2012年华英学校招生素质测评数学卷
2012年华英学校素质测评英语试题
2012年华英学校素质测评英语试题(时间:60分钟,满分:100分)班级:_____学号:_____姓名:______成绩:______一.听力部分.(每小题1分,共25分)(A)听句子,选出你所听到的句子中含有的单词,每个句子只读一遍.() 1. A. horse B. house C. mouse() 2. A. morning B. afternoon C. evening() 3. A. running B. jumping C. learning() 4. A. nine B. ninety C. nineteen() 5. A. pen B. man C. game(B)听句子,根据所读句子顺序,用英文字母(A,B,C,D,E)的顺序给图片标号,每个句子只读一遍.(C)听对话,在各题所给的三个选项中,选出一个与对话内容相符的选项.每段对话读两遍.听下面一段对话,回答第11-12两个小题.() 11. What happens to the woman?A. She can’t get to sleep at night.B. She has a cold.C. Her head is broken.() 12. What does the doctor ask the woman to do?A. Take some medicine.B. Take some rest.C. Eat more.听下面一段对话,回答第3-15三个小题.() 13. Where are they talking?A. At school.B. On a train.C. At a bus station.() 14. Where is the man going?A. Changsha.B. Wuhan.C. Guangzhou.() 15. Who closes the window?A. The man.B. The woman.C. The woman’s friend.(D)你将听到一段关于介绍一家的短文,请为每个家庭成员挑选一份恰当的生日礼物,短文A.a book B. a film ticket C. some CDs D. a doll E. a poster of Yao Ming 19. ( ) – Jim 20. ( ) – Mary二. 选择最佳答案。
2012年华英学校及南海实验中学语文试卷真题两套及答案
2012年佛山华英学校新生入学能力测评试卷(时间:45分钟,满分:100分)班级学号姓名成绩一、基础知识(50分)1.在田字格中正确、工整、美观地书写以下内容。
(3分)根深叶茂,源远流长。
2、根据拼音在横线上写出汉字。
(4分)(1)蓝天有深(suì)的灵魂,才能吸引星月。
(2)广州有好几个吉祥而美丽的别称——羊城、(suì)城和花城。
(3)男子汉做事要光明磊落,不要鬼鬼(suì suì)。
(4)风一更,雪一更,聒(suì)乡心梦不成。
3、选择加点字正确的读音,在下面画“∨”。
(4分)飞来横祸(héng hèng)锲而不舍(qiè qì)强悍粗犷(guǎng kuàng)潮声澎湃(pài bài)4、将下列词语补充完整。
(4分)龙盘虎长途涉扬顿挫安然无5、根据课文《威尼斯的小艇》,在横线上填上适当的关联词。
(5分)船夫的驾驶技术特别好。
怎么拥挤,他能左拐右拐地挤过去。
遇到极窄的地方,他能平稳地穿过,速度特别快,能作急转弯。
6、爷爷打算选两幅对联送给两位朋友:乐器店赵老板、即将七十大寿的钱爷爷,请你帮他挑选一下。
(填序号,4分)A、芝兰玉树竞娟秀,青鸟蟠桃共岁华B、藏古今学术,聚天地精华C、阳春白雪传雅曲,高山流水觅知音D、祥光临福地,喜气满新居应当送给赵老板的是;应当送给钱爷爷的是。
7、默写。
(选择自己最有把握的四句填空,多些不给分,8分)(1)敕勒川,阴山下,。
(北朝民歌《敕勒歌》)(2)秦时明月汉时关,。
(王昌龄《出塞》)(3)千门万户曈曈日,。
(王安石《元日》)(4)竹外桃花三两枝,。
(苏轼《惠崇春江晚景》)(5)路漫漫其修远兮,。
(屈原《离骚》)(6)横眉冷对千夫指,。
(鲁迅《自嘲》)8、写出你对下面句子中划线部分的意思的理解。
(5分)人初生时,饥不能自食,寒不能自衣,父母乳哺之,怀抱之。
2012年高中实验班招生考试数学训练卷
2012年高中实验班招生考试数学训练卷参考答案与试题解析一、选择题:(本题有8小题,每小题4分,共32分)1.(4分)(2011•荆州)有13位同学参加学校组织的才艺表演比赛.已知他们所得的分数互不相同,共设7个获奖名额.某同学知进自己的比赛分数后,要判断自己能否获奖,在下列13名同学成绩的统计量中只需知道一个量,它是()A.众数B.方差C.中位数D.平均数考点:统计量的选择;中位数.专题:应用题.分析:由于比赛设置了7个获奖名额,共有13名选手参加,故应根据中位数的意义分析.解答:解:因为7位获奖者的分数肯定是17名参赛选手中最高的,而且13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选C.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2.(4分)(2011•日照)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A.54盏B.55盏C.56盏D.57盏考点:一元一次方程的应用.专题:优选方案问题.分析:可设需更换的新型节能灯有x盏,根据等量关系:两种安装路灯方式的道路总长相等,列出方程求解即可.解答:解:设需更换的新型节能灯有x盏,则70(x﹣1)=36×(106﹣1),70x=3850,x=55,则需更换的新型节能灯有55盏.故选B.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意根据实际问题采取进1的近似数.3.(4分)(2011•泰安)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19考点:相似三角形的判定与性质;正方形的性质.专题:计算题.分析:由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答.解答:解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;∴S2的面积为EC2==8;∵S1的边长为3,S1的面积为3×3=9,∴S1+S2=8+9=17.故选B.点评:本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力.4.(4分)(2011•日照)已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O 的半径为的是()A.B.C.D.考点:三角形的内切圆与内心;解一元一次方程;正方形的判定与性质;切线的性质;相似三角形的判定与性质.专题:计算题.分析:连接OE、OD,根据AC、BC分别切圆O于E、D,得到∠OEC=∠ODC=∠C=90°,证出正方形OECD,设圆O的半径是r,证△ODB∽△AEO ,得出=,代入即可求出r=;设圆的半径是x,圆切AC于E,切BC于D,且AB于F,同样得到正方形OECD,根据a ﹣x+b﹣x=c,求出x即可;设圆切AB于F,圆的半径是y,连接OF,则△BCA∽△OFA得出=,代入求出y即可.解答:解:A、设圆的半径是x,圆切AC于E,切BC于D,且AB于F,如图(1)同样得到正方形OECD,AE=AF,BD=BF,则a﹣x+b﹣x=c,求出x=,故本选项错误;B、设圆切AB于F,圆的半径是y,连接OF,如图(2),则△BCA∽△OFA,∴=,∴=,解得:y=,故本选项错误;C、连接OE、OD,∵AC、BC分别切圆O于E、D,∴∠OEC=∠ODC=∠C=90°,∵OE=OD,∴四边形OECD是正方形,∴OE=EC=CD=OD,设圆O的半径是r,∵OE∥BC,∴∠AOE=∠B,∵∠AEO=∠ODB,∴△ODB∽△AEO,∴=,=,解得:r=,故本选项正确;D、O点连接三个切点,从上至下一次为:OD,OE,OF;并设圆的半径为x;容易知道BD=BF,所以AD=BD﹣BA=BF﹣BA=a+x﹣c;又∵b﹣x=AE=AD=a+x﹣c;所以x=,故本选项错误.故选C.点评:本题主要考查对正方形的性质和判定,切线的性质,全等三角形的性质和判定,三角形的内切圆与内心,解一元一次方程等知识点的理解和掌握,能根据这些性质求出圆的半径是解此题的关键.5.(4分)(2011•随州)已知函数,若使y=k成立的x值恰好有三个,则k的值为()A.0B.1C.2D.3考点:二次函数的图象.专题:数形结合.分析:首先在坐标系中画出已知函数的图象,利用数形结合的方法即可找到使y=k成立的x值恰好有三个的k值.解答:解:函数的图象如图:根据图象知道当y=3时,对应成立的x有恰好有三个,∴k=3.故选D.点评:此题主要考查了利用二次函数的图象解决交点问题,解题的关键是把解方程的问题转换为根据函数图象找交点的问题.6.(4分)(2009•湖州)已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81个格点中的多少个()A.6B.7C.8D.9考点:二次函数综合题;二次函数的图象.专题:网格型.分析:建立如图坐标系,水平为x轴,竖直为y轴,设抛物线解析式为:y=ax2+bx+c,要使得点最多,取整数点(0,1),(1,1),(2,2)代入抛物线的解析式,求出a、b、c的值,再把各整数格点代入求解即可.解答:解:由题意,建立如图坐标系,水平为x轴,竖直为y轴,设抛物线解析式为:y=ax2+bx+c,要使得格点最多,抛物线如图所示:取整数点D(0,1),E(1,1),F(2,2)代入抛物线的解析式得,1=a×02+0×b+c,1=a×12+1×b+c,2=a×22+2b+c,解得a=,b=,c=1,故y=x2﹣x+1,∴A(﹣3,7);B(﹣2,4);C(﹣1,2);D(0,1);E(1,2)F(3,4);G(3,4);H(4,7)共8个.建立坐标系的方法:设方格左下角为(0,0),沿着方格的边沿建立直角坐标系.取抛物线为y=(x﹣3)(x﹣4),则它能经过8个格点:(0,6),(1,3),(2,1),(3,0),(4,0),(5,1),(6,3),(7,6).对于任意的二次函数,如果我们依次考察x=0,1,2,…,8时的值,并依次用后一个值减去前一个值,总得到一个等差数列.要使经过的格点尽量多,则这个等差数列的公差要尽量小,且为整数.因此,令公差为1,这相当于取二次项系数为.