线性代数电子教案31页PPT

合集下载

(完整版)线性代数教案(正式打印版)

(完整版)线性代数教案(正式打印版)

特征值与特征向量的求解方法
注意事项
在求解过程中,需要注意特征多项式f(λ)的根可能为重根,此时需要验证 是否满足定义中的条件。
在求解特征向量时,需要注意齐次线性方程组的基础解系的求法。
特征值与特征向量的应用举例
01
应用一
判断矩阵是否可对角化。若矩阵A有n个线性无关的特征向 量,则A可对角化。
02
图像处理
在图像处理中,经常需要对图像进行旋转、缩放等操作,这些操作可以通过矩阵对角化来实现。例如,将一个图像矩 阵与一个旋转矩阵相乘,就可以实现图像的旋转。
数据分析
在数据分析中,经常需要对数据进行降维处理,以提取数据的主要特征。通过对数据的协方差矩阵进行对角化,可以 得到数据的主成分,从而实现数据的降维。
REPORTING
线性代数课程简介
线性代数是数学的一个重要分支,主 要研究向量空间、线性变换及其性质 。
本课程将系统介绍线性代数的基本概 念、理论和方法,包括向量空间、矩 阵、线性方程组、特征值与特征向量 、线性变换等内容。
它是现代数学、物理、工程等领域的 基础课程,对于培养学生的抽象思维 、逻辑推理和问题解决能力具有重要 作用。
工具。
2023
PART 04
线性方程组与高斯消元法
REPORTING
线性方程组概念及解法
线性方程组定义
由n个未知数和m个线性方程组成的方程组,形如Ax=b,其中A为系数矩阵,x为未知数 列向量,b为常数列向量。
解的存在性与唯一性
当系数矩阵A的秩等于增广矩阵(A,b)的秩,且等于未知数个数n时,方程组有唯一解;当 秩小于n时,方程组有无穷多解;当秩大于n时,方程组无解。
要作用。
向量空间与子空间

线性代数课件PPT

线性代数课件PPT
线性代数课件
目录 CONTENT
• 线性代数简介 • 线性方程组 • 向量与矩阵 • 特征值与特征向量 • 行列式与矩阵的逆 • 线性变换与空间几何
01
线性代数简介
线性代数的定义和重要性
1
线性代数是数学的一个重要分支,主要研究线性 方程组、向量空间、矩阵等对象和性质。
2
线性代数在科学、工程、技术等领域有着广泛的 应用,如物理、计算机科学、经济学等。
逆矩阵来求解特征多项式和特征向量等。
06
线性变换与空间几何
线性变换的定义和性质
线性变换的定义
线性变换是向量空间中的一种变换, 它将向量空间中的每一个向量映射到 另一个向量空间中,保持向量的加法 和标量乘法的性质。
线性变换的性质
线性变换具有一些重要的性质,如线 性变换是连续的、可逆的、有逆变换 等。这些性质在解决实际问题中具有 广泛的应用。
特征值与特征向量的应用
总结词
特征值和特征向量的应用非常广泛,包括物理、工程、经济等领域。
详细描述
在物理领域,特征值和特征向量可以描述振动、波动等现象,如振动模态分析、波动分析等。在工程 领域,特征值和特征向量可以用于结构分析、控制系统设计等。在经济领域,特征值和特征向量可以 用于主成分分析、风险评估等。此外,在机器学习、图像处理等领域也有广泛的应用。
经济应用
线性方程组可用于解决经济问题,如投入产出分析、 经济预测等。
03
向量与矩阵
向量的基本概念
向量的模
表示向量的长度或大小,记作|向量|。
ቤተ መጻሕፍቲ ባይዱ
向量的方向
由起点指向终点的方向,可以通过箭头表示。
向量的分量
表示向量在各个坐标轴上的投影,记作x、y、 z等。

