《化学反应热的计算盖斯定律》教学设计(省级优质课获奖案例)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《化学反应热的计算盖斯定律》教学设计
一、教学目标
【知识与技能】
了解盖斯定律的涵义,能用盖斯定律进行有关反应热的简单计算。
【过程与方法】
1.通过对盖斯定律的涵义的分析和论证,培养学生分析问题的能力;
2.通过盖斯定律的有关计算,培养学生的计算能力。
【情感态度与价值观】
1.通过对盖斯定律的发现过程及其应用的学习,感受化学学科对人类生活和社会发展的贡献。
激发学生参与化学科技活动的热情。
2.树立辩证唯物主义的世界观,帮助学生养成务实、求真、严谨的科学态度。
二、教学重难点
【教学重点】
盖斯定律的涵义和根据盖斯定律进行反应热的计算
【教学难点】
盖斯定律的应用
三、教学方法
探究式教学,讨论启发,微课教学,多媒体辅助教学
四、教学用具
多媒体设备
五、教学过程:
【引课】从一段不同时期煮饭方式的视频和一组图片引出与生活联系紧密的热量,被称为热化学之父的盖斯,俄国化学家。
1840化学家盖斯通过大量研究发现了热的加和性守恒定律。
为了纪念盖斯,后来人们把它称为盖斯定律。
今天,我们来学习盖斯定律。
【板书】第三节化学反应热的计算
一、盖斯定律
【教师】我们再来具体看一看什么是盖斯定律。
让学生阅读教材11页到12页第一自然段,找出什么是盖斯定律?盖斯定律在科学研究中有什么意义?
【学生】阅读教材11页到12页第一自然段。
【板书】1、 盖斯定律:不管化学反应是一步完成或分几步完成,其反应热是相同的。
即,化学反应的反应热只与反应的始态和终态有关,而与反应的途径无关。
【教师】如何来理解呢? 2、盖斯定律直观化理解
【教师】为了理解盖斯定律,可以以登山为例,A →B 可以有多条路径,登山爱好者沿着山路上山,游客坐缆车上山,攀岩爱好者从山壁爬上山顶。
不管选择哪条路,A →B 的位移一定,山的高度不变;而山的绝对高度与登山的途径无关,A 点相当于反应体系的始态,B 点相当于反应体系的终态,山的高度相当于化学反应的反应热。
反应热只与起点和终点的相对高度有关而与反应的途径无关
以此我们抽象出图1,△H 1、△H 2与△H 之间的关系如何? 【教师】观察后,完成下列表格。
【学生】由图1到图2完成表格
即从一般到个别,加深学生对盖斯定律的理解,解开最初的谜团。
【教师】同样,从反应热总值角度 反应物始态变为生成物终态,可以有三条途径:①由始态直接变成终态,反应热为ΔH ;②由始态经过a 生成终态,每步反应热分别为ΔH 1、ΔH 2 由始态变成b ,再由b 变成c ,最后由c 变成终态,每步的反应热分别是ΔH 3、ΔH 4、ΔH 5。
如下图所示:能否得出反应热ΔH 、ΔH 1、ΔH 2、ΔH 3、ΔH 4、ΔH 5之间的关系呢? 【学生】得出反应热之间的关系。
【教师】我们还可以应用能量守恒定律对盖斯定律进行论证。
请同学们思考能量的释放或吸
收是哪个自然规律的必然结果? 【学生】能量守恒
【师】应该是质量守恒和能量守恒定律的共同体现,能量的释放或吸收是以发生变化的物质为基础的,二者密不可分,但以物质为主。
反应时一步完成还是多步完成,最初的反应物和最终的生成物是一样,如果物质没有变化,就不能引发能量的变化,前者为因,后者为果。
【教师】假设一个反应体系的始态为S ,终态为L ,它们之间的变化用两段弧线(可以包含着任意数目的中间步骤)连接如下: 可以得到这样的结论:ΔH 1 +ΔH 2 = 0。
为什么会有这样的结论? 【学生】思考后回答:先从S 变化到L ,这是体系放出热量(△
H 1<0),然后由L 变回到S(△H 2>0).经过了一个循环,体系仍然处于S 态,所有的反应物都和反应前完全一样。
若ΔH1 +ΔH2 ≠0 ,那么在物质丝毫未损的情况下体系能量发生了变化,这就违背了能量守恒定律。
所以ΔH 1 +ΔH 2=0一定成立。
【教师】有的同学可能会想,为什么我们不直接去测定反应热,还要通过定律来计算呢?水的燃烧热是我们可以直接测定的,但是,在化学科研中有些反应很慢,有些反应不容易进行,有些反应的产品不纯,这给测定反应热造成了困难。
而盖斯定律的应用很好地解决了这一难题。
二.盖斯定律的应用
有些化学反应进行很慢或不易直接发生,很难直接测得这些反应的反应热,可通过盖斯定律获得它们的反应热数据。
【教师】观察下面的热化学方程式,并思考问题:
C(s)+1/2O 2(g)==CO(g) ΔH 2=?