验证:如果抛物线经过9个格点,那么在抛物线的顶点及一侧至少经过5个格点,由于这5个格点的横坐标都差1,考虑到抛物线的递增或递减趋势,这5点的纵坐标的极差不小于1+2+3+4=10,显然这5个格点不全在8×8网格之内.故选C.点评:此题是一道新颖题,定义了一个格点的概念,思路比较开放,要建立合适的坐标系来找最多格点,考查了抛物线的基本性质.7.(4分)(2010•兰州)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:本题需要根据抛物线的位置,反馈数据的信息,即a+b+c,b,b2﹣4ac的符号,从而确定反比例函数、一次函数的图象位置.解答:解:由抛物线的图象可知,横坐标为1的点,即(1,a+b+c)在第四象限,因此a+b+c<0;∴双曲线的图象在第二、四象限;由于抛物线开口向上,所以a>0;对称轴x=>0,所以b<0;抛物线与x轴有两个交点,故b2﹣4ac>0;∴直线y=bx+b2﹣4ac经过第一、二、四象限.故选D.点评:本题考查了一次函数、反比例函数、二次函数的图象与各系数的关系,同学们要细心解答.8.(4分)如图,已知等腰△ABC中,AB=AC,P、Q分别为AC、AB上的点,且AP=PQ=QB=BC,则∠PCQ的度数为()A.30 B.36 C.45 D.37.5考点:等腰三角形的性质.分析:可设∠A=x,根据在AC上取点D,使QD=PQ,连接QD、BD,再利用已知得出△BDQ为等边三角形,进而得出x的角度,即可得出答案.解答:解:在AC上取点D,使QD=PQ,连接QD、BD,设∠A=x,则∠QDP=∠QPD=2x,∠BQD=3x,∵DQ=QB,∴∠QBD=90°﹣1.5x,∠BDC=90°﹣0.5x,又∵AB=AC,∴∠ABC=∠ACB=90°﹣0.5x,∴BD=BC,∴BD=BQ=QD,∴△BDQ为等边三角形,∴∠QBD=90°﹣1.5x=60°,故x=20°,∴∠ABC=80°,∴∠QCB=50°,∴∠PCQ=80°﹣50°=30°.故选A.点评:此题主要考查学生对等腰三角形的判定与性质和三角形外角的性质的理解和掌握,此题的关键是得出△BDQ为等边三角形.二、填空题:(本题有5个小题,每小题4分,共20分)9.(4分)“情系玉树,大爱无疆﹣抗震救灾大型募捐”晚会2010年4月20日晚在中央电视台演播大厅举行,这台募捐晚会共募得善款21.75亿,用科学记数法(保留三位有效数字)表示21.75亿元= 2.18×109元.考点:科学记数法与有效数字.专题:计算题.分析:首先用科学记数法表示成a×10n的形式,然后对a保留三个有效数字即可.解答:解:∵21.75亿元=2175000000元,∴2175000000元=2.175×109≈2.18×109,故答案为2.18×109.点评:本题考查了科学记数法及有效数字的确定,对比较大的数保留有效数字取近似值时,先用科学记数法表示.10.(4分)如图所示,将△ABC沿着DE翻折,B点落到了B′点处.若∠1+∠2=80°,则∠B′=40°.考点:翻折变换(折叠问题).分析:首先根据折叠可知∠BED=∠B′ED,∠BDE=∠B′DE,再根据平角定义可知∠1+2∠B′ED=180°,∠2+2∠B′DE=180°,把两式相加可得到∠1+∠2+2(∠B′ED+∠B′DE)=360°,再由三角形内角和可知∠B′ED+∠B′DE=180°﹣∠B′,进行等量代换即可得到∠B′的度数.解答:解:方法一:∵△ABC沿着DE翻折,∴∠BED=∠B′ED,∠BDE=∠B′DE,∴∠1+2∠B′ED=180°,∠2+2∠B′DE=180°,∴∠1+∠2+2(∠B′ED+∠B′DE)=360°,∵∠1+∠2=80°,∠B′+∠B′ED+∠B′DE=180°,∴80°+2(180°﹣∠B′)=360°,∴∠B′=40°.故答案为:40°.方法二:△ABC沿着DE翻折,连接BB′∴∠1=∠EBB′+∠EB′B,∴∠2=∠DBB′+∠DB′B,∴∠1+∠2=∠EBB′+∠EB′B+∠DBB′+∠DB′B,即80°=2∠EB′D∴∠EB′D=40°.故答案为:40°.点评:本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.11.(4分)(2010•镇江)已知实数x,y满足x2+3x+y﹣3=0,则x+y的最大值为4.考点:二次函数的应用.分析:将函数方程x2+3x+y﹣3=0代入x+y,把x+y表示成关于x的函数,根据二次函数的性质求得最大值.解答:解:由x2+3x+y﹣3=0得y=﹣x2﹣3x+3,把y代入x+y得:x+y=x﹣x2﹣3x+3=﹣x2﹣2x+3=﹣(x+1)2+4≤4,∴x+y的最大值为4.故应填4.点评:本题考查了二次函数的性质及求最大值的方法,即完全平方式法.12.(4分)(2009•湖州)如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D5,…,D n,分别记△BD1E1,△BD2E2,△BD3E3,…,△BD n E n的面积为S1,S2,S3,…S n.则S n=S△ABC(用含n的代数式表示).考点:相似三角形的判定与性质;三角形的重心.专题:规律型.分析:根据直角三角形的性质以及相似三角形的性质.解答:解:易知D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,以此类推;根据直角三角形的性质以及相似三角形的性质可知:D1E1=BC,CE1=AC,S1=S△ABC;∴在△ACB中,D2为其重心,∴D2E1=BE1,∴D2E2=BC,CE2=AC,S2=S△ABC,∵D2E2:D1E1=2:3,D1E1:BC=1:2,∴BC:D2E2=2D1E1:D1E1=3,∴CD3:CD2=D3E3:D2E2=CE3:CE2=3:4,∴D3E3=D2E2=×BC=BC,CE3=CE2=×AC=AC,S3=S△ABC…;∴S n=S△ABC.点评:解决本题的关键是据直角三角形的性质以及相似三角形的性质得到第一个三角形的面积与原三角形的面积的规律.也考查了重心的性质即三角形三边中线的交点到顶点的距离等于它到对边中点距离的两倍.13.(4分)如图,已知△ABC≌△DCE≌△HEF,三条对应边BC、CE、EF在同一条直线上,连接BH,分别交AC、DC、DE于点P、Q、K,其中S△PCQ=1,则图中三个阴影部分的面积和为13.考点:相似三角形的判定与性质;全等三角形的性质.分析:根据全等三角形对应角相等,可以证明AC∥DE∥HF,再根据全等三角形对应边相等BC=CE=EF,然后利用平行线分线段成比例定理求出HF=3PC,KE=2PC,所以PC=DK,设△DQK的边DK为x,DK边上的高为h,表示出△DQK的面积,再根据边的关系和三角形的面积公式即可求出三部分阴影部分的面积.解答:解:∵△ABC≌△DCE≌△HEF,∴∠ACB=∠DEC=∠HFE,BC=CE=EF,∴AC∥DE∥HF,∴==,==,∴KE=2PC,HF=3PC,又∵DK=DE﹣KE=3PC﹣2PC=PC,∴△DQK≌△CQP(相似比为1)设△DQK的边DK为x,DK边上的高为h,则xh=1,整理得xh=2,S△BPC=x•2h=xh=2,S四边形CEKQ=×3x•2h﹣2=3xh﹣2=3×2﹣1=6﹣1=5,S△EFH=×3x•2h=3xh=6,∴三个阴影部分面积的和为:2+5+6=13.故答案为13.点评:本题主要利用全等三角形的性质,找出阴影部分的图形边的关系和三角形的面积公式的解题的关键.三、解答题:(本题有7个小题,共68分)解答应写出必要的说明、证明过程及步骤.14.(8分)先化简,再求值:•;其中.考点:分式的化简求值;非负数的性质:绝对值;非负数的性质:算术平方根;特殊角的三角函数值.专题:计算题.分析:先根据非负数的性质求得a、b,再将分式化简,代入值计算即可.解答:解:,(3分)∵,∴a﹣tan60°=0,b+3=0,∴a=,b=﹣3,∴•,=•,=,当时,原式=(6分).点评:本题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.15.(10分)(2011•温州)一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球,记下颜色后放回,并搅均,再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);(3)现再将n个白球放入布袋,搅均后,使摸出1个球是白球的概率为.求n的值.考点:列表法与树状图法;分式方程的应用.分析:(1)由一个不透明的布袋里装有3个球,其中2个红球,1个白球,根据概率公式直接求解即可求得答案;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率;(3)根据概率公式列方程,解方程即可求得n的值.解答:解:(1)∵一个不透明的布袋里装有3个球,其中2个红球,1个白球,∴摸出1个球是白球的概率为;(2)画树状图、列表得:白红1 红2第二次第一次白白,白白,红1 白,红2红1 红1,白红1,红1 红1,红2红2 红2,白红2,红1 红2,红2∴一共有9种等可能的结果,两次摸出的球恰好颜色不同的有4种,∴两次摸出的球恰好颜色不同的概率为;(3)由题意得:,解得:n=4.经检验,n=4是所列方程的解,且符合题意,∴n=4.点评:此题考查了概率公式与用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.(9分)(2011•湖州)我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼,有关成本、销售情况如下表:养殖种类成本(万元)销售额(万元/亩)甲鱼 2.4 3桂鱼 2 2.5(1)2010年,王大爷养殖甲鱼20亩,桂鱼10亩,求王大爷这一年共收益多少万元?(收益=销售额﹣成本)(2)2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2010年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?(3)已知甲鱼每亩需要饲料500㎏,桂鱼每亩需要饲料700㎏,根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需要全部饲料比原计划减少了2次,求王大爷原定的运输车辆每次可装载饲料多少㎏?考点:一次函数的应用;分式方程的应用;一元一次不等式的应用.专题:函数思想;方程思想.分析:(1)根据已知列算式求解;(2)先设养殖甲鱼x亩,则养殖桂鱼(30﹣x)亩列不等式,求出x的取值,再表示出王大爷可获得收益为y万元函数关系式求最大值;(3)设大爷原定的运输车辆每次可装载饲料a㎏,结合(2)列分式方程求解.