。
例如,4+6=10。
4. 偶数相乘的结果:任何两个偶数相乘,其结果仍然是偶数。
例如,2×8=16。
三、奇数偶数的判断方法判断一个数是奇数还是偶数有以下几种方法:1. 末位判断法:直接观察数的末尾数字,如果是1、3、5、7、9,则为奇数;如果是0、2、4、6、8,则是偶数。
2. 除法判断法:用给定的数除以2,如果能整除,则是偶数;如果不能整除,则是奇数。
3. 二进制判断法:将给定数转换为二进制表示形式,如果最后一位是0,则是偶数;如果最后一位是1,则是奇数。
四、奇数偶数在实际问题中的应用奇数偶数的概念和判断方法在实际生活和解决问题中有广泛应用。
以下是一些例子:1. 分组:在分组活动中,可以利用奇数偶数的判断方法将人员或物品分为两组。
例如,将奇数号码分为一组,偶数号码分为另一组。
奇数与偶数的认识与判断
奇数与偶数的认识与判断数字是我们日常生活中不可或缺的一部分,而奇数与偶数是数字中最基本的概念之一。
在数学领域,理解奇数与偶数的概念以及正确地判断一个数是奇数还是偶数,对我们的数学学习和应用有着重要的意义。
本文将深入探讨奇数与偶数的定义、特性和判断方法,帮助读者准确理解并运用。
一、奇数与偶数的定义在数学领域,奇数与偶数是自然数的两个基本属性。
根据定义,奇数是不能被2整除的整数,而偶数则可以被2整除的整数。
二、奇数与偶数的特性1. 奇数的特性奇数具有以下特性:- 奇数加奇数仍为偶数- 奇数加偶数仍为奇数- 奇数乘以奇数为奇数- 奇数乘以偶数为偶数- 奇数与任何数相除,商为无限循环小数2. 偶数的特性偶数具有以下特性:- 偶数加偶数仍为偶数- 偶数与任何数相乘,积为偶数- 偶数能够被2整除,即偶数除以2的余数为0- 偶数除以2的商为整数三、奇数与偶数的判断方法判断一个数是奇数还是偶数,我们可以使用以下两种方法:1. 除法判断法通过使用除法判断一个数的奇偶性。
具体步骤如下:- 用待判断的数字除以2- 如果除数能够整除,即余数为0,则该数为偶数- 如果除数不能整除,即余数不为0,则该数为奇数例如,判断数字18的奇偶性:18 ÷ 2 = 9,余数为0,因此18是偶数。
2. 数字特性法通过观察一个数的数字特性进行奇偶判断,具体规律如下:- 奇数的个位数字只能是1、3、5、7、9- 偶数的个位数字只能是0、2、4、6、8例如,判断数字27的奇偶性:27的个位数字为7,因此27是奇数。
通过上述奇偶判断方法,我们可以准确地判断一个数的奇偶性。
四、奇数与偶数的应用奇数和偶数的概念在数学领域有着广泛的应用。
以下是其中一些常见应用:1. 素数与合数判断将奇数和偶数的概念扩展,我们可以判断一个数是素数还是合数。
素数是只能被1和自身整除的数,而合数则可以被其他数整除。
根据定义,除了2以外,所有偶数都是合数。
2. 数字运算与逻辑推理在数学运算和逻辑推理中,奇数与偶数的性质经常被应用。
偶数与奇数的性质与判断
偶数与奇数的性质与判断偶数和奇数是数学中基本的概念,而它们在各个领域的应用也非常广泛。
本文将从数学和日常生活中的例子探讨偶数和奇数的性质与判断方法。
一、偶数与奇数的定义在整数中,偶数是能够被2整除的数,而奇数则相反,不能被2整除。
简单来说,偶数是2的倍数,而奇数则不是。
我们可以用数学符号来表示偶数和奇数,偶数通常用2n来表示,其中n为任意整数;奇数则用2n+1来表示,同样也是任意整数。
二、偶数与奇数的性质1. 加减性质:- 两个偶数相加的结果还是偶数,例如2 + 4 = 6;- 两个奇数相加的结果还是偶数,例如3 + 5 = 8;- 偶数与奇数相加的结果是奇数,例如2 + 3 = 5。
在加法运算中,两个数的奇偶性会影响结果的奇偶性。
2. 乘除性质:- 偶数与任何数相乘的结果都是偶数,例如2 × 3 = 6;- 奇数与奇数相乘的结果是奇数,例如3 × 5 = 15;- 其他情况下的乘积可能是奇数也可能是偶数,例如偶数 ×偶数或奇数 ×偶数。
在乘法运算中,偶数与奇数的乘积具有一定的规律性。
3. 平方性质:- 任意偶数的平方是偶数,例如4² = 16;- 任意奇数的平方是奇数,例如5² = 25;- 平方数的奇偶性只与底数的奇偶性有关。
平方运算中,奇数和偶数的性质表现得更为明显。
三、偶数与奇数的判定方法1. 除法判定法:可以通过将待判定的数除以2来判断其奇偶性:- 若余数为0,则该数为偶数;- 若余数为1,则该数为奇数。
2. 数字规律判定法:对于个位数为0、2、4、6或8的整数,可以直接判定为偶数;对于个位数为1、3、5、7或9的整数,可以直接判定为奇数。
3. 奇偶性质判定法:根据上述偶数与奇数的性质,可以通过对数进行简单的运算判断其奇偶性。
例如,如果一个数能被2整除,则是偶数,否则是奇数。
四、偶数与奇数的应用举例1. 分钟与小时的关系:在日常生活中,时间通常以小时为单位。
数字的奇偶性认识奇数与偶数的特点
数字的奇偶性认识奇数与偶数的特点在数学中,我们经常会遇到奇数和偶数这两种不同的数字类型。
了解数字的奇偶性对于理解数学规律以及解决实际问题都有着重要的意义。
本文将介绍奇数与偶数的特点,帮助读者更好地理解数字的奇偶性。
一、奇数的特点奇数是自然数中不可被2整除的数字,它们以1开始并且随后每个数字都是由前一个奇数加2得到。
下面是一些奇数的例子:1、3、5、7、9等等。
接下来我们来了解奇数的一些特点。
1. 奇数除以2的余数永远是1由奇数的定义可知,奇数不能被2整除,也就是在整数除法中,奇数除以2会产生一个余数。
