人教版八年级上册数学试题:15章复习题含答案
人教版八年级上册数学 第十五章 分式实际应用题 综合复习练习题(含答案)
人教版八年级上册数学第十五章分式实际应用题综合复习练习题
1.某装修工程,甲、乙两人可以合作完成,若甲、乙两人合作4天后,再由乙独作12天可以完成,已知甲独作每天需要费用580元.乙独作每天需费用280元.但乙单独完成的天数是甲单独完成天数的2倍.
(1)甲、乙两人单独作这项工程各需多少天?
(2)如果工期要求不超过18天完成,应如何安排甲乙两人的工期使这项工程比较省钱?
2.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?
3.新冠肺炎疫情爆发之后,全国许多省市对湖北各地进行了援助,广州市某医疗队备好医疗防护物资迅速援助武汉.
第一批医疗队员乘坐高铁从广州出发,2.5小时后,第二批医疗队员乘坐飞机从广州出发,两批队员刚好同时到达武汉.已知广州到武汉的飞行距离为800千米,高铁路程为飞行
距离的倍.
(1)求广州到武汉的高铁路程;
(2)若飞机速度与高铁速度之比为5:2,求飞机和高铁的速度.
4.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等.
(1)甲、乙二人每小时各做零件多少个?
(2)甲做几小时与乙做4小时所做机械零件数相等?
5.小明准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少6元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价各是多少?
(2)小明准备用自己的180元压岁钱购买这种笔和本子,计划180元刚好用完,并且笔和本子都买,请列出所有购买方案.。
人教版 八年级上册数学 第十五章 分式实际应用题 综合复习(五)(含答案)
第十五章分式实际应用题综合复习(五)1.第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?2.2020年1月份,为抗击新型冠状病毒,某药店计划购进一批甲、乙两种型号的口罩,已知一袋甲种口罩的进价与一袋乙种口罩的进价和为40元,用90元购进甲种口罩的袋数与用150元购进乙种口罩的袋数相同.(1)求每袋甲种、乙种口罩的进价分别是多少元?(2)该药店计划购进甲、乙两种口罩共480袋,其中甲种口罩的袋数少于乙种口罩袋数的,药店决定此次进货的总资金不超过10000元,求商场共有几种进货方案?3.某商场家电专柜购进一批甲,乙两种电器,甲种电器共用了10 350元,乙种电器共用了9 600元,甲种电器的件数是乙种电器的1.5倍,甲种电器每件的进价比乙种电器每件的进价少90元.(1)甲、乙两种电器各购进多少件?(2)商场购进两种电器后,按进价提高40%后标价销售,很快全部售完,求售完这批电器商场共获利多少元?4.疫情防控形势下,人们在外出时都应戴上口罩以保护自己免受新型冠状病毒感染.某药店用4000元购进若干包次性医用口罩,很快售完,该店又用7500元钱购进第二批这种口罩,所进的包数比第一批多50%,每包口罩的进价比第一批每包口罩的进价多0.5元,请解答下列问题:(1)求购进的第一批医用口罩有多少包?(2)政府采取措施,在这两批医用口罩的销售中,售价保持了一致,若售完这两批口罩的总利润不高于3500元钱,那么药店销售该口罩每包的最高售价是多少元?5.列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2019年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2019 年地铁每小时客运量是2012年地铁每小时客运量的4倍,2019年客运240万人所用的时间比2012年客运240万人所用的时间少30小时,求2019年地铁每小时的客运量?6.某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.(1)求每个甲、乙两种商品的进价分别是多少元?(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?(3)在(2)的条件下,如果甲、乙两种商品的售价分别是12元/个和15元/个,且将购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润超过380元,那么该商场购进甲、乙两种商品有哪几种方案?7.甲乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做多少个零件?8.列分式方程解应用题某校初二年级的甲、乙两个班的同学以班级为单位分别乘坐大巴车去某基地参加拓展活动,此基地距离该校90千米,甲班的甲车出发10分钟后,乙班的乙车才出发,为了比甲车早到5分钟,乙车的平均速度是甲车的平均速度的1.2倍,求乙车的平均速度.9.潮州旅游文化节开幕前,某凤凰茶叶公司预测今年凤凰茶叶能够畅销,就用32000元购进了一批凤凰茶叶,上市后很快脱销,茶叶公司又用68000元购进第二批凤凰茶叶,所购数量是第一批购进数量的2倍,但每千克凤凰茶叶进价多了10元.(1)该凤凰茶叶公司两次共购进这种凤凰茶叶多少千克?(2)如果这两批茶叶每千克的售价相同,且全部售完后总利润率不低于20%,那么每千克售价至少是多少元?10.城都地铁17号线正在建设汇总,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参加该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?参考答案1.解:设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,由题意得:﹣=140,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,15×4=60,答:该地4G的下载速度是每秒4兆,则该地5G的下载速度是每秒60兆.2.解:(1)设甲种口罩进价x元/袋,则乙种口罩进价为(40﹣x)元/袋,依题意有=,解得x=15,经检验x=15是原方程的解,则40﹣x=25.故甲种口罩进价15元/袋,则乙种口罩进价为25元/袋;(2)设购进甲种口罩y袋,则购进乙种口罩(480﹣y)袋,依题意有,解得200≤y<204.因为y是整数,甲种口罩的袋数少于乙种口罩袋数,所以y取200,201,202,203,共有4种方案.3.解:(1)设乙种电器购进x件,则甲种电器购进1.5x件,根据题意得:,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴1.5x=45.答:甲种电器购进45件,乙种电器购进30件.(2)(10350+9600)×40%=7980(元).答:售完这批电器商场共获利7980元.4.(1)设购进的第一批医用口罩有x包,则=﹣0.5.解得:x=2000.经检验x=2000是原方程的根并符合实际意义.答:购进的第一批医用口罩有2000包;(2)设药店销售该口罩每包的售价是y元,则由题意得:[2000+2000(1+50%)]y﹣4000﹣7500≤3500.解得:y≤3.答:药店销售该口罩每包的最高售价是3元.5.解:设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,由题意得,解得x=6,经检验x=6是分式方程的解,答:2017年每小时客运量24万人.6.解:(1)设每件乙种商品的进价为x元,则每件甲种商品的进价为(x﹣2)元,根据题意,得=,解得:x=10,经检验,x=10是原方程的根,每件甲种商品的进价为:10﹣2=8.答:每件甲种商品的进价为8元,每件乙种商品件的进价为10元.(2)设购进乙种商品y个,则购进甲种商品(3y﹣5)个.由题意得:3y﹣5+y≤95.解得y≤25.答:商场最多购进乙商品25个;(3)由(2)知,(12﹣8)(3y﹣5)+(15﹣10)y>380,解得:y≥23.∵y为整数,y≤25,∴y=24或25.∴共有2种方案.方案一:购进甲种商品67个,乙商品件24个;方案二:购进甲种商品70个,乙种商品25个.7.解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+6=18.答:乙每小时做12个零件,甲每小时做18个零件.8.解:设甲车的平均速度是x千米/时,则乙车的平均速度是1.2x千米/时,根据题意,得=+,解得x=60.经检验,x=60是原方程的解,此时1.2x=72.答:乙车的平均速度是72千米/时.9.解:(1)设凤凰茶叶公司公司第一次购x千克茶叶,则第二次购进2x千克茶叶,根据题意得:﹣=10,解得:x=200,经检验,x=200是原方程的根,且符合题意,∴2x+x=2×200+200=600.答:凤凰茶叶公司两次共购进这种凤凰茶叶600千克.(2)设每千克茶叶售价y元,根据题意得:600y﹣32000﹣68000≥(32000+68000)×20%,解得:y≥200.答:每千克茶叶的售价至少是200元.10.解:(1)设乙队单独施工,需要x天才能完成该项工程,∵甲队单独施工30天完成该项工程的,∴甲队单独施工180天完成该项工程,根据题意可得:+15(+)=1,解得:x=20,检验得:x=20是原方程的根,答:乙队单独施工,需要20天才能完成该项工程;(2)设乙队参与施工y天才能完成该项工程,根据题意可得:×36+y×≥1,解得:y≥16,答:乙队至少施工16天才能完成该项工程.。
人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)
人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。
人教版八年级数学上册第十五章综合测试卷含答案
人教版八年级数学上册第十五章综合测试卷一、选择题(每小题3分,共30分) 1.下列分式中,是最简分式的是( ) A .xy 2x 2B .x -1x 2-1C .x +y xD .1-x x -12. [母题教材P 145练习T 1]在标准状态下气体分子间的平均距离为0.000 33 m ,将0.000 33用科学记数法应表示为( ) A .3.3×10-4 B .33×10-3 C .3.3×10-3D .33×10-43.如果把分式3y x +y中的x 和y 都扩大2倍,那么分式的值( ) A .不变B .扩大2倍C .扩大4倍D .缩小2倍 4.[2024成都武侯区模拟]已知x =1是分式方程2ax+3a -x=34的解,则a的值为( ) A .-1B .1C .3D .-35.[2023唐山一模]若□x +y÷x y 2-x 2运算的结果为整式,则“□”中的式子可能是( ) A . y -xB . y +xC .2xD .1x6.化简(x -1+y -1)(x +y )-1的结果是( ) A . xyB .1xyC .1x 2y2D .1x 2+y 27. [新趋势 跨学科]相机成像的原理公式为1f=1u+1v(u ≠f ,v ≠f ),其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.下列用f ,u 表示v 正确的是( ) A . v =u -f fuB . v =fuf -uC . v =f -u fuD . v =fuu -f8.如图,下面的计算过程中,开始出现错误的一步是( )A.①B.②C.③D.④9.[2024德阳旌阳区二模]若5x-7x2-4x-5=Ax+1+Bx-5,则A,B的值为()A. A=3,B=-2B. A=2,B=3C. A=3,B=2D. A=-2,B=310.[2024东莞期末]设p=aa+1-bb+1,q=1a+1-1b+1,则p,q的关系是()A. p=qB. p>qC. p+q=0D. p<q二、填空题(每小题3分,共15分)11.计算:2-1+(π-1)0=.12. [母题教材P134习题T13] 若分式a 2-4a+2的值为零,则a的值是.13.A,B两地相距120 km,甲骑摩托车,乙驾驶小汽车,同时从A 地出发去B地.已知小汽车的速度是摩托车速度的1.6倍,乙中途休息了0.5 h还比甲早到0.4 h,则小汽车的速度为km/h.14.[2024常德期末]若关于x的分式方程2xx-1-1=mx-1无解,则m=.15. [新视角规律探索题]如图,将形状大小完全相同的“〇”按照一定的规律摆放,记图①中的“〇”的个数为a1,图②中的“〇”的个数为a2,图③中的“〇”的个数为a3,…,以此类推,则1a1+1a2+1a3+…+1a n的值是(n为正整数).三、解答题(本大题共8个小题,满分75分)16.(8分) [母题教材P152练习]解方程:(1)4-xx-3+13-x=1;(2)x+1x-1-6x2-1=1.17.(9分)先化简,再求值:a 2-9a2+6a+9÷(1-3a),其中a=2.18.(9分)[2023长春]随着中国网民规模突破10亿,博物馆美育不断向线上拓展.