复数试题及答案doc
必修第二册第二单元《复数》测试题(含答案解析)
一、选择题1.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 对应的点在实轴的下方D .z 一定为实数 2.若a b 、为非零实数,则以下四个命题都成立:①10a a+≠;②()2222a b a ab b +=++;③若a b ,=则a b =±;④若2a ab =,则a b ,=则对于任意非零复数a b 、,上述命题中仍为真命题的个数为( )个. A .1 B .2 C .3 D .43.213(1)i i +=+( ) A .3122i - B .3122i + C .3122i -- D .3122i -+ 4.下列各式的运算结果为纯虚数的是A .(1+i)2B .i 2(1-i)C .i(1+i)2D .i(1+i) 5.“复数3i ia z -=在复平面内对应的点在第三象限”是“0a ≥”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.设i 是虚数单位,则2320192342020i i i i +++⋅⋅⋅+的值为( ) A .10101010i -- B .10111010i -- C .10111012i -- D .10111010i - 7.已知复数z 满足()()()1212i z i i -=++,则z 的共轭复数为( )A .1i --B .1i +C .55i +D .55i - 8.复数51i i-的虚部是( ) A .12 B .2i C .12- D .2i - 9.已知复数z 满足()2z i i i -=+,则z =( )A B C D 10.若11i ai ++是纯虚数(其中i 为虚数单位),则实数a 等于( ) A .1B .1-C .2D .2- 11.已知复数z 满足|z |=1,则|z +1-2i |的最小值为( )A 1BC .3D .212.设i 为虚数单位,a R ∈,“复数2202021a i z i =--不是纯虚数“是“1a ≠”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.设复数z 满足341z i --=,则z 的最大值是_______.14.设复数z 满足1z =,且使得关于x 的方程2230zx zx ++=有实根,则这样的复数z 的和为______.15.化简:2020201921i z i i ⎛⎫=+= ⎪ ⎪+⎝⎭________.16.在复平面内,复数(3)2a a z i =-+表示的点在直线y x =上,则z =_______. 17.在实数集R 中,我们定义的大小关系“>”为全体实数排了一个“序”.类似地,我们在复数集C 上也可以定义一个称为“序”的关系,记为“>”.定义如下:对于任意两个复数:()111222121212z a bi z a b i a a b b R z z =+=+∈,,,,,>当且仅当“12a a >”或“12a a =”且“12b b >”.按上述定义的关系“>”,给出以下四个命题:①若12z z >,则12z z >;②若1223z z z z >,>,则13z z >;③若12z z >,则对于任意12z C z z z z ∈++,>;④对于复数0z >,若12z z >,则12zz zz >.其中所有真命题的序号为______________.18.设b R ∈,i 是虚数单位,已知集合{}|2A z z i =-≤,{}11|1,B z z z bi z A ==++∈,若A B ⋂≠∅,则b 的取值范围是________. 19.已知复数z =a +3i 在复平面内对应的点位于第二象限,且|z|=2,则复数z 等于________.20.如果复数z 的模不大于1,而z 的虚部的绝对值不小于,则复平面内复数z 的对应点组成图形的面积是___.三、解答题21.已知m R ∈,复数2(1i)(5i 3)(46i)z m m =+-+-+,当m 为何值时,(1)z 为实数?(2)z 为虚数?(3)z 为纯虚数?(4)z 在复平面内对应的点在第四象限?22.已知1z i =+,i 为虚数单位.(1)若234z z ω=+-,求ω;(2)若2211z az b i z z ++=--+,求实数a ,b 的值.23.已知复数z 满足|z |=z 的实部、虚部均为整数,且z 在复平面内对应的点位于第四象限.(1)求复数z ;(2)若()22m m n i z --=,求实数m ,n 的值.24.已知复数z 满足z =,2z 的虚部为2,(1)求复数z ;(2)设22,,z z z z -在复平面上对应点分别为,,A B C ,求ABC ∆的面积. 25.已知复数z 使得2z i R +∈,2z R i∈-,其中i 是虚数单位. (1)求复数z 的共轭复数z ; (2)若复数()2z mi +在复平面上对应的点在第四象限,求实数m 的取值范围. 26.i 是虚数单位,且2(1)2(5)3i i a bi i-+++=+(,a b ∈R ). (1)求,a b 的值;(2)设复数1()z yi y R =-+∈,且满足复数()a bi z +⋅在复平面上对应的点在第一、三象限的角平分线上,求||z .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定.【详解】()2222110t t t ++=++>,z ∴不可能为实数,所以D 错误; z ∴对应的点在实轴的上方,又z 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误; 21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.故选:C【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.2.B解析:B【解析】【分析】根据复数的概念和性质,利用复数的代数形式的运算法则,即可得出正确选项.【详解】解:对于①,当a i =时,10a a+=,即①不成立, 对于②,根据复数代数形式的运算法则,满足乘法公式,即②在正确,对于③,在复数C 中,1i =,则1,a b i ==时,a b ≠±,即③错误,对于④,根据复数代数形式的运算法则可得,若2a ab =,则a b ,=即④正确, 综上可得上述命题中仍为真命题的序号为②④,故选B.【点睛】本题考查了复数的概念和性质及复数的代数形式的运算法则,属基础题.3.A解析:A【分析】首先计算2(1)i +,之后应用复数的除法运算法则,求得结果.【详解】 ()21313312221ii i i i ++==-+, 故选A.【点睛】该题考查的是有关复数的运算,属于简单题目.4.A【分析】利用复数的四则运算,再由纯虚数的定义,即可求解.【详解】由题意,对于A 中,复数2(1)2i i +=为纯虚数,所以正确;对于B 中,复数2(1)1i i i ⋅-=-+不是纯虚数,所以不正确;对于C 中,复数2(1)2i i ⋅+=-不是纯虚数,所以不正确;对于D 中,复数(1)1i i i ⋅+=-+不是纯虚数,所以不正确,故选A.【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其四则运算技巧和常规思路. 其次要熟悉复数相关基本概念是解答此类问题的关键,着重考查了推理与计算能力,属于基础题. 5.A解析:A【详解】 因为33ai z a i i-==--,所以由题设可得00a a -<⇒>,因此0a >是0a ≥的充分不必要条件,故应选答案A . 6.B解析:B【分析】利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案.【详解】解:设2320192342020S i i i i =+++⋅⋅⋅+,可得:24201920320023420192020iS i i i i i =++++⋅⋅⋅++,则24201923020(1)22020i S i i i i ii -=++++⋅⋅⋅+-, 2019242019202023020(1)(1)202020201i i i S i i i i i i i i i i--=+++++⋅⋅⋅+-+-=-, 可得:2(1)(1)(1)20202020202112i i i i i S i i i i ++-=+-=+-=-+-, 可得:2021(2021)(1)1011101012i i i S i i -+-++===---, 故选:B.【点睛】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题. 7.A解析:A化简得到1z i =-+,再计算共轭复数得到答案.【详解】()()()1212i z i i -=++,故()()()()()()()()()121212131211212125i i i i i i i z i i i i +++++++====-+--+,故1z i =--. 故选:A .【点睛】本题考查了复数的化简,共轭复数,意在考查学生的计算能力.8.A解析:A【解析】【分析】由题意首先化简所给的复数,然后确定其虚部即可.【详解】 由复数的运算法则可知:51i i -()()()1111122i i i i i +==-+-+, 则复数51i i-的虚部是12. 本题选择A 选项.【点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A【分析】首先求得复数z ,然后求解其共轭复数并确定模即可.【详解】 由题意可得:2211i z i i i i i +=+=-++=-,则1,z i z =+=故选A .【点睛】本题主要考查复数的运算法则,复数的模的计算等知识,意在考查学生的转化能力和计算求解能力. 10.B解析:B设11i bi ai+=+,化简后利用复数相等列方程求解即可. 【详解】 设()1,,1i bi a b R ai+=∈+, 所以()11i bi ai ab bi +=⋅+=-+,所以11ab b -=⎧⎨=⎩, 解得11a b =-⎧⎨=⎩, 故选:B .【点睛】本题主要考查复数的乘法运算,考查复数相等的性质,属于基础题.11.A解析:A【分析】 根据1z =分析出z 在复平面内的轨迹方程,再根据12z i +-的几何意义以及圆外一点到圆上点的距离最小值求法求解出结果.【详解】因为|||i |1z x y =+==,所以221x y +=,即z 在复平面内表示圆O :221x y +=上的点;又|12i ||(1)(2)i |z x y +-=++-,所以|12i |z +-表示圆O 上的动点到定点(12)A -,的距离,所以min |12i |z +-为||1OA r -=,故选:A .【点睛】 关键点点睛:解答本题的关键是理解1z =对应的轨迹方程以及掌握12z i +-的几何意义,将复数模的最值问题转化为点到点的距离最值问题. 12.A解析:A【分析】先化简z ,求出a ,再判断即可.【详解】()()2202022211112121211222a i a a i a z i i i i i +=-=-=-=-----+,z 不是纯虚数,则21022a -≠,所以21≠a ,即1a ≠±, 所以1a ≠±是1a ≠的充分而不必要条件.故选:A .【点睛】本题主要考查根据复数的类型求参数,考查充分条件和必要条件的判断,考查逻辑思维能力和计算能力,属于常考题.二、填空题13.6【解析】分析:先找到复数z 对应的点的轨迹再求的最大值详解:设复数则所以复数对应的点的轨迹为(34)为圆心半径为1的圆所以的最大值是故答案为6点睛:(1)本题主要考查复数中的轨迹问题意在考查学生对这 解析:6【解析】分析:先找到复数z 对应的点的轨迹,再求z 的最大值.详解:设复数(,)z x yi x y R =+∈,则22341,(3)(4)1x yi i x y +--=∴-+-=, 所以复数对应的点的轨迹为(3,4)为圆心半径为1的圆,所以z 1516=+=.故答案为6点睛:(1)本题主要考查复数中的轨迹问题,意在考查学生对这些基础知识的掌握水平和数形结合的思想方法.(2)z a bi r ++=表示以点(a,b)为圆心r 为半径的圆,不要死记硬背,直接化成直角坐标,就一目了然. 14.【分析】首先设(且)代入方程化简为再分和两种情况求验证是否成立【详解】设(且)则原方程变为所以①且②;(1)若则解得当时①无实数解舍去;从而此时或3故满足条件;(2)若由②知或显然不满足故代入①得所 解析:74- 【分析】首先设z a bi =+ (a ,b ∈R 且221a b +=),代入方程,化简为()()222320ax ax bx bx i +++-=,再分0b =和0b ≠两种情况求,a x 验证是否成立.【详解】设z a bi =+,(a ,b ∈R 且221a b +=) 则原方程2230zx zx ++=变为()()222320ax ax bx bx i +++-=.所以2230ax ax ++=,①且220bx bx -=,②;(1)若0b =,则21a =解得1a =±,当1a =时①无实数解,舍去;从而1a =-,2230x x --=此时1x =-或3,故1z =-满足条件;(2)若0b ≠,由②知,0x =或2x =,显然0x =不满足,故2x =,代入①得38a =-,8b =±,所以838z =-±.综上满足条件的所以复数的和为3371884⎛⎫⎛⎫-+-++--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 故答案为:74-【点睛】思路点睛:本题考查复系数二次方程有实数根问题,关键是设复数z a bi =+后代入方程,再进行整理转化复数的代数形式,注意实部和虚部为0,建立方程求复数z . 15.【分析】利用的幂的性质化简即可得答案【详解】所以原式故答案为:【点睛】本题考查复数的计算合理利用常见结论可使计算简便如等等解析:1i --【分析】利用i 的幂的性质化简即可得答案.【详解】2019201633i i i i i =⋅==-,()1010202010102101010082222i 2i i i i 11i 2i 1i ⎡⎤⎛⎫-⎛⎫====⋅==-⎢⎥ ⎪ ⎪ ⎪+⎝⎭+⎢⎥⎝⎭⎣⎦,所以原式=1i --.故答案为:1i --.【点睛】 本题考查复数的计算.合理利用常见结论可使计算简便,如4i 1n =,41i i n +=,42i 1n +=-,43i i n +=-,()21i 2i +=,()21i 2i -=-,1i i=-等等. 16.【分析】根据复数几何意义列方程解方程得再根据共轭复数概念得结果【详解】解:由题意可得解得∴∴故答案为:【点睛】本题考查复数几何意义以及共轭复数概念考查基本分析求解能力属基础题解析:66i -【分析】根据复数几何意义列方程,解方程得9a =,再根据共轭复数概念得结果.【详解】解:由题意可得3a =-,解得9a =,∴66z i =+,∴66z i =-.故答案为:66i -【点睛】本题考查复数几何意义以及共轭复数概念,考查基本分析求解能力,属基础题. 17.②③【分析】根据新定义序的关系对四个命题逐一分析由此判断出真命题的序号【详解】对于①由于所以或且当满足但所以①错误对于②根据序的关系的定义可知复数的序有传递性所以②正确对于③设由所以或且可得或且即成解析:②③【分析】根据新定义“序”的关系,对四个命题逐一分析,由此判断出真命题的序号.【详解】对于①,由于12z z >,所以“12a a >”或“12a a =且12b b >”. 当121,2a a =-=-,满足12a a >但12z z <,所以①错误.对于②,根据“序”的关系的定义可知,复数的“序”有传递性,所以②正确.对于③,设z c di =+,由12z z >,所以“12a a >”或“12a a =且12b b >”,可得“12a c a c +>+”或“12a c a c +=+且12b d b d +>+”,即12z z z z +>+成立,所以③正确.对于④,当123,2,2z i z i z i ===时,126,4zz zz =-=-,12zz zz <,故④错误. 故答案为:②③【点睛】本小题主要考查新定义复数“序”的关系的理解和运用,考查分析、思考与解决问题的能力,属于基础题.18.【解析】【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(01)为圆心半径为2的圆及内部;集合B 表示圆的圆心移动到了(11+b );两圆面有交点即可求解b 的取值范围【详解】由题意集解析:b ≤≤【解析】【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部;集合B 表示圆的圆心移动到了(1,1+b );两圆面有交点即可求解b 的取值范围.【详解】由题意,集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部; 集合B 表示点的轨迹为以(1,1+b )为圆心,半径为2的圆及内部∵A∩B≠∅,说明,两圆面有交点;∴4≤.可得:b ≤≤,故答案:b ≤≤,【点睛】本题考查复数几何意义,圆与圆的位置关系,体现了数学转化思想方法,明确A.B 集合的意义是关键,是中档题19.【分析】由题意可得a <0由|z|=2可得a 的方程解出即得【详解】∵z=a+i 在复平面内对应的点位于第二象限∴a <0由|z|=2得=2解得a=﹣1或1(舍去)∴z=﹣1+i 故答案为﹣1+i 【点睛】该题解析:【分析】由题意可得a <0,由|z|=2,可得a 的方程,解出即得.【详解】∵i 在复平面内对应的点位于第二象限,∴a <0,由|z|=2,解得a=﹣1或1(舍去),∴z=﹣.故答案为﹣【点睛】该题考查复数的模、复数代数形式的表示及其几何意义,属基础题.20.【解析】分析:先根据复数的模以及复数的虚部列不等式再根据扇形面积减去三角形面积得弓形面积详解:设则如图因此复平面内复数z 的对应点组成图形为两个弓形其面积为扇形面积减去三角形面积是点睛:本题重点考查复解析:2-32π 【解析】分析:先根据复数的模以及复数的虚部列不等式,再根据扇形面积减去三角形面积得弓形面积.详解:设(,)z x yi x y R =+∈11,2y ≤≥ ,如图,2.3AOB π∠=因此复平面内复数z 的对应点组成图形为两个弓形,其面积为扇形面积减去三角形面积是21212232(111sin )232332πππ⨯⋅-⨯⨯⨯=- 点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 22a b +(,)a b 、共轭为.-a bi三、解答题21.(1)6m =或1m =-(2)6m ≠且1m ≠-(3)4m =(4)46m <<【分析】由题意得解得22(34)(56)z m m m m i =--+--,(1)由2560m m --=,求出m 即可;(2)2560m m --≠,即可得出m ; (3)由22340560m m m m ⎧--=⎨--≠⎩,解得m 范围; (4)根据象限特征,由22340560m m m m ⎧-->⎨--<⎩,解得m 范围. 