而根据求模运算的定义,余数的范围总是从0到除数减1。
因此,任何奇数除以2的余数都是1。
2. 任意两个奇数相加的结果是偶数考虑任意两个奇数a和b,它们分别除以2的余数是1。
那么,a+b除以2的余数是2,即偶数。
这可以通过逻辑推理或数学证明来得到,但事实上,我们只需要观察一些具体的例子就能发现这一规律:1+1=2、3+1=4、5+1=6等等。
3. 奇数的个数比偶数多在自然数中,奇数和偶数是两种不同的数字类型。
奇数中的每个数字都不能被2整除,因此,奇数的个数一定比偶数多。
二、偶数的特点偶数是自然数中可以被2整除的数字,它们中的每个数字都能够被2整除并且没有余数。
下面是一些偶数的例子:2、4、6、8、10等等。
接下来我们来了解偶数的一些特点。
1. 偶数除以2的余数是0偶数定义为可以被2整除的数,因此偶数除以2总是能够整除并且没有余数,即余数是0。
2. 任意两个偶数相加的结果是偶数由于偶数除以2没有余数,任意两个偶数相加时,其余数仍然是0,因此结果也是一个偶数。
例如,2+2=4、4+6=10等等。
3. 偶数可以由奇数和1相加得到考虑任意一个偶数2n,它可以表示为两个整数的和,其中一个是奇数,另一个是1,即2n = (2n-1) + 1。
这也可以通过观察具体的例子来验证:4 = 3 + 1、6 = 5 + 1、8 = 7 + 1等等。
第25讲 奇数、偶数与奇偶分析
第二十五讲奇数、偶数与奇偶分析整数按能否被2整除分为两大类:奇数和偶数,奇数与偶数有下列基本性质:1.奇数≠偶数2.两个整数相加(减)或相乘,结果的奇偶性如下表所示3.若干个奇数之积是奇数,偶数与任意整数之积是偶数;偶数个奇数的和为偶数,若干个偶数的和为偶数.4.设m、n是整数,则m土n,nm±的奇偶性相同.5.设m是整数,则m与m,m n的奇偶性相同.奇偶性是整数的固有属性,通过分析整数的奇偶性来解决问题的方法叫奇偶分析法.例题【例1】三个质数之和为86,那么这三个质数是.(“希望杯”邀请赛试题)思路点拨运用奇数、偶数、质数、合数性质,从分析三个加数的奇偶性人手.注:18世纪的哥尼斯堡,有7座桥把这儿的普雷格尔河中两个小岛与河岸联系起来,在这迷人的地方,人们议论着一个有趣的问题.一个游人怎样才能不重复地一次走遍7座桥,而最后又回到出发点.1736年彼得堡院士欧拉巧妙地解决了这个问题.欧拉把一个复杂的实际问题化为一个简单的几何图形,他指出只要我们能从一点出发,不重复地一笔把这样的图形画出来,那么就可说明游人能够不重复地一次走遍这7座桥,这就是著名的“一笔画”问题的来历.利用奇偶分析不难得到一般的结论:凡是能一笔画成的图形,它上面除了起点和终点外的每一个点总是一笔进来,一笔出去.因此,除了起点和终点外的每一个点都有偶数条线和它相连.简单地说,当且仅当图形中的奇结点(每点出发有奇数字线)的个数不大于2时,这个图形才能一笔画.【例2】如果a、b、c是三个任意的整数,那么222accbba+++、、().A.都不是整数B.至少有两个整数C.至少有一个整数D.都是整数(2001年TI杯全国初中数学竞赛题)思路点拨举例验证或从a、b、c的奇偶性说明.【例3】(1)设1,2,3,…,9的任一排列为a l,a2,a3…,a9.求证:(a l l一1)( a2—2)…(a9—9)是一个偶数.(2)在数11,22,33,44,54,…20022002,20032003,这些数的前面任意放置“+”或“一”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003.思路点拨(1)转换角度考察问题,化积的奇偶性为和的奇偶性来研究;(2)由于任意添“十”号或“一”号,形式多样,因此不可能一一尝试再作解答,从奇数、偶数的性质人手.【例4】已知n x x x x 、、、、 321都是+1或一1,并且011433221=+++++-x x x x x x x x x x n n n ,求证:n 是4的倍数.思路点拨 可以分两步,先证n 是偶数2k ,再证明k 是偶数,解题的关键是从已知等式左边各项的特点受到启发,挖掘隐含的一个等式.【例5】 游戏机的“方块”中共有下面?种图形.每种“方块”都由4个l ×l 的小方格组成.现用这7种图形拼成一个7× 4的长方形(可以重复使用某些图形).问:最多可以用这7种图形中的几种图形?思路点拨 为了形象化地说明问题,对7×4的长方形的28个小方格黑白相间染色,除“品字型”必占3个黑格1个白格或3个白格1个黑格,其余6个方格各占2个黑格2个白格.注:对同一个数学对象,从两个方向考虑(n 项和与积),再将这两个方面合在一起整体考虑,得出结论,这叫计算两次原理,通过计算两次可以建立方程,证明恒等式等.在一定的规则下,进行某种操作或变换,问是否(或证明)能够达到一个预期的目的,这就是所谓操作变换问题,此类问题变化多样,解法灵活,解题的关键是在操作变换中,挖掘不变量,不变性.一些非常规数字问题需要恰当地数学化,以便计算或推理.引入字母与赋值法是数学化的两种常用方式方法.所谓赋值法就是在解题时,将问题中的某些元素用适当的数表示,然后利用这些数值的大小,正负性、奇偶性等进行推理论证的一种解题方法.【例6】桌上放着七只杯子;杯口全朝上,每次翻转四个杯子:问能否经过若干次这样的翻动,使全部的杯子口都朝下?思路点拨 这不可能.我们将口向上的杯于记为:“0”,口向下的杯子记为“1”.开始时,由于七个杯子全朝上,所以这七个数的和为0,是个偶数.