HSDL-4200_1资料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
High-Performance T-13/4 (5mm)TS AlGaAs Infrared (875nm)Lamp Technical Data
HSDL-4200 Series HSDL-4220 30°HSDL-4230 17°
Features
• Very High Power TS AlGaAs Technology
• 875 nm Wavelength • T-13/4 Package • Low Cost
• Very High Intensity:HSDL-4220 - 38 mW/sr HSDL-4230 - 75 mW/sr • Choice of Viewing Angle:HSDL-4220 - 30°HSDL-4230 - 17°
• Low Forward Voltage for Series Operation
• High Speed: 40 ns Rise Times
• Copper Leadframe for Improved Thermal and Optical Characteristics
Applications
• IR Audio
• IR Telephones • High Speed IR Communications IR LANs IR Modems IR Dongles
• Industrial IR Equipment • IR Portable Instruments
Package Dimensions
• Interfaces with Crystal Semiconductor CS8130Infrared Transceiver
Description
The HSDL-4200 series of emitters are the first in a sequence of emitters that are aimed at high power, low forward voltage, and high speed. These emitters utilize the T ransparent S ubstrate, double heterojunction, Al uminum Ga l-lium A r s enide (TS AlGaAs) LED technology. These devices are optimized for speed and efficiency at emission wavelengths of 875nm. This material produces high radiant efficiency over a wide range of currents up to 500 mA peak current. The HSDL-4200series of emitters are available in a choice of viewing angles, the HSDL-4230 at 17° and the HSDL-4220 at 30°. Both lamps are packaged in clear T-13/4(5mm) packages.
5.00 ± 0.20(0.197 ± 0.008)
1.27(0.050)
NOM. 1.14 ± 0.20(0.045 ± 0.008)
8.70 ± 0.20(0.343 ± 0.008)
2.35
(0.093)MAX.
0.70
(0.028)
MAX.
0.50 ± 0.10(0.020 ± 0.004)
SQUARE CATHODE
5.80 ± 0.20(0.228 ± 0.008)
CATHODE
2.54(0.100)
NOM.31.4(1.23)
MIN.
The wide angle emitter, HSDL-4220, is compatible with the IrDA SIR standard and can be used with the HSDL-1000 integrated SIR transceiver.
Absolute Maximum Ratings
Parameter
Symbol Min.
Max.Unit Reference Peak Forward Current
I FPK
500
mA
[2], Fig. 2b Duty Factor = 20%Pulse Width = 100 µs
Average Forward Current I FAVG 100mA [2]DC Forward Current I FDC 100mA [1], Fig. 2a
Power Dissipation
P DISS 260
mW Reverse Voltage (I R = 100 µA)
V R 5V Transient Forward Current (10 µs Pulse)I FTR 1.0A [3]
Operating Temperature T O 070°C Storage Temperature
T S -20
85°C LED Junction Temperature T J
110°C Lead Soldering Temperature 260 for °C
[1.6 mm (0.063 in.) from body]
5 seconds
Notes:
1. Derate linearly as shown in Figure 4.
2. Any pulsed operation cannot exceed the Absolute Max Peak Forward Current as specified in Figure 5.
3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and the wire bonds.
Electrical Characteristics at 25°C
Parameter Symbol Min.Typ.Max.Unit Condition Reference Forward V oltage V F 1.30
1.50 1.70
V I FDC = 50 mA Fig. 2a 2.15I FPK = 250 mA Fig. 2b Forward V oltage
∆V/∆T -2.1mV/°C I FDC = 50 mA Fig. 2c
Temperature Coefficient -2.1I FDC = 100 mA Series Resistance R S 2.8ohms I FDC = 100 mA Diode Capacitance C O 40pF 0 V, 1 MHz Reverse Voltage V R 2
20V I R = 100 µA
Thermal Resistance,R θjp
110
°C/W
Junction to Pin
The package design of these
emitters is optimized for efficient power dissipation. Copper leadframes are used to obtain better thermal performance than the traditional steel leadframes.