高三数学解三角形,平面向量与三角形的综合练习
平面向量专题6 解三角形专题—多三角形问题-人教A版(2019)高中数学必修(第二册)专题练习
【技巧总结】(1)在多三角形中,隐含条件是邻补角∠ADC 与∠ADB,邻补角的正弦值相等,余弦值互为相反数;(2)三角形外找关系,三角形内用定理。
【巩固练习】1、如图,在△ABC 中,D 是边AC上的点,且,2AB AD AB ==,2BC BD =,则sin C 的值为()A.33B.36C.63D.662、已知ABC ∆,4AB AC ==,2BC =.点D 为AB 延长线上一点,2BD =,连结CD ,则BDC ∆的面积是___________,cos BDC ∠=__________.由22sin cos 1ABC ABC ∠+∠=因为BD BC =,所以D BCD ∠=∠,所以2ABC D BCD D ∠=∠+∠=∠,3、如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC,22sin 3BAC ∠=,AB =,3AD =,则BD 的长为_______________.4、在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则B D =____,cos ABD ∠=________.135CBD C ∠=- ,5、若锐角的面积为,,,则BC 边上的中线AD 的长是______.【答案】【解析】解:锐角的面积为,,,则:,解得:,所以:,所以:,解得:.在中,利用余弦定理:,在中,利用余弦定理:得:,解得:故答案为:6、在非直角ABC ∆中,a ,b ,c 分别是A ,B ,C 的对边.已知4a =,5AB AC ⋅=,求:(1)tan tan tan tan A AB C+的值;(2)BC 边上的中线AD 的长.(2)由余弦定理2222cos a b c bc A =+-,即:221610b c =+-,∴2226b c +=.得3x =,即:3AD =.7、在①34asinC ccosA =;②22B Cbsin +=这两个条件中任选-一个,补充在下面问题中,然后解答补充完整的题.在ABC 中,角,,A B C 的对边分别为,,a b c ,已知,a =.(1)求sinA ;(2)如图,M 为边AC 上一点,,2MC MB ABM π=∠=,求ABC 的面积【答案】(1)见解析(2)见解析【解析】解:若选择条件①,则答案为:(1)在ABC 中,由正弦定理得34sinAsinC sinCcosA =,因为sin 0C≠,所以2234,916sinA cosA sin A cos A ==,(2)同选择①8.在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC .如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .【答案】见解析【解析】选择①:由余弦定理可得2222cos AC AB BC AB BC ABC =+-⋅⋅∠选择②9、已知函数()()2cos sin 10f xx x x ωωωω=-+>图象的相邻两条对称轴之间的距离为2π.(1)求ω的值及函数()f x 的单调递减区间;(2)如图,在锐角三角形ABC 中有()1f B =,若在线段BC 上存在一点D 使得2AD =,且AC =,1CD =-,求三角形ABC的面积.【解析】10、在平面四边形ABCD 中,90ADC ∠= ,45A ∠= ,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠所以5BC=.11、∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求sin sin BC;(Ⅱ)若AD =1,DC =22,求BD 和AC 的长.由余弦定理得2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠.222222326AB AC AD BD DC +=++=.由(Ⅰ)知2AB AC =,所以1AC =.。
专题03 三角函数与平面向量综合问题(答题指导)(解析版)
专题03 三角函数与平面向量综合问题(答题指导)【题型解读】题型特点命题趋势▶▶题型一:三角函数的图象和性质1.注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 2.解决三角函数图象与性质综合问题的步骤 (1)将f (x )化为a sin x +b cos x 的形式. (2)构造f (x )=a 2+b 2⎝⎛⎭⎪⎫a a 2+b 2·sin x +b a 2+b 2·cos x . (3)和角公式逆用,得f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角). (4)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. (5)反思回顾,查看关键点、易错点和答题规范.【例1】 (2017·山东卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.【答案】见解析【解析】(1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sinωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx =3sin ⎝ ⎛⎭⎪⎫ωx -π3.因为f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z .又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.【素养解读】本题中图象的变换考查了数学直观的核心素养,将复杂的三角函数通过变形整理得到正弦型函数,从而便于对性质的研究,考查数学建模的核心素养.【突破训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 【答案】见解析 【解析】(1)f (x )=32-3·1-cos2ωx 2-12sin2ωx =32cos2ωx -12sin2ωx = -sin ⎝ ⎛⎭⎪⎫2ωx -π3.因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32=sin 5π3≤sin ⎝ ⎛⎭⎪⎫2x -π3≤sin 5π2=1,所以-1≤f (x )≤32,即f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.▶▶题型二 解三角形1.高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题. 2.用正、余弦定理求解三角形的步骤第一步:找条件,寻找三角形中已知的边和角,确定转化方向.第二步:定工具,根据已知条件和转化方向,选择使用的定理和公式,实施边角之间的转化. 第三步:求结果,根据前两步分析,代入求值得出结果.第四步:再反思,转化过程中要注意转化的方向,审视结果的合理性.【例2】 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且cos(C +B)cos(C -B)=cos2A -sin Csin B . (1)求A ;(2)若a =3,求b +2c 的最大值. 【答案】见解析【解析】(1)cos(C +B)cos(C -B)=cos2A -sinCsinB =cos2(C +B)-sinCsinB ,则cos(C +B)[cos(C -B)-cos(C +B)]=-sinCsinB ,则-cosA·2sinCsinB=-sinCsinB ,可得cosA =12,因为0<A <π,所以A=60°.(2)由a sinA =b sinB =csinC =23,得b +2c =23(sinB +2sinC)=23[sinB +2sin(120°-B)]=23(2sinB+3cosB)=221sin(B +φ),其中tanφ=32,φ∈⎝ ⎛⎭⎪⎫0,π2.由B ∈⎝ ⎛⎭⎪⎫0,2π3得B +φ∈⎝⎛⎭⎪⎫0,7π6,所以sin(B +φ)的最大值为1,所以b +2c 的最大值为221.【素养解读】试题把设定的方程与三角形内含的方程(三角形的正弦定理、三角形内角和定理等)建立联系,从而求得三角形的部分度量关系,体现了逻辑推理、数学运算的核心素养.【突破训练2】 (2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值.【答案】见解析【解析】(1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知和余弦定理,有b 2=a 2+c 2-2ac cos B=13,所以b =13.由正弦定理得sin A =a sin B b =31313. (2)由(1)及a <c ,得cos A =21313,所以sin2A =2sin A cos A =1213,cos2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎪⎫2A +π4=sin2A cos π4+cos 2A ·sin π4=7226.▶▶题型三 三角函数与平面向量的综合1.三角函数、解三角形与平面向量的综合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.2.(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响. 【例3】 (2019·佛山调考)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin2x ),b =(cos x,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值. 【答案】见解析【解析】(1)f (x )=a ·b =2cos 2x -3sin2x =1+cos2x -3sin2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,由2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)因为f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,所以cos ⎝ ⎛⎭⎪⎫2A +π3=-1.因为0<A <π,所以π3<2A +π3<7π3,所以2A +π3=π,即A =π3.因为a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①因为向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sinC . 由正弦定理得2b =3c ,② 由①②可得b =3,c =2.【突破训练3】(2019·湖北八校联考) 已知△ABC 的面积为S ,且32AB →·AC →=S ,|AC →-AB →|=3.(1)若f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离为2,且f ⎝ ⎛⎭⎪⎫16=1,求△ABC 的面积S ;(2)求S +3 3 cos B cos C 的最大值. 【答案】见解析【解析】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 因为32AB →·AC →=S ,所以32bc cos A =12bc sin A , 解得tan A =3,所以A =π3.由|AC →-AB →|=3得|BC →|=a =3.(1)因为f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离T =2,即2πω=2,解得ω=π,故f (x )=2cos(πx +B ).又f ⎝ ⎛⎭⎪⎫16=2cos ⎝⎛⎭⎪⎫π6+B =1,即cos ⎝ ⎛⎭⎪⎫π6+B =12.因为B 是△ABC 的内角,所以B =π6,从而△ABC 是直角三角形,所以b =3,所以S △ABC =12ab =332.(2)由题意知A =π3,a =3,设△ABC 的外接圆半径为R ,则2R =a sin A = 332=23,解得R =3,所以S+33cos B cos C =12bc sin A +33cos B cos C =34bc +33cos B cos C =33sin B sin C +33cos B cos C =33cos(B -C ),故S +33cos B cos C 的最大值为3 3.。
高考数学大二轮复习 专题一 平面向量、三角函数与解三角形 第二讲 三角函数的图象与性质限时规范训练
第二讲 三角函数的图象与性质1.(2019·豫南九校联考)将函数y =sin ⎝⎛⎭⎪⎫x -π4的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移π6个单位,则所得函数图象的解析式为( )A .y =sin ⎝ ⎛⎭⎪⎫x 2-5π24B .y =sin ⎝ ⎛⎭⎪⎫x 2-π3C .y =sin ⎝ ⎛⎭⎪⎫x 2-5π12 D.y =sin ⎝⎛⎭⎪⎫2x -7π12 解析:函数y =sin ⎝ ⎛⎭⎪⎫x -π4经伸长变换得y =sin ⎝ ⎛⎭⎪⎫x 2-π4,再作平移变换得y =sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x -π6-π4=sin ⎝ ⎛⎭⎪⎫x 2-π3.答案:B2.(2019·某某亳州一中月考)函数y =tan ⎝ ⎛⎭⎪⎫12x -π3在一个周期内的图象是( )解析:由题意得函数的周期为T =2π,故可排除B ,D.对于C ,图象过点⎝ ⎛⎭⎪⎫π3,0,代入解析式,不成立,故选A. 答案:A3.(2019·某某某某十校期末测试)要得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数y =cos 2x的图象( )A .向左平移π3个单位长度B .向左平移π6个单位长度C .向右平移π6个单位长度D .向右平移π3个单位长度解析:∵y =cos ⎝ ⎛⎭⎪⎫2x +π3=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6,∴要得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数y =cos 2x 的图象向左平移π6个单位长度.答案:B4.(2019·东北三省三校一模)已知函数f (x )=3sin ωx +cos ωx (ω>0)的图象的相邻两条对称轴之间的距离是π2,则该函数的一个单调增区间为( )A.⎣⎢⎡⎦⎥⎤-π3,π6 B.⎣⎢⎡⎦⎥⎤-5π12,π12 C.⎣⎢⎡⎦⎥⎤π6,2π3D.⎣⎢⎡⎦⎥⎤-π3,2π3解析:由题意得2πω=2×π2,解得ω=2,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6.令-π2+2k π≤2x +π6≤π2+2k π(k ∈Z),解得-π3+k π≤x ≤π6+k π.当k =0时,有x ∈⎣⎢⎡⎦⎥⎤-π3,π6.故选A.答案:A5.(2019·高考全国卷Ⅱ)若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω=( ) A .2B.32 C .1D.12解析:由题意及函数y =sin ωx 的图象与性质可知, 12T =3π4-π4,∴T =π,∴2πω=π,∴ω=2. 故选A. 答案:A6.(2019·某某某某一模)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π3的图象的一个对称中心为⎝ ⎛⎭⎪⎫π3,0,其中ω为常数,且ω∈(1,3).若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是( ) A .1 B.π2C .2D.π解析:∵函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π3的图象的一个对称中心为⎝ ⎛⎭⎪⎫π3,0,∴π3ω+π3=k π,k ∈Z ,∴ω=3k -1,k ∈Z ,由ω∈(1,3),得ω=2.由题意得|x 1-x 2|的最小值为函数的半个周期,即T 2=πω=π2.答案:B7.(2019·某某平遥中学调研)已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,已知点A (0,3),B ⎝ ⎛⎭⎪⎫π6,0,若将它的图象向右平移π6个单位长度,得到函数g (x )的图象,则函数g (x )图象的一条对称轴方程为( ) A .x =π12B.x =π4C .x =π3D.x =2π3解析:由题意知图象过A (0,3),B ⎝ ⎛⎭⎪⎫π6,0, 即f (0)=2sin φ=3,f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫π6·ω+φ=0,又ω>0,|φ|<π,并结合图象知φ=2π3,π6·ω+φ=π+2k π(k ∈Z),得ω=2,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +2π3, 移动后g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+2π3=2sin ⎝ ⎛⎭⎪⎫2x +π3,所以对称轴满足2x +π3=π2+k π(k ∈Z),解得x =π12+k π2(k ∈Z),所以满足条件的一条对称轴方程是x =π12,故选A.答案:A8.(2019·某某某某适应性统考)已知A ,B ,C ,D ,E 是函数y =sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,0<φ<π2一个周期内的图象上的五个点,如图所示,A ⎝ ⎛⎭⎪⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B.ω=2,φ=π6C .ω=12,φ=π3D.ω=12,φ=π12解析:由题意知T =4×⎝⎛⎭⎪⎫π12+π6=π,所以ω=2.因为A ⎝ ⎛⎭⎪⎫-π6,0,所以0=sin ⎝ ⎛⎭⎪⎫-π3+φ. 又0<φ<π2,所以φ=π3.答案:A9.(2019·某某某某3月模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f (0)=-f ⎝ ⎛⎭⎪⎫π2,若f (x )在⎝⎛⎭⎪⎫0,π2上有且仅有三个零点,则ω的可能取值为( )A.23 B.2 C.143D.263解析:∵函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f (0)=-f ⎝ ⎛⎭⎪⎫π2, ∴sin ⎝ ⎛⎭⎪⎫-π6=-sin ⎝ ⎛⎭⎪⎫π2ω-π6=-12,∴π2ω-π6=2k π+π6或π2ω-π6=2k π+5π6,k ∈Z ,∴ω=4k +23或ω=4k +2,k ∈Z.∵函数f (x )在⎝⎛⎭⎪⎫0,π2上有且仅有三个零点,∴ωx -π6∈⎝ ⎛⎭⎪⎫-π6,ωπ2-π6,∴2π<ωπ2-π6≤3π,∴133<ω≤193,∴ω=143或ω=6.故选C.答案:C10.(2019·贺州一模)已知函数f (x )=sin(2x +φ)(φ∈R),若f ⎝ ⎛⎭⎪⎫π3-x =f (x ),且f (π)>f ⎝ ⎛⎭⎪⎫π2,则函数f (x )取得最大值时x 的可能值为( )A.π6B.π5C.π3D.π2解析:因为f ⎝ ⎛⎭⎪⎫π3-x =f (x ), 即y =f (x )的图象关于直线x =π6对称,即函数f (x )在x =π6时取得最值,①当函数f (x )在x =π6时取得最大值时,又因为函数f (x )的周期为π,所以f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π3=f (π),满足题意, ②当函数f (x )在x =π6时取得最小值时,又因为函数f (x )的周期为π,所以f ⎝ ⎛⎭⎪⎫π2>f ⎝ ⎛⎭⎪⎫π3=f (π),不满足题意, 综合①②得:函数f (x )取得最大值时x 的可能值为π6.故选A. 答案:A11.(2019·某某一模)若函数f (x )=sinωx2·sin ⎝⎛⎭⎪⎫ωx 2+π2(ω>0)在⎣⎢⎡⎦⎥⎤-π3,π2内有且仅有一个最大值,则ω的取值X 围是( ) A .(0,5)B.[1,5)C.⎝ ⎛⎭⎪⎫0,92 D.⎣⎢⎡⎭⎪⎫1,92 解析:f (x )=sinωx2sin ⎝⎛⎭⎪⎫ωx 2+π2=12sin ωx ,当ωx =2k π+π2,即x =2k π+π2ω(k ∈Z)时函数取最大值,又函数f (x )在⎣⎢⎡⎦⎥⎤-π3,π2内有且仅有一个最大值,即有两种情况,一是区间⎣⎢⎡⎦⎥⎤-π3,π2内只有一个极值点,二是函数f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π2内单调递增,所以有⎩⎪⎨⎪⎧π2≤ωπ2<5π2,-3π2<-ωπ3或⎩⎪⎨⎪⎧π2≥ωπ2,-π2≤-ωπ3,解得ω∈⎣⎢⎡⎭⎪⎫1,92或ω∈(-∞,1],又∵ω>0,所以ω∈⎝ ⎛⎭⎪⎫0,92,故选C. 答案:C12.(2019·某某一模)函数f (x )=sin(2x +θ)+cos 2x ,若f (x )最大值为G (θ),最小值为g (θ),则( )A .∃θ0∈R ,使G (θ0)+g (θ0)=πB .∃θ0∈R ,使G (θ0)-g (θ0)=πC .∃θ0∈R ,使|G (θ0)·g (θ0)|=πD .∃θ0∈R ,使⎪⎪⎪⎪⎪⎪G (θ0)g (θ0)=π解析:f (x )=sin(2x +θ)+cos 2x =cos θ·sin 2x +⎝ ⎛⎭⎪⎫sin θ+12·cos 2x +12=54+sin θsin(2x +φ)+12,所以G (θ)=54+sin θ+12,g (θ)=-54+sin θ+12, ①对于选项A ,G (θ0)+g (θ0)=54+sin θ+12-54+sin θ+12=1,显然不满足题意,即A 错误,②对于选项B ,G (θ0)-g (θ0)=54+sin θ+12+54+sin θ-12=254+sin θ∈[1,3],显然不满足题意,即B 错误, ③对于选项C ,G (θ0)·g (θ0)=⎝ ⎛⎭⎪⎫54+sin θ+12·⎝ ⎛⎭⎪⎫54+sin θ-12=1+sin θ∈[0,2],显然不满足题意,即C 错误,④对于选项D ,⎪⎪⎪⎪⎪⎪G (θ)g (θ)=⎪⎪⎪⎪⎪⎪⎪⎪154+sin θ-12+1∈[2,+∞),即∃θ0∈R ,使⎪⎪⎪⎪⎪⎪G (θ0)g (θ0)=π,故D 正确, 故选D. 答案:D13.(2019·某某模拟)函数f (x )=4cos x sin ⎝⎛⎭⎪⎫x +π6-1(x ∈R)的最大值为________.解析:∵f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1=4cos x ⎝ ⎛⎭⎪⎫32sin x +12cos x -1=23sin x cos x +2cos 2x -1=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,∴f (x )max =2. 答案:214.设函数f (x )=A sin(ωx +φ)(A >0,ω>0).若函数f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则函数f (x )的最小正周期为________. 解析:∵f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3, ∴x =π2和x =2π3均不是f (x )的极值点,其极值应该在x =π2+2π32=7π12处取得,∵f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6,∴x =π6也不是函数f (x )的极值点,又f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性, ∴x =π6-⎝⎛⎭⎪⎫7π12-π2=π12为f (x )的另一个相邻的极值点,故函数f (x )的最小正周期T =2×⎝⎛⎭⎪⎫7π12-π12=π.答案:π15.(2019·某某某某武邑中学模拟)将f (x )=2sin ⎝⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π4ω个单位,得到y =g (x )的图象,若y =g (x )在⎣⎢⎡⎦⎥⎤-π6,π4上为增函数,则ω的最大值为________.解析:将f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π4ω个单位,得到y =g (x )=2sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π4ω+π4=2sin ωx 的图象,若y =g (x )在⎣⎢⎡⎦⎥⎤-π6,π4上为增函数,则满足T 4≥π4,即T ≥π,即2πω≥π,所以0<ω≤2,即ω的最大值为2.答案:216.已知函数f (x )=2a sin(πωx +φ)⎝ ⎛⎭⎪⎫a ≠0,ω>0,|φ|≤π2,直线y =a 与f (x )的图象的相邻两个距离最近的交点的横坐标分别是2和4,现有如下命题: ①该函数在[2,4]上的值域是[a ,2a ];②在[2,4]上,当且仅当x =3时函数取得最大值; ③f (x )的图象可能过原点. 其中真命题的个数为________.解析:对于①,∵直线y =a 与函数f (x )=2a sin(πωx +φ)的图象的相邻两个距离最近的交点的横坐标分别为2和4,∴结合图象可以看出,当a >0时,f (x )在[2,4]上的值域为[a ,2a ],当a <0时,f (x )在[2,4]上的值域为[2a ,a ],①错误;对于②,根据三角函数图象的对称性,显然x =2和x =4的中点是x =3,即当a >0时,f (x )在x =3处有最大值f (3)=2a ,当a <0时,f (x )在x =3处有最小值f (3)=2a ,②错误; 对于③,f (0)=2a sin φ,令f (0)=0,得φ=0,此时f (x )=2a sin πωx ,由2a sin πωx =a 得sin πωx =22,则πωx =2k π+π4(k ∈Z)或πωx =2k π+3π4(k ∈Z),∴x =2k +14ω(k ∈Z)或x =2k +34ω(k ∈Z),∵直线y =a 与函数f (x )=2a sin(πωx +φ)的图象的相邻两个距离最近的交点的横坐标分别为2和4,∴令⎩⎪⎨⎪⎧2k +14ω=2,2k +34ω=4,解得k =18∉Z ,即不存在这样的k 符合题意,③错误. 综上,没有真命题. 答案:0。
高三数学三角函数三角恒等变换解三角形试题
高三数学三角函数三角恒等变换解三角形试题1.(本小题满分12分)如图以点为中心的海里的圆形海域被设为警戒水域,在点正北海里处有一雷达观测站.在某时刻测得一匀速直线行驶的船只位于点北偏东且与点相距海里的点处,经过分钟后又测得该船只已行驶到点北偏东且与点相距海里的点处,其中,.(Ⅰ)求该船行驶的速度;(Ⅱ)若该船不改变航行方向继续行驶,判断其能否进入警戒水域(说明理由).【答案】解:(I)∴△ABC中由余弦定理得∴∴船航行速度为(海里/小时)…………6分(II)建立如图直角坐标系B点坐标C点坐标直线AB斜率直线AB方程:点E(0,-55)到直线AB距离由上得出若船不改变航行方向行驶将会进入警戒水域。