一个杯子每翻动一次,所记数由0变为1,或由l 变为0,改变了奇偶性.每一次翻动四个杯子,因此,七个之和的奇偶性仍与原来相同.所以,不论翻动多少次,七个数之和仍为偶数.而七个杯子全部朝下,和为7,是奇数,因此,不可能.整数可以分为奇数和偶数两类.【例7】在1,2,3,…,2005前面任意添上一个正号或负号,它们的代数和是奇数还是偶数?思路点拨 两个整数之和与这两个整数之差的奇偶性相同,只要知道1+2+3+…+2005的奇偶性即可.因两个整数的和与差的奇偶性相同,所以,在1,2,3,…,2005中每个数前面添上正号或负号,其代数和应与1+2+3+…+2005的奇偶性相同,而1+2+3+…+2005=21(1+ 2005)×2005=1003 ×2005为奇数;因此,所求代数和为奇数.注:抓住“a+b 与a —b 奇偶性相同”,通过特例1十2十3十…十2005得到答案.【例8】“ 元旦联欢会上,同学们互赠贺卡表示新年的:良好祝愿.“无论人数是什么数,用来交换的贺卡的张数总是偶数.”这句话正确吗?试证明你的结论.思路点拨 用分类讨论的思想方法,从“无论人数是什么数”入手,考虑人数为奇数或偶数的两种情况.这句话是正确的.下面证明之.若联欢会上的人数为偶数,设为2m (m 为整数),则每个人赠送给同学们的贺卡张数为奇数,即(2m —1).那么,贺卡总张数为2m(2m —1)=4m 2-2m ,显然是偶数.若联欢会上的人数为奇数,设为2m+1(m 为整数,则每个人赠送给同学们的贺卡张数应是2m ,为偶数.贺卡总张数为(2m+1)·2m ,仍为偶数.故“用来交换的贺卡张数总是偶数”是对的.注:按奇数和偶数分类考虑问题是常见的解决此类问题的策略之一.【例9】桌面上放有1993枚硬币,第1次翻动1993枚,第2次翻动其中的1992枚,第3次翻动其中的1991枚,…,第1993次翻动其中一枚,试问:能否使桌面上所有的1993枚硬币原先朝下的一面都朝上?并说明理由.思路点拨 若要把一枚硬币原先朝下的一面朝上,应该翻动该硬币奇数次.因此,要把1993枚硬币原先朝下的一面都朝上,应该翻动这1993枚硬币的总次数为奇数.现在1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997是个奇数,故猜想可以使桌面上1993枚硬币原先朝下的一面都朝上.理由如下:按规定,1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997,所以翻动的次数为奇数,而且可见每个硬币平均翻动了997次.而事实上,只要翻动一枚硬币奇数次,就能使这枚硬币原先朝下的一面朝上.按如下的方法进行翻动: 第1次翻动全部1993枚,第2次翻动其中的1992枚,第1993次翻动第2次未翻动的那1枚,第3次翻动其中的1991枚,第1992次翻动第3次未翻动的2枚,第997次翻动其中的997枚,第998次翻动第997次未翻动的996枚.这样,正好每枚硬币被翻动了997次,就能使每一枚硬币原来朝下的一面都朝上. 注:灵活、巧妙地利用奇俩性分析推理,可以解决许多复杂而有趣的问题,并有意想不到的效果.【例10】在6张纸片的正面分别写上整数:1、2、3、4、5、6,打乱次序后,将纸片翻过来,在它们的反面也随意分别写上1-6这6个整数,然后,计算每张纸片的正面与反面所写数字之差的绝对值,得出6个数.请你证明:所得的6个数中至少有两个是相同的. 思路点拨 从反面人手,即设这6个数两两都不相等,利用bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同,引入字母进行推理证明.设6张卡片正面写的数是654321a a a a a a 、、、、、,反面写的数对应为654321b b b b b b 、、、、、,则这6张卡片正面写的数与反面写的数的绝对值分别为11b a -,22b a -,33b a -,44b a -,55b a -,66b a -.设这6个数两两都不相等,则它们只能取0,1,2,3,4,5这6个值.于是11b a -+22b a -+33b a -+44b a -+55b a -+66b a -=0+1+2+3+4+5=15是个奇数. 另一方面,bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同.所以11b a -+22b a -+33b a -+44b a -+55b a -+66b a -与(a 1一b 1)+(a 2一b 2)+(a 3一b 3)+(a 4一b 4)+(a 5一b 5)+(a 6一b 6)= )(654321a a a a a a +++++一)(654321b b b b b b +++++ =(1+2+3+4+5+6)一(1+2+3+4+5+6)=O 的奇偶性相同,而0是个偶数,15是奇数,两者矛盾. 所以,11b a -,22b a -,33b a -,44b a -,55b a -,66b a -这6个数中至少有两个是相同的.注:反证法是解决奇、偶数问题中常用的方法.【例11】有一只小渡船往返于一条小河的左右两岸之间,问:(1)若最初小船是在左岸,往返若干次后,它又回到左岸,那么这只小船过河的次数是奇数还是偶数?如果它最后到了右岸,情况又是怎样呢?(2)若小船最初在左岸,它过河99次之后,是停在左岸还是右岸?思路点拨 (1)小船最初在左岸,过一次河就到了右岸,再过一次河就由右岸回到左岸,即每次由左岸出发到右岸后再回到左岸,都过了两次河.