《线性代数讲义》课件

《线性代数讲义》课件

在工程学中,性变换也得到了广泛的应用。例如,在图像处理中,可
以通过线性变换对图像进行缩放、旋转等操作;在线性控制系统分析中
,可以通过线性变换对系统进行建模和分析。
THANKS
感谢观看
特征向量的性质
特征向量与特征值一一对应,不同的 特征值对应的特征向量线性无关。
特征值与特征向量的计算方法
01
定义法
根据特征值的定义,通过解方程 组Av=λv来计算特征值和特征向 量。
02
03
公式法
幂法
对于某些特殊的矩阵,可以利用 公式直接计算特征值和特征向量 。
通过迭代的方式,不断计算矩阵 的幂,最终得到特征值和特征向 量。
矩阵表示线性变换的方法
矩阵的定义与性质
矩阵是线性代数中一个基本概念,它可以表示线性变 换。矩阵具有一些重要的性质,如矩阵的加法、标量 乘法、乘法等都是封闭的。
矩阵表示线性变换的方法
通过将线性变换表示为矩阵,可以更方便地研究线性 变换的性质和计算。具体来说,如果一个矩阵A表示 一个线性变换L,那么对于任意向量x,有L(x)=Ax。
特征值与特征向量的应用
数值分析
在求解微分方程、积分方程等数值问题时, 可以利用特征值和特征向量的性质进行求解 。
信号处理
在信号处理中,可以利用特征值和特征向量的性质 进行信号的滤波、降噪等处理。
图像处理
在图像处理中,可以利用特征值和特征向量 的性质进行图像的压缩、识别等处理。
05
二次型与矩阵的相似性
矩阵的定义与性质
数学工具
矩阵是一个由数字组成的矩形阵列,表示为二维数组。矩阵具有行数和列数。矩阵可以进行加法、数 乘、乘法等运算,并具有相应的性质和定理。矩阵是线性代数中重要的数学工具,用于表示线性变换 、线性方程组等。

线性代数全套教学课件

线性代数全套教学课件
码的个数并求和, 即先分别算出 1,2, ···, n 这 n 个元素 的逆序数, 则所有元素的逆序数的总和即为所求排列 的逆序数.
方法2: 依次计算出排列中每个元素前面比它大的 数码的个数并求和, 即算出排列中每个元素的逆序数, 则所有元素的逆序数之总和即为所求排列的逆序数.
方法3: 依次计算出排列中每个元素后面比它小的 数码的个数并求和, 即算出排列中每个元素的逆序数, 则所有元素的逆序数之总和即为所求排列的逆序数.
a31 a32 a33
aa2111xx11
a12 x2 a22 x2
a13 x3 a23 x3
b1 , b2 ,
a31x1 a32 x2 a33 x3 b3;
a11 b1 a13

D2 a21 b2 a23 ,
a31 b3 a33
aa2111xx11
a12 x2 a22 x2
a13 x3 a23 x3
得一个关于未知数 a, b, c 的线性方程组, 又 D 20 0, D1 40, D2 60, D3 20. 得 a D1 D 2, b D2 D 3, c D3 D 1
故所求多项式为
f x 2x2 3x 1.
§1.2 全排列及其逆序数 一、全排列
引例: 用1, 2, 3三个数字, 可以组成多少个没有重 复数字的三位数?
(2)对角线法则 a11 a12 a13 a21 a22 a23 a31 a32 a33
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32.
注意 红线上三元素的乘积冠以正号,蓝线上三 元素的乘积冠以负号. 说明1 对角线法则只适用于二阶与三阶行列式.
0 1 1

(完整word版)线性代数教案

(完整word版)线性代数教案

线性代数课程教案学院、部系、所授课教师课程名称线性代数课程学时45学时实验学时教材名称年月日线性代数课程教案授课类型 理论课 授课时间 3 节授课题目(教学章节或主题):第一章 行列式§1 二阶与三阶行列式 §2 全排列及其逆序数 §3 n 阶行列式的定义 §4 对换本授课单元教学目标或要求:1. 会用对角线法则计算2阶和3阶行列式。

2. 知道n 阶行列式的定义。

本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等): 基本内容:行列式的定义 1. 计算排列的逆序数的方法设12n p p p 是1,2,,n 这n 个自然数的任一排列,并规定由小到大为标准次序。

先看有多少个比1p 大的数排在1p 前面,记为1t ; 再看有多少个比2p 大的数排在2p 前面,记为2t ; ……最后看有多少个比n p 大的数排在n p 前面,记为n t ; 则此排列的逆序数为12n t t t t =+++。

2. n 阶行列式1212111212122212()12(1)n n n n t p p np p p p n n nna a a a a a D a a a a a a ==-∑其中12n p p p 为自然数1,2,,n 的一个排列,t 为这个排列的逆序数,求和符号∑是对所有排列12()n p p p 求和。

n 阶行列式D 中所含2n 个数叫做D 的元素,位于第i 行第j 列的元素ij a ,叫做D 的(,)i j 元。

3. 对角线法则:只对2阶和3阶行列式适用1112112212212122a a D a a a a a a ==-111213212223112233122331132132313233132231122133112332a a a D a a a a a a a a a a a a a a a a a a a a a a a a ==++---重点和难点:理解行列式的定义行列式的定义中应注意两点:(1) 和式中的任一项是取自D 中不同行、不同列的n 个元素的乘积。