解答:解:(1)2010年王大爷的收益为:20×(3﹣2.4)+10×(2.5﹣2)=17(万元),答:王大爷这一年共收益17万元.(2)设养殖甲鱼x亩,则养殖桂鱼(30﹣x)亩则题意得2.4x+2(30﹣x)≤70解得x≤25,又设王大爷可获得收益为y万元,则y=0.6x+0.5(30﹣x),即y=x+15.∵函数值y随x的增大而增大,∴当x=25时,可获得最大收益.答:要获得最大收益,应养殖甲鱼25亩,桂鱼5亩.(3)设大爷原定的运输车辆每次可装载饲料a㎏由(2)得,共需要饲料为500×25+700×5=16000(㎏),根据题意得﹣=2,解得a=4000把a=4000代入原方程公分母得,2a=2×4000=8000≠0,∴a=4000是原方程的解.答:王大爷原定的运输车辆每次可装载饲料4000㎏.点评:此题考查的知识点是一次函数的应用,分是方程的应用及一元一次不等式的应用,解题的关键是列不等式求x的取值范围,再表示出函数关系求最大值,再列分式方程求解.17.(9分)(2011•宜宾)如图,一次函数的图象与反比例函数的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时,一次函数值小于反比例函数值.(1)求一次函数的解析式;(2)设函数y2=的图象与的图象关于y轴对称,在y2=的图象上取一点P(P点的横坐标大于2),过P作PQ丄x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.考点:反比例函数综合题.专题:综合题.分析:(1)根据x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时候,一次函数值小于反比例函数值得到点A的坐标,利用待定系数法求函数的解析式即可;(2)求得B点的坐标后设出P点的坐标,利用告诉的四边形的面积得到函数关系式求得点P 的坐标即可.解答:解:(1)∵x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时候,一次函数值小于反比例函数值.∴A点的横坐标是﹣1,∴A(﹣1,3),设一次函数的解析式为y=kx+b,因直线过A、C,则,解之得,∴一次函数的解析式为y=﹣x+2;(2)∵y2=的图象与的图象关于y轴对称,∴y2=(x>0),∵B点是直线y=﹣x+2与y轴的交点,∴B(0,2),设p(n,)n>2,S四边形BCQP=S四边形OQPB﹣S△OBC=2,∴(2+)n﹣×2×2=2,n=,∴P(,).点评:此题主要考查反比例函数的性质,注意通过解方程组求出交点坐标.同时要注意运用数形结合的思想.18.(10分)(2011•河南)如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E 运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.考点:菱形的性质;含30度角的直角三角形;矩形的性质;解直角三角形.分析:(1)在△DFC中,∠DFC=90°,∠C=30°,由已知条件求证;(2)求得四边形AEFD为平行四边形,若使▱AEFD为菱形则需要满足的条件及求得;(3)①∠EDF=90°时,四边形EBFD为矩形.在直角三角形AED中求得AD=2AE即求得.②∠DEF=90°时,由(2)知EF∥AD,则得∠ADE=∠DEF=90°,求得AD=AE•cos60°列式得.③∠EFD=90°时,此种情况不存在.解答:(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t.又∵AE=t,∴AE=DF.(2)解:能.理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.又AE=DF,∴四边形AEFD为平行四边形.∵AB=BC•tan30°=5=5,∴AC=2AB=10.∴AD=AC﹣DC=10﹣2t.若使▱AEFD为菱形,则需AE=AD,即t=10﹣2t,t=.即当t=时,四边形AEFD为菱形.(3)解:①∠EDF=90°时,四边形EBFD为矩形.在Rt△AED中,∠ADE=∠C=30°,∴AD=2AE.即10﹣2t=2t,t=.②∠DEF=90°时,由(2)四边形AEFD为平行四边形知EF∥AD,∴∠ADE=∠DEF=90°.∵∠A=90°﹣∠C=60°,∴AD=AE•cos60°.即10﹣2t=t,t=4.③∠EFD=90°时,此种情况不存在.综上所述,当t=或4时,△DEF为直角三角形.点评:本题考查了菱形的性质,考查了菱形是平行四边形,考查了菱形的判定定理,以及菱形与矩形之间的联系.难度适宜,计算繁琐.19.(10分)(2011•娄底)在等腰梯形ABCD中,AD∥BC,且AD=2,以CD为直径作⊙O1,交BC于点E,过点E作EF⊥AB于F,建立如图所示的平面直角坐标系,已知A,B两点的坐标分别为A(0,2),B(﹣2,0).(1)求C,D两点的坐标.(2)求证:EF为⊙O1的切线.(3)探究:如图,线段CD上是否存在点P,使得线段PC的长度与P点到y轴的距离相等?如果存在,请找出P点的坐标;如果不存在,请说明理由.考点:相似三角形的判定与性质;坐标与图形性质;等腰梯形的性质;圆周角定理;切线的判定与性质.专题:综合题.分析:(1)连接DE,由等腰梯形的对称性可知,△CDE≌△BAO,根据线段的等量关系求C,D 两点的坐标;(2)连接O1E,由半径O1E=O1C,得∠O1EC=∠O1CE,由等腰梯形的性质,得∠ABC=∠DCB,故∠O1EC=∠ABC,可证O1E∥AB,由EF⊥AB,证明O1E⊥EF即可;(3)存在.过P作PM⊥y轴于M,作PN⊥x轴于N,由PC=PM,可知四边形OMPN为正方形,设ON=x,则PM=PC=x,CN=4﹣x,由△PNC∽△AOB,由相似比,列方程求解.解答:(1)解:连接DE,∵CD是⊙O1的直径,∴DE⊥BC,∴四边形ADEO为矩形.∴OE=AD=2,DE=AO=2.在等腰梯形ABCD中,DC=AB.∴CE=BO=2,CO=4.∴C(4,0),D(2,2);(2)证明:连接O1E,在⊙O1中,O1E=O1C,∠O1EC=∠O1CE,在等腰梯形ABCD中,∠ABC=∠DCB.∴O1E∥AB,又∵EF⊥AB,∴O1E⊥EF.∵E在⊙O上,∴EF为⊙O1的切线(3)解法一:存在满足条件的点P.如右图,过P作PM⊥y轴于M,作PN⊥x轴于N,依题意得PC=PM,在矩形OMPN中,ON=PM,设ON=x,则PM=PC=x,CN=4﹣x,∴∠ABO=60°,∴∠PCN=∠ABO=60°.在Rt△PCN中,cos∠PCN=,即,∴x=.∴PN=CN•tan∠PCN=(4﹣)•=.∴满足条件的P点的坐标为(,).解法二:存在满足条件的点P,如右图,在Rt△AOB中,AB=.过P作PM⊥y轴于M,作PN⊥x轴于N,依题意得PC=PM,在矩形OMPN中,ON=PM,设ON=x,则PM=PC=x,CN=4﹣x,∵∠PCN=∠ABO,∠PNC=∠AOB=90°.∴△PNC∽△AOB,∴,即.解得x=.又由△PNC∽△AOB,得,∴PN=.∴满足条件的P点的坐标为(,).点评:本题考查了相似三角形的判定与性质,坐标与图形的性质,等腰梯形的性质,圆周角定理,切线的判定与性质.关键是根据等腰梯形的性质,作辅助线,利用相似三角形的性质求解.20.(12分)(2011•成都)如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.(1)求此抛物线的函数表达式;(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:综合题.分析:(1)由已知设OA=m,则OB=OC=5m,AB=6m,由S△ABC=AB×OC=15,可求m的值,确定A、B、C三点坐标,由A、B两点坐标设抛物线交点式,将C点坐标代入即可;(2)设E点坐标为(m,m2﹣4m﹣5),抛物线对称轴为x=2,根据2|m﹣2|=EF,列方程求解;(3)存在.因为OB=OC=5,△OBC为等腰直角三角形,直线BC解析式为y=x﹣5,则直线y=x+9或直线y=x﹣19与BC的距离为7,将直线解析式与抛物线解析式联立,求M点的坐标即可.解答:解:(1)∵|OA|:|OB|=1:5,|OB|=|OC|,设OA=m,则OB=OC=5m,AB=6m,由S△ABC=AB×OC=15,得×6m×5m=15,解得m=1(舍去负值),∴A(﹣1,0),B(5,0),C(0,﹣5),设抛物线解析式为y=a(x+1)(x﹣5),将C点坐标代入,得a=1,∴抛物线解析式为y=(x+1)(x﹣5),即y=x2﹣4x﹣5;(2)设E点坐标为(n,n2﹣4n﹣5),抛物线对称轴为x=2,由2(n﹣2)=EF,得2(n﹣2)=﹣(n2﹣4n﹣5)或2(n﹣2)=n2﹣4n﹣5,解得n=1±或n=3±,∵n>0,∴n=1+或n=3+,边长EF=2(n﹣2)=2﹣2或2+2;(3)存在.∴△OBC为等腰直角三角形,即B(5,0),C(0,﹣5),设直线BC解析式为y=kx+b,将B与C代入得:,解得:,则直线BC解析式为y=x﹣5,依题意△MBC中BC边上的高为,∴直线y=x+9或直线y=x﹣19与BC的距离为7,联立,,解得或,∴M点的坐标为(﹣2,7),(7,16).点评:本题考查了二次函数的综合运用.关键是采用形数结合的方法,准确地用点的坐标表示线段的长,根据图形的特点,列方程求解,注意分类讨论.。
华英数学考试含答案
峰期的费用为:
峰期电价:
所以,用电量为:
5月电费为:
答:5月份小明家将支付电费174.6元。
3、解:每个圆角方形图标面积为:
列式方法一:
列式方法二:
16个圆角方形面积为:
3个圆形图标面积为:
所以,剩余的面积为:
A. 31 B. 33 C.35
6.小轩同学先把一张长方形纸片按图1的方式进行折叠,使折痕的左侧部分比右侧部分短2cm ;展开后按图2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长2cm ,再展开后,在纸上形成的两条折痕之间的距离是( )。
第一次折叠 第二次折叠
A. 1 cm B. 2 cm C. 4 cm
阶梯电价夏季(5-11月)计费标准 峰谷电价计费标准
平期
峰期
谷期பைடு நூலகம்
电价
(元/千
瓦时)
0.62
比平期
电价增
加50%
平期电
价打
5折
第一档
第二档
第三档
每月用电(千瓦时)
小于260
260至600
大于600
电价(元/千瓦时)
0.62
0.67
0.92
例如:使用电量为300千瓦时,当中的260千
瓦时算第一档,超出部分的40千瓦时算第二档
根据右边促销广告,他至少要付( )元。每支0.4元,
买6支送1支
买一盒(12支)3.8元
