洪山区2013~2014学年度第二学期期末调考七年级数学试题(word版)

合集下载

2013—2014学年度七年级第二学期期末调研考试数学试题(含答案)

2013—2014学年度七年级第二学期期末调研考试数学试题(含答案)

2013—2014学年度七年级第二学期期末调研考试数 学 试 卷(人教版)注意:本试卷共8页,满分为120分,考试时间为120分钟.一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点到直线的距离是指……………………………………………………………( ) A .从直线外一点到这条直线的垂线 B .从直线外一点到这条直线的垂线段 C .从直线外一点到这条直线的垂线的长 D .从直线外一点到这条直线的垂线段的长2.如图,将直线l 1沿着AB 的方向平移得到直线l 2,若∠1=50°, 则∠2的度数是…………………………………………( ) A .40° B .50° C .90° D .130°3.下列语句中正确的是…………………………………………………………( ) A .-9的平方根是-3 B .9的平方根是3 C .9的算术平方根是±3 D .9的算术平方根是34.下列关于数的说法正确的是……………………………………………………( ) A .有理数都是有限小数 B .无限小数都是无理数 C .无理数都是无限小数 D .有限小数是无理数5.点(-5,1)所在的象限是……………………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.将点A (2,1)向左平移2个单位长度得到点A ′,则点A ′的坐标是………( ) A .(0,1) B .(2,-1) C .(4,1) D .(2,3)7.下列调查中,适宜采用全面调查方式的是……………………………………( ) A .对我国首架大陆民用飞机各零部件质量的检查A Bl 1l 212 (2题图)B .调查我市冷饮市场雪糕质量情况C .调查我国网民对某事件的看法D .对我市中学生心理健康现状的调查8.二元一次方程3x +2y =11………………………………………………………( ) A .任何一对有理数都是它的解 B .只有一个解 C .只有两个解 D .有无数个解9.方程组⎩⎨⎧=+=+32y x y x ■,的解为⎩⎨⎧==■y x 2,则被遮盖的两个数分别为…………( )A .1,2B .5,1C .2,3D .2,410.如图是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对食品支出费用判断正确的是…………………………………………………………( )A .甲户比乙户多B .乙户比甲户多C .甲、乙两户一样多D .无法确定哪一户多11.如图,点O 在直线AB 上,OC 为射线,∠1比∠2的3倍少10°,设∠1,∠2的度数分别为x ,y ,那么下列求出这两个角的度数的方程是………………………( )A .⎩⎨⎧-==+10180y x y xB .⎩⎨⎧-==+103180y x y xC .⎩⎨⎧+==+10180y x y x D .⎩⎨⎧-==1031803y x y12.5名学生身高两两不同,把他们按从高到低排列,设前三名的平均身高为a 米,后两名的平均身高为b 米.又前两名的平均身高为c 米,后三名的平均身高为d 米,则………………………………………………………………………………( ) A .2b c +>2b a + B .2b a +>2b c + C .2b c +=2ba +D .以上都不对ABC1 2O (11题图)二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.在同一平面内,已知直线a 、b 、c ,且a ∥b ,b ⊥c ,那么直线a 和c 的位置关系是___________. 14.下列说法中①两点之间,直线最短;②经过直线外一点,能作一条直线与这条直线平行; ③和已知直线垂直的直线有且只有一条;④在平面内过一点有且只有一条直线垂直于已知直线. 正确的是:_______________.(只需填写序号)15.11在两个连续整数a 和b 之间,a <11<b ,那么b a 的立方根是____________. 16.在实数3.14,-36.0,-66,0.13241324…,39 ,-π,32中,无理数的个数是______. 17.一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是_________.18.某空调生产厂家想了解一批空调的质量,把仓库中的空调编上号,然后抽取了编号为5的倍数的空调进行检验.你认为这种调查方式_____________.(填“合适”或“不合适”)19.如图,围棋盘放置在某个平面直角坐标系内,如果白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么黑棋的坐标应该是_________________.20.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买5束鲜花和5个礼盒的总价为________元.(19题图)(20题图)三、解答题(共72分.解答应写出文字说明、证明过程或演算步骤) 21.解下列方程组或不等式(组):(1,2小题各4分,3小题6分, 共14分)(1)⎩⎨⎧-=+=+;62,32y x y x(2)⎩⎨⎧=-=+;2463,247y x y x(3)解不等式组,并把它的解集表示在数轴上:3(1)7251.3x x xx --⎧⎪⎨--<⎪⎩≤, ① ②22.(本题8分)如图,CD 平分∠ACB ,DE ∥BC ,∠AED =80°,求∠EDC 的度数.23.(本题6分)小刘是快餐店的送货员,如果快餐店的位置记为(0,0),现有位置分别是A (100,0),B (150,-50),C (50, 100)三位顾客需要送快餐,小刘带着三位顾客需要的快餐从快餐店出发,依次送货上门服务,然后回到快餐店.