【详解】解:()()()21i 5i 346i z m m =+-+-+=()()223456i m m m m --+--, (1)由2560m m --=得6m =或1m =-,即当6m =或1m =-时,z 为实数;(2)由2560m m --≠得6m ≠且1m ≠-,即当6m ≠且1m ≠-时,z 为虚数;(3)由22340{560m m m m --=--≠,,得4m =, 即当4m =时,z 为纯虚数;(4)由22340{560m m m m -->--<,,解得46m <<, 即当46m <<时,z 在复平面内对应的点在第四象限.【点睛】本题考查复数的有关概念及其运算法则、方程与不等式的解法,考查推理能力与计算能力.22.(1)ω;(2)12a b =-⎧⎨=⎩【分析】(1)求出1z i =+的共轭复数,代入234z z ω=+-化简,再求ω; (2)根据2211z az b i z z ++=--+,得到()()21a b a i i +++=+,列方程组即可求解. 【详解】(1)已知1z i =+,1z i ∴=-,()()213141i i i ω=++--=--∴,ω∴=(2)()()22211a b a z az b i z z i i+++++==--+, ()()21a b a i i ∴+++=+,121a b a +=⎧∴⎨+=⎩,解得12a b =-⎧⎨=⎩. 【点睛】此题考查复数的基本运算,涉及共轭复数,复数的模长,根据两个复数相等列方程组求解. 23.(1) 12z i =-或2i z =-.(2) 3m =±,5n =.【分析】(1)利用已知条件,设出复数z ,通过225(,)a b a b +=∈Z 及所对点所在位置求出即可复数z ;(2)利用(1),结合复数的乘法运算求解m ,n 的值【详解】(1)设(,)z a bi a b =+∈Z ,则225(,)a b a b +=∈Z ,因为z 在复平面内对应的点位于第四象限,所以0a >,0b <,所以12a b =⎧⎨=-⎩或21a b =⎧⎨=-⎩, 所以12z i =-或2i z =-.(2)由(1)知12z i =-或2i z =-,当12z i =-时,234z i =--;当2i z =-时234z i =-.因为()22m m n i z --=,所以234m m n =±⎧⎨-=⎩,解得3m =±,5n =. 【点睛】本题考查复数的模长公式,考查复数的乘法运算,考查计算能力,是基础题24.(1)1i +或1i --;(2)1【分析】(1)设z =a +bi (a ,b ∈R ),由已知列关于a ,b 的方程组,求解可得复数z ; (2)分类求得A 、B 、C 的坐标,再由三角形面积公式求解.【详解】解:(1)设z =a +bi (a ,b ∈R ),由已知可得:22ab ==⎪⎩2221a b ab ⎧+=⎨=⎩, 解得11a b =⎧⎨=⎩或11a b =-⎧⎨=-⎩. ∴z =1+i 或z =﹣1﹣i ;(2)当z =1+i 时,z 2=2i ,z ﹣z 2=1﹣i ,∴A (1,1),B (0,2),C (1,﹣1),故△ABC 的面积S 12=⨯2×1=1; 当z =﹣1﹣i 时,z 2=2i ,z ﹣z 2=﹣1﹣3i ,∴A (﹣1,﹣1),B (0,2),C (﹣1,﹣3),故△ABC 的面积S 12=⨯2×1=1. ∴△ABC 的面积为1.【点睛】 本题考查复数的乘方和加减运算,考查复数相等的条件和复数的几何意义,以及三角形的面积的求法,考查运算能力,属于中档题.25.(1)42i +;(2)()2,2-.【分析】(1)根据2z i R +∈、2z R i∈-,结合复数的加法、除法运算即可求出z ,进而由共轭复数的概念求得z ;(2) 复数()2z mi +在复平面上对应的点在第四象限,即对应复数的实部、虚部都小于0,解不等式即可求得m 的范围【详解】(1)设(),z x yi x y R =+∈,则()22z i x y i +=++∵2z i R +∈∴2y =- 又22242255z x i x x i R i i -+-==+∈--, ∴4x = 综上,有42z i =- ∴42z i =+(2)∵m 为实数,且()()()()2224212482z mi m i m m m i +=+-=+-+-⎡⎤⎣⎦ ∴由题意得()21240820m m m ⎧+->⎪⎨-<⎪⎩,解得22m -<< 故,实数m 的取值范围是()2,2-【点睛】本题考查了复数,利用复数的四则运算及共轭复数的概念求复数,另外依据复数所处的象限求参数范围26.(1)3,1a b ==-(2【解析】分析:(1)由复数的四则运算可化简复数,再由复数相等可知实部与虚部都要相等,可求得,a b .(2)由复数的乘法运算可化简复数式为标准式,再由复数在第一、三象限的角平分线上可知复数实部等于虚部,求得参数y,再由复数模公式求得复数模.详解:(1)∵()()21253i i a bi i -+++=+ 1033i i==-+ , 又∵,a b R ∈ ∴3,1a b ==-(2)()()()31a bi z i yi +⋅=--+()()331y y i =-+++由题意可知:331y y -+=+,解得2y =-∴z ==点睛:本题主要考查复数四则运算与乘方综合运算和复数相等,及复数与坐标对应关系,及复数的模.。
高中数学《复数》高考真题汇总(详解)——精品文档
高中数学《复数》高考真题汇总(详解)1.对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+2.复数231i i -⎛⎫= ⎪+⎝⎭( )A.34i --B.34i -+C.34i -D.34i +3.复数z =1ii+在复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设a,b 为实数,若复数11+2ii a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b ==5.已知(x+i )(1-i )=y ,则实数x ,y 分别为( ) A.x=-1,y=1 B. x=-1,y=2 C. x=1,y=1 D. x=1,y=26.已知21i =-,则i(1)=( )i i C.i D.i 7.设i 为虚数单位,则51ii-=+( ) A.-2-3i B.-2+3i C.2-3iD.2+3i8.已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 9.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10. i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11. i 是虚数单位,复数31ii+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 12.i 是虚数单位,复数1312ii-+=+( )A.1+iB.5+5iC.-5-5iD.-1-i 13.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.3 14. i 是虚数单位,41i ()1-i+等于 ( ) A .i B .-i C .1D .-115.复数3223ii+=-( ) A.i B.i - C.12-13i D. 12+13i16.已知2(,)a i b i a b i +=+2a ib i i+=+(a,b ∈R ),其中i 为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 17. i 33i=+ ( ) A.13412- B.13412+ C.1326i + D.1326- 18.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i+的点是( )A.EB.FC.GD.H19.某程序框图如左图所示,若输出的S=57,则判断框内位( ) A. k >4? B.k >5? C. k >6? D.k >7? 20.如果执行下图(左)的程序框图,输入6,4n m ==,那么输出的p 等于( )A.720B.360C.240D.12021.如果执行上图(右)的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于( ) A.1m nC - B.1m nA - C.m n C D.mn A22.某程序框图如下图(左)所示,若输出的S=57,则判断框内为( ) A.k >4? B.k >5? C. k >6? D. k >7?23.【2010·天津文数】阅读右边的程序框图,运行相应的程序,则输出s 的值为( ) A.-1 B.0 C.1 D.3标准答案1.【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题. 2.【答案】A【解析】本试题主要考查复数的运算.231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3.【答案】A【解析】本题考查复数的运算及几何意义.1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4.【答案】A【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A.5.【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2. 6.【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =,选B. 7.【答案】C【解析】本题主要考察了复数代数形式的四则运算,属容易题. 8.【答案】B 9.【答案】C 10. 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1. 11.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1.331+24121-(1-)(1+)2i i i ii i i i +++===+()() 12.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。
集合复数题及答案.doc
集合与复数试题汇编1、(2007海南、宁夏卷,1)设集合A = {x|x>-1}, 3 = {x|-2<x<2},则AUB =(A) [x\x>-2] (B) (x|x>-l} (C) {x|-2<x<-l} (D) {x\-l<x<2)2、(2008 宁夏、海南卷,1)已知集合M={ xl(x + 2)(x-l)<0 }, N=( xlx+ 1 <0 ),则MAN=( )A. ( — 1, 1)B. (—2, 1)C. ( —2, —1)D. (1, 2)3、(2009 宁夏、海南卷,1)已知集合人={1,3,5,7,9},3={0,3,6,9,12},则人门3 =(A) {3,5} (B) {3,6} (C) {3,7} (D) {3,9}4、(2010 课程标准卷,1)已知集合A = {x\\x<2,xe 7?},B = (xlVx <4,xe Z},则(A) (0, 2) (B) [0, 2] (C) 10, 21 (D) (0, 1, 2}5> (2011 课程标准卷,1)已知集合M={0, 1, 2, 3, 4}, N=(1, 3, 5), P=Mp^ ,贝U P 的子集共有A. 2个B. 4个C. 6个D. 8个6、(2012 课程标准卷,1)已知集合A={xl?—x—2<0}, B={x|—l<x<l},则(A) A隹B (B) B^A (C) A=B (D) AAB=07、(2007 海南、宁夏卷,15) i 是虚数单位,i + 2i2+3i3+••• + 8i8=.z28、(2008宁夏、海南卷,3)已知复数z = l-z ,则—— =()Z-1A. 2B. -2C. 2i D, ~2i9、(2009宁夏、海南卷,2)复数2±丑=2-3/(A) 1 (B) -1 (C) z (D)-z10> (2010课程标准卷,3)已知复数z = 厂‘,,贝Ulzl=(1-V3i)2(A) -4(B)- (C) 1 (D) 2A. 2 — i 2B. l-2zl-2i—J+112、(2012课程标准卷,2)复数Z=-^—的共辗复数是(A) 2+i (B) 2-i (C) -1+i (D) -1-i13、(13 年1)已知集合A= {1, 2, 3, 4}, B= {xlx=n2, nGA},贝l]AnB= ()(A) {1, 4} (B) {-1, ,0} (C) {0, 1} (D) {-1, ,0, 1}D.l+2i Z2=-2 + 3Z,则复数Z2-Z1在复平面内对应的点位14、(13 年 2) I — = (A) -1 - - i (B) -1 + - i (C) 1 + - i (D)l - - i2: 2 22 1、 已知集合 A={xlx2—x-2<0}, B=(x|-l<x<l),则()(A) A 孚B (B) B 孚A (C) A=B (D) AAB=02、 已知全集U =R,A = {x\x>O},B{x\x>l},贝腥%狎)=( )A. (x 10 < x < 1}B. {x I 0 < x < 1}C. (x I x < 0}D. {x \ x>l}3、 已知集合 M ={1,2,3} , N Z|l<x<4},则( )A. M gNB. N = MC. MC\N = {2,3}D. MljN = (l,4)4、 设全集 U=R ,集合 M ={r|x 2+2x-3<o}, 2V = {x |-i<x <4},则 M[}N 等于()A.{x|l<x<4)B.{x|-lWxM3}C.{x|-3<x<4}D. {x|-1 < x < 1}5. 已知全集 U=R,集合 A=[X \X 2-2X >0}, B = (xly = lg(x-1)},则等于( )A.{xIx > 2或x<0}B.(x11 < x< 2}C. (xll<x<2}D.(x11 < x< 2)—3+i6、 复数z=~^—的共轴复数是()(A) 2+i (B) 2-i (C) -1+i (D) —l —in — i10. 已知a 是实数,B 是纯虚数,则。
高二数学复数试题
高二数学复数试题1.复数(为虚数单位)的虚部是A.B.C.D.【答案】C【解析】由题意,故虚部是【考点】复数的除法运算,复数的实部虚部的概念2.已知复数Z=,则Z在复平面上对应的点在A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】,其对应的点落在第四象限。
故选D。
【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.点评:本题主要考查两个复数代数形式的除法,虚数单位i的幂运算性质,利用了两个复数相除,分子和分母同时乘以分母的共轭复数,属于基础题.3.若,是虚数单位,且,则的值为【答案】4【解析】根据题意,由于是虚数单位,且,故可知a+b=4.故可知答案为4.【考点】复数的运算点评:主要是考查了复数的计算,属于基础题。
4.设、为实数,且,则= 。
【答案】4【解析】根据题意,由于已知中,则可由复数相等得到,,利用实部和虚部对应相等可知=4,故答案为4.【考点】复数的相等点评:主要是考查了复数相等的运算,属于基础题。
5.已知则【答案】5【解析】根据题意,由于则可知,x+y-3=0,x-4=0,x=4,y=-1,故可知x-y=5,因此答案为5.【考点】复数相等点评:主要是考查了复数相等的概念的运用,属于基础题。
6.()A.B.C.D.【答案】D【解析】因为,因此可知答案为D.【考点】复数的运算点评:主要是考查了复数的除法运算,属于基础题。
7.复数,则.【答案】【解析】根据题意,由于,则可知,故可知答案为。
【考点】复数的计算点评:主要是考查了复数的运算,属于基础题。
8.设,若(为虚数单位)为负实数,则A.2B.1C.0D.【答案】D【解析】因为为负实数,则可知,故可知答案为D.【考点】复数的计算点评:主要是考查了复数的概念和基本运算,属于基础题。
9.复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数为( )A.2+i B.2-i C.5+i D.5-i【答案】D【解析】因为,(z-3)(2-i)=5,所以,,=5-i,选D。
(精选试题附答案)高中数学第七章复数知识点题库
(名师选题)(精选试题附答案)高中数学第七章复数知识点题库单选题1、在复平面内,复数z=1+i2−i(i是虚数单位),则复数z的共轭复数所对应的点位于()A.第四象限B.第三象限C.第二象限D.第一象限答案:A分析:根据复数除法运算化简z,再根据共轭复数的概念和复数的几何意义可得解.因为z=1+i2−i =(1+i)(2+i)(2−i)(2+i)=2+3i+i24−i2=1+3i5=15+35i,∴z̅=15−35i,对应点为(15,−35),在第四象限,故选:A.2、设复数z满足|z−i|=1,z在复平面内对应的点为(x,y),则A.(x+1)2+y2=1B.(x−1)2+y2=1C.x2+(y−1)2=1D.x2+(y+1)2=1答案:C分析:本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x,y)和点(0,1)之间的距离为1,可选正确答案C.z=x+yi,z−i=x+(y−1)i,|z−i|=√x2+(y−1)2=1,则x2+(y−1)2=1.故选C.小提示:本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.3、复数1−3i(1−i)(1+2i)=().A.−1B.−i C.35−45i D.35−i答案:B解析:根据复数的乘法、除法的运算法则,准确运算,即可求解.根据复数的运算法则,可得1−3i (1−i)(1+2i)=1−3i 3+i =(1−3i)(3−i)(3+i)(3−i)=−10i 10=−i .故选:B.4、i 为虚数单位,已知复数a 2−1+(a −1)i 是纯虚数,则a 等于( )A .±1B .1C .−1D .0答案:C解析:根据纯虚数的定义,实部为0,虚部不为0,列方程组求解.复数a 2−1+(a −1)i 是纯虚数,所以{a 2−1=0a −1≠0,得a =−1. 故选:C.5、复数z 满足(1+2i )z =3−i ,则|z |=( )A .√2B .√3C .2D .√5答案:A分析:先求出复数z ,再求|z |.因为(1+2i )z =3−i ,所以z =3−i 1+2i =(3−i )(1−2i )(1+2i )(1−2i )=15−75i ,所以|z |=√(15)2+(−75)2=√2.故选:A6、已知z =2+i ,则z̅−i1+i =( )A .1−2iB .2+2iC .2iD .−2i答案:D分析:根据共轭复数的定义及复数的除法法则即可求解.由z =2+i ,得z̅=2−i ,所以z̅−i1+i =2−i−i1+i=2(1−i)×(1−i)(1+i)×(1−i)=2×(1−2i+i2)2=−2i.故选:D.7、设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=()A.0B.−1C.1D.