7.用长为96cm的绳子在桌面摆出正方形,先用这根绳子摆成一个正方形,再用这根绳子摆成2个正方形,3个正方形,4个正方形(绳子不能剪断),当摆出10个正方形时,每个小正方形的边长为( ),此时摆出的图形共有( )个顶点。
二、判断题(每小题2分,共10分)
华英数学试卷含答案
(2013年华英小升初)出题人: 教师姓名: 分数:…………………………………………………………………………………………………………………………本试卷满分为( 100 )分。
考试用时( 45 )分钟。
一、选择题(每小题3分,共18分)1.不能用一副三角板画出的是( )度的角。
A. 130 B.75 C.152.如下图,是由四个相同的小正方体组成的立体图形,那么从左面看到的图形是( )。
3.甲、乙两人做掷骰子游戏,下面()游戏的规则是公平的。
A.掷出小于3的甲赢,掷出大于3的乙赢B.掷出质数甲赢,掷出合数乙赢 C.掷出奇数甲赢,掷出偶数乙赢4.在同样大小的三个长方形中剪去部分图形,那么在剩下的三个图形(阴影部分)中,周长最大的是( )A. B. C.5.今年张军、刘林、马平三人的年龄之和是38岁,四年后张军15岁,那时刘林、马平的年龄之和是( )岁.A. 31B. 33C.356.小轩同学先把一张长方形纸片按图1的方式进行折叠,使折痕的左侧部分比右侧部分短2cm ;展开后按图2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长2cm ,再展开后,在纸上形成的两条折痕之间的距离是( )。
第一次折叠 第二次折叠A. 1 cmB. 2 cmC. 4 cm 二、判断题(每小题2分,共10分)1.分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。
( )2.100本六年级下册数学课本的厚度接近7米。
( )3.一个三角形中最小的一个内角是50°,这个三角形一定是锐角三角形。
( )4.圆柱体积一定时,圆柱的底面积和高成反比例。
( )5.b a 、是两个不为零的数,若。
的是,那么的等于的323121b a b a ( )三、填空题(每空3分,共24分)1.从儿童节那天开始,小明4天看了36页书,照这样的速度计算,这个月小明一共可以看( )页书。
2.用含字母c b a 、、的等式表示乘法结合律:( )。
2012年七年级入学检测 数学试卷
淮北市西园中学2012级新生摸底检测 数学试卷 (时间60分钟 满分100分)填空。
(每题2分,共24分) )平方千米,改写成以“万”作单位的数是( )平方千米,16.7﹪ 45米,记作45米;小红向西走了25米,记)米。
在括号里填上合适的最简分数。
1/5<( )<1/4 30届夏季奥运会于2012年7月27日在英国伦敦开幕,8月12日闭幕, )天。
)。
a 与b 成正比例,那么“?”处填( );如果a 与b 成反a 、b 的比为3:2(如图),分别以a 、b )。
12.56厘米,高是30厘米,这个( ),体积是( ),把它削成一 )。
S1=18,S3= 24,S2=( )。
2吨大米,如果每天吃去它的1/10,可以吃( )天,如果每天吃 )天。
120元,现在打八折销售,便宜了( )元。
积是2012,这两个偶数分别是( )和( )。
。
(每题1分,共6分)2次跳的平均数是120下,要使3次跳的平均数是125下,她第3次应跳( )下。
① 125 ②145 ③1352、94600÷180的商是525,余数( )。
①1000 ②100 ③103、 把一根铁丝截成两段,第一段长3/4米,第二段是全长的3/4,那么两段铁丝的长度相比,( )。
①第一段长 ②第二段长 ③一样长4、在一个正方形花坛四周种树。
四个顶点各种1棵,每边种5棵,共种树()棵。
① 25 ② 20 ③ 165、下面各容器底面积相同,容器中水的高度相同,分别把a克食盐(a>0)溶解在各容器的水中,()的含盐率最高。
①②③6、一个密封的不透明的袋子里装了3个红球、3个黄球和3个绿球,要想使摸出的球保证有2个球是同色的,至少要摸出()个球。
①4 ② 5 ③ 3三、计算。
(共31分)1、直接写得数。
(9分)1-0.92= 12.12 ÷ 12= 3/4÷ 3/8= 12×(1/3+1/4)=2/5+1/2= 2/7+5/7×1/4= 2.7+1.63+7.3= 0.83×9+0.83=1.25×4/5×8=2、怎样简便就怎样计算。
华英学校入学试题
2003年华英学校招生素质考核数学试卷一、填空(每空2分,共18分)(1)524的分数单位是( ),524减去( )个这样的分数单位就得到最小的质数。
(2)8、12两数的最大公约数是( ),8、12、18的最小公倍数是( )。
(3)能同时被3、5、7整除的最大三位数是( )。
(4)在一个比例式中,两内项都是合数,它们的积是24,一个外项是3,这个比例式可写成( )。
(5)有一个三角形,它的三个内角的度数比是2∶3∶5,则最小的内角等于( ),这个三角形是( )三角形。
(6)甲数是8,乙数比甲数多4,乙数是甲数的( )%。
二、判断(对的在括号内打“√”,错的打“×”,每小题2分,共8分)(1)一士兵在射击训练中射出105颗子弹,全部命中,命中率是105%。
( )(2)1=x 是方程4.13.151=+x 的解。
( ) (3)当1>a 时,813813>⨯a 。
( )(4)一桶水重50千克,用去它的52,还剩30千克。
( )三、选择题(每小题A 、B 、C 、D 四个选项中,有且只有一个选项是正确,请把正确选项的代号填入括号内,每小题2分,共10分) (1)比值是43的比有( ) A .一个 B .两个 C .三个 D .无数个(2)甲数比乙数多71,则甲数是甲、乙两数和的( ) A .87 B .158 C .157 D .115(3)一个合数至少有( )个约数。
A .1B .2C .3D .4 (4)下列各数中不能化成有限小数的是( ) A .147 B .2513 C .4017 D .152 (5)一个半圆的半径是r 。
它的周长是( ) A .r π B .rr +π C .r r 2+π D .221r π四、直接写出得数(每小题1分,共8分)(1)498÷= (2)10146⨯= (3)3121+= (4)%102.0÷= (5)519915-= (6))6131(18+⨯=(7)432.041++= (8)25.042÷=五、解方程或解比例(每小题3分,共9分) (1)81214397=-⨯x (2)65.6412.3=+x (3)74∶53=x ∶6六、脱式计算(每小题3分,共15分) (1))315.132(%2543⨯-÷+ (2))9421125(36-+⨯(3)75212.0)315.0(⨯÷- (4)51)6143(3221÷-⨯+ (5))]4398(167[43-+⨯七、文字题(每小题5分,共10分) (1)一个数的53是60,这个数的107是多少?(2)2加上94与83的积的倒数,所得的和除以121,商是多少?八、应用题(每小题6分,共30分) (1)水果店3天售出苹果165吨。
2011年华英学校招生素质测评数学试卷附答案
2011年初一招生素质测评数学试卷(满分100分,考试时间45分钟)一、选择题(每题只有一个正确的答案,每小题3分,共24分)1、甲乙两地实际距离是320千米,在一幅地图上量得的距离是4厘米,这幅地图的比例尺是( )。
A 、1:80B 、1:8000C 、1:8000000 2、在下面的式子里,( )是方程。
A 、5X+4B 、3X-5<7C 、X=0 3、正方形的周长和它的边长( )。
A 、成正比例B 、成反比例C 、不成比例 4、真分数除以真分数,所得的商一定( )。
A 、大于被除数B 、小于被除数C 、大于15、10名学生的平均成绩是X ,如果另外5名学生每人得84分,那么整个组的平均成绩是( )。
A 、X+842B 、10X+42015C 、10X+84156、有一个两位数,它的十位数字是a ,个位数字是b ,则这个两位数的大小是( )。
A 、a+bB 、10(a+b )C 、10 a+b7、某商场卖出两个进价不同的手机,都卖了1200元,其中一个盈利50%,另一个亏本20%,在这次买卖中,这家商场( )。
A 、不赔不赚B 、赔100元C 、赚100元8、5个选手P 、Q 、R 、S 、T 举行一场赛跑,P 胜Q ,P 胜R ,Q 胜S ,并且T 在P 之后,Q 之前跑完全程,谁不可能得第三名( )。
A 、P 与QB 、P 与RC 、P 与S二、填空题(每题3分,共21分)9、4.09吨=( )吨( )千克 3时20分=( )时 10、以“万”为单位,准确数5万与近似数5万比较最多相差_____________。
11、a=2×3×m ,b=3×5×m (m 是自然数且m ≠0),如果a 和b 的最大公约数是21,则m 是___________,a 和b 的最小公倍数是______________。
12、把5米长的钢筋,锯成每段一样长的小段,共锯6次,每段占全长的______,每段长______米,如果锯成两段需2分钟,锯成6段共需______分钟。
2012管综数学真题
2012年管理类联考综合能力测试数学真题一、问题求解:第1~15小题,每小题3分,共45分。
下列每题给出的,,,,A B C D E五个选项中,只有一项是符合试题要求的。
请在答题卡上将所选项的字母涂黑。