请你设计一条合适的送货路线并计算总路程有多长.(画出坐标系后用“箭头”标出)ADB CE24.(本题10分)已知:如图,AD ⊥BC 于D ,EG ⊥BC 于G ,AE =AF .求证:AD 平分∠BAC .25.应用题(本题10分)某校为了解七年级学生体育测试情况,以七年级(1)班学生的体育测试成绩为样本,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下)(1)请把条形统计图补充完整;(2)样本中D 级的学生人数占全班学生人数的百分比是__________; (3)扇形统计图中A 级所在的扇形的圆心角度数是__________;(4)若该校七年级有500名学生,请你用此样本估计体育测试中A 级和B 级的学生人数约为多少人.(24题图)FE ACBGD3 2 1C BD A 46% 20%24%如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?(1)如图,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON 的度数.(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数.(3)如果(1)中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数.(4)从(1)(2)(3)的结果能看出什么规律?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计一道以线段为背景的计算题,写出其中的规律来?AMBONC2-1-0 1参考答案题号 1 2 3 4 5 6 7 8 9 10 1112 答案DBDCBAADBDB A12∵a >d ,∴2a +2b <2c +2d , ∴a +b <c +d ,∴<, 即>,故选B .二、填空题 13.a ⊥c ; 14.②,④; 15.4; 16.3; 17.(3,2);18.合适 点拨:因为这样使得该抽样调查具有随机性、代表性. 19.(-3,-7); 20.440. 三、解答题: 21.(1)解:由①得:y =-2x +3……③ ③代入② x +2(-2x +3)=-6 x =4………………………………………………………………………………2分把x =4代入③得 y =-5 ∴原方程组解为 ⎩⎨⎧-==54y x ………………4分(2)解:①×3+②×2得: 27x =54x =2把x =2代入①得:4y =-12y =-3………………………………………………………………………2分 ∴原方程组解为 ⎩⎨⎧-==32y x ……………………………………………4分(3)解:解不等式①,得2x -≥; 解不等式②,得12x <-.在同一条数轴上表示不等式①②的解集,如图所示:…………………………2分……………………………………4分所以,原不等式组的解集是122x -<-≤.……………………………………6分 22.解:∵ DE ∥BC ,∠AED =80°,∴ ∠ACB =∠AED =80°. ………………………………………4分 ∵ CD 平分∠ACB , ∴ ∠BCD =21∠ACB =40°,……………………………………6分 ∴ ∠EDC =∠BCD =40°.…………………………………………8分 23.解:合适的路线有四条,如图所示是其中的一条, 即向北走100 m ,再向东走50 m 到C ;接着向南走 100 m ,再向东走50 m 到A ;接着向东走50 m ,再向 南走50 m 到B ;接着向西走150 m ,再向北走50 m 回到O .尽可能少走重复路段.如图所示,所走的路线 长最短,共为600 m. …………………………………6分 24.证明:∵AD ⊥BC 于D ,EG ⊥BC 于G∴AD ∥EG ,………………………3分 ∴∠2=∠3, ∠1=∠E , ………………5分 ∵AE =AF ∴∠E = ∠3,∴∠1 = ∠2,……………………………8分 ∴AD 平分∠BAC .………………………10分 25.解:(1)条形图补充如图所示.………………3分(2)10%……………………………………5分 (3)72°……………………………………7分 (4)500×(46%+20%)=330(人).………………10分26.解:(1)设工厂从A 地购买了x 吨原料,制成运往B 地的产品y 吨.则依题意,得:⎩⎨⎧=+=+.97200)120110(2.1,15000)1020(5.1x y x y …………………………………6分DB七年级(下)数学期末试卷 第11页(共8页) 解这个方程组,得:⎩⎨⎧==.300,400y x ∴工厂从A 地购买了400吨原料,制成运往B 地的产品300吨. ……………………………………………………………9分(2)依题意,得:300×8000-400×1000-15000-97200=1887800∴批产品的销售款比原料费与运输费的和多1887800元. ……………………12分27.解:(1)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12×120°-12×30°=45°; ……………………………………………………………2分(2)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(α+30°)-12×30°=12α; ……………………………………………………………4分(3)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(90°+β)-12β=45°;……6分 (4)∠MON 的大小等于∠AOB 的一半,而与∠BOC 的大小无关;……………9分(5)如图,设线段AB =a ,延长AB 到C ,使BC =b ,点M ,N 分别为AC ,BC 的中点,求MN 的长.规律是:MN 的长度总等于AB 的长度的一半,而与BC 的长度无关.…………12分。