√2答案:B分析:利用复数乘法化简复数,根据其对应点在实轴上有a+1=0,即可得答案. ∵复数(1+i)(a+i)=(a−1)+(a+1)i在复平面内对应的点位于实轴上,∴a+1=0,即a=−1.故选:B8、在复平面内,复数2−i1−3i对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案:A分析:根据复数的运算法则,求得2−i1−3i =12+12i,结合复数的几何意义,即可求解.由题意,复数2−i1−3i =(2−i)(1+3i)(1−3i)(1+3i)=5+5i10=12+12i,所以该复数在复平面内对应的点为(12,12),在第一象限.故选:A.9、已知a∈R,(1+ai)i=3+i,(i为虚数单位),则a=()A.−1B.1C.−3D.3答案:C分析:首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数a的值. (1+ai)i=i+ai2=i−a=−a+i=3+i,利用复数相等的充分必要条件可得:−a=3,∴a=−3.故选:C.10、若z=1+i,则|z2–2z|=()A.0B.1C.√2D.2答案:D分析:由题意首先求得z2−2z的值,然后计算其模即可.由题意可得:z2=(1+i)2=2i,则z2−2z=2i−2(1+i)=−2.故|z2−2z|=|−2|=2.故选:D.小提示:本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.填空题11、已知复数z=|3−4i|2−i(i是虚数单位),则复数z在复平面内对应的点位于第_____象限. 答案:一解析:化简得到z=2+i,得到复数对应象限.z=|3−4i|2−i =52−i=5(2+i)(2−i)(2+i)=2+i,复数z在复平面内对应的点的坐标为(2,1),故复数z在复平面内对应的点位于第一象限.所以答案是:一.小提示:本题考查了复数的模,复数除法,复数对应象限,意在考查学生对于复数知识的综合应用.12、已知复数z=√3+i(1−√3i)2,则z·z̅=________.答案:14分析:化简z,计算z·z̅即可.z=√3+i(1−√3i)2=√3i2(1−√3i)2=√3i)(1−√3i)2=1−√3i=√3i)(1−√3i)(1+√3i)=−√34+i4z̅=−√34−i 4z ⋅z̅=316+116=14 所以答案是:1413、已知关于x 的实系数方程x 2−2ax +a 2−4a +4=0两个虚根为x 1,x 2,且|x 1|+|x 2|=3,则a =______. 答案:12解析:根据关于x 的实系数的方程有两个虚根,由Δ<0解得a 的范围,再根据|x 1|+|x 2|=3及两根互为共轭,由|x 1|=|x 2|=√a 2−4a +4=32求解. 由Δ=16a −16<0,得a <1,因为|x 1|+|x 2|=3,所以|x 1|=|x 2|=√a 2−4a +4=32即a 2−4a +74=0, 解得a =12或72(舍), 所以a =12.所以答案是:1214、复数12+√32i 的三角形式是______. 答案:cos π3+i sin π3分析:直接利用辅助角公式计算得到答案.12+√32i =cos π3+i sin π3.所以答案是:cos π3+i sin π3.15、设z =52+i ,其中i 为虚数单位,则Imz =________答案:−1解析:直接利用复数的除法运算化简得到z的代数形式,再根据定义即得结果.因为z=52+i =5(2−i)(2+i)(2−i)=5(2−i)22−(−1)=2−i所以Imz=−1.所以答案是:−1.解答题16、已知z1=3−4i,z2=3−2i.求:(1)z1⋅z2;(2)z1z2;(3)(1+i)2n+(1−i)2n(n为正整数);(4)(1+i)15+(1−i)15(1+i)14−(1−i)14.答案:(1)1−18i(2)1713−613i(3)(2i)n+(−2i)n={2n+1,n=4k,k∈N∗, 0,n=4k+1,k∈N,−2n+1,n=4k+2,k∈N,0,n=4k+3,k∈N(4)i分析:(1)根据复数的加减法和乘法运算规则计算得出结果;(2)根据复数的四则运算规则计算得出结果;(3)根据复数的乘方及四则运算规则计算得出结果;(4)根据复数的乘方及四则运算规则计算得出结果.(1)根据复数的加减法和乘法运算规则得,z1·z2=(3−4i)·(3−2i)=1−18i. (2)根据复数的四则运算规则得,z1z2=3−4i3−2i=(3−4i)(3+2i)(3−2i)(3+2i)=17−6i13=1713−6i13.(3)根据复数的乘方及四则运算规则得,(1+i)2n+(1−i)2n=(2i)n+(−2i)n={2n+1,n=4k,k∈N∗, 0,n=4k+1,k∈N,−2n+1,n=4k+2,k∈N,0,n=4k+3,k∈N (4)根据复数的乘方及四则运算规则得,(1+i)15+(1−i)15 (1+i)14−(1−i)14=(1+i)14·(1+i)+(1−i)14·(1−i)(2i)7−(−2i)7=(2i)7·(1+i)+(−2i)7·(1−i)−28i=−27i+27+27i+27−28i=i17、已知复数z=(m2+2m)+(m2−2m−3)i, m∈R,其中i为虚数单位.(I)若复数z在复平面内对应的点位于第二象限,求m的取值范围;(II)若z满足z⋅z̅−4i z=9−12i,求m的值.答案:(I)m的取值范围是−2<m<−1;(II)m=1.分析:(I)由实部小于0且虚部大于0,联立不等式组求解即可;(II)设出z=x+y i(x,y∈R),先利用复数的共轭的概念和负数的乘法运算化简已知等式的左端,利用两个复数相等的充要条件可求出z的两个值,进而根据题设条件对应得到两个关于m的方程组,分别求解即得.解:(I)∵复数z在复平面内对应的点位于第二象限,∴{m2+2m<0m2−2m−3>0,解得:−2<m<−1,所以m的取值范围是−2<m<−1;(II)设z=x+y i(x,y∈R),∵z⋅z̅−4i z=9−12i,∴(x2+y2)−4i(x+y i)=9−12i,即(x 2+y 2+4y )−4x i =9−12i ,∴{x 2+y 2+4y =9−4x =−12, ∴{x =3y =0 或{x =3y =−4, ∴z =3或z =3−4i .∵z =(m 2+2m )+(m 2−2m −3)i ,∴当z =3时,{m 2+2m =3m 2−2m −3=0,无解; 当z =3−4i 时,{m 2+2m =3m 2−2m −3=−4,解得m =1, 综上可知:m =1.18、已知复数z =b i (b ∈R),z+31−i 是实数.(1)求复数z ;(2)若复数(m −z)2−8m 在复平面内所表示的点在第二象限,求实数m 的取值范围.答案:(1)z =−3i(2)(0,9)分析:(1)先将z =b i 代入z+31−i 化简,再由其虚部为零可求出b 的值,从而可求出复数z ,(2)先对(m −z)2−8m 化简,再由题意可得{m 2−8m −9<0,6m >0, 从而可求得结果 (1)因为z =b i ,所以z+31−i =3+b i 1−i =(3+b i )(1+i )2=3−b+(b+3)i 2, 因为z+31−i 是实数,所以b +3=0,解得b =−3.故z =−3i .(2)因为z =−3i ,所以(m −z)2−8m =(m +3i )2−8m =(m 2−8m −9)+6m i .因为复数(m −z)2−8m 所表示的点在第二象限,所以{m 2−8m −9<0,6m >0,解得0<m <9,即实数m 的取值范围是(0,9).19、已知i 是虚数单位,设复数z 满足|z −2|=2.(1)求|z +1−4i |的最小值与最大值;(2)若z +4z 为实数,求z 的值. 答案:(1)最大值为7,最小值为3.(2)见解析解析:(1)根据题意|z −2|=2,可知z 的轨迹为以(2,0)为圆心,以2为半径的圆,|z +1−4i |表示点(x,y)到(−1,4)的距离,结合几何意义求得结果;(2)根据z +4z 为实数,列出等量关系式,求得结果.(1)设z =x +yi ,根据|z −2|=2,所以有(x −2)2+y 2=4,所以z 的轨迹为以(2,0)为圆心,以2为半径的圆,所以|z +1−4i |=|(x +1)+(y −4)i |=√(x +1)2+(y −4)2,其表示点(x,y)到(−1,4)的距离,所以其最大值为圆心(2,0)到(−1,4)的距离加半径,最小值为圆心(2,0)到(−1,4)的距离减半径,所以最大值为√(2+1)2+42+2=7,最小值为√(2+1)2+42−2=3;(2)z +4z =x +yi +4x+yi =x +yi +4(x−yi)x 2+y 2=(x +4x x 2+y 2)+(y −4y x 2+y 2)i , 因为z +4z 为实数,所以y −4y x 2+y 2=0,即y(1−4x 2+y 2)=0,所以y =0或x 2+y 2=4,又因为(x −2)2+y 2=4,所以{x =0y =0 (舍去),{x =4y =0 ,{x =1y =√3 ,{x =1y =−√3, 所以z =4或z =1+√3i 或z =1−√3i .小提示:该题考查的是有关复数的问题,涉及到的知识点有根据几何意义有模的最值,根据复数为实数求复数的值,属于简单题目.。
复数试题及答案高中数学
复数试题及答案高中数学一、选择题1. 复数z = 3 + 4i的模是()A. 5B. √5C. √(3² + 4²)D. 42. 已知z₁ = 2 - i,z₂ = 1 + 3i,求z₁z₂的值是()A. 5 - iB. 5 + iC. 2 + 5iD. 2 - 5i3. 复数z = 1/(1 - i)的共轭复数是()A. -1 - iB. -1 + iC. 1 - iD. 1 + i二、填空题4. 复数3 - 4i的实部是______,虚部是______。
5. 若复数z满足|z| = 5,且z的实部为3,则z的虚部可以是______。
三、解答题6. 求复数z = 2 + 3i的共轭复数,并计算|z|。
7. 已知复数z₁ = 2 + i,z₂ = 1 - 2i,求z₁ + z₂,z₁ - z₂,z₁z₂。
8. 证明:对于任意复数z,都有|z|² = z * z的共轭复数。
答案一、选择题1. C. √(3² + 4²) = 52. A. 5 - i ((2 - i)(1 + 3i) = 2 + 6i - i - 3 = 5 - i)3. D. 1 + i (1/(1 - i) = (1 + i)/2)二、填空题4. 3,-45. ±4 (因为|z|² = 3² + 虚部²,所以虚部² = 25 - 9 = 16,虚部= ±4)三、解答题6. z的共轭复数是2 - 3i,|z| = √(2² + 3²) = √13。
7. z₁ + z₂ = (2 + i) + (1 - 2i) = 3 - iz₁ - z₂ = (2 + i) - (1 - 2i) = 1 + 3iz₁z₂ = (2 + i)(1 - 2i) = 2 - 4i + i - 2i² = 4 - i8. 证明:设z = a + bi,其中a和b是实数,i是虚数单位。
高三数学复数试题
高三数学复数试题1.已知m(1+i)=2-ni(m,n∈R),其中i是虚数单位,则()3等于() A.1B.-1C.i D.-i【答案】C【解析】由m(1+i)=2-ni,得m+mi=2-ni,故m=2,m=-n,故m=2,n=-2,故()3=()3=i.2.设复数z满足i(z+1)=-3+2i,则=________.【答案】1-3i【解析】z=-1=1+3i,∴=1-3i.3.已知复数Z1和复数Z2,则Z1·Z2()A.B.C.D.【答案】A【解析】因为,复数Z1和复数Z2,所以,由复数的三角形式运算法则,Z1·Z2,故选A.【考点】复数的三角形式运算4.如果复数为纯虚数,则实数的值 ( )A.等于1B.等于2C.等于1或2D.不存在【答案】B【解析】复数为纯虚数,则实部,所以或2,又时,不为纯虚数,所以.【考点】纯虚数的定义5.设是虚数单位,则“x=-3”是“复数z=(x2+2x-3)+(x-1)i为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】若复数z=(x2+2x-3)+(x-1)i为纯虚数,则,所以“x=-3”是“复数z=(x2+2x-3)+(x-1)i为纯虚数”的充要条件.【考点】复数运算,充分必要条件.6.已知是虚数单位,如果复数满足,那么( )A.B.C.D.【答案】A【解析】设,、都是实数,则,∵,∴,解方程得.∴.∴故选A.【考点】复数的基本运算.7. i是虚数单位,复数z=的虚部为_________.【答案】-3【解析】【考点】复数的运算.8.已知复数为虚数单位),且,则()A.B.C.或D.或【答案】D【解析】即,所以,,解得,或,即或,选D。
【考点】复数的代数运算,复数的相等。
点评:简单题,复数的乘法,按多项式运算法则进行,化为-1。
本题解方程组,对计算能力要求较高。
9.设m∈R,m2+m﹣2+(m2﹣1)i是纯虚数,其中i是虚数单位,则m=.【答案】﹣2【解析】∵复数z=(m2+m﹣2)+(m﹣1)i为纯虚数,∴m2+m﹣2=0,m2﹣1≠0,解得m=﹣2【考点】复数的基本概念点评:本题主要考查复数的基本概念,得到 m2+m﹣2=0,m2﹣1≠0,是解题的关键,属于基础题10.=()A.-8B.8C.D.【答案】A【解析】.故选A.【考点】复数运算11.复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】,故对应的点在第二象限.12.已知复数的共轭复数(为虚数单位),则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】,所对应的点为(1,-2)位于第四象限。
高三数学复数综合运算试题
高三数学复数综合运算试题1.已知复数满足,则()A.B.C.D.【答案】D【解析】由题知,z=,故选D.考点:复数运算2.若(a-4i)i=b-i,(a,b∈R,i为虚数单位),则复数z=a+bi在复平面内的对应点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】,,对应的点的坐标为,所以位于第二象限,故选B.【考点】复数的代数运算与几何意义3.设是虚数单位,复数=()A.B.C.D.【答案】D【解析】由题意,故选D.【考点】1.复数的运算.4.是虚数单位,复数A.B.C.D.【答案】A.【解析】,故选A.【考点】复数的运算.5.实数m分别取什么数值时,复数z=(m2+5m+6)+(m2-2m-15)i(1)与复数2-12i相等;(2)与复数12+16i互为共轭复数;(3)对应的点在x轴的上方.【答案】(1)m=-1(2)m=1(3)m<-3或m>5.【解析】解:(1)根据复数相等的充要条件得解得m=-1.(2)根据共轭复数的定义得解得m=1.(3)根据复数z的对应点在x轴的上方可得m2-2m-15>0,解得m<-3或m>5.6.已知是虚数单位,则复数的模为()A.B.C.D.【答案】C【解析】解:所以,故选C.【考点】1、复数的概念;2、复数的运算.7.复数的虚部是()A.B.C.D.【答案】A【解析】,因此,复数的虚部是,故选A.【考点】1.复数的除法;2.复数的概念8.已知复数,,若为实数,则实数的值为()A.1B.C.4D.【答案】D【解析】=是实数,所以m+4=0,解得m=-4,故选D.【考点】复数的运算和有关概念.9.复数的共轭复数为()A.B.C.D.【答案】D【解析】,因此复数的共轭复数为,故选D.【考点】1.复数的除法;2.共轭复数10.在复平面上,复数对应的点在 ( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】【解析】由,所以对应的点为,所以在复平面上对应的点位于第四象限. 故选.【考点】复数的运算;复数的概念.11.若=3+4i,=-1-i,i是虚数单位,则=________(用复数代数形式表示).【答案】-4-5i【解析】因为=3+4i,=-1-i,i是虚数单位,所以=-=(-1-i)-(3+4i)=-4-5i.12.(2013•浙江)已知i是虚数单位,则(﹣1+i)(2﹣i)=()A.﹣3+i B.﹣1+3i C.﹣3+3i D.﹣1+i【答案】B【解析】(﹣1+i)(2﹣i)=﹣2+i+2i+1=﹣1+3i,故选B.13.在复平面内,复数对应的点的坐标为 .【答案】【解析】由题意,其对应的点的坐标为.【考点】1.复数的运算与对应的点位置.14.复数(,且),若是实数,则有序实数对可以是.(写出一个有序实数对即可)【答案】或满足的任意一对非零实数对【解析】是实数,则,由于,故.【考点】复数的概念.15.复数等于A.-i B.1C.-l D.0【答案】D.【解析】因为,或因为,所以选D.复数运算中注意分母实数化时不要出错.【考点】复数运算16.已知是虚数单位,以下同)是关于的实系数一元二次方程的一个根,则实数,.【答案】【解析】由题意是方程的另一根,因此,,.【考点】实系数二次方程的复数根.17.若R,为虚数单位,且,则()A.,B.,C.,D.,【答案】B【解析】因为所以,,,选.【考点】复数的概念,复数的四则运算.18.设复数,其中、,则______.【答案】.【解析】,所以,,因此.【考点】1.复数的除法;2.复数相等19. ( )A.B.C.D.【答案】B【解析】因为,所以选B.【考点】复数的运算20.复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】,故复数在复平面内对应的点位于第二象限.【考点】复数的运算,复数几何意义.21.若复数z =(为虚数单位),则|z|= .【答案】【解析】因为所以也可利用复数模的性质求解,即【考点】复数的模22.(为虚数单位),则( )A.B.C.D.【答案】D【解析】因为,所以,选.【考点】复数的四则运算23.若(a-2i)i=b-i,其中a,b∈R,i是虚数单位,求点P(a,b)到原点的距离.【答案】【解析】由已知ai+2=b-i,∴∴点P(-1,2)到原点距离|OP|=.24.复数:=________.【答案】38-i【解析】==38-i.25.在复平面上,复数对应的点到原点的距离为.【答案】【解析】复平面上复数对应的点到原点的距离就是它的模,而,本题不需要把复数化简为形式.【考点】复数的模.26.满足的复数是()A.B.C.D.【答案】D【解析】由可得,.【考点】复数的运算.27.已知i是虚数单位,若,则z=()A.B.C.D.【答案】A【解析】,选A.【考点】复数的基本运算.28.若为虚数单位,则等于()A.B.C.1D.-1【答案】A【解析】,故选A.【考点】复数的运算.29.已知是虚数单位,则()A.B.C.D.【答案】A【解析】,故选A.30.设是虚数单位,则等于()A.0B.C.D.【答案】D【解析】===,故选D.【考点】复数的运算和几何意义.31.复数的虚部是.【答案】-1【解析】,所以虚部为-1.【考点】复数的概念与运算32.已知复数z满足为虚数单位),则复数所对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】,,复数所对应的点所在象限为第一象限.【考点】1.复数的除法运算;2.复数和点的一一对应关系.33.复数.【答案】【解析】.【考点】复数的运算.34.复数的虚部为( )A.B.C.D.【答案】D【解析】.【考点】复数的概念与运算.35.若复数满足,是虚数单位,则()A.B.C.D.【答案】B【解析】由得,选B.36.复数()A.B.C.D.【答案】B【解析】.【考点】复数的运算.37.()A.B.C.D.【答案】B【解析】,故选B.【考点】复数的四则运算38.()A.B.C.D.【答案】B;【解析】.【考点】本题考查复数的基本运算,考查学生的基本运算能力.39.复数z=i(i+1)(i为虚数单位)的共轭复数是()A.-1-i B.-1+i C.1-i D.1+i【答案】A【解析】由,得.【考点】对复数概念的理解,考查学生的基本运算能力.40.= .【答案】【解析】.【考点】复数的四则运算.41.设复数满足(为虚数单位),则= ..【答案】【解析】由,得,所以.【考点】复数的四则运算,复数模的概念.42.已知复数(,,为虚数单位),则【答案】C【解析】【考点】复数运算点评:复数化简时分子分母同乘以分母的共轭复数43.在复平面内,复数对应的点位于虚轴上,则【解析】因为,,其对应点(a,-1)位于虚轴上,所以,0.【考点】本题主要考查复数的代数运算,复数的概念。