……………12分【解析】略2.(本小题满分12分)设角是的三个内角,已知向量,,且.(Ⅰ)求角的大小; (Ⅱ)若向量,试求的取值范围.【答案】(1)(2)【解析】(Ⅰ)由题意得即--------------------------2分由正弦定理得--------------------------3分再由余弦定理得--------------------------5分(Ⅱ) --------------------------6分-----------------------8分--------------------------10分所以,故. --------------------------12分3.若将函数的图象向右平移个单位长度,得到的图象关于原点对称,则()A.B.C.D.【答案】A.【解析】因为,所以将其图像向右平移个单位长度,得到的图像为,又因为函数的图像关于原点对称,所以函数为奇函数,所以,即,又因为,所以,故应选.【考点】1、三角函数的恒等变换;2、三角函数的图像变换;3、三角函数的图像及其性质;4.若,且为第二象限角,则()A.B.C.D.【答案】B【解析】由得又为第二象限角,所以,选B.【考点】两角差余弦公式5.根据下列情况,判断三角形解的情况,其中正确的是()A.a=8,b=16,A=30°,有两解B.b=18,c=20,B=60°,有一解C.a=5,c=2,A=90°,无解D.a=30,b=25,A=150°,有一解【答案】D【解析】A.a=8,b=16,A=30°,则B=90°,有一解;B.b=18,c=20,B=60°,由正弦定理得解得,因为,有两解;C.a=5,c=2,A=90°,有一解; D.a=30,b=25,A=150°,有一解是正确的.故选D.【考点】三角形解得个数的判断.6.已知α∈(,),sinα=,则tan(α+)=()A.7B.C.-7D.-【答案】B【解析】根据题意有,,所以,故选B.【考点】同角三角函数关系式,和角公式.7.(本小题满分12分)在中,角A,B,C的对边分别为a,b,c,且.(1)求角A的大小;(2)若,求b,c的值.【答案】(1);(2).【解析】(1)先由余弦定理将已知条件中等式的右端化为,再由正弦定理将其化为,然后利用两角和的正弦公式及三角形的内角和为进行整理,可得出A角的余弦值,从而求出角.(2)由已知条件列出关于b,c的方程组即可求出结果.试题解析:(1)由正弦定理得所以所以,故所以(2)由,得由条件,,所以由余弦定理得解得【考点】利用正弦定理、余弦定理解三角形.8.在中,角的对边分别为,已知,且,则为.【答案】6【解析】,,,,,即,解得.所以在中.,,,.【考点】1诱导公式,余弦二倍角公式;2余弦定理.9.(本小题满分12分)在△ABC中,a, b, c分别为内角A, B, C的对边,且,(Ⅰ)求A的大小;(Ⅱ)求的最大值.【答案】(Ⅰ)120°;(Ⅱ)1【解析】(Ⅰ)求角的大小,从已知可看出,把已知条件用正弦定理化为边的关系,然后用余弦定理可得;(Ⅱ)由(Ⅰ),因此可把化为一个角的三角函数,再由两角和与差的正弦公式化为一个三角函数,可得最大值.试题解析:(Ⅰ)由已知,根据正弦定理得即由余弦定理得故,A=120°(Ⅱ)由(Ⅰ)得:故当B=30°时,sinB+sinC取得最大值1。
高考数学 平面向量、解三角形
高考数学平面向量、解三角形第二节解三角形第一部分六年高考荟萃一、选择题1.(上海文)18.若△ABC的三个内角满足sin:sin:sin5:11:13A B C=,则△ABC (A)一定是锐角三角形. (B)一定是直角三角形.(C)一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形. 【答案】C解析:由sin:sin:sin5:11:13A B C=及正弦定理得a:b:c=5:11:13由余弦定理得0115213 115 cos222<⨯⨯-+=c,所以角C为钝角2.(湖南文)7.在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=2a,则A.a>bB.a<bC. a=bD.a与b的大小关系不能确定【命题意图】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题。
3.(江西理)7.E,F是等腰直角△ABC斜边AB上的三等分点,则tan ECF∠=()A. 1627 B.23 C.3D.34【答案】D【解析】考查三角函数的计算、解析化应用意识。
解法1:约定AB=6,AC=BC=32由余弦定理10再由余弦定理得4cos 5ECF ∠=, 解得3tan 4ECF ∠=解法2:坐标化。
约定AB=6,AC=BC=32(0,3)利用向量的夹角公式得4cos 5ECF ∠=,解得3tan 4ECF ∠=。
4.(北京文)(7)某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为(A )2sin 2cos 2αα-+; (B )sin 33αα+ (C )3sin 31αα-+; (D )2sin cos 1αα-+ 【答案】A5.(天津理)(7)在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若223a b bc -=,sin 23C B =,则A=(A )030 (B )060 (C )0120 (D )0150 【答案】A【解析】本题主要考查正弦定理与余弦定理的基本应用,属于中等题。
解三角形平面向量综合练习
解三角形平面向量综合练习解三角形,平面向量与三角形的综合练习一、填空题,?2),则tan2?的值为______________.1.若角?的终边经过点P(12.已知向量a与b的夹角为120,且a?b?4,那么a?b的值为________.3.已知向量a?(1,3),b?(?2,0),则a?b=_____________________. ?)最小正周期为,其中??0,则?? 65???????5.a,b的夹角为120,a?1,b?3,则5a?b?4.f(x)?cos(?x?6.若AB?2,AC???2BC,则S?ABC的最大值2sin2x?1???7.设x??0,?,则函数y?的最小值为.sin2x?2?,,2)b?(2,3),若向量?a?b与向量c?(?4,?7)共线,则??.8.设向量a?(1?????????b?2且a与b的夹角为,则a?b?.9.若向量a,b满足a?1,3?310.若sin(??)?,则cos2??_________。
2511.在△ABC中,角A、B、C所对的边分别为a、b、 c ,若则cosA? ?3b?c?cosA?acosC,??????12已知a是平面内的单位向量,若向量b 满足b?(a?b)?0,则|b|的取值范围是。
13..在△ABC中,a,b,c分别是角A,B,C所对的边,已知a?3,b?3,c?30?, 则A=. 14.关于平面向量a,b,c.有下列三个命题:。
b=a?c,则b?c.②若a?(1,k),b?(?2,6),a∥b,则k??3.①若a?③非零向量a和b满足|a|?|b|?|a?b|,则a与a?b的夹角为60.其中真命题的序号为.三、解答题1.已知函数f(x)?cos(2x???)?2sin(x?)sin(x?) 344??求函数f(x)的最小正周期和图象的对称轴方程 1 求函数f(x)在区间[?2.已知函数f(x)?sin求?的值;2,]上的值域122???x?3sin?xsin??x??的最小正周期为π.2???π?求函数f(x)在区间?0,?上的取值范围.3 3.已知向量m?(sinA,cosA),n?(1,?2),且m?n?0. (Ⅰ)求tanA的值;(Ⅱ)求函数f(x)?cos2x?tanAsinx(x?R)的值域. 4.已知函数f(x)=Asin(x+?)(A>0,0 2 ?2π?????????1?,?. ?32? (1) 求f(x)的解析式;(2) 已知α,β??0,?,且f(α)=????2?312,f(β)=,求f(α-β)的值. 513 5.如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB?90,BD交AC于E,AB?2.求cos∠CAE的值;求AE. D ?C E B A 6.如图,在平面直角坐标系xoy中,以ox轴为始边做两个锐角?,?,它们的终边分别与单位圆相交于A、B两点,已知A、B的横坐标分别为225, 105???)的值;求??2?的值。
平面向量与三角形的“四心”问题
平面向量与三角形的“四心”综合问题【例题精讲】例题1 已知O ,N ,P 在△ABC 所在平面内,且|OA ―→|=|OB ―→|=|OC ―→|,NA ―→+NB ―→+NC ―→=0,且P A ―→·PB ―→=PB ―→·PC ―→=PC ―→·P A ―→,则点O ,N ,P 依次是△ABC 的( )A .重心 外心 垂心B .重心 外心 内心C .外心 重心 垂心D .外心 重心 内心【解析】由|OA ―→|=|OB ―→|=|OC ―→|知,O 为△ABC 的外心; 由NA ―→+NB ―→+NC ―→=0知,N 为△ABC 的重心;因为P A ―→·PB ―→=PB ―→·PC ―→,所以(P A ―→-PC ―→)·PB ―→=0, 所以CA ―→·PB ―→=0,所以CA ―→△PB ―→,即CA △PB ,同理AP △BC ,CP △AB ,所以P 为△ABC 的垂心,故选C.例题2 在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP ―→=x OB ―→+y OC ―→,其中x ,y △[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063B .1463C .4 3D .62【解析】根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部, 其面积为△BOC 的面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263,所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463,故选B.【知识小结】三角形“四心”的向量表示(1)在△ABC 中,若|OA ―→|=|OB ―→|=|OC ―→|或OA ―→2=OB ―→2=OC ―→2,则点O 是△ABC 的外心.(2)在△ABC 中,若GA ―→+GB ―→+GC ―→=0,则点G 是△ABC 的重心.(3)对于△ABC ,O ,P 为平面内的任意两点,若OP ―→-OA ―→=λ⎝ ⎛⎭⎪⎫AB ―→+12BC ―→,λ△(0,+∞),则直线AP 过△ABC 的重心. (4)OA ―→·OB ―→=OB ―→·OC ―→=OC ―→·OA ―→或者|OA ―→|2+|OB ―→|2=|OB ―→|2+|OC ―→|2=|OC ―→|2+|OA ―→|2,则点O 为三角形的垂心.(5)|BC ―→|·OA ―→+|AC ―→|·OB ―→+|AB ―→|·OC ―→=0,则点O 为三角形的内心.(6)对于△ABC ,O ,P 为平面内的任意两点,若OP ―→=OA ―→+λ⎝ ⎛⎭⎪⎪⎫AB ―→|AB ―→|+AC ―→|AC ―→|(λ>0),则直线AP 过△ABC 的内心.【变式练习】1.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP ―→=OA ―→+λ(AB ―→+AC ―→),λ△(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心【解析】选C 由原等式,得OP ―→-OA ―→=λ(AB ―→+AC ―→),即AP ―→=λ(AB ―→+AC ―→),根据平行四边形法则,知AB ―→+AC ―→=2AD ―→(D 为BC 的中点),所以点P 的轨迹必过△ABC 的重心.故选C.2.在△ABC 中,|AB ―→|=3,|AC ―→|=2,AD ―→=12AB ―→+34AC ―→,则直线AD 通过△ABC 的( )A .重心B .外心C .垂心D .内心解析:选D △|AB ―→|=3,|AC ―→|=2,△12|AB ―→|=34|AC ―→|=32.设AE ―→=12AB ―→,AF ―→=34AC ―→,则|AE ―→|=|AF ―→|.△AD ―→=12AB ―→+34AC ―→=AE ―→+AF ―→,△AD 平分△EAF ,△AD 平分△BAC ,△直线AD 通过△ABC 的内心。
高中数学三角函数平面向量解三角形练习题必修
三角函数、平面向量、解三角形一、选择题(每小题5分,共50分)1.化简cos15cos45cos75sin45︒︒-︒︒的值为( ) A. 12-C.12D. -2.设向量,a b 满足:1||=a , 2||=b , ()0a a b ⋅+=, 则a 与b 的夹角是( )A . 30B . 60C . 90D . 120 3.已知角α的终边经过点)60cos 6,8(0--m P ,且54cos -=α,则m 的值为( ) A 21 B 21- C 23- D 23 4.设函数22()cos ()sin (),44f x x x x R ππ=+-+∈,则函数()f x 是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数 5.已知平面向量(1,2)a =,(2,)b m =-,且a //b ,则23a b +=( )A .(5,10)--B .(4,8)--C .(3,6)--D .(2,4)-- 6.已知4cos 5α=-,且(,)2παπ∈,则tan()4πα-等于( ) A.17- B.7- C.71 D.7 7.函数2tan2tan 12xy x =-的最小正周期为( ) A .π B .2π C .4π D .2π 8.在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足2A P P M =,则()PA PB PC ⋅+等于 (A )49- (B )43- (C )43 (D) 49( ) 9.要得到函数sin2cos2y x x =-的图象,只要将函数sin2cos2y x x =+的图象沿x 轴( )A.向右平移4π个单位B.向左平移4π个单位C.向右平移2π个单位D.向左平移2π个单位 10.已知α为锐角,且4cos(),65πα+=则cos α的值为. ( )A.410-B.410+C.310D.310二、填空题(每小题5分,共25分)11.在平行四边形ABCD 中,AC 为一条对角线,(2,4),(1,3),AB AC BD ===则12.设(2,4),(1,1)a b ==,若()b a m b ⊥+⋅,则实数m =13.已知点1),(cos ,sin )A B θθ-,其中[]0,θπ∈,则AB 的最大值为________.14.若函数())cos()(0)f x x x φφφπ=+-+<<为奇函数,则φ=________15.在斜三角形ABC 中,角C B A ,,所对的边分别为c b a ,,,若1tan tan tan tan =+BC A C , 则=+222c b a . 三、解答题(共75分)16.53()42ππθ<<17. 已知函数22()cos cos sin 2222x x x x f x ⎛⎫=-- ⎪⎝⎭.18. 如图2,渔船甲位于岛屿A 的南偏西60方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.19.已知向量1(sin ,1),(3cos ,)2=-=-a x b x ,函数()()2f x a b a =+⋅-.(Ⅰ)求函数()f x 的最小正周期T ;(Ⅱ)已知a 、b 、c 分别为ABC ∆内角A 、B 、C 的对边, 其中A 为锐角,4a c ==,且()1f A =,求,A b 和ABC ∆的面积S20.已知函数3cos 22sin 3)(2++=x x x f (1)当)2,0(π∈x 时,求函数)(x f 的值域; (2)若528)(=x f ,且)125,6(ππ∈x ,求sin(4)3x π+的值.21. 在ABC ∆中,sin sin sin sin()sin sin A B A C A B A B --=++. (Ⅰ)求角B ;(Ⅱ)若3sin 5A =,求cos C 的值.。
专题4-4 三角函数与解三角形大题综合归类-(原卷 版)
专题4-4 三角函数与解三角形大题综合归类目录一、热点题型归纳【题型一】三角函数求解析式:“识图”................................................................................................. 1 【题型二】图像与性质1:单调性与值域................................................................................................ 3 【题型三】图像与性质2:恒等变形:结构不良型 ................................................................................ 4 【题型四】图像与性质3:恒成立(有解)求参数 ................................................................................ 5 【题型五】图像与性质4:零点与对称轴................................................................................................ 6 【题型六】解三角形1:面积与周长常规................................................................................................ 8 【题型七】解三角形2:计算角度与函数值 ............................................................................................ 9 【题型八】解三角形3:求面积范围(最值) ...................................................................................... 10 【题型九】解三角形4:周长最值 ......................................................................................................... 11 【题型十】解三角形5:巧用正弦定理求“非对称”型 ...................................................................... 11 【题型十一】解三角形6:最值范围综合.............................................................................................. 12 二、真题再现 ............................................................................................................................................ 12 三、模拟测试 .. (14)【题型一】三角函数求解析式:“识图”【典例分析】(2023·全国·高三专题练习)函数()sin(π),R f x A x x ϕ=+∈(其中π0,02A ϕ>≤≤)部分图象如图所示,1(,)3P A 是该图象的最高点,M ,N 是图象与x 轴的交点.(1)求()f x 的最小正周期及ϕ的值;(2)若π4PMN PNM ∠+∠=,求A 的值.1.(2023·全国·高三专题练习)已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将()f x 图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到函数()y g x =的图象,求函数()g x ≥.2.(2022·四川·宜宾市教科所三模(理))已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示:(1)求()f x ;(2)若2f α⎛⎫= ⎪⎝⎭()0,πα∈,求cos2α的值.3.(2022·全国·高三专题练习)已知函数()()sin ,0,0,2f x A x x R A ωϕωϕπ⎛⎫=+∈>>< ⎪⎝⎭部分图象如图所示.(1)求()f x 的最小正周期及解析式; (2)将函数()y f x =的图象向右平移3π个单位长度得到函数()y g x =的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【题型二】图像与性质1:单调性与值域【典例分析】(2022·浙江·高三开学考试)已知函数()21cos cos 2f x x x x =⋅-. (1)求函数()f x 的单调递增区间; (2)求()f x 在区间[0,2π]上的最值.【变式演练】1.(2022·湖北·高三开学考试)已知函数2()sin cos sin sin 44f x x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的最小正周期;(2)若[0,]x π∈,求出()f x 的单调递减区间.2.(2022·黑龙江·双鸭山一中高三开学考试)已知函数()sin 2cos 22sin cos .36f x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭(1)求函数()f x 的最小正周期及对称轴方程;(2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的纵坐标不变、横坐标伸长为原来的2倍,得到函数()y g x =的图象,求()y g x =在[0,2π]上的单调递减区间.3.(2022·全国·高三专题练习)已知函数()()()2sin cos cos 04f x x x x ππωωωω⎛⎫=--+> ⎪⎝⎭的最小正周期为π.(1)求()f x 图象的对称轴方程;(2)将()f x 的图象向左平移6π个单位长度后,得到函数()g x 的图象,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的值域.【题型三】图像与性质2:恒等变形:结构不良型【典例分析】(2023·全国·高三专题练习)在①sin α=①2tan 40αα-=这两个条件中任选一个,补充到下面的问题中,并解答.已知角a 是第一象限角,且___________. (1)求tan α的值;(2)3)cos()cos(3)2πααπαπ+++-的值.注:如果选择多个条件分别解答,按第一个解答计分.【变式演练】1.(2022·北京·二模)已知函数2()cos cos (0,)ωωωω=++>∈R f x x x x m m .再从条件①、条件①、条件①这三个条件中选择能确定函数()f x 的解析式的两个作为已知. (1)求()f x 的解析式及最小值;(2)若函数()f x 在区间[]0,(0)t t >上有且仅有1个零点,求t 的取值范围. 条件①:函数()f x 的最小正周期为π;条件①:函数()f x 的图象经过点10,2⎛⎫⎪⎝⎭;条件①:函数()f x 的最大值为32.注:如果选择的条件不符合要求,得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.2.(2023·全国·高三专题练习)已知函数()()sin cos 0,0f x a x x a ωωω=>>.从下列四个条件中选择两个作为已知,使函数()f x 存在且唯一确定.条件①:π14f ⎛⎫= ⎪⎝⎭;条件①:()f x 为偶函数;条件①:()f x 的最大值为1;条件①:()f x 图象的相邻两条对称轴之间的距离为π2. 注:如果选择的条件不符合要求,第(1)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.(1)求()f x 的解析式;(2)设()()22cos 1g x f x x ω=-+,求函数()g x 在()0,π上的单调递增区间.3.(2023·全国·高三专题练习)已知函数()()2sin cos f x a x x x x =∈R ,若__________.条件①:0a >,且()f x 在x ∈R 时的最大值为1条件①:6f π⎛⎫= ⎪⎝⎭请写出你选择的条件,并求函数()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.注:如果选择条件①和条件①分别解答,按第一个解答计分.【题型四】图像与性质3:恒成立(有解)求参数【典例分析】(2023·全国·高三专题练习)已知函数()π2sin()3f x x =+.(1)若不等式()3f x m -≤对任意ππ[,]63x ∈-恒成立,求整数m 的最大值;(2)若函数()π()2g x f x =-,将函数()g x 的图象上各点的横坐标缩短到原来的12倍(纵坐标不变),再向右平移12π个单位,得到函数()y h x =的图象,若关于x 的方程()102h x k -=在π5π[,]1212x ∈-上有2个不同实数解,求实数k 的取值范围.【变式演练】1.(2023·全国·高三专题练习)已知平面向量2sin 2,26m x π⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,()21,sin n x =,()f x m n =⋅,其中0,2x π⎡⎤∈⎢⎥⎣⎦. (1)求函数()f x 的单调增区间; (2)将函数()f x 的图象所有的点向右平移12π个单位,再将所得图象上各点横坐标缩短为原来的12(纵坐标不变),再向下平移1个单位得到()g x 的图象,若()g x m =在5,824x ππ⎡⎤∈-⎢⎥⎣⎦上恰有2个解,求m 的取值范围.2.(2023·全国·高三专题练习)已知函数()sin()0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)先将函数()f x 的图象向右平移3π个单位长度,再将所得图象上各点的纵坐标不变,横坐标变为原来的2倍,得到()g x 的图象.(i )若0m >,当[0,]x m ∈时,()g x 的值域为[2],求实数m 的取值范围;(ii )若不等式2()(21)()10g x t g x t -+--≤对任意的,32x ππ⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的取值范围.3.(2022·全国·高三专题练习)已知:函数()2sin cos f x x x x =. (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间;(3)若函数()()g x f x k =-在π0,4⎡⎤⎢⎥⎣⎦上有两个不同的零点,写出实数k 的取值范围.(只写结论)【题型五】图像与性质4:零点与对称轴【典例分析】(2022·全国·高三专题练习)已知函数()4cos cos 1(0)3f x x x πωωω⎛⎫=⋅-- ⎪>⎝⎭的部分图像如图所示,若288AB BC π⋅=-,B ,C 分别为最高点与最低点.(1)求函数()f x 的解析式;(2)若函数()y f x m =-在130,12π⎡⎤⎢⎥⎣⎦,上有且仅有三个不同的零点1x ,2x ,3x ,(123x x x <<),求实数m 的取值范围,并求出123 cos (2)x x x ++的值.【变式演练】1.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象.当130,6x π⎡⎤∈⎢⎥⎣⎦时,方程()0g x a -=恰有三个不相等的实数根()123123,,x x x x x x <<,求实数a 的取值范围和1232x x x ++的值.2.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,若方程()0g x m -=在70,3π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根()123123,,x x x x x x <<,求m 的取值范围及()123tan 2x x x ++的值.3.(2023·全国·高三专题练习)已知数2()2sin 1(0)6212x f x x πωπωω⎛⎫⎛⎫=+++-> ⎪ ⎪⎝⎭⎝⎭的相邻两对称轴间的距离为2π. (1)求()f x 的解析式;(2)将函数()f x 的图象向右平移6π个单位长度,再把各点的横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象,当,126x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()g x 的值域;(3)对于第(2)问中的函数()g x ,记方程4()3g x =在4,63x ππ⎡⎤∈⎢⎥⎣⎦上的根从小到大依次为12,,n x x x ,若m =1231222n n x x x x x -+++++,试求n 与m 的值.【题型六】解三角形1:面积与周长常规【典例分析】(2022·安徽·高三开学考试)在ABC 中,点,M N 分别在线段,BC BA 上,且,BM CM ACN BCN =∠=∠,3,22AB AM AC ===.