因此,小船由左岸开始,往返多次后又回到左岸,则过河的次数必为2的倍数,所以是偶数.同样的道理,不难得出,若小船最后停在右岸,则过河的次数必为奇数.(2)通过(1),我们发现,若小船最初在左岸,过偶数次河后,就回到左岸;过奇数次河后,就停在右岸.现在小船过河99次,是奇数次.因此,最后小船该停在右岸.注 关键是对过河次数的理解:一个单程,即由左岸到右岸(或由右岸到左岸)就过河一次;往返一个来回就过河两次.【例12】黑板上写了三个整数,任意擦去其中一个,把它改写成另两个数的和减去1,这样继续下去,得到1995、1996、1997,问原来的三个数能否是2、2、2?思路点拨 如果原来的三个整数是2、2、2,即三个偶数,操作一次后,三个数变成二偶一奇,这时如果擦去其中的奇数,操作后三个数仍是二偶一奇.如果擦去的是其中的一个偶数,操作后三个数仍是二偶一奇.因此,无论怎样操作,得到的三个数都是二偶一奇,不可能得到1995、1996、1997.所以,原来的三个数不可能是2、2、2.注 解决本题的诀窍在于考查数字变化后的奇偶性.【例13】(苏州市中考题)将正偶数按下表排成五列:第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8第2行 16 14 12 10第3行 18 20 22 24… … 28 26根据上面的排列规律,则2000应位于( )A .第125行,第1列B .第125行,第2列C .第250行,第1列D .第250行,第2列思路点拨 观察表格,第1行最右边的数为8,第2行最左边的数为16,第3行最右边的数为24,于是可猜测:当行数为奇数时,该行最右边的数为8×行数;当行数为偶数时,该行最左边的数为8×行数.通过验证第4行、第5行、第6行知,上述猜想是正确的,因为2000=8×250,所以2000应在第250行,又因为250为偶数,故2000应在第250行最左边,即第250行第1列,故应选C .注:观察、寻找规律是解决这类问题的妙招.【例14】(2000年山东省竞赛题)如图18—1,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字.若左轮子上方的箭头指着的数字为a ,右轮子上方的箭头指着的数字为b ,数对(a ,b)所有可能的个数为n ,其中a+b 恰为偶数的不同数对的个数为m ,则n m 等于( ) A .21 B .61 C .125 D .43 思路点拨 依题意可知所有的数对n=4×3=12,其中a+b 恰为偶数的数对m=3×1+1×2=5.因此,n m =125,故选C . 【例15】(第江苏省竞赛题)已知a 、b 、c 中有两个奇数、一个偶数,n 是整数,如果S=(a+2n+1)(b+2n 十2)(c+2n 十3),那么( )A .S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D . S 的奇偶性不能确定思路点拨 弄清a+2n+1,b+2n+2,c+2n+3的奇偶性即可.依题得:(a+2n+1)+(b+2n+2)+(c+2n+3)=a+b+c+6(n+1).∵a+b+c 为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴a+2n+1,b+2n+2,c+2n+3中至少有一个为偶数,∴S 是偶数.故选A .注:三个数的和为偶数,则至少有一个为偶数;三个数中有一个为偶数,则三数之和为偶数.学力训练1.若按奇偶性分类,则12+22+32+…+20022002是 数.2.能不能在下式, 的各个方 框中分别填人“+”号或“一”号,使等式成立?答: .3.已知三个质数a 、b 、c 满足a+b+c+abc =99,那么a c c b b a -+-+-的值等于 .4.已知n 为整数,现有两个代数式:(1)2n+3,(2)4n 一1,其中,能表示“任意奇数”的( )A .只有(1)B .只有(2)C .有(1)和(2)D .一个也没有5.如果a ,b ,c 都是正整数,且a ,b 是奇数,则3a +(b 一1)2c 是( ).A .只当c 为奇数时,其值为奇数B .只当c 为偶数时,其值为奇数C .只当c 为3的倍数,其值为奇数D .无论c 为任何正楚数,其值均为奇数6.已知a ,b ,c 三个数中有两个奇数、一个偶数,n 是整数,如果S=(a+n+1)(b+ 2n+2)(c+3n+3),那么( ).(第16届江苏省竞赛题)A . S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D .S 的奇偶性不能确定7.(1)是否有满足方程x 2-y 2=1998的整数解x 和y?如果有,求出方程的解;如果没有,说明理由.(2)一个立方体的顶点标上+1或一1,面上标上一个数,它等于这个面的4个顶点处的数的乘积,这样所标的14个数的和能否为0?8.甲、乙两人玩纸牌游戏,甲持有全部的红桃牌(A 作1,J ,Q ,K 分别作11,12,13,不同),乙持有全部的黑桃牌,两人轮流出牌,每次出一张,得到一对牌,出完为止,共得到13对牌,每对牌彼此相减,问这13个差的乘积的奇偶性能否确定?9.在1,2,3,…,1998之前任意添上“十”或“一”号,然后相加,这些和中最小的正整数是 .10.1,2,3,…,98共98个自然数,能够表示成两整数平方差的数的个数是 .(全国初中数学联赛试题)11.