复数试题及答案
一、复数选择题1.若()211z i =-,21z i =+,则12z z 等于( ) A .1i +B .1i -+C .1i -D .1i -- 2.复数3(23)i +(其中i 为虚数单位)的虚部为( )A .9iB .46i -C .9D .46- 3.已知复数()2m m m i z i --=为纯虚数,则实数m =( ) A .-1B .0C .1D .0或1 4.212i i+=-( ) A .1B .−1C .i -D .i 5.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限B .第二象限C .第三象限D .第四象限 6.若复数1z i i ⋅=-+,则复数z 的虚部为( )A .-1B .1C .-iD .i 7.已知i 为虚数单位,则复数23i i -+的虚部是( ) A .35 B .35i - C .15- D .15i - 8.已知复数1z i i =+-(i 为虚数单位),则z =( )A .1B.i Ci Di 9.设()2211z i i =+++,则||z =( ) AB .1C .2 D10.若(1)2z i i -=,则在复平面内z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限11.设复数z 满足方程4z z z z ⋅+⋅=,其中z 为复数z 的共轭复数,若z的实部为,则z 为( )A .1 BC .2D .412.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )AB .2C .10 D13.复数z 满足22z z i +=,则z 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限14.在复平面内,复数z 对应的点的坐标是(1,1),则z i =( ) A .1i -B .1i --C .1i -+D .1i +15.设复数z 满足(1)2i z -=,则z =( )A .1BCD .2二、多选题16.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 17.下面是关于复数21i z =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1- 18.下面是关于复数21i z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z = B .22z i = C .z 的共轭复数为1i + D .z 的虚部为1-19.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限 B .第二象限C .第三象限D .第四象限 20.下列关于复数的说法,其中正确的是( )A .复数(),z a bi a b R =+∈是实数的充要条件是0b =B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称21.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限22.已知复数122,2z i z i =-=则( )A .2z 是纯虚数B .12z z -对应的点位于第二象限C .123z z +=D .12z z =23.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( )A .20zB .2z z =C .31z =D .1z = 24.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )A .||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根25.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z =B .12i 5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限26.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z = 27.复数21i z i +=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i +C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限 28.给出下列命题,其中是真命题的是( )A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数29.对任意1z ,2z ,z C ∈,下列结论成立的是( )A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅D .12z z =的充要条件是12=z z30.已知i 为虚数单位,下列命题中正确的是( )A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y ==B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z ==D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数【参考答案】***试卷处理标记,请不要删除一、复数选择题1.D【分析】由复数的运算法则计算即可.【详解】解:,.故选:D.解析:D【分析】由复数的运算法则计算即可.【详解】解:()2211122z i i i i =-=-+=-, ()()212222(1)2222111112z i i i i i i i z i i i i --⨯--+--∴=====--++--. 故选:D.2.C【分析】应用复数相乘的运算法则计算即可.【详解】解:所以的虚部为9.故选:C.解析:C【分析】应用复数相乘的运算法则计算即可.【详解】解:()()()32351223469i i i i +=-++=-+所以()323i +的虚部为9.故选:C.3.C【分析】结合复数除法运算化简复数,再由纯虚数定义求解即可【详解】解析:因为为纯虚数,所以,解得,故选:C.解析:C【分析】结合复数除法运算化简复数z ,再由纯虚数定义求解即可【详解】解析:因为()()22m m m iz m m mi i --==--为纯虚数,所以200m m m ⎧-=⎨≠⎩,解得1m =,故选:C.4.D【分析】利用复数的除法运算即可求解.【详解】,故选:D解析:D【分析】利用复数的除法运算即可求解.【详解】()()()()2221222255121212145i i i i i i i i i i i +++++====--+-, 故选:D5.D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】由已知得,所以复数z 在复平面上所对应的点为,在第四象限,故选:D.解析:D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.由已知得()()()()312317171+21+212555i i i i z i i i i ----====--, 所以复数z 在复平面上所对应的点为17,55⎛⎫-⎪⎝⎭,在第四象限, 故选:D.6.B【分析】,然后算出即可.【详解】由题意,则复数的虚部为1故选:B解析:B【分析】1i z i-+=,然后算出即可. 【详解】 由题意()11111i i i i z i i i i -+-+--====+⋅-,则复数z 的虚部为1 故选:B 7.A【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部.【详解】因为,所以其虚部是.故选:A.解析:A【分析】 先由复数的除法运算化简复数23i i -+,再由复数的概念,即可得出其虚部. 【详解】 因为22(3)26133(3)(3)1055i i i i i i i i -----===--++-,所以其虚部是35. 故选:A.8.D【分析】先对化简,求出,从而可求出解:因为,所以,故选:D解析:D【分析】 先对1z i i =+-化简,求出z ,从而可求出z【详解】解:因为1z i i i i =+-==,所以z i =,故选:D 9.D【分析】利用复数的乘除法运算法则将化简,然后求解.【详解】因为,所以,则.故选:D .【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,解析:D【分析】利用复数的乘除法运算法则将z 化简,然后求解||z .【详解】 因为()()()()2221211211211111i z i i i i i i i i i -=++=+++=-++-=+++-,所以1z i =-,则z =故选:D .【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,需要给分子分母同乘以分母的共轭复数然后化简.10.B【分析】先求解出复数,然后根据复数的几何意义判断.【详解】因为,所以,故对应的点位于复平面内第二象限.故选:B.【点睛】本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计解析:B【分析】先求解出复数z ,然后根据复数的几何意义判断.【详解】因为(1)2z i i -=,所以()212112i i i z i i +===-+-, 故z 对应的点位于复平面内第二象限.故选:B.【点睛】 本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计算复数的除法时,注意分子分母同乘以分母的共轭复数.11.B【分析】由题意,设复数,根据共轭复数的概念,以及题中条件,即可得出结果.【详解】因为的实部为,所以可设复数,则其共轭复数为,又,所以由,可得,即,因此.故选:B.解析:B【分析】由题意,设复数(),z yi x R y R =∈∈,根据共轭复数的概念,以及题中条件,即可得出结果.【详解】因为z ,所以可设复数(),z yi x R y R =∈∈,则其共轭复数为z yi =,又z z =,所以由4z z z z ⋅+⋅=,可得()4z z z ⋅+=,即4z ⋅=,因此z =故选:B. 12.D【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.【详解】因为,所以,,所以,故选:D.解析:D【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.【详解】因为1z i =+, 所以1z i =-,12z i +=+, 所以()()()1123z z i i i ⋅+=-⋅+=-==故选:D.13.B【分析】先设复数,根据复数模的计算公式,以及复数相等,求出,得出复数,再由复数的几何意义,即可得出结果.【详解】设复数,由得,所以,解得,因为时,不能满足,舍去;故,所以,其对应的解析:B【分析】先设复数(),z x yi x R y R =+∈∈,根据复数模的计算公式,以及复数相等,求出,x y ,得出复数,再由复数的几何意义,即可得出结果.【详解】设复数(),z x yi x R y R =+∈∈,由22z z i +=得222x yi i +=,所以2022x y ⎧⎪+=⎨=⎪⎩,解得31x y ⎧=±⎪⎨⎪=⎩,因为1x y ⎧=⎪⎨⎪=⎩时,不能满足20x =,舍去;故31x y ⎧=-⎪⎨⎪=⎩,所以3z i =-+,其对应的点⎛⎫ ⎪ ⎪⎝⎭位于第二象限, 故选:B.14.A【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解.【详解】因为在复平面内,复数对应的点的坐标是,所以,所以,故选:A解析:A【分析】根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解.【详解】因为在复平面内,复数z 对应的点的坐标是(1,1),所以1z i =+, 所以11i i i z i+==-, 故选:A 15.B【分析】由复数除法求得,再由模的运算求得模.【详解】由题意,∴.故选:B .解析:B【分析】由复数除法求得z ,再由模的运算求得模.【详解】 由题意22(1)11(1)(1)i z i i i i +===+--+,∴z == 故选:B .二、多选题16.BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC. 17.ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.18.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误; ,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点解析:BD 【分析】把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】 解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴=A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.19.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.20.AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.21.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.22.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确.故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单. 23.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.24.ABCD【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.【详解】因为(1﹣i )z =解析:ABCD【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.【详解】因为(1﹣i )z =2i ,所以21i z i=-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确; 所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.故选:ABCD.【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题. 25.BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题. 26.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.27.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||2z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.28.AD【分析】A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D. 根据,得到,再用共轭复数的定义判断.【详解】A .根据共轭解析:AD【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题.故选:AD【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题. 29.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.30.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.。
复数经典试题(含答案)doc