《线性代数电子教案》课件

《线性代数电子教案》课件

《线性代数电子教案》PPT课件第一章:线性代数简介1.1 线性代数的意义和应用解释线性代数的概念和重要性探讨线性代数在工程、物理、计算机科学等领域的应用1.2 向量和空间定义向量及其几何表示介绍向量的运算,如加法、减法、数乘和点积1.3 矩阵和矩阵运算介绍矩阵的定义和基本性质探讨矩阵的运算,如加法、减法、数乘和乘法第二章:线性方程组2.1 线性方程组的定义和性质解释线性方程组的含义和基本性质探讨线性方程组的解的存在性和唯一性2.2 高斯消元法介绍高斯消元法的原理和步骤演示高斯消元法的具体操作过程2.3 矩阵的逆定义矩阵的逆及其性质探讨矩阵的逆的求法和应用第三章:矩阵的特征值和特征向量3.1 特征值和特征向量的定义解释特征值和特征向量的概念探讨特征值和特征向量的性质和关系3.2 矩阵的特征值和特征向量的求法介绍求解矩阵的特征值和特征向量的方法演示求解矩阵的特征值和特征向量的具体过程3.3 矩阵的对角化定义矩阵的对角化及其条件探讨矩阵对角化的方法和应用第四章:向量空间和线性变换4.1 向量空间的概念和性质解释向量空间的概念和基本性质探讨向量空间的基、维数和维度4.2 线性变换的定义和性质定义线性变换及其性质探讨线性变换的矩阵表示和特征值4.3 线性变换的图像和应用介绍线性变换的图像和性质探讨线性变换在图像处理等领域的应用第五章:行列式和矩阵的秩5.1 行列式的定义和性质解释行列式的概念和基本性质探讨行列式的计算方法和性质5.2 矩阵的秩的定义和性质定义矩阵的秩及其性质探讨矩阵的秩的求法和应用5.3 矩阵的逆和行列式的关系探讨矩阵的逆和行列式之间的关系演示利用行列式和矩阵的秩解决实际问题的方法第六章:二次型和正定矩阵6.1 二次型的定义和性质解释二次型的概念和基本性质探讨二次型的标准形和判定方法6.2 矩阵的正定性和二次型的应用定义正定矩阵及其性质探讨正定矩阵的判定方法和应用6.3 二次型的最小二乘法介绍最小二乘法的原理和步骤演示最小二乘法在实际问题中的应用第七章:特征值和特征向量的应用7.1 特征值和特征向量在控制理论中的应用探讨特征值和特征向量在控制理论中的重要作用演示利用特征值和特征向量分析线性系统的稳定性7.2 特征值和特征向量在信号处理中的应用解释特征值和特征向量在信号处理中的重要性探讨利用特征值和特征向量进行信号降噪等处理的方法7.3 特征值和特征向量在图像处理中的应用介绍特征值和特征向量在图像处理中的作用演示利用特征值和特征向量进行图像降维和特征提取的方法第八章:向量空间的同构和商空间8.1 向量空间的同构定义向量空间的同构及其性质探讨同构的判定方法和性质8.2 向量空间的商空间解释向量空间的商空间的概念和性质探讨商空间的构造和运算规则8.3 向量空间的同构和商空间的应用探讨向量空间的同构和商空间在数学和物理学中的应用演示利用同构和商空间解决实际问题的方法第九章:线性代数在优化问题中的应用9.1 线性代数在线性规划中的应用解释线性规划问题的概念和基本性质探讨利用线性代数方法解决线性规划问题的方法9.2 线性代数在非线性优化中的应用介绍非线性优化问题的概念和基本性质探讨利用线性代数方法解决非线性优化问题的方法9.3 线性代数在机器学习中的应用解释机器学习中的线性代数方法探讨利用线性代数方法进行数据降维、特征提取和模型构建的方法第十章:总结和拓展10.1 线性代数的核心概念和定理总结线性代数的核心概念和定理强调其在数学和科学研究中的重要性10.2 线性代数的拓展学习和研究方向介绍线性代数的拓展学习和研究方向鼓励学生积极探索线性代数的应用和创新10.3 线性代数的练习和参考资源提供线性代数的练习题和解答推荐相关的参考书籍和在线资源,供学生进一步学习和参考重点和难点解析重点一:向量和空间的概念及运算向量是线性代数的基本元素,其运算包括加法、减法、数乘和点积。