敦煌研究院顺势推出数字敦煌文化大使“伽瑶”,受到广大敦煌文化爱好者的好评.某工厂计划制作3 000个“伽瑶”玩偶摆件,为了尽快完成任务,实际平均每天完成的数量是原计划的1.5倍,结果提前5天完成任务,问原计划平均每天制作多少个摆件?19.(9分)(1)化简:a-1a ÷a2-2a+1a2.(2)把(1)中化简的结果记作A,将A中的分子与分母同时加上1后得到B,问:当a>1时,B的值与A的值相比变大了还是变小了?试说明理由.20.(9分)已知关于x的方程xx-3-2=k3-x.(1)当k=3时,求x的值;(2)若原方程的解是正数.求k的取值范围.21.(9分) [情境题游戏活动]小明和小强一起做分式的游戏,如图所示.他们面前各有三张牌(互相可以看到对方的牌),两人各自任选两张牌分别做分子和分母,组成一个分式,然后两人均取一个相同的x值,再计算分式的值,值大者为胜.为使分式有意义,他们约定x是大于3的正整数.(1)小明组成的分式中值最大的分式是,小强组成的分式中值最大的分式是;(2)小强思考了一下,哈哈一笑,说:“虽然我是三张带减号的牌,但最终我一定是胜者”小强说的有道理吗?请你通过计算说明.22.(11分)[2024鄂州华容区期末]阅读下面材料,解答下面的问题.解方程:x-1x -4xx-1=0.解:设y=x-1x,则原方程化为y-4y=0,方程两边同时乘y,得y2-4=0,解得y1=2,y2=-2.经检验,y1=2,y2=-2都是方程y-4y =0的解.当y=2时,x-1x=2,解得x=-1;当y=-2时,x-1x =-2,解得x=13.经检验,x1=-1,x2=13都是原分式方程的解.∴原分式方程的解为x1=-1,x2=13.上述这种解分式方程的方法称为换元法.问题:(1)若在方程x-14x -xx-1=0中,设y=x-1x,则原方程可化为;(2)若在方程x-1x+1-4x+4x-1=0中,设y=x-1x+1,则原方程可化为;(3)仿照上述方法解方程:x-1x+2-3x-1-1=0.23.(11分)“五一”劳动节期间,某公司计划购买A,B两种型号的保温杯发给公司员工,已知每个A型保温杯的售价比B型保温杯的售价少10元,用1 200元购买A型保温杯的个数是用1 000元购买B型保温杯个数的32.请解答下列问题:(1)A,B两种型号的保温杯每个进价各是多少元?(2)若该公司购买B型保温杯比A型保温杯的个数少9个,且A型保温杯不少于38个,购买A,B两种型号保温杯的总费用不超过3 150元,请你求出该公司有哪几种购买方案.(3)为奖励公司的模范工作者,公司准备购买甲、乙两种奖品(两种奖品都要购买),所花费的金额与(2)中最少的费用相同,已知甲种奖品每个270元,乙种奖品每个240元,求出购买甲、乙两种奖品的个数.答案一、1. C 2. A 3. A 4. D 5. C 6. B 7. D 8. B 9. B 10. C二、11.32 12.2 13.80 14.2 15.n n+1三、16.【解】(1)去分母,得4-x -1=x -3. 解得x =3.检验:当x =3时,x -3=0,∴x =3不是原分式方程的解.∴原分式方程无解. (2)去分母,得(x +1)2-6=x 2-1. 解得x =2.检验:当x =2时,(x +1)(x -1)≠0, ∴原分式方程的解为x =2. 17.【解】a 2-9a 2+6a+9÷(1-3a)=(a+3)(a -3)(a+3)2÷a -3a=a -3a+3·aa -3=a a+3,当a =2时,原式=22+3=25.18.【解】设原计划平均每天制作x 个摆件,根据题意,得3 000x-3 0001.5x=5,解得x =200.经检验,x =200是原分式方程的根,且符合题意. 答:原计划平均每天制作200个摆件. 19.【解】(1)a -1a÷a 2-2a+1a 2=a -1a·a 2(a -1)2=aa -1.(2)当a >1时,B 的值与A 的值相比变小了.理由如下: B -A =a+1a-aa -1=a 2-1-a 2a (a -1)=-1a (a -1).当a >1时,a (a -1)>0,∴-1a (a -1)<0.∴B <A .∴当a >1时,B 的值与A 的值相比变小了.20.【解】(1)当k =3时,方程为xx -3-2=33-x,两边同乘以(x -3),得x -2(x -3)=-3,解得x =9.经检验,x =9是原分式方程的解.∴x 的值为9. (2)x x -3-2=k3-x,两边同乘以(x -3),得x -2(x -3)=-k ,解得x =6+k .∵原方程的解是正数,∴6+k >0.∴k >-6. ∵x ≠3,∴6+k ≠3.∴k ≠-3.∴k >-6且k ≠-3. 21.【解】(1)x+3x+1;x -1x -3(2)小强说的有道理,理由如下:x -1x -3-x+3x+1=(x -1)(x+1)(x -3)(x+1)-(x+3)(x -3)(x+1)(x -3)=8(x+1)(x -3).当x 是大于3的正整数时,(x +1)(x -3)>0, ∴8(x+1)(x -3)>0.∴x -1x -3>x+3x+1.故小强说的有道理.22.【解】(1)y 4-1y=0(2)y -4y=0(3)原方程可化为x -1x+2-x+2x -1=0,设y =x -1x+2,则上式化为y -1y=0,方程两边同时乘y ,得y 2-1=0,解得y =±1.经检验,y =±1都是方程y -1y =0的解.当y =1时,x -1x+2=1,该方程无解;当y =-1时,x -1x+2=-1,解得x =-12.经检验,x =-12是原分式方程的解.∴原分式方程的解为x =-12.23.【解】(1)设每个A 型保温杯的进价是x 元,则每个B 型保温杯的进价是(x +10)元,根据题意,得1 200x=1 000x+10×32,解得x =40.经检验,x =40是所列分式方程的解,且符合题意,∴x +10=40+10=50.答:每个A 型保温杯的进价是40元,每个B 型保温杯的进价是50元.(2)设购买y 个A 型保温杯,则购买(y -9)个B 型保温杯,根据题意,得{y ≥38,40y +50(y -9)≤3 150,解得38≤y ≤40.∵y 为正整数,∴y 可以为38,39,40.∴该公司共有3种购买方案如下: 方案1:购买38个A 型保温杯,29个B 型保温杯; 方案2:购买39个A 型保温杯,30个B 型保温杯; 方案3:购买40个A 型保温杯,31个B 型保温杯.(3)易知(2)中选择购买方案1所需费用最少,最少为40×38+50×29=2 970(元).设购买m 个甲种奖品,n 个乙种奖品,根据题意,得 270m +240n =2 970,∴m =11-89n .∵m ,n 均为正整数,∴{m =3,n =9.∴购买3个甲种奖品,9个乙种奖品.。
2022学年秋学期人教版八年级数学上册第十五章《分式》期末复习训练卷附答案
2022学年秋学期八年级数学上册第十五章《分式》期末复习训练卷【满分100分】一、选择题(每题3分,共30分)1.在a -b 2,x (x +3)x ,5+x π,a +b a -b,a +1m 中,是分式的有( )A .1个B .2个C .3个D .4个 2.分式x 2-1x -1的值为零,则x 的值为( )A .0B .1C .-1D .±1 3.下列计算错误的是( )A.0.2a +b 0.7a -b =2a +b 7a -bB.x 3y 2x 2y 3=x yC.a -b b -a =-1D.1c +2c =3c4.分式①a +2a 2+3,②a -b a 2-b 2,③4a 12(a -b ),④1x -2中,最简分式有( )A .1个B .2个C .3个D .4个 5.若分式中x 、y 的值同时扩大到原来的5倍,则分式的值( )A .不变B .是原来的C .是原来的5倍D .是原来的25倍6.人体中红细胞的直径约为0.0000077m ,将数0.0000077用科学记数法表示为( )A .77×10-5B .0.77×10-7C .7.7×10-6D .7.7×10-7 7.若分式的值为正数,则x 的取值范围是( )A .x >B .x <C .x ≥D .x 取任意实数8.分式和的最简公分母是( )A .6yB .3y 2C .6y 2D .6y 39.某厂加工车间共有26名工人,现要加工2100个A 零件,1200个B 零件,已知每人每天加工A 零件30个或B 零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x 人加工A 零件,由题意列方程得( )A.210030x =120020(26-x )B.2100x =120026-xC.210020x =120030(26-x )D.2100x ×30=120026-x×20 10.若关于x 的方程x +m x -3+3m3-x=3的解为正数,则m 的取值范围是( )A .m <92B .m <92且m ≠32C .m >-94D .m >-94且m ≠-34二、填空题(每题3分,共24分) 11.当x________时,分式5x -2有意义.12.方程12x =1x +1的解是x =_______.13.若3x -1=127,则x =_______.14.当a =______________时,方程2111ax a x -=+-的解与方程43x x+=的解相同. 15.当m =______________时,关于x 的方程,233x mx x =+--有增根. 16. a 、b 互为倒数,代数式22211a ab b a b a b ++⎛⎫÷+ ⎪+⎝⎭的值为______________.17.如果250x x +-=,那么代数式32221x x x x +⎛⎫⎛⎫+÷ ⎪ ⎪+⎝⎭⎝⎭的值是______________.18. 甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,则甲每天铺设管道________米.三.解答题(共46分,19题6分,20 ---24题8分) 19.计算:(1) xy y x y x y x -+-+-+2122 (2) 22222)(a b a ab b ab a a ab -⋅+-÷- (3) (4)32232)()2(b a c ab ---÷20.(1)先化简,再求值:x -3x 2-1·x 2+2x +1x -3-⎝⎛⎭⎫1x -1+1,其中x =-65.21.解分式方程:(1)x -2x +3-3x -3=1; (2)2x +2x -x +2x -2=x 2-2x 2-2x .22.(12分)老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下:(-x 2-1x 2-2x +1)÷xx +1=x +1x -1. (1)求所捂部分化简后的结果;(2)原代数式的值能等于-1吗?为什么?23.某中学组织学生到离学校15km 的东山游玩,先遣队与大队同时出发,先遣队的速度是大队的速度的1.2倍,结果先遣队比大队早到0.5h ,先遣队的速度是多少?大队的速度是多少?24.某新建的商场有3000m 2的地面花岗岩需要铺设,现有甲、乙两个工程队希望承包铺设地面的工程.甲工程队平均每天比乙工程队多铺50m 2,甲工程队单独完成该工程的工期是乙工程队单独完成该工程所需工期的34.求甲、乙两个工程队完成该工程各需几天.答案一、选择题(每题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案CCABCCACCB二、填空题(每题3分,共24分) 11.≠2 12.x =1 13.-2 14.【答案】3- 15.【答案】3 16.【答案】【答案】1【解析】原式22()()a b a b a b abab a b ab a b a b+++=÷=⋅=+++.由a ,b 互为倒数可得1ab =,所以原式1=. 17.【答案】5【解析】由250x x +-=得25x x +=,则原式222(1)52x x x x x x x ++=⋅=+=+.18. 20三.解答题(共46分,19题6分,20 ---24题8分)19. (1)0 (2)b - (3) 1 (4) 7644bc a 20.解:(1)原式=x -3(x -1)(x +1)·(x +1)2x -3-1+x -1x -1=x +1x -1-x x -1=1x -1,当x =-65时,原式=1-65-1=-511.(2)原式=⎝⎛⎭⎫1x -3-1x -1·(x -3)=x -1-x +3(x -3)(x -1)·(x -3)=2x -1,要使原式有意义,则x≠±1,3,故可取x =4,则原式=23(或取x =2,则原式=2).21.解:(1)方程两边同乘(x +3)(x -3),得(x -2)(x -3)-3(x +3)=(x +3)(x -3),整理得-8x =-6,解得x =34.经检验,x =34是原方程的根.(2)原方程可化为2(x +1)x -x +2x -2=x 2-2x (x -2),方程两边同时乘x(x -2),得2(x +1)(x -2)-x(x +2)=x 2-2, 整理得-4x =2.解得x =-12.经检验,x =-12是原方程的解.22.解:(1)设所捂部分A ,则A =x +1x -1·x x +1+x 2-1x 2-2x +1=xx -1+x +1x -1=x +x +1x -1=2x +1x -1.(5分)(2)原代数式的值不能等于-1.(7分)理由如下:若原代数式的值为-1,则x +1x -1=-1,即x +1=-x+1,解得x =0.当x =0时,除式xx +1=0,故原代数式的值不能等于-1.(12分)23.解:设大队的速度为x km/h ,则先遣队的速度是1.2x km/h ,(1分)根据题意得15x =151.2x +0.5,(5分)解得x =5.(8分)经检验,x =5是原方程的解.(9分)1.2x =1.2×5=6.(11分)答:先遣队的速度是6km/h ,大队的速度是5km/h.(12分)24.解:设乙工程队平均每天铺x m 2,则甲工程队平均每天铺(x +50)m 2,(1分)由题意得3000x +50=3000x ×34,(5分)解得x =150.(8分)经检验,x =150是原分式方程的解.(9分)3000x =3000150=20(天),20×34=15(天).(11分)答:甲工程队完成该工程需15天,乙工程队完成该工程需20天.(12分)。