2013-2014七年级下学期期末数学试卷

2013-2014七年级下学期期末数学试卷

2013~2014学年度第二学期期末考试七年级数学试题时间 120分钟 满分 150分 第Ⅰ卷(本卷满分100分)一、选择题(共8小题,每小题3分,共24分)下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的代号填在答卷指定位置. 一. 选择题1. 4的平方根是( ) A. 2 B.2 C. ±2 D. ±22. 在平面直角坐标系中,点P (-3,4)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3. 不等式2x-6>0的解集在数轴上表示正确的是( )4. 下列方程中是二元一次方程的是( ) A. 3x-2y=9 B. 2x+y=6z C.x1+2=3y D. x-3=4y 2 5. 为了解武汉市2012年中考数学学科各分数段成绩分布情况,从中抽取1500名考生的中考数学成绩进行统计分析,在这个问题中,样本容量是( ) A. 1500B. 被抽取的1500名学生C. 被抽取的1500名考生的中考数学成绩D. 武汉市2012年中考数学成绩6. 若b a <,则下列不等式中成立的是( ) A. 55+>+b aB. b a 55->-C. b a 33>D.33b a >7. 如图,AB ∥CD ,AD 平分∠BAC ,若∠BAD=70°,那么∠ACD 的度数为( ) A. 45° B. 35° C. 50° D. 40°8. 两人练习跑步,起点相同,如果乙先跑16米,甲8秒可追上乙,如果乙先跑2秒钟,则甲4秒可追上乙,求甲乙二人每秒各跑多少米?若设甲每秒跑x 米,乙每秒跑y 米,则所列方程组应该是( ) A.()()=168x y 24y 4x -⎧⎪⎨+=⎪⎩ B. 8x 8y 164x 4y 4-=⎧⎨-=⎩ C. 8x 165y 4x 4y 2+=⎧⎨-=⎩ D. 8x 8y 164x 24y =+⎧⎨-=⎩二、填空题(共8小题,每小题3分,共24分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.9. 将方程2x+y=25写成用含x 的代数式表示y 的形式,则y=___________. 10. 计算:328104.0)2(---= . 11. 如果⎩⎨⎧-==13y x 是方程3x -ay =8的一个解,那么a =_________.12. 为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图,请根据统计图计算成绩不低于20次且低于30次的频数是 .13. 如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A=110°,第二次拐的角∠B 是150°,第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 是 .14. 已知x 、y 互为相反数,且(x+y+4)(x-y )=4,则y 的值为 . 15. 若x,y 均为实数且满足223x x y -+-+=成立,则y x 的值等于 . 16. 在同一平面内,已知直线a ∥b ,点M 到直线a 的距离是4cm ,到直线b 的距离是2cm ,那么直线a 和直线b 之间的距离为 . 三、解答题(共5题,共52分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤. 17. (本题10分)解下列方程组:(1) ⎩⎨⎧=+=-82302y x y x ; (2)⎪⎩⎪⎨⎧-=-=+2134825y x y x .18.(本题10分)解下列不等式或不等式组,并在数轴上表示解集:(1) 13>4156++x x ; (2) ⎪⎩⎪⎨⎧-+---1>321,4≥)2(3x x x x15 20 25 30 35 0 15 10 5 次数人数 第13题图第14题图G321FE DC B A19.(本题10分)请将下题的求解过程补充完整。