线性代数第-章向量空间PPT课件

线性代数第-章向量空间PPT课件

3
子空间在映射下的变化
线性映射可以导致子空间中的向量发生旋转、平 移或拉伸等变化。
子空间与线性映射的相互影响
子空间对线性映射的限制
子空间的性质可以影响线性映射的作用范围和结果。
线性映射对子空间的构造
通过选择特定的线性映射,可以构造出具有特定性质的子空间。
子空间与线性映射的关系
子空间和线性映射之间存在密切的关系,它们在许多数学问题中都 扮演着重要的角色。
详细描述
子空间是向量空间的一个非空子集,这个子集中的向量之间同样可以进行加法运算和数乘运算,并且这些运算也 满足封闭性、结合性和交换性等性质。子空间的定义是为了研究向量空间的一个特定部分,以便更好地理解和应 用向量空间。
向量空间的基与维数
总结词
基是向量空间中线性无关的向量组,它能够生成整个向量空间;维数则是向量空间的基 所包含的向量个数。
向量空间的推广到矩阵空 间
将向量空间中的元素推广到矩阵,形成矩阵 空间,使得线性变换和矩阵运算的结合更加 紧密,为解决实际问题提供更多数学工具。
向量空间的推广到函数空 间
将向量空间的元素推广到函数,形成函数空 间,使得函数的线性组合、内积等运算成为 可能,为解决实际问题提供更多数学工具。
向量空间的应用前景
判定条件二
如果存在一个线性映射f:V→W,使得V和W的基底之间存在一一对应关系,并且 这种对应关系保持向量加法和标量乘法的运算关系,则称V和W同构。
同构的应用场景
线性变换
几何变换
同构映射可以应用于线性变换中,将 一个向量空间中的线性变换转移到另 一个向量空间中。
同构映射可以应用于几何变换中,如 旋转、平移等,将一个向量空间中的 几何变换转移到另一个向量空间中。

线性代数 幻灯片PPT

线性代数  幻灯片PPT
• 定义8 设有两个n
• 如果向量组A中每一个向量都能由向量组B 线性表示,那么称向量组A能由向量组B线 性表示.
53
线性代数
• 定理6 设有两个n维向量组
•证
出版社 科技分社
54
线性代数
出版社 科技分社
• 因为A组可由B组线性表示,所以存在矩阵
• 使 A=KB.
• 推论 等价的线性无关向量组所含向量个数 相等.
• 2.7 方 阵 的 • 定义12 对n阶方阵A,如果存在一个n阶方
阵B,使AB=BA=E,那么称A是可逆阵,称B 为A的逆阵,记为B=A-1. • 性质1 如果A可逆,那么逆阵惟一. • 证明 设A有两个逆阵B,C
43
线性代数
出版社 科技分社
44
线性代数
出版社 科技分社
45
线性代数
出版社 科技分社
• 定义11 由单位阵经过一次初等变换得到的 方阵称为初等方阵.
• 3种初等变换对应了3类初等方阵.
• 第1类初等方阵:对调E
39
线性代数
出版社 科技分社
40
线性代数
出版社 科技分社
41
线性代数
出版社 科技分社
42
线性代数
出版社 科技分社
• 定理3 设A=(aij)m×n,对A施行初等行变换, 相当于对A左乘相应的m阶初等方阵,对A施 行初等列变换,相当于对A右乘相应的n阶 初等方阵.
出版社 科技分社
线性代数 课件
本PPT课件仅供大家学习使用 请学习完及时删除处理 谢谢!
1
线性代数
出版社 科技分社
第1章 行列式
• 1.1 预 备 知 • 设有二元一次方程组
出版社 科技分社

线性代数行列式的概念和性质

线性代数行列式的概念和性质
det A a11 a12
a11 a21
a21 a22

a12 a22
+
a11 1 11 det S11 a12 1 12 det S12
a11a22 a12a21
当前您浏览的位置是第六页,共三十二页。
1 3


A
2
4
3 7
a11 解 det A
an1
7 3 , 计算 det A 的值. 2
注 行列式的每个元素都分别对应一个余子式和一个代数余子
式.
根据该定义,可重新表达行列式的值
a11
det A
a1n def
n
1 k
a1k 1 det S1k
an1 ann
k 1
n
a1k A1k
k 1
其中 A1k 是元 a1k 对A 或 det A 的代数余子式.
相当于把行列式按第一行展开
cnk bn1
bnn
a1k
b11
, D2 det(bij )
akk
bn1
b1n ,
bnn
当前您浏览的位置是第二十三页,共三十二页。
内容总结
线性代数课件行列式的概念和性质。对 n = 2, 3,。项,每一项都是位于不同行,不同列的 三个元素的乘积, 其中三项为正, 三项为负.。个不同项的代数和,其中的每一项都是处于行 列式不同行又不同列的n 个元之乘积.。说明 行列式中行与列具有同等的地位,因此行列式的 性质凡是对行成立的对列也同样成立.。性质5 把行列式的某一列(行)元素的k倍加到另一列 (行)对应的元素上去,行列式的值不变.
AC
det U
det A det B
OB

