2017-2018学年辽宁省庄河高级中学高二寒假作业:平面向量与解三角形(一)

合集下载

辽宁省庄河市高级中学2017-2018学年高三10月月考文数试题 Word版含解析

辽宁省庄河市高级中学2017-2018学年高三10月月考文数试题 Word版含解析

2017-2018学年高三文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}|23U x Z x =∈-≤≤,集合{}{}1,2,0,1,1,1,2,3A B =--=-,则()U C A B = ( )A .{}0,2B .{}2,3C .{}1,0-D .{}1,2 【答案】B 【解析】试题分析:因为{2,1,0,1,2,3}U =--,所以{2,3}U C A =,所以(){2,3}U C A B = ,故选B . 考点:集合的补集与交集运算.2.3221i i +⎛⎫= ⎪-⎝⎭( ) A .8 B .-8 C .8i D .8i - 【答案】D 【解析】试题分析:333332212()2811i i i i i i ++⎛⎫=⋅=⋅=- ⎪--⎝⎭,故选D . 考点:复数的运算.3. 命题“3,30xx R x ∀∈-≤”的否定是( ) A .“3,30xx R x ∃∈-≥” B .“3,30x x R x ∃∈->” C .“3,30xx R x ∀∈-≥” D .“3,30xx R x ∀∈->”【答案】B 【解析】考点:全称命题的否定.4.如图是某学校学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率之比为1:2:3,则第三小组的频率为( )A .0.125B .0.25C .0.375D .0.500 【答案】C 【解析】试题分析:由直方图知前三组的频率之和为1(0.01250.0375)50.75-+⨯=,所以第三小组的频率为30.750.375123⨯=++,故选C .考点:频率分布直方图.5.已知函数()y f x =的图象与的图象关于直线y x =对称,则()1033f f ⎛⎫+=⎪⎝⎭( ) A .1 B .10 C .19310 D .19lg 3【答案】A 【解析】考点:1、函数的图象;2、对数的运算.6.已知某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .8B .24C .325D .965【答案】C 【解析】试题分析:由三视图知,该几何体是一个以俯视图为底面的三棱锥,底面面积1125625S =⨯⨯=,高165h ==,所以该几何体的体积13235V Sh ==,故选C .考点:1、三棱锥的三视图书馆2、三棱锥的体积.【方法点睛】解答此类问题的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.7.为了研究椭圆的面积公式,研究人员制定了下列的几何概型模型,如图,已知矩形ABCD 的长、宽分别为2,2a b ,以矩形的中心O 为中心制作得的内切椭圆如图阴影部分所示,为保证试验的准确性,经过了十次试验,若十次试验在矩形ABCD 中共随机撒入5000颗豆子,落在阴影部分内的豆子是3925颗,那么,据此估计椭圆的面积S 的公式为( )A .S ab π=B .34S ab π= C .3S ab = D . 3.2S ab = 【答案】A考点:几何概型.8.抛物线216y x =的焦点为F ,其上有两点,A B 到焦点F 的距离都等于9,则AB =( )A .8B .16C .D .【答案】C 【解析】试题分析:由抛物线的对称性知,A B 两点的横坐标相同,又由题意知抛物线的准线为4x =-,所以由抛物线的定义知||||49A AF BF x ==+=,所以,A B 的横坐标为5,纵坐标为±所以||AB =C .考点:1、抛物线的性质;2、抛物线的定义. 9.执行如图所示的程序框图,则输出的i =( )A .5B .7C .9D .11 【答案】C 【解析】考点:程序框图.【方法点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.10.已知变量,x y 满足约束条件30101x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,若直线()1y k x =-将可行域分成面积相等的两部分,则目标函数z kx y =-的最大值为( )A .-3B .3C .-1D .1 【答案】D 【解析】试题分析:作出不等式组表示的平面区域,如图所示,直线()1y k x =-恒过定点(1,0),要使其平分可行域的面积,只需过线段BC 的中点(0,3)即可,所以3k =-,则目标函数3z kx y x y =-=--,平移直线30x y --=,由图知当目标函数3z x y =--经过点(1,2)A -时取得最大值,即max 3(1)21z =-⨯--=,故选D .考点:简单的线性规划问题.11.在三棱锥P ABC -中,侧面PAB 、侧面PAC 、侧PBC 两两互相垂直,且::1:2:3PA PB PC =,设三棱锥P ABC -的体积为1V ,三棱锥P ABC -的外接球的体积为2V ,则21V V =( ) A.3 B .113π C.3D .83π【答案】A 【解析】考点:1、三棱锥的外接球;2、三棱锥与球的体积.12.函数()f x 是定义在R 上的偶函数,且满足()()2f x f x +=,当 [)0,1x ∈时,()2f x x =,若在区间[]2,2-上,方程()0ax a f x +-=恰有三个不相等的实数根,则实数a 的取值范围是( )A .[)0,1B .[]0,2C .[)1,+∞D .[)2,+∞ 【答案】A 【解析】试题分析:由()()2f x f x +=知函数()f x 是周期为2的偶函数,由此可作出函数()f x 在区间[]2,2-上的图象,如图所示.令()g x ax a =+,则()0a x a f x +-=有三个不相等的实数根,即()g x 与()f x 在区间[]2,2-有三个不同的交点.当0a <时,由图象知两函数不可能有三个交点,所以0a ≥.因为当1a =时,()1g x x =+与()f x 有两个交点,当1a >时,()g x与()f x 有一个交点,所以01a ≤<,故选A .考点:1、方程的根;2、函数的图象.【方法点睛】方程解的个数问题解法:研究程)(x g 0=的实根常将参数移到一边转化为值域问题.当研究程)(x g 0=的实根个数问题,即方程)(x g 0=的实数根个数问题时,也常要进行参变分离,得到)(x f a =的形式,然后借助数形结合(几何法)思想求解;也可将方程化为形如)()(x h x f =,常常是一边的函数图像是确定的,另一边的图像是动的,找到符合题意的临界值,然后总结答案即可.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()x f x e ax =-在(),0-∞上是减函数,则实数a 的取值范围是__________. 【答案】[)1+∞, 【解析】考点:利用导数研究函数的单调性.【方法点睛】求函数的单调区间,常常通过求导,转化为解方程或不等式求解,其判定方法为:设函数()y f x =在某个区间内可导,如果()0f x '>,则()y f x =在该区间内单调递增;如果()0f x '<,则()y f x =在该区间内单调递减.14.已知数列{}n a 是等差数列,且1231,233a a a =+=,则44a =___________. 【答案】1 【解析】试题分析:设等差数列的公差为d ,则有2(1)3(12)3d d +++=,解得14d =-,所以4144(3)1a a d =+=.考点:等差数列的通项公式.15.在ABC ∆中,cos 2cos ,cos AB B AC C A == ,则B =____________. 【答案】45︒ 【解析】考点:1、正弦定理;2、同角三角函数间的基本关系;3、两角和的正切公式.16.如图所示,点P 在正六边形ABCDEF 上按A B C D E F A →→→→→→的路径运动,其中4AB =,则AP AB的取值区间为____________.【答案】[]8,24- 【解析】试题分析:设BAP α∠=,则||||cos 4||cos AP AB AP AB AP αα⋅== ,而||cos AP α为线段AP 在AB 边上的射影.当点P 在线段AB 上运动时,||cos AP α的取值范围为[0,4];在线段BC 上运动时,||cos AP α 的取值范围为[4,6];在线段CD 上运动时,||cos AP α的取值范围为[4,6];在线段DE 上运动时,||cos AP α的取值范围为[0,4];在线段EF 上运动时,||cos AP α 的取值范围为[2,0]-;在线段FA 上运动时,||cos AP α的取值范围为[2,0]-,所以AP AB ⋅的取值区间为[]8,24-.考点:平面向量的数量积.【一题多解】建立如图所示直角坐标系,则(0,0),(4,0),(A B C D E F -,当点P 在线段AB 上运动时,2016AP AB AB ≤⋅≤= ;在线段BC 上运动时,216AB AP AB =≤⋅ ≤24AC AB ⋅=;在线段CD 上运动时,1624AD AB AP AB AC AB =⋅≤⋅≤⋅=;在线段DE 上运动时,016AB AE AP AB AD AB =⋅≤⋅≤⋅=;在线段EF 上运动时,80AF AB AP AB AE AB -=⋅≤⋅≤⋅=;在线段FA 上运动时,80AF AB AP AB -=⋅≤⋅≤ .综上所述,AP AB ⋅的取值区间为[]8,24-.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,点)n S 在曲线222y x =-上.(1)求证:数列{}n a 是等比数列;(2)设数列{}n b 满足1n n n b a a +=-,求数列{}n b 的前n 项和n T . 【答案】(1)见解析;(2)122n +-.【解析】考点:1、等比数列的定义;2、等比数列的通项公式;3、数列求和.18.(本小题满分12分)某教育网站需要老师为其命制试题,组建题库,已知吴老师、王老师、张老师三位老师命制的试题数分别为350道,700道,1050道,现用分层抽样的方法从中随机抽取6道试题进行科学性、严密性、正确性检验. (1)求从吴老师、王老师、张老师三位老师中抽取的试题的题数;(2)从已抽取的6道试题中再任意取出2道,求其中至少有一道是王老师命制的概率.【答案】(1)从吴老师、王老师、张老师三位老师中抽取的试题的题数分别为1,2,3;(2)35P =.【解析】考点:1、分层抽样;2、古典概型.19.(本小题满分12分)如图,在正三棱柱111ABC A B C -(侧棱垂直于底面,且底面是正三角形)中,16,AC CC M ==是棱1CC 上一点.(1)若,M N 分别是1,CC AB 的中点,求证://CN 平面1AB M ;(2)求证:不论M 在何位置,四棱锥11A AMB -的体积都为定值,并求出该定值.【答案】(1)见解析;(2) 【解析】试题分析:(1)连结1A B 交1AB 于点P ,连结,MP PN ,易知P 是1A B 的中点,然后利用中位线定理可使问题得证;(2)作111B P AC ⊥交11AC 于点P ,易知1B P ⊥平面11ACC A ,由此可求得1B P ,从而求得四棱锥11A AMB -的体积.试题解析:(1)连结1A B 交1AB 于点P ,连结,MP PN . 易知P 是1A B 的中点,因为,M N 分别是1,CC AB 的中点, 所以//NP CM ,且NP CM =, 所以四边形MCNP 是平行四边形, 所以//MP CN .因为CN ⊄平面1,AB M MP ⊂平面1AB M ,所以//CN 平面1AB M ........................ 6分考点:1、线面平行的判定定理;2、四棱锥的体积.20.(本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12,F F ,离心率为3O 为坐标原点,若椭圆C 与曲线y x =的交点分别为,A B (A 下B 上),且,A B 两点满足2OB AB =.(1)求椭圆C 的标准方程;(2)过椭圆C 上异于其顶点的任一点P ,作224:3O x y +=的两条切线,切点分别为,N M ,且直线MN 在x 轴、y 轴上的截距分别为,m n ,证明:22113m n+为定值. 【答案】(1)221443x y +=;(2)见解析. 【解析】(2)如图,设点()11,P x y ,由,M N 是O 的切点知,,OM MP ON NP ⊥⊥, 所以,,,O M P N 四点在同一圆上,且圆的直径为OP ,则圆心为11,22x y ⎛⎫ ⎪⎝⎭,其方程为22221111224x y x y x y +⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,即22110x y x x y y +--=,④即点,M N 满足话中④,又点,M N 都在O 上, 所以,M N 坐标也满足方程224:3O x y += ,⑤ ⑤-④得直线MN 的方程为1143x x y y +=,考点:1、椭圆的几何性质;2、直线与椭圆的位置关系;3、直线与圆的位置关系. 21.(本小题满分12分)已知函数()2ln 1f x x x =-.(1)求函数()f x 的最小值及曲线()f x 在点()()1,1f 处的切线方程; (2)若不等式()232f x x ax ≤+恒成立,求实数a 的取值范围.【答案】(1)最小值为121f e e⎛⎫=-- ⎪⎝⎭;切线方程为230x y --=;(2)[)2,-+∞. 【解析】试题分析:(1)首先求得函数的定义与导函数,然后根据导函数与0的关系得到函数()f x 的单调性,由此求得函数()f x 的最小值,再根据导数的几何意义求得切线方程的斜率,从而求得切线的方程;(2)首先将问题转化为31ln 22a x x x≥--在()0,+∞上恒成立,然后设()31ln 22h x x x x=--,从而通过求导研究函数()h x 的单调性,并求得其最大值,进而求得a 的取值范围.故所求切线方程为()()121y f x -=-,即()()121y x --=-,化简得230x y --=.................................................6分(2)不等式()232f x x ax ≤+恒成立等价于22ln 132x x x ax -≤+在()0,+∞上恒成立,可得31ln 22a x x x≥--在()0,+∞上恒成立, 设()31ln 22h x x x x =--,则()()()22131131222x x h x x x x -+'=-+=-,令()0h x '=,得1x =,或12x =-(舍去) 当01x <<时,()0h x '>;当1x >时,()0h x '<, 当x 变化时()(),h x h x '变化情况如下表:所以当1x =时,h x 取得最大值,()max 2h x =-,所以2a ≥-,所以实数a 的取值范围是[)2,-+∞................................12分考点:1、导数的几何意义;2、利用导数研究函数的单调性及最值;3、不等式恒成立问题. 【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.请从下面所给的22 , 23 ,24三题中任选一题做答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-1:几何证明选讲如图,AD 是圆O 的直径,AE BC ⊥,且3,AC 2,AD 6AB ===.(1)求证:AB AC AD AE = ; (2)求BE 的值.【答案】(1)见解析;(2) 【解析】考点:1、圆周角定理;2、相似三角形;3、相交弦定理.【思路点睛】解决与圆有关的成比例线段问题的两种思路:(1)直接应用相交弦、切割线定理及其推论;(2)当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为“相似三角形→比例式→等积式”.在证明中有时还要借助中间比来代换,解题时应灵活把握.23.(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,已知圆C 的方程是4ρ=,直线l 的方程是sin 4πρθ⎛⎫+= ⎪⎝⎭(1)以极点O 为原点,极轴为x 轴正半轴,建立平面直角坐标系,将直线l 与圆C 的极坐标方程化为直角坐标方程;(2)求直线l 与圆C 相交所得的弦长.【答案】(1)20x y +-=,2216x y +=;(2). 【解析】考点:1、极坐标方程与直角坐标方程的互化;2、点到直线的距离;3、弦长公式. 24.(本小题满分10分)选修4-5:不等式选讲 设函数()()22f x x a x a =-+-<. (1)当0a =时,求不等式()4f x >的解集;(2)若不等式()f x x >恒成立,求实数a 的取值范围.【答案】(1)()(),13,-∞-+∞ ;(2)(),0-∞. 【解析】试题分析:(1)首先求得当0a =时函数()f x 的解析式,然后利用零点分段法求解;(2)首先将函数()f x 的解析式写成分段函数形式,然后作出函数()f x 的图象,从而根据图象求得a 的取值范围.试题解析:(1)当0a =时,()2f x x x =+-,原不等式等价于240x x x -+->⎧⎨<⎩,或2402x x x +->⎧⎨≤≤⎩或242x x x +->⎧⎨>⎩,解得原不等式的解集为()(),13,-∞-+∞ ............................5分考点:1、绝对值不等式的解法;2、函数的图象;3、不等式恒成立问题.【方法点睛】含绝对值不等式的解法有两个基本方法,一是用分类讨论思想,运用零点分区间讨论;二是运用数形结合思想,利用绝对值的几何意义求解.将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用.。

辽宁省庄河市高级中学2017-2018学年高二上学期期中考试理数试题含解析

辽宁省庄河市高级中学2017-2018学年高二上学期期中考试理数试题含解析

2017-2018学年辽宁省庄河市高级中学高二上学期期中考试理数一、选择题:共12题1. 已有,则A. 1B. 2C. 4D. 3【答案】D【解析】===故选:D2. 设是等比数列的前项和,,则公比A. B. C. 1或 D. 1或【答案】C【解析】由已知,所以,解得或,故选C.3. 已知=,则的值等于A. B. C. D.【答案】A........................故选:A4. 已知向量,则向量与的夹角为A. B. C. D.【答案】C【解析】∵向量∴,∴=,∴向量与的夹角为故选:C5. 抛物线的焦点到双曲线的渐近线的距离为A. 2B.C. 1D.【答案】D【解析】∵抛物线的焦点为双曲线的一条渐近线为.∴抛物线的焦点到双曲线的渐近线的距离为故选:D6. 将函数的图象向右平移)个单位长度,所得函数图象关于轴对称,则的最小值为A. B. C. D.【答案】A【解析】将函数的图象向右平移)个单位长度得到函数,∵所得函数图象关于轴对称,即=,∴,∵∴当时,的最小值为故选:A7. 已知直线和直线,抛物线上一动点到直线和直线的距离之和的最小值是A. 2B. 3C.D.【答案】B【解析】∵抛物线的焦点为准线方程为,∴抛物线上一动点到直线的距离等于,∴抛物线上一动点到直线和直线的距离之和的最小值是焦点到直线的距离,即故选:B8. 设等差数列的前项和为,且满足,则中最大的项为A. B. C. D.【答案】D【解析】∵∴∴∴数列为递减数列,∴为正,…为负,为正,为负,∴为正,为负,∵,∴最大.故选:D9. 设满足约束条件,向量==,且,且的最小值为A. -6B. 6C.D.【答案】A【解析】∵==,且,∴作出约束条件表示的平面区域,如图所示:作出直线,平移直线,由图可知当直线经过点时,取最大值,由,解得,此时.故选:A点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.10. 已知是内的一点,且==,则的面积分别为;则的最小值为A. 20B. 19C. 18D. 16【答案】C【解析】∵==,∴∴==∴,∴=,当且仅当时取等号.故选:A点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误11. 给出下列命题:①已知,“且”是“”的充分条件;②已知平面向量,是“”的必要不充分条件;③已知,“”是“”的充分不必要条件;④命题“,使且”的否定为“,都有且”.其中正确命题的个数是A. 0B. 1C. 2D. 3【答案】C【解析】①已知,“且”能够推出“”,“”不能推出“”,本选项正确;②已知平面向量, “”不能推出“”,本选项不正确;③已知,“”是“”的充分不必要条件,正确;④命题“,使且”的否定为“,都有或”本选项不正确.正确的个数为2.故选:C12. 过抛物线=)的焦点的直线交抛物线于点,交其准线于点,若=,且,则此抛物线的方程为A. B. C. D.【答案】B【解析】如图,过点分别作准线的垂线,垂足分别为,设由抛物线的定义得,故,在Rt△中,∵,∴∴∴∵.∴,∴.∴此抛物线的方程为故选:B点睛:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.二、填空题:共4题13. 设向量,且,则_________.【答案】.【解析】∵向量,且∴,∴∴,∴故答案为:14. 数列的前项和为===),则=_________.【答案】2600.【解析】当为奇数时,,即=,当为偶数时,=即当为偶数时,数列是首项为2,公差为2的等差数列,∴==故答案为:260015. 已知,命题对,不等式恒成立;命题,使得成立,当时,若假,为真,求的取值范围____【答案】【解析】命题对,不等式恒成立,∴解得当时,,使得成立,即∵假,为真,∴必一真一假,∴或,∴或故答案为:16. 过双曲线=1(a>0,b>0)的左焦点F作圆x2+y2=的切线,切点为E,延长FE交双曲线右支于点P,若E为PF的中点,则双曲线的离心率为_______【答案】【解析】记右焦点为,由题意,是中点,是中点,因此且,又E是切点,即,所以,由双曲线的定义知,所以,解得.故答案为:点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.三、解答题:共6题17. 已知函数.(1)求函数的最小正周期;(2)求函数在区间上的取值范围.【答案】(1) T==;(2) 取值范围为.【解析】试题分析:(1)利用和角公式化简之后即可求出周期,(2)根据的范围,求出4+的范围,然后结合三角函数的图象解答.试题解析:(1)由题意知,=cos 4-cos=cos 4+sin 4=2sin,∴函数的最小正周期T==(2)∵-≤≤,∴-≤4+≤,∴≤sin≤1,≤2sin≤2,∴函数的取值范围为.点睛:三角函数式的化简要遵循“三看”原则:一看角,这是重要一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;二看函数名称,看函数名称之间的差异,从而确定使用的公式,常见的有切化弦;三看结构特征,分析结构特征,可以帮助我们找到变形的方向,如遇到分式要通分等.18. 在,角的对边分别为,满足=.(1)求角的大小;(2)若,求的面积.【答案】(1);(2).【解析】试题分析:(1)由=及正弦定理结合和角公式即可解答;(2)利用余弦定理,求出,再利用面积公式解答.试题解析:(1)由=及正弦定理,得=,=,==,。