一、复数选择题1.复数21i=+( ) A .1i --B .1i -+C .1i -D .1i +2.已知复数2z i =-,若i 为虚数单位,则1iz+=( ) A .3155i + B .1355i + C .113i + D .13i +3.设复数(,)z a bi a R b R =+∈∈,它在复平面内对应的点位于虚轴的正半轴上,且有1z =,则a b +=( )A .-1B .0C .1D .24.已知,a b ∈R ,若2()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( )A .2a >或1a <-B .1a >或2a <-C .12a -<<D .21a -<< 5.在复平面内复数Z=i (1﹣2i )对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.设1z 是虚数,2111z z z =+是实数,且211z -≤≤,则1z 的实部取值范围是( ) A .[]1,1- B .11,22⎡⎤-⎢⎥⎣⎦ C .[]22-,D .11,00,22⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝⎦7.设2iz i+=,则||z =( ) ABC .2D .58.复数112z i =+,21z i =+(i 为虚数单位),则12z z ⋅虚部等于( ). A .1-B .3C .3iD .i -9.已知i 为虚数单位,则43ii =-( ) A .2655i + B .2655i - C .2655i -+ D .2655i -- 10.复数21ii+的虚部为( ) A .1-B .1C .iD .i -11.若i 为虚数单位,,a b ∈R ,且2a ib i i+=+,则复数a bi -的模等于( ) ABCD12.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( )A .1-B .12-C .13D .113.在复平面内,复数z 对应的点的坐标是(1,1),则zi=( ) A .1i - B .1i --C .1i -+D .1i +14.若复数11iz i,i 是虚数单位,则z =( ) A .0 B .12C .1D .215.题目文件丢失!二、多选题16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( ) A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅=17.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =18.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 19.下面关于复数的四个命题中,结论正确的是( ) A .若复数z R ∈,则z R ∈ B .若复数z 满足2z ∈R ,则z R ∈ C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z =20.设复数z 满足1z i z+=,则下列说法错误的是( ) A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .2z =21.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( )A .第一象限B .第二象限C .第三象限D .第四象限22.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 23.复数z 满足233232iz i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =24.下列关于复数的说法,其中正确的是( ) A .复数(),z a bi a b R =+∈是实数的充要条件是0b = B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠ C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称 25.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥26.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =,则12=z z B .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >27.下面四个命题,其中错误的命题是( )A .0比i -大B .两个复数当且仅当其和为实数时互为共轭复数C .1x yi i +=+的充要条件为1x y ==D .任何纯虚数的平方都是负实数28.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z =29.(多选)()()321i i +-+表示( ) A .点()3,2与点()1,1之间的距离B .点()3,2与点()1,1--之间的距离C .点()2,1到原点的距离D .坐标为()2,1--的向量的模30.已知复数z ,下列结论正确的是( ) A .“0z z +=”是“z 为纯虚数”的充分不必要条件 B .“0z z +=”是“z 为纯虚数”的必要不充分条件 C .“z z =”是“z 为实数”的充要条件 D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.C 【分析】根据复数的除法运算法则可得结果. 【详解】 . 故选:C 解析:C 【分析】根据复数的除法运算法则可得结果. 【详解】21i =+2(1)(1)(1)i i i -=+-2(1)12i i -=-.故选:C2.B 【分析】利用复数的除法法则可化简,即可得解. 【详解】 ,. 故选:B.解析:B 【分析】利用复数的除法法则可化简1iz+,即可得解. 【详解】2z i =-,()()()()12111313222555i i i i i i z i i i +++++∴====+--+. 故选:B.3.C 【分析】根据复数的几何意义得. 【详解】∵它在复平面内对应的点位于虚轴的正半轴上,∴,又,∴, ∴. 故选:C .解析:C 【分析】根据复数的几何意义得,a b . 【详解】∵z 它在复平面内对应的点位于虚轴的正半轴上,∴0a =,又1z =,∴1b =, ∴1a b +=. 故选:C .4.A 【分析】根据虚数不能比较大小可得,再解一元二次不等式可得结果. 【详解】 因为,,所以,, 所以或. 故选:A 【点睛】关键点点睛:根据虚数不能比较大小得是解题关键,属于基础题.解析:A 【分析】根据虚数不能比较大小可得a b =,再解一元二次不等式可得结果. 【详解】因为,a b ∈R ,2()2a b a b i -+->,所以a b =,220a a -->, 所以2a >或1a <-. 故选:A 【点睛】关键点点睛:根据虚数不能比较大小得a b =是解题关键,属于基础题.5.A【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案. 解:∵复数Z=i (1﹣2i )=2+i ∵复数Z 的实部2>0,虚解析:A 【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案. 解:∵复数Z=i (1﹣2i )=2+i ∵复数Z 的实部2>0,虚部1>0 ∴复数Z 在复平面内对应的点位于第一象限 故选A点评:本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z 化为a=bi (a ,b ∈R )的形式,是解答本题的关键.6.B 【分析】设,由是实数可得,即得,由此可求出. 【详解】 设,, 则,是实数,,则, ,则,解得, 故的实部取值范围是. 故选:B.解析:B 【分析】设1z a bi =+,由2111z z z =+是实数可得221a b +=,即得22z a =,由此可求出1122a -≤≤. 【详解】设1z a bi =+,0b ≠, 则21222222111a bi a b z z a bi a bi a b i z a bi a b a b a b -⎛⎫⎛⎫=+=++=++=++- ⎪ ⎪++++⎝⎭⎝⎭, 2z 是实数,220bb a b∴-=+,则221a b +=,22z a ∴=,则121a -≤≤,解得1122a -≤≤,故1z 的实部取值范围是11,22⎡⎤-⎢⎥⎣⎦. 故选:B.7.B 【分析】利用复数的除法运算先求出,再求出模即可. 【详解】 , .故选:B .解析:B 【分析】利用复数的除法运算先求出z ,再求出模即可. 【详解】()22212i ii z i i i ++===-,∴z ==故选:B .8.B 【分析】化简,利用定义可得的虚部. 【详解】则的虚部等于 故选:B解析:B 【分析】化简12z z ⋅,利用定义可得12z z ⋅的虚部. 【详解】()()1212113z z i i i ⋅=+⋅+=-+则12z z ⋅的虚部等于3 故选:B9.C 【分析】对的分子分母同乘以,再化简整理即可求解. 【详解】 , 故选:C解析:C 【分析】对43ii -的分子分母同乘以3i +,再化简整理即可求解. 【详解】()()()434412263331055i i i i i i i i +-+===-+--+, 故选:C10.B 【分析】将分母乘以其共轭复数进行分母实数化,化成的代数形式即得结果. 【详解】 ,故虚部为1. 故选:B.解析:B 【分析】将分母乘以其共轭复数进行分母实数化,化成(),a bi a b R +∈的代数形式即得结果. 【详解】22(1)11(1)(1)i i i i i i i -==+++-,故虚部为1. 故选:B.11.C 【分析】首先根据复数相等得到,,再求的模即可. 【详解】 因为,所以,. 所以. 故选:C解析:C 【分析】首先根据复数相等得到1a =-,2b =,再求a bi -的模即可. 【详解】因为()21a i b i i bi +=+=-+,所以1a =-,2b =.所以12a bi i -=--==故选:C12.B 【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解. 【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B解析:B 【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解. 【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =-故选:B 13.A 【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解. 【详解】因为在复平面内,复数对应的点的坐标是, 所以, 所以, 故选:A解析:A 【分析】根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解. 【详解】因为在复平面内,复数z 对应的点的坐标是(1,1), 所以1z i =+,所以11i i i z i +==-, 故选:A14.C 【分析】由复数除法求出,再由模计算.【详解】 由已知, 所以. 故选:C .解析:C 【分析】由复数除法求出z ,再由模计算. 【详解】由已知21(1)21(1)(1)2i i iz i i i i ---====-++-, 所以1z i =-=. 故选:C .15.无二、多选题 16.AD 【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断. 【详解】因为复数Z 在复平面上对应的向量, 所以,,|z|=,, 故选:AD解析:AD 【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断. 【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=, 故选:AD17.AC 【分析】根据复数的运算及复数的概念即可求解. 【详解】 因为复数,所以z 的虚部为1,,故AC 错误,BD 正确.故选:AC解析:AC【分析】根据复数的运算及复数的概念即可求解.【详解】 因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =故AC 错误,BD 正确.故选:AC18.BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC.【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.20.AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】 由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误; 复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.21.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.22.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.23.AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】 解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.24.AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.25.ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 26.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确;当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.27.ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,解析:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,A 选项错误;对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,C 选项错误;对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()220ai a =-<,D 选项正确. 故选:ABC.【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.28.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.29.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模30.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.。
复数多选题专项训练测试试题附解析
一、复数多选题1.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( ) A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 答案:BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.2.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s nn n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( )A .22z z =B .当1r =,3πθ=时,31z =C .当1r =,3πθ=时,12z =D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数答案:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.【详解】对于A 选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.【详解】对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确; 对于B 选项,当1r =,3πθ=时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;对于C 选项,当1r =,3πθ=时,1cos sin 332z i ππ=+=+,则12z =,C 选项正确;对于D 选项,()cos sin cos sin cos sin 44n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误.故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.3.已知i 为虚数单位,以下四个说法中正确的是( ).A .234i i i i 0+++=B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线 答案:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.【详解】,则A 正确;虚数不能比较大小,则B 错误;,则,解析:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.【详解】234110i i i i i i +++=--+=,则A 正确;虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.4.复数21i z i+=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i +C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限 答案:CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||2z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.5.已知1z ,2z 为复数,下列命题不正确的是( )A .若12z z =,则12=z zB .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >答案:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确;当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.6.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上答案:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.7.已知复数z ,下列结论正确的是( )A .“0z z +=”是“z 为纯虚数”的充分不必要条件B .“0z z +=”是“z 为纯虚数”的必要不充分条件C .“z z =”是“z 为实数”的充要条件D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件答案:BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.8.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z += 答案:ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-; 因为2422,2z i z =-=-,所以()5052020410102zz ==-,2211z z i i i z +=-++=-=. 故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题.9.