(1)求BM 的长;(2)求BCN △的面积.【变式演练】1.(2022·北京·高三开学考试)在ABC 中,角A ,B ,C 的对边分别为,,,sin2sin =a b c C C . (1)求C ∠;(2)若1b =,且ABCABC 的周长.2.(2022·江苏·南京市金陵中学河西分校高三阶段练习)已知ABC 的三个内角,,A B C 所对的边分别为a ,b ,c ,)tan tan tan tan 1+=B C B C . (1)求角A 的大小;(2)若1a =,21)0c b -=,求ABC 的面积.3.(2022·云南昆明·高三开学考试)已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,sin cos 0B b A -=. (1)求A ;(2)若c =a =ABC 的面积.【题型七】解三角形2:计算角度与函数值【典例分析】(2022·全国·高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ==-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.【变式演练】1.(2021·天津静海·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足()()2sin 2sin 2sin a b A b a B c C -+-=. (1)求角C 的大小;(2)若c =4a b +=,求ABC 的面积.(3)若cos =A ,求()sin 2A C -的值.2.(2022·北京市第二十二中学高三开学考试)已知ABC 的内角,,A B C 所对的对边分别为,,a b c ,周长为1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.3.(2022·青海玉树·高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积)222S a c b =+-. (1)求角B 的大小;(2)若2a c =,求sin C .【题型八】解三角形3:求面积范围(最值)【典例分析】(2022·云南·昆明一中高三开学考试)已知ABC 的内角,,A B C 所对边分别为,,a b c ,且222sin sin sin sin A B C B C -=. (1)求A ;(2)若a =ABC 面积的最大值.【变式演练】1.(2022·河南·高三开学考试(文))已知,,a b c 分别为ABC 的内角,,A B C 所对的边,且()()sin sin sin sin a c b A C B c B +--+=(1)求角A 的大小;(2)若a =ABC 面积的最大值.2.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知ABC 的外接圆半径R =tan tan B C +=.(1)求B 和b 的值;(2)求ABC 面积的最大值.3.(2021·江苏·矿大附中高三阶段练习)ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,设sin cos sin (2cos )A B B A =-.(1)若b c +,求A ;(2)若2a =,求ABC 的面积的最大值.【题型九】解三角形4:周长最值【典例分析】(2022·黑龙江·双鸭山一中高三开学考试)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A B C A B +-=. (1)求角C 的大小;(2)若ABCABC 周长的取值范围.【变式演练】1.(2022·广东·深圳外国语学校高三阶段练习)已知ABC 中,内角,,A B C 所对边分别为,,a b c ,若()2cos cos 0a c B b C --=.(1)求角B 的大小;(2)若2b =,求a c +的最大值.2.(2022·湖北·襄阳五中高三开学考试)在锐角ABC 中,角A ,B ,C ,的对边分别为a ,b ,c ,从条件①:3sin cos tan 4A A A =,条件①12=,条件①:2cos cos cos a A b C c B -=这三个条件中选择一个作为已知条件. (1)求角A 的大小;(2)若2a =,求ABC 周长的取值范围.3.(2022·广东·高三开学考试)已知锐角ABC 中,角A 、B 、C 所对边为a 、b 、c ,= (1)求角A ;(2)若4a =,求b c +的取值范围.【题型十】解三角形5:巧用正弦定理求“非对称”型【典例分析】(2022·四川成都·模拟预测(理))①ABC 中,角,,A B C 所对边分别是,,a b c ,tan tan 2tan tan A AB C bc,cos cos 1b C c B +=.(1)求角A 及边a ; (2)求2b c +的最大值.【变式演练】1.(2022·全国·南京外国语学校模拟预测)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且5sin sin 35cos cos cos2B C B C A -=+. (1)求角A 的大小;(2)若a =2b c +的最大值.2..(2022·辽宁·抚顺市第二中学三模)在①()()222sin 2sin B c a C b c a b -=+-,①23cos cos cos 24A C A C --=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中,问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =_______. (1)求角B ﹔(2)求2a c -的范围.【题型十一】解三角形6:最值范围综合【典例分析】(2022·浙江·高三开学考试)记ABC 内角,,A B C 的对边分别是,,a b c ,已知tan tan 2tan tan tan B CB A A=-.(1)求证:2222b c a +=;(2)求2abc 的取值范围.【变式演练】1.(2022·辽宁·渤海大学附属高级中学模拟预测)ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c ,已cos sin B b C =+. (1)求C 的大小;(2)若ABC 为锐角三角形且c =22a b +的取值范围.2.(2022·湖南湘潭·高三开学考试)设ABC 的内角,,A B C 的对边分别为,,a b c ,A 为钝角,且tan bB a =.(1)探究A 与B 的关系并证明你的结论; (2)求cos cos cos A B C ++的取值范围.1.(2022·天津·高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值. 2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==.(1)求ABC 的面积;(2)若sin sin A C =,求b . 3.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+4.(·浙江·高考真题(理))已知ABC 的内角,,A B C 所对的对边分别为,,a b c 1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.5.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.6.(2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在根据表中数据,求:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.7.(山东·高考真题)已知函数()2sin 2y x ϕ=+,x ∈R ,π02ϕ<<,函数的部分图象如下图,求(1)函数的最小正周期T 及ϕ的值: (2)函数的单调递增区间.8.(2021·天津·高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =(I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.9.(2021·全国·高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+.. (1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.10.(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ;(2)再从条件①、条件①、条件①这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件①:ABC 的周长为4+条件①:ABC11.(2023·全国·高三专题练习)在ABC 中.3sin cos 64A A π⎛⎫-= ⎪⎝⎭.(1)求角A ;(2)若8AC =,点D 是线段BC 的中点,DE AC ⊥于点E ,且DE =CE 的长.1.(2022·浙江省杭州学军中学模拟预测)已知函数()()sin y f x A x B ωϕ==++(其中A ,ω,ϕ,B 均为常数,且0A >,0>ω,ϕπ<)的部分图像如图所示.(1)求()f x 的解析式;(2)若5()126g x f x f x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,,02x π⎛⎫∈- ⎪⎝⎭,求()g x 的值域.2.(2022·全国·高三专题练习)已知向量(sin a x =,(1,cos )b x =.(1)若a b ⊥,求sin 2x 的值;(2)令()f x a b =⋅,把函数()f x 的图像上每一点的横坐标都缩短为原来的一半(纵坐标不变),再把所得的图像沿x 轴向左平移6π个单位长度,得到函数()g x 的图像,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.3.(2023·全国·高三专题练习)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,再从条件①、条件①、条件①这三个条件中选择两个作为一组已知条件,使()f x 的解析式唯一确定. (1)求()f x 的解析式;(2)设函数()()6g x f x f x π⎛⎫=++ ⎪⎝⎭,求()g x 在区间0,4⎡⎤⎢⎥⎣⎦π上的最大值.条件①:()f x 的最小正周期为π;条件①:()00f =;条件①:()f x 图象的一条对称轴为4x π=. 注:如果选择多组条件分别解答,按第一个解答计分.4.(2023·全国·高三专题练习)已知函数()()()3,sin 26f x x x a a a g x x π⎛⎫=--+∈=+ ⎪⎝⎭R .(1)若()f x 为奇函数,求实数a 的值;(2)若对任意[]10,1x ∈,总存在20,2x π⎡⎤∈⎢⎥⎣⎦,使()()12f x g x =成立,求实数a 的取值范围.5.(2023·全国·高三专题练习)已知函数()2sin 216f x x πω⎛⎫=++ ⎪⎝⎭.(1)若()()()12f x f x f x ≤≤,12min 2x x π-=,求()f x 的对称中心;(2)已知05ω<<,函数()f x 图象向右平移6π个单位得到函数()g x 的图象,3x π=是()g x 的一个零点,若函数()g x 在[],m n (m ,n R ∈且m n <)上恰好有10个零点,求n m -的最小值; 6、(2022·安徽·高三开学考试)记ABC 的内角,,A B C 的对边分别为,,a b c ,且23,2b c B C ==.(1)求cos C ;(2)若5a =,求c .7.(2022·广西·模拟预测(文))设ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且2cos 2sin c b A b A -=. (1)证明:()sin 2sin sin A B B A -=; (2)若3A B =,求B 的值.8.(2022·全国·高三专题练习)在①2cos cos c b B a A -=;①sin cos 2AA =;()sin a C C =,这三个条件中任选一个,补充在下面的横线上,并加以解答.在ABC 中,角,,A B C 的对边分别是,,a b c ,若__________.(填条件序号) (1)求角A 的大小;(2)若3a =,求ABC 面积的最大值.注:如果选择多个条件分别解答,按第一个解答计分.9.(2021·福建省华安县第一中学高三期中)在①π1cos cos 32B B ⎛⎫-=+ ⎪⎝⎭,①sin (sin sin )sin a A c C A b B +-=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中.问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =______________. (1)求角B ;(2)求a c +的最大值.注:如果选择多个条件分别解答,按第一个解答计分. 10.(2022·山东烟台·三模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos cos 2cos b a A C c A =+. (1)求角A ;(2)若4a =,求2c b -的取值范围.11.(2023·全国·高三专题练习)在ABC 中,点D 在边BC 上,3AB =,2AC =. (1)若AD 是BAC ∠的角平分线,求:BD DC ;(2)若AD 是边BC 上的中线,且AD =,求BC .12.(2022·全国·模拟预测(文))在①3cos210cos 10A A +-=,①sin cos A A -=①tan 2A =三个条件中任选一个,补充在下面的问题中,并作答.如果多选,则按第一个解答给分. 已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且______ (1)求cos A ;(2)sin sin B C 的最大值.。
高考数学(文)二轮复习专题一 三角函数和平面向量 第2讲 平面向量、解三角形 Word版含答案
第2讲 平面向量、解三角形【课前热身】第2讲 平面向量、解三角形(本讲对应学生用书第4~6页)1.(必修4 P76习题7改编)在矩形ABCD 中,O 是对角线的交点,若BC u u u r =e 1,DC u u u r =e 2,则OC u u u r= .【答案】12(e 1+e 2)【解析】因为O 是矩形ABCD 对角线的交点,BCu u u r =e 1,DCu u u r =e 2,所以OCu u u r =12(BC u u u r +DC u u u r)=12(e 1+e 2).2.(必修4 P90习题19改编)已知向量a =(6,-3),b =(2,x+1),若a ⊥b ,则实数x= . 【答案】3【解析】因为a ⊥b ,所以a ·b =0,所以12-3x-3=0,解得x=3.3.(必修5 P10练习2改编)在锐角三角形ABC 中,设角A ,B 所对的边分别为a ,b.若2a sin B=3b ,则角A= .【答案】π3【解析】在△ABC 中,由正弦定理及已知得2sin A·sin B=3sin B ,因为B 为△ABC的内角,所以sin B ≠0,所以sinA=32.又因为△ABC 为锐角三角形,所以A ∈π02⎛⎫ ⎪⎝⎭,,所以A=π3.4.(必修4 P80例5改编)已知向量a =(1,0),b =(2,1),则当k= 时,向量k a -b 与a +3b 平行.【答案】-13【解析】由题设知向量a 与b 不平行,因为向量k a -b 与a +3b 平行,所以1k =-13,即k=-13.5.(必修5 P16习题1(3)改编)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=7,b=43,c=13,则△ABC 最小的内角为 .【答案】π6【解析】因为13<43<7,所以C<B<A ,又因为cosC=222-2a b c ab +=2743⨯⨯=32,所以C=π6.【课堂导学】平面向量与三角函数综合例1 (2016·淮安5月信息卷)已知向量m =(cos α,sin α),n =(3,-1),α∈(0,π).(1)若m ⊥n ,求角α的大小; (2)求|m +n |的最小值.【解答】(1)因为m =(cos α,sin α),n =(3,-1),且m ⊥n ,所以3cos α-sin α=0,即tan α=3.又因为α∈(0,π),所以α=π3.(2)因为m +n =(cos α+3,sin α-1),所以|m +n |=22(cos 3)(sin -1)αα++=523cos -2sin αα+=π54cos 6α⎛⎫++ ⎪⎝⎭. 因为α∈(0,π),所以α+ππ7π666⎛⎫∈ ⎪⎝⎭,,故当α+π6=π,即α=5π6时,|m +n |取得最小值1.正弦定理、余弦定理的应用例2 (2016·苏州暑假测试)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin2-2A B+sin A sin B=22+.(1)求角C 的大小;(2)若b=4,△ABC 的面积为6,求c 的值.【解答】(1)sin2-2A B+sin A sin B=1-cos(-)2A B+2sin sin2A B=1-cos cos-sin sin2A B A B+2sin sin2A B=1-cos cos sin sin2A B A B+=1-(cos cos-sin sin)2A B A B=1-cos()2A B+=1-cos(π-)2C=1cos2C+=22+,所以cos C=22.又0<C<π,所以C=π4.(2)因为S=12ab sin C=12a×4×sinπ4=2a=6,所以a=32.因为c2=a2+b2-2ab cos C=(32)2+42-2×32×4×22=10,所以c=10.变式1(2016·南通一调)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知(a+b-c)(a+b+c)=ab.(1)求角C的大小;(2)若c=2a cos B,b=2,求△ABC的面积.【解答】(1)在△ABC中,由(a+b-c)(a+b+c)=ab,得222-2a b cab+=-12,即cosC=-12.因为0<C<π,所以C=2π3.(2)方法一:因为c=2a cos B,由正弦定理,得sin C=2sin A cos B.因为A+B+C=π,所以sin C=sin(A+B ),所以sin(A+B )=2sin A cos B ,即sin A cos B-cos A sin B=0, 所以sin(A-B )=0.又-π3<A-B<π3,所以A-B=0,即A=B ,所以a=b=2. 所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.方法二:由c=2a cos B 及余弦定理,得c=2a×222-2a c b ac +,化简得a=b ,所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.变式2 (2016·南通、扬州、淮安、宿迁、泰州二调)在斜三角形ABC 中,tan A+tan B+tan A tan B=1.(1)求角C 的大小; (2)若A=15°,2,求△ABC 的周长.【解答】(1)因为tan A+tan B+tan A tan B=1, 即tan A+tan B=1-tan A tan B.因为在斜三角形ABC 中,1-tan A tan B ≠0,所以tan(A+B )=tan tan 1-tan tan A BA B +=1,即tan(180°-C )=1,tan C=-1. 因为0°<C<180°,所以C=135°.(2)在△ABC 中,A=15°,C=135°,则B=180°-A-C=30°.由正弦定理sin BC A =sin CAB =sin ABC ,得sin15BC o =°sin30CA=2=2,故BC=2sin 15°=2sin(45°-30°)=2(sin 45°cos 30°-cos 45°sin 30°)=6-2 2,CA=2sin 30°=1.所以△ABC的周长为AB+BC+CA=2+1+6-22=2622++.平面向量与解三角形综合例3(2016·无锡期末)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知向量a=(sin B-sin C,sin C-sin A),b=(sin B+sin C,sin A),且a⊥b.(1)求角B的大小;(2)若b=c·cos A,△ABC的外接圆的半径为1,求△ABC的面积.【解答】(1)因为a⊥b,所以a·b=0,即sin2B-sin2C+sin A(sin C-sin A)=0,即sin A sin C=sin2A+sin2C-sin2B,由正弦定理得ac=a2+c2-b2,所以cos B=222-2a c bac+=12.因为B∈(0,π),所以B=π3.(2)因为c·cos A=b,所以bc=222-2b c abc+,即b2=c2-a2,又ac=a2+c2-b2,b=2R sin3,解得a=1,c=2.所以S△ABC =12ac sin B=3.变式(2016·苏锡常镇二调)在△ABC中,内角A,B,C的对边分别是a,b,c,已知向量m=(cos B,cos C),n=(4a-b,c),且m∥n.(1)求cos C的值;(2)若c=3,△ABC的面积S=15,求a,b的值.【解答】(1)因为m∥n,所以c cos B=(4a-b)cos C,由正弦定理,得sin C cos B=(4sin A-sin B)cos C,化简得sin(B+C)=4sin A cos C.因为A+B+C=π,所以sin(B+C)=sin A.又因为A∈(0,π),所以sin A≠0,所以cos C=14.(2)因为C∈(0,π),cos C=14,所以sin C=21-cos C=11-16=15.因为S=12ab sin C=15,所以ab=2.①因为c=3,由余弦定理得3=a2+b2-12ab,所以a2+b2=4,②由①②,得a4-4a2+4=0,从而a2=2,a=2(a=-2舍去),所以a=b=2.【课堂评价】1.(2016·镇江期末)已知向量a=(-2,1),b=(1,0),则|2a+b|=. 【答案】13【解析】因为2a+b=(-3,2),所以|2a+b|=22(-3)2+=13.2.(2016·南京学情调研)已知向量a=(1,2),b=(m,4),且a∥(2a+b),则实数m=.【答案】2【解析】方法一:由题意得a=(1,2),2a+b=(2+m,8),因为a∥(2a+b),所以1×8-(2+m)×2=0,故m=2.方法二:因为a∥(2a+b),所以存在实数λ,使得λa=2a+b,即(λ-2)a=b,所以(λ-2,2λ-4)=(m,4),所以λ-2=m且2λ-4=4,解得λ=4,m=2.3.(2016·南京、盐城一模)在△ABC中,设a,b,c分别为内角A,B,C的对边,若a=5,A=π4,cos B=35,则c=.【答案】7【解析】因为cos B=35,所以B∈π2⎛⎫⎪⎝⎭,,从而sin B=45,所以sin C=sin(A+B)=sinA cos B+cos A sin B=2×35+2×45=72,又由正弦定理得sinaA=sincC,即52 =72c,解得c=7.4.(2016·全国卷Ⅲ)在△ABC中,B=π4,BC边上的高等于13BC,则cos A=.(第4题)【答案】-10【解析】如图,作AD ⊥BC交BC 于点D ,设BC=3,则AD=BD=1,AB=2,AC=5.由余弦定理得32=(2)2+(5)2-2×2×5×cos A ,解得cos A=-10.5.(2016·南通一调)已知在边长为6的正三角形ABC 中,BD u u u r =12BC u u u r ,AE u u u r=13AC u u u r ,AD 与BE 交于点P ,则PB u u u r ·PD u u ur 的值为 .(第5题)【答案】274【解析】如图,以BC 为x 轴,AD 为y 轴,建立平面直角坐标系,不妨设B (-3,0),C (3,0),则D (0,0),A (0,33),E (1,23),P 330⎛ ⎝⎭,,所以PB u u u r ·PD u u ur =|PD u u u r |2=233⎝⎭=274.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第3~4页.【检测与评估】第2讲 平面向量、解三角形一、 填空题1.(2016·苏州暑假测试)设x ,y ∈R ,向量a =(x ,1),b =(2,y ),且a +2b =(5,-3),则x+y= .2.(2016·盐城三模)已知向量a ,b 满足a =(4,-3),|b |=1,|a -b |=21,则向量a ,b 的夹角为 .3.(2016·全国卷Ⅱ)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A=45,cos C=513,a=1,则b= .4.(2016·天津卷)在△ABC 中,若AB=13,BC=3,∠C=120°,则AC= .5.(2016·南京三模)如图,在梯形ABCD 中,AB ∥CD ,AB=4,AD=3,CD=2,AM u u u u r =2MD u u u u r .若AC u u u r ·BM u u u u r =-3,则AB u u u r ·AD u u u r = .(第5题)6.(2016·无锡期末)已知平面向量α,β满足|β|=1,且α与β-α的夹角为120°,则α的模的取值范围为 .7.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若b a +ab =6cos C ,则tan tan C A +tan tan CB = .8.(2016·苏北四市摸底)在△ABC 中,AB=2,AC=3,角A 的平分线与AB 边上的中线交于点O ,若AO u u u r =x AB u u u r+y AC u u u r (x ,y ∈R ),则x+y 的值为 .二、 解答题9.(2016·苏北四市期末)已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin A=35,tan(A-B )=-12.(1)求tan B 的值; (2)若b=5,求c 的值.10.(2016·徐州、连云港、宿迁三检)如图,在梯形ABCD 中,已知AD ∥BC ,AD=1,BD=210,∠CAD=π4,tan ∠ADC=-2.(1)求CD 的长; (2)求△BCD 的面积.(第10题)11.(2016·南京三模)在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边.若向量m =(a ,cos A ),向量n =(cos C ,c ),且m ·n =3b cos B.(1)求cos B 的值;(2)若a ,b ,c 成等比数列,求1tan A +1tan C 的值.【检测与评估答案】第2讲 平面向量、解三角形一、 填空题1. -1 【解析】由题意得a +2b =(x+4,1+2y )=(5,-3),所以4512-3x y +=⎧⎨+=⎩,,解得1-2x y =⎧⎨=⎩,,所以x+y=-1.2. π3【解析】设向量a ,b 的夹角为θ,由|a -b|=,得21=(a -b )2=a 2+b 2-2a ·b =25+1-2·5·cos θ,即cos θ=12,所以向量a ,b 的夹角为π3.3. 2113 【解析】因为cos A=45,cos C=513,且A ,C 为三角形的内角,所以sin A=35,sin C=1213,所以sin B=sin(A+C )=sin A cos C+cos A sin C=6365.由正弦定理得sin b B =sin aA ,解得b=2113.4. 1【解析】设AC=x,由余弦定理得cos 120°=29-13 23xx+⋅⋅=-12,即x2+3x-4=0,解得x=1或x=-4(舍去),所以AC=1.5.32【解析】方法一:设ABu u u r=4a,ADu u u r=3b,其中|a|=|b|=1,则DCu u u r=2a,AMu u u u r=2b.由ACu u u r·BMu u u u r=(ADu u u r+DCu u u r)·(BAu u u r+AMu u u u r)=-3,得(3b+2a)·(2b-4a)=-3,化简得a·b=18,所以ABu u u r·ADu u u r=12a·b=32.