人教版八年级数学上册第15章强化复习检测含答案
15.1分式班级:__________ 姓名:__________分数:__________1. 把下列各组分式通分: (1)a 2b,13a,−56abc; (2)b a −ab,a a −b .2. 通分:4a5b 2c ,3c10a 2b ,5b−2ac2; x(2x−4)2,16x−3x2,2xx 2−4.3. 通分:1(x−1)(x−2),1x 2−2x+1.4. 通分:1(a−b)(a−c)与1(b−c)(b−a)与1(c−a)(c−b).5. 通分:12m 2+3m,23−2m,2m+54m 2−9.6. 通分:1a 2−ab,1a 2−b2,1a 2−2ab+b 2.7. 通分:1x −x,x 1−2x+x,2x −x−2.8. 先化简,再求值:(1+1x−2)÷x 2−xx 2−4,其中x =−7.9. 已知1x−1y =3,求5x+3xy−5y x−2xy−y的值.10. 先化简再求值:3x−3x2−1÷3xx+1−1x−1,并从不等式组{x−3(x−2)≥24x−2<5x+1的解中选一个你喜欢的数代入,求原分式的值.11. 化简求值:[(x−2y)2+(x−2y)(2y+x)−2x(2x−y)]÷2x,其中x=1,y=2.12. 先化简,再求值:xx2−1+(x+1x−1−x−1x2−2x+1),然后−√7≤x≤√7的范围内选取一个合适的整数作为x的值代入求值.13. 已知:a+b+c=0,则求:(b−ca +c−ab+a−bc)⋅(ca−b+ab−c+bc−a)的值.14. (1)通分:①b3a2c2,c−2ab,a5cb3;②29−3a ,a−1a−3−2a,aa−5a+6;③ba−ab ,a−ba+ab. 14.(2)3,2,5的最小公倍数是________,(1)中各分母相同字母的最高次幂的积为________.(3)分母若是多项式,先________,再________.(4)分母9−3a,a2−3−2a,a2−5a+6的最简公分母是________,分母a2−ab,a2+ab的最简公分母是________.15. 若a+b+c=0,求2a2+b2−c2+2b2+c2−a2+2c2+a2−b2的值.参考答案与试题解析15.1分式的性质-通分一、解答题(本题共计 15 小题,每题 10 分,共计150分)1.【答案】解:(1)a2b =3a3c6a bc,1 3a2=2bc6a2bc,5 6abc =5a6a bc;(2)b2=b=b(a+b),a a−b =a(a−b)(a+b)=a2a(a−b)(a+b).2.【答案】解:∵最简公分母是10a2b2c2∴4a5b c =4a×2a2c5b c×2a c=8a3c10a b c3c 10a2b =3c×bc210a2b×bc2=3bc310a2b2c25b −2ac =−5b×5ab22ac×5ab=−25ab310a b c.解:∵(2x−4)2=[2(x−2)]2=4(x−2)26x−3x2=−3x(x−2)x2−4=(x+2)(x−2)∴最简公分母是12x(x+2)(x−2)2∴x(2x−4)2=3x2(x+2)12x(x+2)(x−2)2 16x−3x2=4(x+2)(x−2)12x(x+2)(x−2)22xx2−4=24x2(x−2)12x(x+2)(x−2)23.【答案】解:1(x−1)(x−2)=x−1(x−1)2(x−2),4.【答案】解:最简公分母为(a −b )(b −c )(c −a ),1(a−b )(a−c)=−b−c (a−b )(b−c )(c−a ),1(b−c )(b−a)=c−a (a−b )(b−c )(c−a ), 1(c−a )(c−b)=−a−b(a−b )(b−c )(c−a ).5.【答案】解:最简公分母为m(2m +3)(2m −3),12m 2+3m =1m (2m+3)=2m−3m (2m+3)(2m−3),23−2m =−22m−3=−2m (2m+3)m (2m+3)(2m−3),2m+54m 2−9=2m+5(2m+3)(2m−3)=m (2m+5)m (2m+3)(2m−3).6.【答案】解:三式的最简公分母为a (a +b )(a −b )2, 通分为:(a+b )(a−b )a (a+b )(a−b)2,a (a−b )a (a+b )(a−b)2,a (a+b )a (a+b )(a−b )2.7.【答案】 解:∵1x 2−x=1x (x−1),x 1−2x+x 2=x(x−1)2,2x 2−x−2=2(x−2)(x+1),∴ 上式的最简公分母为:x (x −1)2(x −2)(x +1), ∴ 通分得:1x −x=(x−1)(x−2)(x+1)x (x−1)(x−2)(x+1),x 1−2x+x 2=x 2(x−2)(x+1)x (x−1)2(x−2)(x+1),2x 2−x−2=2x (x−1)2x (x−1)2(x−2)(x+1).8.【答案】解:(1+1x−2)÷x 2−xx 2−4 =x −1x −2⋅(x +2)(x −2)x (x −1)=x+2x.当x=−7时,原式=−7+2−7=579.【答案】125.10.【答案】当x=2时,原分式的值是−12.11.【答案】解:原式=[(x−2y)×(x−2y+2y+x)−2x(2x−y)]÷2x =[(x−2y)×2x−2x(2x−y)]÷2x=x−2y−2x+y=−x−y 当x=1,y=2时,原式=−1−2=−312.【答案】解:原式=x(x+1)(x−1)+[x+1x−1−x−1(x−1)]=x(x+1)(x−1)+(x+1x−1−1x−1)=x(x+1)(x−1)+xx−1=x(x+1)(x−1)+x2+x(x+1)(x−1)=x2+2x(x+1)(x−1)=x2+2xx2−1∵−√7≤x≤√7,且x为整数∴要使分式有意义,则x能取0、2或−2∴当x=−2时,原式=4−44−1=0,或当x=2时,原式=4+44−1=83,或当x=0时,原式=0−1=0.13.【答案】解:∵a+b+c=0∴a+b=−c,a+c=−b,b+c=−a 则原式为:[ab(a−b)+bc(b−c)+ac(c−a)abc]⋅[c(b−c)(c−a)+a(a−b)(c−a)+b(a−b)(b−c)()()()]=(b−c)(a−b)(a−c)⋅−2(a3+b3+c3)−3abc()()()˙∵a+b+c=0∴a^3+b^3+c^3=3abc ∴上式=914.【答案】解:(1)①b3a2c2,c−2ab,a5cb3;由题意可得:最简公分母为:30a^2 b^3 c^2,则b3a2c2=10b430a2b3c2,c−2ab=−−15ab2c330a2b3c2,a5cb3=6a3c30a2b3c2;②29−3a ,a−1a2−3−2a,aa2−5a+6,由题意可得:最简公分母为:3(a−3)(a−2)(a+1),则29−3a =−23(a−3)=−2(a−2)(a+1)3(a−3)(a−2)(a+1),a−1a2−3−2a =a−1(a−3)(a+1)=3(a−1)(a−2)3(a+1)(a−2)(a−3),aa2−5a+6=a(a−2)(a−3)=3a(a+1)3(a+1)(a−2)(a−3);③ba−ab ,a−ba+ab,由题意可得:最简公分母为:a(a−b)(a+b),则ba−ab =ba(a−b)=b(a+b)a(a−b)(a+b),a−b a2+ab =(a−b)2a(a+b)(a−b);30,a2b3c2分解因式,通分15.【答案】0人教版数学八年级上册15.2-分式的运算一、选择题1.化简(m2m−2+42−m)÷(m+2)的结果是()A. 0B. 1C. −1D. (m+2)22.若(x−3)0−2(3x−6)−2有意义,则x的取值范围是()A. x>3B. x<2C. x≠3或x≠2D. x≠3且x≠23.下列各式计算正确的是()A. 1a+b ÷a+b2=1 B. a3b÷b2a=3b22a2C. (a2−1)÷a2+aa =a−1 D. 2ab÷3b22a=3b24.计算(1x −12x)⋅x2的结果为()A. −xB. 1x C. −x22D. x25.如果x+y=5,那么(1+y x−y)÷xx2−y2的值为()A. 5B. 1C. −1D. −56.下列计算正确的有() ①10−3=0.0001; ②(0.0001)0=1; ③3a−2=1 3a2; ④(−x)3÷(−x)5=−x−2.A. 1个B. 2个C. 3个D. 4个7.已知3x−4(x−1)(x−2)=Ax−1+Bx−2,则A,B的值分别为()A. A=3,B=−4B. A=4,B=−3C. A=1,B=2D. A=2,B=18.若分式x2−y2a2x−a2y ÷(x+y)2ax+ay的值等于5,则a的值是().9. 已知a =(−2)0,b =(12)−1,c =(−3)−2,那么a ,b ,c 的大小关系为 ( )A. a >b >cB. c >a >bC. b >a >cD. c >b >a10. 下列运算正确的是( )A. −40=1B. (−2)−1=12C. 2−1+12=1D. (−1a)−2=1a11. 计算1x+1−x+3x 2−1÷x 2+4x+3x 2−2x+1的结果是( )A. 2−x(x+1)2B. −2(x+1)2C. 2(x+1)2D. 012. 如果m =yx −xy ,n =yx +xy ,那么m 2−n 2等于 ( )A. 4B. −4C. 0D. 2y 2x 213. 若a =0.32,b =−3−2,c =(−3)0,那么a 、b 、c 三数的大小为 ( )A. a >c >bB. c >a >bC. a >b >cD. c >b >a14. 甲从A 地到B 地要走m 小时,乙从B 地到A 地要走n 小时,若甲、乙二人同时从A 、B 两地出发,经过几小时相遇( )A. (m +n)小时B.m+n 2小时C. m+nmn 小时D. mnm+n 小时二、填空题15. 如果a 2+2a −1=0,那么代数式(a −4a )⋅a 2a−2的值是_________. 16. 当x =2时,式子(2x+1x+x)÷x+1x的值是_______.17. 已知分式x 2−y 2x乘一个分式后结果为−(x−y )2x 2,则所乘分式为________.18. 一项工程,甲队单独做需a 天完成,乙队单独做需b 天完成,问甲、乙两队合作,需 天完成. 19. 数字0.00000012用科学记数法表示为 .三、计算题20. 变式计算:(1)(y 6x 2)2÷(−y24x 2)2;(2)(a 3−2b )2÷(−a 2b)3⋅b2.四、解答题21.先化简,再求值:a2−6ab+9b2a2−2ab ÷(5b2a−2b−a−2b)−1a,其中a,b满足{a+b=5,a−b=−1.22.已知Ax+1−Bx−3=x+5(x+1)(x−3)(其中A,B为常数),求A2020B的值.23.先化简,再求值:(xx−1+1)÷4x2−4x+11−x,其中x是满足不等式组{2x+1>−3x+2⩽3的最小整数.24. 已知分式A =(a +1−3a−1)÷a2−4a+4a−1.(1)化简这个分式;(2)当a >2时,把分式A 化简结果的分子与分母同时加上3后得到分式B ,问:分式B 的值较原来分式A 的值是变大了还是变小了?试说明理由.(3)若A 的值是整数,且a 也为整数,求出符合条件的所有a 值的和.25. 观察下列各式:11×2=1−12,12×3=12−13,13×4=13−14,⋯⋯ 回答下列问题:(1)若n 为正整数,则1n(n+1)= ;(2)计算:1a +1a(a+1)+1(a+1)(a+2)+⋯+1(a+49)(a+50).答案1.【答案】B2.【答案】D3.【答案】C4.【答案】D5.【答案】A6.【答案】A7.