2013-2014学年七年级下期末考试数学试题及答案(3)

2013-2014学年七年级下期末考试数学试题及答案(3)

2013-2014学年下学期期末水平测试试卷七年级数学一、 单项选择题(共10个小题,每小题3分,满分30分)1.16的平方根是 ( B ) A .2 B .±4 C .±2 D .42.下面各图中,∠1与∠2是邻补角的是 ( D )A .B .C .D .3.有40个数据,其中最大值为35,最小值为12,若取组距为4对数据进行分组,则应 分为 ( C ) A .4组 B .5组 C .6组 D .7组 4.为了了解一批产品的质量,从中抽取300个产品进行检验,在这个问题中,被抽取的 300个产品叫做 ( C ) A .总体 B .个体 C .总体的一个样本 D .普查方式5.由a >b 得到am <bm ,需要的条件是 ( B ) A .m >0 B .m <0 C .m ≥0 D .m ≤06.下列命题中,不正确的是 ( C ) A .在同一平面内,过一点有而且只有一条直线与已知直线垂直 B .经过直线外一点,有而且只有一条直线与这条直线平行 C .垂直于同一直线的两条直线垂直 D .平行于同一直线的两条直线平行7.在平面直角坐标系中,已知线段AB 的两个端点分别是A (-4,-1),B (1,1),将线段 AB 平移后得到线段A ′B ′,若点A ′的坐标为(-2,2),则点B ′的坐标为 ( A ) A .(3,4) B .(-1,-2) C .(-2,-1) D .(4,3)8.为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了 “A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选 一项),根据调查结果绘制了如下的条形图.该调查的调查方式及图中a 的值分别是( D )A .全面调查;26B .全面调查;24C .抽样调查;26D .抽样调查;249.方程组⎩⎨⎧=-=+32y x a y x 的解为⎩⎨⎧==b y x 5,则a 、b 分别为 ( C )A .a =8,b =-2B .a =8,b =2C .a =12,b =2D .a =18,b =810.若不等式组⎩⎨⎧<-->-+01202b x a x 的解集为0<x <1,则a 、b 的值分别为 ( A )A .a =2,b =1B .a =2,b =3C .a =-2,b =3D .a =-2,b =1二、填空题(共6个小题,每小题4分,满分24分)11.一个数的算术平方根是2,则这个数是______2_______.12.把命题“平行于同一直线的两直线平行”写成“如果…,那么…”的形式:如果两条直线都平行于同一条直线,那么这两条直线互相平行.13.已知点A (-1,b +2)不在..任何象限,则b =____-2___. 14.不等式264331->+--x x 的解集是______x <6________. 15.如图,将三角形纸板ABC 沿直线AB 平移,使点A 移到点B ,若∠CAB =50°,∠ABC =100°,则∠CBE 的度数为_____30°_____.16.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向 依次平移,每次移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那 么点A 2014的坐标为___(1007,1)____.学校:班级:考号:姓名:1 212121 2第8题图 第15题图第16题图三、解答题(一)(共3个小题,每小题6分,满分18分)17.(6分)计算:3633643+--.解:3633643+--=6334+-+ =37+18.(6分)解方程组:⎩⎨⎧-=-=4223y x y x .解:由②得 x =2y -4 ③ 把③代入①,得 y =3把y =3代入③,得 x =2∴原方程组的解为⎩⎨⎧==32y x .19.(6分)如图,已知火车站的坐标为(2,1),文化宫的坐标为(-1,2).(1)请你根据题目条件,画出平面直角坐标系; (2)写出体育场、市场、超市的坐标.解:(1)图略;(2)体育场(-2,4), 市场(6,4),超市(4,-2)四、解答题(二)(共3个小题,每小题7分,满分21分)20.(7分)解不等式组:⎩⎨⎧-≥+>+13)1(201x x x ,并求其整数解.解:解不等式①得 x >-1,解不等式②得 x ≤3∴不等式组的解集为-1<x ≤3 ∵x 为整数∴x =0,1,2,3.21.(7分)如图,直线AB 、CD 、EF 相交于点O ,OG 平分∠COF ,∠1=30°,∠2=45°. 求∠3的度数.解:∵∠1=30°,∠2=45°∴∠EOD =180°-∠1-∠2=105°∴∠COF =∠EOD =105° 又∵OG 平分∠COF ,∴∠3=21∠COF =52.5°22.(7分)某超市开业十周年举行了店庆活动,对A 、B 两种商品实行打折出售.打折前,购买5件A 商品和1件B 商品需用84元;购买6件A 商品和3件B 商品需用108元.而店庆期间,购买3件A 商品和8件B 商品仅需72元,求店庆期间超市的折扣是多少? 解:设打折前A 商品的单价是x 元,B 商品的单价是y 元,由题意得:⎩⎨⎧=+=+10836845y x y x 解得⎩⎨⎧==416y x 所以3x +8y =3×16+8×4=80(元),72÷80=90% 答:店庆期间超市的折扣是九折.123 A BCDOEGF第21题图① ②五、解答题(三)(共3个小题,每小题9分,满分27分)23.(9分)某学校对学生的课外阅读时间进行抽样调查,将收集的数据分成A、B、C、D、E 五组进行整理,并绘制成如下的统计图表(图中信息不完整).阅读人数分组统计图阅读时间分组统计图请结合以上信息解答下列问题(1)求a、b、c的值;(2)补全“阅读人数分组统计图”;(3)估计全校课外阅读时间在20小时以下(不含20小时)的学生所占比例.解:(1)a=20,b=200,c=40;(2)200人,图略;(3)120÷500×100%=24%24.(9分)如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并证明你的结论.解:∠C与∠AED相等,理由如下:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),∴∠2=∠DFE(同角的补角相等),∴AB∥EF(内错角相等两直线平行),∴∠3=∠ADE(两直线平行内错角相等),又∠B=∠3(已知),∴∠B=∠ADE(等量代换),∴DE∥BC(同位角相等两直线平行),∴∠C=∠AED(两直线平行同位角相等).25.(9分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?解:(1)设购买一个足球需要x元,购买一个篮球需要y元,根据题意得:⎩⎨⎧=+=+4102534032yxyx解得⎩⎨⎧==8050yx则购买一个足球需要50元,购买一个篮球需要80元;(2)设购买a个篮球,则购买(96-a)个足球,根据题意得:80a+50(96-a)≤5720解得a≤392∵a是整数∴a≤30故最多可以购买30个篮球.第24题图20015010050C40%D28%E8%AB。