1、某商品定价200元,受金融危机影响,连续2次降价20%后的售价为().114 B.120 C.128 D.144 E.160A2、如图2,三个边长为1的正方形所组成区域(实线区域)的面积()A. 3B.3C.3D.3E.33、在一次捐赠活动中,某人将捐赠的物品打包成件,其中帐篷和食品共320件,帐篷比食品多80件,则帐篷的件数是()A.180B.200C.220D.240E.2604、如图2,三角形ABC 是直角三角形,,,为正方形,已知,,a b c 分别是为,,的边长,则:()--------------------------可以编辑的精品文档,你值得拥有,下载后想怎么改就怎么改---------------------------222222333333 =+=+=+=+=+A a b cB a b cC a b cD a b cE a b c...22.22 Array 5、如图3,一个储物罐的下半部分是底面直径与高均是20m的圆柱体,上半部分(顶部)是半球形的,已知底面与项部的造价是400元/,侧面的造价是300元/,该储物罐的造价是()万元A.56.52B.62.8C.75.36D.87.92E.100.486、在一次商品促销活动中,主持人出示了一个9位数,让顾客猜测商品的价格,商品的价格是该9位数中从左到右面相邻的3个数字组成的3位数,若主持人出示的是的513535319,则一顾客猜中价格的概率是()11121.....A B C D E965727、某商店经营15种商品,每次在橱窗内陈列5种,若每两次陈列的商品不完全相同,则最多可陈列()次A.3000 B.3003 C.4000 D.4003 E.43008、甲、乙、丙三个地区公务员参加一次测评,其人数和如下表:三个地区按平均分从高到低的排列顺序为()A.乙、丙、甲B. 乙、甲、丙C. 甲、丙、乙D.丙、甲、乙E. 丙、乙、甲--------------------------可以编辑的精品文档,你值得拥有,下载后想怎么改就怎么改-----------------------------------------------------可以编辑的精品文档,你值得拥有,下载后想怎么改就怎么改---------------------------9、经统计,某机构的一个安检口每天中午办理安检手续的乘客人数及对应的概率如下表:.0.2.0.25 .0.4 .0.5E. 0.75A B C D10、某人在保险柜中存放了M 元现金,第一天取出它的,以后每天取出的前一天所取的,共取了7天,保险柜中剩余的现金为( )77766222.....[1()]33333MM M M A B C D E M- 11、在直角坐标系中,若平面区域D 中虽有的点的坐标(x,y )均满足:,,,则面积是( )999.(14).9(4).9(3).(2).(1)44444A B C D E πππππ+--++ 12、某单位春季植树100棵,前2天安排乙组植树,其余任务由甲、乙两组共用3天完成,已知甲组每天比乙组多植树4棵,则甲组每天植树( )棵A.11B.12C.13D.15E.1713、有两队打羽毛球,每队派出3男2女参加5局单打比赛,第二局和第四局为女生,那么每队派队员出场的方式有几种?( )--------------------------可以编辑的精品文档,你值得拥有,下载后想怎么改就怎么改---------------------------A. 12B.10C.8D.6E.414、若能被整除,则( ).4,4.4,4.10,8.10,8.2,0A a b B a b C a b D a b E a b ===-=-==-=-==-=15.某公司计划运送180台电视机和110台洗衣机下乡,现有两种货车,甲种货车每辆最多可载40台电视机和10台洗衣机,乙种货车每辆最多可载20台电视机和20台洗衣机,已知甲、乙两种货车的租金分别是每辆400元和360元,则最少的运费是( )元A. 2560B.2600C.2640D.2680E.2720二、充分性条件判断:第16~25小题小题,每小题3分,共30分。
2012初中数学综合试题答案
2012年中考适应性考试数学试题参考答案及评分标准一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 D C B A D D C D B C二、填空题(每小题3分,共18分)11. 3 12. 体育委员买了2个篮球,3个足球剩余的钱。
13. 13±14.k<25124k≠且 15. 12 16. 4三、解答题(17小题5分,18、19、20小题各6分,共23分)17.解:原式=2-433232⨯++………………………………3分=2-23323++…………………………4分 =5 ……………………………………5分18.解:()() 201512112 23xx x->⎧⎪⎨+-+⎪⎩≥由(1)可得,x<2………………………………………………2分由(2)可得,x≥-1. …………………………………………4分∴原不等式组的解集为-1≤x<2. ………………………………5分-1 0 2 ………………6分19.证明:连结AC、DB ………………1分∠A和∠D都是 CB所对的圆周角,∴∠A=∠D 同理∠C=∠B ………………3分∴ PAC∽ PDB ……………………4分∴PA PCPD PB=………………………………5分即PA PB=PC PD ……………………6分•PB ACDO20.解:(1)将P (-2,1)代入xmy =2中,得m = -2 …………1分 ∴反比例函数的解析式为x y 22-= ………………2分将Q (1,n )代入解析式xy 22-=中,得n = -2 ………… 3分 将P (-2,1),Q (1,-2)代入y 1=ax +b 中 得⎩⎨⎧+=-+-=ba ba 221 解得 ⎩⎨⎧-=-=11b a ∴一次函数的解析式为:y 1=-x -1 ………………5分(2)由图象可知:当2-<x 或10<<x 时y 1>y 2 ………………………… 6分四、实践应用题(21小题6分,22、23、24题各8分)21.(1)解:240+60=300(人) 240⨯3%=7.2即本次共调查了300名村民,被调查的村民中有8人参加合作医疗并获得返款. ………………………………………………2分 (2) 240300⨯10000=8000(人) ……………………………3分 (3)设平均增长率为x ,则有80002(1)x +=9600 …………5分 解得x ≈0.0954 或x ≈-2.0954(舍去)故平均每年增长率为9.54%. ………………………………6分 22.解:在Rt △ABC 中 tan30°=AB CB (1)分AB =30tan CB =103≈17.32(米)……………………………………3分在Rt △CDB 中 tan18°=DB CB…………………………4分DB =81tan CB =325.010≈30.77(米)………………………………… 6分 DA =DB -AB ≈30.77-17.32=13.45(米)4+DA =17.45>15(米)…………………………………………………………7分 ∴离原坡脚15米的花坛应拆除 …………………………………………8分 23.解:设抢修车的速度为x 千米/时,则吉普车的速度为1.5x 千米/时.…1分 由题意得,1515151.560xx-=. ………………………………………………4分解得,20x =. ……………………………………………………………6分经检验,20x =是原方程的解,并且20, 1.530x x ==都符合题意. ……7分 答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.……8分 24.解:(1)他们在景区游玩了3个小时 ……………………………3分 (2) 由图可得当0≤t <1时 y=30t …………………………………………………4分当1≤t <2 时 y=30+20(t-1)即 y=20t+10 …………………………6分当2≤t ≤4 时y=50+10(t-2)即 y=10t+30 ………………………… 8分 五、推理论证题(本题9分)25.(1)证明:如25答图1连结OB . …………………………1分 ∵△ABC 和△BDE 都是等边三角形,∴∠ABC=∠EBD=60°. ∴∠CBE=60°,∠OBC=30°. ∴∠OBE=90°. ∴BE 是⊙O 的切线. ………………………………………3分(2)证明:如25答图1,连结MB . ……………………4分则∠CMB=180°-∠A=120°.∵∠CBF=60°+60°=120°,∴∠CMB=∠CBF .又∵∠BCM=∠FCB ,∴△CMB ∽△CBF .∴CFCB CBCM =即CF CM CB ⋅=2. ……………………………………5分又∵AC=CB ,∴CF CM AC ⋅=2. …………………………………6分(3)解:如25答图2,作DG//BE ,GH//DE . ………………7分∵AC∥BE∥DG ,∴EGCE BDAB =.∵BC∥DE∥HG ,∴EGCE DH BD =.∴DHBDBD AB =. …………………………………8分 ∴22⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛DH BD BD AB .又∵221⎪⎭⎫ ⎝⎛=BD AB S S ,232⎪⎭⎫ ⎝⎛=DH BD S S , ∴3221S S S S =,即2213.s s s =. …………………………9分25答图125答图2六、拓展探索题(本题10分)26.解:(1)如图1所示,连接AC ,则AC =5.在Rt△AOC 中,AC =5 ,OA =1 ,则OC =2 ∴点C 的坐标为(0,2). …………………1分 设切线BC 的解析式为b kx y +=,它过点C (0,2),B (−4,0),则有⎩⎨⎧=+-=042b k b ,解之得⎪⎩⎪⎨⎧==221b k . ∴221+=x y . ………………………3分 (2)如图1所示,设点G 坐标为(x ,y ),过点G 作GH ⊥x 轴,垂足为H 点.则OH =x , GH =y =21x + 2. …………………………………………4分 连接AP , AG ,则∠AGC =21×120°=60°.在Rt△ACG 中 ,∠AGC =60°,AC =5∴AG =3152. ……………………………………………………5分 在Rt△AGH 中, 2AH +2GH =2AG ,且AH =OH -OA =x -1 ,GH =21x + 2. ∴2(1)x -+21(2)2x +=2)3152(.解之得,1x =332,2x = −332(舍去). ∴点G 的坐标为(332,33+ 2). ………………………………6分 (3)在移动过程中,存在点A ,使△AEF 为直角三角形.AE =AF ,∴∠AEF =∠AFE ≠90°.∴要使△AEF 为直角三角形,只能是∠EAF =90°. ………………7分 如图2所示,当圆心A 在点B 的右侧时,过点A 作AM ⊥BC ,垂足为点M . 在Rt△AEF 中,AE =AF =R =5, 则EF =10,O A CBD xyGPH图1AM =21EF =2110.在Rt△OBC 中,OC =2 , OB =4,则BC =25∠BOC= ∠BMA =90°,∠OBC =∠MBA ,∴△BOC ∽△BMA .∴OC MA =BCBA.∴AB =225. ∴OA =OB -AB =4-225. ∴点A 的坐标为(-4+225,0). ……………………………8分 当圆心A 在点B 的左侧时,设圆心为A ′,过点A ′作A′M ′⊥BC 于点M ′,可得△A ′M ′B ≌△AMB ,得A ′B =AB =225.∴OA ′=OB + A ′B =4 +225.∴点A ′的坐标为(-4-225,0)综上所述,点A 的坐标为(-4+225,0)或(-4-225,0). ………………………………………………………………10分。
2012年华英学校小升初数学试卷解析
方形.如果长方体中有 4 个面是正方形,那么中长方体一定是正方体. 故答案为:√. 点评:此题考查的目的是掌握长方体的特征,明确正方体是特殊的长方体.