在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分,今有4个人统计百这次比赛中全部得分总数,由于有的人粗心,其数据各不相同,分别为1979,1980,1984,1985,经核实,其中有一人统计无误,则这次比赛共有 名选手参加.12.已知p 、q 、pq+1都是质数,且p 一q>40,那么满足上述条件的最小质数p = ; q = .(第15届“希望杯”邀请赛试题)13.设a ,b 为整数,给出下列4个结论(1)若a+5b 是偶数,则a 一3b 是偶数;(2)若a 十5b 是偶数,则a 一3b 是奇数;(3)若a+5b 是奇数,则a 一3b 是偶数;(4)若a+5b 是奇数,则a 一3b 是奇数,其中结论正确的个数是( ).A .0个B .2个C .4个D . 1个或3个14.下面的图形,共有( )个可以一笔画(不重复也不遗漏;下笔后笔不能离开纸) .A .0B .1C .2D .3( “五羊杯”竞赛题)15.π的前24位数值为3.14159265358979323846264…,在这24个数字中,随意地逐个抽取1个数字,并依次记作a1,a2,…a24,则(a1一a2)( a3一a4)…(a23一a24)为( ).A.奇数B.偶数C.奇数或偶数D.质数16.没标有A、B、C、D、C、F、G记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A、C、E、G 4盏灯开着,其余3盏灯是关的,小刚从灯A开始,顺次拉动开关,即从A 到G,再从A始顺次拉动开关,即又从A到G…,他这样拉动了1999次开关后,问哪几盏是开的?17.有1997枚硬币,其中1000枚国徽朝上,997枚国徽朝下.现要求每一次翻转其中任意6枚,使它们的国徽朝向相反,问能否经过有限次翻转之后,使所有硬币的国徽都朝上?给出你的结论,并给予证明.(太原市竞赛题) 18.对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为l的数有多少个?( “华杯赛”决赛题)19.高为50cm,底面周长为50cm的圆柱,在此圆柱的侧面上划分(如图所示)边长为lcm的正方形,用四个边长为lcm的小正方形构成“T”字形,用此图形是否能拼成圆柱侧面?试说明理由.(汉城国际数学竞赛题)参考答案。
数的奇偶性与分解
数的奇偶性与分解数的奇偶性是数学中的一个基本概念,指的是数能否被2整除。
一个数被2整除,我们称之为偶数;一个数不能被2整除,我们称之为奇数。
奇偶性在数学中有着广泛的应用,特别是在数的分解过程中。
本文将探讨数的奇偶性与分解之间的关系并进行详细阐述。
一、数的奇偶性的概念和性质数的奇偶性是指一个数能否被2整除,这是一个最基本的数学概念。
奇数可以表示为2n+1的形式,其中n是整数;偶数可以表示为2n的形式,其中n是整数。
这种表示方式清晰地展现了奇数与偶数之间的数学关系。
数的奇偶性有以下几个性质:1. 任何一个数都可以被2整除,因此所有的数都可以被分类为奇数和偶数之一。
2. 奇数加奇数得偶数,奇数加偶数得奇数,偶数加偶数得偶数。
3. 奇数乘奇数得奇数,奇数乘偶数得偶数,偶数乘偶数得偶数。
利用这些性质,我们可以在计算中更加方便地处理数的奇偶性。
二、数的分解与奇偶性在数学中,我们经常需要将一个数分解为若干个因子或数的和,这个过程叫做数的分解。
数的奇偶性在数的分解中起着重要作用。
1. 将偶数分解为因子的乘积对于一个偶数,我们可以将其分解为两个因子的乘积。
由于偶数可以被2整除,因此可以将其表示为2与一个奇数之积。
例如,偶数6可以表示为2×3。
这个过程也可以进一步进行,将一个偶数分解为多个因子的乘积。
例如,偶数12可以表示为2×2×3。
2. 将奇数分解为因子的和对于一个奇数,我们可以将其分解为多个因子的和。
由于奇数不能被2整除,因此可以将其表示为若干个奇数之和。
例如,奇数9可以表示为3+3+3。
3. 利用奇偶性简化分解过程在数的分解过程中,我们可以巧妙地利用数的奇偶性来简化计算。
如果一个数是偶数,我们可以直接将其分解为2与一个奇数之积,再继续分解这个奇数。
如果一个数是奇数,我们可以将其分解为若干个奇数的和,通过加法操作来达到分解的目的。
这样,我们可以更加高效地进行数的分解。
三、数的奇偶性与实际应用数的奇偶性在实际应用中具有广泛的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十五讲奇数、偶数与奇偶分析整数按能否被2整除分为两大类:奇数和偶数,奇数与偶数有下列基本性质:1.奇数≠偶数2.两个整数相加(减)或相乘,结果的奇偶性如下表所示3.若干个奇数之积是奇数,偶数与任意整数之积是偶数;偶数个奇数的和为偶数,若干个偶数的和为偶数.4.设m、n是整数,则m土n,nm±的奇偶性相同.5.设m是整数,则m与m,m n的奇偶性相同.奇偶性是整数的固有属性,通过分析整数的奇偶性来解决问题的方法叫奇偶分析法.例题【例1】三个质数之和为86,那么这三个质数是.(“希望杯”邀请赛试题)思路点拨运用奇数、偶数、质数、合数性质,从分析三个加数的奇偶性人手.注:18世纪的哥尼斯堡,有7座桥把这儿的普雷格尔河中两个小岛与河岸联系起来,在这迷人的地方,人们议论着一个有趣的问题.一个游人怎样才能不重复地一次走遍7座桥,而最后又回到出发点.1736年彼得堡院士欧拉巧妙地解决了这个问题.