辽宁省庄河市高级中学2017-2018学年高二上学期数学理

辽宁省庄河市高级中学2017-2018学年高二上学期数学理

高二数学周测1选用模版:6选4填2答(A4)时间:40满分:74命卷人:刘晓辉审核人:考试日期:2017-09-10一、选择题(共6小题)1 (id :130542). 已知和满足约束条件,则的取值范围为( )2 (id :36135). 点在不等式所表示的平面区域内,则的取值范围为( )3 (id :158759). 在平面直角坐标系中,若不等式组(a 为常数)所表示的平面区域的面积等于2,则a 的值为( ) -5 1 2 34 (id :34586). 在平面直角坐标系中,已知平面区域且,则平面区域的面积为( )5 (id :72608).当点M(x ,y)在如图所示的三角形ABC 区域内(含边界)运动时,目标函数取得最大值的一个最优解为(1,2),则实数k 的取值范围是( )(-∞,-1]∪[1,+∞) [-1,1] (-∞,-1)∪(1,+∞)(-1,1)6 (id:35669).已知变量,满足,若恒成立,则实数的取值范围为( )二、填空题(共4小题)7 (id:35733).已知满足且目标函数的最小值是,则的最大值为__________.8 (id:34468).设满足约束条件若目标函数的最大值为,则的最小值为__________.9 (id:34063).不等式组所表示的平面区域的面积等于__________.10 (id:35312).已知实数满足,则的最小值为__________.三、简答题(共2小题)11 (id:36139).物流行业最近几年得到迅猛发展,某货运公司最近接了一批货物,决定采用厢式货车托运甲、乙两种货物,已知某辆箱式货车所装托运货物的总体积不能超过,总质量不能超过.甲、乙两种货物每袋的体积、质量和可获得的利润,列表如下:单位:) 单位:)求该辆箱式货车各托运这两种货物多少袋时,可获得最大利润?12 (id:167295).在直角坐标系中,已知点,点在三边围成的区域(含边界)上.(1)若,求;(2)设,用表示,并求的最大值.。

高二数学寒假作业一:解三角形 含答案

高二数学寒假作业一:解三角形 含答案

数学寒假作业(一)测试范围:解三角形使用日期:腊月十九 测试时间:120分钟一、选择题(本大题共12个小题,每个小题5分,共60分,每小题给出的四个备选答案中,有且仅有一个是符合题目要求的)1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 22.在△ABC 中,若AB =3-1,BC =3+1,AC =6,则B 等于( ) A .30° B .45° C .60° D .120°3.在△ABC 中,A =45°,AC =4,AB =2,那么cos B =( ) A.31010 B .-31010 C.55D .-554.等腰△ABC 底角B 的正弦与余弦的和为62,则它的顶角是( ) A .30°或150° B .15°或75° C .30° D .15°5.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为( ) A .α>β B .α=β C .α+β=90°D .α+β=180°6.(2012·天津理,6)在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知8b =5c ,C =2B ,则cos C =( )A.725 B .-725 C .±725D.24257.△ABC 的三边分别为2m +3,m 2+2m ,m 2+3m +3(m >0),则最大内角度数为( ) A .150° B .120° C .90°D .135°8.在△ABC 中,若sin A >sin B ,则A 与B 的大小关系为( ) A .A >B B .A <B C .A ≥B D .A ,B 的大小关系不能确定9.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,若a sin A sin B +b cos 2A =2a ,则ba =( )A .2 3B .2 2 C. 3D. 210.在△ABC 中,a 2+b 2-ab =c 2=23S △ABC ,则△ABC 一定是( ) A .等腰三角形 B .直角三角形 C .等边三角形 D .等腰直角三角形11.在△ABC 中,若|AB →|=2,|AC →|=5,AB →·AC →=-5,则S △ABC =( )A.532B. 3C.52 D .512.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上) 13.三角形一边长为14,它对的角为60°,另两边之比为85,则此三角形面积为________.14.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.15.如图,已知梯形ABCD 中,CD =2,AC =19,∠BAD =60°,则梯形的高为__________.16.在△ABC 中,cos 2A 2=b +c2c ,则△ABC 的形状为________.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)在△ABC 中,a ,b ,c 分别是角A 、B 、C 的对边,若tan A =3,cos C =55.(1)求角B 的大小;(2)若c =4,求△ABC 面积.18.(本题满分12分)在△ABC 中,已知a =6,A =60°,b -c =3-1,求b 、c 和B 、C .19.(本题满分12分)如图,某海轮以30n mile/h 的速度航行,在点A 测得海面上油井P 在南偏东60°,向北航行40min 后到达点B ,测得油井P 在南偏东30°,海轮改为北偏东60°的航向再航行80min 到达C 点,求P 、C 间的距离.20.(本题满分12分)在△ABC 中,a 、b 、c 分别为内角A 、B 、C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.21.(本题满分12分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知cos2C =-14.(1)求sin C 的值;(2)当a =2,2sin A =sin C ,求b 及c 的长.22.(本题满分14分)在△ABC中,角A、B、C的对边分别为a、b、c,已知3cos(B-C)-1=6cos B cos C.(1)求cos A的值;(2)若a=3,△ABC的面积为2,求b、c.家长签字:日期:数学寒假作业(一)答案1、[答案] D2、[答案] C[解析] cos B =AB 2+BC 2-AC 22AB ·BC =12,∴B =60°.3、[答案] D4、[答案] A5、[答案] B[解析] 仰角和俯角都是水平线与视线的夹角,故α=β.6、[答案] A7、[答案] B8、解析:由正弦定理a sin A =bsin B ,∴a >b .∴A >B .答案:A 9、[答案] D[解析] ∵a sin A sin B +b cos 2A =2a ,∴由正弦定理,得sin 2A sin B +sin B cos 2A =2sin A ,∴sin B (sin 2A +cos 2A )=2sin A ,∴sinB =2sin A ,∴sin B sin A = 2.由正弦定理,得ba =sin Bsin A = 2.10、[答案] B[解析] 由a 2+b 2-ab =c 2得:cos C =a 2+b 2-c 22ab =12,∴∠C =60°,又23S △ABC =a 2+b 2-ab ,∴23×12ab ·sin60°=a 2+b 2-ab ,得2a 2+2b 2-5ab =0,即a =2b 或b =2a . 当a =2b 时,代入a 2+b 2-ab =c 2得a 2=b 2+c 2;当b =2a 时,代入a 2+b 2-ab =c 2得b 2=a 2+c 2.故△ABC 为直角三角形.11、[答案] A[解析] AB →·AC →=|AB →|·|AC →|cos A =10cos A =-5,∴cos A =-12,∴sin A =32,∴S △ABC =12|AB →|·|AC →|·sin A =532.12、[答案] D[解析] 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形,由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin π2-A 1sin B 2=cos B 1=sin π2-B 1sin C 2=cos C 1=sinπ2-C 1,得⎩⎪⎨⎪⎧A 2=π2-A 1B 2=π2-B1C 2=π2-C1,那么,A 2+B 2+C 2=π2,这与三角形内角和为180°相矛盾,故假设不成立, 即△A 2B 2C 2是钝角三角形,故选D.13、[答案] 403[解析] 设另两边长为8x 和5x ,则cos60°=64x 2+25x 2-14280x 2得x =2,另两边长为16和10,此三角形面积为S =12×16×10·sin60°=40 3. 14、[答案]102[解析] ∵tan A =13,∴sin A =1010,由正弦定理,得AB =BC ·sin C sin A =102. 15、[答案] 332[解析] 解法一:∵∠BAD =60°,∴∠ADC =180°-∠BAD =120°.∵CD =2,AC =19,∴19sin120°=2sin ∠CAD ,∴sin ∠CAD =5719. ∴sin ∠ACD =sin(60°-∠CAD )=35738.∴AD =AC ·sin ∠ACD sin D=19×35738sin120°=3.∴h =AD ·sin60°=332. 解法二:在△ACD 中,AC 2=AD 2+CD 2-2AD ·CD cos120°,∴AD 2+2AD -15=0.∴AD =3 (AD =-5舍去).∴h =AD sin60°=332.16、[答案] 直角三角形[解析] ∵cos 2A 2=1+cos A 2=b +c 2c =12+b2c ,∴cos A =b c .由余弦定理,得cos A =b 2+c 2-a 22bc ,∴b 2+c 2-a 22bc =bc ,∴a 2+b 2=c 2.∴△ABC 为直角三角形.17、[解析] (1)∵cos C =55,∴sin C =255,∴tan C =2.∵tan B =-tan(A +C )=-tan A +tan C 1-tan A tan C =-3+21-3×2=1,又0<B <π,∴B =π4.(2)由正弦定理,得b sin B =c sin C ,∴b =c ×sin B sin C =4×22255=10.∵B =π4,∴A =3π4-C .∴sin A =sin(3π4-C )=sin 3π4cos C -cos 3π4sin C =22×55-(-22)×255=31010.∴S △ABC =12bc sin A =12×10×4×31010=6.18、[解析] 由余弦定理,得6=b 2+c 2-2bc cos60°,∴b 2+c 2-bc =6 ①由b -c =3-1平方得:b 2+c 2-2bc =4-2 3 ② ①、②两式相减得bc =2+2 3.由⎩⎨⎧b -c =3-1bc =2+23,解得⎩⎨⎧b =3+1c =2,由正弦定理,得sin B =b sin Aa =3+1sin60°6=6+24.∵6<3+1,∴B =75°或105°.∵a 2+c 2>b 2,∴B 为锐角, ∴B =75°,从而可知C =45°.[点评] 求角B 时,若先求得sin C =c sin A a =22,∵a >c ,∴C =45°,从而得B =75°. 若用余弦定理cos B =a 2+c 2-b 22ac =6-24,∴B =75°. 19、[解析] AB =30×4060=20,BC =30×8060=40.在△ABP 中,∠A =120°,∠ABP =30°,∠APB =30°, ∴BP =ABsin ∠APB ·sin ∠BAP =20sin30°sin120°=20 3. 在Rt △BCP 中,PC =BC 2+BP 2=402+2032=207.∴P 、C 间的距离为207nmile.20、[解析] (1)由已知,根据正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,得a 2=b 2+c 2-2bc cos A ,故cos A =-12,A =120°.(2)由a 2=b 2+c 2+bc ,得sin 2A =sin 2B +sin 2C +sin B sin C .又sin B +sin C =1,故sin B =sin C =12.因为0°<B <90°,0°<C <90°,故B =C . 所以△ABC 是等腰的钝角三角形.21、[解析] (1)∵cos2C =1-2sin 2C =-14,0<C <π,∴sin C =104.(2)当a =2,2sin A =sin C 时,由正弦定理a sin A =csin C ,得c =4. 由cos2C =2cos 2C -1=-14及0<C <π,得cos C =±64.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得b 2±6b -12=0(b >0),解得b =6或26,∴⎩⎨⎧b =6c =4,或⎩⎨⎧b =26c =4.22、[解析] (1)由3cos(B -C )-1=6cos B cos C ,得3(cos B cos C -sin B sin C )=-1,即cos(B +C )=-13,∴cos A =-cos(B +C )=13.(2)∵0<A <π,cos A =13,∴sin A =223.由S △ABC =22,得12bc sin A =22, ∴bc =6.由余弦定理,得a 2=b 2+c 2-2bc cos A ,∴9=(b +c )2-2bc (1+cos A )=(b +c )2-16, ∴b +c =5. 由⎩⎪⎨⎪⎧ b +c =5bc =6,得⎩⎪⎨⎪⎧ b =2c =3或⎩⎪⎨⎪⎧b =3c =2.。

辽宁省庄河市高级中学2017-2018学年高二上学期数学理

辽宁省庄河市高级中学2017-2018学年高二上学期数学理

高二理科周测(18)
选用模版:6答(A3)
时间:70满分:70命卷人:夏名山审核人:考试日期:2018-01-14
一、简答题(共6小题)
1 (id:32786).
已知向量.
(1)求证:;
(2)若存在不为0的实数k和t,使满足,
试求此时的最小值.
2 (id:34305).
在中,角所对的边分别是,且.
(1)求的值;
(2)若,的面积,求的值.
3 (id:153363).
的内角所对的边分别为.
(1)若成等差数列,证明:;
(2)若成等比数列,且,求的值.
4 (id:65126).
在平面直角坐标系中,已知圆心在第二象限,半径为的圆与直线相切于坐
标原点,椭圆与圆的一个交点到椭圆两焦点的距离之和为.
(1)求圆的方程;
(2)试探究圆上是否存在异于原点的点,使到椭圆右焦点的距离等于线段的长.若存在,请求出点的坐标;若不存在,请说明理由.
5 (id:28094).
已知以点C为圆心的圆经过点A(-1,0)和B(3,4),且圆心在直线x+3y-15=0上.
(1)求圆C的方程.
(2)设点P在圆C上,求△PAB的面积的最大值.
6 (id:28387).
在四棱锥P—ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点.M 是PD的中点,AB=2,∠BAD=.
(1)求证:OM∥平面PAB;
(2)求证:平面PBD⊥平面PAC;
(3)当四棱锥P—ABCD的体积等于时,求PB的长.。

辽宁省庄河市18学年高二数学寒假作业(综合)(1)

辽宁省庄河市18学年高二数学寒假作业(综合)(1)

高二数学寒假作业(综合)(1)选用模版:4选12填6答(A3)时间:120满分:150命卷人:刘晓辉审核人:考试日期:2018-02-01一、选择题(共4小题)1 (id:27442).一个空间几何体的三视图如图所示,则该几何体的表面积为( )48802 (id:44501).已知四面体中,,,,平面,则四面体的内切球半径与外接球半径的比 ( )∙∙∙∙∙∙3 (id:30162).函数的部分图象是( ) ∙∙∙∙∙∙∙4 (id:31852).若三个角、、满足,则有( ) ∙最小值为∙∙最小值为∙∙最小值为∙∙最小值为∙二、填空题(共12小题)5 (id:29736).若,则__________.6 (id:30573).函数的最小值是__________.7 (id:29065).在中,,边上的高为,则的最小值为__________.8 (id:30937).点是三角形内一点,若,则__________.9 (id:32050).若将向量,绕原点按逆时针方向旋转,得到向量,则向量的坐标为__________.10 (id:102376).已知是单位向量,.若向量满足,则的最大值是__________.11 (id:30980).已知是偶函数,则__________.12 (id:32956).已知,则的值是__________.13 (id:43300).已知方程(为大于1的常数)的两根为,且,则__________.14 (id:104147).已知,,化简__________.15 (id:53023).把数列中各项划分为:.照此下去,第个括号里各数的和为__________.16 (id:36088).等差数列的公差不为零,,成等比数列,数列满足条件,则__________.三、简答题(共6小题)17 (id:52095).已知数列是等差数列,,,数列的前项和为,且.(1)求数列的通项公式;(2)记,若对任意的恒成立,求实数的取值范围.18 (id:168731).已知等差数列满足:,且,,成等比数列.(1)求数列的通项公式.(2)记为数列的前n项和,是否存在正整数n,使得?若存在,求n的最小值;若不存在,说明理由.19 (id:153772).在中,内角的对边,且,已知,,,求:(1)和的值;(2)的值.20 (id:35351).在中,分别为角的对边,且.(1)若,求的值;(2),的面积是,求的值.21 (id:27865).如图,是等腰直角三角形,是直角,是它的一条中位线,.把沿折起,使得平面平面,连接,,是的中点,如图所示.(1)求证:平面;(2)求证:平面;(3)求四棱锥的体积.22 (id:60756).已知抛物线:,点在轴的正半轴上,过的直线与相交于,两点,为坐标原点.(1)若,且直线的斜率为,求以为直径的圆的方程;(2)是否存在定点,不论直线绕点如何转动,使得恒为定值?。

2017-2018学年辽宁省庄河高级中学高二寒假作业:不等式、线性规划

2017-2018学年辽宁省庄河高级中学高二寒假作业:不等式、线性规划

高二寒假作业:不等式、线性规划选用模版:12选4填6答(A3)时间:120满分:152命卷人:程潇锦审核人:考试日期:2018-1-11一、选择题(共12小题)1 (id:173740).不等式的解集为()或或2 (id:138399).设,满足约束条件若目标函数的最大值为,则的最小值为()∙∙∙∙∙∙∙∙3 (id:53290).数列是各项均为正数的等比数列,是等差数列,且,则有()∙∙∙∙∙∙∙与的大小不确定∙4 (id:34030).满足不等式的点(其中,)共有( ) ∙个∙∙个∙∙个∙∙个∙5 (id:72562).设实数满足,则的取值范围是( ) ∙∙∙∙∙∙∙∙6 (id:88128).已知集合,则满足条件的集合的个数为()∙1∙∙2∙∙4∙∙8∙7 (id:34815).已知满足则的最小值为( )∙∙∙∙∙∙∙∙8 (id:34057).已知函数,则不等式的解集是( )∙∙∙∙∙∙∙或∙9 (id:153412).如果函数在区间上单调递减,那么的最大值为()∙∙∙∙∙∙∙∙10 (id:72608).当点M(x,y)在如图所示的三角形ABC区域内(含边界)运动时,目标函数取得最大值的一个最优解为(1,2),则实数k的取值范围是( )∙(-∞,-1]∪[1,+∞)∙∙∙[-1,1]∙∙∙(-∞,-1)∪(1,+∞)∙∙∙(-1,1)∙∙11 (id:76569).已知函数,,若不等式的解集为,若对任意的,存在,使,则实数m 的取值范围是()∙∙∙∙∙∙∙∙12 (id:158524).对于实数和,定义运算,若对任意,不等式都成立,则实数的取值范围是()∙∙∙∙∙∙∙∙二、填空题(共4小题)13 (id:155408).[2011年高考天津卷]已知,则的最小值为__________.14 (id:34285).设是不等式组表示的平面区域,则中的点到直线距离的最大值是__________.15 (id:35733).已知满足且目标函数的最小值是,则的最大值为__________.16 (id:76624).不等式对于任意实数恒成立,则实数的范围是__________.三、简答题(共6小题)17 (id:158570).已知函数(是常数),且,.(1)求的值;(2)当时,判断的单调性并用定义证明;(3)若不等式成立,求实数的取值范围.18 (id:140531).已知z=2x-y,式中变量x,y满足约束条件,求z的最大值.19 (id:35492).已知,当时,;当时,.(1)求的解析式;(2)为何值时,不等式的解集为?20 (id:36139).物流行业最近几年得到迅猛发展,某货运公司最近接了一批货物,决定采用厢式货车托运甲、乙两种货物,已知某辆箱式货车所装托运货物的总体积不能超过,总质量不能超过.甲、乙两种货物每袋的体积、质量和可获得的利润,列表如下:单位:单位:)求该辆箱式货车各托运这两种货物多少袋时,可获得最大利润?21 (id:35709).设.(1)求的最大值;(2)证明:对任意实数,恒有.22 (id:33839).在中,是直角,两直角边和斜边满足条件,试确定实数的取值范围.。

2017-2018学年辽宁省庄河市高级中学高二上学期期中考试理数(详细答案版)

2017-2018学年辽宁省庄河市高级中学高二上学期期中考试理数(详细答案版)