若复数z 满足()1z i i +=,则( ) A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =答案:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)11(1)(1)2i i z i i i i --====-++-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题10.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数z w z=,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 答案:ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=2w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 判断得解. 【详解】对选项,A 由题得1,z =-221=422w -+∴===-+.所以复数w 对应的点为1(2-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 的虚部为2,所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.11.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点答案:BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.12.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z 间的距离的最小值为2答案:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确解析:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.【详解】复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距2=,故D 正确. 故选:ACD【点睛】本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题.13.下列四个命题中,真命题为( )A .若复数z 满足z R ∈,则z R ∈B .若复数z 满足1R z ∈,则z R ∈C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z = 答案:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.14.下面是关于复数21i z =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1- 答案:ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.15.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 答案:BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC. 16.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =答案:AC【分析】根据复数的运算及复数的概念即可求解.【详解】因为复数,所以z 的虚部为1,,故AC 错误,BD 正确.故选:AC解析:AC【分析】根据复数的运算及复数的概念即可求解.【详解】 因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =故AC 错误,BD 正确.故选:AC17.若复数351i z i-=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限 答案:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正 解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】 解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.18.已知复数122z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .202012z =-+ 答案:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为111312244z z ⎛⎫⎛⎫=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为221122z ⎛⎫-=-- ⎪ ⎪⎝⎭=,122z =+,所以2z z ≠,所以B 错误;因为3211122z z z ⎛⎫⎛⎫=⋅=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()202063364431112222z z z z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.19.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .|z |=B .z 的实部是2C .z 的虚部是1D .复数z 在复平面内对应的点在第一象限 答案:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.【详解】,,,故选项正确,的实部是,故选项正确,的虚部是,故选项错误,复解析:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.【详解】(1i)3i z +=+,()()()()3134221112i i i i z i i i i +-+-∴====-++-,z ∴==,故选项A 正确,z 的实部是2,故选项B 正确,z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.故选:ABD .【点睛】本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.20.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( )A .2ωω=B .31ω=-C .210ωω++=D .ωω> 答案:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以122ω=--,∴2131442ωω=--=--=,故A 正确,32111312244ωωω⎛⎫⎛⎫⎛⎫==---=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,21111022ωω++=--++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.21.已知i 为虚数单位,则下列选项中正确的是( )A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z答案:AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题.22.已知i 为虚数单位,下列说法正确的是( )A .若,x y R ∈,且1x yi i +=+,则1x y ==B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z ==D .i -的平方等于1答案:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确;i--,故不正确;对于选项D,∵复数()2=1故选:AB.【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题.。
数学数学复数多选题专项训练试题及答案
一、复数多选题1.已知i 为虚数单位,复数322iz i+=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z =D .z 在复平面内对应的点在第一象限答案:AD 【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项. 【详解】 ,故,故A 正确.的虚部为,故B 错,,故C 错, 在复平面内对应的点为,故D 正确. 故选:AD. 【点睛】 本题考解析:AD 【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项. 【详解】()()32232474725555i i i i iz i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,355z ==≠,故C 错,z 在复平面内对应的点为47,55⎛⎫⎪⎝⎭,故D 正确.故选:AD. 【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数. 2.(多选)()()321i i +-+表示( ) A .点()3,2与点()1,1之间的距离 B .点()3,2与点()1,1--之间的距离 C .点()2,1到原点的距离D .坐标为()2,1--的向量的模答案:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D 【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD 【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D 【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD 【点睛】本题考查复数的几何意义,考查复数的模 3.给出下列命题,其中是真命题的是( ) A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数答案:AD 【分析】A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D. 根据,得到,再用共轭复数的定义判断. 【详解】 A .根据共轭解析:AD 【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题; D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题.故选:AD 【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题. 4.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )A .||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根答案:ABCD 【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确. 【详解】 因为(1﹣i )z =解析:ABCD 【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确. 【详解】因为(1﹣i )z =2i ,所以21i z i =-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z =A 正确;所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确; 因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确. 故选:ABCD. 【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.5.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( ) A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122- C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为2答案:ACD 【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误 【详解】∴选项A :为纯虚数,有可得,故正确 选项B解析:ACD 【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误 【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确 故选:ACD 【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围 6.已知复数122,2z i z i =-=则( ) A .2z 是纯虚数B .12z z -对应的点位于第二象限C .123z z +=D .12z z =答案:AD 【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确. 【详解】利用复数的相关概念可判断A 正确; 对于B 选项,对应的解析:AD 【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确. 【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确.故选:AD 【点睛】本题考查复数的相关概念及复数的计算,较简单. 7.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =,则12=z zB .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >答案:BCD 【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案. 【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD 【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案. 【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确;当两个复数的模相等时,复数不一定相等,比如11i i -=+,但是11i i -≠+,所以B 项是错误的; 因为当两个复数相等时,模一定相等,所以A 项正确; 故选:BCD. 【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.8.对任意1z ,2z ,z C ∈,下列结论成立的是( ) A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z =C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅D .12z z =的充要条件是12=z z答案:AC 【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是. 【详解】解:由复数乘法的运算律知,A 正确; 取,;,满足,但且不解析:AC 【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确; 由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误.故选:AC 【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.9.已知复数1z =-(i 为虚数单位),z 为z 的共轭复数,若复数zw z=,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 答案:ABC 【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解. 【详解】 对选项由题得 .所以复数对应的点为,在第二象限,所以选项正确解析:ABC 【分析】对选项,A 求出1=22w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 判断得解. 【详解】对选项,A 由题得1,z =-12w ∴===-+.所以复数w 对应的点为1(2-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 所以选项D 错误. 故选:ABC 【点睛】本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平. 10.下列说法正确的是( ) A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件答案:AD 【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确. 【详解】若,则,故A 正确; 设, 由,可得则,而不一定为0,故B 错误; 当时解析:AD 【分析】由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确. 【详解】若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠±所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确;故选:AD 【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题. 11.已知复数1cos2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 答案:BC 【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项. 【详解】因为,所以,所以,所以,所以A 选解析:BC 【分析】 由22ππθ-<<可得2πθπ-<<,得01cos 22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项. 【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos 21θ-<≤,所以01cos 22θ<+≤,所以A 选项错误; 当sin 20θ=,,22ππθ⎛⎫∈-⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos2sin 21cos2sin 21cos2sin 21cos2sin 21cos2sin 212cos2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC 【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.12.