2013—2014学年度第二学期七年级数学期中测试卷及答案

2013—2014学年度第二学期七年级数学期中测试卷及答案

2013—2014学年度第二学期期中学业水平调研测试七年级数学试卷2.答卷前,考生必须将自己的学校、班级、姓名、试室、考号按要求填写在试卷密封线左边的空格内.答卷过程中考生不能使用计算器.一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个A .±2B .2C .2D .±22.点P (3,4)在( ) A . 第一象限B .第二象限C .第三象限D .第四象限3.如图,直线a ∥b ,∠1=52°,则∠2的度数是( ) A . 38°B . 52°C . 128°D .48°4.右图1通过平移后可以得到的图案是( )5.下列运算正确的是( ) A .=±3B . |-3|=-3C . -=-3D . -32 = 96.在0,3.14159,3 ,227,39中,无理数的个数是( )A . 1个B . 2个C . 3个D . 4个7.点A 的坐标为(﹣2,﹣3),现将点A 向下平移2个单位,则经过平移后的对应点A′的坐标是( ) A .(﹣2,﹣1)B .(﹣2,﹣5)C .(0,﹣3)D .(﹣4,﹣3)8.点到直线的距离是指( ) A .从直线外一点到这条直线的垂线 B .从直线外一点到这条直线的垂线段 C .从直线外一点到这条直线的垂线的长 D .从直线外一点到这条直线的垂线段的长9.有下列四个命题:(1)相等的角是对顶角;(2)两条直线被第三条直线所截,同位角相等;(3)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(4)垂直于同一条直线的两条直线互相垂直。