2017-2018学年辽宁省庄河市高级中学高二上学期期中考试理数一、选择题:共12题1.已有,则A.1B.2C.4D.3【答案】D【解析】本题主要考查同角三角函数的基本关系式,倍角公式.===2.设是等比数列的前项和,,则公比A. B. C.1或 D.1或【答案】C【解析】本题主要考查等比数列.当时,符合题意,当时,由题意得,解得∴公比3.已知=,则的值等于A. B. C. D.【答案】A【解析】本题主要考查诱导公式.====4.已知向量,则向量与的夹角为A. B. C. D.【答案】C【解析】本题主要考查向量的数量积,向量的夹角公式.∵向量∴ ,∴=,∴向量与的夹角为5.抛物线的焦点到双曲线的渐近线的距离为A.2B.C.1D.【答案】D【解析】本题主要考查双曲线和抛物线的几何性质.∵抛物线的焦点为双曲线的一条渐近线为.∴抛物线的焦点到双曲线的渐近线的距离为6.将函数的图象向右平移)个单位长度,所得函数图象关于轴对称,则的最小值为A. B. C. D.【答案】A【解析】本题主要考查三角函数的图象的变换.将函数的图象向右平移)个单位长度得到函数∵所得函数图象关于轴对称,即= ,∴ ,∵∴当时,的最小值为7.已知直线和直线,抛物线上一动点到直线和直线的距离之和的最小值是A.2B.3C.D.【答案】B【解析】本题主要考查抛物线的几何性质,点到直线的距离.∵抛物线的焦点为准线方程为,∴抛物线上一动点到直线的距离等于,∴抛物线上一动点到直线和直线的距离之和的最小值是焦点到直线的距离,即8.设等差数列的前项和为,且满足,则中最大的项为A. B. C. D.【答案】D【解析】本题主要考查等差数列.∵∴∴∴数列为递减数列,∴为正,…为负,为正,为负,∴为正,为负,∵,∴最大.9.设满足约束条件,向量==,且,且的最小值为A.-6B.6C.D.【答案】A【解析】本题主要考查简单线性规划,向量平行的条件.∵==,且,∴作出约束条件表示的平面区域,如图所示:作出直线,平移直线,由图可知当直线经过点时,取最大值, 由 ,解得,此时.10.已知是内的一点,且==,则的面积分别为;则的最小值为A.20B.19C.18D.16 【答案】C【解析】本题主要考查平面向量的数量积,均值不等式.∵==,∴∴==∴,∴=,当且仅当时取等号.11.给出下列命题:①已知,“且”是“”的充分条件;②已知平面向量,是“”的必要不充分条件;③已知,“”是“”的充分不必要条件;④命题“,使且”的否定为“,都有且”.其中正确命题的个数是A.0B.1C.2D.3【答案】C【解析】本题主要是考查命题真假的判断,充分必要条件,命题的四种形式,全称命题和存在性命题.①已知,“且”能够推出“”,“”不能推出“”,本选项正确;②已知平面向量, “”不能推出“”,本选项不正确;③已知,“”是“”的充分不必要条件,正确;④命题“,使且”的否定为“,都有或”本选项不正确.正确的个数为2.12.过抛物线=)的焦点的直线交抛物线于点,交其准线于点,若=,且,则此抛物线的方程为A. B. C. D.【答案】B【解析】本题主要考查抛物线的定义,标准方程.如图,过点分别作准线的垂线,垂足分别为,设由抛物线的定义得,故,在Rt△中,∵,∴∴∴∵.∴,∴.∴此抛物线的方程为二、填空题:共4题13.设向量,且,则 .【答案】【解析】本题主要考查平面向量的数量积,平面向量的模.∵向量,且∴,∴∴,∴14.数列的前项和为===),则= . 【答案】【解析】本题主要是考查等差数列,数列求和.当为奇数时,,即=,当为偶数时,=即当为偶数时,数列是首项为2,公差为2的等差数列,∴==15.已知,命题对,不等式恒成立;命题,使得成立,当时,若假,为真,求的取值范围 .【答案】【解析】本题主要考查命题及其关系,不等式恒成立问题.命题对,不等式恒成立,∴解得当时,,使得成立,即∵假,为真,∴必一真一假,∴或 ,∴或16.过双曲线=1(a>0,b>0)的左焦点F作圆x2+y2=的切线,切点为E,延长FE交双曲线右支于点P,若E为PF的中点,则双曲线的离心率为________.【答案】【解析】本题考查双曲线的定义与几何性质.记右焦点为,由题意,是中点,是中点,因此且,又E是切点,即,所以,由双曲线的定义知,所以,解得.三、解答题:共6题17.已知函数.(1)求函数的最小正周期;(2)求函数在区间上的取值范围.【答案】(1)由题意知,=cos 4-cos=cos 4+sin 4=2sin,∴函数的最小正周期T==(2)∵-≤≤,∴-≤4+≤,∴≤sin≤1,≤2sin≤2,∴函数的取值范围为.【解析】本题主要考查三角函数的图象与性质,三角恒等变换.(1)利用和角公式化简之后即可求出周期,(2)根据的范围,求出4+的范围,然后结合三角函数的图象解答.18.在,角的对边分别为,满足=.(1)求角的大小;(2)若,求的面积.【答案】(1)由=及正弦定理,得=,=,==,∴.(2)由(1)得,由余弦定理得==,,所以的面积为===.【解析】本题主要考查正余弦定理,三角形面积公式.(1)由=及正弦定理结合和角公式即可解答;(2)利用余弦定理,求出,再利用面积公式解答.19.数列的前项和记为,已知).(1)证明:数列是等比数列;(2)求数列的前项和.【答案】(1)证明:因为==,又=,数列是等比数列,首项为,公比为的等比数列.(2)由(1)可知,=2+2·22+3·23+…( -1)· +n·,2=22+2·23+3·24+…+( -1)+·,所以-2=-=2+22+23+24+…+·=(1--2,所以=(-1)+2.【解析】本题主要考查等比数列,错位相减法求和.(1)根据,以及等比数列的定义解答;(2)由(1)可知,利用错位相减法求和即可.20.如图,已知椭圆)的右顶点和上顶点分别为=,离心率为.(1)求椭圆的标准方程;(2)过点作斜率为)的直线与椭圆交于另外一点,求面积的最大值,并求此时直线的方程.【答案】(1)由题意得(2),设与平行的椭圆的切线方程为,联立方程组得消去得, ①,解得..代入到①中得,代入到=得,当取的坐标是时的面积最大,===,此时,直线的方程是=.【解析】本题主要考查椭圆的标准方程,直线与椭圆的位置关系.(1)由题意得据此解答即可;(2) 由题意,设与平行的椭圆的切线方程为, 联立方程组, 消去根据,求出,然后求出点的坐标,即可解答.21.如图,在四棱锥中,在底面中,是的中点,是棱的中点,======.(1)求证:平面(2)求证:平面底面;(3)试求三棱锥的体积.【答案】(1) 如图,连接,交BQ于N,连接MN,∵=,是的中点,∴,且,∴四边形是平行四边形,∴N是BQ中点,∵是棱的中点,∴,∵PA平面平面.∴平面(2)证明:是的中点四边形为平行四边形,.又故又,由勾股定理可知,又,,又平面,平面平面.(3)是的中点,,平面平面,且平面平面,平面,又是棱上的中点,故====. 【解析】本题主要是考查线面平行,面面垂直,空间几何体的体积.(1)连接,交BQ于N,连接MN,证明即可,(2)根据面面垂直的判定定理,先证明,即可,(3)先证明平面,再根据==,即可解答.22.在平面直角坐标系中,过椭圆)右焦点的直线交椭圆于两点,为的中点,且的斜率为.(1)求椭圆的标准方程;(2)设过点的直线(不与坐标轴垂直)与椭圆交于两点,问:在轴上是否存在定点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.【答案】(1)设则,两式相减,,又,P为AB的中点,且OP的斜率为,所以,即,所以可以解得,即,即,又因为,所以,所以椭圆的方程为.(2)设直线的方程为,代入椭圆的方程,得,,设,则,根据题意,假设轴上存在定点,使得为定值,则有=====要使上式为定值,即与k无关,则应,即,故当点的坐标为时,为定值.【解析】本题主要考查椭圆的标准方程,直线与椭圆的位置关系.(1)设利用点差法,结合,P为AB的中点,且OP的斜率为,求出,即可解答,(2)设直线的方程为,代入椭圆的方程,设,写出根与系数的关系,根据题意,假设轴上存在定点,使得为定值,整理得==,要使上式为定值,即与k无关,求出的值即可.。

辽宁省庄河市高级中学三角函数与解三角形多选题试题含答案

辽宁省庄河市高级中学三角函数与解三角形多选题试题含答案

辽宁省庄河市高级中学三角函数与解三角形多选题试题含答案一、三角函数与解三角形多选题1.(多选题)已知22tan 2tan 10x y --=,则下列式子成立的是( )A .22sin 2sin 1y x =+B .22sin 2sin 1y x =-- C .22sin 2sin 1y x =-D .22sin 12cos y x =-【答案】CD 【分析】对原式进行切化弦,整理可得:222222sin cos 2sin cos cos cos x y y x y x ⋅-⋅=⋅,结合因式分解代数式变形可得选项. 【详解】∵22tan 2tan 10x y --=,2222sin sin 210cos cos x yx y-⋅-=, 整理得222222sin cos 2sin cos cos cos x y y x y x ⋅-⋅=⋅,∴()()()22222221cos 1sin sin cos cos sin cos x x y x y y x ---⋅=+, 即22222221cos sin sin cos sin cos cos x y y x y x x --+⋅-⋅=, 即222sin 12cos 2sin 1y x x =-=-,∴C 、D 正确. 故选:CD 【点睛】此题考查三角函数的化简变形,根据弦切关系因式分解,结合平方关系变形.2.已知函数()2sin()05,||2f x x πωϕωϕ⎛⎫=+<<< ⎪⎝⎭,且对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,3y f x π⎛⎫=+⎪⎝⎭为奇函数,则下列说法正确的是( ) A .函数()f x 的图象关于原点对称 B .函数()f x 的最小正周期为π C .函数()f x 的图象关于直线2x π=对称D .函数()f x 的单调递增区间为5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 【答案】BD 【分析】由()12f x f π⎛⎫≤ ⎪⎝⎭恒成立可得212f π⎛⎫=± ⎪⎝⎭,即()122k k ωππϕπ+=+∈Z ,由3y f x π⎛⎫=+ ⎪⎝⎭为奇函数可得()3k k ωπϕπ''+=∈Z ,即可求出2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,再根据正弦函数的性质分别判断即可. 【详解】因为对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,所以2sin 21212f πωπϕ⎛⎫⎛⎫=+=± ⎪⎪⎝⎭⎝⎭, 即sin 112ωπϕ⎛⎫+=±⎪⎝⎭,得()122k k ωππϕπ+=+∈Z ①. 2sin 2sin 333f x x x ππωπωϕωϕ⎡⎤⎛⎫⎛⎫⎛⎫+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因为3y f x π⎛⎫=+ ⎪⎝⎭为奇函数,所以()3k k ωπϕπ''+=∈Z ②.由①②可得()(),3122k k k k ωπωπππ''-=--∈Z ,即()(42,)k k k k ω''=--∈Z .又05ω<<,所以1k k '-=,2ω=, 则(2,)33k k k k ππϕππ=+=-'∈'Z ,得3πϕ=,所以2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,由于(0)0f =≠,故()f x 的图象不关于原点对称,所以A 不正确; ()f x 的最小正周期22T ππ==,所以B 正确;2sin 22sin 2sin 222333f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=+=-=± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以C 不正确;令222232k x k πππππ-≤+≤+,k ∈Z ,得51212k x k ππππ-≤≤+,k ∈Z , 故函数() f x 的单调递增区间为5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,所以D 正确. 故选:BD. 【点睛】关键点睛:本题考查正弦型函数的性质,解题的关键是:(1)根据“对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立”得到“212f π⎛⎫=± ⎪⎝⎭”;(2)得到“2sin 33f x x πωπωϕ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭”后,能根据“3y f x π⎛⎫=+ ⎪⎝⎭为奇函数”得到“()3k k ωπϕπ''+=∈Z ”.3.函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,则下列结论正确的是( )A .1()2sin 36f x x π⎛⎫=-⎪⎝⎭ B .若把()f x 的横坐标缩短为原来的23倍,纵坐标不变,得到的函数在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位,则所得函数是奇函数 D .函数()y f x =的图象关于直线4x π=-对称【答案】ACD 【分析】根据函数的图象求出函数的解析式,得选项A 正确; 求出213263x πππ--得到函数在[],ππ-上不是增函数,得选项B 错误;求出图象变换后的解析式得到选项C 正确; 求出函数的对称轴方程,得到选项D 正确. 【详解】 A, 如图所示:1732422T πππ=-=, 6T π∴=,∴2163πωπ==,(2)2f π=,∴2(2)2sin()23f ππϕ=+=,即2sin()13πϕ+=, ∴22()32k k Z ππϕπ+=+∈, ∴2()6k k Z πϕπ=-∈,||ϕπ<,∴6πϕ=-,∴1()2sin()36f x x π=-,故选项A 正确;B, 把()y f x =的横坐标缩短为原来的23倍,纵坐标不变,得到的函数12sin()26y x π=-,[x π∈-,]π,∴213263x πππ--,∴12sin()26y x π=-在[π-,]π上不单调递增,故选项B 错误;C, 把()y f x =的图象向左平移2π个单位,则所得函数12sin[()]2sin 3223xy x ππ=-+=,是奇函数,故选项C 正确; D, 设1,,32,362x k k Z x k πππππ-=+∈∴=+当24k x π=-⇒=-,所以函数()y f x =的图象关于直线4x π=-对称,故选项D 正确.故选:ACD 【点睛】方法点睛:求三角函数的解析式,一般利用待定系数法,一般先设出三角函数的解析式sin()y A wx k ,再求待定系数,,,A w k ,最值确定函数的,A k ,周期确定函数的w ,非平衡位置的点确定函数的φ.4.已知函数()1cos cos 632f x x x ππ⎛⎫⎛⎫=+-+⎪ ⎪⎝⎭⎝⎭,则以下说法中正确的是( ) A .()f x 的最小正周期为π B .()f x 在7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减 C .51,62π⎛⎫⎪⎝⎭是()f x 的一个对称中心 D .()f x 的最大值为12【答案】ABC 【分析】利用三角恒等变换思想化简()11sin 2232f x x π⎛⎫=++ ⎪⎝⎭,利用正弦型函数的周期公式可判断A 选项的正误,利用正弦型函数的单调性可判断B 选项的正误,利用正弦型函数的对称性可判断C 选项的正误,利用正弦型函数的有界性可判断D 选项的正误. 【详解】cos cos sin 3266x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以,()1111cos cos cos sin sin 2632662232f x x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+=+++=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.对于A 选项,函数()f x 的最小正周期为22T ππ==,A 选项正确; 对于B 选项,当7,1212x ππ⎡⎤∈⎢⎥⎣⎦时,32232x πππ≤+≤, 此时,函数()f x 在7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减,B 选项正确; 对于C 选项,5151111sin 2sin 262632222f ππππ⎛⎫⎛⎫=⨯++=+= ⎪ ⎪⎝⎭⎝⎭, 所以,51,62π⎛⎫⎪⎝⎭是()f x 的一个对称中心,C 选项正确; 对于D 选项,()max 111122f x =⨯+=,D 选项错误. 故选:ABC. 【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成()sin y A ωx φ=+形式,再求()sin y A ωx φ=+的单调区间,只需把x ωϕ+看作一个整体代入sin y x =的相应单调区间内即可,注意要先把ω化为正数.5.已知函数)()lg1( 2.7)x x f x x e e e -=+-+≈⋯,若不等式(sin cos )2(sin 2)f f t θθθ+<--对任意R θ∈恒成立,则实数t 的可能取值为( )A .1BC .3D .4【答案】CD 【分析】令)()lgx x g x x e e -=+-,则()()1f x g x =+,可判断()g x 是奇函数且单调递增,不等式可变形可得(sin cos )(sin 2)g g t θθθ+<-,所以sin cos sin 2t θθθ>++,令()sin cos sin 2h θθθθ=++,换元法求出()h θ的最大值,()max t h θ>即可. 【详解】令)()lgx x g x x e e -=+-,则()()1f x g x =+,()g x 的定义域为R ,))()()lglgx x x x g x g x x e e x e e ---+=+-++-0=,所以()()g x g x -=-,所以()g x 是奇函数, 不等式(sin cos )2(sin 2)f f t θθθ+<--等价于[](sin cos )1(sin 2)1f f t θθθ+-<---,即(sin cos )(sin 2)(sin 2)g g t g t θθθθ+<--=-,当0x >时y x =单调递增,可得)lgy x =单调递增,x y e =单调递增,x y e -=单调递减,所以)()lgx x g x x e e -=+-在()0,∞+单调递增,又因为)()lg x x g x x e e -=+-为奇函数,所以)()lgx x g x x e e -=+-在R 上单调递增,所以sin cos sin 2t θθθ+<-,即sin cos sin 2t θθθ>++, 令()sin cos sin 2h θθθθ=++,只需()max t h θ>,令sin cos m θθ⎡+=∈⎣,则21sin 2m θ=+,2sin 21m θ=-,所以()21h m m m =+-,对称轴为12m =-,所以m =()max 211h m ==,所以1t >可得实数t 的可能取值为3或4,故选:CD 【点睛】关键点点睛:本题解题的关键点是构造函数()g x 奇函数且是增函数,将原不等式脱掉f 转化为函数恒成立问题.6.设函数()()sin f x A x =+ωϕ,x ∈R (其中0A >,0>ω,2πϕ<),在,62ππ⎛⎫ ⎪⎝⎭上既无最大值,也无最小值,且()026f f f ππ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,则下列结论错误的是( )A .若()()()12f x f x f x ≤≤对任意x ∈R ,则21min x x π-=B .()y f x =的图象关于点,03π⎛-⎫⎪⎝⎭中心对称C .函数()f x 的单调减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .函数()()y f x x R =∈的图象相邻两条对称轴之间的距离是2π【答案】ABD 【分析】根据条件先求函数的解析式,对于A:判断出()1f x 为最小值,()2f x 为最大值,即可; 对于B:根据函数的对称性进行判断;对于C:求出角的范围,结合三角函数的单调性进行判断; 对于D:根据函数的对称性即对称轴之间的关系进行判断. 【详解】 因为函数()f x 在,62ππ⎛⎫⎪⎝⎭上既无最大值,也无最小值, 所以,62ππ⎛⎫⎪⎝⎭是函数的一个单调区间,区间长度为263πππ-=,即函数的周期2233T ππ≥⨯=,即223ππω≥,则03ω<≤因为()06f f π⎛⎫= ⎪⎝⎭,所以06212ππ+=为函数的一条对称轴;则1223πππωϕωϕπ+=+=①② 由①②解得:=2=3πωϕ,,即()sin 23f x A x π⎛⎫=+ ⎪⎝⎭,函数的周期=T π.对于A: 若()()()12f x f x f x ≤≤对任意x ∈R 恒成立,则()1f x 为最小值,()2f x 为最大值,所以12||22T k x x k π-==,则21x x -必为2π的整数倍,故A 错误,可选A; 对于B:3x π=-时,()sin 03f x A π⎛⎫=-≠ ⎪⎝⎭,故,03π⎛-⎫⎪⎝⎭不是()y f x =的对称中心,B 错误,可选B; 对于C:当7,1212x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,322,2322x k k πππππ⎡⎤+∈++⎢⎥⎣⎦,此时()y f x =单调递减,C 正确,不选C;对于D: 函数()()y f x x R =∈的图象相邻两条对称轴之间的距离是44T π=,故D 错误,可选D 故选:ABD【点睛】(1)求三角函数解析式的方法:①求A 通常用最大值或最小值;②(2)求ω通常用周期;③求φ通常利用函数上的点带入即可求解;(2)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题.7.将函数cos 2y x =的图象上所有点向左平移6π个单位长度,再向下平移1个单位长度,得到函数()y f x =的图象,则( ) A .()f x 的图象的对称轴方程为()62k x k Z ππ=-+∈ B .()f x 的图象的对称中心坐标为(),0212k k Z ππ⎛⎫+∈ ⎪⎝⎭C .()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭D .()f x 的单调递减区间为()2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】AC 【分析】首先根据图象平移求函数()y f x =的解析式,再根据整体代入的方法判断函数的对称性和单调区间. 【详解】cos 2y x =的图象上所有点向左平移π6个单位长度,得到cos 26y x π⎛⎫=+ ⎪⎝⎭,再向下平移1个单位长度后得到()cos 213y f x x π⎛⎫==+- ⎪⎝⎭, 对于A ,令23x k ππ+=,解得,62k x k Z ππ=-+∈,函数的对称轴是,62k x k Z ππ=-+∈,故A 正确; 对于B ,令232x k πππ+=+,解得:,122k x k Z ππ=+∈,所以函数的对称中心,1,122k k Z ππ⎛⎫+-∈ ⎪⎝⎭,故B 不正确; 对于C ,令2223k x k ππππ-+≤+≤,解得:236k x k ππ-+π≤≤-+π,所以函数的单调递增区间是2,,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦,由于单点不具有单调性,所以()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭也正确,故C 正确;对于D ,令2223k x k ππππ≤+≤+,解得:63k x k ππππ-+≤≤+,所以函数单调递减区间是,63k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈,故D 不正确. 故选:AC 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.8.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()()(::5:)4:6b c c a a b +++=,下列结论正确的是( )A .::7:5:3sinA sinB sinC = B .0AB AC ⋅>C .若6c =,则ABC 的面积是D .若8+=b c ,则ABC 的外接圆半径是3【答案】ACD 【分析】先利用已知条件设4,5,6b c k c a k a b k +=+=+=,进而得到3.5, 2.5, 1.5a k b c k ===,利用正弦定理可判定选项A ;利用向量的数量积公式可判断选项B ;利用余弦定理和三角形的面积公式可判定选项C ;利用余弦定理和正弦定理可判断选项D. 【详解】依题意,设4,5,6b c k c a k a b k +=+=+=, 所以 3.5, 2.5, 1.5a k b c k ===,由正弦定理得:::::7:5:3sinA sinB sinC a b c ==, 故选项A 正确;222222cos 22b c a b c a AB AC bc A bc bc +-+-⋅==⨯=222222.5 1.5 3.515028k k +-==-<,故选项B 不正确; 若6c =,则4k =, 所以14,10a b ==,所以222106141cos 21062A +-==-⨯⨯,所以sin A =,故ABC 的面积是:11sin 61022bc A =⨯⨯= 故选项C 正确;若8+=b c ,则2k =, 所以7,5,3a b c ===,所以2225371cos 2532A +-==-⨯⨯,所以sin A =, 则利用正弦定理得:ABC 的外接圆半径是:12sin a A ⨯=, 故选项D 正确; 故选:ACD. 【点睛】关键点睛:本题主要考查正余弦定理以及三角形面积公式. 利用已知条件设4,5,6b c k c a k a b k +=+=+=,再利用正余弦定理以及三角形面积公式求解是解决本题的关键.二、数列多选题9.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,……,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,依次类推…,第n 项记为n a ,数列{}n a 的前n 项和为n S ,则( )A .6016a =B .18128S =C .2122k k k a -+=D .2221kk kS k +=--【答案】AC 【分析】对于AC 两项,可将数列进行分组,计算出前k 组一共有()12k k +个数,第k 组第k 个数即12k -,可得到选项C由C 得到9552a =,60a 则为第11组第5个数,可得60a对于BD 项,可先算得22k kS +,即前k 组数之和18S 即为前5组数之和加上第6组前3个数,由21222k k kS k ++=--结论计算即可. 【详解】A.由题可将数列分组第一组:02 第二组:012,2, 第三组:0122,2,2,则前k 组一共有12++…()12k k k ++=个数 第k 组第k 个数即12k -,故2122k k k a -+=,C 对 又()10101552+=,故9552a = 又()11111662+=, 60a 则为第11组第5个数 第11组有数:0123456789102,2,2,2,2,2,2,2,2,2,2故460216a ==,A 对对于D. 每一组的和为0122++ (12122121)k k k --+==-- 故前k 组之和为1222++…()122122221k k k k k k +-+-=-=---21222k k k S k ++=--故D 错.对于B.由D 可知,615252S =-- ()551152+=,()661212+= 01261815222252764S S =+++=--+=故B 错故选:AC【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和.(2)错位相减:用于等差数列与等比数列的积数列的求和.(3)分组求和:用于若干个等差或等比数列的和或差数列的求和.10.关于等差数列和等比数列,下列四个选项中正确的有( )A .若数列{}n a 的前n 项和22n S n =,则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等比数列C .若等比数列{}n a 是递增数列,则{}n a 的公比1q >D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,仍为等比数列【答案】AB【分析】对于A ,求出 42n a n =-,所以数列{}n a 为等差数列,故选项A 正确;对于B , 求出2n n a =,则数列{}n a 为等比数列,故选项B 正确;对于选项C ,有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确.【详解】对于A ,若数列{}n a 的前n 项和22n S n =,所以212(1)(2)n S n n -=-≥,所以142(2)n n n a S S n n -=-=-≥,适合12a =,所以数列{}n a 为等差数列,故选项A 正确;对于B ,若数列{}n a 的前n 项和122n n S +=-,所以122(2)nn S n -=-≥,所以12(2)n n n n a S S n -=-=≥,又1422a =-=,2218224a S S =-=--=, 212a a = 则数列{}n a 为等比数列,故选项B 正确;对于选项C ,若等比数列{}n a 是递增数列,则有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确.故选:AB【点睛】方法点睛:求数列的通项常用的方法有:(1)公式法;(2)归纳法;(3)累加法;(4)累乘法;(5)构造法. 要根据已知条件灵活选择方法求解.。