方法二:建立平面直角坐标系,使得A(0,0),B(4,0),设D(3cos α,3sin α),则C(3cos α+2,3sin α),M(2cos α,2sin α).由ACu u u r·BMu u u u r=-3,得(3cos α+2,3sin α)·(2cos α-4,2sin α)=-3,化简得cos α=18,所以ABu u u r·ADu u u r=12cos α=32.6.23⎛⎤⎥⎝⎦,【解析】如图,设α=ABu u u r,β=ACu u u r,则β-α=BCu u u r,∠ABC=60°,设α与β的夹角为θ,则0°<θ<120°,由正弦定理可得°||sin(120-)θα=°||sin60β,所以|α|=233sin(120°-θ).因为0°<θ<120°,所以0°<120°-θ<120°,所以0<sin(120°-θ)≤1,所以0<|α|≤23.(第6题)7. 4 【解析】b a +ab =6cos C ⇒6ab cos C=a 2+b 2⇒3(a 2+b 2-c 2)=a 2+b 2⇒a 2+b 2=232c ,所以tan tan C A +tan tan CB =sin cosC C ·cos sin sin cos sin sin B A B A A B +=sin cos C C ·sin()sin sin A B A B +=1cos C ·2sin sin sin C A B =2222-aba b c +·2c ab =22223-2c c c=2222c c =4.8. 58 【解析】如图,在△ABC 中,AD 为∠BAC 的平分线,CE 为AB 边上的中线,且AD ∩CE=O.在△AEO 中,由正弦定理得sin AE AOE ∠=sin EOEAO ∠.在△ACO 中,由正弦定理得sin AC AOC ∠=sin COCAO ∠,两式相除得AE AC =EO OC .因为AE=12AB=1,AC=3,所以EO OC =13,所以CO u u u r =3OE u u u r ,即AO u u u r -AC u u u r =3(AE u u u r -AO u u ur ),即4AO u u u r =3AE u u u r+AC u u u r ,所以4AO u u u r =32AB u u ur +AC u u u r ,从而AO u u u r =38AB u u u r +14AC u u u r .因为AO u u u r =x AB u u u r+y ACu u u r ,所以x=38,y=14,所以x+y=58.(第8题)二、 解答题9. (1) 方法一:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tan A=sin cos A A =34.由tan(A-B )=tan -tan 1tan ?tan A B A B +=-12,得tan B=2.方法二:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tanA=sin cos A A =34.又因为tan(A-B )=-12,所以tan B=tan[A-(A-B )]=tan -tan(-)1tan tan(-)A A B A A B +=31--42311-42⎛⎫ ⎪⎝⎭⎛⎫+⨯ ⎪⎝⎭=2. (2) 由(1)知tan B=2,得sin B=255,cos B=55, 所以sin C=sin(A+B )=sin A cos B+cos A sin B=11525,由正弦定理sin bB =sin cC ,得c=sin sin b C B =112.10. (1) 因为tan ∠ADC=-2,且∠ADC ∈(0,π),所以sin ∠ADC=255,cos ∠ADC=-55. 所以sin ∠ACD=sinππ--4ADC ∠⎛⎫ ⎪⎝⎭ =sin ∠ADC+π4=sin ∠ADC ·cos π4+cos ∠ADC ·sin π4=,在△ADC 中,由正弦定理得CD=·sin sin AD DACACD ∠∠=.(2) 因为AD ∥BC ,所以cos ∠BCD=-cos ∠ADC=,sin ∠BCD=sin ∠ADC=.在△BDC 中,由余弦定理得BD 2=BC 2+CD 2-2BC ·CD ·cos ∠BCD , 即BC 2-2BC-35=0,解得BC=7,所以S △BCD =12BC ·CD ·sin ∠BCD=12×7=7.11. (1) 因为m ·n =3b cos B ,所以a cos C+c cos A=3b cos B. 由正弦定理得sin A cos C+sin C cos A=3sin B cos B , 所以sin(A+C )=3sin B cos B , 所以sin B=3sin B cos B.因为B 是△ABC 的内角,所以sin B ≠0,所以cos B=13.(2) 因为a ,b ,c 成等比数列,所以b 2=ac. 由正弦定理得sin 2B=sin A ·sin C.因为cos B=13,B 是△ABC 的内角,所以sinB=,又1tan A +1tan C =cos sin A A +cos sin C C =cos ?sin sin ?cos sin sin A C A CA C +⋅ =sin()sin sin A C A C +⋅=sin sin sin B A C=2sin sin B B =1sin B=.。
高三数学解三角形试题
高三数学解三角形试题1.如图,、是两个小区所在地,、到一条公路的垂直距离分别为,,两端之间的距离为.(1)某移动公司将在之间找一点,在处建造一个信号塔,使得对、的张角与对、的张角相等,试确定点的位置.(2)环保部门将在之间找一点,在处建造一个垃圾处理厂,使得对、所张角最大,试确定点的位置.【答案】(1);(2).【解析】(1)设,我们只要利用已知列出关于的方程即可,而这个方程就是在两个三角形中利用正切的定义,,,因此有,解之得;实际上本题可用相似形知识求解,,则,由引开出方程解出;(2)要使得最大,可通过求,因为,只要设,则都可用表示出来,从而把问题转化为求函数的最值,同(1)可得,这里我们用换元法求最值,令,则有,注意到,可取负数,即为钝角,因此在取负值中的最小值时,取最大值.(1)设,,.依题意有,. 3分由,得,解得,故点应选在距点2处. 6分(2)设,,.依题意有,,10分令,由,得,,12分,,当,所张的角为钝角,最大角当,即时取得,故点应选在距点处. 14分【考点】(1)角相等的应用与列方程解应用题;(2)角与函数的最大值.2.(2011•浙江)在△ABC中,角A,B,C,所对的边分别为a,b,c.已知sinA+sinC=psinB (p∈R).且ac=b2.(1)当p=,b=1时,求a,c的值;(2)若角B为锐角,求p的取值范围.【答案】(1)a=1,c=或a=,c=1 (2)<p<【解析】(1)解:由题设并利用正弦定理得故可知a,c为方程x2﹣x+=0的两根,进而求得a=1,c=或a=,c=1(2)解:由余弦定理得b2=a2+c2﹣2accosB=(a+c)2﹣2ac﹣2accosB=p2b2﹣b2cosB﹣,即p2=+cosB,因为0<cosB<1,所以p2∈(,2),由题设知p∈R,所以<p<或﹣<p<﹣又由sinA+sinC=psinB知,p是正数故<p<即为所求3.在中,角所对的边分别为,已知,,(1)求角;(2)若,,求的面积。
平面向量专题6 解三角形专题—三角形形状判断-人教A版(2019)高中数学必修(第二册)专题练习
【知识总结】1、设△ABC 中的最大角为C ,若2220a b c +-<,则△ABC 是钝角三角形;若222=0a b c +-,则△ABC 是直角三角形;若2220a b c +->,则△ABC 是锐角三角形;2、若三角形的两边相等或两角相等,则三角形为等腰三角形;3、注意:等腰直角三角形与等腰三角形或直角三角形不一样。
【巩固练习】1、在ABC △中,若222sin sin sin A B C +<,则角C 为()A .锐角B .钝角C .直角D .不确定【答案】B2、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则△ABC的形状为()A .锐角三角形B .直角三角形C .钝角三角形D .不确定B 【解析】∵cos cos sin bC c B a A +=,∴由正弦定理得2sin cos sin cos sin B C C B A +=,∴2sin()sin B C A +=,∴2sin sin A A =,∴sin 1A =,∴△ABC 是直角三角形.3、若则为()A .等边三角形B .等腰直角三角形C .有一个内角为30°的直角三角形D .有一个内角为30°的等腰三角形【答案】B 【解析】因为,而由正弦定理可知所以,即在三角形ABC 中,可得B=45°同理,由正弦定理可知所以,即在三角形ABC 中,可得C=45°所以三角形ABC 为等腰直角三角形所以选B4、在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,其面积为S ,若222a b ab c +-==,则ABC ∆一定是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形【答案】B综上,故选B.5.在ABC ∆中,若sin 2sin cos A C B =,则ABC ∆是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形【答案】C即22b c =,即b c =,即ABC ∆是等腰三角形,故选:C.6.在ABC △中,若等式222sin sin sin A B C ==成立,则ABC △的形状是().A .等边三角形B .直角三角形C .锐角三角形D .钝角三角形【答案】A【解析】由正弦定理得222a b c ==,即a b c ==,故三角形为等边三角形.7.已知ABC △的内角A ,B ,C 的对边分别是a ,b ,c ,若2sin sin c ba B C+=,则ABC △的形状是A .等边三角形B .等腰直角三角形C .锐角三角形D .钝角【答案】B8.(2019·四川高一期末(文))已知,,a b c 分别是ABC∆的内角,,A B C 的的对边,若cos cA b<,则ABC ∆的形状为()A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形【答案】Asin sin cos C B A <sin()sin cos sin cos sin cos sin cos sin cos 0A B B AA B B A B AA B ∴+<∴+<∴<又sin 0A >,cos 0B ∴<,即B 为钝角,故选:A 。
2020高考数学核心突破《专题三 三角函数、解三角形与平面向量》(含往年真题分析)
专题三三角函数、解三角形与平面向量第1讲三角函数的图象与性质题型一三角函数的图象1.(1)要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图象,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图象( C ) A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度(2) (2017·山西朔州模拟)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )在区间⎣⎡⎦⎤0,π2上的最小值为__-1__.突破点拨(1)先利用诱导公式将两函数化为同名三角函数,再利用平移法则求解. (2)先求函数f (x )的解析式,再利用解析式求最值. 解析 (1)因为f (x )=cos ⎝⎛⎭⎫2x +π2-π6 =sin ⎝⎛⎭⎫π6-2x =sin ⎝⎛⎭⎫2x +5π6=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4+π3, 所以要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图象,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图象向左平移π4个单位长度.故选C. (2)由函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象,可得A =2,14·2πω=5π6-7π12,解得ω=2.再根据图象经过点⎝⎛⎭⎫7π12,0, 可得2·7π12+φ=π+2k π,k ∈Z .因为|φ|<π2,所以φ=-π6,故函数f (x )=2sin ⎝⎛⎭⎫2x -π6. 因为x ∈⎣⎡⎦⎤0,π2,所以2x -π6∈⎣⎡⎦⎤-π6,5π6, 故函数f (x )的最小值为2×⎝⎛⎭⎫-12=-1. 2. 某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y=g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.突破点拨(1)由表中数据先写出A ,ω,φ的值,再由ωx +φ=0,π,2π,求出其余值. (2)写出函数y =g (x )的解析式,由y =sin x 图象的对称中心为(k π,0),k ∈Z ,利用整体思想建立关于θ的方程,根据k ∈Z 及θ>0,求出θ的最小值.解析 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表.且函数表达式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0中心对称, 令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z . 由θ>0可知,当k =1时,θ取得最小值π6.(1)三角函数图象平移问题需注意三点:一是函数名称是否一致;二是弄清由谁平移得到谁;三是左右的平移是自变量本身的变化.(2)对于由三角函数的图象确定函数解析式的问题,一般由函数的最值可确定A ,由函数的周期可确定ω,由对称轴或对称中心和φ的范围确定φ.题型二 三角函数的性质1. 已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性. 突破点拨(1)先将已知解析式化简,然后求解.(2)根据y =A sin(ωx +φ)+k (A >0,ω>0)与y =sin x 的关系求解. 解析 (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32. 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增; 当π2<2x -π3≤π,即5π12<x ≤2π3时,f (x )单调递减.综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎝⎛⎦⎤5π12,2π3上单调递减. 2. 设函数f (x )=sin ωx +sin ⎝⎛⎭⎫ωx -π2,x ∈R . (1)若ω=12,求f (x )的最大值及相应x 的集合;(2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期.突破点拨(1)先用公式化简,再利用三角函数的性质求解. (2)将x =π8代入,求ω,则周期可求.解析 由已知得f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4. (1)若ω=12,则f (x )=2sin ⎝⎛⎭⎫12x -π4. 又x ∈R ,则2sin ⎝⎛⎭⎫12x -π4≤2,所以f (x )max =2,此时12x -π4=2k π+π2,k ∈Z ,即f (x )取最大值时,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =4k π+3π2,k ∈Z .(2)∵x =π8是函数f (x )的一个零点,∴2sin ⎝⎛⎭⎫π8ω-π4=0,∴π8ω-π4=k π,k ∈Z . 又0<ω<10,∴ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x -π4,其最小正周期为π.求解函数y =A sin(ωx +φ)的性质的三种意识(1)转化意识:利用三角恒等变换将所求函数转化为f (x )=A sin(ωx +φ)的形式. (2)整体意识:类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入的方法求解.(3)讨论意识:当A 为参数时,求最值应分情况讨论.三角函数的综合应用【预测】 已知函数f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2(ω>0),其图象与x 轴相邻两个交点的距离为π2.(1)求函数f (x )的解析式;(2)若将f (x )的图象向左平移m (m >0)个单位长度,得到的函数g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0,求当m 取得最小值时,g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间. 思维导航(1)解题导引:①先化简函数f (x )的解析式,再利用图象与x 轴相邻两个交点的距离是半个周期求解析式;②先求函数g (x )的解析式,再求在⎣⎡⎦⎤-π6,7π12上的单调递增区间. (2)方法指导:三角函数的综合应用主要是将三角函数的图象和性质与三角变换相结合,通过变换将函数化为y =A sin(ωx +φ)的形式再研究其性质,解题时注意观察角、名、结构等特征,注意整体思想的应用.规范解答(1)函数f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2 =32sin 2ωx -12cos 2ωx -4×1-cos 2ωx 2+2 =32sin 2ωx +32cos 2ωx =3sin ⎝⎛⎭⎫2ωx +π3(ω>0). 根据函数f (x )的图象与x 轴相邻两个交点的距离为π2,可得函数f (x )的最小正周期为2×π2=2π2ω,得ω=1. 故函数f (x )=3sin ⎝⎛⎭⎫2x +π3. (2)将f (x )的图象向左平移m (m >0)个单位长度得到函数 g (x )=3sin ⎣⎡⎦⎤2(x +m )+π3=3sin ⎝⎛⎭⎫2x +2m +π3的图象.根据g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0, 可得3sin ⎝⎛⎭⎫-2π3+2m +π3=0, 即sin ⎝⎛⎭⎫2m -π3=0, 所以2m -π3=k π(k ∈Z ),m =k π2+π6(k ∈Z ).因为m >0,所以当k =0时,m 取得最小值,且最小值为π6.此时,g (x )=3sin ⎝⎛⎭⎫2x +2π3. 令2k π-π2≤2x +2π3≤2k π+π2,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z ,故函数g (x )的单调递增区间为⎣⎡⎦⎤k π-7π12,k π-π12,k ∈Z . 结合x ∈⎣⎡⎦⎤-π6,7π12,可得g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间为⎣⎡⎦⎤-π6,-π12和⎣⎡⎦⎤5π12,7π12. 【变式考法】 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a·b ,且y =f (x )的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ (0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.解析 (1)由题意,知 f (x )=a·b =m sin 2x +n cos 2x .因为y =f (x )的图象经过点⎝⎛⎭⎫π12,3和⎝⎛⎭⎫2π3,-2, 所以⎩⎨⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎨⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. 由题意知g (x )=f (x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6. 设y =g (x )的图象上符合题意的最高点为(x 0,2),由题意知x 20+1=1,所以x 0=0,即y =g (x )的图象上到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )并整理得sin ⎝⎛⎭⎫2φ+π6=1, 因为0<φ<π,所以φ=π6.因此g (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x . 由2k π-π≤2x ≤2k π,k ∈Z ,得k π-π2≤x ≤k π,k ∈Z ,所以函数y =g (x )的单调递增区间为⎣⎡⎦⎤k π-π2,k π,k ∈Z .1.(教材回归)下列函数中,最小正周期为π且图象关于原点对称的函数是( A ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析 y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,符合题意,故选A. 2.(2017·广西南宁质检)将函数y =cos ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位长度后,得到f (x )的图象,则( B )A .f (x )=-sin 2xB .f (x )的图象关于直线x =-π3对称C .f ⎝⎛⎭⎫7π3=12D .f (x )的图象关于点⎝⎛⎭⎫π12,0对称 解析 将函数y =cos ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位长度,得到的图象对应的解析式为f (x )=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π3=cos ⎝⎛⎭⎫2x +2π3.函数f (x )的图象的对称轴满足2x +2π3=k π(k ∈Z ),即对称轴方程为x =k π2-π3(k ∈Z ),所以f (x )的图象关于直线x =-π3对称;令2x +2π3=k π+π2,得x =k π2-π12(k ∈Z ),即f (x )的图象关于点⎝⎛⎭⎫-π12,0对称;f ⎝⎛⎭⎫7π3=-12.故选B. 3.(2017·湖北襄阳模拟)同时具有性质“①最小正周期是4π;②直线x =π3是图象的一条对称轴;③在区间⎝⎛⎭⎫2π3,5π6上是减函数”的一个函数是( D )A .y =sin ⎝⎛⎭⎫2x -π6B .y =cos ⎝⎛⎭⎫2x -π6 C .y =cos ⎝⎛⎭⎫x 2+π3D .y =sin ⎝⎛⎭⎫x 2+π3解析 对于A 项,B 项,∵T =2π2=π,故A 项,B 项不正确.对于C 项,若直线x =π3为其图象的一条对称轴,则π3×12+π3=k π,k ∈Z ,得π2=k π,k ∈Z ,k 不存在,不满足题意,故C 项不正确.对于D 项,因为T =2π12=4π,且由x 2+π3=k π+π2,k ∈Z ,解得图象的对称轴方程为x =2k π+π3,k ∈Z ;当k =0时,x =π3为图象的一条对称轴.由2k π+π2≤x 2+π3≤2k π+3π2,k ∈Z ,解得单调递减区间为⎣⎡⎦⎤4k π+π3,4k π+7π3,k ∈Z ,所以函数在区间⎝⎛⎭⎫2π3,5π6上是减函数,故D 项正确.故选D.4.(2017·山西晋中考前测试)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,将函数y =f (x )的图象向左平移4π3个单位长度,得到函数y =g (x )的图象,则函数y =g (x )在区间⎣⎡⎦⎤π2,5π2上的最大值为( C )A .3B .332C.322D .22解析 由图象可知函数y =f (x )的周期为2⎝⎛⎭⎫7π3-π3=4π, ∴ω=12.又点⎝⎛⎭⎫π3,0,⎝⎛⎭⎫0,-32在函数y =f (x )的图象上, ∴⎩⎨⎧A sin ⎝⎛⎭⎫π6+φ=0,A sin φ=-32,且|φ|<π2.∴φ=-π6,A =3,则f (x )=3sin ⎝⎛⎭⎫12x -π6, ∴g (x )=3sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +4π3-π6=3cos 12x . 由x ∈⎣⎡⎦⎤π2,5π2,可得12x ∈⎣⎡⎦⎤π4,5π4,则3cos 12x ∈⎣⎡⎦⎤-3,322,即g (x )的最大值为322.5.(书中淘金)某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28 ℃,12月份的平均气温最低,为18 ℃,则10月份的平均气温为__20.5__℃.解析 依题意知,a =28+182=23,A =28-182=5,所以y =23+5cos ⎣⎡⎦⎤π6(x -6),当x =10时,y =23+5cos ⎝⎛⎭⎫π6×4=20.5. 答案 20.56.(高考改编)把函数y =sin 2x 的图象沿x 轴向左平移π6个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数y =f (x )的图象,对于函数y =f (x )有以下四个判断:①该函数的解析式为y =2sin ⎝⎛⎭⎫2x +π6;②该函数图象关于点⎝⎛⎭⎫π3,0对称;③该函数在⎣⎡⎦⎤0,π6上是增函数;④若函数y =f (x )+a 在⎣⎡⎦⎤0,π2上的最小值为3,则a =2 3. 其中,正确判断的序号是__②④__.解析 将函数y =sin 2x 的图象向左平移π6个单位得到y =sin 2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象,然后纵坐标伸长到原来的2倍得到y =2sin ⎝⎛⎭⎫2x +π3的图象,所以①不正确.f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2×π3+π3=2sin π=0,所以函数图象关于点⎝⎛⎭⎫π3,0对称,所以②正确.由-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,得-5π12+k π≤x ≤π12+k π,k ∈Z ,∴函数的单调增区间为⎣⎡⎦⎤-5π12+k π,π12+k π,k ∈Z ,而⎣⎡⎦⎤0,π6⃘⎣⎡⎦⎤-512π+k π,π12+k π(k ∈Z ),所以③不正确.y =f (x )+a =2sin ⎝⎛⎭⎫2x +π3+a ,当0≤x ≤π2时,π3≤2x +π3≤4π3,所以当2x +π3=4π3,即x =π2时,函数取得最小值,y min =2sin 4π3+a =-3+a ,令-3+a =3,得a =23,所以④正确.所以正确的判断为②④.7.(考点聚焦)设函数f (x )=32-3sin 2ωx -sin ωx ·cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值. 解析 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3·1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin ⎝⎛⎭⎫2ωx -π3=sin ⎝⎛⎭⎫2ωx +2π3. 因为图象的一个对称中心到最近的对称轴的距离为π4,又ω>0,所以2π2ω=4×π4.因此ω=1.(2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π3. 当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32≤sin ⎝⎛⎭⎫2x -π3≤1. 因此-1≤f (x )≤32.故f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值分别为32,-1. 8.(2018·山东青岛调考)已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间; (2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域. 