九年级数学下册第2章圆课题三角形的内切圆学案新版湘教版
湘教版数学九年级下册《2.5.4三角形的内切圆》教学设计2
湘教版数学九年级下册《2.5.4三角形的内切圆》教学设计2一. 教材分析湘教版数学九年级下册《2.5.4三角形的内切圆》是初中数学的重要内容,主要让学生了解三角形的内切圆的概念,理解三角形的内切圆与角平分线、中线的性质,学会用三角形的内切圆解决一些几何问题。
本节课的内容对于学生来说比较抽象,需要通过具体的教学活动,让学生理解和掌握。
二. 学情分析学生在学习本节课之前,已经学习了三角形的角平分线、中线的性质,对几何图形的性质有一定的了解。
但是,对于三角形的内切圆这一概念,学生可能比较陌生,需要通过具体的教学活动,让学生理解和掌握。
三. 教学目标1.了解三角形的内切圆的概念,理解三角形的内切圆与角平分线、中线的性质。
2.学会用三角形的内切圆解决一些几何问题。
3.培养学生的空间想象能力,提高学生的几何思维能力。
四. 教学重难点1.三角形的内切圆的概念。
2.三角形的内切圆与角平分线、中线的性质。
3.用三角形的内切圆解决几何问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究三角形的内切圆的性质。
2.采用几何画板等软件,直观展示三角形的内切圆的性质,帮助学生理解。
3.通过具体的例题,让学生学会用三角形的内切圆解决几何问题。
六. 教学准备1.准备相关的几何画板软件。
2.准备相关的教学PPT。
3.准备一些具体的例题。
七. 教学过程1.导入(5分钟)通过复习三角形的角平分线、中线的性质,引导学生思考:三角形的内切圆与角平分线、中线有什么关系?从而引出本节课的主题——三角形的内切圆。
2.呈现(10分钟)使用几何画板软件,展示三角形的内切圆的性质,让学生直观地感受三角形的内切圆与角平分线、中线的关系。
3.操练(10分钟)让学生通过观察几何画板软件中的图形,尝试总结出三角形的内切圆的性质。
教师在旁边引导,帮助学生归纳出三角形的内切圆的性质。
4.巩固(10分钟)让学生通过自主探究,尝试证明三角形的内切圆的性质。
九年级数学下册《三角形的内切圆》教案、教学设计
1.教学内容:学生通过小组讨论,探究三角形内切圆的性质,并尝试证明。
2.教学方法:采用小组合作学习法、探究式教学法。
3.教学步骤:
(1)教师将学生分成若干小组,每组学生通过画图、测量、计算等手段,探究三角形内切圆的性质。
(2)学生讨论如何证明三角形内切圆的性质,如内切圆的半径与三角形的面积、半周长之间的关系。
(3)教师布置课后作业,要求学生巩固所学知识,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学知识,培养学生的几何解题能力和数学素养,特布置以下作业:
1.必做题:
(1)完成课本第123页练习题第1、2、3题,要求学生独立完成,强化对三角形内切圆性质的理解。
(2)利用内切圆的性质,求解以下三角形内切圆的半径:①等边三角形;②等腰直角三角形;③一般三角形。
4.创新题:
(1)请学生尝试自己设计一道与三角形内切圆相关的题目,要求具有创新性和挑战性。
(2)将设计的题目与同学分享,互相解答,提高解题能力。
作业要求:
1.学生要认真完成作业,注意书写规范,保持卷面整洁。
2.遇到问题要主动思考,积极寻求解决方法,可向同学或老师请教。
3.小组合作题要充分发挥团队合作精神,共同解决问题。
(3)讲解:教师对三角形内切圆的性质进行总结和讲解,强调内切圆与三角形之间的关系,引导学生理解并掌握求解内切圆半径的方法。
(4)巩固:设计有针对性的练习题,让学生独立完成,巩固所学知识,提高解题能力。
(5)拓展:引导学生将内切圆知识应用于解决实际问题,如求内切圆的周长、面积等,培养学生的数学应用意识。
(3)思考并证明:三角形内切圆的半径等于其半周长与面积之比。
2.选做题:
九年级数学下册 第二章 圆复习教案 (新版)湘教版
圆教学目标:【知识与技能】掌握本章重要知识.能灵活运用有关定理,公式解决具体问题.【过程与方法】通过梳理本章知识,回顾解决问题中所涉及的数形结合思想,分类讨论思想的过程,加深对本章知识的理解.【情感态度】在运用本章知识解决具体问题过程中,进一步体会数学与生活的密切联系,增强数学应用意识,感受数学的应用价值,激发学生兴趣.【教学重点】回顾本章知识点,构建知识体系.【教学难点】利用圆的相关知识解决具体问题.教学过程:一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示本章知识结构框图,使学生系统地了解本章知识及它们之间的关系.教学时,边回顾边建立结构框图.二、释疑解惑,加深理解1.垂径定理及推论的应用垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.拓展:①弦的垂直平分线经过圆心,并且平分弦所对的两条弧.②平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.说明:由垂径定理及其推论,可知对于一个圆和一条直线.如果具备下列五个性质中的两个,那么就具备其余三个性质.这五个性质分别为:①经过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的劣弧;⑤平分弦所对的优弧.特别注意:此处被平分的弦不能是直径,因为在圆中,任意两条直径总是互相平分的.2.三角形内切圆的半径r,周长l与面积S之间的关系.与三角形各边都相切的圆叫做三角形内切圆.内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.所以,三角形的内心到三角形三边的距离相等,并且一定在三角形内,三角形有唯一的一个内切圆,而圆有无数个外切三角形.三、典例精析,复习新知例1如图,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,则下列结论中不正确的是()A.AB ⊥CDB.∠AOB=2∠AODC.»»AD BD =D.PO=PD【分析】∵P 是弦AB 的中点,CD 是过点P 的直径.∴由垂径定理的推论及“三线合一”的性质即可判断.由题意易判断出D 项结论不正确.例2如图,已知△ABC,AC=BC=6,∠C=90°,O 是AB 的中点,⊙O 与AC 相切于点D,与BC 相切于点E,设⊙O 交OB 于F,连DF 并延长交CB 的延长线于G.(1)∠BFG 与∠BGF 是否相等?为什么?(2)求由DG 、GE 和»ED 所围成图形的面积(阴影部分).解:(1)是.连接OD,∵OD=OF,∴∠ODF=∠OFD,∵⊙O 与AC 相切于点D,∴OD ⊥AC.又∵∠C=90°,即:GC ⊥AC∴OD ∥GC.∴∠BGF=∠ODF,又∵∠BFG=∠OFD,∴∠BFG=∠BGF.(2)如图,连接OE,则四边形ODCE 为正方形,边长为3.∵∠BFG=∠BGF,∴BG=BF=OB-OF=3.∴CG=CB+BG=3+S 阴影=S △DCG -(S 正方形ODCE -S 扇形ODE )=(22119933(33)24422ππ⨯⨯+--=+- . 例3如图⊙O 的半径为1,过点A (2,0)的直线与⊙O 相切于点B ,交y 轴于点C.(1)求线段AB 的长.(2)求以直线AC 为图象的一次函数的解析式.解:(1)连接OB.∵AC 是⊙O 的切线∴OB ⊥AC,∴AB =(2)过B 作BE⊥OA 于E,∴S △ABO =12·BE·OA=12·OB·AB.∴·OB AB BE OA ===∴12OE===.∴1(,22B.设直线AC的解析式为y=kx+b.则:0222k bkb=+⎧=+⎩∴kb⎧=⎪⎪⎨⎪=⎪⎩∴以直线AC为图象的一次函数的解析式为33y x=-+.四、复习训练,巩固提高1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若AP∶PB=1∶4,CD=8,则AB=___.第1题图第2题图2.如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧»BC上的一点,已知∠BAC=80°,那么∠BDC=______.3.如图,在Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O、H分别为AB、AC的中点,将△ABC绕点B沿逆时针方向旋转120°到△A1BC1的位置,则整个旋转过程中,线段OH所扫过部分的面积(即阴影部分面积)为______.4.如图,已知直线AB:y=-12x+4交x轴于点A,交y轴于点B,O1为y轴上的点,以O1为圆心,经过A、B两点作圆,⊙O1与x轴交于另一点C,AF切⊙O1于点A,直线BD ∥AF交⊙O1于点D,交OA于点E.(1)求⊙O1的半径;(2)求点E的坐标.【答案】1.10 2.50°3.