辽宁省庄河市高级中学平面向量多选题试题含答案

辽宁省庄河市高级中学平面向量多选题试题含答案

辽宁省庄河市高级中学平面向量多选题试题含答案一、平面向量多选题1.已知直线1:310l mx y m --+=与直线2:310l x my m +--=相交于点P ,线段AB是圆()()22:114C x y +++=的一条动弦,G 为弦AB 的中点,AB =( )A .弦AB 的中点轨迹是圆B .直线12,l l 的交点P 在定圆()()22222x y -+-=上C .线段PG 长的最大值为1D .PA PB ⋅的最小值6+ 【答案】ABC 【分析】对于选项A :设()00,G x y ,利用已知条件先求出圆心到弦AB 的距离CG ,利用两点之间的距离公式即可得到结论;对于选项B :联立直线的方程组求解点P 的坐标,代入选项验证即可判断;对于选项C :利用选项A B 结论,得到圆心坐标和半径,利用1112max PG PG r r =++求解即可;对于选项D :利用平面向量的加法法则以及数量积运算得到23PA PB PG ⋅==-,进而把问题转化为求1112min PG PG r r =--问题,即可判断.【详解】对于选项A :设()00,G x y ,2AB =G 为弦AB 的中点,GB ∴=,而()()22:114C x y +++=, 半径为2,则圆心到弦AB 的距离为1CG ==,又圆心()1,1C --,()()2200111x y ∴+++=,即弦AB 的中点轨迹是圆. 故选项A 正确; 对于选项B :由310310mx y m x my m --+=⎧⎨+--=⎩,得222232113211m m x m m m y m ⎧++=⎪⎪+⎨-+⎪=⎪+⎩, 代入()()2222x y -+-整理得2, 故选项B 正确;对于选项C :由选项A 知:点G 的轨迹方程为:()()22111x y +++=,由选项B 知:点P 的轨迹方程为:()()22222x y -+-=,()()11121,1,1,2,2,G r P r ∴--=所以线段1112max 11PG PG r r =++=+=,故选项C 正确; 对于选项D :()()PA PB PG GA PG GB ⋅=+⋅+ ()2PG PG GA GB GA GB =+⋅++⋅ 22203PG PG GB PG =+⋅-=-,故()()2minmin3PA PBPG ⋅=-,由选项C知:1112min 11PG PG r r =--=-=,所以()()2min136PA PB⋅=-=-,故选项D 错误; 故选:A B C. 【点睛】关键点睛:本题考查了求圆的轨迹问题以及两个圆上的点的距离问题.把两个圆上的点的距离问题转化为两个圆的圆心与半径之间的关系是解决本题的关键.2.设向量(1,1)a =-,(0,2)b =,则( ) A .||||a b = B .()a b a -∥C .()a b a -⊥D .a 与b 的夹角为4π【答案】CD 【分析】根据平面向量的模、垂直、夹角的坐标运算公式和共线向量的坐标运算,即可对各项进行判断,即可求出结果.【详解】 对于A ,(1,1)a =-,(0,2)b =,2,2a b ∴==,a b ∴≠,故A 错误; 对于B ,(1,1)a =-,(0,2)b =,()=1,1a b ∴---,又(0,2)b =,则()12100-⨯--⨯≠,()a b ∴-与b 不平行,故B 错误;对于C ,又()()()11110a b a -⋅=-⨯-+-⨯=,()a b a ∴-⊥,故C 正确;对于D ,又cos ,222a b a b a b⋅<>===⋅,又a 与b 的夹角范围是[]0,π,a ∴与b 的夹角为π4,故D 正确. 故选:CD. 【点睛】关键点点睛:本题考查了平面向量的坐标运算,熟记平面向量的模、垂直、夹角坐标运算公式及共线向量的坐标运算时解题的关键,考查学生的运算能力,属于基础题.3.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()()(::5:)4:6b c c a a b +++=,下列结论正确的是( )A .::7:5:3sinA sinB sinC = B .0AB AC ⋅>C .若6c =,则ABC 的面积是D .若8+=b c ,则ABC 的外接圆半径是3【答案】ACD 【分析】先利用已知条件设4,5,6b c k c a k a b k +=+=+=,进而得到3.5, 2.5, 1.5a k b c k ===,利用正弦定理可判定选项A ;利用向量的数量积公式可判断选项B ;利用余弦定理和三角形的面积公式可判定选项C ;利用余弦定理和正弦定理可判断选项D. 【详解】依题意,设4,5,6b c k c a k a b k +=+=+=, 所以 3.5, 2.5, 1.5a k b c k ===,由正弦定理得:::::7:5:3sinA sinB sinC a b c ==, 故选项A 正确;222222cos 22b c a b c a AB AC bc A bc bc +-+-⋅==⨯=222222.5 1.5 3.515028k k +-==-<,故选项B 不正确;若6c =,则4k =, 所以14,10a b ==,所以222106141cos 21062A +-==-⨯⨯,所以sin 2A =,故ABC 的面积是:11sin 610222bc A =⨯⨯⨯= 故选项C 正确;若8+=b c ,则2k =, 所以7,5,3a b c ===,所以2225371cos 2532A +-==-⨯⨯,所以sin 2A =, 则利用正弦定理得:ABC 的外接圆半径是:12sin 3a A ⨯=, 故选项D 正确; 故选:ACD. 【点睛】关键点睛:本题主要考查正余弦定理以及三角形面积公式. 利用已知条件设4,5,6b c k c a k a b k +=+=+=,再利用正余弦定理以及三角形面积公式求解是解决本题的关键.4.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O 、G 、H 分别是ABC 的外心、重心、垂心,且M 为BC 的中点,则( )A .0GA GB GC ++= B .24AB AC HM MO +=- C .3AH OM =D .OA OB OC ==【答案】ABD 【分析】向量的线性运算结果仍为向量可判断选项A ;由12GO HG =可得23HG HO =,利用向量的线性运算()266AB AC AM GM HM HG +===-,再结合HO HM MO =+集合判断选项B ;利用222AH AG HG GM GO OM =-=-=故选项C 不正确,利用外心的性质可判断选项D ,即可得正确选项. 【详解】因为G 是ABC 的重心,O 是ABC 的外心,H 是ABC 的垂心, 且重心到外心的距离是重心到垂心距离的一半,所以12GO HG =, 对于选项A :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =, 又因为2GB GC GM +=,所以GB GC AG +=,即0GA GB GC ++=,故选项A 正确;对于选项B :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =,3AM GM =,因为12GO HG =,所以23HG HO =, ()226663AB AC AM GM HM HG HM HO ⎛⎫+===-=- ⎪⎝⎭()646424HM HO HM HM MO HM MO =-=-+=-,即24AB AC HM MO +=-,故选项B 正确;对于选项C :222AH AG HG GM GO OM =-=-=,故选项C 不正确; 对于选项D :设点O 是ABC 的外心,所以点O 到三个顶点距离相等,即OA OB OC ==,故选项D 正确;故选:ABD. 【点睛】关键点点睛:本题解题的关键是利用已知条件12GO HG =得23HG HO =,利用向量的线性运算结合2AG GM =可得出向量间的关系.5.下列关于平面向量的说法中正确的是( )A .已知A 、B 、C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ⋅=⋅且0b ≠,则a c =C .若点G 为ΔABC 的重心,则0GA GB GC ++=D .已知()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ< 【答案】AC 【分析】根据平面向量基本定理判断A ;由数量积的性质可判断B ;由向量的中点表示和三角形的重心性质可判断C ,由数量积及平面向量共线定理判断D . 【详解】解:因为,AB AC 不能构成该平面的基底,所以//AB AC ,又,AB AC 有公共点A ,所以A 、B 、C 共线,即A 正确;由平面向量的数量积可知,若a b b c =,则||||cos ,||||cos ,a b a b b c b c <>=<>,所以||cos ,||cos ,a a b c b c <>=<>,无法得到a c =,即B 不正确;设线段AB 的中点为M ,若点G 为ABC ∆的重心,则2GA GB GM +=,而2GC GM =-,所以0GA GB GC ++=,即C 正确;()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则220a b λ=⋅->解得1λ<,且a与b 不能共线,即4λ≠-,所以()(),44,1λ∈-∞--,故D 错误;故选:AC . 【点睛】本题考查向量共线定理和向量数量积的性质和向量的加减运算,属于中档题.6.已知ABC ∆是边长为()20a a >的等边三角形,P 为ABC ∆所在平面内一点,则()PA PB PC ⋅+的值可能是( )A .22a -B .232a -C .243a -D .2a -【答案】BCD 【分析】通过建系,用坐标来表示向量,根据向量的乘法运算法则以及不等式,可得结果. 【详解】建立如图所示的平面直角坐标系.设(),P x y ,又()A ,(),0B a -,(),0C a ,则()PA x y =--,(),PB a x y =---,(),PC a x y =--.则()(),,a x y a P PC x y B -+--+-=- 即()2,2PB x y PC --+= 所以()()()2,2x PA PB P y x y C =--⋅--⋅+则()PA PB PC ⋅+2222xy =+-即()PA PB PC ⋅+22232222x y a a ⎛⎫=+-- ⎪ ⎪⎝⎭. 所以()PA PB PC ⋅+232a ≥- 故选:BCD. 【点睛】本题主要通过建系的方法求解几何中向量的问题,属中档题.7.在ABC 中,()2,3AB =,()1,AC k =,若ABC 是直角三角形,则k 的值可以是( )A .1-B .113C .32+ D .32【答案】BCD 【分析】由题意,若ABC 是直角三角形,分析三个内有都有可能是直角,分别讨论三个角是直角的情况,根据向量垂直的坐标公式,即可求解. 【详解】若A ∠为直角,则AB AC ⊥即0AC AB ⋅=230k ∴+=解得23k =-若B 为直角,则BC AB ⊥即0BC AB ⋅=()()2,3,1,AB AC k == ()1,3BC k ∴=--2390k ∴-+-=解得113k =若C ∠为直角,则BC AC ⊥,即0BC AC ⋅=()()2,3,1,AB AC k == ()1,3BC k ∴=--()130k k ∴-+-=解得32k ±=综合可得,k 的值可能为211,33-故选:BCD 【点睛】本题考查向量垂直的坐标公式,考查分类讨论思想,考察计算能力,属于中等题型.8.ABC ∆是边长为3的等边三角形,已知向量a 、b 满足3AB a =,3AC a b =+,则下列结论中正确的有( ) A .a 为单位向量 B .//b BCC .a b ⊥D .()6a b BC +⊥【答案】ABD 【分析】求出a 可判断A 选项的正误;利用向量的减法法则求出b ,利用共线向量的基本定理可判断B 选项的正误;计算出a b ⋅,可判断C 选项的正误;计算出()6a b BC +⋅,可判断D 选项的正误.综合可得出结论. 【详解】 对于A 选项,3AB a =,13a AB ∴=,则113a AB ==,A 选项正确; 对于B 选项,3AC ab AB b =+=+,b AC AB BC ∴=-=,//b BC ∴,B 选项正确;对于C 选项,21123cos 0333a b AB BC π⋅=⋅=⨯⨯≠,所以a 与b 不垂直,C 选项错误; 对于D 选项,()()()2260a b BC AB AC AC AB AC AB +⋅=+⋅-=-=,所以,()6a b BC +⊥,D 选项正确.故选:ABD. 【点睛】本题考查向量有关命题真假的判断,涉及单位向量、共线向量的概念的理解以及垂直向量的判断,考查推理能力,属于中等题.二、立体几何多选题9.已知图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,分别沿着AB 、BC 、CD 、DA 把ABF 、BCG 、CDH △、DAE △向上折起,使得每个三角形所在的平面都与平面ABCD 垂直,再顺次连接EFGH ,得到一个如图2所示的多面体,则( )A .AEF 是正三角形B .平面AEF ⊥平面CGHC .直线CG 与平面AEF 2D .当2AB =时,多面体ABCD EFGH -的体积为83【答案】AC 【分析】取CD 、AB 的中点O 、M ,连接OH 、OM ,证明出OH ⊥平面ABCD ,然后以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,求出EF ,可判断A 选项的正误,利用空间向量法可判断BC 选项的正误,利用几何体的体积公式可判断D 选项的正误. 【详解】取CD 、AB 的中点O 、M ,连接OH 、OM , 在图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,则1122CH GH EH DH ===,O 为CD 的中点,OH CD ∴⊥,平面CDH ⊥平面ABCD ,平面CDH 平面ABCD CD =,OH ⊂平面CDH ,OH ∴⊥平面ABCD ,在图1中,设正方形EFGH 的边长为()220a a >,可得四边形ABCD 的边长为2a , 在图1中,ADE 和ABF 均为等腰直角三角形,可得45BAF DAE ∠=∠=, 90BAD ∴∠=,∴四边形ABCD 是边长为2a 的正方形,O 、M 分别为CD 、AB 的中点,则//OC BM 且OC BM =,且90OCB ∠=,所以,四边形OCBM 为矩形,所以,OM CD ⊥,以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()2,,0A a a -、()2,,0B a a 、()0,,0C a 、()0,,0D a -、(),,E a a a -、()2,0,F a a 、(),,G a a a 、()0,0,H a .对于A 选项,由空间中两点间的距离公式可得2AE AF EF a ===,所以,AEF 是正三角形,A 选项正确;对于B 选项,设平面AEF 的法向量为()111,,m x y z =,(),0,AE a a =-,()0,,AF a a =,由111100m AE ax az m AF ay az ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取11z =,则11x =,11y =-,则()1,1,1m =-,设平面CGH 的法向量为()222,,n x y z =,(),0,CG a a =,()0,,CH a a =-,由222200n CG ax az n CH ay az ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取21z =-,可得21x =,21y =-,则()1,1,1n =--, ()22111110m n ⋅=+--⨯=≠,所以,平面AEF 与平面CGH 不垂直,B 选项错误;对于C 选项,6cos ,23CG m CG m a CG m⋅<>===⨯⋅, 设直线CG 与平面AEF 所成角为θ,则sin 6θ=,23cos 1sin θθ=-=,所以,sin tan 2cos θθθ==,C 选项正确; 对于D 选项,以ABCD 为底面,以OH 为高将几何体ABCD EFGH -补成长方体1111ABCD A B C D -,则E 、F 、G 、H 分别为11A D 、11A B 、11B C 、11C D 的中点,因为2AB =,即1a =,则1OH =,长方体1111ABCD A B C D -的体积为2214V =⨯=,11211111113326A A EF A EF V S AA -=⋅=⨯⨯⨯=△, 因此,多面体ABCD EFGH -的体积为111044463ABCD EFGH A A EF V V V --=-=-⨯=, D 选项错误.故选:AC.【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin h lθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.10.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,090B F ∠=∠=,0060,45,A D BC DE ∠=∠==,现将两块三角形板拼接在一起,得三棱锥F CAB -,取BC 中点O 与AC 中点M ,则下列判断中正确的是( )A .BC FM ⊥B .AC 与平面MOF 3C .平面MOF 与平面AFB 所成的二面角的平面角为45°D .设平面ABF平面MOF l =,则有//l AB【答案】AD【分析】证明BC ⊥面FOM 可判断A ;根据AC 与平面MOF 所成的角为060CMO ∠=判断B ;利用特殊位置判断C ;先证明//AB 面MOF ,由线面平行的性质定理可判断D ;【详解】由三角形中位线定理以及等腰三角形的性质可得,,BC OF BC OM OMOF O ⊥⊥=,所以BC ⊥面FOM BC FM ⇒⊥,故A 正确; 因为BC ⊥面FOM ,所以AC 与平面MOF 所成的角为060CMO ∠=,所以余弦值为12,故B 错误; 对于C 选项可以考虑特殊位置法,由BC ⊥面FOM 得面ABC ⊥面FOM ,所以点F 在平面ABC 内的射影在直线OM 上,不妨设点F 平面ABC 内的射影为M ,过点M 作//BC MN ,连结NF .易证AB ⊥面MNF ,则l ⊥面MNF ,所以MFN ∠为平面MOF 与平面AFB 所成的二面角的平面角,不妨设2AB =,因为060A ,所以23BC =,则13,12OF BC OM ===,显然MFN ∠不等于45°,故C 错误. 设面MOF 与平面ABF 的交线为l ,又因为//,AB OM AB ⊄面MOF ,OM ⊂面MOF ,所以//AB 面MOF ,由线面平行的性质定理可得://l AB ,故D 正确; 故选:AD.【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.。