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点答案:BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误. 【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD. 【点睛】 本题考解析:BC 【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误. 【详解】()234z i i +=+,34232iz i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限. 故选:BD. 【点睛】本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.13.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =答案:CD 【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误. 【详解】对于A 选项,取,则,A 选项错误; 对于B 选项,复数的虚部为,B 选项错误;解析:CD 【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误. 【详解】 对于A 选项,取zi ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD.【点睛】 本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题.14.下面是关于复数21i z =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1- 答案:ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.15.已知复数z 满足220z z +=,则z 可能为( )A .0B .2-C .2iD .2i - 答案:ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.16.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥答案:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z =C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】 本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题.17.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =答案:AC【分析】根据复数的运算及复数的概念即可求解.【详解】因为复数,所以z 的虚部为1,,故AC 错误,BD 正确.故选:AC解析:AC【分析】 根据复数的运算及复数的概念即可求解. 【详解】因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =故AC 错误,BD 正确. 故选:AC18.若复数351i z i-=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限 答案:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正 解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】 解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==,z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.19.(多选题)已知集合{},n M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( )A .()()11i i -+B .11i i -+C .11i i +-D .()21i - 答案:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解.20.复数z 满足233232i z i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =答案:AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.21.已知i 为虚数单位,则下列选项中正确的是( )A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z答案:AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当zi 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题.22.下列命题中,正确的是( )A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数答案:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】,=+∈对应的向量的坐标为(),a b,它z a bi a b R本题考查复数的几何意义,注意复数()与终点与起点的坐标的差有关,本题属于基础题.。
(精选试题附答案)高中数学第七章复数典型例题
(名师选题)(精选试题附答案)高中数学第七章复数典型例题单选题1、已知i 为虚数单位,则i +i 2+i 3+⋅⋅⋅+i 2021=( )A .iB .−iC .1D .-1答案:A分析:根据虚数的运算性质,得到i 4n +i 4n+1+i 4n+2+i 4n+3=0,得到i +i 2+i 3+⋅⋅⋅+i 2021=i 2021,即可求解. 根据虚数的性质知i 4n +i 4n+1+i 4n+2+i 4n+3=1+i −1−i =0,所以i +i 2+i 3+⋅⋅⋅+i 2021=505×0+i 2021=i .故选:A.2、已知a,b ∈R ,a1+i +b1−i =1,则a +2b =( )A .3B .√3C .√2D .1答案:A分析:等式两边同乘(1+i )(1−i ),整理化简后利用复数相等的条件可求得a +2b 的值因为a 1+i +b1−i =1 ,所以a(1−i )+b(1+i )=(1+i )(1−i )=1−i 2=2即(a +b)+(b −a)i=2所以{a +b =2b −a =0解得{a =1b =1 ,所以a +2b =3 故选:A3、在复平面内,复数z =(a 2−2a )+(a 2−a −2)i (a ∈R )是纯虚数,则( )A .a =0或a =2B .a =0C .a ≠1且a ≠2D .a ≠1或a ≠2答案:B分析:利用复数是纯虚数的条件,即:实部为零且虚部不为零求解参数的值.复数z =(a 2−2a )+(a 2−a −2)i (a ∈R )是纯虚数,所以{a 2−2a =0a 2−a −2≠0,解得:a =0, 故选:B.4、已知i 是虚数单位,则复数z =2−i 20202+i 2021对应的点所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限答案:D分析:先化简i 2020,i 2021,再利用复数的除法化简得解.z =2−i 20202+i 2021=12+i =2−i (2+i)(2−i)=2−i 5. 所以复数对应的点(25,−15)在第四象限,故选:D小提示:名师点评复数z =x +yi(x,y ∈R)对应的点为(x,y),点(x,y)在第几象限,复数对应的点就在第几象限.5、已知z =(m +3)+(m −1)i (m ∈R )在复平面内对应的点在第四象限,则复数z 的模的取值范围是( )A .[2√2,4)B .[2,4]C .(2√2,4)D .(2,4)答案:A分析:根据z =(m +3)+(m −1)i (m ∈R )在复平面内对应的点在第四象限,求出m 的范围,再根据复数的模结合二次函数的性质即可得出答案.解:因为z =(m +3)+(m −1)i (m ∈R )在复平面内对应的点在第四象限,所以{m +3>0m −1<0,解得−3<m <1, |z |=√(m +3)2+(m −1)2=√2m 2+4m +10=√2(m +1)2+8,因为−3<m <1,所以(m +1)2∈[0,2),则2(m +1)2+8∈[2√2,4),所以复数z 的模的取值范围是[2√2,4).故选:A.6、z 1、z 2是复数,则下列结论中正确的是( )A .若z 12+z 22>0,则z 12>−z 22B .|z 1−z 2|=√(z 1+z 2)2−4z 1⋅z 2C .z 12+z 22=0⇔z 1=z 2=0D .|z 12|=|z 1|2答案:D解析:举反例z 1=2+i ,z 2=2−i 可判断选项A 、B ,举反例z 1=1,z 2=i 可判断选项C ,设z 1=a +bi ,(a,b ∈R ),分别计算|z 12|、|z 1|2即可判断选项D ,进而可得正确选项.对于选项A :取z 1=2+i ,z 2=2−i ,z 12=(2+i )2=3+2i ,z 22=(2−i )2=3−2i , 满足z 12+z 22=6>0,但z 12与z 22是两个复数,不能比较大小,故选项A 不正确;对于选项B :取z 1=2+i ,z 2=2−i ,|z 1−z 2|=|2i |=2,而√(z 1+z 2)2−4z 1⋅z 2=√42−4(2+i )(2−i )=√16−20无意义,故选项B 不正确;对于选项C :取z 1=1,z 2=i ,则z 12+z 22=0,但是z 1≠0,z 2≠0,故选项C 不正确;对于选项D :设z 1=a +bi ,(a,b ∈R ),则z 12=(a +bi )2=a 2−b 2+2abi |z 12|=√(a 2−b 2)2+4a 2b 2=√(a 2+b 2)2=a 2+b 2,z 1=a −bi ,|z 1|=√a 2+b 2,所以|z 1|2=a 2+b 2,所以|z 12|=|z 1|2,故选项D 正确.故选:D.7、若复数z 满足z ⋅(2+i)=z ⋅(1−i)+1,则复数z 的实部为( )A .−32B .−1C .−12D .1答案:D分析:利用复数的四则运算以及共轭复数的概念,根据对应相等即可求解.设z =a +bi (a 、b ∈R ),则(a +bi)⋅(2+i)=(a −bi)⋅(1−i)+1,化简得(2a −b)+(a +2b)i =(a −b +1)−(a +b)i ,根据对应相等得:{2a −b =a −b +1a +2b =−(a +b ) ,解得a =1,b =−23,故选:D.8、已知z =a −2+(1+2a)i 的实部与虚部相等,则实数a =( )A .2B .−2C .3D .−3答案:D分析:由题可得a −2=1+2a ,即得.由题可知a −2=1+2a ,解得a =−3.故选:D .9、设复数z 满足z ⋅i =−1+i ,则|z |=( )A .1B .√2C .√5D .√10答案:B分析:利用复数的四则运算以及复数模的运算即可求解.解析因为z =−1+i i =(−1+i )⋅i i ⋅i =−i −1−1=1+i ,所以z =1−i ,|z |=√2.故选:B10、在复平面内,点A(cosθ,sinθ),B(sin(−θ),cos(−θ))分别对应复数z 1,z 2,则z 2z 1=()A .−1B .1C .−iD .i答案:D分析:根据复数几何意义,求得z 1,z 2,再结合复数的除法的运算法则,即可求解.由点A(cosθ,sinθ)和B(sin(−θ),cos(−θ))分别对应复数z1,z2,可得z1=cosθ+i sinθ,z2=sin(−θ)+i cos(−θ)=−sinθ+i cosθ,所以z2z1=−sinθ+i cosθcosθ+i sinθ=(−sinθ+i cosθ)(cosθ−i sinθ)(cosθ+i sinθ)(cosθ−i sinθ)=(sin2θ+cos2θ)icos2θ+sin2θ=i.故选:D.填空题11、设复数z1,z2在复平面内的对应点关于虚轴对称,且z1=1−i(i为虚数单位),则|z12+z2|=______.答案:√10分析:首先根据复数的几何意义得到z2=−1−i,再求|z12+z2|即可.因为复数z1,z2在复平面内的对应点关于虚轴对称,且z1=1−i,所以z2=−1−i.所以|z12+z2|=|(1−i)2+(−1−i)|=|−1−3i|=√10.所以答案是:√1012、若|z1|=|z2|=400,且|z1+z2|=400√3,则|z1−z2|=___________.答案:400分析:根据|z|2=zz̅转化|z1+z2|=400√3,可求得z1z2̅+z2z1̅=4002,同理转化|z1−z2|即可求值.|z1+z2|2=(z1+z2)(z1̅+z2̅)=|z1|2+|z2|2+z1z2̅+z2z1̅=3×4002,又|z1|=|z2|=400,∴z1z2̅+z2z1̅=4002,而|z1−z2|2=(z1−z2)(z1̅−z2̅)=|z1|2+|z2|2−z1z2̅−z2z1̅,∴|z1−z2|2=4002,则|z1−z2|=400.所以答案是:40013、若复数z=a(1+i)+i2013为实数,则实数a=________.答案:−1分析:根据复数代数形式的乘方及加法运算化简,再根据复数的类型求出参数的值.解:因为z=a+a i+i4×503+1=a+(a+1)i为实数,所以a+1=0,即a=−1.所以答案是:−114、设z1=x+2i,z2=3-yi(x,y∈R),且z1+z2=5-6i,则z1-z2=__________答案:-1+10i分析:先利用复数加法运算计算z1+z2,根据题意利用复数相等的定义列方程即得参数x,y,再写出z1,z2,计算z1-z2即可.∵z1+z2=5-6i,∴(x+2i)+(3-yi)=5-6i,即(x+3)+(2−y)i=5−6i,∴{x+3=52−y=−6即{x=2y=8,∴z1=2+2i,z2=3-8i,∴z1-z2=(2+2i)-(3-8i)=-1+10i. 所以答案是:-1+10i.15、计算z=12(−1+√3i)9√3+i)100(1+2√3i)100=_______.答案:-511解析:利用复数的运算公式,化简求值.原式=1212×(−12+√32i)√3)100[−i×(i−2√3)]100=36(−12+√32i)+1(−i)100=−29+1=−511.所以答案是:−511小提示:思路点睛:本题考查复数的n次幂的运算,注意(−12+√32i)3=1,(1+i)2=2i,以及(1+i)12=[(1+i)2]6,等公式化简求值.解答题16、已知复数z=(m−1)+(2m+1)i(m∈R)(1)若z为纯虚数,求实数m的值;(2)若z在复平面内的对应点位于第二象限,求实数m的取值范围及|z|的最小值答案:(1)1;(2)m ∈(−12,1),|z|min =3√55. 解析:(1)利用纯虚数的定义,实部为零,虚部不等于零即可得出.(2)利用复数模的计算公式、几何意义即可得出.解:(1)∵z =(m −1)+(2m +1)i(m ∈R)为纯虚数,∴m −1=0且2m +1≠0∴m =1(2)z 在复平面内的对应点为(m −1,2m +1))由题意:{m −1<02m +1>0,∴ −12<m <1. 即实数m 的取值范围是(−12,1).而|z|=√(m −1)2+(2m +1)2=√5m 2+2m +2=√5(m +15)2+95,当m =−15∈(−12,1)时,|z|min =√95=3√55.17、已知z =1+i ,i 为虚数单位.(1)若ω=z 2+3z̅−4,求|ω|;(2)若z 2+az+bz 2−z+1=1−i ,求实数a ,b 的值.答案:(1)|ω|=√2;(2){a =−1b =2 解析:(1)求出z =1+i 的共轭复数,代入ω=z 2+3z̅−4化简,再求|ω|;(2)根据z 2+az+bz 2−z+1=1−i ,得到(a +b)+(a +2)i =1+i ,列方程组即可求解.(1)已知z =1+i ,∴z̅=1−i ,∴ω=(1+i)2+3(1−i)−4=−1−i ,∴|ω|=√2.(2)∵z 2+az+bz 2−z+1=(a+b)+(a+2)i i =1−i ,∴(a +b)+(a +2)i =1+i ,∴{a +b =1a +2=1,解得{a =−1b =2. 小提示:此题考查复数的基本运算,涉及共轭复数,复数的模长,根据两个复数相等列方程组求解.18、已知复数z =(1+ai )(1+i )+2+4i (a ∈R ).(1)若z 在复平面中所对应的点在直线x −y =0上,求a 的值;(2)求|z −1|的取值范围.答案:(1)a =−1;(2)[7√22,+∞).解析:(1)化简z ,得z 在复平面中所对应的点的坐标,代入直线x −y =0计算;(2)代入模长公式表示出|z −1|,再利用二次函数的性质求解最值即可.(1)化简得z =(1+ai )(1+i )+2+4i =(3−a )+(a +5)i ,所以z 在复平面中所对应的点的坐标为(3−a,a +5),在直线x −y =0上,所以3−a −(a +5)=0,得a =−1.(2)|z −1|=|(2−a)+(a +5)i |=√(2−a)2+(a +5)2=√2a 2+6a +29,因为a ∈R ,且2a 2+6a +29≥492,所以|z −1|=√2a 2+6a +29≥7√22,所以|z −1|的取值范围为[7√22,+∞). 19、复数z =(1+i )m 2+(5−2i )m +(6−15i ).(1)实数m 取什么数时,z 是实数;(2)实数m 取什么数时,z 是纯虚数;(3)实数m 取什么数时,z 对应的点在直线x +y +7=0上.答案:(1)m =5或−3;(2)m =−2;(3)m =12或−2分析:复数z =(1+i)m 2+(5−2i)m +(6−15i)=(m 2+5m +6)+(m 2−2m −15)i .(1)由m 2−2m −15=0,解得m 即可得出.(2)由{m 2+5m +6=0m 2−2m −15≠0 ,解得m 即可得出. (3)由(m 2+5m +6)+(m 2−2m −15)+7=0.解出即可得出.解:复数z=(1+i)m2+(5−2i)m+(6−15i)=(m2+5m+6)+(m2−2m−15)i.(1)由m2−2m−15=0,解得m=5或−3.∴m=5或−3时,复数z为实数.(2)由{m2+5m+6=0m2−2m−15≠0,解得m=−2.∴m=−2时,复数z为纯虚数.(3)由(m2+5m+6)+(m2−2m−15)+7=0.化为:2m2+3m−2=0,解得m=12或−2.∴m=12或−2,z对应点在直线x+y+7=0上.小提示:本题考查了复数的运算法则及其有关概念,考查了推理能力与计算能力,属于中档题.。
复数试题及答案
故选:A
6.A
【分析】
由得出,再由复数的四则运算求解即可.