解析 (1)f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x=3×1-cos 2x 2+12sin 2x=sin ⎝⎛⎭⎫2x -π3+32. 函数f (x )的最小正周期为T =π. 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z . (2)当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3, sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1, 可得函数f (x )的值域为⎣⎡⎦⎤0,1+32. 9.(母题营养)已知函数f (x )=sin x cos x +12cos 2x .(1)若tan θ=2,求f (θ)的值;(2)若函数y =g (x )的图象是由函数y =f (x )的图象上所有的点向右平移π4个单位长度而得到,且g (x )在区间(0,m )内是单调函数,求实数m 的最大值.解析 (1)因为tan θ=2,所以sin θ=2cos θ. 代入sin 2θ+cos 2θ=1,得cos 2θ=15.所以f (θ)=sin θcos θ+12cos 2θ=2cos 2θ+12(2cos 2θ-1)=3cos 2θ-12=110.(2)由已知得f (x )=12sin 2x +12cos 2x =22sin ⎝⎛⎭⎫2x +π4. 依题意,得g (x )=22sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π4, 即g (x )=22sin ⎝⎛⎭⎫2x -π4. 因为x ∈(0,m ),所以2x -π4∈⎝⎛⎭⎫-π4,2m -π4. 又因为g (x )在区间(0,m )内是单调函数,所以-π4<2m -π4≤π2,即0<m ≤3π8,故实数m的最大值为3π8.10.(母题营养)设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝⎛⎭⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝⎛⎭⎫π4,0,求函数f (x )在x ∈⎣⎡⎦⎤0,π2上的值域. 解析 (1)因为f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝⎛⎭⎫2ωx -π6+λ,由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎫2ωπ-π6=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝⎛⎭⎫12,1,k ∈Z ,所以k =1,从而ω=56. 所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝⎛⎭⎫π4,0,得f ⎝⎛⎭⎫π4=0, 即λ=-2sin ⎝⎛⎭⎫56×π2-π6=-2sin π4=-2, 即λ=- 2.故f (x )=2sin ⎝⎛⎭⎫53x -π6-2, ∵x ∈⎣⎡⎦⎤0,π2,∴53x -π6∈⎣⎡⎦⎤-π6,2π3, ∴函数f (x )的值域为[-1-2,2-2].1.函数f (x )=cos(w x +φ)的部分图象如图所示,则f (x )的单调递减区间为( D )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z 解析 由题图可知T 2=54-14=1,所以T =2.结合题图可知,在⎣⎡⎦⎤-34,54(f (x )的一个周期)内,函数f (x )的单调递减区间为⎝⎛⎭⎫-14,34.由f (x )是以2为周期的周期函数可知,f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z ,故选D. 2.下列函数中,最小正周期为π且图象关于原点对称的函数是( A ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析 y =cos ⎝⎛⎭⎫2x +π2=-sin 2x 是奇函数,图象关于原点对称,且最小正周期为π,A 项正确.y =sin ⎝⎛⎭⎫2x +π2=cos 2x ,是偶函数,B 项错误.y =sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4,非奇非偶,C 项错误.y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,非奇非偶,D 项错误.故选A. 3.为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( A ) A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 解析 ∵y =sin(2x +1)=sin 2⎝⎛⎭⎫x +12, ∴只需把y =sin 2x 图象上所有的点向左平移12个单位长度即得到y =sin(2x +1)的图象.故选A.4.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( C )A.3π4 B .π2C.π4D .-π4解析 y =sin(2x +φ)――→左移π8sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8+φ=sin ⎝⎛⎭⎫2x +π4+φ是偶函数,即π4+φ=k π+π2(k ∈Z )⇒φ=k π+π4(k ∈Z ),当k =0时,φ=π4,故选C.5.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深的最大值为( C )A .5 mB .6 mC .8 mD .10 m解析 由题意可知,当sin ⎝⎛⎭⎫π6x +φ=-1时,函数取得最小值2,即3×(-1)+k =2,∴k =5.因此,函数的最大值是8,故水深的最大值为8 m.6.将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( B )A.π12 B .π6C.π3D .5π6解析 y =3cos x +sin x =2sin ⎝⎛⎭⎫x +π3,向左平移m 个单位长度后得到y =2sin ⎝⎛⎭⎫x +π3+m ,由它关于y 轴对称可得sin ⎝⎛⎭⎫π3+m =±1,∴π3+m =k π+π2,k ∈Z ,∴m =k π+π6,k ∈Z ,又m >0,∴m 的最小值为π6.7.已知函数f (x )=A sin(w x +φ)(A ,w ,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( A )A .f (2)<f (-2)<f (0)B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2)解析 ∵ω>0,∴T =2πω=π,∴ω=2.又A >0,∴f ⎝⎛⎭⎫2π3=-A , 即sin ⎝⎛⎭⎫4π3+φ=-1,得φ+4π3=2k π+32π(k ∈Z ), 即φ=2k π+π6(k ∈Z ).又∵φ>0,∴可取f (x )=A sin ⎝⎛⎭⎫2x +π6, ∴f (2)=A sin ⎝⎛⎭⎫4+π6, f (-2)=A sin ⎝⎛⎭⎫-4+π6,f (0)=A sin π6. ∵π<4+π6<3π2,∴f (2)<0.∵-7π6<-4+π6<-π,且y =sin x 在⎝⎛⎭⎫-7π6,-π上为减函数, ∴sin ⎝⎛⎭⎫-4+π6<sin ⎝⎛⎭⎫-7π6=sin π6,且sin ⎝⎛⎭⎫-4+π6>sin(-π)=0,从而有0<f (-2)<f (0).故有f (2)<f (-2)<f (0).故选A.8.将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后得到函数g (x )的图象.若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( D )A.5π12B .π3C.π4D .π6解析 g (x )=sin[2(x -φ)] =sin(2x -2φ). ∵|f (x )|≤1,|g (x )|≤1, ∴|f (x )-g (x )|≤2,当且仅当f (x 1)=1,g (x 2)=-1或f (x 1)=-1,g (x 2)=1时,满足|f (x 1)-g (x 2)|=2. 不妨设A (x 1,-1)是函数f (x )图象的一个最低点,B (x 2,1)是函数g (x )图象的一个最高点, 于是x 1=k 1π+3π4(k 1∈Z ),x 2=k 2π+π4+φ(k 2 ∈Z ).∴|x 1-x 2|≥⎪⎪⎪⎪3π4-⎝⎛⎭⎫π4+φ=⎪⎪⎪⎪π2-φ. ∵φ ∈⎝⎛⎭⎫0,π2,|x 1-x 2|min =π3, ∴π2-φ=π3,即φ=π6,故选D. 9.已知函数f (x )=2sin x +φ2cos x +φ2⎝⎛⎭⎫|φ|<π2,且对于任意的x ∈R ,f (x )≤f ⎝⎛⎭⎫π6,则( C ) A .f (x )=f (x +π) B .f (x )=f ⎝⎛⎭⎫x +π2 C .f (x )=f ⎝⎛⎭⎫π3-xD .f (x )=f ⎝⎛⎭⎫π6-x解析 f (x )=sin(x +φ).由题意,可知f (x )≤f ⎝⎛⎭⎫π6对于任意的x ∈R 恒成立,即sin(x +φ)≤sin ⎝⎛⎭⎫π6+φ.又因为|φ|<π2,所以π6+φ=π2,所以φ=π3,所以f (x )=sin ⎝⎛⎭⎫x +π3.f ⎝⎛⎭⎫π3-x =sin ⎝⎛⎭⎫π3-x +π3=sin ⎣⎡⎦⎤-⎝⎛⎭⎫π3+x +π=sin ⎝⎛⎭⎫x +π3=f (x ).故选C. 10.已知函数f (x )=3sin w x +cos w x (w >0)的图象与x 轴的交点的横坐标可构成一个公差为π2的等差数列,把函数f (x )的图象沿x 轴向左平移π6个单位,得到函数g (x )的图象.下列说法正确的是( D )A .g (x )在⎣⎡⎦⎤π4,π2上是增函数B .g (x )的图象关于直线x =-π4对称C .函数g (x )是奇函数D .当x ∈⎣⎡⎦⎤π6,2π3时,函数g (x )的值域是[-2,1]解析 f (x )=3sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π6,由题意知T 2=π2,∴T =π,∴ω=2πT=2,∴f (x )=2sin ⎝⎛⎭⎫2x +π6.把函数f (x )的图象沿x 轴向左平移π6个单位,得到g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π6=2sin ⎝⎛⎭⎫2x +π2=2cos 2x 的图象,易知g (x )是偶函数且在⎣⎡⎦⎤π4,π2上是减函数,其图象不关于直线x =-π4对称,所以A 项,B 项,C 项错误.当x ∈⎣⎡⎦⎤π6,2π3时,2x ∈⎣⎡⎦⎤π3,4π3,则g (x )min =2cos π=-2,g (x )max =2cos π3=1,即函数g (x )的值域为[-2,1],故选D.11.函数f (x )=2x -4sin x ,x ∈⎣⎡⎦⎤-π2,π2的图象大致是( D )解析 因为函数f (x )是奇函数,所以排除A ,B 项,f ′(x )=2-4cos x ,令f ′(x )=2-4cos x =0,得x =±π3,故选D.12.函数f (x )=A sin w x (A >0,w >0)的部分图象如图所示,则f (1)+f (2)+f (3)+…+f (2 018)的值为( A )A .2+2B .32C .62D .-2解析 由题图可知,A =2,T =8,2πω=8,ω=π4,∴f (x )=2sin π4x ,∴f (1)=2,f (2)=2,f (3)=2,f (4)=0,f (5)=-2,f (6)=-2,f (7)=-2,f (8)=0,而2 018=8×252+2,∴f (1)+f (2)+…+f (2 018)=f (1)+f (2)=2+ 2.故选A.第2讲 三角变换与解三角形题型一三角恒等变换1.(1)(2018·河南郑州模拟)若tan α=13,tan(α+β)=12,则tan β=( A )A.17 B .16C .57D .56(2) (2017·河北唐山中学模拟)已知α是三角形的内角,sin ⎝⎛⎭⎫α+π3=45,则cos ⎝⎛⎭⎫5π12-α=( D )A.210B .-210C .-7210D .7210突破点拨(1)注意到β=(α+β)-α,再结合已知条件求tan β的值. (2)注意到cos ⎝⎛⎭⎫5π12-α=-cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3+π4,再实施运算. 解析 (1)tan β=tan[(α+β)-α] =tan (α+β)-tan α1+tan (α+β)·tan α=12-131+12×13=17.故选A.(2)∵α是三角形的内角,sin ⎝⎛⎭⎫α+π3=45<32, ∴α+π3是钝角,∴cos ⎝⎛⎭⎫α+π3=-35,cos ⎝⎛⎭⎫5π12-α=-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫5π12-α=-cos ⎝⎛⎭⎫712π+α=-cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3+π4=-cos ⎝⎛⎭⎫α+π3·cos π4+sin ⎝⎛⎭⎫α+π3sin π4=7210.故选D. 2. 已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 突破点拨(1)利用诱导公式转化为二倍角公式,再利用同角三角函数基本关系式求解. (2)切化弦,转化为二倍角公式,再利用(1)的结论求解. 解析 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α=12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3=sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin α cos α=-2cos 2αsin 2α=-2×-3212=2 3.利用三角恒等变换公式解题的常用技巧(1)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等. (2)降幂与升幂:通过二倍角公式得到. (3)弦、切互化:一般是切化弦. 题型二 解三角形1. 已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C . (1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积. 突破点拨(1)根据正弦定理把已知条件转化为边的关系,然后利用余弦定理求解.(2)利用勾股定理得到边的一个方程,结合已知条件解方程组求得边长,然后求面积.解析 (1)由题设及正弦定理可得b 2=2ac . 又a =b ,可得b =2c ,a =2c . 由余弦定理可得cos B =a 2+c 2-b 22ac =14.(2)由(1)知b 2=2ac . 因为B =90°,由勾股定理得a 2+c 2=b 2,故a 2+c 2=2ac ,进而可得c =a = 2. 所以△ABC 的面积为12×2×2=1.【变式考法】 (1)在本例条件下,求角B 的范围. (2)在本例条件下,若B =60°,b =2,求a 的值. 解析 (1)因为b 2=2ac ,所以cos B =a 2+c 2-b 22ac ≥2ac -2ac2ac =0,又因为0<B <π,所以0<B ≤π2.(2)因为b 2=2ac ,b =2,所以ac =1, 又因为b 2=a 2+c 2-2ac cos B ,所以a 2+c 2=3, 所以a +c =5, 所以a =5+12或5-12. 2. △ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍. (1)求sin ∠B sin ∠C; (2)若AD =1,DC =22,求BD 和AC 的长. 突破点拨(1)利用面积关系得边的关系,再利用正弦定理求解. (2)先利用面积比求BD ,再利用余弦定理求解. 解析 (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC . 由正弦定理可得sin ∠B sin ∠C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理知 AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1)知AB =2AC ,所以AC =1.利用正、余弦定理解三角形的技巧解三角形问题一般要利用正、余弦定理和三角形内角和定理,正弦定理可以将角转化为边,也可以将边转化成角,当涉及边的平方关系时,一般利用余弦定理,要根据题目特点和正、余弦定理的结构形式,灵活选用.有关解三角形的综合问题(1)求∠ACP ;(2)若△APB 的面积是332,求sin ∠BAP .思维导航(1)由已知条件选择余弦定理求得AP .(2)由三角形的面积和(1)结论解得PB ,再由余弦定理及正弦定理求得AB 和sin ∠BAP . 规范解答(1)在△APC 中,因为∠P AC =60°,PC =2,AP +AC =4, 由余弦定理得PC 2=AP 2+AC 2-2AP ·AC ·cos ∠P AC ,所以22=AP 2+(4-AP )2-2AP ·(4-AP )·cos 60°,整理得AP 2-4AP +4=0,解得AP =2,所以AC =2.所以△APC 是等边三角形,所以∠ACP =60°.(2)因为∠APB 是△APC 的外角,所以∠APB =120°.因为△APB 的面积是332,所以12AP ·PB ·sin ∠APB =332,所以PB =3.在△APB 中,AB 2=AP 2+PB 2-2AP ·PB ·cos ∠APB =22+32-2×2×3×cos 120°=19,所以AB =19.在△APB 中,由正弦定理得AB sin ∠APB =PBsin ∠BAP,所以sin ∠BAP =3sin 120°19=35738.【变式考法】 (2017·广州模拟)如图,在△ABC 中,∠ABC =30°,AB =3,AC =1,AC <BC ,P 为BC 右上方一点,满足∠BPC =90°.(1)若BP =2,求AP 的长; (2)求△BPC 周长的最大值.解析 由题意知1=AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC =3+BC 2-3BC ,解得BC =2(BC =1舍去,则∠CAB =90°.又∠BPC =90°,且BP =2,所以∠PBC =45°,从而∠ABP =75°.连接AP ,由余弦定理得AP =3+2-2×3×2×6-24=6+22. (2)由(1)可知BC =2或BC =1,又因为求△BPC 周长的最大值,所以BC =2,设BP =m ,PC =n ,则m 2+n 2=4.由于BC 长为定值,因此求△BPC 周长的最大值只需求BP +PC =m +n 的最大值即可. 又4=m 2+n 2≥(m +n )22,则m +n ≤22, 当且仅当m =n =2时取等号,此时△BPC 的周长取得最大值,为2+2 2.1.(教材回归)sin 20°cos 10°-cos 160°sin 10°=( D ) A .-32B .32C .-12D .12解析 原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.2.(2017·“江南十校”模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若C=2B ,则sin Bsin A=( D )A.c 2a 2+b 2-c 2 B .b 2a 2+b 2-c 2C.a 2a 2+b 2-c2 D .c 2a 2+c 2-b2解析 由已知,得sin C =sin 2B =2sin B cos B , 所以sin C sin B =2cos B .由正弦定理及余弦定理,得c b =2×a 2+c 2-b 22ac ,则b a =c 2a 2+c 2-b2. 再由正弦定理,得sin B sin A =c 2a 2+c 2-b 2,故选D.3.已知tan α=-2,tan(α+β)=17,则tan β的值为__3__.解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.4.(2017·河南郑州调考)已知△ABC 中,角C 为直角,D 是边BC 上一点,M 是AD 上一点,且CD =1,∠DBM =∠DMB =∠CAB ,则MA =__2__.解析 如图,设∠DMB =θ,则∠ADC =2θ,∠DAC =π2-2θ,∠AMB =π-θ,∠ABM =π2-2θ,在Rt △ABC 中,cos θ=cos ∠CAB =ACAB ;在△CDA 中,由正弦定理得CD sin ⎝⎛⎭⎫π2-2θ=ACsin 2θ; 在△AMB 中,由正弦定理得MA sin ⎝⎛⎭⎫π2-2θ=ABsin (π-θ), ∴CD MA =AC ·sin θAB ·sin 2θ=AC ·sin θ2AB ·sin θcos θ=12,从而MA =2. 5.在△ABC 中,a =4,b =5,c =6,则sin 2Asin C=__1__.解析 在△ABC 中,由余弦定理的推论可得cos A =b 2+c 2-a 22bc =52+62-422×5×6=34,由正弦定理可知sin 2A sin C =2sin A cos A sin C =2a ·cos Ac =2×4×346=1.6.(书中淘金)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD解析 依题意有AB =600,∠CAB =30°,∠CBA =180°-75°=105°,∠DBC =30°,DC ⊥CB . ∴∠ACB =45°,在△ABC 中,由AB sin ∠ACB =CB sin ∠CAB ,得600sin 45°=CBsin 30°, 有CB =3002,在Rt △BCD 中,CD =CB ·tan 30°=1006, 则此山的高度CD =100 6 m.7.(考点聚焦)已知函数f (x )=2sin ωx +m cos ωx (ω>0,m >0)的最小值为-2,且图象上相邻两个最高点的距离为π.(1)求ω和m 的值;(2)若f ⎝⎛⎭⎫θ2=65,θ∈⎝⎛⎭⎫π4,3π4,求f ⎝⎛⎭⎫θ+π8的值. 解析 (1)易知f (x )=2+m 2sin(ωx +φ)(φ为辅助角), ∴f (x )min =-2+m 2=-2,∴m = 2.由题意知函数f (x )的最小正周期为π,∴2πω=π,∴ω=2.(2)由(1)得f (x )=2sin 2x +2cos 2x =2sin ⎝⎛⎭⎫2x +π4, ∴f ⎝⎛⎭⎫θ2=2sin ⎝⎛⎭⎫θ+π4=65, ∴sin ⎝⎛⎭⎫θ+π4=35, ∵θ∈⎝⎛⎭⎫π4,3π4,∴θ+π4∈⎝⎛⎭⎫π2,π,∴cos ⎝⎛⎭⎫θ+π4=-1-sin 2⎝⎛⎭⎫θ+π4=-45, ∴f ⎝⎛⎭⎫θ+π8=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫θ+π8+π4=2sin ⎝⎛⎭⎫2θ+π2 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫θ+π4=4sin ⎝⎛⎭⎫θ+π4cos ⎝⎛⎭⎫θ+π4 =4×35×⎝⎛⎭⎫-45=-4825. 8.(教材回归)在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; (2)求sin 2C 的值.解析 (1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7,所以BC =7.(2)由正弦定理知sin C =AB BC ·sin A =2sin 60°7=217.因为AB <BC ,所以C <A ,所以C 为锐角, 则cos C =1-sin 2C =1-37=277. 因此sin 2C =2sin C ·cos C =2×217×277=437. 9.(2017·河北唐山二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a 2+b 2=λab . (1)若λ=6,B =5π6,求sin A ;(2)若λ=4,AB 边上的高为3c6,求C . 解析 (1)已知B =5π6,a 2+b 2=6ab ,结合正弦定理得4sin 2A -26sin A +1=0,解得sin A =6±24. 因为0<A <π6,所以sin A <12,所以sin A =6-24.(2)由题意可知S △ABC =12ab sin C =312c 2,得12ab sin C =312(a 2+b 2-2ab cos C )=312(4ab -2ab cos C ). 从而有3sin C +cos C =2,即sin ⎝⎛⎭⎫C +π6=1. 又π6<C +π6<7π6,所以C =π3.10.(2017·山东淄博模拟)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,求△ABC 面积的最大值.解析 (1)由a cos C +3a sin C -b -c =0及正弦定理, 得sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 易知sin C ≠0,所以3sin A -cos A =1, 所以sin ⎝⎛⎭⎫A -π6=12.又0<A <π,所以A =π3. (2)方法一 由(1)得B +C =2π3⇒C =2π3-B ⎝⎛⎭⎫0<B <2π3,因为a sin A =2sin π3=43, 所以由正弦定理得b =43sin B ,c =43sin C . 所以S △ABC =12bc sin A =12×43sin B ×43sin C ·sin π3=433sin B ·sin C =433·sin B ·sin ⎝⎛⎭⎫2π3-B =433⎝⎛⎭⎫32sin B cos B +12sin 2B =sin 2B -33cos 2B +33=233sin ⎝⎛⎭⎫2B -π6+33.易知-π6<2B -π6<7π6, 故当2B -π6=π2,即B =π3时,S △ABC 取得最大值,最大值为233+33= 3.方法二 由(1)知A =π3,又a =2,由余弦定理得22=b 2+c 2-2bc cos π3,即b 2+c 2-bc =4⇒bc +4=b 2+c 2≥2bc ⇒bc ≤4,当且仅当b =c=2时,等号成立.所以S △ABC =12bc sin A =12×32bc ≤34×4=3,即当b =c =2时,S △ABC 取得最大值,最大值为 3.1.已知函数f (x )=2cos 2x -sin ⎝⎛⎭⎫2x -7π6. (1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;(2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2,求实数a的取值范围.解析 (1)f (x )=(1+cos 2x )-⎝⎛⎭⎫sin 2x cos 7π6-cos 2x sin 7π6 =1+32sin 2x +12cos 2x =1+sin ⎝⎛⎭⎫2x +π6, ∴函数f (x )的最大值为2,当且仅当sin ⎝⎛⎭⎫2x +π6=1, 即2x +π6=2k π+π2,k ∈Z ,即x =k π+π6,k ∈Z 时取到.∴函数f (x )取最大值时x 的取值集合为x ⎪⎪⎭⎬⎫x =k π+π6,k ∈Z . (2)由题意,f (A )=sin ⎝⎛⎭⎫2A +π6+1=32, 化简得sin ⎝⎛⎭⎫2A +π6=12. ∵A ∈(0,π),∴2A +π6∈⎝⎛⎭⎫π6,13π6, ∴2A +π6=5π6,∴A =π3.在△ABC 中,a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝⎛⎭⎫b +c 22= 1,即a 2≥1,当b =c =1时取等号. 又由b +c >a ,得a <2, ∴a 的取值范围是[1,2).2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin 2A ,求A 的值. 解析 (1)∵c =2,C =π3,∴由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab .∵△ABC 的面积等于3, ∴12ab sin C =3,∴ab =4, 联立⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)∵sin C +sin(B -A )=2sin 2A , ∴sin(B +A )+sin(B -A )=4sin A cos A , ∴sin B cos A =2sin A cos A . ①当cos A =0时,A =π2;②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433,∴b 2=a 2+c 2,∵C =π3,∴A =π6.综上所述,A =π2或A =π6.3.(2017·浙江重点中学联考)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c . (1)若C =2B ,求证:cos A =3cos B -4cos 3B ;(2)若b sin B -c sin C =a ,且△ABC 的面积S =b 2+c 2-a 24,求角B .解析 (1)证明:∵C =2B ,∴A =π-3B , ∴cos A =cos(π-3B )=-cos(B +2B ) =-cos B cos 2B +sin B sin 2B =-cos B (2cos 2B -1)+2sin 2B cos B=cos B -2cos 3B +2cos B (1-cos 2B )=3cos B -4cos 3B , ∴cos A =3cos B -4cos 3B .(2)在△ABC 中,∵S =b 2+c 2-a 24,∴S =b 2+c 2-a 24=12bc sin A .由余弦定理知b 2+c 2-a 24=12bc cos A ,∴12bc cos A =12bc sin A ,∴tan A =1, 而A ∈(0,π),∴A =π4.∵b sin B -c sin C =a ,由正弦定理,得 sin 2B -sin 2C =sin A =22, ∴cos 2C -cos 2B = 2.∵2C =2π-2A -2B =3π2-2B ,∴-sin 2B -cos 2B =2,∴sin ⎝⎛⎭⎫2B +π4=-1. ∵B ∈(0,π),∴2B +π4=3π2,∴B =5π8.4.(2017·武汉武昌五月调研)已和函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2的图象经过点⎝⎛⎭⎫0,12,且相邻两条对称轴的距离为π2.(1)求函数f (x )的解析式及其在[0,π]上的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若f ⎝⎛⎭⎫A 2-cos A =12,bc =1,b +c =3,求a 的值.解析 (1)将⎝⎛⎭⎫0,12代入f (x )的解析式,得sin φ=12. 又因为0<φ<π2,所以φ=π6.又因为最小正周期T =π2×2=π,所以ω=2.所以函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x +π6. 因为x ∈[0,π], 所以π6≤2x +π6≤13π6,所以2x +π6∈⎣⎡⎦⎤π6,π2或2x +π6∈⎣⎡⎦⎤3π2,13π6时,f (x )递增,即x ∈⎣⎡⎦⎤0,π6或x ∈⎣⎡⎦⎤2π3,π时,f (x )递增.所以函数f (x )在[0,π]上的单调递增区间是⎣⎡⎦⎤0,π6,⎣⎡⎦⎤2π3,π. (2)由(1)知f ⎝⎛⎭⎫A 2=sin ⎝⎛⎭⎫A +π6,代入已知等式得 sin ⎝⎛⎭⎫A +π6-cos A =32sin A +12cos A -cos A =32sin A -12cos A =sin ⎝⎛⎭⎫A -π6=12, 所以A -π6=π6或5π6,即A =π3或A =π(舍去).又因为bc =1,b +c =3,由余弦定理,得a 2=b 2+c 2-2bc ·cos A =b 2+c 2-bc =(b +c )2-3bc =6,所以a = 6. 5.(2018·山东青岛模拟)在△ABC 中,边a ,b ,c 的对角分别为A ,B ,C ,且b =4,A =π3,面积S =2 3. (1)求a 的值;(2)设f (x )=2(cos C sin x -cos A cos x ),将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变)得到g (x )的图象,求g (x )的单调增区间.解析 (1)在△ABC 中,∵S =12bc sin A ,∴23=12×4×c ×32,∴c =2.∴a =b 2+c 2-2bc cos A =16+4-2×4×2×12=2 3.(2)∵a sin A =b sin B ,即2332=4sin B,∴sin B =1, 又0<B <π,∴B =π2,∴C =π6,∴f (x )=2(cos C sin x -cos A cos x )=2sin ⎝⎛⎭⎫x -π6, 将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变),得到的图象对应的函数解析式为g (x )=2sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),故g (x )的单调增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ). 6.(2018·辽宁协作体一模)设△ABC 是锐角三角形,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B sin ⎝⎛⎭⎫π3-B . (1)求角A 的值;(2)若AB →·AC →=12,a =27,求b ,c (其中b <c ).解析 (1)∵(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B ·sin ⎝⎛⎭⎫π3-B ,∴sin 2A -sin 2B =⎝⎛⎭⎫32cos B +12sin B⎝⎛⎭⎫32cos B -12sin B , 即sin 2A =34cos 2B -14sin 2B +sin 2B=34(cos 2B +sin 2B )=34, ∵角A 为锐角△ABC 的内角,∴sin A >0, ∴sin A =32,∴A =π3. (2)AB →·AC →=bc cos A =12,∴bc =24,又a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =(27)2, ∴b +c =10,又∵b <c ,∴b =4,c =6.第3讲 平面向量题型一 向量的概念及线性运算高考中常从以下角度命题:1. (1)平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1).若(a+k c)∥(2b-a),则k=-1613.(2)如图,E为平行四边形ABCD的边DC的中点,F为△ABD的重心,且AB→=a,AD→=b,则FE→=23b+16a.突破点拨(1)利用向量的坐标运算和向量共线定理求解.(2)利用向量加、减法的几何意义和重心公式求解.解析(1)因为(a+k c)∥(2b-a),又a+k c=(3+4k,2+k),2b-a=(-5,2),所以2×(3+4k)-(-5)×(2+k)=0,所以k=-1613.(2)由F为△ABD的重心,得AF→=23×12AC→=13(a+b).又AE→=AD→+DE→=b+12a,所以FE→=AE→-AF→=23b+16a.2.(1)在△ABC中,点M,N满足AM→=2MC→,BN→=NC→.若MN→=xAB→+yAC→,则x=12,y=-16.(2)已知向量a=(2,1),b=(1,-2),若m a+n b=(9,-8)(m,n∈R),则m-n的值为__-3__.突破点拨(1)画出图形,利用向量加减法则求解.(2)利用向量的坐标运算求解.。
高三数学解三角形试题
高三数学解三角形试题1.在中,内角所对的边分别为.已知,(1)求角的大小;(2)若,求的面积.【答案】(1);(2).【解析】(1)求角的大小,由已知,可利用降幂公式进行降幂,及倍角公式变形得,移项整理,,有两角和与差的三角函数关系,得,可得,从而可得;(2)求的面积,由已知,,且,可由正弦定理求出,可由求面积,故求出即可,由,,故由即可求出,从而得面积.(1)由题意得,,即,,由得,,又,得,即,所以;(2)由,,得,由,得,从而,故,所以的面积为.点评:本题主要考查诱导公式,两角和与差的三角函数公式,二倍角公式,正弦定理,余弦定理,三角形面积公式,等基础知识,同时考查运算求解能力.2.如图所示,在四边形ABCD中,AB=AD=1,∠BAD=θ,而△BCD是正三角形.(1)将四边形ABCD的面积S表示为θ的函数;(2)求S的最大值及此时θ角的值.【答案】(1)S=+sin(θ-),其中0<θ<π(2)S取得最大值1+,此时θ=+==×1×1×sinθ=sinθ,【解析】解:(1)S△ABD=BD2.因为△BDC是正三角形,则S△BDC由△ABD及余弦定理,可知BD2=12+12-2×1×1×cosθ=2-2cosθ,于是四边形ABCD的面积S=sinθ+ (2-2cosθ),即S=+sin(θ-),其中0<θ<π.(2)由(1),知S=+sin(θ-),由0<θ<π,得-<θ-<,故当θ-=时,S取得最大值1+,此时θ=+=.3.在△ABC中,已知sinA∶sinB∶sinC=4∶5∶8,则△ABC一定为()A.正三角形B.等腰三角形C.直角三角形D.钝角三角形【答案】D【解析】已知得a∶b∶c=4∶5∶8,所以cosC=-<0,选D项.4.已知△ABC中,三个内角A,B,C所对的边分别为a,b,c,若△ABC的面积为S,且2S =(a+b)2-c2,则tan C等于()A.B.C.-D.-【答案】C【解析】由2S=(a+b)2-c2得2S=a2+b2+2ab-c2,即2×absin C=a2+b2+2ab-c2,则absin C-2ab=a2+b2-c2,又因为cos C=-1,所以cos C+1=,即2cos2=sin cos ,所以tan =2,即tan C===-5.在△ABC中,内角A,B,C所对的边分别为a,b,c,且f(A)=2cos sin+sin2-cos2.(1)求函数f(A)的最大值;(2)若f(A)=0,C=,a=,求b的值.【答案】(1)(2)3【解析】(1)f(A)=2cos sin+sin2-cos2=sin A-cos A=sin.因为0<A<π,所以-<A-<.当A-=,即A=时,f(A)取得最大值,且最大值为.(2)由题意知f(A)=sin=0,所以sin=0.又知-<A-<,则A-=0,∴A=.因为C=,所以A+B=,则B=.由,得ab==36.已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为________.【答案】15【解析】由于三边长构成公差为4的等差数列,故可设三边长分别为x-4,x,x+4.由一个内角为120°知其必是最长边x+4所对的角.由余弦定理,得(x+4)2=x2+(x-4)2-2x(x-4)·cos 120°,∴2x2-20x=0,∴x=0(舍去)或x=10.∴S=×(10-4)×10×sin 120°=15.△ABC7.设的内角所对的边长分别为,且,,则的最小值是()A.2B.3C.4D.5【答案】C.【解析】由题意根据正弦定理得,再由余弦定理得,即的最小值为4.【考点】解三角形.8.在中,已知(1)求;(2)若,的面积是,求.【答案】(1);(2)2.【解析】(1)用三角形三内角和定理及特殊角的三角函数值求解;(2)利用余弦定理与三角形的面积公式,得到关于、的方程组,解出即得.(1)在中,,,,.(2)由余弦定理,则,又的面积是,则,即,,即,.【考点】三角形三内角和定理,余弦定理,三角形的面积.9.在中,分别为角所对的三边,,(Ⅰ)求角;(Ⅱ)若,角等于,周长为,求函数的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据题目条件,容易联想到余弦定理,求出角; (Ⅱ)求函数的取值范围,这是一个函数的值域问题,需先找出函数关系式,因此要先把各边长求出来,或用表示出来,方法是利用正弦定理来沟通三角形的边角关系,求出函数关系式后,不要忘记求函数的定义域,根据函数定义域去求函数的值域,这显然又是一个三角函数的值域问题,可化为的类型求解.试题解析:(Ⅰ)由,得,3分又, 6分(Ⅱ)同理: 9分故,,. 12分【考点】正弦定理、余弦定理、三角函数的值域.10.△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积.(Ⅰ)求C;(Ⅱ)若a+b=2,且c=,求A.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)首先利用余弦定理和面积公式将进行化简求解;(Ⅱ)利用正弦定理将边转化角,然后利用两角差的正弦公式展开进行合并求解.试题解析:(Ⅰ)由余弦定理知c2-a2-b2=-2abcosC,又△ABC的面积S=absinC= (c2-a2-b2),所以absinC= (-2abcosC),得tanC=-.因为0<C<π,所以C=. 6分(Ⅱ)由正弦定理可知===2,所以有a+b=2sinA+2sinB=2,sinA+sin(-A)=1,展开整理得,sin(+A)=1,且<+A<,所以A=. 12分【考点】1.正弦定理和余弦定理;2.三角化简.11.在中,角所对的边分别为满足,,,则的取值范围是 .【答案】【解析】由得,得为钝角,故,由正弦定理可知:,,所以.【考点】正余弦定理,辅助角公式.12.已知、、分别为三个内角、、的对边,若,,则的值等于.【答案】【解析】根据余弦定理得:.∵是三角形的内角,∴.在中,.∴.根据正弦定理和已知得:.∴.∴.【考点】解三角形,涉及正余弦定理、三角变换.13.设的三个内角,,所对的边分别为,,.已知.(1)求角的大小;(2)若,求的最大值.【答案】(1)(2)【解析】解:(1)由已知有, 1分得,则, 3分. 4分又,故. 5分(2)(法一)由正弦定理得, ,则. 7分而. 9分则.又,所以. 10分所以当且仅当,即时,取得最大值,11分故. 12分(法二)由余弦定理得,即, 7分则,又则 10分 10分得,故,当且仅当时,. 12分【考点】正弦定理点评:主要是考查了正弦定理和解三角形中余弦定理的运用,属于基础题。
2020考前必刷题6解三角形与平面向量综合测试(理)
满足sin A:sin B:sin C=2:3:7,则用以上给出的公式求得△ABC的面积为________.16.[2019·山东德州模拟]在△ABC中,D为BC边上一点,AD=2,∠DAC=60°.若AC =4-CD且△ABC的面积为43,则sin∠ABC=________.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)[2017·全国卷Ⅱ,17]△ABC的内角,A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2B 2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.18.(本小题满分12分)[2019·衡水模拟]如图,在△ABC中,内角A,B,C所对的边分别为a,b,c,且2a cos A=b cos C+c cos B.(1)求角A的大小;(2)若点D在边AC上,且BD是∠ABC的平分线,AB=2,BC=4,求AD的长.19.(本小题满分12分)[2019·河南南阳一中考试]在△ABC中,内角A,B,C所对的边分别为a,b,c,且sin B(a cos B+b cos A)=3c cos B.(1)求B;(2)若b=23,△ABC的面积为23,求△ABC的周长.20.(本小题满分12分)如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB→=b .试用a 和b 表示向量OM →.21.(本小题满分12分)[2019·湖南师大附中月考]已知锐角三角形ABC 的三个内角A ,B ,C 满足sin B sin C =(sin 2B +sin 2C -sin 2A )tan A .(1)求角A 的大小;(2)若△ABC 的外接圆的圆心是O ,半径是1,求OA →·(AB →+AC →)的取值范围.22.(本小题满分12分)=32,∴AB =32=4 2. 故选A. 7.答案:B解析:∵sin B +cos B =2sin ⎝⎛⎭⎫B +π4=2, ∴B +π4=π2,B =π4.由正弦定理a sin A =bsin B 得,sin A =2sinπ42=12.∵a <b ,∴A =π6.8.答案:B解析:解法一 由余弦定理b 2=a 2+c 2-2ac cos B ,代入数据,得a =3,又cos B =34,B ∈(0,π),所以sin B =74,所以S △ABC =12ac sin B =372,故选B. 解法二 由cos B =34,B ∈(0,π),得sin B =74,由正弦定理b sin B =csin C 及b =7,c =4,可得sin C =1,所以C =π2,所以sin A =cos B =34,所以S △ABC =12bc sin A =372,故选B.9.答案:B 解析:在△ABC 中,G ,O 分别为△ABC 的重心和外心,取BC 的中点D ,连接AD ,OD ,OG ,如图所示,则OD ⊥BC ,GD =13AD ,因为OG →=OD →+DG →,AD →=12(AB →+AC →),OG →·BC →=5,所以(OD →+DG → )·BC →=DG → ·BC →=-16 (AB →+AC → )·BC →=5,即-16 (AB →+AC → )·(AC →-AB → )=5,所以AC →2-AB →2=-30.又BC =5,则|AB →|2=|AC →|2+65|BC →|2>|AC →|2+|BC →|2,由余弦定理得cos C <0,所以π2<C <π,所以△ABC 是钝角三角形.10.答案:A解析:由题意,A ,B ,D 三点共线,故必存在一个实数λ,使得AB →=λBD →.又AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e 1-2k e 2,所以BD →=CD →-CB →=3e 1-2k e 2-(k e 1+e 2)=(3-k )e 1-(2k+1)e 2,所以3e 1+2e 2=λ(3-k )e 1-λ(2k +1)e 2,所以⎩⎪⎨⎪⎧3=λ(3-k ),2=-λ(2k +1),解得k =-94.11.答案:D解析:设OP 3→=(x ,y ),则由OP 3→∥a 知x +y =0,于是OP 3→=(x ,-x ).若OP 3→=λOP 1→+(1-λ)OP 2→,则有(x ,-x )=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0,解得λ=-1,故选D.12.答案:D 解析:如图,由AB =1,BC =2,可得AC =3,以AB 所在直线为x 轴,以AC 所在直线为y 轴,建立平面直角坐标系,则B (1,0),C (0,3),直线BC 方程为x +y3=1,则直线AM 方程为y =33x ,联立解得M ⎝⎛⎭⎫34,34.由图可知,当P 在线段BC 上时,AM →·BP →有最大值为0,当P 在线段AC 上时,AM →·BP →有最小值,设P (0,y )(0≤y ≤3),∴AM →·BP →=⎝⎛⎭⎫34,34·(-1,y )=-34+34y ≥-34,∴AM →·BP →的取值范围是⎣⎡⎦⎤-34,0.故选D. 13.答案:43解析:选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=⎝⎛⎭⎫12λ+μAB →+⎝⎛⎭⎫λ+12μAD →,于是得⎩⎨⎧12λ+μ=1,λ+12μ=1,解得⎩⎨⎧λ=23,μ=23,所以λ+μ=43.14.答案:3π4解析:根据题意,由a ∥b ,得3x =2×(-4),解得x =-83,由a ⊥c ,得3×2+(-4)×y=0,解得y =32,则b =⎝⎛⎭⎫2,-83,c =⎝⎛⎭⎫2,32.设a -3b 与a +2c 的夹角为θ,∵a -3b =(-3,4),a +2c =(7,-1),∴cos θ=(a -3b )·(a +2c )|a -3b |·|a +2c |=-3×7+4×(-1)5×52=-22.又∵0<θ<π,∴θ=3π4,即a -3b 与a +2c 的夹角为3π4. 15.答案:63解析:由正弦定理及sin A :sin B :sin C =2:3:7可知,a :b :c =2:3:7,由a +b +c =10+27,得a =4,b =6,c =27,代入公式S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222可得△ABC 的面积为6 3. 16.答案:3926解析:在△ACD 中,由余弦定理得CD 2=4+(4-CD )2-4(4-CD )·cos60°, 解得CD =2,故CD =AC =AD ,所以△ACD 为正三角形,∠C =60°. 所以S △ABC =12BC ·AC ·sin C =12×BC ×2×32=43,故BC =8.在△ABC 中,由余弦定理得 AB =64+4-2×8×2×12=213,由三角形的面积公式,得12×213×8sin ∠ABC =43,所以sin ∠ABC =43813=3926.17.解析:本题考查了三角公式的运用和余弦定理的应用. (1)由题设及A +B +C =π得sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0,解得cos B =1(舍去),cos B =1517.(2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.。
用平面向量解三角形问题
第五编 平面向量、解三角形§5.1 平面向量的概念及线性运算基础自测 1.下列等式正确的是 (填序号).①a +0=a ②a +b =b +a ③+≠0 ④=++答案 ①②④2.如图所示,在平行四边行ABCD 中,下列结论中正确的是 . ①= ②+= ③-= ④+=0答案 ①②④3.(2008²广东理,8)在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若=a ,=b ,则= . 答案 32a +31b 4.若ABCD 是正方形,E 是DC 边的中点,且AB =a ,AD =b ,则= . 答案 b -21a 5.设四边形ABCD 中,有=21,且||=||,则这个四边形是 . 答案 等腰梯形例1 给出下列命题①向量的长度与向量的长度相等;②向量a 与向量b 平行,则a 与b 的方向相同或相反;③两个有共同起点并且相等的向量,其终点必相同;④两个有共同终点的向量,一定是共线向量;⑤向量与向量是共线向量,则点A 、B 、C 、D 必在同一条直线上;⑥有向线段就是向量,向量就是有向线段.其中假命题的个数为 .答案 4例2 如图所示,若四边形ABCD 是一个等腰梯形, AB ∥DC ,M 、N 分别是DC 、AB 的中点,已知=a ,=b,=c,试用a 、b 、c 表示,,+.C D∵MN =MD ++AN ,∴=-21,=-,=21, ∴MN =21a -b -21c . +CN =+MN +CM +MN =2MN =a -2b -c .例3 设两个非零向量a 与b 不共线,(1)若=a +b ,=2a +8b ,=3(a -b ),求证:A 、B 、D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.(1)证明 ∵=a +b ,=2a +8b ,=3(a -b ),∴=+=2a +8b +3(a -b )=2a +8b +3a -3b=5(a +b )=5.∴、共线,又∵它们有公共点B ,∴A 、B 、D 三点共线.(2)解 ∵k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a 、b 是不共线的两个非零向量,∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.例4 (14分)如图所示,在△ABO 中,=41, =21,AD 与BC 相交于点M ,设=a ,=b .试 用a 和b 表示向量.解 设OM =m a +n b , 则=-=m a +n b -a =(m -1)a +n b .=-=21-=-a +21b . 又∵A 、M 、D 三点共线,∴AM 与AD 共线.∴存在实数t ,使得=t ,即(m -1)a +n b =t (-a +21b ). 4分 ∴(m -1)a +n b =-t a +21t b . ⎪⎩⎪⎨⎧=-=-21t n t m ,消去t 得:m -1=-2n . 即m +2n =1. ① 6分∴又∵CM =-=m a +n b -41a =(m -41)a +n b . =-=b -41a =-41a +b . 又∵C 、M 、B 三点共线,∴与共线. 10分∴存在实数t 1,使得=t 1,∴(m -41)a +n b =t 1⎪⎭⎫ ⎝⎛+-41, ∴⎪⎩⎪⎨⎧=-=-114141t n t m ,消去t 1得,4m +n =1 ② 12分由①②得m =71,n =73, ∴OM =71a +73b . 14分1.下列命题中真命题的个数为 .①若|a |=|b |,则a =b 或a =-b ;②若=,则A 、B 、C 、D 是一个平行四边形的四个顶点;③若a =b ,b =c ,则a =c ;④若a ∥b ,b ∥c ,则a ∥c . 答案 12.在△OAB 中,延长BA 到C ,使AC =BA ,在OB 上取点D ,使DB =31OB .DC 与OA 交于E ,设=a ,=b ,用a , b 表示向量,. 解 因为A 是BC 的中点,所以=21(+),即=2-=2a -b ; =-=-32=2a -b -32b =2a -35b . 3.若a ,b 是两个不共线的非零向量,a 与b 起点相同,则当t 为何值时,a ,t b ,31(a +b )三向量的终点在同一条直线上? 解 设=a ,=t b ,=31(a +b ), ∴=-=-32a +31b ,=-=t b -a . 要使A 、B 、C 三点共线,只需AC =λ即-32a +31b =λt b -λa a b∴有 ⎪⎪⎩⎪⎪⎨⎧=-=-t λλ3132,∴⎪⎪⎩⎪⎪⎨⎧==2132t λ ∴当t =21时,三向量终点在同一直线上. 4.如图所示,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 的值.解 方法一 设e 1=BM ,e 2=, 则=+CM =-3e 2-e 1,=+=2e 1+e 2.=λ=-3λe 2-λe 1,因为A 、P 、M 和B 、P 、N 分别共线,所以存在实数μ、λ,使=μ=2μe 1+μe 2,∴=-=(λ+2μ)e 1+(3λ+μ)e 2, 另外=+=2e 1+3e 2,⎩⎨⎧=+=+3322μλμλ,∴⎪⎪⎩⎪⎪⎨⎧==5354μλ, ∴=54,=53,∴AP ∶PM =4∶1. 方法二 设=λAM , ∵=21(+)=21+43, ∴=2λ+43λ. ∵B 、P 、N 三点共线,∴-=t (-),∴=(1+t )-t ∴⎪⎪⎩⎪⎪⎨⎧-=+=t t λλ4312∴2λ+43λ=1,λ=54,∴AP ∶PM =4∶1.一、填空题1.下列算式中正确的是 (填序号).①++=0 ②-= ③0²=0 ④λ(μa )=λ²μ²a 答案 ①③④2.(2008²全国Ⅰ理)在△ABC 中,=c ,=b ,若点D 满足=2,则= (用b ,c 表示). 答案 32b +31c11是 .答案 等腰梯形4.如图所示,平面内的两条相交直线OP 1和OP 2将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ(不包括边界).若=a 1+b 2,且点P 落在第Ⅲ部分,则实数a ,b 满足a 0,b 0.(用“>”,“<”或“=”填空)答案 > <5.设=x +y ,且A 、B 、C 三点共线(该直线不过端点O ),则x +y = .答案 16.已知平面内有一点P 及一个△ABC ,若++=,则点P 在线段 上.答案 AC7.在△ABC 中,=a ,=b ,M 是CB 的中点,N 是AB 的中点,且CN 、AM 交于点P ,则可用a 、b 表示为 . 答案 -32a +31b 8.在△ABC 中,已知D 是AB 边上一点,若=2,=31+λ,则λ= . 答案 32 二、解答题9.如图所示,△ABC 中,=32,DE ∥BC 交AC 于E ,AM 是BC 边上中线,交DE 于N .设=a ,=b ,用a ,b 分别表示向量,,,,,. 