辽宁省庄河市高级中学平面向量及其应用单元测验试卷 百度文库

辽宁省庄河市高级中学平面向量及其应用单元测验试卷 百度文库

一、多选题1.下列说法中正确的是( )A .对于向量,,a b c ,有()()a b c a b c ⋅⋅=⋅⋅B .向量()11,2e =-,()25,7e =能作为所在平面内的一组基底C .设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0m n ⋅<”的充分而不必要条件D .在ABC 中,设D 是BC 边上一点,且满足2CD DB =,CD AB AC λμ=+,则0λμ+=2.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ⋅≤B .若a b c b ⋅=⋅且0b ≠,则a c =C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭3.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知cos cos 2B bC a c=-,4ABC S =△,且b = )A .1cos 2B =B .cos 2B =C .a c +=D .a c +=4.已知在平面直角坐标系中,点()10,1P ,()24,4P .当P 是线段12PP 的一个三等分点时,点P 的坐标为( ) A .4,23⎛⎫⎪⎝⎭B .4,33⎛⎫⎪⎝⎭C .()2,3D .8,33⎛⎫ ⎪⎝⎭5.设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( )A .()a cbc a b c ⋅-⋅=-⋅ B .()()b c a c a b ⋅⋅-⋅⋅与c 不垂直 C .a b a b -<-D .()()22323294a b a b a b +⋅-=-6.已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( ) A .a 与b 的夹角为钝角B .向量a 在bC .2m +n =4D .mn 的最大值为27.ABC 中,2AB =,30ACB ∠=︒,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4.B .若4AC =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC =D .若满足条件的ABC 有两个,则24AC <<8.在ABC 中,内角,,A B C 所对的边分别为,,a b c .根据下列条件解三角形,其中有两解的是( )A .10,45,70b A C ==︒=︒B .45,48,60b c B ===︒C .14,16,45a b A ===︒D .7,5,80a b A ===︒9.ABC 中,4a =,5b =,面积S =c =( )A B C D .10.在△ABC 中,若cos cos a A b B =,则△ABC 的形状可能为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形11.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1()2AD AB AC =+ C .8BA BC ⋅=D .AB AC AB AC +=-12.下列各组向量中,不能作为基底的是( ) A .()10,0e =,()21,1=e B .()11,2e =,()22,1e =-C .()13,4e =-,234,55⎛⎫=-⎪⎝⎭e D .()12,6=e ,()21,3=--e13.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( ) A .a b =B .a b =C .a 与b 的方向相反D .a 与b 都是单位向量14.设,a b 是两个非零向量,则下列描述正确的有( ) A .若||||||a b a b +=-,则存在实数λ使得a b λ= B .若a b ⊥,则||||a b a b +=-C .若||||||a b a b +=+,则a 在b 方向上的投影为||bD .若存在实数λ使得a b λ=,则||||||a b a b +=-15.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个B .满足10OA OB -=的格点B 共有3个C .存在格点B ,C ,使得OA OB OC =+D .满足1OA OB ⋅=的格点B 共有4个二、平面向量及其应用选择题16.如图,四边形ABCD 是平行四边形,E 是BC 的中点,点F 在线段CD 上,且2CF DF =,AE 与BF 交于点P ,若AP AE λ=,则λ=( )A .34B .58C .38D .2317.下列命题中正确的是( ) A .若a b ,则a 在b 上的投影为a B .若(0)a c b c c ⋅=⋅≠,则a b =C .若,,,A B CD 是不共线的四点,则AB DC =是四边形ABCD 是平行四边形的充要条件 D .若0a b ⋅>,则a 与b 的夹角为锐角;若0a b ⋅<,则a 与b 的夹角为钝角 18.三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,那么点P 是三角形ABC 的( ) A .重心B .垂心C .外心D .内心19.在△ABC 中,内角A 、B 、C 所对边分别为a 、b 、c ,若2cosA 3cosB 5cosCa b c==,则∠B 的大小是( )A .12πB .6π C .4πD .3π 20.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若sin cos sin a b cA B B===ABC ∆的面积为( )A .2B .4CD .21.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为S ,且222()S a b c =+-,则tan C =( )A .43-B .34-C .34D .4322.在ABC ∆中,设222AC AB AM BC -=⋅,则动点M 的轨迹必通过ABC ∆的( ) A .垂心B .内心C .重心D . 外心23.在△ABC 中,M 为BC 上一点,60,2,||4ACB BM MC AM ∠=︒==,则△ABC 的面积的最大值为( )A .B .63C .12D .18324.若向量123,,OP OP OP ,满足条件1230OP OP OP ++=,1231OP OP OP ===,则123PP P ∆的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .不能确定25.在ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若()22S a b c +=+,则cos A 等于( )A .45B .45-C .1517D .1517-26.ABC 中,内角,,A B C 所对的边分别为,,a b c .若()226,c a b =-+3C π=,则ABC 的面积为( )A .6B C .D 27.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10m 到位置D ,测得45BDC ∠=︒,则塔AB 的高是(单位:m )( )A .102B .106C .103D .1028.设(),1A a ,()2,1B -,()4,5C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a =( )A .12-B .12C .-2D .229.在梯形ABCD 中,//AD BC ,90ABC ∠=︒,2AB BC ==,1AD =,则BD AC ⋅=( )A .2-B .3-C .2D .530.已知,m n 是两个非零向量,且1m =,2||3m n +=,则||+||m n n +的最大值为 A .5B .10C .4D .531.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的( ) (注:三角形的三条高线交于一点,此点为三角型的垂心) A .重心外心垂心 B .重心外心内心 C .外心重心垂心 D .外心重心内心32.如图所示,设P 为ABC ∆所在平面内的一点,并且1142AP AB AC =+,则BPC∆与ABC ∆的面积之比等于( )A .25B .35C .34D .1433.在ABC ∆中,下列命题正确的个数是( )①AB AC BC -=;②0AB BC CA ++=;③点O 为ABC ∆的内心,且()()20OB OC OB OC OA -⋅+-=,则ABC ∆为等腰三角形;④0AC AB ⋅>,则ABC ∆为锐角三角形.A .1B .2C .3D .434.在ABC ∆中,2,2,120,,AC AB BAC AE AB AF AC λμ==∠===,M 为线段EF 的中点,若1AM =,则λμ+的最大值为( ) A .7 B .27C .2D .21 35.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30,第一排和最后一排的距离为102米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A .3323B .5323C .323D .8323【参考答案】***试卷处理标记,请不要删除一、多选题 1.BCD 【分析】.向量数量积不满足结合律进行判断 .判断两个向量是否共线即可 .结合向量数量积与夹角关系进行判断 .根据向量线性运算进行判断 【详解】解:.向量数量积不满足结合律,故错误, ., 解析:BCD 【分析】A .向量数量积不满足结合律进行判断B .判断两个向量是否共线即可C .结合向量数量积与夹角关系进行判断D .根据向量线性运算进行判断 【详解】解:A .向量数量积不满足结合律,故A 错误,B .1257-≠,∴向量1(1,2)e =-,2(5,7)e =不共线,能作为所在平面内的一组基底,故B 正确,C .存在负数λ,使得m n λ=,则m 与n 反向共线,夹角为180︒,此时0m n <成立,当0m n <成立时,则m 与n 夹角满足90180θ︒<︒,则m 与n 不一定反向共线,即“存在负数λ,使得m n λ=”是“0m n <”的充分而不必要条件成立,故C 正确,D .由23CD CB =得2233CD AB AC =-,则23λ=,23μ=-,则22033λμ+=-=,故D 正确故正确的是BCD ,故选:BCD . 【点睛】本题主要考查向量的有关概念和运算,结合向量数量积,以及向量运算性质是解决本题的关键,属于中档题.2.AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知解析:AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即22||||a b a b -⋅=,cos 1θ=-,则两个向量的夹角为π,则a 与b 共线且反向,故C 正确;对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得53λ>-, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时53λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.3.AD 【分析】利用正弦定理,两角和的正弦函数公式化简,结合,可求,结合范围,可求,进而根据三角形的面积公式和余弦定理可得. 【详解】 ∵,整理可得:, 可得,∵A 为三角形内角,, ∴,故A 正确解析:AD 【分析】利用正弦定理,两角和的正弦函数公式化简cos cos 2B bC a c=-,结合sin 0A ≠,可求1cos 2B =,结合范围()0,B π∈,可求3B π=,进而根据三角形的面积公式和余弦定理可得a c += 【详解】 ∵cos sin cos 22sin sin B b BC a c A C==--, 整理可得:sin cos 2sin cos sin cos B C A B C B =-,可得()sin cos sin cos sin sin 2sin cos B C C B B C A A B +=+==, ∵A 为三角形内角,sin 0A ≠, ∴1cos 2B =,故A 正确,B 错误, ∵()0,B π∈, ∴3B π=,∵4ABC S =△,且3b =,11sin 22ac B a c ==⨯⨯=, 解得3ac =,由余弦定理得()()2222939a c ac a c ac a c =+-=+-=+-,解得a c +=C 错误,D 正确. 故选:AD. 【点睛】本题主要考查正弦定理,余弦定理以及两角和与差的三角函数的应用,还考查了运算求解的能力,属于中档题.4.AD 【分析】设,则,然后分点P 靠近点,靠近点两种情况,利用平面向量的线性运算求解. 【详解】 设,则,当点P 靠近点时,, 则, 解得, 所以,当点P 靠近点时,, 则, 解得, 所以, 故选:解析:AD 【分析】设(),P x y ,则()()12,1,4,4=-=--PP x y PP x y ,然后分点P 靠近点1P ,靠近点2P 两种情况,利用平面向量的线性运算求解. 【详解】设(),P x y ,则()()12,1,4,4=-=--PP x y PP x y , 当点P 靠近点1P 时,1212PPPP =,则()()1421142x x y y ⎧=-⎪⎪⎨⎪-=-⎪⎩,解得432x y ⎧=⎪⎨⎪=⎩,所以4,23P ⎛⎫⎪⎝⎭, 当点P 靠近点2P 时,122PP PP =, 则()()24124x x y y ⎧=-⎪⎨-=-⎪⎩,解得833x y ⎧=⎪⎨⎪=⎩,所以8,33P ⎛⎫ ⎪⎝⎭, 故选:AD 【点睛】本题主要考查平面向量的线性运算,还考查了运算求解的能力,属于基础题.5.ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由与不共线,可分两类考虑:①若,则显然成立;②若,由、、构成三角形的三边可进行判断;D ,由平解析:ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由a 与b 不共线,可分两类考虑:①若a b ≤,则a b a b -<-显然成立;②若a b >,由a 、b 、a b -构成三角形的三边可进行判断;D ,由平面向量的混合运算将式子进行展开即可得解. 【详解】选项A ,由平面向量数量积的运算律,可知A 正确; 选项B ,()()()()()()()()0b c a c a b c b c a c c a b c b c a c b c c a ⎡⎤⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⎣⎦,∴()()b c a c a b ⋅⋅-⋅⋅与c 垂直,即B 错误;选项C ,∵a 与b 不共线, ∴若a b ≤,则a b a b -<-显然成立; 若a b >,由平面向量的减法法则可作出如下图形:由三角形两边之差小于第三边,可得a b a b -<-.故C 正确;选项D ,()()22223232966494a b a b a a b a b b a b +⋅-=-⋅+⋅-=-,即D 正确. 故选:ACD【点睛】本小题主要考查向量运算,属于中档题. 6.CD【分析】对于A ,利用平面向量的数量积运算判断;对于B ,利用平面向量的投影定义判断;对于C ,利用()∥判断;对于D ,利用C 的结论,2m+n=4,结合基本不等式判断.【详解】对于A ,向量(解析:CD【分析】对于A ,利用平面向量的数量积运算判断; 对于B ,利用平面向量的投影定义判断;对于C ,利用(a b -)∥c 判断;对于D ,利用C 的结论,2m +n =4,结合基本不等式判断.【详解】对于A ,向量a =(2,1),b =(1,﹣1),则2110a b ⋅=-=>,则,a b 的夹角为锐角,错误;对于B ,向量a =(2,1),b =(1,﹣1),则向量a 在b 方向上的投影为2a b b ⋅=,错误;对于C ,向量a =(2,1),b =(1,﹣1),则a b -= (1,2),若(a b -)∥c ,则(﹣n )=2(m ﹣2),变形可得2m +n =4,正确;对于D ,由C 的结论,2m +n =4,而m ,n 均为正数,则有mn 12= (2m •n )12≤ (22m n +)2=2,即mn 的最大值为2,正确; 故选:CD.【点睛】 本题主要考查平面向量的数量积运算以及基本不等式的应用,属于基础题.7.ABD【分析】根据正弦定理,可直接判断的对错,然后,,三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可.【详解】解:由正弦定理得,故正确;对于,,选项:如图解析:ABD【分析】根据正弦定理,可直接判断A 的对错,然后B ,C ,D 三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可.【详解】解:由正弦定理得224sin sin30AB R ACB ===∠︒,故A 正确; 对于B ,C ,D 选项:如图:以A 为圆心,2AB =为半径画圆弧,该圆弧与射线CD 的交点个数,即为解得个数.易知当122x =,或即4AC =时,三角形ABC 为直角三角形,有唯一解; 当2AC AB ==时,三角形ABC 是等腰三角形,也是唯一解;当AD AB AC <<,即122x x <<,24x ∴<<时,满足条件的三角形有两个. 故B ,D 正确,C 错误.故选:ABD .本题考查已知两边及一边的对角的前提下,三角形解得个数的判断问题.属于中档题.8.BC【分析】根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案.【详解】对于选项A 中:由,所以,即三角形的三个角是确定的值,故只有一解; 对于选项B 中:因为,且,所以角有两解析:BC【分析】根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案.【详解】对于选项A 中:由45,70A C =︒=︒,所以18065B A C =--=︒,即三角形的三个角是确定的值,故只有一解;对于选项B 中:因为csin sin 115B C b ==<,且c b >,所以角C 有两解;对于选项C 中:因为sin sin 17b A B a ==<,且b a >,所以角B 有两解; 对于选项D 中:因为sin sin 1b A B a =<,且b a <,所以角B 仅有一解. 故选:BC .【点睛】本题主要考查了三角形解得个数的判定,其中解答中熟记三角形解得个数的判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.AB【分析】在中,根据,,由,解得或,然后分两种情况利用余弦定理求解.【详解】中,因为,,面积,所以,所以,解得或,当时,由余弦定理得:,解得,当时,由余弦定理得:,解得所以或解析:AB在ABC 中,根据4a =,5b =,由1sin 2ABC S ab C ==60C =或120C =,然后分两种情况利用余弦定理求解.【详解】ABC 中,因为4a =,5b =,面积ABC S =所以1sin 2ABC S ab C ==所以sin 2C =,解得60C =或120C =, 当60C =时,由余弦定理得:2222cos 21c a b ab C =+-=,解得c =当120C =时,由余弦定理得:2222cos 61c a b ab C =+-=,解得c =所以c =c =故选:AB【点睛】本题主要考查三角形面积公式和余弦定理的应用,还考查了运算求解的能力,属于中档题. 10.ABCD【分析】应用正弦定理将边化角,由二倍角公式有即或,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形【详解】根据正弦定理,即.,或.即或解析:ABCD【分析】应用正弦定理将边化角,由二倍角公式有sin 2sin 2A B =即A B =或2A B π+=,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形【详解】根据正弦定理sin sin a b A B= cos cos a A b B =sin cos sin cos A A B B =,即sin 2sin 2A B =.2,2(0,2)A B π∈, 22A B =或22A B π+=.即A B =或2A B π+=,△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形.故选:ABCD【点睛】本题考查了正弦定理的边化角,二倍角公式解三角形判断三角形的形状,注意三角形内角和为180°11.BC【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项.【详解】对于A 选项:,故A 错;对于 B 选项:因为D 为BC 的中点,,故B 正确; 对于C 选项:,故正确;对于D 选项:,而,故解析:BC【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项.【详解】对于A 选项:BD AD BD DA BA -=+=,故A 错; 对于 B 选项:因为D 为BC 的中点,()111++++()222AD AB BD AB BC AB BA AC AB AC ====+,故B 正确; 对于C 选项:cos 248BDBA BC BA BC B BA BC BA ⋅=⋅⋅∠=⋅⋅=⨯=,故正确;对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确. 故选:BC.【点睛】本题考查向量的线性运算和向量的数量积运算,属于基础题.12.ACD【分析】依次判断各选项中的两向量是否共线即可.【详解】A ,C ,D 中向量与共线,不能作为基底;B 中,不共线,所以可作为一组基底.【点睛】本题主要考查平面向量的基本定理及基底的定义,属解析:ACD【分析】依次判断各选项中的两向量是否共线即可.【详解】A ,C ,D 中向量1e 与2e 共线,不能作为基底;B 中1e ,2e 不共线,所以可作为一组基底.【点睛】本题主要考查平面向量的基本定理及基底的定义,属于基础题.13.AC【分析】根据共线向量的定义判断即可.【详解】对于A 选项,若,则与平行,A 选项合乎题意;对于B 选项,若,但与的方向不确定,则与不一定平行,B 选项不合乎题意; 对于C 选项,若与的方向相反,解析:AC【分析】根据共线向量的定义判断即可.【详解】对于A 选项,若a b =,则a 与b 平行,A 选项合乎题意;对于B 选项,若a b =,但a 与b 的方向不确定,则a 与b 不一定平行,B 选项不合乎题意; 对于C 选项,若a 与b 的方向相反,则a 与b 平行,C 选项合乎题意; 对于D 选项,a 与b 都是单位向量,这两个向量长度相等,但方向不确定,则a 与b 不一定平行,D 选项不合乎题意.故选:AC.【点睛】本题考查向量共线的判断,考查共线向量定义的应用,属于基础题.14.AB【分析】若,则反向,从而;若,则,从而可得;若,则同向,在方向上的投影为若存在实数使得,则共线,但是不一定成立.【详解】对于选项A ,若,则反向,由共线定理可得存在实数使得;对于选解析:AB【分析】若||||||a b a b +=-,则,a b 反向,从而a b λ=;若a b ⊥,则0a b ⋅=,从而可得||||a b a b +=-;若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立.【详解】对于选项A ,若||||||a b a b +=-,则,a b 反向,由共线定理可得存在实数λ使得a b λ=;对于选项B ,若a b ⊥,则0a b ⋅=,222222||2,||2a b a a b b a b a a b b +=+⋅+-=-⋅+,可得||||a b a b +=-; 对于选项C ,若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a ; 对于选项D ,若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 故选:AB.【点睛】本题主要考查平面向量的性质及运算,明确向量的性质及运算规则是求解的关键,侧重考查逻辑推理的核心素养.15.BCD【分析】根据向量的定义及运算逐个分析选项,确定结果.【详解】解:分别以图中的格点为起点和终点的向量中,与是相反向量的共有 18个,故错,以为原点建立平面直角坐标系,,设,若,所以解析:BCD【分析】根据向量的定义及运算逐个分析选项,确定结果.【详解】解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A ,设(,)B m n ,若10OA OB -=,所以22(1)(2)10m n -+-=,(33m -,22n -,且m Z ∈,)n Z ∈,得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确.当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确.若1OA OB ⋅=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈,得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确.故选:BCD .【点睛】本题考查向量的定义,坐标运算,属于中档题.二、平面向量及其应用选择题16.A【分析】设出()()()11AP mAB m AF mAB m AD DF =+-=+-+,求得()2113m AP AB m AD +=+-,再利用向量相等求解即可. 【详解】 连接AF ,因为B ,P ,F 三点共线,所以()()()11AP mAB m AF mAB m AD DF =+-=+-+,因为2CF DF =,所以1133DF DC AB ==, 所以()2113m AP AB m AD +=+-.因为E 是BC 的中点, 所以1122AE AB BC AB AD =+=+. 因为AP AE λ=, 所以()211132m AB m AD AB AD λ+⎛⎫+-=+ ⎪⎝⎭, 则213112m m λλ+⎧=⎪⎪⎨⎪-=⎪⎩, 解得34λ=. 故选:A【点睛】本题主要考查平面向量的线性运算,考查了平面向量基本定理的应用,属于基础题. 17.C【分析】根据平面向量的定义与性质,逐项判断,即可得到本题答案.【详解】因为a b //,所以,a b 的夹角为0或者π,则a 在b 上的投影为||cos ||a a θ=±,故A 不正确;设(1,0),(0,0),(0,2)c b a ===,则有(0)a c b c c ⋅=⋅≠,但a b ≠,故B 不正确; ,||||AB DC AB DC =∴=且//AB DC ,又,,,A B C D 是不共线的四点,所以四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则//AB DC 且||||AB DC =,所以AB DC =,故C 正确;0a b ⋅>时,,a b 的夹角可能为0,故D 不正确.故选:C【点睛】本题主要考查平面向量的定义、相关性质以及数量积.18.B【分析】先化简得0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=,即得点P 为三角形ABC 的垂心.【详解】由于三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,则()()()0,0,0PA PB PC PB PA PC PC PB PA ⋅-=⋅-=⋅-=即有0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=,即有,,PA CB PB CA PC AB ⊥⊥⊥,则点P 为三角形ABC 的垂心.故选:B.【点睛】本题主要考查向量的运算和向量垂直的数量积,意在考查学生对这些知识的理解掌握水平. 19.D【分析】 根据正弦定理,可得111tan tan tan 235A B C ==,令tan 2A k =,tan 3B k =,tan 5C k =,再结合公式tan tan()B A C =-+,列出关于k 的方程,解出k 后,进而可得到B 的大小.【详解】 解:∵2cosA 3cosB 5cosC a b c ==, ∴sin sin sin 2cos 3cos 5cos A B C A B C ==, 即111tan tan tan 235A B C ==, 令tan 2A k =,tan 3B k =,tan 5C k =,显然0k >, ∵tan tan tan tan()tan tan 1A C B A C A C +=-+=-,∴273101k k k =-,解得k =∴tan 3B k ==B =3π. 故选:D .【点睛】本题考查正弦定理边角互化的应用,考查两角和的正切,用k 表示tan 2A k =,tan 3B k =,tan 5C k =是本题关键20.A【分析】首先由条件和正弦定理判断ABC 是等腰直角三角形,由三角形的性质可知直角三角形的外接圆的圆心在斜边的中点,所以由ABC 外接圆的半径可求得三角形的边长,再求面积.【详解】 由正弦定理可知2sin sin sin a b c r A B C ===已知sin cos sin a b c A B B ===sin cos B B =和sin sin C B =,所以45B =,45C =,所以ABC 是等腰直角三角形,由条件可知ABC,即等腰直角三角形的斜边长为所以122ABC S =⨯=. 故选:A【点睛】本题考查正弦定理判断三角形形状,重点考查直角三角形和外接圆的性质,属于基础题型. 21.A【分析】由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan 2C ,从而求得tan C .【详解】∵222222()2S a b c a b ab c =+-=++-,即22212sin 22ab C a b ab c ⨯⋅=++-, ∴222sin 2ab C ab a b c ⋅-=+-, 又222sin 2sin cos 1222a b c ab C ab C C ab ab +-⋅-===-,∴sin cos 12C C +=, 即22cos sin cos 222C C C =,则tan 22C =,∴222tan2242tan 1231tan 2CC C ⨯===---, 故选:A .【点睛】 本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力.22.D【分析】 根据已知条件可得()222AC AB AC AB BC AM BC -=+⋅=⋅,整理可得()0BC MC MB ⋅+=,若E 为BC 中点,可知BC ME ⊥,从而可知M 在BC 中垂线上,可得轨迹必过三角形外心.【详解】 ()()()222AC AB AC AB AC AB AC AB BC AM BC -=+⋅-=+⋅=⋅ ()20BC AC AB AM ∴⋅+-=()()0BC AC AM AB AM BC MC MB ⇒⋅-+-=⋅+=设E 为BC 中点,则2MC MB ME +=20BC ME ∴⋅= BC ME ⇒⊥ME ⇒为BC 的垂直平分线M ∴轨迹必过ABC ∆的外心本题正确选项:D【点睛】本题考查向量运算律、向量的线性运算、三角形外心的问题,关键是能够通过运算法则将已知条件进行化简,整理为两向量垂直的关系,从而得到结论.23.A【分析】由已知条件,令||AC a =,||BC b =,则在△ACM 中结合余弦定理可知48ab ≤,根据三角形面积公式即可求最大值【详解】由题意,可得如下示意图令||AC a =,||BC b =,又2BM MC =,即有1||||33b CM CB == ∴由余弦定理知:222||||||2||||cos AM CA CM CA CM ACB =+-∠2221216()332333a ab ab ab ab b =+-⨯≥-=,当且仅当3a b =时等号成立 ∴有48ab ≤ ∴113sin 4812322ABC S ab C ∆=≤⨯=故选:A【点睛】本题考查了正余弦定理,利用向量的知识判断线段的长度及比例关系,再由余弦定理并应用基本不等式求三角形两边之积的范围,进而结合三角形面积公式求最值24.C【分析】根据三角形外心、重心的概念,以及外心、重心的向量表示,可得结果.【详解】由123||||||1OP OP OP ===,可知点O 是123PP P ∆的外心, 又1230OP OP OP ++=,可知点O 是123PP P ∆的重心, 所以点O 既是123PP P ∆的外心,又是123PP P ∆的重心,故可判断该三角形为等边三角形,故选:C【点睛】本题考查的是三角形外心、重心的向量表示,掌握三角形的四心:重心,外心,内心,垂心,以及熟悉它们的向量表示,对解题有事半功倍的作用,属基础题.25.D【分析】由22()S a b c +=+,利用余弦定理、三角形的面积计算公式可得:1sin 2cos 22bc A bc A bc =+,化为sin 4cos 4A A -=,与22sin cos 1A A +=.解出即可.【详解】解:22()S a b c +=+,2222S b c a bc ∴=+-+, ∴1sin 2cos 22bc A bc A bc =+, 所以sin 4cos 4A A -=,因为22sin cos 1A A +=. 解得15cos 17A =-或cos 1A =-. 因为1cos 1A -<<,所以cos 1A =-舍去.15cos 17A ∴=-. 故选:D .【点睛】本题考查了余弦定理、三角形的面积计算公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.26.B【分析】由条件和余弦定理得到6ab =,再根据三角形的面积公式计算结果.【详解】由条件可知:22226c a b ab =+-+,①由余弦定理可知:222222cos c a b ab C a b ab =+-=+-,②所以由①②可知,62ab ab -=-,即6ab =,则ABC 的面积为11sin 62222S ab C ==⨯⨯=. 故选:B【点睛】 本题考查解三角形,重点考查转化与化归思想,计算能力,属于基础题型.27.B【分析】设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,从而有BC=3x ,在△BCD 中,CD=10,∠BCD=105°,∠BDC=45°,∠CBD=30°,由正弦定理可求 BC ,从而可求x 即塔高.【详解】设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,从而有x ,x , 在△BCD 中,CD=10,∠BCD=60°+30°+15°=105°,∠BDC=45°,∠CBD=30° 由正弦定理可得,sin sin BC CD BDC CBD =可得,BC=10sin 45sin 30x ==.则;所以塔AB 的高是米;故选B .【点睛】本题主要考查了正弦定理在实际问题中的应用,解决本题的关键是要把实际问题转化为数学问题,即正确建立数学模型,结合已知把题目中的数据转化为三角形中的数据,进而选择合适的公式进行求解.28.A【分析】根据平面向量的投影的概念,结合向量的数量积的运算公式,列出方程,即可求解.【详解】由题意,点(),1A a ,()2,1B -,()4,5C , O 为坐标原点,根据OA 与OB 在OC 方向上的投影相同,则OA OC OB OCOC OC ⋅⋅=,即OA OC OB OC ⋅=⋅,可得4152415a +⨯=⨯-⨯,解得12a =-. 故选:A.【点睛】本题主要考查了平面向量的数量积的坐标运算,以及向量的投影的定义,其中解答中熟记向量投影的定义,以及向量的数量积的运算公式,列出方程是解答的关键,着重考查运算与求解能力.29.A【解析】分析:根据向量加法、减法法则将BD AC ⋅转化为()()AD AB AB BC -+即可求解. 详解:由题可得:BD AC ⋅=()()AD AB AB BC -+=2211()()24222BC AB AB BC BC AB -+=-=-=-,故选A. 点睛:考查向量的线性运算,将问题转化为已知的信息()()AD AB AB BC -+是解题关键. 30.B【分析】先根据向量的模将||+||m n n +转化为关于||n 的函数,再利用导数求极值,研究单调性,进而得最大值.【详解】()22224419||=1||3m m n m nn m n =+∴+=+⋅+=,,,22n m n +⋅=,()2222=52-m n m m n n n ∴+=++⋅,25||+||m n n n n ∴+=-+,令()(0x x f x x n =<≤=,则()'1f x =,令()'0f x =,得x =∴当0x << ()'0f x >x << ()'0f x <, ∴当x =时, ()f x 取得最大值f =⎝⎭,故选B. 【点睛】 向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题. 31.C 【详解】 试题分析:因为OA OB OC ==,所以O 到定点,,A B C 的距离相等,所以O 为ABC ∆的外心,由0NA NB NC ++=,则NA NB NC +=-,取AB 的中点E ,则2NA NB NE CN +=-=,所以2NE CN =,所以N 是ABC ∆的重心;由•••PA PB PB PC PC PA ==,得()0PA PC PB -⋅=,即0AC PB ⋅=,所以AC PB ⊥,同理AB PC ⊥,所以点P 为ABC ∆的垂心,故选C.考点:向量在几何中的应用.32.D【分析】由题,延长AP 交BC 于点D ,利用共线定理,以及向量的运算求得向量,,CP CA CD 的关系,可得DP 与AD 的比值,再利用面积中底面相同可得结果.【详解】延长AP 交BC 于点D ,因为A 、P 、D 三点共线,所以(1)CP mCA nCD m n =++=,设CD kCB =代入可得CP mCA nkCB =+即()(1)AP AC mAC nk AB AC AP m nk AC nk AB -=-+-⇒=--+ 又因为1142AP AB AC =+,即11,142nk m nk =--=,且1m n += 解得13,44m n == 所以1344CP CA CD =+可得4AD PD = 因为BPC ∆与ABC ∆有相同的底边,所以面积之比就等于DP 与AD 之比 所以BPC ∆与ABC ∆的面积之比为14故选D【点睛】本题考查了向量的基本定理,共线定理以及四则运算,解题的关键是在于向量的灵活运用,属于较难题目.33.B【解析】【分析】利用向量的定义和运算法则逐一考查所给的命题是否正确即可得到正确命题的个数.【详解】逐一考查所给的命题:。