【答案】C8.【答案】C9.【答案】C10.【答案】C11.【答案】C12.【答案】B13.【答案】B14.【答案】D15.【答案】116.【答案】317.【答案】y−xx(x+y)18.【答案】aba+b19.【答案】1.2×10−720.【答案】解:(1)原式=y236x4÷y416x4=y236x4÷16x4y4=49y2;(2)原式=a64b2÷(−a6b3)⋅b2=a64b2·(−b3a6)⋅b2=−b28.21.【答案】.解:原式=(a−3b)2a(a−2b)÷[5b 2a−2b −(a+2b)(a−2b)a−2b]−1a=(a −3b)2a(a −2b)÷9b 2−a 2a −2b −1a =(a −3b)2a(a −2b)⋅a −2b (3b −a)(3b +a)−1a=−a−3ba(a+3b)−1a =−a−3ba(a+3b)−a+3ba(a+3b) =−2a a(a+3b)=−2a+3b ,∵{a +b =5a −b =−1,∴{a =2b =3,∴原式=−22+3×3=−211.22.【答案】解:将等式的左边相减,得:Ax+1−Bx−3=A(x−3)−B(x+1)(x+1)(x−3)=(A−B)x+(−3A−B)(x+1)(x−3),根据左右两边相等,可得:{A −B =1−3A −B =5解得:{A =−1B =−2A 2020B =(−1)2020×(−2)=−2.23.【答案】解:解不等式组{2x +1>−3x +2⩽3得−2<x ⩽1.∵x 是不等式组的最小整数解, ∴x =−1. ∴原式=x+x−1x−1÷(2x−1)21−x=2x−1x−1⋅1−x(2x−1)2=−12x−1=−12×(−1)−1 =13.24.【答案】解:(1)A=a2−1−3a−1÷(a−2)2a−1=(a+2)(a−2)a−1⋅a−1 (a−2)2=a+2a−2;(2)变小了,理由如下:A−B=a+2a−2−a+5a+1=(a+2)(a+1)−(a+5)(a−2)(a+1)(a−2)=12(a−2)(a+1),∵a>2,∴a−2>0,a+1>0,∴A−B=12(a−2)(a+1)>0,即A>B;(3)A=a+2a−2=1+4a−2,根据题意,a−2=±1、±2、±4,则a=1、0、−2、3、4、6,又a≠1,∴0+(−2)+3+4+6=11,即:符合条件的所有a值的和为11.25.【答案】解:(1)1n −1n+1;(2)原式=1a +(1a−1a+1)+(1a+1−1a+2)+⋯+(1a+49−1a+50),=2a −1a+50=a+100a(a+50).15.3分式方程一.选择题1.下列方程中,是分式方程的是()A.+=1B.x+=2C.2x=x﹣5D.x﹣4y=12.若关于x的方程有增根,则k的值为()A.3B.1C.0D.﹣13.定义新运算:对于任意实数a、b都有:a⊕b=(a+b)÷b,其中等式右边是通常的加法、减法及乘法运算,如:3⊕6=(3+6)÷6=,那么方程(x+2)⊕(2x﹣1)=4的解为()A.x=3B.x=2C.x=1D.x=04.将分式方程=1去分母后,所得整式方程正确的是()A.1﹣(x﹣2)=1B.1﹣(x﹣2)=x C.x﹣(x﹣2)=1D.x﹣(x﹣2)=x5.某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前50天完成了这项任务,设原计划每天修路x公里,根据题意列出的方程正确的是()A.=50B.=50C.=50D.=506.“绿水青山就是金山银山”,为了进一步优化河道环境,某工程队承担一条4800米长的河道整治任务.开工后,实际每天比原计划多整治200米,结果提前4天完成任务,若设原计划每天整治x米,那么所列方程正确的是()A.+=4B.﹣=200C.﹣=4D.﹣=2007.若a使关于x的分式方程的解为整数,且使关于y的不等式组有且仅有2个整数解,则所有符合条件的整数a的值之和是()A.1B.3C.4D.78.从﹣7,﹣5,﹣,﹣1,0,,1,3这八个数中,随机抽一个数,记为m,若数m使关于x的不等式组的解集为x≥1,且关于x的分式方程有整数解,则所有符合条件的m的个数为()A.1B.2C.3D.49.若关于x的方程的解为正数,则m的取值范围是()A.B.且C.m<6D.m<6且m≠210.对于两个不相等的实数a、b,我们规定符号min{a,b}表示a、b中的较小的值,如min{2,4}=2,按照这个规定,方程min{,}=﹣2的解为()A.B.2C.或2D.1或﹣2二.填空题11.若关于x的分式方程﹣3=无解,则m=.12.若关于x的方程有增根,k的值是;若关于x的方程无解,k的值是.13.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程+=2的解为非负数,则符合条件的正整数a的值为.14.用换元法解方程时,若设=t,则原方程可化为关于t的一元二次方程是.15.已知关于x的方程﹣=有增根,则常数a=.三.解答题16.解分式方程(1);(2).17.某中学开学初在商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元;(2)该中学为响应习近平总书记“足球进校园”的号召,决定两次购进A、B两种品牌足球共50个,恰逢商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3060元,那么该中学此次最多可购买多少个B品牌足球?18.在今年新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买B型口罩数量是A型口罩数量的2倍,若总费用不超过3800元,则增加购买A型口罩的数量最多是多少个?19.已知点A,B在数轴上所对应的数分别为,,若A,B两点关于原点对称.(1)当m=2时,求x的值;(2)若不存在满足条件的x值,求m的值.20.对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==.(1)已知T(2,1)=,T(﹣1,1)=﹣1.①求a,b的值;②若关于m的不等式组恰好有3个整数解,求p的取值范围;(2)若T(x,y)=T(y,x)对任意有理数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?。
人教版 八年级数学上册 第15章 分式 综合复习(含答案)
人教版 八年级数学上册 第15章 分式 综合复习一、选择题(本大题共10道小题)1. 计算x +1x -1x 的结果为( )A. 1B. xC. 1xD. x +2x2. 已知分式 (x -1)(x +2)x2-1的值为0,那么x 的值是( )A. -1B. -2C. 1D. 1 或-23.甲志愿者计划用若干个工作日完成社区的某项工作.从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( ) A. 8 B. 7 C. 6 D. 54. 要使分式有意义,则x 的取值范围应满足 ( )A .x ≠-1B .x ≠2C .x=-1D .x=25. 化简a2-b2ab -ab -b2ab -a2等于( ) A. b a B. a b C. -b a D. -a b6. 下列分式中,最简分式是 ( )A .B .C .D .7. A ,B 两地相距m 米,通信员原计划用t 小时从A 地到达B 地,现因有事需提前n 小时到达,则每小时应多走( )A .米B .米C .米D .米8. 把通分后,各分式的分子之和为( ) A .2a 2+7a+11B .a 2+8a+10C .2a 2+4a+4D .4a 2+11a+139. 若关于x 的方程x +m x -3+3m3-x =3的解为正数,则m 的取值范围是( )A. m <92B. m <92且m ≠32C. m >-94D. m >-94且m ≠-3410. 若m+n-p=0,则m -+n --p +的值是 .二、填空题(本大题共5道小题)11. 方程 12x =2x -3的解是________.12. 化简:(a2a -3+93-a )÷a +3a =________.13. 化简:x +3x2-4x +4÷x2+3x(x -2)2=________.14. 化简:-= .15. 若m -3m -1·|m |=m -3m -1,则m =________.三、解答题(本大题共6道小题) 16. x -3x -2+1=32-x .17.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校.乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的12,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?18. 分式的定义告诉我们:“一般地,用A,B表示两个整式,A÷B可以表示成的形式,如果B中含有字母,那么称为分式.”我们还知道“两数相除,同号得正”.请运用这些知识解决问题:(1)如果分式的值是整数,求整数x的值;(2)如果分式的值为正数,求x的取值范围.19. 先化简,再求值:(xx2+x -1)÷x2-1x2+2x+1,其中x的值从不等式组⎩⎨⎧-x≤12x-1<4的整数解中选取.20. 我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质.小学时,把分子比分母小的分数叫做真分数.类似地,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式,如==+=1+.(1)下列分式中,属于真分式的是()A .B .C .-D .(2)将假分式化成整式与真分式的和的形式.21. 化简:(x -5+16x +3)÷x -1x2-9.人教版 八年级数学上册 第15章 分式 综合复习-答案一、选择题(本大题共10道小题)1. 【答案】A 【解析】x +1x -1x =x +1-1x =xx =1.2.【答案】B 【解析】分式(x -1)(x +2)x2-1的值为0,须满足:⎩⎪⎨⎪⎧(x -1)(x +2)=0x2-1≠0,解得x =-2 .3. 【答案】A【解析】设甲志愿者计划完成此项工作的天数为x 天,依题意得1x×2+(1x +1x )(x -2-3)=1, 解得x =8.4. 【答案】B[解析] 分式的分母不为0时,分式有意义.若分式有意义,则x-2≠0,即x ≠2.5.【答案】B 【解析】原式=(a +b )(a -b )ab -b (a -b )a (b -a )=(a +b )(a -b )ab +b a =(a +b )(a -b )+b2ab =a2-b2+b2ab =a2ab=ab ,故答案为B.6. 【答案】B[解析] ==,=,只有选项B 是最简分式.7. 【答案】D[解析] 由题意得-===.8. 【答案】A[解析] ==,=,=,所以把通分后,各分式的分子之和为-(a+1)2+6(a+2)+3a (a+1)= 2a 2+7a+11.9.【答案】B 【解析】由x +m x -3+3m 3-x =3,得x +m x -3-3mx -3=3,解得x =9-2m 2,解方程组⎩⎪⎨⎪⎧9-2m 2>09-2m 2≠3,得m <92且m ≠32,故选B.10. 【答案】-3[解析] 原式=-+---=+-.∵m+n-p=0,∴m-p=-n ,n-p=-m ,m+n=p. ∴原式=-1-1-1=-3.二、填空题(本大题共5道小题)11.【答案】x =-1 【解析】化简12x =2x -3得x -3=4x ,则-3x =3,所以x =-1,经检验x =-1是原方程的根.12. 【答案】a 【解析】原式=(a2a -3-9a -3)÷a +3a =a2-9a -3÷a +3a =(a +3)·aa +3=a.13. 【答案】1x 【解析】原式=x +3(x -2)2·(x -2)2x (x +3)=1x .14. 【答案】[解析] -=-===.15. 【答案】m =-1或m =3 【解析】m -3m -1·|m|=m -3m -1,去分母得(m -3)·|m|=m -3,即(m -3)(|m|-1)=0,所以m =3或m =±1,经检验m =1是方程的增根,所以m =3或m =-1.三、解答题(本大题共6道小题)16. 【答案】解:去分母得x -3+x -2=-3,(2分) 解得x =1,(4分)检验:x =1时,x -2=-1≠0,2-x =2-1=1≠0,(6分) ∴原方程的解为x =1.(8分)17. 【答案】解:(1)设乙骑自行车的速度为2x 米/分,则甲步行的速度为x 米/分,公交车的速度为4x 米/分.(1分)由题意列方程为:600x +3000-6004x+2=30002x ,(4分)解得: x =150,(5分)经检验得:当x =150时,等式成立, ∴2x =2×150=300 ,(6分)答:乙骑自行车的速度为300米/分.(2)甲到达学校的时间为600x +3000-6004x =600150+3000-6004×150=8(分),(7分)∴乙8分钟内骑车的路程为:300×8=2400(米),(8分) ∴乙离学校还有3000-2400=600(米).(9分)答:当甲到达学校时,乙同学离学校还有600米.18. 【答案】解:(1)∵分式的值是整数,∴x+1=±1,解得x=0或x=-2.(2)∵分式的值为正数, ∴或解得x>0或x<-1.∴x 的取值范围是x>0或x<-1.19. 【答案】解:原式=x -x2-x x2+x ÷(x +1)(x -1)(x +1)2(2分)=-x2x (x +1)·(x +1)2(x +1)(x -1)=-xx -1.(4分)解不等式组⎩⎪⎨⎪⎧-x≤12x -1<4,得-1≤x <52,∴不等式组的整数解为-1,0,1,2,(5分)∵要使分式有意义,则x 只能取2,∴原式=-22-1=-2.(6分)20. 【答案】解:(1)C(2)==+=m-1+.21. 【答案】解:原式=(x -5)(x +3)+16x +3÷x -1x2-9(1分) =x2-2x +1x +3·x2-9x -1(2分)=(x -1)2x +3·(x +3)(x -3)x -1(3分)=(x -1)(x -3)(4分) =x 2-4x +3.(5分)。