π【解析】连接BH、BH1,则有△BOH≌△BO1H1,由勾股定理,得BH=BH1=,BO=BO1=2,所以阴影部分的面积11221202360HBH BOOS S Sππ=-=⨯-=扇形扇形[].4.解:(1)连接O1A交BD于点H,设⊙O1的半径为r.∵直线y=-12x+4.∴OB=4,OA=8.∵OO12+OA2=O1A2,∴(r-4)2+82=r2,解得r=10, ∴⊙O1的半径为10.(2)∵AF是⊙O1切线,∴O1A⊥AF.又∵BD∥AF,∴O1A⊥BD,∴»»AD AB=,∵OB⊥AC,∴»»CB AB=,∴»»CB AD=,∴∠EAB=∠EBA,∴EA=EB.设OE=x,则EB=AE=8-x,∵OE2+OB2=BE2,∴x2+42=(8-x)2,解得x=3,∴点E的坐标为(3,0).五、师生互动,课堂小结本堂课你能完整地回顾本章所学的有关圆的知识吗?你学会了哪些相关的证明方法?你还有哪些疑问?【教学说明】教师引导学生回顾本章知识,尽可能让学生自主交流与反思,对于学生的困惑与疑问,教师应予以补充和点评.课后作业:1.布置作业:从教材“复习题2”中选取.2.完成《学法》中本课时的练习.教学反思:本节课通过学习归纳本章内容,以垂径定理、内切圆、两圆相交作公共弦等知识点为支撑,力求以点带面,查漏补缺,让学生对本章知识了然于胸.此外,又通过两个有关切线的例题,加强对重点知识的训练.使学生能在全面掌握知识点前提下,又能抓住重点.湘教版九年级数学第二章圆同步测试一、选择题(10小题)1.若四边形ABCD是⊙O的内接四边形,且∠A︰∠B︰∠C=1︰3︰8,则∠D的度数是A. 10°B. 30°C. 80°D. 120°2.如图,AB是⊙O的直径,点C在⊙O上,若∠A=40°,则∠B的度数为()A.80º B.60º C.50º D.40º3.下列说法中,正确的是()A.长度相等的两条弧是等弧 B.优弧一定大于劣弧C.不同的圆中不可能有相等的弦 D.直径是弦且是同一个圆中最长的弦4.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40° B.50° C.60° D.80°5.⊙O 的半径r =5 cm ,圆心到直线l 4 cm ,在直线l 上有一点P ,且PM =3 cm ,则点P(A .在⊙O 内B .在⊙O 上C .可能在⊙O 上或在⊙O 内6.如图,若AB 是⊙O 的直径,CD ABD=58°,则∠BCD 度数为( )A .116°B .32°C .5842°7.如图,在⊙O 中,AB 是直径,BC 是»BC上任意一点.若AB =5,BC =3,则AP 的长不可能为(A .3 B .4 C .8.如图,⊙O 的直径CD 垂直弦AB 2,DE =8,则AB 的长为( )A .2B .4C .6D .9.如图,平行四边形ABCD 的顶点A 、上,顶点C 在⊙O 的直径BE 上,∠ADC =70°,连接AE ( )A .20°B .24°C .25°10.已知⊙O 的半径为cm 2,弦AB 的距离为 ( )A.1B.2C.3D.4二、填空题(8小题)11.在Rt△ABC中,∠C=90°,AC=5 cm,BC=12 cm,则Rt△ABC其外接圆半径为________cm.12.如图所示,A、B、C三点在⊙O上,且AB是⊙O的直径,半径OD⊥AC,垂足为F,若∠A=30°,OF=3,则AC=____________.13.P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________.14.如图,CD是⊙O的直径,弦AB⊥CD,若∠AOB=100°,则∠ABD=.15.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为.16.如图,四边形ABCD为圆内接四边形,E为DA延长线上一点,若∠C=50°,则∠BAE= º.17.如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=25°,则∠CAD的度数为.18.如图,⊙O的直径AB与弦CD相交于点E,若AE=5,BE=1,∠AED=30º,则CD的长为 .三、解答题(7小题) 19.如图,以平行四边形ABCD 的顶点A 为圆心,AB 为半径作圆交AD ,BC 于点E ,F ,延长BA 交⊙O于G 。
湘教版九年级数学下册《三角形的内切圆》精品教案
《三角形的内切圆》精品教案讲授新课一、三角形的内切圆【议一议】想在一块三角形硬纸板上剪下一个面积最大的圆形纸板,应当怎样剪?(出示课件5)回答:这个圆应当与三角形的三条边都相切。
【动脑筋】与三角形的三条边都相切的圆存在吗?若存在,如何画出这样的圆?(出示课件6)分析:1.如果圆与△ABC的三条边都相切,那么圆心O与三角形三边的距离应等于圆的半径,从而这些距离相等。
2.到一个角的两边距离相等的点一定在这个角的平分线上,因此圆心O应是∠A与∠B的平分线的交点。
作法:(1)作∠A,∠B的平分线AD,BE,它们相交于点O;(2)过点O作AB的垂线,垂足为M;(3)以点O为圆心,OM为半径作圆.⊙O 就是所求作的圆。
师:请同学们总结一下画三角形的内切圆的步骤是什么呢?回答:画角平分线→定内心→定半径→画圆→结论师:这样的圆可以作出几个?为什么?思考并回答问题动手作图,画三角形的内切圆通过提问,让学生知道内切圆的概念通过动手操作,让学生知道怎样画三角形的内切圆通过提问,让学(出示课件8)∵直线BE和CF只有一个交点I,并且点I 到△ABC三边的距离相等∴和△ABC三边都相切的圆可以作出一个,并且只能作一个。
【内切圆的概念】(出示课件9)师:与三角形各边都相切的圆叫作三角形的内切圆,内切圆的圆心叫作三角形的内心,这个三角形叫作圆的外切三角形。
【三角形内心的性质】师:三角形内心的性质是什么呢?请同学们和同桌商量一下再回答。
回答:①三角形的内心是三角形角平分线的交点;②三角形的内心到三边的距离相等;③三角形的内心一定在三角形的内部。
【三角形内心与外心的区别与联系】师:请同学们完成下面的表格,可以和同桌商量。
师:关于三角形的内心和外心的理解,我们一起来看看几个题。
(出示课件12)1.如图1,△ABC是⊙O的内接三角形。
⊙O 是△ABC的外接圆,点O叫△ABC的外心,它是三角形三边垂直平分线的交点。
点O到△ABC的三个顶点距离相等。
【最新湘教版精选】湘教初中数学九下《2.0第2章 圆》word教案 (1).doc
第三章圆【课标要求】(1)认识圆并掌握圆的有关概念和计算①知道圆由圆心与半径确定,了解圆的对称性.②通过图形直观识别圆的弦、弧、圆心角等基本元素.③利用圆的对称性探索弧、弦、圆心角之间的关系,并会进行简单计算和说理.④探索并了解圆周角与圆心角的关系、直径所对圆周角的特征.⑤掌握垂径定理及其推论,并能进行计算和说理.⑥了解三角形外心、三角形外接圆和圆内接三角形的概念.⑦掌握圆内接四边形的性质(2)点与圆的位置关系①能根据点到圆心的距离和半径的大小关系确定点与圆的位置关系.②知道“不在同一直线上的三个点确定一个圆”并会作图.(3)直线与圆的位置关系①能根据圆心到直线的距离和半径的大小关系确定直线与圆的位置关系.②了解切线的概念.③能运用切线的性质进行简单计算和说理.④掌握切线的识别方法.⑤了解三角形内心、三角形内切圆和圆的外切三角形的概念.⑥能过圆上一点画圆的切线并能利用切线长定理进行简单的切线计算.(4)圆与圆的位置关系①了解圆与圆的五种位置关系及相应的数量关系.②能根据两圆的圆心距与两圆的半径之间的数量关系判定两圆的位置关系.③掌握两圆公切线的定义并能进行简单计算(5)圆中的计算问题①掌握弧长的计算公式,由弧长、半径、圆心角中已知两个量求第三个量.②掌握求扇形面积的两个计算公式,并灵活运用.③了解圆锥的高、母线等概念.④结合生活中的实例(模型)了解圆柱、圆锥的侧面展开图.⑤会求圆柱、圆锥的侧面积、全面积,并能结合实际问题加以应用.⑥能综合运用基本图形的面积公式求阴影部分面积.【知识回顾】1、知识脉络2、基础知识(1)掌握圆的有关性质和计算①弧、弦、圆心角之间的关系:在同圆或等圆中,如果两条劣弧(优弧)、两条两个圆心角中有一组量对应相等,那么它们所对应的其余各组量也分别对应相等.②垂径定理: 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.弦的垂直平分线经过圆心,并且平分弦所对的两条弧.平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.③在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半.④圆内接四边形的性质:圆的内接四边形对角互补,并且任何一个外角等于它的内对角.(2)点与圆的位置关系①设点与圆心的距离为,圆的半径为,则点在圆外;点在圆上;点在圆内.②过不在同一直线上的三点有且只有一个圆. 