线性代数电子教案PPT课件

线性代数电子教案PPT课件

第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节
向量的内积 方阵的特征值与特征向量 相似矩阵 实对称矩阵的对角化 二次型与线性变换 二次型的标准形 用配方法化二次型为标准形 正定二次型
上页 下页 返回
第六章 线性空间与线性变换
第一节 第二节 第三节 第四节
线性空间的定义及性质 维数 基与坐标 基变换与坐标变换 线性变换及其矩阵表示
上页 下页 返回
Chapter 4 Linear Systems of Equations
Section 1 Existence of Solutions of the Systems of Linear Equations
Section 2 Homogenous Systems of Linear Equations Section 3 Non-homogeneous Systems
上页 下页 返回
Contents
Chapter1 Determinant Chapter2 Linear Dependence of Sets of Vectors Chapter3 Matrix Chapter4 Linear Systems of Equations Chapter5 Similar matrices and quadratic form Chapter6 Linear Space and Linear Transform
返回
软件说明 总目录 创作集体 使用方法 返回
or a column Section 4 Cramer’s Rule
上页 下页 返回
Chapter 2 Linear Dependence of Sets of Vectors
and Vector space

线性代数完整版ppt课件

线性代数完整版ppt课件
a 31 a 32 a 33 a13a22a31a12a21a33a11a23a32
规律:
1. 三阶行列式共有6项,即3!项.
2. 每一项都是位于不同行不同列的三个元素的乘积.
3. 每一项可以写成 a1p1a2p2(a3正p3负号除外),其中
是1、2、3的某个排列.
p1 p2 p3
4. 当 p1 p2 是p3偶排列时,对应的项取正号;
(方程组的系数行列式)
D1
b1 b2
a12 a22
D2
a11 a 21
b1 b2
则上述二元线性方程组的解可表示为
x1
b1a22 a11a22
a12b2 a12a21
D1 D
x2
a11b2b1a21 a11a22a12a21.
D2 D
10
例1
求解二元线性方程组
32x1x1 2xx22
12 1
3 2
1.4
.
14
例3 求解方程 1 1 1
2 3 x 0. 4 9 x2
解 方程左端 D 3 x 2 4 x 1 9 x 8 2 x 2 12 x25x6,
由 x25x60得
x2或 x3.
.
15
§2 全排列及其逆序数
问题 把 n 个不同的元素排成一列,共有多少种不同的 排法?
定义 把 n 个不同的元素排成一列,叫做这 n 个元素 的全排列. n 个不同元素的所有排列的种数,通常用 Pn 表示.
相减而得.
.
7
二元线性方程组
a11x1 a12x2 b1 a21x1 a22x2 b2
其求解公式为
x1
x
2
b1a 22 a11a 22 a11b2 a11a 22

线性代数ppt课件

线性代数ppt课件

VS
线性代数的特点
线性代数具有抽象性、实用性、广泛性等 特点,是数学中重要的分支之一。
线性代数的历史背景
线性代数的起源
线性代数起源于17世纪,主要目的 是为了解决线性方程组的问题。
线性代数的发展
随着数学的发展,线性代数逐渐成为 一门独立的数学分支,并在20世纪得 到了广泛的应用和发展。
线性代数的应用领域
转置矩阵
一个矩阵A的转置矩阵是满足$A^T_{ij}=A_{ ji}$的矩阵
行列式与高斯消元
03

行列式的定义及性质
总结词
行列式是线性代数中重要的工具之一,它具有特殊的性质和计算规则。
详细描述
行列式是由一组方阵中的元素按照一定规则组成的,它是一个方阵是否可逆的判断标准,同时也有一 些重要的性质和计算规则,如交换两行或两列、对角线上的元素相乘等。了解行列式的定义和性质是 学习线性代数的基础。
矩阵的运算规则
加法
两个相同大小的矩阵,对应位置的元素相加
数乘
用一个数乘以矩阵的每一个元素
减法
两个相同大小的矩阵,对应位置的元素相减
乘法
要求两个矩阵满足乘法运算的规则,即第一 个矩阵的列数等于第二个矩阵的行数
矩阵的逆与转置
逆矩阵
一个矩阵A的逆矩阵是满足$AA^{-1}=I$的矩阵,其中$I$是单位矩阵
高斯消元法的原理
总结词
高斯消元法是一种解线性方程组的直接方法 ,其原理是将方程组转化为阶梯形矩阵。
详细描述
高斯消元法的基本思想是通过一系列的行变 换将线性方程组转化为阶梯形矩阵,这样就 可以直接求解方程组。高斯消元法包括三种 基本的行变换:将两行互换、将一行乘以非 零常数、将一行加上另一行的若干倍。通过 这些行变换,我们可以将矩阵转化为阶梯形 矩阵,从而求解方程组。