人教版八年级上册数学 第十五章分式同步复习题(含详细答案)
人教版八年级上册数学第十五章分式复习题一.选择题1.关于x的分式方程﹣=0的解为()A.﹣3 B.﹣2 C.2 D.32.某学校食堂需采购部分餐桌,现有A、B两个商家,A商家每张餐桌的售价比B商家的优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为()A.117元B.118元C.119元D.120元3.使分式的值为0,这时x应为()A.x=±1 B.x=1C.x=1 且x≠﹣1 D.x的值不确定4.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A.+=t B.+=tC.•+•=t D.+=t5.春节期间,文具店的一种笔记本8折优惠出售.某同学发现,同样花12元钱购买这种笔记本,春节期间正好可比春节前多买一本.这种笔记本春节期间每本的售价是()A.2元B.3元C.2.4元D.1.6元6.已知关于x的方程的解是正整数,且k为整数,则k的值是()A.0 B.﹣2 C.0或6 D.﹣2或67.已知,则的值为()A.5 B.6 C.7 D.88.已知关于x的方程=3的解是负数,那么m的取值范围是()A.m>﹣6且m≠﹣2 B.m<﹣6 C.m>﹣6且m≠﹣4 D.m<﹣6且m≠﹣29.要使分式有意义,x的取值是()A.x≠1 B.x≠﹣1 C.x≠±1 D.x≠±1且x≠﹣2 10.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A.6.5×107B.6.5×10﹣6C.6.5×10﹣8D.6.5×10﹣711.下列各式中,正确的是()A.B.C.=b+1 D.=a+b12.如果分式方程无解,则a的值为()A.﹣4 B.C.2 D.﹣213.已知关于x的分式方程的解为正数,则k的取值范围为()A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1 14.某车间接了生产12000只口罩的订单,加工4800个口罩后,采用了的新的工艺,效率是原来的1.5倍,任务完成后发现比原计划少用了2个小时.设采用新工艺之前每小时可生产口罩x个,依据题意可得方程()A.=2B.=2C.=2D.=2二.填空题15.分式的值比分式的值大3,则x的值为.16.若关于x的分式方程,有负数解,则实数a的取值范围是.17.已知分式,当x=1时,分式无意义,则a=.18.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示为米.19.对和进行通分,需确定的最简公分母是.20.已知关于x的分式方程+=.若方程有增根,则m的值为.三.解答题21.计算(1)﹣(2)+﹣(3)(+)÷22.化简求值:,其中x=.23.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B 种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?24.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?25.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?参考答案一.选择题1.解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.2.解:设A商家每张餐桌的售价为x元,则B商家每张餐桌的售价为(x+13),根据题意列方程得:=,解得:x=117,经检验:x=117是原方程的解.故选:A.3.解:∵分式的值为0,∴x2﹣1=0,且x+1≠0,解得:x=1.故选:B.4.解:设小水管的注水速度为x立方米/分钟,可得:,故选:C.5.解:设这种笔记本节日前每本的售价是x元,根据题意得:,解得:x=3,经检验,x=3是原方程的解,∴0.8x=0.8×3=2.4(元),答:这种笔记本节日期间每本的售价是2.4元,故选:C.6.解:方程去分母,得9﹣3x=kx,即kx+3x=9,∴x=因为原分式方程的解为正整数,且x≠3.所以x==1、2、4、5、6、7、8、9,又因为k为整数,所以k=﹣2或6.故选:D.7.解:∵,∴(a+)2=9,即a2+2+=9,则=7,故选:C.8.解:去分母,得2x﹣m=3x+6,∴x=﹣m﹣6.由于方程的解为负数,∴﹣m﹣6<0且﹣m﹣6≠﹣2,解得m>﹣6且m≠﹣4.故选:C.9.解:要使分式有意义,则x+1≠0,解得:x≠﹣1,故选:B.10.解:0.00000065=6.5×10﹣7.故选:D.11.解:与在a=0或a=b时才成立,故选项A不正确;==,故选项B正确;=b+,故选项C不正确;不能化简,故选项D不正确;故选:B.12.解:去分母得:x=2(x﹣4)﹣a解得:x=a+8根据题意得:a+8=4解得:a=﹣4.故选:A.13.解:去分母得:x﹣2(x﹣1)=k,去括号得:x﹣2x+2=k,解得:x=2﹣k,由分式方程的解为正数,得到2﹣k>0,且2﹣k≠1,解得:k<2且k≠1,故选:D.14.解:设采用新工艺之前每小时可生产口罩x个,则采用新工艺之后每小时可生产口罩1.5x个,依题意,得:﹣=2.故选:D.二.填空题(共6小题)15.解:根据题意得:﹣=3,去分母得:x﹣3﹣1=3x﹣6,移项合并得:﹣2x=﹣2,解得:x=1,经检验x=1是分式方程的解,故答案为:1.16.解:,分式方程去分母得:1﹣x﹣3=a,移项合并得:﹣x=a+2,解得:x=﹣a﹣2,∵分式方程的解为负数,∴﹣a﹣2<0且﹣a﹣2+3≠0,解得:a>﹣2且a≠1.故答案为:a>﹣2且a≠1.17.解:把x=1代入得:,此时分式无意义,∴a﹣3=0,解得a=3.故答案为:3.18.解:0.0000084=8.4×10﹣6,故答案为:8.4×10﹣6.19.解:分式和的分母分别是2(x+y)、(x+y)(x﹣y).则最简公分母是2(x+y)(x﹣y).故答案是:2(x+y)(x﹣y).20.解:若原分式方程有增根,则(x+2)(x﹣2)=0,所以x=﹣2 或x=2,当x=﹣2 时,﹣2m=﹣8.得m=4,当x=2 时,2m=﹣8.得m=﹣4,所以若原分式方程有增根,则m=±4;故答案为:±4.三.解答题(共5小题)21.解:(1)﹣=+=;(2)+﹣=+﹣===﹣;(3)(+)÷=•=x﹣1.22.解:原式=•==﹣x(x+1)=﹣x2﹣x当x=时,原式=﹣2﹣.23.解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,依题意,得:(300﹣200)×+(300×0.7﹣200)×+(400﹣280)×+(400×0.7﹣280)×=5800,解得:m=40,∴100﹣m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.24.解:(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服,根据题意,得﹣=4.解得x=50.经检验:x=50是所列方程的解.则1.5x=75.答:甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)设甲厂要加工m天,根据题意,得150m+120×≤6360.解得m≥28.答:甲厂至少要加工28天.25.解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.。
2022学年人教版八年级数学上册第十五章《分式》试题卷三附答案解析
2022学年八年级数学上册第十五章《分式》试题卷三(满分120分)一.选择题(共8小题,满分32分)1.下列各式中:﹣3x,,,,,分式的个数是()A.2B.3C.4D.52.无论a取何值,下列分式中,总有意义的是()A.B.C.D.3.把分式中的x、y都扩大3倍,则分式的值()A.扩大3倍B.扩大6倍C.缩小为原来的D.不变4.下列运算正确的是()A.B.C.D.5.化简的结果是()A.a+b B.a﹣b C.D.6.方程的解为()A.x=﹣1B.x=1C.x=0D.x=﹣37.照相机成像应用了一个重要原理,用公式表示,其中f表示照相机镜头的焦距,u 表示物体到镜头的距离,v表示胶片(像)到镜头的距离.用f,v表示物体到镜头的距离u,正确的是()A.B.C.D.8.为了改善生态环境,某社区计划在荒坡上种植600棵树,由于学生志愿者的加入,每日比原计划多种20%,结果提前1天完成任务.设原计划每天种树x棵,可列方程()A.=1B.=1C.=1D.=1二.填空题(共8小题,满分32分)9.如果分式的值为0,那么x的值为.10.已知x为整数,且分式的值为正整数,则x可取的值有.11.若,则的值是.12.计算:3xy2÷(﹣)3()2=.13.若关于x的分式方程=4有增根,则k=.14.关于x的分式方程无解,则m的值15.定义一种运算☆,规则为a☆b=+,根据这个规则,若x☆(x+1)=,则x=.16.若整数a既使得关于x的分式方程有整数解,又使得关于x,y的方程组的解为正数,则a=.三.解答题(共7小题,满分56分)17.化简:(x﹣1﹣)÷.18.化简求值:,其中a=2022.19.解下列方程:(1)=;(2)﹣=8.20.关于x的分式方程.(1)若方程的增根为x=2,求m的值;(2)若方程有增根,求m的值;(3)若方程无解,求m的值.21.请仿照例子解题:+=恒成立,求M、N的值.解:∵+=∴=则=即=,故,解得:请你按照上面的方法解题:若+=恒成立,求M、N的值.22.现有甲、乙、丙三种糖混合而成的什锦糖50千克,其中各种糖的千克数和单价如表所示,且商店以糖的平均价作为什锦糖的单价.请问:甲种糖乙种糖丙种糖千克数102020单价(元/千克)252015(1)这50千克什锦糖的单价是多少?(2)若要是什锦糖的单价每千克提高2元,问需加入甲种什锦糖多少千克?23.某天运动员小伟沿平路从家步行去银行办理业务,到达银行发现没有带银行卡(停留时间忽略不计),立即沿原路跑回家,已知平路上跑步的平均速度是平路上步行的平均速度的4倍,已知小伟家到银行的平路距离为2800米,小伟从离家到返回家共用50分钟.(1)求小伟在平路上跑步的平均速度是多少?(2)小伟找到银行卡后,发现离银行下班时间仅剩半小时,为了节约时间,小伟选择另外一条近的坡路去银行,小伟先上坡再下坡,用时9分钟到达银行,已知上坡的平均速度是平路上跑步的平均速度的,下坡的平均速度是平路上跑步的平均速度的,且上坡路程是下坡路程的2倍,求这段坡路的总路程是多少米?参考答案一.选择题(共8小题,满分32分)1.解:分式的个数是,,共2个.故选:A.2.解:A.当a=1时,分式没有意义.故本选项不合题意;B.当a=0时,分式没有意义.故本选项不合题意;C.当a=1时,分式没有意义.故本选项不合题意;D.因为a2≥0,所以2a2+1≠0,所以分式总有意义,故本选项符合题意.故选:D.3.解:由题意得:==,∴把分式中的x、y都扩大3倍,则分式的值扩大3倍,故选:A.4.解:A.==﹣,因此选项A不符合题意;B.==,因此选项B不符合题意;C.===﹣,因此选项C符合题意;D.是最简分式,不能约分,因此选项D不符合题意;故选:C.5.解:====a﹣b.故选:B.6.解:,x+5=6x,5x=5,x=1,经检验x=1是原方程的解,则方程的解为x=1.故选:B.7.解:∵=+,∴=﹣=,∴u=,故选:B.8.解:设原计划每天种x棵树,实际每天种树(1+20%)x棵树,由题意得:﹣=1.故选:D.二.填空题(共8小题,满分32分)9.解:如果分式的值为0,则,解得:x=1.故答案为:1.10.解:==2+,∵x为整数,且分式的值为正整数,∴=5或±1,∴x﹣1=1或5或﹣5,∴x=2或6或﹣4,∴满足条件的x可取的有2,6,﹣4.