一个三角形有且只有一个外接圆.③三角形的外心是三角形三边垂直平分线的交点.三角形的外心到三角形的三个顶点的距离相等.(3)直线与圆的位置关系①设圆心到直线的距离为,圆的半径为,则直线与圆相离;直线与圆相切;直线与圆相交.②切线的性质:与圆只有一个公共点;圆心到切线的距离等于半径;圆的切线垂直于过切点的半径.③切线的识别:如果一条直线与圆只有一个公共点,那么这条直线是圆的切线.到圆心的距离等于半径的直线是圆的切线.经过半径的外端且垂直与这条半径的直线是圆的切线.④三角形的内心是三角形三条内角平分线的交点.三角形的内心到三角形三边的距离相等.⑤切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.⑥切线长定理:从圆外一点引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.(4)圆与圆的位置关系①圆与圆的位置关系有五种:外离、外切、相交、内切、内含.设两圆心的距离为,两圆的半径为,则两圆外离两圆外切两圆相交两圆内切两圆内含②两个圆构成轴对称图形,连心线(经过两圆圆心的直线)是对称轴.由对称性知:两圆相切,连心线经过切点. 两圆相交,连心线垂直平分公共弦.③两圆公切线的定义:和两个圆都相切的直线叫做两圆的公切线.两个圆在公切线同旁时,这样的公切线叫做外公切线.两个圆在公切线两旁时,这样的公切线叫做内公切线.④公切线上两个切点的距离叫做公切线的长.(5)与圆有关的计算①弧长公式:扇形面积公式:(其中为圆心角的度数,为半径)②圆柱的侧面展开图是矩形.圆柱体也可以看成是一个矩形以矩形的一边为轴旋转而形成的几何体.圆柱的侧面积=底面周长×高圆柱的全面积=侧面积+2×底面积③圆锥的侧面展开图是扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.圆锥体可以看成是由一个直角三角形以一条直角边为轴旋转而成的几何体.④圆锥的侧面积=×底面周长×母线;圆锥的全面积=侧面积+底面积3、能力要求例1 如图,AC为⊙O的直径,B、D、E都是⊙O上的点,求∠A+∠B +∠C的度数.【分析】由AC为直径,可以得出它所对的圆周角是直角,所以连结AE,这样将∠CAD(∠A)、∠C放在了△AEC中,而∠B与∠EAD是同弧所对的圆周角相等,这样问题迎刃而解.【解】连结AE∵AC是⊙O的直径∴∠AEC=90O∴∠CAD +∠EAD+∠C =90O∵∴∠B=∠EAD∴∠CAD +∠B+∠C =90O【说明】这里通过将∠B转化为∠EAD,从而使原本没有联系的∠A、∠B、∠C都在△AEC中,又利用“直径对直角”得到它们的和是90O.解题中一方面注意到了隐含条件“同弧所对的圆周角相等”,另一方面也注意到了将“特殊的弦”(直径)转化为“特殊的角”(直角),很好地体现了“转化”的思想方法.例2 △ABC中,AC=6,BC=8,∠C=90O,以点C为圆心,CA为半径的圆与AB 交于点D,求AD的长.【分析】圆中有关弦的计算问题通常利用垂径定理构造直角三角形求解,所以作CH⊥AB,这只要求出AH的长就能得出AD的长.【解】作CH⊥AB,垂足为H∵∠C=90O,AC=6,BC=8 ∴AB=10∵∠C=90O,CH⊥AB∴又∵AC=6,AB=10 ∴AH=3.6∵CH⊥AB∴AD=2AH∴AD=7.2答:AD的长为7.2.【说明】解决与弦有关的问题,往往需要构造垂径定理的基本图形——由半径、弦心距、弦的一半构成的直角三角形,它是解决此类问题的关键.定理的应用必须与所对应的基本图形相结合,教师在复习时要特别注重基本图形的掌握.例3 (1)如图,△ABC内接于⊙O,AB为直径,∠CAE=∠B,试说明AE与⊙O相切于点A.(2)在(1)中,若AB为非直径的弦,∠CAE=∠B,AE还与⊙O相切于点A吗?请说明理由.(1) (2)【分析】第(1)小题中,因为AB为直径,只要再说明∠BAE为直角即可.第(2)小题中,AB为非直径的弦,但可以转化为第(1)小题的情形.【解】(1)∵AB是⊙O的直径∴∠C=90O∴∠BAC+∠B=90O又∵∠CAE=∠B∴∠BAC+∠CAE =90O即∠BAE =90O∴AE与⊙O相切于点A.(2)连结AO并延长交⊙O于D,连结CD.∵AD是⊙O的直径∴∠ACD=90O∴∠D+∠CAD=90O又∵∠D=∠B∴∠B+∠CAD=90O又∵∠CAE =∠B∴∠CAE+∠CAD=90O即∠EAD =90O∴AE仍然与⊙O相切于点A.【说明】本题主要考查切线的识别方法.这里可以引导学生依据第(1)小题的特殊情况,大胆提出猜想,渗透“由特殊到一般”的数学思想方法,这对于学生的探索能力培养非常重要.例4 如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5.(1)若,求CD的长.(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留).【分析】图形中有“直径对直角”,这样就出现了“直角三角形及斜边上的高”的基本图形,求CD的长就转化为求DE的长.第(2)小题求扇形OAC的面积其关键是求∠AOD的度数,从而转化为求∠AOD的大小.【解】(1)∵AB是⊙O的直径,OD=5∴∠ADB=90°,AB=10又∵在Rt△ABD中,∴∵∠ADB=90°,AB⊥CD∴BD2=BE·AB CD= 2DE∵AB=10∴BE=在Rt△EBD中,由勾股定理得∴答:CD的长为.(2)∵AB是⊙O的直径,AB⊥CD∴∴∠BAD=∠CDB,∠AOC=∠AOD∵AO=DO∴∠BAD=∠ADO∴∠CDB=∠ADO设∠ADO=4k,则∠CDB=4k由∠ADO:∠EDO=4:1,则∠EDO=k∵∠ADO+∠EDO+∠EDB=90°∴得k=10°∴∠AOD=180°-(∠OAD+∠ADO)=100°∴∠AOC=∠AOD=100°则答:扇形OAC的面积为【说明】本题涉及到了圆中的重要定理、直角三角形的边角关系、扇形面积公式等知识点的综合,考查了学生对基本图形、基本定理的掌握程度.求DE长的方法很多,可以用射影定理、勾股定理,也可以运用面积关系来求,但都离不开“直角三角形及斜边上的高”这个基本图形.解题中也运用了比例问题中的设k法,同时也渗透了“转化”的思想方法.例5 半径为2.5的⊙O中,直径AB的不同侧有定点C和动点P.已知BC:CA=4 : 3,点P在半圆AB上运动(不与A、B两点重合),过点C作CP的垂线,与PB的延长线交于点Q.(l)当点P与点C关于AB对称时,求CQ的长;(2)当点P运动到半圆AB的中点时,求CQ的长;(3) 当点P运动到什么位置时,CQ取到最大值?求此时CQ的长.【分析】当点P与点C关于AB对称时,CP被直径垂直平分,由垂径定理求出CP的长,再由Rt△ACB∽Rt△PCQ,可求得CQ的长.当点P在半圆AB上运动时,虽然P、Q点的位置在变,但△PCQ始终与△ACB相似,点P运动到半圆AB的中点时,∠PCB=45O,作BE⊥PC于点E,CP=PE+EC.由于CP与CQ的比值不变,所以CP取得最大值时CQ也最大.【解】(l)当点P与点C关于AB对称时,CP⊥AB,设垂足为D.∵AB为⊙O的直径,∴∠ACB=900.∴AB=5,AC:CA=4:3∴BC=4,AC=3S Rt△ACB=AC·BC=AB·CD∴∵在Rt△ACB和Rt△PCQ中,∠ACB=∠PCQ=900, ∠CAB=∠CPQ,∴Rt△ACB∽Rt△PCQ∴∴(2)当点P运动到弧AB的中点时,过点B作BE⊥PC于点E(如图).∵P是弧AB的中点,∴又∠CPB=∠CAB∴∠CPB= tan∠CAB=∴从而由(l)得,(3)点P在弧AB上运动时,恒有故PC最大时,CQ取到最大值.当PC过圆心O,即PC取最大值5时,CQ最大值为【说明】本题从点P在半圆AB上运动时的两个特殊位置的计算问题引申到求CQ的最大值,一方面渗透了“由特殊到一般”的思想方法,另一方面运用“运动变化”观点解决问题时,寻求变化中的不变性(题中的Rt△ACB∽Rt△PCQ)往往是解题的关键.【复习建议】①教材对圆的知识要求有了适当的降低,但教学中必须注重指导学生在较复杂的“背景”下分析出隐含的基本图形,或通过添加适当的辅助线,构造或分解基本图形.学会将较复杂问题转化为易解决问题.②对于常见的辅助线的添法,在解题中可以多加引导.③注意圆中一些隐含条件的作用.如:“同弧所对的圆周角相等”;“半径都相等”.④由特殊到一般、转化、方程、分类讨论等思想方法以及运动变化观点的渗透,在圆的综合问题中更能提高学生解决问题能力,在复习时应及时归纳并注重方法的指导.。
【整理】湘教版九年级下册第二章圆教案(第1-4课时)
P1Βιβλιοθήκη P2P3定义:圆上任意两点间的部分叫做圆弧 ,简称弧 .如图 ,以 A 、B 为端点的弧记作 , AB , 读作 :弧 AB. 分类 :①圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆 .
②大于半圆的弧 ,用三个点表示 ,如图中的 ABC ,叫做优弧 .
7、如图,⊙ O与⊙ O′是任意两个圆,把这两个圆看作一个整体,它是一个轴对
A.1 cm
B
. 2 cm
C
.3 cm
D
.1 cm
或 2 cm
6、已知矩形 ABCD的边 AB= 6, AD=8. 如果以点 A 为圆心作⊙ A,使 B、C、D 三
点中在圆内和在圆外都至少有一个点,那么⊙A 的半径 r 的取值范围是(
)
A.6<r <10 B .8<r <10 C .6<r ≤8
D .8<r ≤10
圆是生活中常见的图形 ,许多物体都给我们以圆的形象 .
( 1)观察以上图形,请大家说说生活中还有哪些圆形,让学生体验圆的和谐与 美丽 . ( 2)活动:请同学们在草稿纸上用圆规画圆 ,体验画圆的过程 ,想想圆是怎样形成 的. 二、新知探究: 1、探究一:圆的定义
(1)活动:如教材 P43 图所示,用绳子和圆规画圆; (2)思考: 通过用绳子和圆规画圆的过程, 你发现了什么?由此你能得到什么 结论? (3)凝炼结果:圆的定义及表示方法:
哪几种位置关系什么?点 P 到圆心 O 的距离 d 与⊙ O 的半径为 r 有何关系? ( 2)结论:点与圆的位置关系及性质:
一般地 ,设⊙ O 的半径为 r,点 P 到圆心 O 的距离为 d,则有 ①若点 P 在⊙ O 内,则 d<r; ②若点 P 在⊙ O 上,则 d=r; ③若点 P 在⊙ O 外,则 d>r。
2新湘教版初中数学九年级下册精品学案.5.4 三角形的内切圆
2.5.4 三角形的内切圆
学前温故
1.经过三角形三个顶点的圆叫做.外接圆的圆心叫做.这个三角形叫做.
2.三角形的外心到三角形的三个顶点距离.
新课早知
1.与三角形三边都相切的圆叫做,内切圆的圆心叫做.这个三角形叫做.
2.三角形的内心到三角形的三边距离.
三角形的内切圆
【例1】如图(1),在△ABC中,⊙I是△ABC的内切圆,和边BC、CA、AB分别相切于点D、E、F.试猜想∠FDE与∠A的关系,并说明理由.
分析:∠FDE是圆周角,∠FIE是同弧所对的圆心角,要确定∠FDE与∠A的关系,可首先确定∠FIE与∠A的关系.
解:
点拨:连接圆心和是常作的辅助线.
【例2】如图①,在△ABC中,∠C=90°,它的三边分别为a、b、c,内切圆的半径为r,切点分别为D、E、F.
(1)试用a、b、c表示内切圆的半径r;
(2)若a=6,b=8,求此三角形内切圆的面积.(用π表示)
分析:(1)切线长定理的灵活运用是解决此题的关键;(2)首先利用勾股定理求出斜边的长,然后根据(1)中得出的结论求内切圆的半径,最后利用面积公式计算面积.解:
点拨:直角三角形内切圆半径等于两直角边的和与斜边的差的一半,这是计算直角三角形内切圆半径的常用方法.
1.等边三角形的外接圆的面积是内切圆面积的().
A.2倍B.3倍C.4倍D.5倍
2.如图,已知⊙O是△ABC的内切圆,且∠BAC=50°,则∠BOC为________度.3.如图,⊙O是△ABC的内切圆,若∠ACB=90°,∠BOC=105°,BC=20(3+1),求⊙O的半径.。
新湘教版九年级下册第二章圆教案
一、情境导入,初步认识若∠OAB=50°,圆心角定理是圆中证弧等、弦等、弦心距等、圆心角等的常用方法.1.教材P56第1、2题一、情境导入,初步认识阅读教材上,并且两边都与圆_________的角叫做圆周角.,_____或_______所对的圆周角相等,都等于这条弧所对的第2题图第3题图1.教材P56第3~5题.一、情境导入,初步认识则凹面是半圆形状,与该圆⊥AB于E,BD1.教材P57第7~9题.一、情境导入,初步认识能发现图中有哪些等量关系?与垂径定理有关的证明.于1.教材P60第1、2题一、情境导入,初步认识学生就读的学校离家太远,给让三个村到学校的).试求小明家圆形花坛的面积.一条边上的是()1.教材P63第1、2题一、情境导入,初步认识O的位置关系是1.教材P65第1题.一、情境导入,初步认识有怎样的位置关系?为什么?来得到切线的判定.到直线的距离的大小关系,让学生用自己的以三角形的一边长为直径的圆切三角形的另一边,则该三角形为()BE=CF,试本堂课主要学习了切线的判定定理及切线的画法,通过1.教材P75第2~3题.如图,两个圆心图,大圆的半径为5,小圆的半径为3,若大圆的弦为直径,以O为圆心的半圆为△ABC的角平分线,且一、情境导入,初步认识、PB为⊙O的两条切BPO.BAC的度数是_____.第1题图第2题图外一点P引⊙O的两条切线PA、PB,切点分别为第3题图第4题图,AD,DC,BC都与⊙O相切则∠DOC=______.是⊙O的直径,AM和是它的两条切线,DE切⊙1.教材P75第5题,P一、情境导入,初步认识教师引导学生,作与三角形三边相切的圆,圆心到三角形的三条边的距离相等的度数.第2题图第3题图中,∠C=90°,AC=5,⊙O与Rt△ABC的三边r=2,则△ABC的周长为______.第4题图5题图1.教材P75第6、7题,一、情境导入,初步认识二、思考探究,获取新知在同圆或等圆中,如果圆心角相等那么它们所对的弧长_______.度的圆心角所对的弧长,则这个扇形的半径为()第4题图第5题图一块等边三角形的木板,边长为1,现将木板沿水平线无滑动翻滚1.教材P81页第1题.一、情境导入,初步认识你能求出做这把扇子用了多少纸吗,完成下列各题:求阴影部分的面积.为半径1.教材P81第2、3题动手画一画.段弧,依次连接各分点得六边形ABCDEF,该六边形与正方形、正五边形、正六边形进行探若是轴对称图形,请画出所有对湖北恩施中考)下列图形中,有且只有两条对称轴的中心对称图形是()求1.教材P86第1、2题一、知识框图,整体把握二、释疑解惑,加深理解1.垂径定理及推论的应用垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧D.PO=PD 第1题图第2题图分别为1.布置作业:从教材“复习题。
九年级数学下册 第2章 圆 课题 三角形的内切圆学案 (新版)湘教版