11.(2 分)(2012•佛山)两个等底等高的三角形都能拼成一个平行四边形.( )
2012 年华英学校小升初数学试卷解析
一、选择题(每小题 4 分,共 24 分)
1.(4 分)(2012•佛山)小王为家人买了四件礼物,最便宜的 15 元,最贵的 30 元,那么买
这四件礼物总共需要的钱是( )
A.75 元~105 元
B.85 元~100 元
C.多于 110 元
考点:数的估算. 276199
考点:整数、小数复合应用题. 276199
专题:简单应用题和一般复合应用题. 分析:(1)根据题意,按照每次服用 2 片计算,每天 3 次就服用 2×3=6 片,然后再用 60 除
以 6 计算出服用的天数即可; (2)根据题意,2011 年 12 月 1 日到 2013 年 12 月 1 日为两年,即 24 个月,因为从 2013 年 9 月 30 日距 2013 年 12 月 1 日的时间是 2 个月,所以这种药的保质期为 24﹣ 2=22 个月. 解答:解:(1)60÷(2×3), =60÷6, =10(天), 答:这瓶药最多能够吃 10 天;
1000000 厘米=10 千米; 答:A.B 两地的实际距离是 10 千米. 故答案为:10. 点评:解答此题的关键是,弄懂比例尺的意义,找准对应量,特别注意对应量的单位名称.
14.(2 分)如下图,两个图形的周长相等,则 a:c= 5 : 6 .
2012年华约自主招生数学含答案以及详解)
2012年高水平大学自主选拔学业能力测试 数学一、选择题:本大题共10小题,每小题3分,在每小题给出的四个选项中只有一项是符合题目要求的。
1.已知P 为三角形ABC 内部任一点(不包括边界),且满足()(2)0PB PA PB PA PC -+-=,则△ABC 一定为( )A .直角三角形;B. 等边三角形;C. 等腰直角三角形;D. 等腰三角形2.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)。
若AM ⊥MP ,则P 点形成的轨迹的长度为______ A.7 B.7 C. 3 D.323.设有一个体积为54的正四面体,若以它的四个面的中心为顶点做一个四面体,则所作四面体的体积为______A.1B. 2C. 3D. 44. 计算器上有一个特殊的按键,在计算器上显示正整数n 时按下这个按键,会等可能的将其替换为0~n -1中的任意一个数。
如果初始时显示2011,反复按这个按键使得最终显示0,那么这个过程中,9、99、999都出现的概率是A .B.C.D.5.已知,R αβ∈,直线1sin sin sin cos x yαβαβ+=++与1cos sin cos cos x yαβαβ+=++的交点在直线y x =-上,则cos sin c in s s o ααββ+++= 。
A.0B.1. C-1 D.2 6.设lg lg lg 111()121418x x x f x =+++++,则1()()_________f x f x+=。
A 1 B 2 C 3 D 4 7. 已知1cos45θ=,则44sin cos θθ+= .A 4/5B 3/5 C1 D -4/58.顶点在同一球面上的正四棱柱ABCD A B C D ''''-中,12AB AA '==,A C ,两点间的球面距离为( )A .π4B .π2C .24πD .22π 9. 在平面直角坐标系内,将适合,3,3,x y x y <<<且使关于t 的方程33421()(3)0x y t x y t x y-+++=-没有实数根的点(,)x y 所成的集合记为N ,则由点集N 所成区域的面积为 。
2012年华英学校小升初数学试卷(含答案)
2012年华英学校小升初数学试卷(含答案)2012年广东省佛山市华英学校小升初数学试卷一、选择题(每小题4分,共24分)1.(4分)(2012•佛山)小王为家人买了四件礼物,最便宜的15元,最贵的30元,那么买这四件礼物总共需要的钱是( )A .75元~105元 B . 85元~100元 C .多于110元2.(4分)(2012•佛山)一万天大约相当于( ) A .17年B . 27年C . 37年3.(4分)(2012•佛山)班上期末评选一名三好学生标兵,选举结果如表,下面( )图能表示这个结果.姓名 小李 小陈 小王 小刘票数 524 7 12A .B .C .4.(4分)(2012•佛山)如图中,甲和乙两部分面积的关系是( )A .甲>乙B . 甲<乙C . 甲=乙5.(4分)(2012•佛山)加工同一批零件,王师傅需要10小时,李师傅需要8小时,那么李师傅的工作效率比王师傅高( )A .20% B . 25% C . 120%6.(4分)(2012•佛山)如图所示,正方形ABCD 的边长为1cm ,现将正方形ABCD 沿水平方向翻滚15次,那么图中点A 翻滚后所在的位置与A 点开始位置之间的距离为( )cm .A .15 B . 16C .30 二、判断题(每小题2分,共10分)7.(2分)(2012•佛山)一个数a,它的倒数是.()8.(2分)(2012•佛山)一个不透明的袋子中装有3个红球,2个黄球和1个白球,每次从袋中摸出1球,那么摸到红球的可能性最大.()9.(2分)(2012•佛山)3千克苹果分给4个小朋友,每个小朋友分得这些苹果的.()10.(2分)(2012•佛山)一个长方体如果有四个面是正方形,则这个长方体一定是正方体.()11.(2分)(2012•佛山)两个等底等高的三角形都能拼成一个平行四边形.()三、填空题(12-15题每空2分,16-18题每空3分,共21分)12.(2分)(2012•佛山)三个连续的自然数的中间的一个为a,这三个自然数的和是()13.(2分)(2012•佛山)在比例尺是1:400000的地图上,量得A、B两地的距离是2.5厘米,则A、B两地的实际距离是()千米.14.(2分)如下图,两个图形的周长相等,则a:c=_________:_________.15.(2分)(2012•佛山)图中的一段话是一种瓶装片剂包装袋中部分说明.请回答下面问题:(1)这瓶药最多够吃()天;(2)这种药保质期是()个月.16.(3分)(2012•佛山)观察下面的三幅图,再装水的杯子中放入大球和小球,请回答:大球的体积是( )立方厘米.17.(3分)(2012•佛山)在NBA 东部决赛的一场比赛中,热火队球星詹姆期全场26投19中加上9罚5中,得45分,已知3分线外投中一球记3分,3分线内投中一球算2分,罚球算1分,则詹姆期本场比赛投中了( )个3分球.18.(3分)(2012•佛山)现有1元,5角、2角、1角的纸币各一张,一共可以组成( )种不同的币值.四、计算题(第19题每空2分,20-23题每题4分,共20分)19.(8分)(2012•佛山)直接写出得数: 33×98+66= 5.7+11.8-4.3=10.1×99-9.9= :71= 7120.(5分)(2012•佛山)6×﹣13÷4+12×0.75.21.(5分)(2012•佛山)÷[1﹣(75%+)].22.(5分)(2012•佛山)48:x=:(解方程)五、解决问题(第23题7分,第24题6分,第25题12分,共25分)23.(7分)(2012•佛山)小明家在百货商场的北偏西40°方向2500米处,图书馆在农业银行东偏南40°方向,农业银行到百货商场与到图书馆的距离相等.下面是小明坐出租车从家去图书馆的路线图(粗实线部分).已知出租车在3千米以内(含3千米)按起步价9元计算,以后每增加1千米车费就增加2元.请你按图中提供的信息先用刻度尺测一测,再算一算小明一共要花多少出租车费?24.(7分)下面的杯子是否可以装下这袋牛奶?(数据均从杯子内侧量得)25.(12分)(2012•佛山)华英学校计划使用如图所示尺寸的4个形状相同的长方形地砖和一个正方形地砖组成的图案铺设风雨走廊.已知走廊也为长方形,长度为18米,宽度是0.6米,长方形地转为3元/块.正方形地转为2元/块.(1)若按图1的方法进行密铺,则需要使用长方形及正方形地砖各多少块?(2)如果改用图2或图3的方案密铺,请分别计算这两种方案所需费用,并比较哪种方案更省钱?2012年华英学校小升初数学试卷参考答案与试题解析一、选择题(每小题4分,共24分)1.(4分)(2012•佛山)小王为家人买了四件礼物,最便宜的15元,最贵的30元,那么买这四件礼物总共需要的钱是( )A .75元~105元 B . 85元~100元 C .多于110元考点:数的估算. 专题:简单应用题和一般复合应用题. 分析: 要求四件礼物总共需要的钱数,需要知道另外两件的最大最小取值范围,最小应大于或等于15×2=30元,最大应小于或等于30×2=60元,所以买这四件礼物总共需要的钱数应在(30+15+30)与(60+15+30)之间,即在75元~105元;据此解答.解答: 解:另外两件的最大最小取值范围,最小应大于或等于15×2=30(元),最大应小于或等于30×2=60(元),所以买这四件礼物总共需要的钱数应在:(30+15+30)75元与(60+15+30)105元之间,即在75元~105元;故选:A .点评:本题关键是确定另外两件的最大最小的取值范围.2.(4分)(2012•佛山)一万天大约相当于( ) A .17年B . 27年C . 37年考点:年、月、日及其关系、单位换算与计算. 专题:质量、时间、人民币单位.分析:根据年月日的关系可得:365天是一年,据此求出1万天里面有几个365天就是几年,据此即可解答.解答:解:1万天=10000天,10000÷365≈27(年),答:大约是27年.故选:B.点评:抓住一年是365天,据此根据除法的意义求出10000里面有几个365即可.3.(4分)(2012•佛山)班上期末评选一名三好学生标兵,选举结果如表,下面()图能表示这个结果.姓名小李小陈小王小刘票数524 7 12A .B.C.考扇形统计图.点:专题:统计图表的制作与应用.分析:分别算出四个同学得票数占总票数的百分之几,再进行选择.解答:解:总票数:5+24+7+12=48(票),小李:5÷48≈11%,小陈:24÷48=50%,小王:7÷48≈14%小刘:12÷48=25%;故选:A.