能直接测出这个反应的反应热吗?为什么?
【学生】讨论发现:不能直接测出。
在O 2供应充分时,可燃烧生成CO 2;O 2供应不充分时,虽可生成CO ,但同时还有部分CO 被继续氧化生成CO 2。
【教师】那么,C (s)+1/2 O 2 (g) = CO(g)的反应热如何获得呢?请同学们自己根据盖斯定律设计一个方案。
【学生】我们可以测得C 与O 2反应生成CO 2以及CO 与O 2反应生成CO 2的反应热:
(1)C (s )+O 2(g )=CO 2(g ) ΔH 1=-393.5 kJ /
mol
(2)CO (g )+ O 2(g )=CO 2(g ) ΔH 3=-283.0 kJ /mol
根据盖斯定律.可以很容易求算出C (s )
+
O 2(g )=CO (g )的ΔH 。
【教师】请同学分析解题思路。
以盖斯定律原理求解, 以给出的反应为基准 (1)找起点C(s), (2)终点是CO 2(g),
(3)总共经历了两个反应 C→CO 2 ;C→CO→CO 2。
(4)也就说C→CO 2的焓变为C→CO ; CO→CO 2之和。
则△H 1=△H 2+△H 3
∵ΔH 1=ΔH 2+ΔH 3∴ΔH 2=ΔH 1-ΔH 3=-393.5kJ/mol -(-283.0kJ/mol )=-110.5 kJ /mol
即:C (s )+
O 2(g )=CO (g )的ΔH 2=-110.5 kJ /mol
引出方法一:虚拟路径法----从能量变化入手 【教师】例1:写出石墨变成金刚石的热化学方程式
(25℃,101kPa 时
) 查燃烧热表知:
①C(石墨,s)+O 2(g)=CO 2(g) △H 1=-393.5kJ/mol ②C(金刚石,s)+O 2(g)=CO 2(g) △H 2=-395.0kJ/mol 【教师】方法1:虚拟路径法----从能量变化入手 我们可以构造ΔH 转化图,得出ΔH 1=ΔH+ΔH 2,计算得出: ΔH=ΔH 1-ΔH 2=-393.5-(-395)=+1.5kJ/mol 【思路扩展】
刚才两道例题和还有其他方法吗?
(1)C (s )+O 2(g )=CO 2(g ) ΔH 1=-393.5 kJ /mol (2)CO (g )+ O 2(g )=CO 2(g ) ΔH 3=-283.0 kJ /mol
根据盖斯定律,可以很容易求算出C (s )+
O 2(g )=CO (g )的ΔH 2。
【学生】讨论得出,还可以相减方法: 【方法二】所以, ①- ②得:
C (s )-CO +O 2(g )=0 ΔH 2 =ΔH 1 - ΔH 3=-393.5 -(-283.0)
=-110.5 kJ /mol
石墨
△H △H 1
金刚石 CO 2
△H 2
【例1方法二】
所以,①- ②得: C(石墨,s)=C(金刚石,s) △H=+1.5kJ/mol
【教师】引出方法二:方程式加合法----从物质变化入手 (遵循数学基本原则)
【试一试1】:已知① CO(g) + 1/2 O2(g) = CO2(g) ΔH1= -283.0 kJ/mol
② H2(g) + 1/2 O2(g) = H2O(l) ΔH2= -285.8 kJ/mol
③ C2H5OH(l) + 3 O2(g) = 2CO2(g) + 3 H2O(l) ΔH3= -1370 kJ/mol
计算: 2CO(g)+4 H2(g)= H2O(l)+C2H5OH(l) 的ΔH
【学生】演算
【讨论】1、怎样选物质,选哪些物质保留,哪些物质消去?
2、△H前的正负符号怎样确定?
3、化学方程式的计量数怎样变化?
4、△H前的计量数怎样转换?
5、运用已知热化学方程式时的注意事项?
【教师】微课视频小结方程式加合法
【总结】优化解法
归纳解题思路:
①确定待求的反应方程式;
②找出未出现在目标方程式中的化学式,利用方程式的加减乘除消去它们;
③对于每个已知热化学反应方程式,只使用一次。
选择出现在已知方程式中仅一次的物质讨论加合;
④把已知ΔH带正负号进行上述相同的数学运算即得待求方程式的ΔH
【教师】学习一个定律的目的在于运用,下面我们看几个例子。
【试一试2】已知下列各反应的焓变
①Ca(s)+C(s,石墨)+3/2O2(g)=CaCO3(s) △H = -1206.8 kJ/mol
②Ca(s)+1/2O2(g)=CaO(s) △H = -635.1 kJ/mol
③C(s,石墨)+O2(g)=CO2(g) △H = -393.5 kJ/mol
试求④CaCO3(s)=CaO(s)+CO2(g)的焓变
④=②+③-①△H=+178.2 kJ/mol
【学生】演练,讨论易错点
【总结】。