课题:三角形的内切圆【学习目标】1.理解三角形内切圆的定义,会求较特殊的三角形内切圆半径.2.能用尺规作三角形内切圆.【学习重点】三角形内切圆的定义及有关计算.【学习难点】作三角形的内切圆及有关计算.情景导入生成问题旧知回顾:1.切线长定理内容是什么?答:切线长定理:过圆外一点所画的圆的两条切线长相等,圆心和这一点的连线平分两条切线的夹角.2.在一块三角形硬纸板上剪下一个面积最大的圆形纸板,应当怎样剪?答:为了使圆形纸板面积最大,这个圆应当与三角形三边相切.自学互研生成能力知识模块一三角形的内切圆、内心及作图阅读教材P72~P73,完成下列问题:1.什么是三角形的内切圆?什么是三角形内心?答:与三角形各边都相切的圆叫作三角形的内切圆,内切圆的圆心叫作三角形的内心,这个三角形叫作圆的外切三角形.2.如何作三角形的内切圆?答:以三角形任意两内角角平线交点为圆心,以这点到各边距离为半径作圆即得三角形内切圆.【例1】如图,⊙O内切于△ABC,切点为D,E,F连接OE,OF,DE,DF,若∠A=70°,∠EDF等于( B)A.45°B.55°C.65°D.70°【变例1】关于三角形的内心:①到三边的距离相等;②到三顶点的距离相等;③是三边垂直平分线的交点;④是三内角平分线的交点.其中正确的说法有( B)A.1个B.2个C.3个D.4个【变例2】若三角形的内心和外心重合,那么这个三角形是( D)A.直角三角形B.等腰直角三角形C.等腰三角形D.等边三角形知识模块二三角形内切圆的计算与证明【例2】等边三角形外接圆的半径为2,那么它内切圆的半径为__1__.【变例1】如图,在△ABC中,∠ABC=50°,∠ACB=80°,点O是△ABC的内心,则∠BOC的度数是( B )A .105°B .115°C .120°D .130°(变例1图) (变例2图) 【变例2】 (泸州中考)如图所示,已知⊙O 是边长为2的等边△ABC 的内切圆,则⊙O 的面积为__π3__. 【例3】 △AB C 的内切圆⊙O 与BC ,CA ,AB 分别相切于点D ,E ,F ,且AB =18cm ,BC =28cm ,CA =26cm ,则AF =__8__cm ,BD =__10__cm ,CE =__18__cm .【变例1】 (日照中考)如图,已知AC⊥BC 于点C ,BC =a ,CA =b ,AB =c ,下列选项中⊙O 的半径为ab a +b的是( C ),A),B),C) ,D)【变例2】在Rt△ABC中,AC=6,BC=8,∠C=90°,内切圆心为I,外接圆心为O,则OI=__.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一三角形的内切圆、内心及作图知识模块二三角形内切圆的计算与证明检测反馈达成目标1.(滨州中考)若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为( B)A. 2 B.22-2C.2- 2 D.2-22.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,则Rt△ABC内切圆的半径为__1__cm.3.如图所示,点I为△ABC的内心,点O为△A BC的外心,若∠BOC=140°,则∠BIC的度数为__125°__.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
2.5.4三角形的内切圆-湘教版九年级数学下册教案
2.5.4 三角形的内切圆-湘教版九年级数学下册教案教学目标1.了解三角形的内切圆的概念与性质。
2.掌握内切圆的圆心、半径、公式等基本知识点。
3.学会使用内切圆的相关知识解决实际问题。
教学重点1.确定内切圆的圆心和半径。
2.掌握求解内切圆半径的公式和计算方法。
3.运用内切圆的相关知识解决实际问题。
教学难点1.对于没有学过圆周角和正弦函数的学生,需要先进行相关知识的讲解和练习。
2.在实际问题中,需要将内切圆与其他几何知识进行有机结合,需要学生在数学思维上进行拓展。
教学过程一、引入新知识1.老师在黑板上画出一个任意三角形,并与学生讨论三角形的各个部分。
引导学生思考,三角形内是否有什么特别的东西?2.让学生尝试在三角形内画一个圆,并让学生发现这个圆能同时接触到三角形的三边。
3.在让学生根据上述操作的结果,进一步了解“内切圆”的概念。
让学生尝试在笔记本上梳理相关知识点。
二、讲解内切圆的基本性质1.内切圆的圆心位于三角形的内心,也是三角形三条角平分线的交点。
2.内切圆的半径记为r,可以用公式r=S/p计算,其中S为三角形的面积,p 为三角形的半周长。
三、练习题讲解1.设三角形ABC的周长为24cm,面积为36cm²,求内切圆的半径。
解析:先计算出三角形半周长:p=24/2=12cm。
然后根据公式r=S/p=36/12=3cm,得到内切圆的半径为3cm。
2.在三角形ABC中,角A的大小为60°,且内切圆的半径为10cm。
求三角形ABC的面积。
解析:根据内切圆的性质,可以得出三角形ABC中,角A的圆心角为120°。
由于三角形内切圆的半径为10cm,因此可知三角形ABC的内心到各边的距离均为10cm。
通过画图建立三角形高度与半径的关系,可以得到三角形ABC 的高为10√3 c m。
根据三角形面积公式S=1/2×底×高,可计算出三角形ABC的面积为30√3 cm²。
湘教版九年级数学下册第二章圆的教案
圆周角第1课时圆周角(1)教学目标:1.知识与技能(1)理解圆周角的定义,会区分圆周角和圆心角.(2)能在证明或计算中熟练运用圆周角的定理.2.过程与方法经历探索圆周角与圆心角的关系的过程,加深对分类讨论和由特殊到一般的转化等数学思想方法的理解.3.情感态度(1)在探究过程中体验数学的思想方法,进一步提高探究能力和动手能力.(2)通过分组讨论,培养合作交流意识和探索精神.教学重点:理解并掌握圆周角的概念及圆周角与圆心角之间的关系,能进行有关圆周角问题的简单推理和计算.教学难点:分类讨论及由特殊到一般的转化思想的应用.教学过程:一、创设情境,导入新课我们已经学习了圆心角的定义,知道顶点在圆心,角的两边与圆相交的角是圆心角,那么顶点在圆上,角的两边与圆相交的角又叫什么角,它与圆心角有何关系这就是我们这节课需要探讨的内容.二、自主探究,解读目标学生自学教材P49-51,并完成以下问题:1.顶点在______上,并且两边都与圆_________的角叫做圆周角.2. 同学们作出AB所对的圆周角,和圆心角并回答下列问题:(1)AB所对的圆心角,圆周角有几个(2)度量下这些圆心角,圆周角的关系.(3)你能得出圆心角,圆周角的哪些结论三、点拨释疑,应用举例(一)点拨释疑:1.探究圆周角定理.教师引导,学生讨论:①当圆心在圆周角的一边上,②当圆心在圆周角的内部,③当圆心在圆周角的外部.结论:圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.还可以得出下面推论:在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。