(完整版)《大学线性代数》PPT课件

(完整版)《大学线性代数》PPT课件

下特页点
结束
a11 a12 … a1n
a21

a22 … a2n … ……
=
(-1) N ( j1 j2 jn ) a1 j1 a2 j2 anjn 。
an1 an2 … ann
n阶行列式共有n!项,且冠以正号的项和冠以负号的 项各占一半。
在行列式中,a1 j1 a2 j2 anjn 是取自不同行不同列
结束
例2.计算 n 阶下三角形行列式D的值: a11 0 0 … 0 a21 a22 0 … 0
D = a31 a32 a33 … 0 … … … …… an1 an2 an3 … ann
其中aii0(i=1, 2, , n)。
解:为使取自不同行不同列的元素的乘积不为零,
第一行只能取a11,第二行只能取a22,第三行只能取a33, , 第 n 行只能取ann。 这样不为零的乘积项只有
结束
对换:
在一个排列i1isitin中,将两个数码 is与it对调, 就得到另一个排列 i1 it is in ,这样的变换称为一个 对换,记为对换(is , it)。
例如,排列 21354 经对换(1, 4),得到排列24351。 提问:
排列 21354 经对换 (1, 4),得到的排列是 24351, 排列的奇偶性有无变化? 提示:
的 n 个元素的乘积。
a1 j1 a2 j2 anjn 之前的符号是 (-1) N(j1 j2 jn) 。
行列式有时简记为| a ij |。一阶行列式|a|就是a。
首页
上页
四阶行列式
a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a41 a42 a43 a44

《线性代数》PPT课件幻灯片PPT

《线性代数》PPT课件幻灯片PPT

特别当矩阵A与对角阵=diag(1, 2,···, n )相似时,
那么
Am = PmP-1; (A)= P()P-1.
而对于对角阵, 有
1k
k =
k2
;
kn
()=
(1)
(2)
(n).
利用上述结论可以很方便地计算矩阵A的多项式
(A). 结论: 假设f( )为矩阵A的特征多项式, 那么矩阵
A的多项式 f(A)=O. 此结论的一般性证明较困难, 但当矩阵A与对角
因此, 当a = –1时矩阵A能对角化.
三、小 结
1. 相似矩阵 相似是矩阵之间的一种关系, 它具有很多良好的 性质, 除了课堂内介绍的以外, 还有: (1) 假设A与B相似, 那么det(A)=det(B); (2) 假设A与B相似, f(x)为多项式, 那么f(A)与f(B) 相似; (3) 假设A与B相似, 且A可逆, 那么B也可逆, 且A1与B2-1. 相相似似.变换与相似变换矩阵 相似变换是对方阵进展的一种运算, 它把A变成 P-1AP, 可逆矩阵P称为进展这一变换的相似变换矩阵.
-2
P1AP
1 1.
矩阵P的列向量和对角矩阵中特征值的位置要相
互对应.
例3:设A= 110
0 1 0
a10,当a为何值时, 矩阵A能对角化?
0 1 解: | A –E | = 1 1 a = –(–1)2(+1).
1 0
得矩阵A的特征值 1 = –1, 2 = 3 = 1. 对应单根1 = –1, 恰好可求得一个线性无关的特
阵 相似时很容易证明即.
f(A)=Pf()P=POP-1=O.
二、利用相似变换将方阵对角化
n阶方阵A是否与对角阵 =diag( 1, 2,···, n ) 相似, 那么我们需要解决如下两个问题:

金迎迎线性代数电子教案课件

金迎迎线性代数电子教案课件

金迎迎-线性代数电子教案课件第一章:线性代数概述1.1 线性代数的定义与意义解释线性代数的概念强调线性代数在数学与实际应用中的重要性1.2 向量与向量空间向量的定义与表示向量的运算(加法、减法、数乘)向量空间的定义与性质1.3 矩阵与矩阵运算矩阵的定义与表示矩阵的运算(加法、减法、数乘、乘法)矩阵的转置与共轭1.4 线性方程组与矩阵方程线性方程组的定义与表示矩阵方程的定义与表示解线性方程组与矩阵方程的方法第二章:线性变换与特征值特征向量2.1 线性变换的定义与性质解释线性变换的概念线性变换的矩阵表示线性变换的性质(单调性、可逆性)2.2 特征值与特征向量特征值与特征向量的定义求解特征值与特征向量的方法特征值与特征向量的性质与应用2.3 对称矩阵与正交矩阵对称矩阵的定义与性质正交矩阵的定义与性质对称矩阵与正交矩阵之间的关系第三章:二次型与内积空间3.1 二次型的定义与表示二次型的概念与标准形式二次型的矩阵表示二次型的性质(正定性、负定性)3.2 内积空间的定义与性质内积空间的定义与表示内积的性质(正定性、对称性、平行性)标准正交基的定义与性质3.3 二次型与内积空间的关系二次型的内积表示二次型的标准形与内积空间的关系最小二乘法与二次型的关系第四章:行列式与矩阵的秩4.1 行列式的定义与性质行列式的概念与计算公式行列式的性质(交换律、结合律、对角线法则)行列式与线性方程组的关系4.2 矩阵的秩矩阵的秩的定义与计算方法矩阵的秩的性质与意义矩阵的秩与线性方程组的解的关系4.3 矩阵的逆矩阵的逆的定义与性质矩阵的逆的计算方法(高斯-约当消元法、逆矩阵的性质)矩阵的逆的应用(解线性方程组、求矩阵的特征值)第五章:线性代数在实际应用中的案例分析5.1 线性代数在工程中的应用线性方程组在结构力学中的应用特征值与特征向量在振动分析中的应用5.2 线性代数在计算机科学中的应用矩阵运算在图像处理中的应用线性代数在机器学习与数据挖掘中的应用5.3 线性代数在其他领域的应用线性代数在经济学中的应用(线性规划)线性代数在生物学中的应用(基因表达数据分析)金迎迎-线性代数电子教案课件第六章:向量空间与线性相关性6.1 向量空间的概念与性质向量空间的基本定义向量空间的性质(加法封闭性、数乘封闭性、基的存在性)6.2 线性相关的定义与性质线性相关的概念线性相关的性质(组、极大线性无关组)线性相关性与线性无关性的判断方法6.3 线性组合与线性表达式线性组合的定义与性质线性表达式的概念与应用线性无关组的方法与性质第七章:线性方程组的求解方法7.1 高斯消元法高斯消元法的原理与步骤高斯消元法的应用与例子高斯消元法的优缺点分析7.2 克莱姆法则克莱姆法则的定义与条件克莱姆法则的应用与例子克莱姆法则的推广与改进7.3 其他线性方程组的求解方法矩阵分解法(LU分解、Cholesky分解)迭代法(Jacobi迭代、Gauss-Seidel迭代)稀疏矩阵技术与应用第八章:特征值与特征向量的应用8.1 特征值与特征向量的几何意义特征值与特征向量的直观解释特征值与特征向量在几何中的应用8.2 特征值与特征向量的应用案例稳定性的分析(如:摆动的周期性)振动系统的模态分析图像处理中的滤波与边缘检测8.3 对称矩阵的特殊性质对称矩阵的特征值与特征向量的性质对称矩阵的谱分解(特征值分解)对称矩阵的特殊应用(如:正交矩阵的)第九章:二次型的定义与标准形9.1 二次型的概念与标准形二次型的定义与表示标准形的概念与意义配方法与完成平方9.2 惯性定理与二次型的分类惯性定理的定义与证明正定二次型、负定二次型与不定二次型的分类惯性定理的应用案例9.3 二次型的几何解释与应用二次型的几何意义二次型在几何中的应用(如:椭圆、双曲线、抛物线)最小二乘法与二次型的关系第十章:线性代数的综合应用与实践10.1 线性代数在工程中的应用案例线性方程组在电路设计中的应用特征值与特征向量在结构分析中的应用10.2 线性代数在计算机科学中的应用案例矩阵运算在图像处理中的应用线性代数在机器学习与数据挖掘中的应用案例10.3 线性代数的实践与练习线性代数软件工具的使用(如:MATLAB、NumPy)实际问题的建模与求解练习题与案例分析重点和难点解析:1. 向量空间与线性相关性:理解向量空间的基本定义和性质是理解线性代数其他概念的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则P 1AP = .
第四章 矩阵的特征值和特征向量
§4.2 特征值与特征向量 一. 定义
§4.2 特征值与特征向量
n阶方阵
特征值
A =
对应非零向量特征向量源自第四章 矩阵的特征值和特征向量
特征值
特征矩阵
A =
E–A
(E–A) = 0
§4.2 特征值与特征向量
特征向量
特征多项式 |E–A| = 0 特征方程
第四章 矩阵的特征值和特征向量
§4.1 相似矩阵
一. 问题
习题1(B). 23
设P1AP = , P = 1 4 , = 1 0 ,
11
02
求A11.
A = PP1
11 =
1 0 0 211
A11 = P11P1
§4.2 §4.3 §4.4
第四章 矩阵的特征值和特征向量
二. 相似矩阵的定义
§4.1 相似矩阵
= anP 1AnP+…+a1P 1AP+a0 P 1EP = an(P 1AP)n+…+a1P 1AP+a0E = anBn+…+a1B+a0E