故答案为:2,6,﹣4.11.解:由,可以得到:a﹣b=﹣4ab,∴=.故的值是6.12.解:原式=3xy2÷(﹣)•=﹣3xy2••=﹣x2,故答案为:﹣x2.13.解:去分母,得x﹣k=4(x﹣3),将增根x=3代入x﹣k=4(x﹣3),得3﹣k=0,解得k=3,故答案为:3.14.解:将方程化简为,m+2=x﹣3,可得m=x﹣5,当x=3时,m=x﹣5=3﹣5=﹣2,∴当m=﹣2时,方程无解.故答案为:﹣2.15.解:根据给定的定义,得x☆(x+1)=,∴=,去分母,得2(x+1)+2x=3(x+1),解得x=1,经检验,x=1是原方程的根,故答案为:1.16.解:解方程得,x=,∵分式方程有整数解,且x≠1,∴a﹣3=﹣4或﹣2或﹣1或1或2或4,且a≠7,∴a=﹣1或1或2或4或5,解方程组得,,∵方程组的解为正数,∴,解得a>4,综上,a=5.故答案为:5.三.解答题(共7小题,满分56分)17.解:原式=•=•=.18.解:原式=•=•=•=,当a=2022时,原式=.19.解:(1)=,9(m﹣1)=8m,解得:m=9,检验:当m=9时,m(m﹣1)≠0,∴m=9是原方程的根;(2)﹣=8,x﹣8+1=8(x﹣7),解得:x=7,检验:当x=7时,x﹣7=0,∴x=7是原方程的增根,∴原方程无解.20.解:去分母,得:2(x+1)+mx=3(x﹣2),(1﹣m)x=8,(1)当方程的增根为x=2时,(1﹣m)×2=8,所以m=﹣3;(2)若原分式方程有增根,则(x+1)(x﹣2)=0,∴x=2或x=﹣1,当x=2时,(1﹣m)×2=8,所以m=﹣3;当x=﹣1时,(1﹣m)×(﹣1)=8,所以m=9,所以m的值为﹣3或9时,方程有增根;(3)当方程无解时,即当1﹣m=0时,(1﹣m)x=8无解,所以m=1;当方程有增根时,原方程也无解,即m=﹣3或m=9时,方程无解所以,当m=﹣3或m=9或m=1时方程无解.21.解:∵+==,∴M(x﹣2)+N(x+2)=x+8,∴(M+N)x﹣2M+2N=x﹣8,∴,解得:.22.解:(1)这50千克什锦糖的单价==19(元);(2)设加入甲种糖x千克,则什锦糖的总量为:(10+x+20+20)千克,根据题意得:=19+2,解得:x=25,经检验:x=25是原方程的解,答:需加入甲种糖25千克.23.解:(1)设小伟在平路上跑步的平均速度是x米/分钟,则小伟在平路上步行的平均速度是x米/分钟,依题意得:+=50,解得:x=280,经检验,x=280是原方程的解,且符合题意.答:小伟在平路上跑步的平均速度是280米/分钟.(2)设这段坡路的总路程是y米,则上坡路程是y米,下坡路程是y米,依题意得:+=9,解得:y=2100.答:这段坡路的总路程是2100米.。
2024年-人教版数学八年级上册第15章——15.3《分式方程》同步练习及(含答案)3
一、选择题
1.小明和小张两人 练习 电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相 等。设小明打字速度为x个/分钟,则列方程正确的 是( )
A: B: C: D:
2.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所 用的天数相等,若设甲班每天植 树x棵,则根据题意列出的方程是().
20.列方程或方程组解应用题:
据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.
A. = B. = C. = D. =
5.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是
A. = B. =
C. = D. =
6.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60 千米所用时间相等,江水的流速为多少?设江水的流速为x千米/时,则可列方程()
18 .某工地调来72人参加挖土和运土,已知3人挖出的土1人恰好全部运走,怎么样调配劳动力才能使挖出的土能及时运走且不窝工,解决此问题可设派x人挖土,其他人运土,列方程:.
三、解答题
19.某人驾车从A地到B地,出发2小时后车子出了点毛病,耽搁了半小时修车,为了弥补耽搁的时间他将车速增加到后来的1.6倍,结果按时到达,已知A、B两地相距100千米,求某人原来驾车的速度.
人教版八年级上册数学第十五章《分式》单元测试卷(Word版,含答案)
人教版八年级上册数学第十五章《分式》单元测试卷(60分钟 100分)一、选择题(每小题3分,共30分)1.(南充中考)若1x =-4,则x 的值是( )A .4B .14C .-14D .-42.在第127届“广交会”上,有近26 000家厂家进行“云端销售”.其中数据26 000用科学记数法表示为( )A .26×103B .2.6×103C .2.6×104D .0.26×1053.下列式子:-5x ,1a +b,12 a 2-12 b 2,310m ,2π ,其中分式有( ) A .1个 B .2个 C .3个 D .4个4.计算1m +2 -14-m 2 ÷1m -2的结果为( ) A .0 B .1m +2 C .2m +2 D .m +2m -25.下列等式是四位同学解方程x x -1 -1=2x 1-x过程中去分母的一步,其中正确的是( )A .x -1=2xB .x -1=-2C .x -x -1=-2xD .x -x +1=-2x 6.若a =-0.32,b =-3-2,c =⎝⎛⎭⎪⎫-13 -2 ,d =⎝ ⎛⎭⎪⎫-13 0,则大小关系正确的是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <d D .c <a <d <b7.若a =1,则a 2a +3 -9a +3的值为( ) A .2 B .-2 C .12 D .-128.(呼伦贝尔中考)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x 个零件,下列方程正确的是( )A .240x =280130-xB .240130-x=280x C .240x +280x =130 D .240x -130=280x9.对于两个不相等的实数a ,b ,我们规定符号Min{a ,b }表示a ,b 中的较小的值,如Min{2,4}=2,按照这个规定,方程Min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1x -2,3x -2 =x -1x -2 -2的解为( )A .0B .0或2C .无解D .不确定10.关于x 的分式方程2x +a x +1=1的解为负数,则a 的取值范围是( ) A .a >1 B .a <1C .a <1且a ≠-2D .a >1且a ≠2二、填空题(每小题3分,共24分)11.(北京中考)若代数式1x -7有意义,则实数x 的取值范围是__ __. 12.(广州中考)方程x x +1 =32x +2的解是 . 13.(呼和浩特中考)分式2x x -2 与8x 2-2x 的最简公分母是__ __,方程2x x -2 -8x 2-2x=1的解是__ __. 14.有一个分式,三位同学分别说出了它的一个特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值范围是x ≠±1;丙:当x =-2时,分式的值为1.请你写出满足上述全部特点的一个分式: .15.(嘉兴中考)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程 .16.已知3x -4(x -1)(x -2) =A x -1 +B x -2,则实数A =__ __. 17.若(x -y -2)2+|xy +3|=0,则⎝ ⎛⎭⎪⎪⎫3x x -y -2x x -y ÷1y 的值是 . 18.数学家们在研究15,12,10这三个数的倒数时发现112 -115 =110 -112 .因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数x ,5,3(x >5),则x =__ __.三、解答题(共46分)19.(6分)计算或化简:(1)(-1)2 022-|-7|+9 ×(5 -π)0+⎝ ⎛⎭⎪⎫15 -1 . (2)(徐州中考)⎝ ⎛⎭⎪⎫1-1a ÷a 2-2a +12a -2. 20.(6分)解方程:(1)(遵义中考)1x -2 =32x -3. (2)(大庆中考)2x x -1 -1=4x -1. 21.(8分)(鄂州中考)先化简x 2-4x +4x 2-1 ÷x 2-2x x +1 +1x -1,再从-2,-1,0,1,2中选一个合适的数作为x 的值代入求值.22.(8分)某茶店用4 000元购进了A 种茶叶若干盒,用8 400元购进了B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍.(1)A ,B 两种茶叶每盒进价分别为多少元?(2)若第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元,两种茶叶各售出一半后,为庆祝元旦,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5 800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?。
人教版八年级数学上册第十五章分式-测试题带答案
人教版数学八年级上册第十五章《分式》考试试卷(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.分式x -1x +1的值为0,则x =( B )A .-1B .1C .±1D .02.将分式方程1x =2x -2去分母后得到的整式方程,正确的是( A )A .x -2=2xB .x 2-2x =2x C .x -2=x D .x =2x -4 3.化简xy -2yx 2-4x +4的结果是( D )A.x x +2 B.x x -2 C.y x +2 D.yx -24.已知a =2-2,b =(3-1)0,c =(-1)3,则a ,b ,c 的大小关系是( B ) A .a >b >c B .b >a >c C .c >a >b D .b >c >a5.一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为( B ) A .41×10-6B .4.1×10-5C .0.41×10-4D .4.1×10-46.下列运算正确的是( D ) A.aa -b -bb -a=1 B.m a -n b =m -na -bC.b a -b +1a =1a D.2a -b -a +b a 2-b 2=1a -b7.化简(1-2x +1)÷1x 2-1的结果是( B )A .(x +1)2B .(x -1)2C.1(x +1)2 D.1(x -1)28.分式方程1x -1-2x +1=4x 2-1的解是( D )A .x =0B .x =-1C .x =±1D .无解9.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组步行的速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x 千米/小时,根据题意可列方程是( D )A.7500x -75001.2x =15B.7500x -75001.2x =14 C.7.5x -7.51.2x =15 D.7.5x -7.51.2x =1410.已知关于x 的分式方程m x -1+31-x=1的解是非负数,则m 的取值范围是( C ) A .m >2 B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠3 二、填空题(每小题3分,共18分) 11.计算:xy2xy=__y __.12.计算:(-2xy -1)-3=__-y 38x3__.13.方程2x -1x -3=1的根是x =__-2__.14.若(x -y -2)2+|xy +3|=0,则(3x x -y -2x x -y )÷1y 的值是__-32__.15.若a 2+5ab -b 2=0,则b a -a b的值为__5__.16.已知x 2-3x -4=0,则代数式x x 2-x -4的值是__12__.三、解答题(共72分) 17.(12分)计算:(1)4a 2b ÷(b 2a )-2·a b 2; (2)(a a -2-4a 2-2a )÷a +2a ;解:ab 解:1(3)a 2-b 2a ÷(a -2a -b2a ).解:a +b a -b18.(6分)x 2+x x 2-2x +1÷(2x -1-1x ).(1)化简已知分式;(2)从-2<x≤2的范围内选取一个合适的x 的整数值代入求值. 