(二)应用举例:例 1.教材P52例2:如图,OA,OB,OC都是⊙O的半径,0=70∠BOC,∠AOB,050=求ACB∠的度数。
∠和BAC教师设疑:(1)要求的ACB∠是两个∠和BAC什么角(2)已知的两个角与所求的两个角有何关系可利用哪个知识点求解例2:如图:AB,CD是⊙O的直径,DF,BE是弦,且DF=BE,求证:D=∠B∠分析:D∠,是两个圆周角,已知条件中B∠有两弦相等。
湘教版数学九年级下册【教案】2.5.4 三角形的内切圆
2.5.4三角形的内切圆1.了解有关三角形的内切圆和三角形内心的概念;(重点)2.能运用三角形内切圆、内心的知识进行有关的计算.(难点)一、情境导入新农村建设中,张村计划在一块三角形场地中建一个最大面积的圆形花园,请你设计一个建筑方案.二、合作探究探究点一:三角形的内切圆的相关计算【类型一】利用三角形的内切圆求角的度数如图,⊙O内切于△ABC,切点D,E,F 分别在BC,AB,AC上.已知∠B=45°,∠C=65°,连接OE,OF,DE,DF,那么∠EDF等于()A.40°B.55°C.65°D.70°解析:∵∠A+∠B+∠C=180°,∠B =45°,∠C=65°,∴∠A=70°.∵⊙O 内切于△ABC,切点分别为D、E、F,∴∠OEA=∠OF A=90°,∴∠EOF=360°-∠A-∠OEA-∠OF A=110°,∴∠EDF=12∠EOF=55°.故选B.方法总结:解决本题的关键是利用三角形内切圆的性质,求出∠EOF的度数.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】求三角形的内切圆的半径如图,⊙O是边长为2的等边△ABC的内切圆,则⊙O的半径为________.解析:如图,连接OD、OC.由等边三角形的内切圆的圆心即为底边上的中线,底边上的高和顶角的平分线的交点,所以∠OCD=30°,OD⊥BC,所以CD=12BC,OC=2OD.又由BC=2,则CD=1.在Rt△OCD中,根据勾股定理得OD2+CD2=OC2,所以OD2+12=(2OD)2,所以OD=33.即⊙O的半径为33.故答案为33.方法总结:等边三角形的内切圆的圆心为等边三角形中线、高、角平分线的交点,它到等边三角形三边的距离相等.而在解直角三角形内切圆的相关问题时,经常要用到“圆心到切线的距离等于半径”这条性质.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】求三角形的周长如图,Rt △ABC 的内切圆⊙O 与两直角边AB 、BC 分别相切于点D 、E ,过劣弧DE ︵(不包括端点D 、E )上任一点P 作⊙O 的切线MN 与AB 、BC 分别交于点M 、N .若⊙O 的半径为r ,则Rt △MBN 的周长为( )A .r B.32r C .2r D.52r解析:连接OD ,OE ,∵⊙O 是Rt △ABC 的内切圆,∴OD ⊥AB ,OE ⊥BC .又∵MD ,MP 都是⊙O 的切线,且D 、P 是切点,∴MD =MP ,同理可得NP =NE ,∴C Rt △MBN =MB +BN +NM =MB +BN +NP +PM =MB +MD +BN +NE =BD +BE =2r .故选C.变式训练:见《学练优》本课时练习“课堂达标训练”第4题探究点二:三角形的内心的相关证明与计算如图,已知E 是△ABC 的内心,∠A 的平分线交BC 于点F ,且与△ABC 的外接圆相交于点D .(1)求证:BD =ED ;(2)若AD =8cm ,DF ∶F A =1∶3.求DE 的长.解析:(1)求证BD =ED ,可利用等角对等边证明.只要证明∠DBE =∠DEB 即可;(2)要求DE 的长,可转化为求BD 的长.利用△BDF ∽△ADB ,用比例式即可求解.(1)证明:∵E 是△ABC 的内心,∴∠ABE =∠CBE ,∠BAD =∠CAD .又∵∠CBD =∠CAD ,∴∠BAD =∠CBD .∴∠CBE +∠CBD =∠ABE +∠BAD .即∠DBE =∠DEB,故BD=ED;(2)解:∵AD=8cm,DF∶F A=1∶3,∴DF=14AD=14×8=2(cm).∵∠CBD=∠BAD,∠D=∠D,∴△BDF∽△ADB,∴BD AD=DFBD.∴BD2=AD·DF=8×2=16,∴BD=4cm,又∵BD=DE,∴DE=4cm.方法总结:(1)充分利用内心的意义以及三角形的外角、同弧所对的圆周角来证明角相等,最后利用等角对等边证明线段相等;(2)用相似三角形得比例式,由比例式求解.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计教学过程中,注重引导学生理解和掌握三角形的内切圆和内心的概念和性质,并能进行灵活的运用.明确三角形的内心是三角形三条角平分线的交点,到三角形三边的距离相等.。
九年级数学下册 2_5_4 三角形的内切圆学案(新版)湘教版
2.5.4 三角形的内切圆
学前温故
1.经过三角形三个顶点的圆叫做.外接圆的圆心叫做 .这个三角形叫做 .
2.三角形的外心到三角形的三个顶点距离 .
新课早知
1.与三角形三边都相切的圆叫做,内切圆的圆心叫做 .这个三角形叫做 .
2.三角形的内心到三角形的三边距离 .
三角形的内切圆
【例1】如图(1),在△ABC中,⊙I是△ABC的内切圆,和边BC、CA、AB分别相切于点D、E、F.试猜想∠FDE与∠A的关系,并说明理由.
分析:∠FDE是圆周角,∠FIE是同弧所对的圆心角,要确定∠FDE与∠A的关系,可首先确定∠FIE与∠A的关系.
解:
点拨:连接圆心和是常作的辅助线.
【例2】如图①,在△ABC中,∠C=90°,它的三边分别为a、b、c,内切圆的半径为r,切点分别为D、E、F.
(1)试用a、b、c表示内切圆的半径r;
(2)若a=6,b=8,求此三角形内切圆的面积.(用π表示)
分析:(1)切线长定理的灵活运用是解决此题的关键;(2)首先利用勾股定理求出斜边的长,然后根据(1)中得出的结论求内切圆的半径,最后利用面积公式计算面积.解:
点拨:直角三角形内切圆半径等于两直角边的和与斜边的差的一半,这是计算直角三
角
形内切圆半径的常用方法.
1.等边三角形的外接圆的面积是内切圆面积的( ).
A.2倍B.3倍C.4倍D.5倍
2.如图,已知⊙O是△ABC的内切圆,且∠BAC=50°,则∠BOC为________度.
3.如图,⊙O是△A BC的内切圆,若∠ACB=90°,∠BOC=105°,BC=20(3+1),求⊙O的半径.