欧拉把一个复杂的实际问题化为一个简单的几何图形,他指出只要我们能从一点出发,不重复地一笔把这样的图形画出来,那么就可说明游人能够不重复地一次走遍这7座桥,这就是著名的“一笔画”问题的来历.利用奇偶分析不难得到一般的结论:凡是能一笔画成的图形,它上面除了起点和终点外的每一个点总是一笔进来,一笔出去.因此,除了起点和终点外的每一个点都有偶数条线和它相连.简单地说,当且仅当图形中的奇结点(每点出发有奇数字线)的个数不大于2时,这个图形才能一笔画.【例2】如果a、b、c是三个任意的整数,那么222accbba+++、、().A.都不是整数B.至少有两个整数C.至少有一个整数D.都是整数(2001年TI杯全国初中数学竞赛题)思路点拨举例验证或从a、b、c的奇偶性说明.【例3】(1)设1,2,3,…,9的任一排列为a l,a2,a3…,a9.求证:(a l l一1)( a2—2)…(a9—9)是一个偶数.(2)在数11,22,33,44,54,…20022002,20032003,这些数的前面任意放置“+”或“一”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003.思路点拨(1)转换角度考察问题,化积的奇偶性为和的奇偶性来研究;(2)由于任意添“十”号或“一”号,形式多样,因此不可能一一尝试再作解答,从奇数、偶数的性质人手.【例4】已知n x x x x 、、、、 321都是+1或一1,并且011433221=+++++-x x x x x x x x x x n n n ,求证:n 是4的倍数.思路点拨 可以分两步,先证n 是偶数2k ,再证明k 是偶数,解题的关键是从已知等式左边各项的特点受到启发,挖掘隐含的一个等式.【例5】 游戏机的“方块”中共有下面?种图形.每种“方块”都由4个l ×l 的小方格组成.现用这7种图形拼成一个7× 4的长方形(可以重复使用某些图形).问:最多可以用这7种图形中的几种图形?思路点拨 为了形象化地说明问题,对7×4的长方形的28个小方格黑白相间染色,除“品字型”必占3个黑格1个白格或3个白格1个黑格,其余6个方格各占2个黑格2个白格.注:对同一个数学对象,从两个方向考虑(n 项和与积),再将这两个方面合在一起整体考虑,得出结论,这叫计算两次原理,通过计算两次可以建立方程,证明恒等式等.在一定的规则下,进行某种操作或变换,问是否(或证明)能够达到一个预期的目的,这就是所谓操作变换问题,此类问题变化多样,解法灵活,解题的关键是在操作变换中,挖掘不变量,不变性.一些非常规数字问题需要恰当地数学化,以便计算或推理.引入字母与赋值法是数学化的两种常用方式方法.所谓赋值法就是在解题时,将问题中的某些元素用适当的数表示,然后利用这些数值的大小,正负性、奇偶性等进行推理论证的一种解题方法.【例6】桌上放着七只杯子;杯口全朝上,每次翻转四个杯子:问能否经过若干次这样的翻动,使全部的杯子口都朝下?思路点拨 这不可能.我们将口向上的杯于记为:“0”,口向下的杯子记为“1”.开始时,由于七个杯子全朝上,所以这七个数的和为0,是个偶数.一个杯子每翻动一次,所记数由0变为1,或由l 变为0,改变了奇偶性.每一次翻动四个杯子,因此,七个之和的奇偶性仍与原来相同.所以,不论翻动多少次,七个数之和仍为偶数.而七个杯子全部朝下,和为7,是奇数,因此,不可能.整数可以分为奇数和偶数两类.【例7】在1,2,3,…,2005前面任意添上一个正号或负号,它们的代数和是奇数还是偶数?思路点拨 两个整数之和与这两个整数之差的奇偶性相同,只要知道1+2+3+…+2005的奇偶性即可.因两个整数的和与差的奇偶性相同,所以,在1,2,3,…,2005中每个数前面添上正号或负号,其代数和应与1+2+3+…+2005的奇偶性相同,而1+2+3+…+2005=21(1+ 2005)×2005=1003 ×2005为奇数;因此,所求代数和为奇数.注:抓住“a+b 与a —b 奇偶性相同”,通过特例1十2十3十…十2005得到答案.【例8】“ 元旦联欢会上,同学们互赠贺卡表示新年的:良好祝愿.“无论人数是什么数,用来交换的贺卡的张数总是偶数.”这句话正确吗?试证明你的结论.思路点拨 用分类讨论的思想方法,从“无论人数是什么数”入手,考虑人数为奇数或偶数的两种情况.这句话是正确的.下面证明之.若联欢会上的人数为偶数,设为2m (m 为整数),则每个人赠送给同学们的贺卡张数为奇数,即(2m —1).那么,贺卡总张数为2m(2m —1)=4m 2-2m ,显然是偶数.若联欢会上的人数为奇数,设为2m+1(m 为整数,则每个人赠送给同学们的贺卡张数应是2m ,为偶数.贺卡总张数为(2m+1)·2m ,仍为偶数.故“用来交换的贺卡张数总是偶数”是对的.注:按奇数和偶数分类考虑问题是常见的解决此类问题的策略之一.【例9】桌面上放有1993枚硬币,第1次翻动1993枚,第2次翻动其中的1992枚,第3次翻动其中的1991枚,…,第1993次翻动其中一枚,试问:能否使桌面上所有的1993枚硬币原先朝下的一面都朝上?并说明理由.思路点拨 若要把一枚硬币原先朝下的一面朝上,应该翻动该硬币奇数次.因此,要把1993枚硬币原先朝下的一面都朝上,应该翻动这1993枚硬币的总次数为奇数.现在1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997是个奇数,故猜想可以使桌面上1993枚硬币原先朝下的一面都朝上.