解:(1)x 2x -1(2)∵x≠±1,且x≠0,且-2<x≤2,∴x =2,将x =2代入得原式=419.(8分)解下列分式方程. (1)2x +3=1x -1; 解:x =5,经检验x =5是分式方程的解 (2)1x -2=1-x 2-x-3. 解:解得x =2.检验:x =2时,x -2=0,所以x =2不是原方程的解,∴原方程无解20.(7分)当x 为何值时,分式3-x 2-x 的值比分式1x -2的值大3?解:解得x =1.经检验,x =1是方程3-x 2-x -1x -2=3的解.即当x =1时,分式3-x2-x的值比分式1x -2的值大321.(7分)已知:[(x 2+y 2)-(x -y)2+2y(x -y)]÷4y=1,求4x 4x 2-y 2-12x +y 的值.解:∵[(x 2+y 2)-(x -y )2+2y (x -y )]÷4y =x -12y ,∴x -12y =1,∴4x4x 2-y2-12x +y=12x -y=12(x -12y )=1222.(7分)已知关于x 的方程1x -2+k x +2=3x 2-4无解,求k 的值.解:去分母,得(1+k )x =2k +1,∵方程无解,∴x =±2,将x =2代入得不成立,将x =-2代入得k =-3423.(7分)已知x 2x 2-2=3,求(11-x -11+x )÷(xx 2-1+x)的值.解:原式化简,得-2x 2.∵x 2x 2-2=3,∴x 2-2x 2=13,∴1-2x 2=13,∴-2x 2=-2324.(8分)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.解:设马小虎的速度为x 米/分,则爸爸的速度是2x 米/分,依题意得1800-200x=1800-2002x+10,解得x =80.经检验,x =80是原方程的根.答:马小虎的速度是80米/分25.(10分)“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?解:(1)设乙队单独施工,需要x 天才能完成该项工程,∵甲队单独施工30天完成该项工程的13,∴甲队单独施工90天完成该项工程,根据题意可得:13+15(190+1x )=1,解得:x =30,检验得:x =30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程 (2)设乙队参与施工y 天才能完成该项工程,根据题意可得:190×36+y ×130≥1,解得:y ≥18,答:乙队至少施工18天才能完成该项工程附赠材料:怎样提高做题效率做题有方,考试才能游刃有余提到考试,映入我眼帘的就是一大批同学在题海里埋头苦干的情景。
人教版 八年级上册数学 第十五章 分式实际应用题 综合复习(一)(含答案)
第十五章分式实际应用题综合复习(一)1.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)2.在防疫新冠状病毒期间,市民对医用口罩的需求越来越大.某药店第一次用3000元购进医用口罩若干个,第二次又用3000元购进该款口罩,但第二次每个口罩的进价是第一次进价的1.25倍,购进的数量比第一次少200个﹒(1)求第一次和第二次分别购进的医用口罩数量为多少个?(2)药店第一次购进口罩后,先以每个4元的价格出售,卖出了a个后购进第二批同款口罩,由于进价提高了,药店将口罩的售价也提升至每个4.5元继续销售卖出了b个后﹒因当地医院医疗物资紧缺,将其已获得口罩销售收入6400元和剩余全部的口罩捐赠给了医院﹒请问药店捐赠口罩至少有多少个?(销售收入=售价×数量)3.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?4.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?5.为中华人民共和国成立70周年献礼,某灯具厂计划加工6000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.5倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.6.在我市雨污分流工程中,甲、乙两个工程队共同承担茅洲河某段720米河道的清淤任务,已知甲队每天能完成的长度是乙队每天能完成长度的2倍,且甲工程队清理300米河道所用的时间比乙工程队清理200米河道所用的时间少5天.(1)甲、乙两工程队每天各能完成多少米的清淤任务;(2)若甲队每天清淤费用为2万元,乙队每天清淤费用为0.8万元,要使这次清淤的总费用不超过60万元,则至少应安排乙工程队清淤多少天?7.列分式方程解应用题.为缓解市区至通州沿线的通勤压力,北京市政府利用现有国铁线路富余能力,通过线路及站台改造,开通了“京通号”城际动车组,每班动车组预定运送乘客1200人,为提高运输效率,“京通号”车组对动车车厢进行了改装,使得每节车厢乘坐的人数比改装前多了,运送预定数量的乘客所需要的车厢数比改装前减少了4节,求改装后每节车厢可以搭载的乘客人数.8.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?9.为防控“新型冠状病毒”,某超市分别用1600元、6000元购进两批防护口罩,第二批防护口罩的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批口罩进货单价多少元?(2)若这两次购买防护口罩过程中所产生其他费用不少于600元,那么该超市购买这两批防护口罩的平均单价至少为多少元?10.2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.参考答案1.解:(1)设第一批仙桃每件进价x元,则,解得x=180.经检验,x=180是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.可得×0.1y﹣3700≥440,解得y≥6.答:剩余的仙桃每件售价至少打6折.2.解:(1)设第一次购进医用口罩的数量为x个,∴第二次购进医用口罩的数量为(x﹣200)个,∴由题意可知:=1.25×,解得:x=1000,经检验,x=1000是原方程的解,∴x﹣200=800,答:第一次和第二次分别购进的医用口罩数量为1000和800个.(2)由(1)可知两次购进口罩共1800个,由题意可知:4a+4.5b=6400,∴a=1600﹣,∴1800﹣a﹣b=1800﹣(1600﹣)﹣b=200+,∵a≤1000,∴1600﹣≤1000,∴b≥533,∵a,b是整数,∴b是8的倍数,∴b的最小值是536,∴1800﹣a﹣b≥267,答:药店捐赠口罩至少有267个3.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:﹣=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,解得:y≥1,∴﹣y≤﹣=6.答:两工程队最多可以合作施工6天.4.解:(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服,根据题意,得﹣=4.解得x=50.经检验:x=50是所列方程的解.则1.5x=75.答:甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)设甲厂要加工m天,根据题意,得150m+120×≤6360.解得m≥28.答:甲厂至少要加工28天.5.解:设原计划每天加工x个,根据题意,得,解得:x=400,经检验,x=400是原方程的解且符合题意.答:原计划每天加工400个.6.解:(1)设乙工程队每天能完成x米的清淤任务,则甲工程队每天能完成2x米的清淤任务,依题意,得:﹣=5,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴2x=20.答:甲工程队每天能完成20米的清淤任务,乙工程队每天能完成10米的清淤任务.(2)设应安排乙工程队清淤m天,则安排甲工程队清淤天,依题意,得:0.8m+2×≤60,解得:m≥60.答:至少应安排乙工程队清淤60天.7.解:设改装前每节车厢乘坐x人,由题意列分式方程得:=+4,解得:x=120,经检验知x=120是原分式方程的解,则改装后每节车厢可以搭载的乘客人数=120×=200人,答:改装后每节车厢可以搭载的乘客人数为200人8.解:(1)设购买一副羽毛球拍需要x元,则购买一根跳绳需要(x﹣20)元,依题意,得:=×,解得:x=25,经检验,x=25是原方程的解,且符合题意,∴x﹣20=5.答:购买一副羽毛球拍需要25元,购买一根跳绳需要5元.(2)设八(1)班购买m副羽毛球拍,则购买(2m+10)根跳绳,依题意,得:25m+5(2m+10﹣m)≤350,解得:m≤10.答:八(1)班最多可购买10副羽毛球拍.9.解:(1)设第一批口罩进货单价为x元,则第二批进货单价为(x+2)元,依题意,得:3×=,解得:x=8,经检验,x=8是原分式方程的解,且符合题意.答:第一批口罩进货单价为8元.(2)购进第一批防护口罩的数量1600÷8=200(个),购进第二批防护口罩的数量200×3=600(个).设该超市购买这两批防护口罩的平均单价为m元,依题意,得:(200+600)m≥1600+6000+600,解得:m≥10.25.答:该超市购买这两批防护口罩的平均单价至少为10.25元.10.解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,依题意,得:+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.。
人教版八年级数学上册第15章单元测试卷及答案
人教版八年级数学上册第15章单元测试卷及答案一.选择题(每小题3分,共30分)1.若分式有意义,则x的取值范围是( )A.x>3B.x<3C.x≠3D.x=32.若分式的值为零,则x的值是( )A.1B.﹣1C.±1D.23.下列分式是最简分式的是( )A.B.C.D.4.下列约分正确的是( )A.B.C.D.5.若分式,则分式的值等于( )A.﹣B.C.﹣D.6.把分式,,进行通分,它们的最简公分母是( )A.x﹣y B.x+y C.x2﹣y2D.(x+y)(x﹣y)(x2﹣y2)7.化简的结果是( )A.B.C.D.2x+28.化简﹣的结果是( )A.﹣x2+2x B.﹣x2+6x C.﹣D.9.分式方程﹣=10的解是( )A.3B.2C.0D.410.一件工作,甲独做a小时完成,乙独做b小时完成,则甲,乙两人合作完成需要( )小时.A.B.C.D.二.填空题(每小题3分,共15分)11.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为 m.12.计算:(2017﹣π)0﹣(﹣3)﹣2= .13.计算:= .14.若关于x的分式方程=+1无解,则m= .15.关于x的方程的解是负数,则a的取值范围是 .三.解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:+(2+),其中x=.17.(9分)先化简÷(x﹣),然后从﹣3<x<3的范围内选取一个合适的整数作为x的值代入求值.18.(9分)先化简,然后从﹣2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.19.(9分)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.20.(9分)用A.B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A.B型机器人每小时分别搬运多少袋大米.21.(10分)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲.乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲.乙两个工厂每天分别能加工多少件新产品?22.(10分)在"母亲节"前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?23.(11分)甲.乙两商场自行定价销售某一商品.(1)甲商场将该商品提价15%后的售价为1.15元,则该商品在甲商场的原价为 元;(2)乙商场将该商品提价20%后,用6元钱购买该商品的件数比没提价前少买1件,求该商品在乙商场的原价是多少?(3)甲.乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a,第二次提价的百分率是b;乙商场:两次提价的百分率都是(a>0,b>0,a≠b).请问甲.乙两商场,哪个商场的提价较多?请说明理由.参考答案一.选择题1.C2.A3.C4.D5.B6.C7.C8.C9.D10.D二.填空题11. 