欢迎您的下载,资料仅供参考!。
【最新湘教版精选】湘教初中数学九下《2.0第2章 圆》word教案 (1).doc
第三章圆【课标要求】(1)认识圆并掌握圆的有关概念和计算①知道圆由圆心与半径确定,了解圆的对称性.②通过图形直观识别圆的弦、弧、圆心角等基本元素.③利用圆的对称性探索弧、弦、圆心角之间的关系,并会进行简单计算和说理.④探索并了解圆周角与圆心角的关系、直径所对圆周角的特征.⑤掌握垂径定理及其推论,并能进行计算和说理.⑥了解三角形外心、三角形外接圆和圆内接三角形的概念.⑦掌握圆内接四边形的性质(2)点与圆的位置关系①能根据点到圆心的距离和半径的大小关系确定点与圆的位置关系.②知道“不在同一直线上的三个点确定一个圆”并会作图.(3)直线与圆的位置关系①能根据圆心到直线的距离和半径的大小关系确定直线与圆的位置关系.②了解切线的概念.③能运用切线的性质进行简单计算和说理.④掌握切线的识别方法.⑤了解三角形内心、三角形内切圆和圆的外切三角形的概念.⑥能过圆上一点画圆的切线并能利用切线长定理进行简单的切线计算.(4)圆与圆的位置关系①了解圆与圆的五种位置关系及相应的数量关系.②能根据两圆的圆心距与两圆的半径之间的数量关系判定两圆的位置关系.③掌握两圆公切线的定义并能进行简单计算(5)圆中的计算问题①掌握弧长的计算公式,由弧长、半径、圆心角中已知两个量求第三个量.②掌握求扇形面积的两个计算公式,并灵活运用.③了解圆锥的高、母线等概念.④结合生活中的实例(模型)了解圆柱、圆锥的侧面展开图.⑤会求圆柱、圆锥的侧面积、全面积,并能结合实际问题加以应用.⑥能综合运用基本图形的面积公式求阴影部分面积.【知识回顾】1、知识脉络2、基础知识(1)掌握圆的有关性质和计算①弧、弦、圆心角之间的关系:在同圆或等圆中,如果两条劣弧(优弧)、两条两个圆心角中有一组量对应相等,那么它们所对应的其余各组量也分别对应相等.②垂径定理: 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.弦的垂直平分线经过圆心,并且平分弦所对的两条弧.平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.③在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半.④圆内接四边形的性质:圆的内接四边形对角互补,并且任何一个外角等于它的内对角.(2)点与圆的位置关系①设点与圆心的距离为,圆的半径为,则点在圆外;点在圆上;点在圆内.②过不在同一直线上的三点有且只有一个圆. 一个三角形有且只有一个外接圆.③三角形的外心是三角形三边垂直平分线的交点.三角形的外心到三角形的三个顶点的距离相等.(3)直线与圆的位置关系①设圆心到直线的距离为,圆的半径为,则直线与圆相离;直线与圆相切;直线与圆相交.②切线的性质:与圆只有一个公共点;圆心到切线的距离等于半径;圆的切线垂直于过切点的半径.③切线的识别:如果一条直线与圆只有一个公共点,那么这条直线是圆的切线.到圆心的距离等于半径的直线是圆的切线.经过半径的外端且垂直与这条半径的直线是圆的切线.④三角形的内心是三角形三条内角平分线的交点.三角形的内心到三角形三边的距离相等.⑤切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.⑥切线长定理:从圆外一点引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.(4)圆与圆的位置关系①圆与圆的位置关系有五种:外离、外切、相交、内切、内含.设两圆心的距离为,两圆的半径为,则两圆外离两圆外切两圆相交两圆内切两圆内含②两个圆构成轴对称图形,连心线(经过两圆圆心的直线)是对称轴.由对称性知:两圆相切,连心线经过切点. 两圆相交,连心线垂直平分公共弦.③两圆公切线的定义:和两个圆都相切的直线叫做两圆的公切线.两个圆在公切线同旁时,这样的公切线叫做外公切线.两个圆在公切线两旁时,这样的公切线叫做内公切线.④公切线上两个切点的距离叫做公切线的长.(5)与圆有关的计算①弧长公式:扇形面积公式:(其中为圆心角的度数,为半径)②圆柱的侧面展开图是矩形.圆柱体也可以看成是一个矩形以矩形的一边为轴旋转而形成的几何体.圆柱的侧面积=底面周长×高圆柱的全面积=侧面积+2×底面积③圆锥的侧面展开图是扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.圆锥体可以看成是由一个直角三角形以一条直角边为轴旋转而成的几何体.④圆锥的侧面积=×底面周长×母线;圆锥的全面积=侧面积+底面积3、能力要求例1 如图,AC为⊙O的直径,B、D、E都是⊙O上的点,求∠A+∠B +∠C的度数.【分析】由AC为直径,可以得出它所对的圆周角是直角,所以连结AE,这样将∠CAD(∠A)、∠C放在了△AEC中,而∠B与∠EAD是同弧所对的圆周角相等,这样问题迎刃而解.【解】连结AE∵AC是⊙O的直径∴∠AEC=90O∴∠CAD +∠EAD+∠C =90O∵∴∠B=∠EAD∴∠CAD +∠B+∠C =90O【说明】这里通过将∠B转化为∠EAD,从而使原本没有联系的∠A、∠B、∠C都在△AEC中,又利用“直径对直角”得到它们的和是90O.解题中一方面注意到了隐含条件“同弧所对的圆周角相等”,另一方面也注意到了将“特殊的弦”(直径)转化为“特殊的角”(直角),很好地体现了“转化”的思想方法.例2 △ABC中,AC=6,BC=8,∠C=90O,以点C为圆心,CA为半径的圆与AB 交于点D,求AD的长.【分析】圆中有关弦的计算问题通常利用垂径定理构造直角三角形求解,所以作CH⊥AB,这只要求出AH的长就能得出AD的长.【解】作CH⊥AB,垂足为H∵∠C=90O,AC=6,BC=8 ∴AB=10∵∠C=90O,CH⊥AB∴又∵AC=6,AB=10 ∴AH=3.6∵CH⊥AB∴AD=2AH∴AD=7.2答:AD的长为7.2.【说明】解决与弦有关的问题,往往需要构造垂径定理的基本图形——由半径、弦心距、弦的一半构成的直角三角形,它是解决此类问题的关键.定理的应用必须与所对应的基本图形相结合,教师在复习时要特别注重基本图形的掌握.例3 (1)如图,△ABC内接于⊙O,AB为直径,∠CAE=∠B,试说明AE与⊙O相切于点A.(2)在(1)中,若AB为非直径的弦,∠CAE=∠B,AE还与⊙O相切于点A吗?请说明理由.(1) (2)【分析】第(1)小题中,因为AB为直径,只要再说明∠BAE为直角即可.第(2)小题中,AB为非直径的弦,但可以转化为第(1)小题的情形.【解】(1)∵AB是⊙O的直径∴∠C=90O∴∠BAC+∠B=90O又∵∠CAE=∠B∴∠BAC+∠CAE =90O即∠BAE =90O∴AE与⊙O相切于点A.(2)连结AO并延长交⊙O于D,连结CD.∵AD是⊙O的直径∴∠ACD=90O∴∠D+∠CAD=90O又∵∠D=∠B∴∠B+∠CAD=90O又∵∠CAE =∠B∴∠CAE+∠CAD=90O即∠EAD =90O∴AE仍然与⊙O相切于点A.【说明】本题主要考查切线的识别方法.这里可以引导学生依据第(1)小题的特殊情况,大胆提出猜想,渗透“由特殊到一般”的数学思想方法,这对于学生的探索能力培养非常重要.例4 如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5.(1)若,求CD的长.(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留).【分析】图形中有“直径对直角”,这样就出现了“直角三角形及斜边上的高”的基本图形,求CD的长就转化为求DE的长.第(2)小题求扇形OAC的面积其关键是求∠AOD的度数,从而转化为求∠AOD的大小.【解】(1)∵AB是⊙O的直径,OD=5∴∠ADB=90°,AB=10又∵在Rt△ABD中,∴∵∠ADB=90°,AB⊥CD∴BD2=BE·AB CD= 2DE∵AB=10∴BE=在Rt△EBD中,由勾股定理得∴答:CD的长为.(2)∵AB是⊙O的直径,AB⊥CD∴∴∠BAD=∠CDB,∠AOC=∠AOD∵AO=DO∴∠BAD=∠ADO∴∠CDB=∠ADO设∠ADO=4k,则∠CDB=4k由∠ADO:∠EDO=4:1,则∠EDO=k∵∠ADO+∠EDO+∠EDB=90°∴得k=10°∴∠AOD=180°-(∠OAD+∠ADO)=100°∴∠AOC=∠AOD=100°则答:扇形OAC的面积为【说明】本题涉及到了圆中的重要定理、直角三角形的边角关系、扇形面积公式等知识点的综合,考查了学生对基本图形、基本定理的掌握程度.求DE长的方法很多,可以用射影定理、勾股定理,也可以运用面积关系来求,但都离不开“直角三角形及斜边上的高”这个基本图形.解题中也运用了比例问题中的设k法,同时也渗透了“转化”的思想方法.例5 半径为2.5的⊙O中,直径AB的不同侧有定点C和动点P.已知BC:CA=4 : 3,点P在半圆AB上运动(不与A、B两点重合),过点C作CP的垂线,与PB的延长线交于点Q.(l)当点P与点C关于AB对称时,求CQ的长;(2)当点P运动到半圆AB的中点时,求CQ的长;(3) 当点P运动到什么位置时,CQ取到最大值?