理由如下:按规定,1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997,所以翻动的次数为奇数,而且可见每个硬币平均翻动了997次.而事实上,只要翻动一枚硬币奇数次,就能使这枚硬币原先朝下的一面朝上.按如下的方法进行翻动: 第1次翻动全部1993枚,第2次翻动其中的1992枚,第1993次翻动第2次未翻动的那1枚,第3次翻动其中的1991枚,第1992次翻动第3次未翻动的2枚,第997次翻动其中的997枚,第998次翻动第997次未翻动的996枚.这样,正好每枚硬币被翻动了997次,就能使每一枚硬币原来朝下的一面都朝上. 注:灵活、巧妙地利用奇俩性分析推理,可以解决许多复杂而有趣的问题,并有意想不到的效果.【例10】在6张纸片的正面分别写上整数:1、2、3、4、5、6,打乱次序后,将纸片翻过来,在它们的反面也随意分别写上1-6这6个整数,然后,计算每张纸片的正面与反面所写数字之差的绝对值,得出6个数.请你证明:所得的6个数中至少有两个是相同的. 思路点拨 从反面人手,即设这6个数两两都不相等,利用bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同,引入字母进行推理证明.设6张卡片正面写的数是654321a a a a a a 、、、、、,反面写的数对应为654321b b b b b b 、、、、、,则这6张卡片正面写的数与反面写的数的绝对值分别为11b a -,22b a -,33b a -,44b a -,55b a -,66b a -.设这6个数两两都不相等,则它们只能取0,1,2,3,4,5这6个值.于是11b a -+22b a -+33b a -+44b a -+55b a -+66b a -=0+1+2+3+4+5=15是个奇数. 另一方面,bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同.所以11b a -+22b a -+33b a -+44b a -+55b a -+66b a -与(a 1一b 1)+(a 2一b 2)+(a 3一b 3)+(a 4一b 4)+(a 5一b 5)+(a 6一b 6)= )(654321a a a a a a +++++一)(654321b b b b b b +++++ =(1+2+3+4+5+6)一(1+2+3+4+5+6)=O 的奇偶性相同,而0是个偶数,15是奇数,两者矛盾. 所以,11b a -,22b a -,33b a -,44b a -,55b a -,66b a -这6个数中至少有两个是相同的.注:反证法是解决奇、偶数问题中常用的方法.【例11】有一只小渡船往返于一条小河的左右两岸之间,问:(1)若最初小船是在左岸,往返若干次后,它又回到左岸,那么这只小船过河的次数是奇数还是偶数?如果它最后到了右岸,情况又是怎样呢?(2)若小船最初在左岸,它过河99次之后,是停在左岸还是右岸?思路点拨 (1)小船最初在左岸,过一次河就到了右岸,再过一次河就由右岸回到左岸,即每次由左岸出发到右岸后再回到左岸,都过了两次河.因此,小船由左岸开始,往返多次后又回到左岸,则过河的次数必为2的倍数,所以是偶数.同样的道理,不难得出,若小船最后停在右岸,则过河的次数必为奇数.(2)通过(1),我们发现,若小船最初在左岸,过偶数次河后,就回到左岸;过奇数次河后,就停在右岸.现在小船过河99次,是奇数次.因此,最后小船该停在右岸.注 关键是对过河次数的理解:一个单程,即由左岸到右岸(或由右岸到左岸)就过河一次;往返一个来回就过河两次.【例12】黑板上写了三个整数,任意擦去其中一个,把它改写成另两个数的和减去1,这样继续下去,得到1995、1996、1997,问原来的三个数能否是2、2、2?思路点拨 如果原来的三个整数是2、2、2,即三个偶数,操作一次后,三个数变成二偶一奇,这时如果擦去其中的奇数,操作后三个数仍是二偶一奇.如果擦去的是其中的一个偶数,操作后三个数仍是二偶一奇.因此,无论怎样操作,得到的三个数都是二偶一奇,不可能得到1995、1996、1997.所以,原来的三个数不可能是2、2、2.注 解决本题的诀窍在于考查数字变化后的奇偶性.【例13】(苏州市中考题)将正偶数按下表排成五列:第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8第2行 16 14 12 10第3行 18 20 22 24… … 28 26根据上面的排列规律,则2000应位于( )A .第125行,第1列B .第125行,第2列C .第250行,第1列D .第250行,第2列思路点拨 观察表格,第1行最右边的数为8,第2行最左边的数为16,第3行最右边的数为24,于是可猜测:当行数为奇数时,该行最右边的数为8×行数;当行数为偶数时,该行最左边的数为8×行数.通过验证第4行、第5行、第6行知,上述猜想是正确的,因为2000=8×250,所以2000应在第250行,又因为250为偶数,故2000应在第250行最左边,即第250行第1列,故应选C .注:观察、寻找规律是解决这类问题的妙招.【例14】(2000年山东省竞赛题)如图18—1,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字.