点评:本题主要考查的扇形统计图的意义:即表示部分占整体的百分之几.4.(4分)(2012•佛山)如图中,甲和乙两部分面积的关系是()A甲>乙B甲<乙C甲=乙...考点:面积及面积的大小比较.专题:平面图形的认识与计算.分析:因为甲是三角形,三角形的底是2个格子的长,高是2个格子的长,乙是平行四边形,底是2个格子的长,宽是1个格子的长,根据三角形的面积=底×高÷2,平行四边形的面积=底×高,分别求出三角形和平行四边形的面积,然后进行比较即可.解答:解:甲:2×2÷2=2,乙:2×1=2,所以甲的面积=乙的面积;故选:C.点评:明确三角形和平行四边形面积的计算公式是解答此题的关键.5.(4分)(2012•佛山)加工同一批零件,王师傅需要10小时,李师傅需要8小时,那么李师傅的工作效率比王师傅高( )A .20% B . 25% C . 120%考点:简单的工程问题;百分数的实际应用. 专题:工程问题.分析: 把这批零件的个数看作单位“1”,分别表示出两位师傅的工作效率,再根据李师傅的工作效率比王师傅高的百分比=(李师傅的工作效率﹣王师傅的工作效率)÷王师傅的工作效率×100%即可解答.解答: 解:()×100%, =×100%, =100%,=25%;答:李师傅的工作效率比王师傅高25%.故选:B .点评: 等量关系式:李师傅的工作效率比王师傅高的百分比=(李师傅的工作效率﹣王师傅的工作效率)÷王师傅的工作效率×100%,是解答本题的依据.6.(4分)(2012•佛山)如图所示,正方形ABCD 的边长为1cm ,现将正方形ABCD 沿水平方向翻滚15次,那么图中点A 翻滚后所在的位置与A 点开始位置之间的距离为( )cm .A .15 B . 16C .30 考点:正方形的周长.专题:平面图形的认识与计算.分由题意得:每滚动4次就回到原处,这段距析:离是4个边长的长度之和,用15除以4,商就是A点循环回到原处的次数,余数就是不满一个循环周期又滚动的次数,总距离=循环周期×循环周期次数+余数,据此计算即可.解答:解:15÷4=3…3;总距离为:4×3+1×3=15(厘米).答:图中“A”翻滚后所在位置与它开始所处位置之间的距离为15厘米.故选:A.点评:解决本题的关键是根据操作得出规律,再解答.二、判断题(每小题2分,共10分)7.(2分)(2012•佛山)一个数a ,它的倒数是.(×)考点:倒数的认识.专题数的认识.:分析:因为a可能为0,a不能做分母,也就是0没有倒数,据此判断.解答:解:因为a可能为0,a不能做分母,也就是0没有倒数,所以题干的说法是错误的;故答案为:×.点评:此题主要考查倒数的意义:乘积是1的两个数互为倒数,注意:0没有倒数,1的倒数是1.8.(2分)(2012•佛山)一个不透明的袋子中装有3个红球,2个黄球和1个白球,每次从袋中摸出1球,那么摸到红球的可能性最大.()考点:可能性的大小.专题:可能性.分析:因为袋子里装有3个红球,2个黄球和1个白球,3>2>1,所以每次从袋中摸出1球,那么摸到红球的可能性最大;据此判断.解答:解:袋子里装有3个红球,2个黄球和1个白球,且3>2>1,所以每次从袋中摸出1球,那么摸到红球的可能性最大.故答案为:√.点评:解决此题关键是根据不需要准确地计算可能性的大小,可以根据各种球个数的多少,直接判断可能性的大小.9.(2分)(2012•佛山)3千克苹果分给4个小朋友,每个小朋友分得这些苹果的.()考点:分数除法.专题:分数和百分数.分3千克苹果分给4个小朋友,而不是平均分析:给4个小朋友,不能根据除法的意义或者分数的意义进行求解.解答:解:题目不是平均分,不能用分数的意义求出每份是总数的,也不能用除法的意义求出每份是千克;故答案为:错误.点评:本题首先要注意关键词“平均分”,如果是平均分还要注意确定平均分的是单位“1”还是具体的数量.10.(2分)(2012•佛山)一个长方体如果有四个面是正方形,则这个长方体一定是正方体.(√)考点:长方体的特征;正方体的特征.专题:立体图形的认识与计算.分析根据长方体的特征:6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面:的面积相等.据此解答,解答:解:一般情况,在长方体中6个面都是长方形,在特殊情况下,有两个相对的面是正方形.如果长方体中有4个面是正方形,那么中长方体一定是正方体.故答案为:√.点评:此题考查的目的是掌握长方体的特征,明确正方体是特殊的长方体.11.(2分)(2012•佛山)两个等底等高的三角形都能拼成一个平行四边形.()考点:图形的拼组.专题:平面图形的认识与计算.分析:等底等高的两个三角形的面积相等,但是形状不一定相同,只有两个完全一样的三角形能拼成一个平行四边形,而不是面积相等的两个三角形,据此解答.解答:解:等底等高的两个三角形,不一定能拼成一个平行四边形.如下图故答案为:×.点评:本题考查了两个完全一样的两个三角形,才能拼成一个平行四边形.三、填空题(12-15题每空2分,16-18题每空3分,共21分)12.(2分)(2012•佛山)三个连续的自然数的中间的一个为a,这三个自然数的和是()考点:用字母表示数;自然数的认识.专题:用字母表示数.分析:由已知,三个连续自然数之间的关系是依次大1,由此表示出三个连续自然数为:a﹣1,a,a+1.然后求和.解答:解:因为已知三个连续自然数且中间一个为a,所以另两个为:a﹣1,a+1.则三个连续自然数的和为:a﹣1+a+a+1=3a.故答案为:3a.点评:此题考查了学生对列代数式这个知识点的理解与掌握,解此题的关键是据三个连续自然数的关系先列出代数式,再求和.13.(2分)(2012•佛山)在比例尺是1:400000的地图上,量得A、B两地的距离是2.5厘米,则A、B两地的实际距离是()千米.考点:图上距离与实际距离的换算(比例尺的应用).专题:比和比例应用题.分根据比例尺的意义,知道在图上是1厘米的析:距离,实际距离是400000厘米,现在知道图上距离是2.5厘米,根据整数乘法的意义,即可求出实际距离是多少.解答:解:400000×2.5=1000000(厘米);1000000厘米=10千米;答:A.B两地的实际距离是10千米.故答案为:10.点评:解答此题的关键是,弄懂比例尺的意义,找准对应量,特别注意对应量的单位名称.14.(2分)如下图,两个图形的周长相等,则a:c=5:6.考点:比的意义.分析:因为两图周长相等,所以可得等式:6a=5c.根据比例的基本性质:比例的两外项之积等两内项之积.由等式6a=5c可得比例:a:c=5:6.解答:解:据图可知:6a=5c.根据比例的性质,由等式6a=5c可得比例:a:c=5:6.故答案为:5,6.点评:本题主要考查了比例的基本性质.15.(2分)(2012•佛山)图中的一段话是一种瓶装片剂包装袋中部分说明.请回答下面问题:(1)这瓶药最多够吃()天;(2)这种药保质期是()个月.考点:整数、小数复合应用题.专题简单应用题和一般复合应用题.:分析:(1)根据题意,按照每次服用2片计算,每天3次就服用2×3=6片,然后再用60除以6计算出服用的天数即可;(2)根据题意,2011年12月1日到2013年12月1日为两年,即24个月,因为从2013年9月30日距2013年12月1日的时间是2个月,所以这种药的保质期为24﹣2=22个月.解答:解:(1)60÷(2×3),=60÷6,=10(天),答:这瓶药最多能够吃10天;(2)有分析可知从2012年12月1日到2013年9月30日共有:24﹣2=22(个),答:这种药保质期是22个月.故答案为:(1)10,(2)22.点评:解答此题的关键是从题干中获取信息,然后再根据平均分和年月日的计算方法进行计算即可.16.(3分)(2012•佛山)观察下面的三幅图,再装水的杯子中放入大球和小球,请回答:大球的体积是()立方厘米.考点:探索某些实物体积的测量方法.专题:立体图形的认识与计算.分析:由前两个图可知一个大球与一个小球的体积是9立方厘米,再由第三个图可知一个大球与五个小球的体积是17立方厘米,就用一个大球与五个小球的体积减去一个大球与一个小球的体积,就是四个小球的体积:17﹣9=8立方厘米,再用四个小球的体积除以4就是一个小球的体积,最后用一个大球与一个小球的体积减去一个小球的体积就是一个大球的体积.解解:9﹣(17﹣9)÷4,答:=9﹣8÷4,=9﹣2,=7(立方厘米),答:大球的体积是7立方厘米.故答案为:7.点评:解答此题关键是明白从装水的杯子中放入物体后,溢出水的体积就是放入物体的体积,再由题意解答即可.17.(3分)(2012•佛山)在NBA东部决赛的一场比赛中,热火队球星詹姆期全场26投19中加上9罚5中,得45分,已知3分线外投中一球记3分,3分线内投中一球算2分,罚球算1分,则詹姆期本场比赛投中了()个3分球.考点:列方程解含有两个未知数的应用题.专题:列方程解应用题.分设投中了x个3分球,19﹣x个2分球,根据析:题意可得关系式:3分球得分+2分球得分+1分球得分=总得分,然后根据等量关系列方程:3x+2(19﹣x)+1×5=45;解答即可.解答:解:设投中了x个3分球,19﹣x个2分球,3x+2(19﹣x)+1×5=45,3x+38﹣2x+5=45,3x﹣2x=2,x=2;答:詹姆期本场比赛投中了2个3分球.故答案为:2.点评:列方程解含有两个未知数的应用题,关键是需要找到两个关系式,根据其中一个设出未知数,根据另一个列方程.18.(3分)(2012•佛山)现有1元,5角、2角、1角的纸币各一张,一共可以组成()种不同的币值.考点:排列组合.专传统应用题专题.题:分析:根据题意知道,一张1元、一张5角、一张2角、一张1角,就是4种不同的币值,再由一张1元、一张5角、一张2角、一张1角,可以组成币值是3角,6角,7角,8角,11角,12角,13角,15角,16角,17角,18角,就是11种不同币值,由此即可得出答案.