求此时CQ的长.【分析】当点P与点C关于AB对称时,CP被直径垂直平分,由垂径定理求出CP的长,再由Rt△ACB∽Rt△PCQ,可求得CQ的长.当点P在半圆AB上运动时,虽然P、Q点的位置在变,但△PCQ始终与△ACB相似,点P运动到半圆AB的中点时,∠PCB=45O,作BE⊥PC于点E,CP=PE+EC.由于CP与CQ的比值不变,所以CP取得最大值时CQ也最大.【解】(l)当点P与点C关于AB对称时,CP⊥AB,设垂足为D.∵AB为⊙O的直径,∴∠ACB=900.∴AB=5,AC:CA=4:3∴BC=4,AC=3S Rt△ACB=AC·BC=AB·CD∴∵在Rt△ACB和Rt△PCQ中,∠ACB=∠PCQ=900, ∠CAB=∠CPQ,∴Rt△ACB∽Rt△PCQ∴∴(2)当点P运动到弧AB的中点时,过点B作BE⊥PC于点E(如图).∵P是弧AB的中点,∴又∠CPB=∠CAB∴∠CPB= tan∠CAB=∴从而由(l)得,(3)点P在弧AB上运动时,恒有故PC最大时,CQ取到最大值.当PC过圆心O,即PC取最大值5时,CQ最大值为【说明】本题从点P在半圆AB上运动时的两个特殊位置的计算问题引申到求CQ的最大值,一方面渗透了“由特殊到一般”的思想方法,另一方面运用“运动变化”观点解决问题时,寻求变化中的不变性(题中的Rt△ACB∽Rt△PCQ)往往是解题的关键.【复习建议】①教材对圆的知识要求有了适当的降低,但教学中必须注重指导学生在较复杂的“背景”下分析出隐含的基本图形,或通过添加适当的辅助线,构造或分解基本图形.学会将较复杂问题转化为易解决问题.②对于常见的辅助线的添法,在解题中可以多加引导.③注意圆中一些隐含条件的作用.如:“同弧所对的圆周角相等”;“半径都相等”.④由特殊到一般、转化、方程、分类讨论等思想方法以及运动变化观点的渗透,在圆的综合问题中更能提高学生解决问题能力,在复习时应及时归纳并注重方法的指导.。
湘教版九年级数学下册《三角形的内切圆》导学案2-新版
第2章圆2.5.4三角形的内切圆学习目标1.理解三角形内切圆及内心的定义。
2.会用尺规作三角形的内切圆。
重点:内切圆、内心的概念及三角形内切圆的画法。
难点:探索三角形内切圆的画法。
导学过程【知识回顾】如何作三角形的外接圆?它外心是如何确定的呢?【情景导入】木工师傅如何在一块三角形木板上裁一个最大的圆形木板?这个圆与三角形三边应成什么位置关系?【新知探究】探究一、探究与三角形三边都相切的圆画一画→议一议→点评→归纳:与三角形的三条边都相切的圆有且只有一个。
1.如图(一),点P在⊙O上,过点P作⊙O的切线。
2.如图(二),点D、E、F在⊙O上,分别过点D、E、F作⊙O的切线,3条切线两两相交于点A、B、C。
Ⅱ思考:这样得到的△ABC,它的各边都与⊙O ,圆心O到各边的距离都。
反过来,如果已知△ABC,如何作⊙O,使它与△ABC的三边都相切呢?解:探究二、三角形的内切圆等概念已知:△ABC;求作:⊙O,使它与△ABC的各边都相切。
归纳:与三角形各边都相切的圆叫做;内切圆的圆心叫做;这个三角形叫做。
探究三、例题讲解△ABC中,⊙O是△ABC的内切圆,∠ A=70°,求∠ BOC的度数。
【知识梳理】本节课你学到了什么?有什么收获和体会?还有什么困惑?1、与三角形各边都的圆叫三角形的内切圆;内切圆的圆心叫;这个三角形叫做。
2、内心的性质:3、如何△ABC的内切圆?【随堂练习】完成课本P74练习1,2,3.AB CO。
20春九数下(湘教版)2.5.4 三角形的内切圆(精品学案)
2.5.4 三角形的内切圆学前温故1.经过三角形三个顶点的圆叫做 .外接圆的圆心叫做 .这个三角形叫做 .2.三角形的外心到三角形的三个顶点距离 .新课早知1.与三角形三边都相切的圆叫做 ,内切圆的圆心叫做.这个三角形叫做 .2.三角形的内心到三角形的三边距离 .三角形的内切圆【例1】如图(1),在△ABC 中,⊙I 是△ABC 的内切圆,和边BC 、CA 、AB 分别相切于点D 、E 、F.试猜想∠FDE 与∠A 的关系,并说明理由.分析:∠FDE 是圆周角,∠FIE 是同弧所对的圆心角,要确定∠FDE 与∠A 的关系,可首先确定∠FIE 与∠A 的关系.解:点拨:连接圆心和 是常作的辅助线.【例2】 如图①,在△ABC 中,∠C =90°,它的三边分别为a 、b 、c ,内切圆的半径为r ,切点分别为D 、E 、F.(1)试用a 、b 、c 表示内切圆的半径r ;(2)若a =6,b =8,求此三角形内切圆的面积.(用π表示)分析:(1)切线长定理的灵活运用是解决此题的关键;(2)首先利用勾股定理求出斜边的长,然后根据(1)中得出的结论求内切圆的半径,最后利用面积公式计算面积.解:点拨:直角三角形内切圆半径等于两直角边的和与斜边的差的一半,这是计算直角三角形内切圆半径的常用方法.1.等边三角形的外接圆的面积是内切圆面积的( ).A .2倍B .3倍C .4倍D .5倍2.如图,已知⊙O 是△ABC 的内切圆,且∠BAC =50°,则∠BOC 为________度.3.如图,⊙O 是△ABC 的内切圆,若∠ACB =90°,∠BOC =105°,BC =20(3+1),求⊙O 的半径.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:三角形的内切圆
【学习目标】
1.理解三角形内切圆的定义,会求较特殊的三角形内切圆半径.
2.能用尺规作三角形内切圆.
【学习重点】
三角形内切圆的定义及有关计算.
【学习难点】
作三角形的内切圆及有关计算.
情景导入生成问题
旧知回顾:
1.切线长定理内容是什么?
答:切线长定理:过圆外一点所画的圆的两条切线长相等,圆心和这一点的连线平分两条切线的夹角.
2.在一块三角形硬纸板上剪下一个面积最大的圆形纸板,应当怎样剪?
答:为了使圆形纸板面积最大,这个圆应当与三角形三边相切.
自学互研生成能力
知识模块一三角形的内切圆、内心及作图
阅读教材P72~P73,完成下列问题:
1.什么是三角形的内切圆?什么是三角形内心?
答:与三角形各边都相切的圆叫作三角形的内切圆,内切圆的圆心叫作三角形的内心,这个三角形叫作圆的外切三角形.
2.如何作三角形的内切圆?
答:以三角形任意两内角角平线交点为圆心,以这点到各边距离为半径作圆即得三角形内切圆.
【例1】如图,⊙O内切于△ABC,切点为D,E,F连接OE,OF,DE,DF,若∠A=70°,∠EDF等于( B) A.45°B.55°C.65°D.70°
【变例1】关于三角形的内心:①到三边的距离相等;②到三顶点的距离相等;③是三边垂直平分线的交点;④是三内角平分线的交点.其中正确的说法有( B)
A .1个
B .2个
C .3个
D .4个
【变例2】 若三角形的内心和外心重合,那么这个三角形是( D )
A .直角三角形
B .等腰直角三角形
C .等腰三角形
D .等边三角形
知识模块二 三角形内切圆的计算与证明
【例2】 等边三角形外接圆的半径为2,那么它内切圆的半径为__1__.
【变例1】 如图,在△ABC 中,∠ABC =50°,∠ACB =80°,点O 是△ABC 的内心,则∠BOC 的度数是
( B )
A .105°
B .115°
C .120°
D .130°
(变例1图) (变例2图) 【变例2】 (泸州中考)如图所示,已知⊙O 是边长为2的等边△ABC 的内切圆,则⊙O 的面积为__π
3
__. 【例3】 △AB C 的内切圆⊙O 与BC ,CA ,AB 分别相切于点D ,E ,F ,且AB =18cm ,BC =28cm ,CA =26cm ,则AF =__8__cm ,BD =__10__cm ,CE =__18__cm .
【变例1】 (日照中考)如图,已知AC⊥BC 于点C ,BC =a ,CA =b ,AB =c ,下列选项中⊙O 的半径为ab a +b
的是( C )
,A) ,B)
,C) ,D)
【变例2】在Rt△ABC中,AC=6,BC=8,∠C=90°,内切圆心为I,外接圆心为O,则OI=.交
流展示生成新知
1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一三角形的内切圆、内心及作图
知识模块二三角形内切圆的计算与证明
检测反馈达成目标
1.(滨州中考)若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为( B)
A. 2 B.22-2
C.2- 2 D.2-2
2.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,则Rt△ABC内切圆的半径为__1__cm.
3.如图所示,点I为△ABC的内心,点O为△A BC的外心,若∠BOC=140°,则∠BIC的度数为__125°__.
课后反思查漏补缺
1.收获:________________________________________________________________________
2.存在困惑:________________________________________________________________________。