若左轮子上方的箭头指着的数字为a ,右轮子上方的箭头指着的数字为b ,数对(a ,b)所有可能的个数为n ,其中a+b 恰为偶数的不同数对的个数为m ,则n m 等于( ) A .21 B .61 C .125 D .43 思路点拨 依题意可知所有的数对n=4×3=12,其中a+b 恰为偶数的数对m=3×1+1×2=5.因此,n m =125,故选C . 【例15】(第江苏省竞赛题)已知a 、b 、c 中有两个奇数、一个偶数,n 是整数,如果S=(a+2n+1)(b+2n 十2)(c+2n 十3),那么( )A .S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D . S 的奇偶性不能确定思路点拨 弄清a+2n+1,b+2n+2,c+2n+3的奇偶性即可.依题得:(a+2n+1)+(b+2n+2)+(c+2n+3)=a+b+c+6(n+1).∵a+b+c 为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴a+2n+1,b+2n+2,c+2n+3中至少有一个为偶数,∴S 是偶数.故选A .注:三个数的和为偶数,则至少有一个为偶数;三个数中有一个为偶数,则三数之和为偶数.学力训练1.若按奇偶性分类,则12+22+32+…+20022002是 数.2.能不能在下式, 的各个方 框中分别填人“+”号或“一”号,使等式成立?答: .3.已知三个质数a 、b 、c 满足a+b+c+abc =99,那么a c c b b a -+-+-的值等于 .4.已知n 为整数,现有两个代数式:(1)2n+3,(2)4n 一1,其中,能表示“任意奇数”的( )A .只有(1)B .只有(2)C .有(1)和(2)D .一个也没有5.如果a ,b ,c 都是正整数,且a ,b 是奇数,则3a +(b 一1)2c 是( ).A .只当c 为奇数时,其值为奇数B .只当c 为偶数时,其值为奇数C .只当c 为3的倍数,其值为奇数D .无论c 为任何正楚数,其值均为奇数6.已知a ,b ,c 三个数中有两个奇数、一个偶数,n 是整数,如果S=(a+n+1)(b+ 2n+2)(c+3n+3),那么( ).(第16届江苏省竞赛题)A . S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D .S 的奇偶性不能确定7.(1)是否有满足方程x 2-y 2=1998的整数解x 和y?如果有,求出方程的解;如果没有,说明理由.(2)一个立方体的顶点标上+1或一1,面上标上一个数,它等于这个面的4个顶点处的数的乘积,这样所标的14个数的和能否为0?8.甲、乙两人玩纸牌游戏,甲持有全部的红桃牌(A 作1,J ,Q ,K 分别作11,12,13,不同),乙持有全部的黑桃牌,两人轮流出牌,每次出一张,得到一对牌,出完为止,共得到13对牌,每对牌彼此相减,问这13个差的乘积的奇偶性能否确定?9.在1,2,3,…,1998之前任意添上“十”或“一”号,然后相加,这些和中最小的正整数是 .10.1,2,3,…,98共98个自然数,能够表示成两整数平方差的数的个数是 .(全国初中数学联赛试题)11.在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分,今有4个人统计百这次比赛中全部得分总数,由于有的人粗心,其数据各不相同,分别为1979,1980,1984,1985,经核实,其中有一人统计无误,则这次比赛共有 名选手参加.12.已知p 、q 、pq+1都是质数,且p 一q>40,那么满足上述条件的最小质数p = ; q = .(第15届“希望杯”邀请赛试题)13.设a ,b 为整数,给出下列4个结论(1)若a+5b 是偶数,则a 一3b 是偶数;(2)若a 十5b 是偶数,则a 一3b 是奇数;(3)若a+5b 是奇数,则a 一3b 是偶数;(4)若a+5b 是奇数,则a 一3b 是奇数,其中结论正确的个数是( ).A .0个B .2个C .4个D . 1个或3个14.下面的图形,共有( )个可以一笔画(不重复也不遗漏;下笔后笔不能离开纸) .A .0B .1C .2D .3( “五羊杯”竞赛题)15.π的前24位数值为3.14159265358979323846264…,在这24个数字中,随意地逐个抽取1个数字,并依次记作a1,a2,…a24,则(a1一a2)( a3一a4)…(a23一a24)为( ).A.奇数B.偶数C.奇数或偶数D.质数16.没标有A、B、C、D、C、F、G记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A、C、E、G 4盏灯开着,其余3盏灯是关的,小刚从灯A开始,顺次拉动开关,即从A 到G,再从A始顺次拉动开关,即又从A到G…,他这样拉动了1999次开关后,问哪几盏是开的?17.有1997枚硬币,其中1000枚国徽朝上,997枚国徽朝下.现要求每一次翻转其中任意6枚,使它们的国徽朝向相反,问能否经过有限次翻转之后,使所有硬币的国徽都朝上?给出你的结论,并给予证明.(太原市竞赛题) 18.对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为l的数有多少个?( “华杯赛”决赛题)19.高为50cm,底面周长为50cm的圆柱,在此圆柱的侧面上划分(如图所示)边长为lcm的正方形,用四个边长为lcm的小正方形构成“T”字形,用此图形是否能拼成圆柱侧面?试说明理由.(汉城国际数学竞赛题)参考答案。