高一数学函数概念课件ppt.ppt

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
引例分析
例1:巡航导弹发射后,经 过26s落到地面击中目标. 炮弹的射高为845km,且炮 弹距地面的高度h(单位:km)随时间(单位:t)变化的 规律是
叫做自变量.
思考: y=1(x∈R)是函数吗?
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
引例分析
例1:巡航导弹发射后,经 过26s落到地面击中目标. 炮弹的射高为845km,且炮 弹距地面的高度h(单位:km)随时间(单位:t)变化的 规律是
(3)
1 1234
2345 1234
(4)
(5)
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
设集合M={x| 0≤ x ≤ 2},N={y| 0≤ y ≤ 2 },下面的4个图 形中,能表示集合M到集合N的函数关系的是()
h=130t-5t2
t的取值范围:
数集A={t|0≤t≤26}
h的取值范围:
数集B={h|0≤h≤845}
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
y kx b
yax2 bxc
y 2 1
o 1 2x
y 2 1
o 1 2x
y 2 1
o 1 2x
y 2 1
o 1 2x
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
函数
表示方法
A f: B
A f: B
记作: f:A→B 或 y= f (x) x∈A.
其中,x叫做自变量, 自变量的取值集合叫做定义域,
自变量所对应的y值 叫做函数值, 函数值的取值集合叫做值域.
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
A f: B
1 1234 2345 1234 1 2 34 123
(1)
(2)
(3)
y 2
1
o 1 2x
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
集合表示 {x a<x<b} {x a≤x≤b} {x a≤x<b} {x a<x≤b}
y k
x
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
复习回顾
初中所学的函数的概念
在一个变化过程中有两个变量x和y, 如果对于x的每一个值,y都有唯一的值 与它对应. 那么就说y是x的函数,其中x
{x x<a}
{x x≤a} {x x>b}
{x x≥b} {x x∈R}
区间表示 数轴表示
(a , b)
。。
[a , b] [a , b)
(a , b] (-∞, a)来自.. .。 。.。
(-∞, a]
.
(b , +∞)

[b , +∞)
.
(-∞,+∞) 数轴上所有的点
h=130t-5t2
t的取值范围:
数集A={t|0≤t≤26}
h的取值范围:
数集B={h|0≤h≤845}
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
函数
定义
设A、B是非空的数集,如果按照某种确 定的对应关系f ,使对于集合A中的任意一 个数x, 在集合B中都有唯一确定的数y 与之 对应, 那么就称f:A →B为从集合A到集合 B的一个函数。
设A、B是非空的数集,如果按照某种确定的对应关系f ,使对 于集合A中的任意一个数x, 在集合B中都有唯一确定的数y 与之 对应, 那么就称f:A →B为从集合A到集合B的一个函数。
A f: B
A f: B
A f: B
1234 1234
1 2 34 123
149 0124
A f: B
(1)
(2)
A f: B
相关文档
最新文档