解答:解:(1)一张1元、一张5角、一张2角、一张1角,就是4种不同的币值,(2)1元=10角;又因为,1+2=3(角),5+1=6(角),5+2=7(角),5+2+1=8(角),10+1=11(角),10+2=12(角)10+1+2=13(角),10+5=15(角),10+5+1=16(角),10+5+2=17(角),10+5+2+1=18(角),所以共11种不同的币值,一共有:4+11=15(种),答:可组成15种不同的币值.故答案为:15.点评:解答此题的关键是,根据题意,能利用所给的币值,找出组成的不同币值时,一定不要重复和遗漏.四、计算题(第19题每空2分,20-23题每题4分,共20分)19.(8分)(2012•佛山)直接写答案:33×98+6 6=33005.7+11.8﹣4.3=13.210.1×99﹣9.9= 990:=.考点:整数四则混合运算;小数四则混合运算;比的意义.专运算顺序及法则.:分析:根据整数、小数、比的运算方法进行计算即可.解答:解:33×98+66=33005.7+11.8﹣4.3=13.2 10.1×99﹣9.9=990:=.点评:本题考查了整数、小数、比的口算能力,能运用运算定律简算的要进行简算.20.(5分)(2012•佛山)6×﹣13÷4+12×0.75.考点:整数、分数、小数、百分数四则混合运算.专题运算顺序及法则.分析:把除以4化成乘以,再运用乘法的分配律进行简算,再算12×0.75,最后算加法.解答:解:6×﹣13×+12×0.75,=(6﹣13)×+9,=﹣7×+9,=﹣+9,=;点评:此题考查了整数、小数、分数四则混合运算的顺序.21.(5分)(2012•佛山)÷[1﹣(75%+)].考点:整数、分数、小数、百分数四则混合运算.专题:小升初与竞赛专题.分先算小括号里的加法,整数中括号里的减析:法,最后算括号外的除法.解答:解:÷[1﹣(75%+)],=÷[1﹣],=÷,=5.点评:此题考查了整数、小数、分数、百分数的四则混合运算的顺序,先算小括号里的,再算中括号里的,最后算括号外的.22.(5分)(2012•佛山)48:x=:(解方程)考点:解比例.专题:比和比例.分析:根据比例基本性质,两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以求解.解解:48:x=:,答:x=48×,x =30,x=36.点评:本题主要考查学生依据等式的性质,以及比例基本性质解方程的能力,解方程时注意对齐等号.五、解决问题(第23题7分,第24题6分,第25题12分,共25分)23.(7分)(2012•佛山)小明家在百货商场的北偏西40°方向2500米处,图书馆在农业银行东偏南40°方向,农业银行到百货商场与到图书馆的距离相等.下面是小明坐出租车从家去图书馆的路线图(粗实线部分).已知出租车在3千米以内(含3千米)按起步价9元计算,以后每增加1千米车费就增加2元.请你按图中提供的信息先用刻度尺测一测,再算一算小明一共要花多少出租车费?考点:比例尺应用题.专题:比和比例应用题.分析:由题意可知:图上距离1厘米表示实际距离500米,于是可以求出小明家到图书馆的实际距离,将这个长度分成两部分,即3千米和超过3千米的长度,从而可以计算出需要付的出租车费.解答:解:因为图上距离1厘米表示实际距离500米,则小明家到图书馆的实际距离是:500×11=5500(米)=5.5(千米);9+(5.5﹣3)×2,=9+5,=14(元);答:小明一共要花14元出租车费.点评:此题主要考查线段比例尺的意义,以及出租车费的计算方法.24.(7分)(2007•南山区)下面的杯子是否可以装下这袋牛奶?(数据均从杯子内侧量得)考点:关于圆柱的应用题;体积、容积进率及单位换算.分析:可利用圆柱的体积公式V=Sh先求出杯子的容积是多少,再来判断是否能装下498毫升的牛奶即可.解答:解:3.14×()2×10,=3.14×16×10,=502.4(立方厘米);502.4立方厘米=502.4毫升;502.4毫升>498毫升;答:这个杯子能装下这袋牛奶.点评:此题是考查圆柱知识的实际应用,要灵活运用所学知识解答实际问题.25.(12分)(2012•佛山)华英学校计划使用如图所示尺寸的4个形状相同的长方形地砖和一个正方形地砖组成的图案铺设风雨走廊.已知走廊也为长方形,长度为18米,宽度是0.6米,长方形地转为3元/块.正方形地转为2元/块.(1)若按图1的方法进行密铺,则需要使用长方形及正方形地砖各多少块?(2)如果改用图2或图3的方案密铺,请分别计算这两种方案所需费用,并比较哪种方案更省钱?考点:最优化问题.专题:优化问题.分析:(1)根据图1的方法进行密铺,得出是按照边长是20+10厘米的正方形进行铺设的,而走廊的长是18米=1800厘米,宽是0.6米=60厘米,由此求出走廊中能够铺设几个边长是20+10厘米的正方形,进而求出需要使用长方形及正方形地砖的块数;(2)根据图2的方法进行密铺,得出是按照长是20×3厘米,宽是10×5厘米的长方形进行铺设的,而走廊的长是18米=1800厘米,宽是0.6米=60厘米,由此求出走廊中能够铺设几个这样的长方形,进而求出需要使用长方形及正方形地砖的块数,最后求出此方案所需要的费用;(3)根据图3的方法进行密铺,得出是按照边长是20×3厘米的正方形进行铺设的,而走廊的长是18米=1800厘米,宽是0.6米=60厘米,由此求出走廊中能够铺设几个边长是20×3厘米的正方形,进而求出需要使用长方形及正方形地砖的块数,最后求出此方案所需要的费用.解答:解:(1)因为18米=1800厘米,0.6米=60厘米,所以1800÷(20+10)=60(个),60÷(20+10)=2(个),边长是30厘米的正方形的个数:60×2=120(个),长方形的个数:120×4=480(个),正方形的个数是120个;答:需要使用长方形地砖480块,正方形地砖120块.(2)图2的方法进行密铺:1800÷(10×5)=36(个),60÷(20×3)=1(个),因为长是20×3厘米,宽是10×5厘米的长方形里面有13个长方形,4个正方形,所以需要的费用:36×13×3+36×4×2,=468×3+36×8,=1404+288,=1692(元);图3的方法进行密铺:1800÷(20×3),=1800÷60,=30(个),60÷(20×3)=1(个),因为边长是20×3厘米里面有15个长方形,6个正方形,所以需要的费用:30×15×3+30×6×2,=30×45+30×12,=30×57,=1710(元),因为1692<1710,所以图2的方案密铺更省钱.点评:关键是根据每种图的密铺方法,得出所铺设的图形的个数,进而求出需要的长方形和正方形的地砖的块数,进而解决问题.。
2015-2019-2020年华英入学数学试卷(含答案)
600÷(1-20%)计算,应补充的条件是( )。 A.五月份比六月份少用电 20% B.六月份比五月份多用电 20% C.六月份比五月份少用电 20%
2. 设●、▲、■表示三种不同的物体,现用天平称了两次,情况如图所示,那么●、▲、■
王叔叔中途不休息,他完成这次的步行目标大约需要( )小时。
A.40
B.4
C.7
三.请直接说出结果(请说出计算结果,共 5 题,每题 5 分,共 25 分)
了解更多资讯,欢迎加入2019小升初交流群:812145664
家201长9佛服山务小站升—初交佛流山群家:长56的171交72流10平台 四.推理分析(请利用相关的材料,观察材料,说出结果及分析过程,共 20 分)用小棒按 照如下方式摆图形。
家201长9佛服山务小站升—初交佛流山群家:长56的17交172流10平台
2017 华英面谈真题
一.判断题(共 4 题,每题 5 分,共 20 分)
1.一辆汽车从甲地到乙地,去时每小时行 60 千米,返回时每小时行 50 千米这辆汽车往返的平 均速度是每小时 55 千米。( )
2. 从标有 1,2,3,4 的四张卡片中随机抽取两张,卡片的数字之和是双数的可能性与数字之 和是单数的可能性一样大。( )
家201长9佛服山务小站升—初交佛流山群家:长56的17交172流10平台
4. 上午 8 点 8 分,小明骑自行车从家出发,8 分钟后爸爸骑摩托车追他,在离家 4 千米的地方
追上他。然后,爸爸立刻回家,到家后又立刻去追小明,再追上他的时候,离家恰好是 8 千米,
这时是( )
A.8 点 16 分 B.8 点 18 分
2012年华英学校招生素质测评数学试卷
2012年华英学校招生素质测评数学试卷(考试时间:45分钟分钟 满分100分)分)全卷得分______________ 一、选择题(每小题4分,共24分) 1、小土为家人买了四件礼物,最便宜的15元,最贵的30元,那么买这四利礼物总共需要的饯是( A )。
A 、75 元-105元B 、85元-100元C 、多于110元解析:答案为A ,假设4件礼物中,只有1件为15元或30元,那么最低需要15×3+30=75元,最高需要30×3+15=105元。
2、一万天大约相当于( B ) A 、17年B 、27年C 、37年解析:答案为B ,单位换算,10000÷365≈27(年)。
3,班上期末评选期末“三好学生”标兵,选举结果如右表,下面(班上期末评选期末“三好学生”标兵,选举结果如右表,下面( A )图能表示这个结果。
)图能表示这个结果。
解析:答案为A ,总人数为5+24+7+12=48(人),小陈占一半,小刘占四分之一,所以应该选A 。
4、右图中,甲和乙部分面积的关系是( C )。
A 、甲>乙、甲>乙B 、甲<乙C 、甲=乙解析:答案为C ,甲面积=2×2÷2=2,乙面积=2×1=2,所以甲乙面积相等。
5、加工同一批零件,王师傅要10小时,李师傅要8小时,那李师傅的工作效率比王师傅高( B )。
A 、20% B 、25% C 、120% 解析:答案为B ,令一批零件为单位“1”,则王师傅的效率为101,李师傅的效率为81。
李师傅的工作效率比王师傅高%25%100101)10181(=´¸-。
6、如下图所示,正方形ABCD 的边长为lcm,现将正方形ABCD 沿水平方向翻滚15次,那么图中点A 翻滚后所在的位置与A 点开始位置之间的距离为( A )㎝。
㎝。
A 、15 B 、16 C 、30 解析:答案为A ,每滚动4次就回到原处,这段距离^4个边长的长度之和。