解 ⎪⎭⎪⎬⎫=BC DE 32//⇒=32=32b . BC =AC -=b -a .由△ADE ∽△ABC ,得=32=32(b -a ). 由AM 是△ABC 的中线,DE ∥BC ,得=21DE =31(b -a ). 而且=+=a +21=a +21(b -a ) =21(a +b ). ⎪⎭⎪⎬⎫=∆∆ABM ADN 32⇒=32=31(a +b ). 10.如图所示,在△ABC 中,D 、F 分别是BC 、AC 的中点,=32,=a ,=b . (1)用a 、b 表示向量、、、、;(2)求证:B 、E 、F 三点共线.(1)解 延长AD 到G ,使=21, 连接BG 、CG ,得到 ABGC , ∽AD =21=21(a +b ), =32=31(a +b ). =21=21b , =-=31(a +b )-a =31(b -2a ). =-=21b -a =21(b -2a ). (2)证明 由(1)可知=32BF ,所以B 、E 、F 三点共线. 11.已知:任意四边形ABCD 中,E 、F 分别是AD 、BC 的中点,求证:=21(+). 证明 方法一 如图,∵E 、F 分别是AD 、BC 的中点,∴+=0,FB +=0,又∵+++=0, ∴=++ ① 同理=++ ② 由①+②得,2=++(+)+(+)=+.∴=21(+). 方法二 连结,,则=+DC ,=+AB ,∴=21(+) =21(+++) =21(+). 12.已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且=x ,=y , 求x 1+y1的值. 解 根据题意G 为三角形的重心,故AG =31(+AC ), =-=31(+)-x=(31-x )+31, =-=y - =y -31(+) =(y -31)-31, 由于MG 与GN 共线,根据共线向量基本定理知=λ⇒(31-x )+31 =λ⎥⎦⎤⎢⎣⎡--AB AC y 31)31(, ⎪⎪⎩⎪⎪⎨⎧-=-=-)31(313131y x λλ⇒3131--x =3131-y ⇒x +y -3xy =0两边同除以xy 得x 1+y1=3. §5.2 平面向量基本定理及坐标表示基础自测 1.已知平面向量a =(1,1),b =(1,-1),则向量21a -23b = . 答案 (-1,2) 2.(2008² 安徽理)在平行四边形ABCD 中,AC 为一条对角线,若=(2,4),=(1,3),则= . 答案 (-3,-5)3.若向量a =(1,1),b =(1,-1),c =(-2,1),则c = (用a ,b 表示).答案 -21a -23b 4.已知向量a =⎪⎭⎫ ⎝⎛x 2`1,8,b =(x ,1),其中x >0,若(a -2b )∥(2a +b ),则x 的值为 . 答案 45.设a =⎪⎭⎫ ⎝⎛43,sin x ,b =⎪⎭⎫ ⎝⎛x ,cos 2131,且a ∥b ,则锐角x 为 . 答案4π例1 设两个非零向量e 1和e 2不共线.(1)如果=e 1-e 2,=3e1+2e 2,=-8e 1-2e 2,求证:A 、C 、D 三点共线;121212(1)证明 =e 1-e 2,BC =3e 1+2e 2, CD =-8e 1-2e 2,=+=4e 1+e 2=-21(-8e 1-2e 2)=-21, ∴与共线, 又∵与有公共点C , ∴A 、C 、D 三点共线.(2)解 =+=(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2,∵A 、C 、D 三点共线,∴与共线,从而存在实数λ使得=λ,即3e 1-2e 2=λ(2e 1-k e 2),由平面向量的基本定理,得⎩⎨⎧-=-=kλλ223,解之得λ=32,k =34. 例2 已知点A (1,0)、B (0,2)、C (-1,-2),求以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.解 设D 的坐标为(x ,y ).(1)若是 ,则由=DC 得(0,2)-(1,0)=(-1,-2)-(x ,y ),即(-1,2)=(-1-x ,-2-y ),∴⎩⎨⎧=---=--2211y x , ∴x =0,y =-4.∴D 点的坐标为(0,-4)(如图中的D 1).(2,则由=CB 得(x ,y )-(1,0)=(0,2)-(-1,-2),即(x -1,y )=(1,4).解得x =2,y =4.∴D 点坐标为(2,4)(如图中的D 2).(3,则由=得(0,2-(1,0)=(x ,y )-(-1,-2),即(-1,2)=(x +1,y +2).解得x =-2,y =0.∴D 点的坐标为(-2,0)(如图中的D 3).综上所述,以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标为(0,-4)或(2,4)或(-2,0). 例3 (14分)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).回答下列问题:(1)若(a +k c )∥(2b -a ),求实数k ;(2)设d =(x ,y )满足(d -c )∥(a +b )且|d -c |=1,求d .解 (1)∵(a +k c )∥(2b -a ),又a +k c =(3+4k ,2+k ),2b -a =(-5,2), 2分 ∴2³(3+4k )-(-5)³(2+k )=0, 4分 ∴k =-1316. 6分 (2)∵d -c =(x -4,y -1),a +b =(2,4),又(d -c )∥(a +b )且|d -c |=1,∴()()()()⎪⎩⎪⎨⎧=-+-=---1140124422y x y x , 10分 解得⎪⎪⎩⎪⎪⎨⎧+=+=5521554y x 或⎪⎪⎩⎪⎪⎨⎧-=-=5521554y x . 12分∴d =⎪⎪⎭⎫ ⎝⎛++55255520,或d =⎪⎪⎭⎫ ⎝⎛--55255520,. 14分1.如图所示,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM =c ,=d ,试用c ,d 表示,AD . 解 方法一 设AB =a ,AD =b ,则a =+=d +⎪⎭⎫ ⎝⎛-b 21 b =+=c +⎪⎭⎫ ⎝⎛-a 21 将②代入①得a =d +⎪⎭⎫ ⎝⎛-21⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+a c 21 ⇒a =d 34-32c ,代入② 得b =c+⎪⎭⎫ ⎝⎛-21=⎪⎭⎫ ⎝⎛-c d 323434c -32d 即=34d-32c ,=34c -32d 方法二 设=a ,=b .因M ,N 分别为CD ,BC 的中点,所以=21b ,=21a , 因而⇒⎪⎪⎩⎪⎪⎨⎧+=+=b a d a b c 2121⎪⎪⎩⎪⎪⎨⎧-=-=)2(32)2(32d c b c d a , 即AB =32(2d -c ), AD =32(2c -d ). 2.已知A (-2,4)、B (3,-1)、C (-3,-4)且CM =3,=2,求点M 、N 及的坐标. 解 ∵A (-2,4)、B (3,-1)、C (-3,-4), ∴=(1,8),=(6,3),∴CM =3=(3,24),=2=(12,6). 设M (x ,y ),则有CM =(x +3,y +4),∴⎩⎨⎧=+=+24433y x ,∴⎩⎨⎧==200y x , ∴M 点的坐标为(0,20).同理可求得N 点坐标为(9,2),因此=(9,-18),故所求点M 、N 的坐标分别为(0,20)、(9,2),的坐标为(9,-18).3.已知A 、B 、C 三点的坐标分别为(-1,0)、(3,-1)、(1,2),并且=31,=31. 求证:∥. 证明 设E 、F 两点的坐标分别为(x 1,y 1)、(x 2,y 2),则依题意,得=(2,2),=(-2,3), =(4,-1).AE =31=⎪⎭⎫ ⎝⎛32,32,BF =31=⎪⎭⎫ ⎝⎛-1,32 =(x 1,y 1)-(-1,0)= ⎪⎭⎫ ⎝⎛32,32, =(x 2,y 2)-(3,-1)= ⎪⎭⎫ ⎝⎛-1,32.一、填空题1.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则n m = . 答案 -21 2.设a 、b 是不共线的两个非零向量,已知=2a +p b ,BC =a +b ,CD =a -2b .若A 、B 、D 三点共线,则 p 的值为 .答案 -13.已知向量=(3,-2),=(-5,-1),则21= . 答案 ⎪⎭⎫ ⎝⎛-214, 4.(2007²北京文)已知向量a =(2,4),b =(1,1),若向量b ⊥(a +λb ),则实数λ的值是. 答案 -3EF EF .AB AB的坐标为 .答案 ⎪⎭⎫ ⎝⎛272, 6.设0≤θ<2π,已知两个向量1=(cos θ,sin θ),2OP =(2+sin θ,2-cos θ),则向量21P P 长度的最大值是 . 答案 327.(2008²全国Ⅱ文)设向量a =(1,2),b =(2,3),若向量λa +b 与向量c =(-4,-7)共线,则λ= .答案 28.(2008²菏泽模拟)已知向量m =(a -2,-2),n =(-2,b -2),m ∥n (a >0,b >0),则ab 的最小值是 .答案 16二、解答题9.已知A (-2,4),B (3,-1),C (-3,-4).设=a ,=b ,=c ,且CM =3c ,=-2b ,(1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .解 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵mb +nc =(-6m +n ,-3m +8n ),∴⎩⎨⎧-=+-=+-58356n m n m ,解得⎩⎨⎧-=-=11n m . 10.若a ,b 为非零向量且a ∥b ,λ1,λ2∈R ,且λ1λ2≠0.求证:λ1a +λ2b 与λ1a -λ2b 为共线向量.证明 设a =(x 1,y 1),b =(x 2,y 2).∵a ∥b ,b ≠0,a ≠0,∴存在实数m ,使得a =m b ,即a =(x 1,y 1)=(mx 2,my 2),∴λ1a +λ2b =((m λ1+λ2)x 2,(m λ1+λ2)y 2)=(m λ1+λ2)(x 2,y 2)同理λ1a -λ2b =(m λ1-λ2)(x 2,y 2),∴(λ1a +λ2b )∥(λ1a -λ2b )∥b , 而b ≠0,∴(λ1a +λ2b )∥(λ1a -λ2b ). 11.中,A (1,1),=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1)若=(3,5),求点C 的坐标;(2)当||=||时,求点P 的轨迹.解 (1)设点C 坐标为(x 0,y 0),又=+=(3,5)+(6,0)=(9,5),即(x 0-1,y 0-1)=(9,5),∴x 0=10,y 0=6,即点C (10,6).(2)由三角形相似,不难得出=2MP设P (x ,y ),则BP =-=(x -1,y -1)-(6,0)=(x -7,y -1),=AM +MC =21+3MP=21+3(-21) =3-=(3(x -1),3(y -1))-(6,0)=(3x -9,3y -3),∵||=||为菱形,∴AC ⊥BD ,∴⊥BP ,即(x -7,y -1)²(3x -9,3y -3)=0.(x -7)(3x -9)+(y -1)(3y -3)=0,∴x 2+y 2-10x -2y +22=0(y ≠1).∴(x -5)2+(y -1)2=4(y ≠1).故点P 的轨迹是以(5,1)为圆心,2为半径的圆去掉与直线y =1的两个交点.12.A (2,3),B (5,4),C (7,10),=+λ.当λ为何值时,(1)点P 在第一、三象限的角平分线上;(2)点P 到两坐标轴的距离相等?解 (1)由已知=(3,1),AC =(5,7),则+λ=(3,1)+λ(5,7)=(3+5λ,1+7λ).设P (x ,y ),则=(x -2,y -3),∴⎩⎨⎧+=-+=-λλ713532y x ,∴⎩⎨⎧+=+=λλ7455y x .∵点P 在第一、三象限的角平分线上,∴x =y ,即5+5λ=4+7λ,∴λ=21. (2)若点P 到两坐标轴的距离相等,则|x |=|y |,即|5+5λ|=|4+7λ|,∴λ=21或λ=-43.1.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为 .答案 565 2.在边长为1的正三角形ABC 中,设=a ,=c ,=b ,则a ²b +b ²c +c ²a = . 答案21 3.向量a =(cos15°,sin15°),b =(-sin15°,-cos15°),则|a -b |的值是 .答案 34.(2009²常州市武进区四校高三联考)已知向量a =(2,1),b =(3,λ) (λ>0),若(2a -b )⊥b ,则λ= .答案 35.(2008²浙江理)已知a 、b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )²(b -c )=0,则|c |的最大值是 . 答案 2例1 已知向量a =⎪⎭⎫ ⎝⎛x x 23sin ,23cos b =⎪⎭⎫ ⎝⎛-2sin ,2cos x x 且x ∈⎥⎦⎤⎢⎣⎡-4,3ππ. (1)求a ²b 及|a +b |; (2)若f (x )=a ²b -|a +b |,求f (x )的最大值和最小值.解 (1)a ²b =cos 23x cos 2x -sin 23x sin 2x =cos2x , a +b =⎪⎭⎫ ⎝⎛-+2sin 23sin 2cos 23cos x x ,x x(2)由(1)可得f (x )=cos2x -2cos x =2cos 2x -2cos x -1∴当cos x =21时,f (x )取得最小值为-23; 当cos x =1时,f (x )取得最大值为-1.例2 已知a =(cos α,sin α),b =(cos β,sin β)(0<α<β<π).(1)求证:a +b 与a -b 互相垂直;(2)若k a +b 与a -k b 的模相等,求β-α.(其中k 为非零实数)(1)证明 (a +b )²(a -b )=a 2-b 2=|a |2-|b |2=(cos 2α+sin 2α)-(cos 2β+sin 2β)=0, ∴a +b 与a -b 互相垂直.(2)解 k a +b =(k cos α+cos β,k sin α+sin β),a -k b =(cos α-k cos β,sin α-k sin β), b a +k =,1)cos(22+-+αβk kb a k -=.)cos(212k k +--αβb a +k =b a k -,).cos(2)cos(2αβαβ--=-∴k k又k ≠0,∴cos(αβ-)=0.而0<α<β<π,∴β-α=2π. 例3 (14分)设两个向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1与e 2的夹角为3π,若向量2t e 1+7e 2与e 1+t e 2的夹 角为钝角,求实数t 的范围.解 由向量2t e 1+7e 2与e 1+t e 2的夹角为钝角,得()()2121212·72·72e e e e e e e ++++<0, 3分 即(2t e 1+7e 2)²(e 1+t e 2)<0, 化简即得:2t 2+15t +7<0,t e 1 t t t解得-7<t <-21, 7分 当夹角为π时,也有(2te 1+7e 2)²(e 1+t e 2)<0,但此时夹角不是钝角,2t e 1+7e 2与e 1+t e 2反向. 9分设2t e 1+7e 2=λ(e 1+t e 2),λ<0,可求得⎪⎩⎪⎨⎧<==072λλλt t ,∴⎪⎩⎪⎨⎧-=-=21414t λ 12分∴所求实数t 的范围是⎪⎪⎭⎫ ⎝⎛--2147, ⎪⎪⎭⎫ ⎝⎛--21,214. 14分1.向量a =(cos23°,cos67°),向量b =(cos68°,cos22°).(1)求a ²b ;(2)若向量b 与向量m 共线,u =a +m ,求u 的模的最小值.解 (1)a ²b =cos23°²cos68°+cos67°²cos22°=cos23°²sin22°+sin23°²cos22°=sin45°=22. (2)由向量b 与向量m 共线,得m =λb (λ∈R ),u =a +m =a +λb=(cos23°+λcos68°,cos67°+λcos22°)=(cos23°+λsin22°,sin23°+λcos22°),|u |2=(cos23°+λsin22°)2+(sin23°+λcos22°)2 =λ2+2λ+1=222⎪⎪⎭⎫ ⎝⎛+λ +21, ∴当λ=-22时,|u |有最小值为22. 2.已知平面向量a =⎪⎪⎭⎫ ⎝⎛-23,21,b =(-3,-1). (1)证明:a ⊥b ;(2)若存在不同时为零的实数k 、t ,使x =a +(t 2-2)b ,y =-k a +t 2b ,且x ⊥y ,试把k 表示为t 的函数.(1)证明 a ²b =⎪⎪⎭⎫ ⎝⎛-23,21²()1,3-- =⎪⎭⎫ ⎝⎛-21³(-3)+23³(-1)=0, ∴a ⊥b .(2)解 ∵x ⊥y ,∴x ²y =0,即[a +(t 2-2)b ]²(-k a +t 2b )=0.展开得-k a 2+[t 2-k (t 2-2)]a ²b +t 2(t 2-2)b 2=0,∵a ²b =0,a 2=|a |2=1,b 2=|b |2=4,∴-k +4t 2(t 2-2)=0,∴k =f (t )=4t 2 (t 2-2).3.设a =(cos α,sin α),b =(cos β,sin β),且a 与b 具有关系|k a +b |=3|a -k b |(k >0).(1)用k 表示a ²b ;(2)求a ²b 的最小值,并求此时a 与b 的夹角.解 (1)∵|k a +b |=3|a -k b |,∴(k a +b )2=3(a -k b )2,且|a |=|b |=1,即k 2+1+2k a ²b =3(1+k 2-2k a ²b ),∴4k a ²b =k 2+1.∴a ²b =kk 412+(k >0). (2)由(1)知:∵k >0∴a ²b =kk k k 1··2·41414≥+ =21. ∴a ²b 的最小值为21(当且仅当k =1时等号成立) 设a 、b 的夹角为θ,此时cos θ=b a b a ·=21. 0≤θ≤π,∴θ=3π. 故a ²b 的最小值为21,此时向量a 与b 的夹角为3π.一、填空题 1.点O 是三角形ABC 所在平面内的一点,满足OA ²OB =OB ² OC =OC ²OA ,则点O 是△ABC 的 心.答案 垂2.若向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则a ²b +b ²b 的值为 .答案 53.已知向量a ,b 满足|a |=1,|b |=4,且a ²b =2,则a 与b 的夹角为 .答案 3π 4.若a 与b -c 都是非零向量,则“a ²b =a ²c ”是“a ⊥(b -c )”的 条件.答案 充要5.已知a ,b 是非零向量,且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是 .答案 3π 6.(2009²成化高级中学高三期中)已知3a +4b +5c =0,且|a |=|b |=|c |=1,则a ²(b +c )= .答案 53- 7.(2008²天津理,14)如图所示,在平行四边形ABCD 中,=(1,2),=(-3,2),则²= .答案 38.(2008² 江西理,13)直角坐标平面内三点A (1,2)、B (3,-2)、C (9,7),若E 、F 为线段BC 的三等分点,则²= . 答案 22二、解答题9.已知平面上三个向量a 、b 、c 的模均为1,它们相互之间的夹角均为120°.(1)求证:(a -b )⊥c ;(2)若|k a +b +c |>1 (k ∈R ),求k 的取值范围.(1)证明 ∵(a -b )²c =a ²c -b ²c=|a |²|c |²cos120°-|b |²|c |²cos120°=0,∴(a -b )⊥c .(2)解 |k a +b +c |>1⇔|k a +b +c |2>1, ⇔k 2a 2+b 2+c 2+2k a ²b +2k a ²c +2b ²c >1. ∵|a |=|b |=|c |=1,且a 、b 、c 的夹角均为120°, ∴a 2=b 2=c 2=1,a ²b =b ²c =a ²c =-21, ∴k 2+1-2k >1,即k 2-2k >0,∴k >2或k <0.10.已知a =⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛32cos ,32sin ,34cos ,34sin θθθθb ,且θ∈⎥⎦⎤⎢⎣⎡π30,. (1)求ba b a +·的最值; (2)若|k a +b |=3|a -k b | (k ∈R ),求k 的取值范围.解 (1)a ²b =-sin34θ²sin 32θ+cos 34θ²cos 32θ=cos2θ, |a +b |2=|a |2+|b |2+2a ²b =2+2cos2θ=4cos 2θ.∵θ∈⎥⎦⎤⎢⎣⎡3,0π,∴cos θ∈⎥⎦⎤⎢⎣⎡1,21,∴|a +b |=2cos θ. ∴ba b a +·= θθcos 22cos =cos θ-θcos 21. 令t =cos θ,则21≤t ≤1,⎪⎭⎫ ⎝⎛-t t 21′=1+221t >0, ∴t -t 21在t ∈⎥⎦⎤⎢⎣⎡121,上为增函数. ∴-21≤t -t21≤21, 即所求式子的最大值为21,最小值为-21. (2)由题设可得|k a +b |2=3|a -k b |2,∴(k a +b )2=3(a -k b )2又|a |=|b |=1,a ²b =cos2θ,∴cos2θ=kk 412+. 由θ∈⎥⎦⎤⎢⎣⎡π30,,得-21≤cos2θ≤1. ∴-21≤kk 412+≤1.解得k ∈[2-3,2+3] {-1}. 11.设n 和m 是两个单位向量,其夹角是60°,求向量a =2m +n 与b =2n -3m 的夹角.解 由|m |=1,|n |=1,夹角为60°,得m ²n =21. 则有|a |=|2m +n |=2)2(n m +=2244n n ·m m ++=7.|b |=2)32(m n -=229124m n m n +⋅-=7.而a ²b =(2m +n )²(2n -3m )=m ²n -6m 2+2n 2=-27, 设a 与b 的夹角为θ, 则cos θ=b a b a ··=727-=-21.故a ,b 夹角为120°. 12.已知向量a =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-222323x sin ,x cos ,x sin ,x cos b ,x ∈⎥⎦⎤⎢⎣⎡20π,.若函数f (x )=a ²b -21λ|a +b |的最小值为-23,求实数λ的值. 解 ∵|a |=1,|b |=1,x ∈⎥⎦⎤⎢⎣⎡20π,, ∴a ²b =cos 23x cos 2x -sin 23x sin 2x =cos2x , |a +b |=2)(b a +=222b b a a +⋅+=x 2cos 22+=2x cos =2cos x .∴f (x )=cos2x -λcos x =2cos 2x -λcos x -1 =224cos ⎪⎭⎫ ⎝⎛-λx -82λ-1,cos x ∈[0,1]. ①当λ<0时,取cos x =0,此时f (x )取得最小值,并且f (x )min =-1≠-23,不合题意. ②当0≤λ≤4时,取cos x =4λ, 此时f (x )取得最小值,并且f (x )min =-82λ-1=-23,解得λ=2. ③当λ>4时,取cos x =1,此时f (x )取得最小值,并且f (x )min =1-λ=-23, 解得λ=25,不符合λ>4舍去,∴λ=2. §5.4 正弦定理和余弦定理1.(2008²陕西理,3)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a = .答案 22.(2008²福建理,10)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为 . 答案 3π或32π 3.下列判断中不正确的结论的序号是 .①△ABC 中,a =7,b =14,A =30°,有两解②△ABC 中,a =30,b =25,A =150°,有一解③△ABC 中,a =6,b =9,A =45°,有两解④△ABC 中,b =9,c =10,B =60°,无解答案 ①③④4.在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积为 .答案 1035.(2008²浙江理,13)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A = . 答案 33例1 在△ABC 中,已知a =3,b =2,B =45°,求A 、C 和c .解 ∵B =45°<90°且a sin B <b <a ,∴△ABC 有两解.由正弦定理得sin A =b B a sin =245sin 3︒ =23, 则A 为60°或120°.①当A =60°时,C =180°-(A +B )=75°,c =B C b sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=226+. ②当A =120°时,C =180°-(A +B )=15°,c =B C b sin sin =︒︒45sin 15sin 2=︒︒-︒45sin )3045sin(2=226-. 故在△ABC 中,A =60°,C =75°,c =226+或 A =120°,C =15°,c =226-. 例2 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-c a b +2. (1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.解 (1)由余弦定理知:cos B =acb c a 2222-+, cos C =abc b a 2222-+.将上式代入C B cos cos =-ca b +2得: ac b c a 2222-+²2222cb a ab -+=-c a b +2 整理得:a 2+c 2-b 2=-ac∴cos B =ac b c a 2222-+=ac ac 2- =-21 ∵B 为三角形的内角,∴B =32π. (2)将b =13,a +c =4,B =32π代入 b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B∴b 2=16-2ac ⎪⎭⎫ ⎝⎛-211,∴ac =3. ∴S △ABC =21ac sin B =433. 例3 (14分)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc =0. (1)求角A 的大小;(2)若a =3,求bc 的最大值;(3)求cb C a --︒)30sin(的值. 解 (1)∵cos A =bca cb 2222-+=bc bc 2-=-21, 2分 又∵A ∈(0°,180°),∴A =120°. 4分(2)由a =3,得b 2+c 2=3-bc ,又∵b 2+c 2≥2bc (当且仅当c =b 时取等号),∴3-bc ≥2bc (当且仅当c =b 时取等号). 6分 即当且仅当c =b =1时,bc 取得最大值为1. 8分 (3)由正弦定理得:===C c B b A a sin sin sin 2R , ∴C R B R C A R c b C a sin 2sin 2)30sin(sin 2)30sin(--︒=--︒ 10分 =CB C A sin sin )30sin(sin --︒ 11分 =CC C C sin )60sin()sin 23cos 21(23--︒- 12分 =C C C C sin 23cos 23)sin 43cos 43-- 13分 =21. 14分 例4 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin (A -B )=(a 2-b 2)sin (A +B ),判断三角形的形状.