= f(B).
第四章 矩阵的特征值和特征向量
性质2. 设A~B, 则|A| = |B|. 证明: P 1AP = B |P 1AP| = |B|
|P 1||A||P|
且A与B相似 A与B相抵. 但反之未必.
第四章 矩阵的特征值和特征向量
三. 相似矩阵的性质
§4.1 相似矩阵
性质1. 设A~B, f是一个多项式, 则f(A)~ f(B).
证明: 设P 1AP =B, f(x) = anxn+…+a1x+a0, 则 P 1f(A)P
= P 1(anAn+…+a1A+a0E)P
1
0
2
解: |E–A| = (–2)(–1)2.
所以A的特征值为1=2, 2= 3= 1.
对于1=2,
求得(2E–A)x = 0 的基础解系: p1=(0,0,1)T.
对应于1=2的特征向量为kp1 (0kR).
对于2=3=1,
求得(E–A)x = 0 的基础解系: p2=(–1, –2,1)T.
x1 + x2 = 0 x1 x2 = 0
解之得
x1 x2
=k
1 1
(0 k R).
A的对应于1=2的特征向量为
k k
(0kR).
第四章 矩阵的特征值和特征向量
§4.2 特征值与特征向量
例1.
求A
=
3 1
1 3
的特征值和特征向量.
解:
|E–A| =
–3
1
1
–3
= (–2)(–4).
所以A的特征值为1=2, 2=4.
设A, B都是n阶方阵, 若有可逆矩阵P, 使得 P 1AP =B, 则称矩阵A与B相似. 记为A~B. P称为相似变换矩阵或过渡矩阵.
易见, 矩阵间的相似关系满足 (1) 反身性: A~A; (2) 对称性: A~B B~A; (3) 传递性: A~B, B~C A~C.
即矩阵间的相似关系是一种等价关系.
对应于2=3 =1的特征向量为kp2 (0kR).
第四章 矩阵的特征值和特征向量
§4.2 特征值与特征向量
2 1 1
例3. 求 A 0 2 0 的特征值和特征向量.
4
1
3
解: |E–A| = (+1)( –2)2.
所以A的特征值为1= –1, 2= 3= 2.
(–E–A)x = 0的基础解系: p1=(1,0,1)T.
P 1AP = AP = P
(A1, …, An) = (11, …, nn)
第四章 矩阵的特征值和特征向量
§4.1 相似矩阵
2. 条件:
定理4.1. Ann ~ 对角矩阵
1, …, n和线性无关的1, …, n, s.t.
Ai = ii
(i = 1, …, n).
在此条件下, 令
P = (1, …, n), = diag(1, …, n),
A的迹: tr(A) = a11 + a22 + … + a1n
(1) tr(A+B) = tr(A) + tr(B); (2) tr(kA) = ktr(A);
(3) tr(AB) = tr(BA).
第四章 矩阵的特征值和特征向量
性质4. 设A~B, 则tr(A) = tr(B). 证明: P 1AP = B
对于2=4, (4E–A)x = 0 即
x1 + x2 = 0 x1 + x2 = 0
解之得
x1 x2
=k
1 1
(0 k R).
A的对应于2=4的特征向量为
k k
(0kR).
第四章 矩阵的特征值和特征向量
§4.2 特征值与特征向量
1 1 0
例2. 求 A 4 3 0 的特征值和特征向量.
–a11 –a12 … –a1n
|E–A| =
–a21 …
–a22 … –a2n
…… …
–an1 –an2 … –ann
第四章 矩阵的特征值和特征向量
二. 计算 1. 理论依据
§4.2 特征值与特征向量
定理4.2. (1) 0为A的特征值 |0E–A| = 0. (2) 为A的对应于0特征向量 (0E–A) = 0.
2. 步骤
计算|E–A| 求|E–A| = 0的根
求(E–A)x = 0的基础解系
第四章 矩阵的特征值和特征向量
§4.2 特征值与特征向量
例1.
求A
=
3 1
1 3
的特征值和特征向量.
解:
|E–A| =
–3
1
1
–3
= (–2)(–4).
所以A的特征值为1=2, 2=4.
对于1=2, (2E–A)x = 0 即
对应于1= –1的特征向量为kp1 (0kR).
(2E–A)x = 0的基础解系:
p2=(0, 1, –1)T, p3=(1, 0, 4)T.
对应于2=3 =2的特征向量为k2p2 +k3p3
(k2, k3不同时为零).
第四章 矩阵的特征值和特征向量
三. 性质
tr(B) = tr(P 1AP) = tr(APP 1) = tr(A).
§4.1 相似矩阵
第四章 矩阵的特征值和特征向量
四. 相似对角化 1. 定义:
§4.1 相似矩阵
1 0 … 0
A~ =
0 2 … 0
…………
= P 1AP
0 0 … n
P = (1, …, n)可逆 1, …, n线性无关
|P|1|A||P|
|A| 性质3. 设A~B, 则r(A) = r(B). 证明: P 1AP = B r(A) = r(B).
===
§4.1 相似矩阵
第四章 矩阵的特征值和特征向量
§4.1 相似矩阵
a11 a12 … a1n A = a21 a22 … a2n
………… an1 an2 … a1n
相关文档
最新文档