辽宁省庄河市高级中学高中数学平面向量多选题100及解析

辽宁省庄河市高级中学高中数学平面向量多选题100及解析

辽宁省庄河市高级中学高中数学平面向量多选题100及解析一、平面向量多选题1.对于给定的ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论正确的是( ) A .212AO AB AB ⋅=B .OA OB OA OC OB OC ⋅=⋅=⋅C .过点G 的直线l 交AB AC 、于E F 、,若AE AB λ=,AF AC μ=,则113λμ+=D .AH 与cos cos AB AC AB BAC C+共线【答案】ACD 【分析】根据外心在AB 上的射影是AB 的中点,利用向量的数量积的定义可以证明A 正确;利用向量的数量积的运算法则可以OA OB OA OC =即OA BC ⊥,在一般三角形中易知这是不一定正确的,由此可判定B 错误;利用三角形中线的定义,线性运算和平面向量基本定理中的推论可以证明C 正确;利用向量的数量积运算和向量垂直的条件可以判定cos cos AB AC AB BAC C+与BC 垂直,从而说明D 正确.【详解】如图,设AB 中点为M,则OM AB ⊥,AO cos OAM AM ∴∠=()21·cos cos ?22ABAO AB AO AB OAB AB AO OAB AB AB ∴=∠=∠==,故A 正确;··OAOB OAOC =等价于()·0OA OB OC -=等价于·0OACB =,即OA BC ⊥,对于一般三角形而言,O 是外心,OA 不一定与BC 垂直,比如直角三角形ABC 中, 若B 为直角顶点,则O 为斜边AC 的中点,OA 与BC 不垂直.故B 错误;设BC 的中点为D ,则()211111133333AG AD AB AC AEAF AE AF λμλμ⎛⎫==+=+=+ ⎪⎝⎭, ∵E,F,G 三点共线,11133λμ∴+=,即113λμ+=,故C 正确; cos cos cos cos AB AC AB BC AC BC BC AB B AC C AB B AC C ⎛⎫⋅⋅ ⎪+⋅=+ ⎪⎝⎭()cos cos cos cos AB BC B AC BC C AB BAC Cπ⋅-⋅=+0BC BC =-+=,∴cos cos AB AC AB BAC C+与BC 垂直,又AH BC ⊥,∴cos cos AB AC AB BAC C+与AH共线,故D 正确. 故选:ACD. 【点睛】本题考查平面向量线性运算和数量及运算,向量垂直和共线的判定,平面向量分解的基本定理,属综合小题,难度较大,关键是熟练使用向量的线性运算和数量积运算,理解三点共线的充分必要条件,进而逐一作出判定.2.如图,A 、B 分别是射线OM 、ON 上的点,下列以O 为起点的向量中,终点落在阴影区域内的向量是( )A .2OA OB + B .1123OA OB +C .3143OA OB + D .3145OA OB + 【答案】AC 【分析】利用向量共线的条件可得:当点P 在直线AB 上时,等价于存在唯一的一对有序实数u ,v ,使得OP uOA vOB =+成立,且u +v =1.可以证明点P 位于阴影区域内等价于:OP uOA vOB =+,且u >0,v >0,u +v >1.据此即可判断出答案. 【详解】由向量共线的条件可得:当点P 在直线AB 上时,存在唯一的一对有序实数u ,v ,使得OP uOA vOB =+成立,且u +v =1.可以证明点P 位于阴影区域内等价于: OP uOA vOB =+,且u >0,v >0,u +v >1. 证明如下:如图所示,点P 是阴影区域内的任意一点,过点P 作PE //ON ,PF //OM ,分别交OM ,ON 于点E ,F ;PE 交AB 于点P ′,过点P ′作P ′F ′//OM 交ON 于点F ′,则存在唯一一对实数(x ,y ),(u ′,v ′),使得OP xOE yOF u OA v OB ''''=+=+,且u ′+v ′=1,u ′,v ′唯一;同理存在唯一一对实数x ′,y ′使得OP x OE y OF uOA vOB =+=+'', 而x ′=x ,y ′>y ,∴u =u ′,v >v ′,∴u +v >u ′+v ′=1,对于A ,∵1+2>1,根据以上结论,∴点P 位于阴影区域内,故A 正确; 对于B ,因为11123+<,所以点P 不位于阴影区域内,故B 不正确; 对于C ,因为311314312+=>,所以点P 位于阴影区域内,故C 正确; 对于D ,因为311914520+=<,所以点P 不位于阴影区域内,故D 不正确; 故选:AC. 【点睛】关键点点睛:利用结论:①点P 在直线AB 上等价于存在唯一的一对有序实数u ,v ,使得OP uOA vOB =+成立,且u +v =1;②点P 位于阴影区域内等价于OP uOA vOB =+,且u >0,v >0,u +v >1求解是解题的关键.3.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )A .//PB CQ B .2133BP BA BC =+ C .0PA PC ⋅< D .2S =【答案】BCD 【分析】本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确. 【详解】解:因为20PA PC +=,2QA QB =,所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;因为()121333BP BA AP BA BC BA BA BC =+=+-=+,故选项B 正确;因为112223132APQ ABCAB hS S AB h ⨯⨯==⋅△△,所以,2APQ S =△,故选项D 正确. 故选:BCD 【点睛】本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题.4.已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A .1122AD AB AC =+ B .0MA MB MC ++= C .2133BM BA BD =+ D .1233CM CA CD =+ 【答案】ABD【分析】根据向量的加减法运算法则依次讨论即可的答案. 【详解】解:如图,根据题意得M 为AD 三等分点靠近D 点的点. 对于A 选项,根据向量加法的平行四边形法则易得1122AD AB AC =+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,2MA MD =-,所以0MA MB MC ++=,故正确;对于C 选项,()2212=3333BM BA AD BA BD BA BA BD =+=+-+,故C 错误; 对于D 选项,()22123333CM CA AD CA CD CA CA CD =+=+-=+,故D 正确. 故选:ABD【点睛】本题考查向量加法与减法的运算法则,是基础题.5.已知,a b 是单位向量,且(1,1)a b +=-,则( ) A .||2a b += B .a 与b 垂直C .a 与a b -的夹角为4π D .||1a b -=【答案】BC 【分析】(1,1)a b +=-两边平方求出||2a b +=;利用单位向量模长为1,求出0a b ⋅=;||a b -平方可求模长;用向量夹角的余弦值公式可求a 与a b -的夹角.【详解】由(1,1)a b +=-两边平方,得2222||21(12|)|a b a b ++⋅=+-=, 则||2a b +=,所以A 选项错误;因为,a b 是单位向量,所以1122a b ++⋅=,得0a b ⋅=,所以B 选项正确;则222||22a b a b a b -=+-⋅=,所以||2a b -=,所以D 选项错误;2()cos ,2||||1a a b a a b a a b ⋅-〈-〉====-⨯, 所以,a 与a b -的夹角为4π.所以C 选项正确; 故选:BC. 【点睛】本题考查平面向量数量积的应用. 求向量模的常用方法:(1)若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式2+a x y =(2)若向量a b , 是以非坐标形式出现的,求向量a 的模可应用公式22•a a a a ==或2222||)2?(a b a b aa b b ==+,先求向量模的平方,再通过向量数量积的运算求解.判断两向量垂直:根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 解两个非零向量之间的夹角:根据公式•a bcos a b ==求解出这两个向量夹角的余弦值.6.已知正三角形ABC 的边长为2,设2AB a =,BC b =,则下列结论正确的是( ) A .1a b += B .a b ⊥C .()4a b b +⊥D .1a b ⋅=-【答案】CD 【分析】分析知1a =,2=b ,a 与b 的夹角是120︒,进而对四个选项逐个分析,可选出答案. 【详解】分析知1a =,2=b ,a 与b 的夹角是120︒. 由12cos12010a b ︒⋅=⨯⨯=-≠,故B 错误,D 正确;由()22221243a ba ab b +=+⋅+=-+=,所以3a b +=,故A 错误;由()()2144440a b b a b b+⋅=⋅+=⨯-+=,所以()4a b b +⊥,故C 正确.故选:CD 【点睛】本题考查正三角形的性质,考查平面向量的数量积公式的应用,考查学生的计算求解能力,属于中档题.7.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =B .AB BC =C .AB CD AD BC -=+ D .AD CD CD CB +=-【答案】BCD 【分析】由向量的加法减法法则及菱形的几何性质即可求解. 【详解】菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的, 所以B 结论正确,A 结论错误;因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确; 因为AD CD BC CD BD +=+=,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD 【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.8.已知ABC ∆是边长为()20a a >的等边三角形,P 为ABC ∆所在平面内一点,则()PA PB PC ⋅+的值可能是( )A .22a -B .232a -C .243a -D .2a -【答案】BCD 【分析】通过建系,用坐标来表示向量,根据向量的乘法运算法则以及不等式,可得结果. 【详解】建立如图所示的平面直角坐标系.设(),P x y ,又()3A a ,(),0B a -,(),0C a ,则()3PA x a y =--,(),PB a x y =---,(),PC a x y =--.则()(),,a x y a P PC x y B -+--+-=- 即()2,2PB x y PC --+= 所以()()()2,2x PA PB P y x y C =--⋅--⋅+则()PA PB PC ⋅+2222xy =+-即()PA PB PC ⋅+2223222x y a ⎛⎫=+- ⎪ ⎪⎝⎭. 所以()PA PB PC ⋅+232a ≥- 故选:BCD. 【点睛】本题主要通过建系的方法求解几何中向量的问题,属中档题.9.ABC ∆是边长为3的等边三角形,已知向量a 、b 满足3AB a =,3AC a b =+,则下列结论中正确的有( ) A .a 为单位向量 B .//b BCC .a b ⊥D .()6a b BC +⊥【答案】ABD 【分析】求出a 可判断A 选项的正误;利用向量的减法法则求出b ,利用共线向量的基本定理可判断B 选项的正误;计算出a b ⋅,可判断C 选项的正误;计算出()6a b BC +⋅,可判断D 选项的正误.综合可得出结论. 【详解】 对于A 选项,3AB a =,13a AB ∴=,则113a AB ==,A 选项正确; 对于B 选项,3AC ab AB b =+=+,b AC AB BC ∴=-=,//b BC ∴,B 选项正确;对于C 选项,21123cos 0333a b AB BC π⋅=⋅=⨯⨯≠,所以a 与b 不垂直,C 选项错误; 对于D 选项,()()()2260a b BC AB AC AC AB AC AB +⋅=+⋅-=-=,所以,()6a b BC +⊥,D 选项正确.故选:ABD. 【点睛】本题考查向量有关命题真假的判断,涉及单位向量、共线向量的概念的理解以及垂直向量的判断,考查推理能力,属于中等题.10.如图,已知点O 为正六边形ABCDEF 中心,下列结论中正确的是( )A .0OA OC OB ++=B .()()0OA AF EF DC -⋅-= C .()()OA AF BC OA AF BC ⋅=⋅D .OF OD FA OD CB +=+-【答案】BC【分析】利用向量的加法法则、减法法则的几何意义,对选项进行一一验证,即可得答案. 【详解】对A ,2OA OC OB OB ++=,故A 错误;对B ,∵OA AF OA OE EA -=-=,EF DC EF EO OF -=-=,由正六边形的性质知OF AE ⊥,∴()()0OA AF EF DC -⋅-=,故B 正确; 对C ,设正六边形的边长为1,则111cos1202OA AF ⋅=⋅⋅=-,111cos602AF BC ⋅=⋅⋅=, ∴()()OA AF BC OA AF BC ⋅=⋅1122BC OA ⇔-=,式子显然成立,故C 正确; 对D ,设正六边形的边长为1,||||1OF OD OE +==,||||||||3FA OD CB OD DC CB OC OA AC +-=+-=-==,故D 错误;故选:BC. 【点睛】本题考查向量的加法法则、减法法则的几何意义,考查数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意向量的起点和终点.。

辽宁省庄河市高级中学2017-2018学年高二上学期数学理科周测:(4)

辽宁省庄河市高级中学2017-2018学年高二上学期数学理科周测:(4)

高二理科周测4选用模版:3选9填2答(A4)时间:60满分:84命卷人:刘晓辉审核人:考试日期:2017-10-25一、选择题(共3小题)1 (id:129437).已知椭圆,若其长轴在轴上且焦距为,则等于()2 (id:60730).在平面直角坐标中,椭圆的中心为原点,焦点,在轴上,离心率为,过的直线交C于,两点,且△的周长为,那么的方程为()3 (id:63358).设,分别是椭圆的左、右焦点,过的直线交椭圆于两点,若,,则椭圆的离心率为()二、填空题(共9小题)4 (id:172161).若椭圆的焦点在轴上,过点作圆的切线,切点分别为,直线恰好经过椭圆的右焦点和上顶点,则椭圆方程是__________.5 (id:63407).是椭圆上一定点,,是椭圆的两个焦点,若,,则椭圆的离心率为__________6 (id:171869).以两条坐标轴为对称轴的椭圆过点和,则此椭圆的方程是__________.7 (id:170966).如图,把椭圆的长轴(线段)成等份,过每个分点作轴的垂线,分别交椭圆于七个点,是椭圆的左焦点,则__________.8 (id:63411).设椭圆的左、右焦点分别为,是上的点,,,则椭圆的离心率为__________9 (id:167848).已知椭圆:,点与的焦点不重合,若关于的焦点的对称点分别为,线段的中点在上,则__________.10 (id:63402).已知中心在原点,对称轴为坐标轴,长半轴长与短半轴长的和为,离心率为的椭圆的标准方程为__________.11 (id:135890).在中,,。

若以为焦点的椭圆经过点,则该椭圆的离心率__________12 (id:62203).如图,正六边形的两个顶点、为椭圆的两个焦点,其余个顶点在椭圆上,则该椭圆的离心率是__________.三、简答题(共2小题)13 (id:60886).如图,在中,,,一个椭圆以为焦点,以、分别作为长、短轴的一个端点,以原点作为中心,求该椭圆的方程.14 (id:132171).从椭圆上一点P向x轴作垂线,垂足恰为左焦点,又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且AB//OP,,求椭圆的方程。

高二数学寒假作业第2天三角函数与平面向量文(精品文档)

高二数学寒假作业第2天三角函数与平面向量文(精品文档)