【详解】
由题意得,则.
故选:A
解析:A
【分析】
由 得出 ,再由复数的四则运算求解即可.
【详解】
由题意得 ,则 .
故选:A
7.A
【分析】
对复数进行分母实数化,根据复数的几何意义可得结果.
【详解】
由,
知在复平面内对应的点位于第一象限,
A. B. C. D.
6.在复平面内,复数 对应的点是 ,则 ()
A. B. C. D.
7.复数 ( 为虚数单位)在复平面内对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
8.复数 , 由向量 绕原点 逆时针方向旋转 而得到.则 的值为()
A. B. C. D.
9.已知 ,则复平面内与 对应的点在()
4.C
【分析】
利用复数的乘法和除法运算求得复数z的标准形式,得到对应点的坐标,然后验证即可.
【详解】
解:因为,所以复数对应的点是,所以在直线上.
故选:C.
【点睛】
本题考查复数的乘方和除法运
解析:C
【分析】
利用复数的乘法和除法运算求得复数z的标准形式,得到对应点的坐标,然后验证即可.
【详解】
解:因为 ,所以复数 对应的点是 ,所以在直线 上.
故选:C.
【点睛】
本题考查复数的乘方和除法运算,复数的坐标表示,属基础题.注意: .
5.A
【分析】
根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解.
【详解】
因为,
所以,
复数的共扼复数是,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.设 ,则 ()
A. B. C.2D.5
7.若复数 ,则 ()
A. B. C. D.
8.在复平面内,已知平行四边形 顶点 , , 分别表示 , ,则点 对应的复数的共轭复数为()
A. B. C. D.
9.设 ,则 的虚部为()
A. B.
C. D.
10.若复数 满足 ,则 ()
A. B. C. D.
11.已知 ( , 为虚数单位),则实数 的值为()
A. B. C. D.
12.已知复数 满足 ,则 的虚部是()
A.-1B.1C. D.
13.已知 为虚数单位,则 ()
A. B. C. D.
14.已知 是虚数单位, ,则复数 的共轭复数的模是()
A.5B. C. D.315.题目文件丢失!
【点睛】
此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解.
19.BC
【分析】
利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.
【详解】
,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限.
故选:BD.
【点睛】
本题考
解析:BC
【分析】
利用复数的除法求出复数 ,利用复数的概念与几何意义可判断各选项的正误.
一、复数选择题
1.已知复数 ,其中 为虚数单位,则 =()
A. B. C. D.
2.复数 (其中i为虚数单位)的虚部为()
A. B. C.9D.
3. 是虚数单位,复数 ()
A. B. C. D.
4.已知 是虚数单位,则复数 在复平面内对应的点在()
A.第一象限B.第二象限C.第三象限D.第四象限
5.若复数 ,则 在复平面内的对应点位于()
C.复平面内表示复数z的点位于第二象限
D.复数z是方程x2+2x+2=0的一个根
26.以下为真命题的是()
A.纯虚数 的共轭复数等于 B.若 ,则
C.若 ,则 与 互为共轭复数D.若 ,则 与 互为共轭复数
27.若复数 ,其中 为虚数单位,则下列结论正确的是( )
A. 的虚部为 B.
C. 为纯虚数D. 的共轭复数为
【详解】
设 ,则 ,
, ,解得: ,
.
故选:A.
11.D
【分析】
利用复数的乘法运算及复数相等求得a,b值即可求解
【详解】
,故 则
故选:D
解析:D
【分析】
利用复数的乘法运算及复数相等求得a,b值即可求解
【详解】
,故 则
故选:D
12.B
【分析】
利用复数代数形式的乘除运算化简,再由共轭复数的概念求得,则答案可求.
【详解】
当时,,则该方程相应于点(2,29)的残差为,则A正确;
在两个变量
解析:ABD
【分析】
根据残差的计算方法判断A,根据相关指数的性质判断B,根据复数的模长公式判断C,根据否定的定义判断D.
【详解】
当 时, ,则该方程相应于点(2,29)的残差为 ,则A正确;
在两个变量 与 的回归模型中, 的值越大,模型的拟合效果越好,则B正确;
对于:若复数是纯虚数则且,故错误;
对于:若,互为共轭复数
解析:AC
【分析】
根据复数的有关概念和充分条件和必要条件的定义进行判断即可.
【详解】
解:对于 :复数 是实数的充要条件是 ,显然成立,故 正确;
对于 :若复数 是纯虚数则 且 ,故 错误;
对于 :若 , 互为共轭复数,设 ,则 ,所以 是实数,故 正确;
二、多选题
16.下面是关于复数 的四个命题,其中真命题是()
A. B. C. 的共轭复数为 D. 的虚部为
17.已知复数 ,则()
A. B. 的虚部是
C.若 ,则 , D.
18.(多选题)已知集合 ,其中i为虚数单位,则下列元素属于集合M的是()
A. B. C. D.
19.若复数 满足 ( 为虚数单位),则下列结论正确的有()
【详解】
, ,所以,复数 的虚部为 , ,共轭复数为 ,复数 在复平面对应的点在第四象限.
故选:BD.
【点睛】
本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.
20.AC
【分析】
根据复数的有关概念和充分条件和必要条件的定义进行判断即可.
【详解】
解:对于:复数是实数的充要条件是,显然成立,故正确;
故选:BCD.
【点睛】
该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.
23.ACD
【分析】
首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误
【详解】
,
,故A正确;,故B正确;的共轭复数为,故C正确;的虚部为,故D正确;
故选:ABCD.
【点睛】
本题考查复数的除法
解析:ABCD
【分析】
先根据复数的除法运算计算出 ,再依次判断各选项.
【详解】
,
,故A正确; ,故B正确; 的共轭复数为 ,故C正确; 的虚部为 ,故D正确;
故选:ABCD.
【点睛】
【详解】
,
所以,在复平面内的对应点为,则对应点位于第二象限
故选:B
解析:B
【分析】
利用复数的运算法则和复数的几何意义求解即可
【详解】
,
所以, 在复平面内的对应点为 ,则对应点位于第二象限
故选:B
6.B
【分析】
利用复数的除法运算先求出,再求出模即可.
【详解】
,
.
故选:B.
解析:B
【分析】
利用复数的除法运算先求出 ,再求出模即可.
, ,则C错误;
由否定的定义可知,D正确;
故选:ABD
【点睛】
本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题.
22.BCD
【分析】
根据两个复数之间不能比较大小,得到C、D两项是错误的,根据复数的定义和复数模的概念,可以断定A项正确,B项错误,从而得到答案.
【详解】
因为两个复数之间只有等与不等,不能比较大小
A.若x, ,则 的充要条件是
B. 是纯虚数
C.若 ,则
D.当 时,复数 是纯虚数
【参考答案】***试卷处理标记,请不要删除
一、复数选择题
1.B
【分析】
先利用复数的除法运算将化简,再利用模长公式即可求解.
【详解】
由于,
则.
故选:B
解析:B
【分析】
先利用复数的除法运算将 化简,再利用模长公式即可求解.
【详解】
.
故选:B.
4.A
【分析】
利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限.
【详解】
,所以复数对应的坐标为在第一象限,
故选:A
解析:A
【分析】
利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限.
【详解】
,所以复数对应的坐标为 在第一象限,
故选:A
5.B
【分析】
利用复数的运算法则和复数的几何意义求解即可
解析:BCD
【分析】
根据两个复数之间不能比较大小,得到C、D两项是错误的,根据复数的定义和复数模的概念,可以断定A项正确,B项错误,从而得到答案.
【详解】
因为两个复数之间只有等与不等,不能比较大小,所以C、D两项都不正确;
当两个复数的模相等时,复数不一定相等,
比如 ,但是 ,所以B项是错误的;
因为当两个复数相等时,模一定相等,所以A项正确;
【详解】
由于 ,
则 .
故选:B
2.C
【分析】
应用复数相乘的运算法则计算即可.
【详解】
解:
所以的虚部为9.
故选:C.
解析:C
【分析】
应用复数相乘的运算法则计算即可.
【详解】
解:
所以 的虚部为9.
故选:C.
3.B
【分析】
由复数除法运算直接计算即可.
【详解】
.
故选:B.
解析:B
【分析】
由复数除法运算直接计算即可.
【详解】
,
故选:C
14.C
【分析】
首先求出复数的共轭复数,再求模长即可.
【详解】
据题意,得,
所以的共轭ห้องสมุดไป่ตู้数是,所以.
故选:C.
解析:C
【分析】
首先求出复数 的共轭复数,再求模长即可.
【详解】
据题意,得 ,
所以 的共轭复数是 ,所以 .
故选:C.
15.无
二、多选题
16.ABCD
【分析】
先根据复数的除法运算计算出,再依次判断各选项.
A. 的虚部为 B.
C. 的共轭复数为 D. 是第三象限的点
20.下列关于复数的说法,其中正确的是()
A.复数 是实数的充要条件是
B.复数 是纯虚数的充要条件是
C.若 , 互为共轭复数,则 是实数
D.若 , 互为共轭复数,则在复平面内它们所对应的点关于 轴对称
21.下列结论正确的是()
A.已知相关变量 满足回归方程 ,则该方程相应于点(2,29)的残差为1.1
【详解】
,
.
故选:B.
7.A
【分析】
首先化简复数,再计算求模.
【详解】
,
.
故选:A
解析:A