1.02×10﹣712.13.x+y14.215.a<6且a≠4.三.解答题16.解:原式=+=+===x+3,当x=﹣1时,原式=﹣1+3=+2.17.解:原式=÷=•=,当x=1时,原式==. 18.原式==.x满足﹣2≤x≤2且为整数,若使分式有意义,x只能取0,﹣2.∴当x=0时,原式=(或:当x=﹣2时,原式=). 19.解:原式=•=﹣•=,解不等式组得,﹣1≤x<,当x=2时,原式==﹣2.20.解:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋,依题意得:=,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.21.解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意得﹣=10,解得:x=40.经检验:x=40是原方程的根,且符合题意.所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.22.解:(1)设降价后每枝玫瑰的售价是x元,依题意有=×1.5,解得:x=2.经检验,x=2是原方程的解.答:降价后每枝玫瑰的售价是多少元?(2)设购进玫瑰y枝,依题意有2(500﹣x)+1.5x≤900,解得:y≥200.答:至少购进玫瑰200枝.23.解:(1)1.15÷(1+15%)=1(元);(2)设该商品在乙商场的原价为x元,则,解得x=1.经检验:x=1满足方程,符合实际.答:该商品在乙商场的原价为1元.(3)由于原价均为1元,则甲商场两次提价后的价格为:(1+a)(1+b)=1+a+b+ab.乙商场两次提价后的价格为:(1+=.∵.∴乙商场两次提价后价格较多.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学上册第十五章《15.1 分式》知识点一 分式的概念1.在252,,,,334x y x yx a x ππ+---中,分式的个数为( ) A.1 B.2 C.3 D.42. 我国是一个水资源短缺的国家,每一个公民都应自觉养成节约用水的意识和习惯.为提高水资源的利用率,某住宅小区安装了循环用水装置经测算,原来a 天需用水b 吨,现在这些水可多用4天,那么现在每天用水_________吨.知识点二 分式有(无)意义及分式值为0的条件3.如果分式11x +在实数范围内有意义,则x 的取值范围是( ) A.x ≠-1 B.x>-1 C.全体实数 D.x=-1 4.要使分式2(2)(1)x x x ++-有意义,则x 的取值应满足( )A.x ≠1B.x ≠-2C.x ≠1或x ≠-2D.x ≠1且x ≠-2 5.若分式22x yx y+-有意义,则x ,y 满足( ) A.2x ≠y B.x ≠0且y ≠0 C.2x=y D.2x+y=0 6.下列分式中,无论x 取何值,一定有意义的是( ) A.11x x -+ B. 1x x - C. 211x x +- D. 211x x -+7.分式1x x-的值为0,则x 的值是_________. 8.已知分式2x mx n-+,当x=2时,分式的值为0;当x=1时,分式无意义,则m+n=_________.9.当分式231x -,的值为整数时,整数x 的值为_________. 10.(1)若分式571x x+-的值为正数,求x 的取值范围;(2)若分式571x x+-的值为负数,求x 的取值范围. 知识点三 分式的基本性质11.分式13x-可变形为( ) A. 13x + B. 13x -+ C. 13x -D. 13x --12.已知13x x+=,则2421x x x ++的值是( )A.9B.8C.19 D.1813.在括号里填上适当的整式: (1)32c ab =()15ac; (2)()2322xyx x x =--; (3)()()2360ab a ba ab =≠+. 知识点四 分式的约分14.下列分式的约分中,正确的是( ) A.22bc b ac a --=- B. 212x yy x-=- C. 211211a a a a -=-+-D. 22()xy x xx y x y -=-- 15.下列各式中,是最简分式的为( )A. 55x x --B. 2211x x -+C.22222a ab b a b -+-D.128xy16.约分:(1)2341620x y xy -; (2)22ab b b +; (3)242x xy y -+; (4)22699a a a ++-.知识点五 分式的通分 17.下列分式:222435,,542a c bb c a b ac的最简公分母是( ) A. 5abc B. 2225a b c C. 22220a b c D. 22240a b c 18.通分: (1)222435,,5102a c bb c a b ac-; (2)221,939a a a ---;(3)2223,969a a a a --+.参考答案1.答案:B解析:分母中含有字母的是25,x a x-,所以分式共2个,故选B. 2.答案:4b a + 解析:由原来a 天需用水b 吨,现在这些水可多用4天,得现在这些水可以用(a +4)天,所以现在每天用水4ba +吨. 3.答案:A解析:由题意可知x+1≠0,故x ≠-1,故选A.4.答案:D解析:由题意得(x+2)(x-1)≠0,所以x ≠1且x ≠-2,故选D.5.答案:A解析:由题意得2x-y ≠0,则2x ≠y ,故选A.6.答案:D解析:选项A ,当x=-1时,11x x -+没有意义;选项B ,当x=0时,1x x-没有意义;选项C ,当x=±1时,211x x +-没有意义;选项D ,分母21x +恒不为零,则211x x -+一定有意义.故选D.7.答案:1解析:∵分式1x x-的值为0,∴x -1=0且x ≠0,∴x =1. 8.答案:3解析:由题意得402010m n n -=⎧⎪+≠⎨⎪+=⎩,解得41m n =⎧⎨=-⎩,故m+n=4+(-1)=3.9.答案:0,1解析:根据分式231x -的值为整数,得3x-1=±1,±2, 解得x=23或x=0或x=1或x=13-,则整数x 的值为0,1.10.解:(1)由题意知①57010x x +>⎧⎨->⎩,或②57010x x +<⎧⎨-<⎩,解①得715x -<<,不等式组②无解, ∴当715x -<<时,分式571x x+-的值为正数. (2)由题意知①57010x x +>⎧⎨-<⎩,或②57010x x +<⎧⎨->⎩,解①得x>1,解②得x<75-, ∴当x>1或x 75<-时,分式571x x+-的值为负数. 11.答案:D解析:改变分子、分母和分式本身三项中任意两项的符号,分式的值不变,选项D 中的变形是正确的.故选D.12.答案:2113,9x x x x ⎛⎫+=∴+= ⎪⎝⎭,即22129x x ++=,2217x x ∴+=,则原式=2211117181x x==+++,故选D. 13.答案:(1)210a b (2)3y (3)222a ab +解析:(1)分子、分母都乘5a (a ≠0),得2315210c acab a b =. (2)分子分母都除以x (x ≠0),得23322xy yx x x =--.(3)分子、分母都乘2a (a ≠0),得223622ab a ba b a ab=++. 14.答案:C解析:A 项,22bc b ac a -=-,此选项错误;B 项,22x yx-不能约分,此选项错误;C 项,2211121(1)1a a a a a a--==-+--,此选项正确;D 项,222()()()xy x x y x xx y y x y x--==---,此选项错误.故选C. 15.答案:B解析:A 项,原式=-1,故A 不是最简分式;C 项,原式=a ba b-+,故C 不是最简分式;D 项,原式=32xy,故D 不是最简分式.故选B. 16.解:(1)234164205x y xxy y-=-. (2)22(2)2ab b b ab ab b b ++==+. (3)24(2)(2)22(2)x x x x xy y y x y -+--==++. (4)22269(3)39(3)(3)3a a a a a a a a ++++==-+--.17.答案:C解析:在222435,,542a c bb c a b ac中,分母分别是2225,4,2b c a b ac ,故最简公分母是22220a b c .故选C.18.解:(1)最简公分母为22210a b c,3222248510a a cb c a b c =, 32222331010c bc a b a b c =, 32222525210b ab ac a b c=--. (2)最简公分母为3(a +3)(a -3),222(3)933(3)3(3)(3)a a a a a +=-=---+-, 213(1)93(3)(3)a a a a a --=-+-. (3)最简公分母为2(3)(3)a a -+,222222(3)33(3),9(3)(3)69(3)(3)a a a a a a a a a a a -+==--+-+-+.15.2.分式的运算一、填空题: 1、计算:()2xy xy x x y-•-=_______;.2、计算:_______222222=⨯÷b a a b a b 。
3、计算:; _______)2(3324=---c b a4、如果b a =2,则2222b a b ab a ++-= .5、若x+x 1=3 ,则x 2+21x= .二、选择题:6、下列各题中,计算正确的有 ( ) (1)21412+=+a a ; (2)111-=++-++y x y x ; (3)(a+b )÷(a+b)·b a +1=a+b ; (4)m m mm m m -=-+-22322. A. 1个 B.2个 C.3个 D.4个7、一份工作,甲单独做需a 天完成,乙单独做需b 天完成,那么甲、乙两人合作1天的工作量是 ( ) A .a+bB .b a +1 C .2b a + D .ba 11+ 8、若0≠-=y x xy ,则分式=-xy 11( )A 、xy1 B 、x y - C 、1 D 、-19、小明通常上学时走上坡路,通常的速度为m 千米/时,放学回家时,沿原路返回,通常的速度为n 千米/时,则小明上学和放学路上的平均速度为( )千米/时 A 、2n m + B 、n m mn + C 、n m mn +2 D 、mnnm + 三、解答题:10、计算:(1)x x x x 22)2(2-÷-; (2)3246222--•---x x x x x x ; (3)nm m n n m n m -•-÷+-1)(; (4)9643222++-÷+-a a a a a .11、计算:(1)22333⎪⎪⎭⎫ ⎝⎛-÷xy xy ; (2)22323)(⎪⎪⎭⎫ ⎝⎛-•⎪⎪⎭⎫ ⎝⎛÷-ab c ac b a b .12、先化简,后求值: ,其中13、已知:,求:的值14、计算)2020)(2019(1.....)3)(2(1)2)(1(1)1(1+++++++++++x x x x x x x x 并求当x=1时,该代数式的值.15.3分式方程1.若关于x 的方程4331=++x mx 的解是x=1,则m= ; 2.若方程xm x x --=-525有增根,则增根是_________,______=m ; 3.如果分式方程11+=+x m x x 无解,则m= ; 4.下列关于分式方程增根的说法正确的是 ( )A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根;D.使最简公分母的值为零的解是增根5.解分式方程2236111x x x +=+--,分以下四步,其中,错误的一步是( ) A.方程两边分式的最简公分母是(x-1)(x+1)B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=16.方程02211=-+-x x 可能产生的增根是 ( ) A.1 B.2 C.-1或2 D.1或2 7.对于公式)(111221F f f f F ≠+=,已知F 、2f 则公式变形的结果为( ) A.2212f F F f f -= B.2212Ff F f f -= C.22122Ff F f f += D.Ff F f f -=221 8.下列说法中正确的是 ( )A .解分式方程一定会产生增根;B .方程04422=+--x x x 的根为2 C .方程1=x 与方程xx x 111+=+的根相同 D .代数式9122--x x 与294x x --的值不可能相等 9.解方程(1)39132--=--x x x x (2)114112=-+-+x x x(3)444142322+--=--x x x x (4)2126196312=------x x x x10.已知x x x x x -=+--2222313,求x x x x x x x x -÷+----+4)44122(22的值。