第2天 三角函数与平面向量、解三角形【课标导航】1.掌握三角函数的概念与图像、性质;2.三角恒等变换;3.解三角形;4.平面向量. 一、选择题1. 向量++++)()( 化简后等于( ) A. B.C.D. 2. 在)2,0(π上是增函数,且最小正周期为π的函数是( )A. ||sin x y =B. |cos |x y =C. ||cos x y =D. |sin |x y =3.在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .5 4.对任意向量,a b ,下列关系式中不恒成立的是( ) A .||||||a b a b ⋅≤ B. ||||||||a b a b -≤- C .22()||a b a b +=+D .22()()a b a b a b +⋅-=-5.已知下列命题中:(1)若k R ∈,且0kb =,则0k =或0b =;(2)若0a b ⋅=,则0a =或0b =;(3)若不平行的两个非零向量b a ,,满足||||b a =,则0)()(=-⋅+b a b a ;(4)若a 与b 平行,则 a b a b ⋅=⋅.其中真命题的个数是( )A. 0B. 1C.2D. 36. 为了得到函数错误!未找到引用源。

的图象,可以将函数错误!未找到引用源。

的图象 ( )A.向右平移错误!未找到引用源。

个单位B.向右平移错误!未找到引用源。

个单位C.向左平移错误!未找到引用源。

个单位D.向左平移错误!未找到引用源。

个单位 7. 函数)sin(ϕω+=x A y (其中)0,0,0πϕω<<>>A 的部分图象 如图所示,则此函数的解析式是( )A.)24sin(22ππ+=x y B.)434sin(22ππ+=x y C.)48sin(22ππ+=x y D.322sin()84y x ππ=-8. △ABC中,若BC BA AC AB ⋅=⋅,则△ABC必为 ( ) A. 直角三角形 B. 钝角三角形 C. 锐角三角形D.等腰三角形9. 已知向量e =(-45,35),点O(0,0)和A(1,-2)在e 所在直线上的射影分别为O 1和A 1,则11O A =λe ,则λ=( ) A.115B.-115C.2D.-210.若,a b 是非零向量且满足(2)a b a -⊥,(2)b a b -⊥ ,则a 与b 的夹角是( ) A.6π B. 3π C. 32π D. 65π二、填空题11. 如图,平行四边形ABCD 中,E,F 分别是BC,DC 的中点,G 为交点,若AB a =,AD b =,试以,a b 为基底表示CG = . 12.设20πθ<<,向量)cos ,1(),cos ,2(sin θθθ-==b a ,若0=⋅,则=θtan .13.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知错误!未找到引用源。

辽宁省庄河市高级中学2017-2018学年高二数学下学期期中试题 理(扫描版)(1)

辽宁省庄河市高级中学2017-2018学年高二数学下学期期中试题 理(扫描版)(1)

辽宁省庄河市高级中学2017-2018学年高二数学下学期期中试题理(扫描版)庄河高中2017-2018学年高二(下)期中考试数学试题答案一、选择题:二、填空题:13. 乙和丙 14. a ≤533ln .16≤≤-a三、解答题:17.解:∵1,,DD DC DA 两两垂直,∴以1,,DD DC DA 所在直线为z y x ,,轴,建立空间直角坐标系,如图所示,∵棱长为 3, 11==CF E A ,则D (0,0,0),A (3,0,0),B (3,3,0),C (0,3,0),D 1(0,0,3),A 1(3,0,3),B 1(3,3,3),C 1(0,3,3),E (3,0,2),F (0,3,1),∴)3,3,3(1-=,)1,0,3(1-=D∴153021999939,cos 11-=+++-->=<D AC , 两条异面直线 AC 1与 D 1E 所成角的余弦值是15302-----------------5分 (2)设平面 BED 1F 的法向量是),,(z y x n =,又∵)2,3,0(-=BE ,)1,0,3(-=BF , ⊥⊥,,∴0,=⋅=⋅,即⎩⎨⎧=+-=+-03023z x z y ,令3=z ,则2,1==y x ,所以)3,2,1(=n ,又)3,3,3(1-=AC , ∴21422999941963,cos 1=++++++->=<n AC , ∴直线AC 1与平面 BED 1F 所成角是><-AC ,21π,它的正弦值是>=<=><-AC AC ,cos ),2sin(11π21422.------10分 18. 解:(1)∵∥m n ,∴cos (4)cos c B a b C =-, …………2分由正弦定理,得sin cos (4sin sin )cos C B A B C =-,化简,得sin()4sin cos B C A C +=﹒ …………4分 ∵A B C ++=p ,∴sin sin()A B C =+﹒又∵()0,A ∈p ,∵sin 0A >,∴1cos 4C =. …………6分(2)∵()0,C ∈p , 1cos 4C =,∴sin C ==.∵1sin 2S ab C ==,∴2ab =﹒① …………8分∵c 22132a b ab =+-, ∴224a b +=,② …………10分由①②,得42440a a -+=,从而22a =,a =,所以b =,∴a b == …………12分19.解:(1)∵2n+1,S n ,a 成等差数列(n ∈N *).∴2S n =2n+1+a ,当n=1时,2a 1=4+a ,当n ≥2时,a n =S n ﹣S n ﹣1=2n ﹣1.∵数列{a n }是等比数列,∴a 1=1,则4+a=2,解得a=﹣2,∴数列{a n }的通项公式为a n =2n ﹣1.------6分(2)由(1)得b n =(2n+1)log 2(a n a n+1)=(2n+1)(2n ﹣1),∴==,∴数列{}的前n 项和T n =+…+==.-----------12分 20.解:(Ⅰ)()()()()''1,01,00kx f x kx e f f =+==,曲线()y f x =在点(0,(0))f 处的切线方程为y x =.----4分(Ⅱ)由()()'10kx f x kx e =+=,得()10x k k =-≠,若0k >,则当1,x k ⎛⎫∈-∞-⎪⎝⎭时,()'0f x <,函数()f x 单调递减, 当1,,x k ⎛⎫∈-+∞ ⎪⎝⎭时,()'0f x >,函数()f x 单调递增, 若0k <,则当1,x k ⎛⎫∈-∞-⎪⎝⎭时,()'0f x >,函数()f x 单调递增, 当1,,x k ⎛⎫∈-+∞ ⎪⎝⎭时,()'0f x <,函数()f x 单调递减,------8分 (Ⅲ)由(Ⅱ)知,若0k >,则当且仅当11k-≤-, 即1k ≤时,函数()f x ()1,1-内单调递增,若0k <,则当且仅当11k-≥, 即1k ≥-时,函数()f x ()1,1-内单调递增,综上可知,函数()f x ()1,1-内单调递增时,k 的取值范围是[)(]1,00,1-.------12分21.解:(Ⅰ)由PA ⊥平面ABCD ,得DE ⊥PA .连接AE ,因为2AD AB =,所以由勾股定理可得DE ⊥AE .所以DE ⊥平面PAE ,因此PE ⊥ED . …………6分 (Ⅱ)因为PA ⊥平面ABCD ,所以∠PBA 是PB 与平面ABCD所成的角.得∠PBA =45°,PA =1.如图建立所示的空间直角坐标系A -xyz , 则A (0,0,0),B (1,0,0),D (0,2,0),P (0,0,1),E (1,1,0),AB =(1,0,0),PE =(1,1,-1),DE =(1,-1,0).易证AB ⊥平面PAD ,所以AB 是平面PAD 的法向量.设平面PED 的法向量为n =(x ,y ,z ),由00PE DE ⎧⋅=⎪⎨⋅=⎪⎩n n 得00x y z x y +-=⎧⎨-=⎩.令z =1,得x =y =12,所以n =11(,,1)22.1cos ,6|||AB AB AB ⋅<>===n n n .因为二面角A PD E --是锐二面角,所以它的余弦值是6…………12分 22.解: (Ⅰ)依题,函数()f x 的定义域为(0,)+∞,所以方程()0f x '=在(0,)+∞有两个不同根.即,方程ln 0x ax -=在(0,)+∞有两个不同根.…1分(解法一)转化为,函数ln y x =与函数y ax =的图像在(0,)+∞上有两个不同交点,如图. ……………可见,若令过原点且切于函数ln y x =图像的直线斜率为k ,只须0a k <<.令切点00A(,ln )x x ,所以001|x x k y x ='==,又00ln x k x =,所以000ln 1x x x =, 解得,0x e =,于是1k e =,所以10a e<<.………………………………………6分 (解法二)转化为,函数ln ()x g x x =与函数y a =的图像在(0,)+∞上有两个不同交点. 又21ln ()x g x x-'=,即0x e <<时,()0g x '>,x e >时,()0g x '<, 所以()g x 在(0,)e 上单调增,在(,)e +∞上单调减.从而()()g x g e =极大1e =………3分 又()g x 有且只有一个零点是1,且在0x →时,()g x →-∞,在在x →+∞时,()0g x →, 所以()g x 的草图如下,可见,要想函数ln ()x g x x =与函数y a =的 图像在(0,)+∞上有两个不同交点,只须10a e<<.………………………………6分(解法三)令()ln g x x ax =-,从而转化为函数()g x 有两个不同零点, 而11()ax g x ax x x-'=-=(0x >) 若0a ≤,可见()0g x '>在(0,)+∞上恒成立,所以()g x 在(0,)+∞单调增, 此时()g x 不可能有两个不同零点. ………………………………………………3分 若0a >,在10x a <<时,()0g x '>,在1x a>时,()0g x '<, 所以()g x 在1(0,)a 上单调增,在1(,)a +∞上单调减,从而1()()g x g a =极大1ln 1a =- 又因为在0x →时,()g x →-∞,在在x →+∞时,()g x →-∞,于是只须: ()0g x >极大,即1ln10a ->,所以10a e <<. 综上所述,10a e <<……………………………………………………………………6分 (Ⅱ)因为112e x x λλ+<⋅等价于121ln ln x x λλ+<+.由(Ⅰ)可知12,x x 分别是方程ln 0x ax -=的两个根,即11ln x ax =,22ln x ax =所以原式等价于121ax ax λλ+<+12()a x x λ=+,因为0>λ,120x x <<, 所以原式等价于121a x x λλ+>+.………………………………………………………7分 又由11ln x ax =,22ln x ax =作差得,1122ln ()x a x x x =-,即1212lnx x a x x =-. 所以原式等价于121212ln1x x x x x x λλ+>-+, 因为120x x <<,原式恒成立,即112212(1)()lnx x x x x x λλ+-<+恒成立. 令12x t x =,(0,1)t ∈, 则不等式(1)(1)ln t t t λλ+-<+在(0,1)t ∈上恒成立. ………………………………8分 令(1)(1)()ln t h t t t λλ+-=-+,又221(1)()()h t t t λλ+'=-+22(1)()()t t t t λλ--=+, 当21λ≥时,可见(0,1)t ∈时,()0h t '>,所以()h t 在(0,1)t ∈上单调增,又(1)0h =, ()0h t <在(0,1)t ∈恒成立,符合题意. ………………………………………10分 当21λ<时, 可见2(0,)t λ∈时,()0h t '>, 2(,1)t λ∈时()0h t '<,所以()h t 在2(0,)t λ∈时单调增,在2(,1)t λ∈时单调减, 又(1)0h =,所以()h t 在(0,1)t ∈上不能恒小于0,不符合题意,舍去.综上所述, 若不等式112e x x λλ+<⋅恒成立,只须21λ≥,又0λ>,所以1λ≥.…12分。