解 方法一 已知等式可化为a 2[sin (A -B )-sin (A +B )]=b 2[-sin (A +B )-sin(A -B )]∴2a 2cos A sin B =2b 2cos B sin A由正弦定理可知上式可化为:sin 2A cos A sin B =sin 2B cos B sin A∴sin A sin B (sin A cos A -sin B cos B )=0∴sin2A =sin2B ,由0<2A ,2B <2π得2A =2B 或2A =π-2B ,即A =B 或A =2π-B ,∴△ABC 为等腰或直角三角形. 方法二 同方法一可得2a 2cos A sin B =2b 2sin A cos B由正、余弦定理,可得a 2b bc a c b 2222-+= b 2a ac b c a 2222-+ ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2)即(a 2-b 2)(a 2+b 2-c 2)=0∴a =b 或a 2+b 2=c 2∴△ABC 为等腰或直角三角形.1.(1)△ABC 中,a =8,B =60°,C =75°,求b ;(2)△ABC 中,B =30°,b =4,c =8,求C 、A 、a .解 (1)由正弦定理得B b A a sin sin =. ∵B =60°,C =75°,∴A =45°, ∴b =︒︒⨯=45sin 60sin 8sin sin A B a =46. (2)由正弦定理得sin C =430sin 8sin ︒=b B c =1. 又∵30°<C <150°,∴C =90°.∴A =180°-(B +C )=60°,a =22b c -=43.2.已知△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,求tan C 的值.解 依题意得ab sin C =a 2+b 2-c 2+2ab ,由余弦定理知,a 2+b 2-c 2=2ab cos C .所以,ab sin C =2ab (1+cos C ), 即sin C =2+2cos C ,所以2sin 2C cos 2C =4cos 22C 化简得:tan2C =2.从而tan C =2tan 12tan22C C-=-34. 3.(2008²辽宁理,17)在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c .已知c =2,C =3π. (1)若△ABC 的面积等于3,求a 、b 的值;(2)若sin C +sin(B -A )=2sin2A ,求△ABC 的面积.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以21ab sin C =3,所以ab =4. 联立方程组⎪⎩⎪⎨⎧==-+,4,422ab ab b a 解得⎩⎨⎧==22b a . (2)由题意得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A , 当cos A =0时,A =2π,B =6π,a =334,b =332. 当cos A ≠0时,得sin B =2sin A ,由正弦定理得b =2a ,联立方程组⎪⎩⎪⎨⎧==-+,2,422a b ab b a 解得⎪⎪⎩⎪⎪⎨⎧==.334332b ,a 所以△ABC 的面积S =21ab sin C =332. 4.已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等差数列,且2cos2B -8cos B +5=0,求角B 的大小并判断△ABC 的形状.解 方法一 ∵2cos2B -8cos B +5=0,∴2(2cos 2B -1)-8cos B +5=0.∴4cos 2B -8cos B +3=0,即(2cos B -1)(2cos B -3)=0.解得cos B =21或cos B =23(舍去).∴cos B =21. ∵0<B <π,∴B =3π. ∵a ,b ,c 成等差数列,∴a +c =2b .∴cos B =acb c a 2222-+=ac c a c a 2)2(222+-+=21, 化简得a 2+c 2-2ac =0,解得a =c .又∵B =3π,∴△ABC 是等边三角形. 方法二 ∵2cos2B -8cos B +5=0,∴2(2cos 2B -1)-8cos B +5=0.∴4cos 2B -8cos B +3=0,即(2cos B -1)(2cos B -3)=0.解得cos B =21或cos B =23(舍去). ∴cos B =21,∵0<B <π,∴B =3π, ∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B =2sin 3π=3. ∴sin A +sin ⎪⎭⎫ ⎝⎛-A 32π=3, ∴sin A +sin A cos 32π-cos A sin 32π=3. 化简得23sin A +23cos A =3,∴sin ⎪⎭⎫ ⎝⎛+6πA =1. ∴A +6π=2π,∴A =3π, ∴C =3π,∴△ABC 为等边三角形.一、填空题1.在△ABC 中,若2cos B sin A =sin C ,则△ABC 一定是 三角形.答案 等腰 2.在△ABC 中,A =120°,AB =5,BC =7,则C B sin sin 的值为 . 答案 53 3.已知△ABC 的三边长分别为a ,b ,c ,且面积S △ABC =41(b 2+c 2-a 2),则A = . 答案 45°4.在△ABC 中,BC =2,B =3π,若△ABC 的面积为23,则tan C 为 . 答案 33 5.在△ABC 中,a 2-c 2+b 2=ab ,则C = .答案 60°6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C = .答案 45°或135° 7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,b =7,c =3,则B = .答案 65π 8.某人向正东方向走了x 千米,他右转150°,然后朝新方向走了3千米,结果他离出发点恰好3千米,那么x 的值是 .答案 3或23二、解答题9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,并且a 2=b (b +c ).(1)求证:A =2B ;(2)若a =3b ,判断△ABC 的形状.(1)证明 因为a 2=b (b +c ),即a 2=b 2+bc ,所以在△ABC 中,由余弦定理可得, cos B =ac b c a 2222-+=ac bc c 22+=a c b 2+ =ab a 22=b a 2=BA sin 2sin , 所以sin A =sin2B ,故A =2B . (2)解 因为a =3b ,所以ba =3, 由a 2=b (b +c )可得c =2b , cos B =ac b c a 2222-+=22223443bb b b -+=23, 所以B =30°,A =2B =60°,C =90°. 所以△ABC 为直角三角形.10.(2008²全国Ⅱ理,17)在△ABC 中,cos B =-135,cos C =54. (1)求sin A 的值;(2)△ABC 的面积S △ABC =233,求BC 的长. 解 (1)由cos B =-135,得sin B =1312, 由cos C =54,得sin C =53. 所以sin A =sin(B +C )=sin B cos C +cos B sin C =6533. (2)由S △ABC =233,得21³AB ³AC ³sin A =233. 由(1)知sin A =6533,故AB ³AC =65. 又AC =C B AB sin sin ⨯=1320AB , 故1320AB 2=65,AB =213. 所以BC =C A AB sin sin ⨯=211. 11.已知a 、b 、c 是△ABC 的三边长,关于x 的方程ax 2-222b c - x -b =0 (a >c >b )的两根之差的平方等于4,△ABC 的面积S =103,c =7.(1)求角C ;(2)求a ,b 的值.解 (1)设x 1、x 2为方程ax 2-222b c -x -b =0的两根, 则x 1+x 2=a b c 222-,x 1²x 2=-ab . ∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=222)(4a b c -+ab 4=4. ∴a 2+b 2-c 2=ab . 又cos C =abc b a 2222-+=ab ab 2=21, 又∵C ∈(0°,180°),∴C =60°.(2)由S =21ab sin C =103,∴ab =40. ① 由余弦定理c 2=a 2+b 2-2ab cos C , 即c 2=(a +b )2-2ab (1+cos60°). ∴72=(a +b )2-2³40³⎪⎭⎫ ⎝⎛+211. ∴a +b =13.又∵a >b ②∴由①②,得a =8,b =5.12.(2008²广东五校联考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a +b =5,c =7,且4sin 22B A +-cos2C =27. (1)求角C 的大小;(2)求△ABC 的面积.解 (1)∵A +B +C =180°,由4sin22B A +-cos2C =27, 得4cos 22C -cos2C =27, ∴4²2cos 1C +-(2cos 2C -1)=27, 整理,得4cos 2C -4cos C +1=0,解得cos C =21, ∵0°<C <180°,∴C =60°.(2)由余弦定理得c 2=a 2+b 2-2ab cos C ,即7=a 2+b 2-ab ,∴7=(a +b )2-3ab , 由条件a +b =5,得7=25-3ab ,ab =6,∴S △ABC =21ab sin C =21³6³23=233.§5.5 正弦定理、余弦定理的应用1.在某次测量中,在A 处测得同一半平面方向的B 点的仰角是60°,C 点的俯角为70°,则∠BAC = . 答案 130°2.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的大小关系为 .答案 α=β3.在△ABC 中,若(a +b +c )(a +b -c )=3ab ,且sin C =2sin A cos B ,则△ABC 是 三角形.答案 等边4.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC =120°,则A 、C 两地的距离为 km.答案 1075.线段AB 外有一点C ,∠ABC =60°,AB =200 km,汽车以80 km/h 的速度由A 向B 行驶,同时摩托车以50 km/h 的速度由B 向C 行驶,则运动开始 h 后,两车的距离最小.答案4370例1 要测量对岸A 、B 两点之间的距离,选取相距3 km 的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,求A 、B 之间的距离.解 如图所示,在△ACD 中,∠ACD =120°,∠CAD =∠ADC =30°,∴AC =CD =3 km.在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°.∴BC =︒︒60sin 75sin 3=226+. △ABC 中,由余弦定理,得AB 2=(3)2+(226+)2-2³3³226+³cos75° =3+2+3-3=5,∴AB =5(km).∴A 、B 之间的距离为5 km.例2 (14分)沿一条小路前进,从A 到B ,方位角(从正北方向顺时针转到AB 方向所成的角)是50°,距离是3 km ,从B 到C ,方位角是110°,距离是3 km ,从C 到D ,方位角是140°,距离是(9+33)km.试画出示意图,并计算出从A 到D 的方位角和距离(结果保留根号).解 示意图如图所示, 3分连接AC ,在△ABC 中,∠ABC =50°+(180°-110°)=120°,又AB =BC =3,∴∠BAC =∠BCA =30°. 5分由余弦定理可得AC =︒⋅-+120cos 222BC AB BC AB = )21(33299-⨯⨯⨯-+ =27=33(km). 8分在△ACD 中,∠ACD =360°-140°-(70°+30°)=120°,CD =33+9.由余弦定理得AD =︒⋅-+120222cos CD AC CD AC= )21()933(332)933(272-⨯+⨯⨯-++ =2629)(+(km). 10分 由正弦定理得sin ∠CAD =AD ACD sin CD ∠⋅ =2692923)933(+⨯+=22. 12分 ∴∠CAD =45°,于是AD 的方位角为50°+30°+45°=125°,所以,从A 到D 的方位角是125°,距离为2)62(9+km. 14分 例3 如图所示,已知半圆的直径AB =2,点C 在AB的延长线上,BC =1,点P 为半圆上的一个动点,以DC 为边作等边△PCD ,且点D 与圆心O 分别在PC的两侧,求四边形OPDC 面积的最大值.解 设∠POB =θ,四边形面积为y ,则在△POC 中,由余弦定理得PC 2=OP 2+OC 2-2OP ²OC cos θ=5-4cos θ.∴y =S △OPC +S △PCD =21³1³2sin θ+43(5-4cos θ) =2sin(θ-3π)+435. ∴当θ-3π=2π,即θ=65π时,y max =2+435. 所以四边形OPDC 面积的最大值为2+435.1.某观测站C 在A 城的南偏西20°的方向.由A 城出发的一条公路,走向是南偏东40°,在C 处测得公路上B 处有一人距C 为31千米正沿公路向A 城走去,走了20千米后到达D 处,此时CD 间的距离为21千米,问这人还要走多少千米才能到达A 城?解 设∠ACD =α,∠CDB =β.在△BCD 中,由余弦定理得cos β=CD BD CB CD BD ⋅-+2222 =21202312120222⨯⨯-+=-71, 则sin β=734, 而sin α=sin(β-60°)=sin βcos60°-cos βsin60°=734³21+23³71=1435, 在△ACD 中,由正弦定理得︒60sin 21=αsin AD , ∴AD =︒60sin sin 21α=23143521⨯=15(千米). 答 这个人再走15千米就可到达A 城.2.如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解 在△BCD 中,∠CBD =π-α-β由正弦定理得BDC BC ∠sin =CBD CD ∠sin , 所以BC =CBD BDC CD ∠∠sin sin =)sin(sin s β+αβ⋅ 在Rt △ABC 中,AB =BC tan ∠ACB =)sin(sin tan βαβθ+s . 3.为了竖一块广告牌,要制造三角形支架.三角形支架如图所示,要求∠ACB =60°,BC 的长度大于1米,且AC 比AB 长0.5米.为了使广告牌稳固,要求AC 的长度越短越好,求AC 最短为多少米?且当AC 最短时,BC 长度为多少米?解 设BC =a (a >1),AB =c ,AC =b ,b -c =21. c 2=a 2+b 2-2ab cos60°,将c =b -21代入得(b -21)2=a 2+b 2-ab , 化简得b (a -1)=a 2-41.由a >1,知a -1>0. b =1412--a a =14322)1(2-+-+-a a a =(a -1)+)1(43-a +2≥3+2, 当且仅当a -1=)1(43-a 时,取“=”号,即a =1+23时,b 有最小值2+3. 答 AC 最短为(2+3)米,此时,BC 长为(1+23)米.一、填空题1.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°视角,则B 、C 的距离是 海里.答案 562.为测量某塔AB 的高度,在一幢与塔AB 相距20 m 的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,那么塔AB 的高度是 m.答案 20(1+33) 3.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为 km.答案 3a4.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为 海里/小时.答案 2617 5.如图所示,在河岸AC 测量河的宽度BC ,图中所标的数据a ,b ,c ,α,β是可供测量的数据.下面给出的四组数据中,对测量河宽较适宜的是 (填序号).①c 和α ②c 和b ③c 和β ④b 和α答案 ④6.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后,又测得灯塔在货轮的东北方向,则货轮的速度为 海里/小时.答案 20(6-2) 7.在△ABC 中,若∠C =60°,则c b a ++ac b += . 答案 18.(2008²苏州模拟)在△ABC 中,边a ,b ,c 所对角分别为A ,B ,C ,且a A sin =b B cos =c C cos ,则∠A = . 答案 2π 二、解答题 9.在△ABC 中,a ,b ,c 分别为角A 、B 、C 的对边,设f (x )=a 2x 2-(a 2-b 2)x -4c 2.(1)f (1)=0且B -C =3π,求角C 的大小; (2)若f (2)=0,求角C 的取值范围. 解 (1)∵f (1)=0,∴a 2-(a 2-b 2)-4c 2=0,∴b 2=4c 2,∴b =2c ,∴sin B =2sin C ,又B -C =3π.∴sin(C +3π)=2sin C , ∴sin C ²cos3π+cos C ²sin 3π=2sin C , ∴23sin C -23cos C =0,∴sin(C -6π)=0, 又∵-6π<C -6π<65π,∴C =6π. (2)若f (2)=0,则4a 2-2(a 2-b 2)-4c 2=0,∴a 2+b 2=2c 2,∴cos C =ab c b a 2222-+=ab c 22, 又2c 2=a 2+b 2≥2ab ,∴ab ≤c 2,∴cos C ≥21, 又∵C ∈(0,π),∴0<C ≤3π. 10.(2008²泰安模拟)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边.已知a =1,b =2,cos C =43. (1)求边c 的值;(2)求sin(C -A )的值.解(1)c 2=a 2+b 2-2ab cos C=12+22-2³1³2³43=2, ∴c =2.(2)∵cos C =43,∴sin C =47. 在△ABC 中,A a sin =C c sin ,即A sin 1=472.∴sin A =814,∵a <b ,∴A 为锐角,cos A =825. ∴sin(C -A )=sin C cos A -cos C sin A=47³825-43³814=1614. 11.如图所示,扇形AOB ,圆心角AOB 等于60°,半径为2,在弧 AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形,平面向量与三角形的综合练习一、填空题1.若角α的终边经过点(12)P -,,则tan 2α的值为______________.2.已知向量a 与b 的夹角为120o,且4==a b ,那么g a b 的值为________. 3.已知向量)3,1(=,)0,2(-=,则b a +=_____________________.4. )6cos()(πω-=x x f 最小正周期为5π,其中0>ω,则=ω 5.b a ρϖ,的夹角为ο120,1,3a b ==r r ,则5a b -=r r6.若BC AC AB 2,2==,则ABC S ∆的最大值7.设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .8.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ .9.若向量a r ,b r 满足12a b ==r r ,且a r 与b r 的夹角为3π,则a b +=r r . 10.若3sin()25πθ+=,则cos2θ=_________。
11.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若()C a A c b cos cos 3=-,则=A cos。
12已知a r 是平面内的单位向量,若向量b r 满足()0b a b -=r r r g,则||b r的取值范围是 。
13..在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知3,30,a b c ===︒ 则A= .14. 关于平面向量,,a b c .有下列三个命题:①若g g a b =a c ,则=b c .②若(1)(26)k ==-,,,a b ,∥a b ,则3k =-. ③非零向量a 和b 满足||||||==-a b a b ,则a 与+a b 的夹角为60o. 其中真命题的序号为 .(写出所有真命题的序号)三、解答题1.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程(Ⅱ)求函数()f x 在区间[,]122ππ-上的值域2.已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.3.已知向量(sin ,cos ),(1,2)m A A n ==-r r ,且0.m n ⋅=r r(Ⅰ)求tan A 的值;(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域.4.已知函数f (x )=A sin(x +ϕ)(A >0,0<ϕ<π),x ∈R 的最大值是1,其图像经过点M 132π⎛⎫⎪⎝⎭,.(1) 求f (x )的解析式;(2) 已知α,β∈02π⎛⎫ ⎪⎝⎭,,且f (α)=35,f (β)=1213,求f (α-β)的值.5. 如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =o∠,BD 交AC 于E ,2AB =.(Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE .6.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角βα,,它们的终边分别与单位圆相交于A 、B 两点,已知A 、B52(1)求)tan(βα+的值; (2)求βα2+的值。
7.某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的B A CDE总长为ykm 。
(1)按下列要求写出函数关系式:①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式;(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。
8.(江西17)已知1tan 3α=-,cos 5β=,(0,)αβπ∈ (1)求tan()αβ+的值; (2)求函数())cos()f x x x αβ=-++的最大值.解三角形,平面向量与三角形的综合答案B一、填空题438- 2 7 102725-3 [01], 6π②三、解答题1解:(1)()cos(2)2sin()sin()344f x x x x πππ=-+-+Q1cos 22(sin cos )(sin cos )2x x x x x x =+-+221cos 22sin cos 2x x x x =+-1cos 22cos 222x x x =+- sin(2)6x π=-2T 2ππ==周期∴ (2)5[,],2[,]122636x x πππππ∈-∴-∈-Q 因为()sin(2)6f x x π=-在区间[,]123ππ-上单调递增,在区间[,]32ππ上单调递减,所以 当3x π=时,()f x 取最大值 1又1()()12222f f ππ-=-<=Q ,∴当12x π=-时,()f x取最小值2-所以 函数 ()f x 在区间[,]122ππ-上的值域为[2- 2.解:(Ⅰ)1cos 2()22x f x x ωω-=11sin 2cos 2222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭. 因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=.(Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭.因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤.因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,. 3. 解:(Ⅰ)由题意得m ·n =sin A -2cos A =0,因为cos A ≠0,所以tan A =2.(Ⅱ)由(Ⅰ)知tan A =2得2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x x x =+=-+=--+因为x ∈R,所以[]sin 1,1x ∈-. 当1sin 2x =时,f (x )有最大值32,当sin x =-1时,f (x )有最小值-3, 所以所求函数f (x )的值域是33,.2⎡⎤-⎢⎥⎣⎦4.解:(1)依题意知 A =1 1sin 332f ππφ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭, 又4333πππφ<+< ; ∴536ππφ+=即 2πφ= 因此 ()sin cos 2f x x x π⎛⎫=+= ⎪⎝⎭; (2)Q ()3cos 5fαα==,()12cos 13f ββ== 且 ,0,2παβ⎛⎫∈ ⎪⎝⎭∴ 4sin 5α=,5sin 13β=()()3124556cos cos cos sin sin 51351365f αβαβαβαβ-=-=+=⨯+⨯=5. 解:(Ⅰ)因为9060150BCD =+=o o o∠,CB AC CD ==,所以15CBE =o∠. 所以cos cos(4530)4CBE =-=oo∠. (Ⅱ)在ABE △中,2AB =,由正弦定理2sin(4515)sin(9015)AE =-+o o o o.故2sin 30cos15AE =oo124⨯==. 12分6.【解析】:本小题考查三角函数的基本概念、三角函数 的基本关系式、两角和的正切、二倍角的正切公式, 考查运算求解能力。
由条件得cos ,cos 105αβ== αβQ 、为锐角,sin αβ∴==1tan 7,tan 2αβ∴==(1)17tan tan 2tan()311tan tan 172αβαβαβ+++===--⋅-⨯ (2)22122tan 42tan 211tan 31()2βββ⨯===--47tan tan 23tan(2)141tan tan 2173αβαβαβ++∴+===--⋅-⨯ αβQ 、为锐角,3022παβ∴<+<324παβ∴+= 7. 【解析】:本小题考查函数的概念、解三角形、导数等基本知识,考查数学建模能力、 抽象概括能力和解决实际问题的能力。
(1)①由条件知PQ 垂直平分AB ,若∠BAO=θ(rad ),则10cos cos AQ OA BAO θ==∠, 故10cos OB θ=又1010OP tan θ=-,所以10101010cos cos y OA OB OP tan θθθ=++=++- 所求函数关系式为2010sin 10(0)cos 4y θπθθ-=+≤≤②若OP=x (km ),则OQ=10-x,所以OA OB ===所求函数关系式为(010)y x x =+≤≤(2)选择函数模型①,2210cos cos (2010sin )(sin )10(2sin 1)'cos cos y θθθθθθθ-----== 令'0y =得1sin 2θ= 046ππθθ≤≤∴=Q当(0,)6πθ∈时'0y <,y 是θ的减函数;当(,)64ππθ∈时'0y >,y 是θ的增函数;所以当6πθ=时,min 1201010102y -⨯=+=此时点O 位于线段AB 的中垂线上,且距离ABkm 处。
8. 解:(1)由cos β=(0,)βπ∈得tan 2β=,sin β= 于是tan()αβ+=12tan tan 3121tan tan 13αβαβ-++==-+.(2)因为1tan ,(0,)3ααπ=-∈所以sin αα==()f x x x x x =x = ()f x。