辽宁省庄河市高级中学平面向量及其应用单元测验试卷 百度文库

辽宁省庄河市高级中学平面向量及其应用单元测验试卷 百度文库

一、多选题1.题目文件丢失!2.正方形ABCD 的边长为1,记AB a =,BC b =,AC c =,则下列结论正确的是( )A .()0a b c -⋅= B .()0a b c a +-⋅= C .()0a c b a --⋅=D .2a b c ++=3.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A bB a=,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形4.在ABC 中,a ,b ,c 分别是内角A ,B ,C 所对的边,32sin a c A =,且02C <<π,4b =,则以下说法正确的是( )A .3C π=B .若72c =,则1cos 7B =C .若sin 2cos sin A B C =,则ABC 是等边三角形D .若ABC 的面积是23,则该三角形外接圆半径为45.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )A .//PB CQ B .2133BP BA BC =+ C .0PA PC ⋅<D .2S =6.在RtABC 中,BD 为斜边AC 上的高,下列结论中正确的是( )A .2AB AB AC B .2BC CB AC C .2ACAB BDD .2BDBA BDBC BD7.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH ,其中1OA =,则下列结论正确的有( )A .22OA OD ⋅=-B .2OB OH OE +=-C .AH HO BC BO ⋅=⋅D .AH 在AB 向量上的投影为22-8.设a 为非零向量,下列有关向量||aa 的描述正确的是( ) A .||1||a a =B .//||a a aC .||a a a =D .||||a a a a ⋅=9.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa bB .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λab ,则a b a b +=-10.设a 、b 、c 是任意的非零向量,则下列结论不正确的是( ) A .00a ⋅= B .()()a b c a b c ⋅⋅=⋅⋅ C .0a b a b ⋅=⇒⊥D .()()22b b a b a a +-=⋅-11.(多选)若1e ,2e 是平面α内两个不共线的向量,则下列说法不正确的是( ) A .()12,e e λμλμ+∈R 可以表示平面α内的所有向量B .对于平面α中的任一向量a ,使12a e e λμ=+的实数λ,μ有无数多对C .1λ,1μ,2λ,2μ均为实数,且向量1112e e λμ+与2212e e λμ+共线,则有且只有一个实数λ,使()11122122e e e e λμλλμ+=+D .若存在实数λ,μ,使120e e λμ+=,则0λμ==12.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个B .满足10OA OB -=B 共有3个C .存在格点B ,C ,使得OA OB OC =+D .满足1OA OB ⋅=的格点B 共有4个 13.下列命题中正确的是( ) A .单位向量的模都相等B .长度不等且方向相反的两个向量不一定是共线向量C .若a 与b 满足a b >,且a 与b 同向,则a b >D .两个有共同起点而且相等的向量,其终点必相同 14.下列说法中错误的是( )A .向量AB 与CD 是共线向量,则A ,B ,C ,D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =D .温度含零上温度和零下温度,所以温度是向量 15.化简以下各式,结果为0的有( ) A .AB BC CA ++ B .AB AC BD CD -+- C .OA OD AD -+D .NQ QP MN MP ++-二、平面向量及其应用选择题16.已知1a =,3b =,且向量a 与b 的夹角为60︒,则2a b -=( ) A 7B .3C 11D 1917.若△ABC 中,2sin()sin()sin A B A B C +-=,则此三角形的形状是( ) A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形18.三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,那么点P 是三角形ABC 的( ) A .重心B .垂心C .外心D .内心19.设θ为两个非零向量,a b →→的夹角,已知对任意实数t ,||b t a →→-的最小值为1,则( )A .若θ确定,则||a →唯一确定 B .若θ确定,则||b →唯一确定 C .若||a →确定,则θ唯一确定D .若||b →确定,则θ唯一确定20.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m21.在ABC 中,若A B >,则下列结论错误的是( )A .sin sin AB >B .cos cos A B <C .sin2sin2A B >D .cos2cos2A B <22.在ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,则下列各等式中不正确...的是( ) A .23BG BE = B .2CG GF = C .12DG AG =D .0GA GB GC ++=23.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 ( )A .33AB AC HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+D .24AB AC HM MO +=-24.O 为ABC ∆内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知0a OA b OB c OC ⋅+⋅+⋅=,且tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,若3a =边BC 所对的ABC ∆外接圆的劣弧长为( ) A .23π B .43π C .6π D .3π25.在△ABC 中,M 为BC 上一点,60,2,||4ACB BM MC AM ∠=︒==,则△ABC 的面积的最大值为( ) A .123B .63C .12D .18326.如图,在直角梯形ABCD 中,22AB AD DC ==,E 为BC 边上一点,BC 3EC =,F 为AE 的中点,则BF =( )A .2133AB AD - B .1233AB AD - C .2133AB AD -+ D .1233AB AD -+ 27.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .7228.如图,在ABC 中,点D 在线段BC 上,且满足12BD DC =,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N 若AM mAB =,AN nAC =,则( )A .m n +是定值,定值为2B .2m n +是定值,定值为3C .11m n +是定值,定值为2 D .21m n+是定值,定值为3 29.设(),1A a ,()2,1B -,()4,5C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a =( )A .12-B .12C .-2D .230.如图所示,在ABC 中,点D 是边BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM AB AC λμ=+,则λμ+=( )A .1-B .12-C .2-D .32-31.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( ) A .()8bc b c +> B .()162ab a b +> C .612abc ≤≤D .1224abc ≤≤32.如图,在ABC 中,14AD AB →→=,12AE AC →→=,BE 和CD 相交于点F ,则向量AF →等于( )A .1277AB AC →→+B .1377AB AC →→+C .121414AB AC →→+ D .131414AB AC →→+ 33.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( ) A .54B .2C .174D .434.在ABC 中,AB AC BA BC CA CB →→→→→→⋅=⋅=⋅,则ABC 的形状为( ). A .钝角三角形 B .等边三角形 C .直角三角形D .不确定35.在△ABC 中,AB =a ,BC =b ,且a b ⋅>0,则△ABC 是( ) A .锐角三角形B .直角三角形C .等腰直角三角形D .钝角三角形【参考答案】***试卷处理标记,请不要删除一、多选题 1.无 2.ABC 【分析】作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解 解析:ABC 【分析】作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解】 如下图所示:对于A 选项,四边形ABCD 为正方形,则BD AC ⊥,a b AB BC AB AD DB -=-=-=,()0a b c DB AC ∴-⋅=⋅=,A 选项正确;对于B 选项,0a b c AB BC AC AC AC +-=+-=-=,则()00a b c a a +-⋅=⋅=,B 选项正确;对于C 选项,a c AB AC CB -=-=,则0a c b CB BC --=-=,则()0a c b a --⋅=,C 选项正确;对于D 选项,2a b c c ++=,222a b c c ∴++==,D 选项错误. 故选:ABC. 【点睛】本题考查平面向量相关命题正误的判断,同时也考查了平面向量加、减法法则以及平面向量数量积的应用,考查计算能力,属于中等题.3.D 【分析】在中,根据,利用正弦定理得,然后变形为求解. 【详解】 在中,因为, 由正弦定理得, 所以,即, 所以或, 解得或.故是直角三角形或等腰三角形. 故选: D. 【点睛】 本题主要考查解析:D 【分析】 在ABC 中,根据cos cos A b B a =,利用正弦定理得cos sin cos sin A BB A=,然后变形为sin 2sin 2A B =求解.【详解】在ABC 中,因为cos cos A bB a =, 由正弦定理得cos sin cos sin A BB A=, 所以sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以22A B =或22A B π=-,解得A B =或2A B π+=.故ABC 是直角三角形或等腰三角形. 故选: D. 【点睛】本题主要考查利用正弦定理判断三角形的形状,还考查了运算求解的能力,属于基础题.4.AC 【分析】对于,利用正弦定理可将条件转化得到,即可求出; 对于,利用正弦定理可求得,进而可得;对于,利用正弦定理条件可转化为,结合原题干条件可得,进而求得;对于,根据三角形面积公式求得,利解析:AC 【分析】对于A2sin sin A C A =,即可求出C ; 对于B ,利用正弦定理可求得sin B ,进而可得cos B ;对于C ,利用正弦定理条件可转化为2cos a c B =,结合原题干条件可得B ,进而求得A B C ==;对于D ,根据三角形面积公式求得a ,利用余弦定理求得c ,进而由正弦定理求得R . 【详解】2sin c A =2sin sin A C A =, 因为sin 0A ≠,故sin C =, 因为(0,)2C π∈,则3C π=,故A 正确;若72c =,则由正弦定理可知sin sin c b C B =,则4sin sin 72b B Cc == 因为(0,)B π∈,则1cos 7B =±,故B 错误; 若sin 2cos sin A BC =,根据正弦定理可得2cos a c B =,2sin c A =,即sin a A =sin 2cos A c B =,所以sin A B =,因为23A B C ππ+=-=,则23A B π=-,故2sin()3B B π-=,1sin 2B B B +=,即1sin 2B B =,解得tan B =3B π=,则3A π=,即3A B C π===,所以ABC 是等边三角形,故C 正确; 若ABC的面积是1sin 2ab C =2a =, 由余弦定理可得22212cos 416224122c a b ab C =+-=+-⨯⨯⨯=,即c = 设三角形的外接圆半径是R ,由正弦定理可得24sin c R C ===,则该三角形外接圆半径为2,故D 错误,故选:AC . 【点睛】本题考查正余弦定理的应用及同角三角函数的基本关系和两角和与差的三角公式,转化思想,计算能力,属于中档题.5.BCD 【分析】本题先确定B 是的中点,P 是的一个三等分点,判断选项A 错误,选项C 正确;再通过向量的线性运算判断选项B 正确;最后求出,故选项D 正确. 【详解】 解:因为,,所以B 是的中点,P 是的解析:BCD 【分析】本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确. 【详解】解:因为20PA PC +=,2QA QB =,所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;因为()121333BP BA AP BA BC BA BA BC =+=+-=+,故选项B 正确; 因为112223132APQ ABCAB hS S AB h ⨯⨯==⋅△△,所以,2APQ S =△,故选项D 正确. 故选:BCD 【点睛】本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题.6.AD 【分析】根据向量的数量积关系判断各个选项的正误. 【详解】对于A ,,故A 正确; 对于B ,,故B 错误; 对于C ,,故C 错误; 对于D ,, ,故D 正确. 故选:AD. 【点睛】 本题考查三角形解析:AD 【分析】根据向量的数量积关系判断各个选项的正误. 【详解】 对于A ,2cos AB AB AC AB AC A AB ACAB AC,故A 正确;对于B ,2cos cos CB CB AC CB AC C CB AC C CB ACCB AC,故B 错误; 对于C ,2cos cos BD AB BD AB BD ABD AB BD ABD AB BDBDAB,故C 错误; 对于D ,2cos BD BA BDBA BD ABD BA BD BD BA,2cos BD BC BDBC BD CBD BC BDBD BC,故D 正确.故选:AD. 【点睛】本题考查三角形中的向量的数量积问题,属于基础题.7.AB 【分析】直接利用向量的数量积的应用,向量的夹角的应用求出结果. 【详解】图2中的正八边形,其中, 对于;故正确. 对于,故正确.对于,,但对应向量的夹角不相等,所以不成立.故错误. 对于解析:AB 【分析】直接利用向量的数量积的应用,向量的夹角的应用求出结果. 【详解】图2中的正八边形ABCDEFGH ,其中||1OA =,对于3:11cos4A OA OD π=⨯⨯=;故正确. 对于:22B OB OH OA OE +==-,故正确.对于:||||C AH BC =,||||HO BO =,但对应向量的夹角不相等,所以不成立.故错误. 对于:D AH 在AB 向量上的投影32||cos ||4AH AH π=-,||1AH ≠,故错误. 故选:AB . 【点睛】本题考查的知识要点:向量的数量积的应用,向量的夹角的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.8.ABD 【分析】首先理解表示与向量同方向的单位向量,然后分别判断选项. 【详解】表示与向量同方向的单位向量,所以正确,正确,所以AB 正确,当不是单位向量时,不正确, ,所以D 正确. 故选:ABD解析:ABD 【分析】 首先理解aa表示与向量a 同方向的单位向量,然后分别判断选项. 【详解】a a 表示与向量a 同方向的单位向量,所以1aa=正确,//a a a 正确,所以AB 正确,当a 不是单位向量时,aa a=不正确,cos 0a a aa a a a a a a⋅==⨯=,所以D 正确. 故选:ABD 【点睛】 本题重点考查向量a a 的理解,和简单计算,应用,属于基础题型,本题的关键是理解aa表示与向量a 同方向的单位向量.9.AB 【分析】根据向量模的三角不等式找出和的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当时,则、方向相反且,则存在负实数解析:AB 【分析】根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A选项正确,D 选项错误;若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误; 若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确. 故选:AB. 【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题.10.AB 【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A 选项,,A 选项错误;对于B 选项,表示与共线的向量,表示与共线的向量,但与不一定共线,B 选项错误; 对于C 选项,解析:AB 【分析】利用平面向量数量积的定义和运算律可判断各选项的正误. 【详解】对于A 选项,00a ⋅=,A 选项错误;对于B 选项,()a b c ⋅⋅表示与c 共线的向量,()a b c ⋅⋅表示与a 共线的向量,但a 与c 不一定共线,B 选项错误;对于C 选项,0a b a b ⋅=⇒⊥,C 选项正确;对于D 选项,()()2222a b a b a b a b +⋅-=-=-,D 选项正确. 故选:AB. 【点睛】本题考查平面向量数量积的应用,考查平面向量数量积的定义与运算律,考查计算能力与推理能力,属于基础题.11.BC 【分析】由平面向量基本定理可判断出A 、B 、D 正确与否,由向量共线定理可判断出C 正确与否. 【详解】由平面向量基本定理,可知A ,D 说法正确,B 说法不正确, 对于C ,当时,这样的有无数个,故C解析:BC 【分析】由平面向量基本定理可判断出A 、B 、D 正确与否,由向量共线定理可判断出C 正确与否. 【详解】由平面向量基本定理,可知A ,D 说法正确,B 说法不正确,对于C ,当12120λλμμ====时,这样的λ有无数个,故C 说法不正确. 故选:BC 【点睛】若1e ,2e 是平面α内两个不共线的向量,则对于平面α中的任一向量a ,使12a e e λμ=+的实数λ,μ存在且唯一.12.BCD 【分析】根据向量的定义及运算逐个分析选项,确定结果. 【详解】解:分别以图中的格点为起点和终点的向量中,与是相反向量的共有 18个,故错,以为原点建立平面直角坐标系,, 设,若, 所以解析:BCD 【分析】根据向量的定义及运算逐个分析选项,确定结果. 【详解】解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A , 设(,)B m n ,若10OA OB -=,所以22(1)(2)10m n -+-=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确. 当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确.若1OA OB ⋅=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确. 故选:BCD .【点睛】本题考查向量的定义,坐标运算,属于中档题.13.AD 【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论. 【详解】单位向量的模均为1,故A 正确; 向量共线包括同向和反向,故B 不正确; 向量是矢量,不能比较大小,故C 不正确; 根据解析:AD 【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论. 【详解】单位向量的模均为1,故A 正确; 向量共线包括同向和反向,故B 不正确; 向量是矢量,不能比较大小,故C 不正确; 根据相等向量的概念知,D 正确. 故选:AD 【点睛】本题考查单位向量的定义、考查共线向量的定义、向量是矢量不能比较大小,属于基础题.14.AD 【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】向量与是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B解析:AD 【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】向量AB 与CD 是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B 正确; 若,a b b c ==,则a c =,故C 正确; 温度是数量,只有正负,没有方向,故D 错误. 故选:AD 【点睛】本题考查零向量、单位向量的定义,平行向量和共线向量的定义,属于基础题.15.ABCD【分析】根据向量的线性运算逐个选项求解即可. 【详解】 ; ; ; .故选:ABCD 【点睛】本题主要考查了向量的线性运算,属于基础题型.解析:ABCD 【分析】根据向量的线性运算逐个选项求解即可. 【详解】0AB BC CA AC CA ++=+=;()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-=; ()0OA OD AD OA AD OD OD OD -+=+-=-=; 0NQ QP MN MP NP PM MN NM NM ++-=++=-=.故选:ABCD 【点睛】本题主要考查了向量的线性运算,属于基础题型.二、平面向量及其应用选择题16.A 【分析】根据向量的数量积的运算公式,以及向量的模的计算公式,准确运算,即可求解. 【详解】因为1a =,3b =,a 与b 的夹角为60︒,所以2224424697a a b b a b =-⋅+=-+=-,则27a b -=. 故选:A. 【点睛】本题主要考查了向量的数量积的运算,以及向量的模的求解,其中解答中熟记向量的数量积的运算公式是解答的关键,着重考查推理与运算能力. 17.A 【分析】已知等式左边第一项利用诱导公式化简,根据sin C 不为0得到sin()sin A B C -=,再利用两角和与差的正弦函数公式化简. 【详解】ABC ∆中,sin()sin A B C +=,∴已知等式变形得:2sin sin()sin C A B C -=,即sin()sin sin()A B C A B -==+,整理得:sin cos cos sin sin cos cos sin A B A B A B A B -=+,即2cos sin 0A B =,cos 0A ∴=或sin 0B =(不合题意,舍去),0A π<<90A ∴=︒,则此三角形形状为直角三角形. 故选:A 【点睛】此题考查了正弦定理,以及三角函数中的恒等变换应用,熟练掌握公式是解本题的关键,属于中档题. 18.B 【分析】先化简得0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=,即得点P 为三角形ABC 的垂心. 【详解】由于三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅, 则()()()0,0,0PA PB PC PB PA PC PC PB PA ⋅-=⋅-=⋅-= 即有0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=, 即有,,PA CB PB CA PC AB ⊥⊥⊥, 则点P 为三角形ABC 的垂心. 故选:B. 【点睛】本题主要考查向量的运算和向量垂直的数量积,意在考查学生对这些知识的理解掌握水平. 19.B 【分析】2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,易得2cos b a b t a aθ⋅==时,222min 244()()14a b a b f t a-⋅==,即222||cos 1b b θ-=,结合选项即可得到答案. 【详解】2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,因为t R ∈,所以当2cos b a b t a aθ⋅==时,222min 244()()4a b a b f t a -⋅=,又||b t a →→-的最小值为1,所以2||b ta -的最小值也为1,即222min244()()14a b a b f t a-⋅==,222||cos 1b b θ-=,所以22||sin 1(0)b b θ=≠,所以1sin b θ=,故若θ确定,则||b →唯一确定. 故选:B 【点睛】本题考查向量的数量积、向量的模的计算,涉及到二次函数的最值,考查学生的数学运算求解能力,是一道容易题. 20.D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBD由正弦定理得:sin120sin 45BC302sin 45203sin120BC3tan 30203203ABBC故选D【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题. 21.C 【分析】由正弦定理结合三角形中的大边对大角得sin sin A B >,由余弦函数性质判断B ,然后结合二倍角公式判断CD . 【详解】设ABC 三边,,a b c 所对的角分别为,,A B C , 由A B >,则,a b >∴sin sin 0A B >>,A 正确; 由余弦函数性质知cos cos A B <,B 正确;sin 22sin cos A A A =,sin 22sin cos B B B =, 当A 为钝角时就有sin 2sin 2A B <,C 错误,;2cos 212sin A A =-,2cos 212sin B B =-,∴cos2cos2A B <,D 正确. 故选:C . 【点睛】本题考查三角形内角和定理,考查正弦定理、余弦函数性质,考查正弦、余弦的二倍角公式,考查学生的逻辑推理能力,属于中档题. 22.C 【分析】由三角形的重心定理和平面向量的共线定理可得答案. 【详解】ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,可得G为重心,则23BG BE =,2CG GF =,12DG GA =且0GA GB GC ++=故选:C 【点睛】本题考查了三角形的重心定理和向量共线定理,属于中档题. 23.D 【分析】构造符合题意的特殊三角形(例如直角三角形),然后利用平面向量的线性运算法则进行计算即可得解. 【详解】解:如图所示的Rt ABC ∆,其中角B 为直角,则垂心H 与B 重合,O 为ABC ∆的外心,OA OC ∴=,即O 为斜边AC 的中点,又M 为BC 中点,∴2AH OM =,M 为BC 中点,∴22()2(2)AB AC AM AH HM OM HM +==+=+.4224OM HM HM MO =+=-故选:D . 【点睛】本题考查平面向量的线性运算,以及三角形的三心问题,同时考查学生分析问题的能力和推理论证能力. 24.A 【分析】 根据题意得出tan tan tan A B Ca b c==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ∆为等边三角形,进而可求得BC 所对的ABC ∆外接圆的劣弧长.【详解】0 a OA b OB c OC⋅+⋅+⋅=,a b OC OA OBc c∴=--,同理可得tan tan tan tanABOC OA OBC C=--,tantantantana Ac Cb Bc C⎧-=-⎪⎪∴⎨⎪-=-⎪⎩,tan tan tanA B Ca b c∴==,由正弦定理得tan tan tansin sin sinA B CA B C==,所以,111cos cos cosA B C==,cos cos cosA B C∴==,由于余弦函数cosy x=在区间()0,π上单调递减,所以,3A B Cπ===,设ABC∆的外接圆半径为R,则322sin3aRA===,1R∴=,所以,边BC所对的ABC∆外接圆的劣弧长为222133R Aππ⨯=⨯=.故选:A.【点睛】本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题.25.A【分析】由已知条件,令||AC a=,||BC b=,则在△ACM中结合余弦定理可知48ab≤,根据三角形面积公式即可求最大值【详解】由题意,可得如下示意图令||AC a=,||BC b=,又2BM MC=,即有1||||33bCM CB==∴由余弦定理知:222||||||2||||cos AM CA CM CA CM ACB =+-∠2221216()332333a ab ab ab abb =+-⨯≥-=,当且仅当3a b =时等号成立∴有48ab ≤∴11sin 48222ABC S ab C ∆=≤⨯⨯=故选:A 【点睛】本题考查了正余弦定理,利用向量的知识判断线段的长度及比例关系,再由余弦定理并应用基本不等式求三角形两边之积的范围,进而结合三角形面积公式求最值 26.C 【分析】根据平面向量的三角形法则和共线定理即可得答案. 【详解】解:111222BF BA AF BA AE AB AD AB CE ⎛⎫=+=+=-+++ ⎪⎝⎭111223AB AD AB CB ⎛⎫=-+++ ⎪⎝⎭111246AB AD AB CB =-+++ ()111246AB AD AB CD DA AB =-+++++ 11112462AB AD AB AB AD AB ⎛⎫=-+++--+ ⎪⎝⎭111124126AB AD AB AB AD =-+++- 2133AB AD =-+ 故选:C . 【点睛】本题考查用基底表示向量,向量的线性运算,是中档题. 27.B 【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值. 【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||222PC CA PC =-=-≥- ⎪⎝⎭52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题. 28.D 【分析】过点C 作CE 平行于MN 交AB 于点E ,结合题设条件和三角形相似可得出21312AM n nn AB n n ==--+,再根据AM mAB=可得231n m n =-,整理可得213m n+=,最后选出正确答案即可. 【详解】如图,过点C 作CE 平行于MN 交AB 于点E ,由AN nAC =可得1AC AN n=,所以11AE AC EM CN n ==-,由12BD DC =可得12BM ME =,所以21312AM n nn AB n n ==--+,因为AM mAB =,所以231nm n =-, 整理可得213m n+=.故选:D . 【点睛】本题考查向量共线的应用,考查逻辑思维能力和运算求解能力,属于常考题. 29.A 【分析】根据平面向量的投影的概念,结合向量的数量积的运算公式,列出方程,即可求解. 【详解】由题意,点(),1A a ,()2,1B -,()4,5C , O 为坐标原点, 根据OA 与OB 在OC 方向上的投影相同,则OA OC OB OC OCOC⋅⋅=,即OA OC OB OC ⋅=⋅,可得4152415a +⨯=⨯-⨯,解得12a =-.故选:A. 【点睛】本题主要考查了平面向量的数量积的坐标运算,以及向量的投影的定义,其中解答中熟记向量投影的定义,以及向量的数量积的运算公式,列出方程是解答的关键,着重考查运算与求解能力. 30.B 【分析】由题意结合中点的性质和平面向量基本定理首先表示出向量BD ,BM ,然后结合平面向量的运算法则即可求得最终结果. 【详解】如图所示,因为点D 在线段BC 上,所以存在t R ∈,使得()BD tBC t AC AB ==-, 因为M 是线段AD 的中点,所以:()()()111112222BM BA BD AB t AC t AB t AB t AC =+=-+-=-++, 又BM AB AC λμ=+,所以()112t λ=-+,12t μ=, 所以12λμ+=-. 故选:B.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决. 31.A 【分析】由条件()()1sin 2sin sin 2A A B C C A B +-+=--+化简得出1sin sin sin 8A B C =,设ABC ∆的外接圆半径为R ,根据12S ≤≤求得R 的范围,然后利用不等式的性质判断即可.【详解】ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,即()()1sin 2sin sin 2A A B C A B C +-+++-=, 即()()1sin 2sin sin 2A ABC A B C +--++-=⎡⎤⎣⎦, 即()12sin cos 2sin cos 2A A ABC +-=, 即()()12sin cos 2sin cos 2A B C A B C -++-=, 即()()12sin cos cos 4sin sin sin 2A B C B C A B C --+==⎡⎤⎣⎦,1sin sin sin 8A B C ∴=,设ABC ∆的外接圆半径为R ,则2sin sin sin a b cR A B C===, []2111sin 2sin 2sin sin 1,2224S ab C R A R B C R ==⨯⨯⨯=∈,2R ∴≤≤338sin sin sin abc R A B C R ⎡∴=⨯=∈⎣,C 、D 选项不一定正确;对于A 选项,由于b c a +>,()8bc b c abc ∴+>≥,A 选项正确;对于B 选项,()8ab a b abc +>≥,即()8ab a b +>成立,但()ab a b +>成立. 故选:A. 【点睛】本题考查了利用三角恒等变换思想化简、正弦定理、三角形的面积计算公式、不等式的基本性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题. 32.B 【分析】过点F 分别作//FM AB 交AC 于点M ,作//FN AC 交AB 于点N ,由平行线得出三角形相似,得出线段成比例,结合14AD AB →→=,12AE AC →→=,证出37AM AC →→=和17AN AB →→=,最后由平面向量基本定理和向量的加法法则,即可得AB →和AC →表示AF →.【详解】解:过点F 分别作//FM AB 交AC 于点M ,作//FN AC 交AB 于点N ,已知14AD AB →→=,12AE AC →→=,//FN AC ,则MFE ABE △△和MCF ACD △△, 则:MF ME AB AE =且MF MCAD AC=,即:2MF MEAB AC=且14MF MCACAB=,所以124MCMF MEAB AC AC==,则:8MC ME=,所以37AM AC=,解得:37AM AC→→=,同理//FM AB,NBF ABE△△和NFD ACD△△,则:NF NBAE AB=且NF NDAC AD=,即:12NF NBABAC=且14NF NDAC AB=,所以142NBNF NDAC AB AB==,则:8NB ND=,即()8AB AN AD AN-=-,所以184AB AN AB AN⎛⎫-=-⎪⎝⎭,即28AB AN AB AN-=-,得:17AN AB=,解得:17AN AB→→=,四边形AMFN是平行四边形,∴由向量加法法则,得AF AN AM→→→=+,所以1377AF AB AC→→→=+.故选:B.【点睛】本题考查平面向量的线性运算、向量的加法法则和平面向量的基本定理,考查运算能力. 33.C【分析】不妨设(2,0)b=,(2cos2sin)aαα=,,[0,2]απ∈,(,)c x y=,则求c b⋅的最大值,即求x的最大值,然后将问题转化为关于y的方程22sin (cos 2)2cos 0y y x x ααα-+-++=有解的问题,最后求出x 的最值即可. 【详解】根据题意,不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =, 则2b c x ⋅=,所以求b c ⋅的最大值,即求x 的最大值, 由()()20c a c b ⋅--=可得2220c a c b c a b -⋅-⋅+⋅=,即22sin (cos 2)2cos 0y y x x ααα-+-++=,因为关于y 的方程有解,所以22sin 44(cos 2)8cos 0x x ααα∆=-++-≥,令cos (11)t t α=-≤≤,则2244(2)810x x t t t -+++-≤,所以2222t t x ++≤≤,(13)m m =≤≤2(2)178m --+=,当2m =时,22(2)1717288t m +--+==,所以178x ≤,所以174b c ⋅≤, 所以b c ⋅的最大值为174, 故选:C. 【点睛】思路点睛:该题考查了平面向量的数量积的问题,解题思路如下: (1)先根据题意,设出向量的坐标; (2)根据向量数量积的运算律,将其展开; (3)利用向量数量积的坐标公式求得等量关系式;(4)利用方程有解,判别式大于等于零,得到不等关系式,利用换元法求得其最值,在解题的过程中,关键点是注意转化思想的应用,属于难题. 34.B 【分析】根据向量运算可知三角形中中线与垂线重合,可知三角形为等腰三角形,即可确定三角形形状. 【详解】因为AB AC BA BC →→→→⋅=⋅,所以0AB AC BC →→→⎛⎫⋅+= ⎪⎝⎭,即0AB CA CB →→→⎛⎫⋅+= ⎪⎝⎭,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二寒假作业:平面向量与解三角形(一)
选用模版:8选8填6答(A3)
时间:90满分:150命卷人:宫兴涛审核人:考试日期:2018-01-30
一、选择题(共8小题)
1 (id:31724).
下列命题中,正确的个数是( )
①若,则对任一向量,有;
②若,则对任一非零向量,有;
③若,,则;
④若,则与至少有一个为零向量;
⑤若,则,当且仅当时成立.
2 (id:29990).
与分别为的边上的中线,且则等于( )







3 (id:33174).
已知,其中,若,则的值等于( )








4 (id:112096).
已知平面向量,且,则( ) ∙







5 (id:168007).
设向量满足,,则( ) ∙







6 (id:54019).
在中,根据下列条件解三角形,其中有两个解的是( )







7 (id:55116).
在中,分别为角所对的边,若,则的形状是( )

等腰三角形


直角三角形


等腰直角三角形


等腰三角形或直角三角形

8 (id:158693).
在中,若,,,则的外接圆的直径为()







二、填空题(共8小题)
9 (id:30035).
若为所在平面内的一点,且满足则
的形状为__________.
10 (id:43319).
如图,在中,,,,则__________.
11 (id:44963).
点是所在平面上一点,且满足,则点是
的__________心.
12 (id:33448).
在中,角所对的边分别是,已知点是边的中点,且
,则角__________.
13 (id:34456).
在中,,,,则的面积是__________.14 (id:35771).
在中,角所对的边分别为,,
,则__________.
15 (id:36179).
在中,若,则边的长等于__________.
16 (id:52052).
中,,三角形面积,
__________.
三、简答题(共6小题)
17 (id:36203).
已知中,内角的对边分别为,现设向量,向量
,且与共线.
(1)求的值;
(2)若,且的面积为,求的值.
18 (id:30450).
已知向量∠AOB=60°,且.(1)求,

(2)求与的夹角及与的夹角.
19 (id:30719).
已知向量,,当为何值时:
(1)?
(2)?
(3)与的夹角是钝角?
20 (id:31305).
已知,且.
(1)若,求与的夹角;
(2)若,求的值.
21 (id:33450).
已知分别为三个内角的对边,.(1)求;
(2)若,的面积为,求.
22 (id:34115).
设锐角的内角的对边分别为,.
(1)求的大小;
(2)求的取值范围。

相关文档
最新文档