其中是假命题...的有( ) A .1个 B .2个 C . 3个 D .4个 10.如图2,直线a ∥b ,则|x ﹣y |=( ) A . 20 B . 80 C . 120D . 180二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案填写在相应位置上。

2013—2014学年第二学期七年级数学期末试题(含答案)

2013—2014学年第二学期七年级数学期末试题(含答案)

2013—2014学年度第二学期期末考试七年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.)1.下列说法中正确的是A.若两个角不是对顶角,则这两个角不相等.B.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.C.过一点有且只有一条直线与已知直线垂直.D.直线外一点到这条直线的垂线段叫做点到直线的距离.2.下列命题中,假命题是A.同旁内角互补.B.若a a=-,则a≤0.C.如果一个数的平方根是它本身,那么这个数只能是0.D.如果一个数的立方根是它本身,那么这个数是0或1或-1.3.在2014991,3.14159265-6,03π中无理数的个数是A.1 B.2 C.3 D.44.若点A(2,n)在x轴上,则点B(n+2,n-5)在A.第一象限 B.第二象限 C.第三象限 D.第四象限5.由方程组x2m7y1m-=⎧⎨+=⎩,可得出x与y的关系式是A.x-2y=5 B.x-y=6 C.x-2y=﹣5 D.x-2y=9 6.已知实数a,b,若a>b,则下列结论错误的是A.a-5>b-5B. 3+a>b+3C.a b55> D. -3a>-3b7.以下调查中适宜抽样调查的是A.了解某班学生的身高情况 B.选出某校短跑最快的学生参加全县比赛C.调查某批次汽车的抗撞击能力 D.某企业对招聘人员进行面试8. 某校学生来自甲、乙、丙三个地区,其人数比为2:7:3,如图所示的扇形图表示上述分布情况.如果来自甲地区的有180人,则下列说法错误的是A.该校学生的总数是1080人B. 扇形甲的圆心角是36°C.该校来自乙地区的有630人D. 扇形丙的圆心角是90°9.如果方程组x y2x+y16+=⎧⎨=⎩★,的解为x6y=⎧⎨=⎩,■,那么被“★”“■”遮住的两个数分别为A.10,4 B.4,10 C.3,10 D.10,3第8题图10.若把不等式组2x x --3⎧⎨-1-2⎩≥,≥的解集在数轴上表示出来,则其对应的图形为 A .长方形 B .线段 C .射线 D .直线二、填空题:11.已知一个角的邻补角为140°,那么这个角的对顶角的度数为 .12. 直线m 外有一定点A ,A 到直线m 的距离是7cm ,B 是直线m 上的任意一点,则线段AB 的长度AB___ 7cm.(填写<或>或=或≤或≥)13的算术平方根为 __ ___.14.已知31.5 3.375== .15.直角坐标系中,第二象限内一点P 到x 轴的距离为4,到y 轴的距离为6,那么点P 的坐标是 _________16.七年级一班的小明根据本学期“从数据谈节水”的课题学习,知道了统计调查活动要经历的5个重要步骤:①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.但他对这5个步骤的排序不对,请你帮他正确排序为 ______ .(填序号)17.一艘轮船上午6:00从长江上游的A 地出发,匀速驶往下游的B 地,于11:00到达B 地.计划下午13:00从B 地匀速返回,如果这段江水流速为3km/h ,且轮船在静水里的往返速度不变,那么该船以至少 km/h 的速度返回,才能不晚于19:00到达A 地.18.某超市账目记录显示,第一天卖出39支牙刷和21盒牙膏,收入396元;第二天以同样的价格卖出同样的52支牙刷和28盒牙膏,收入应该是 ____ 元.三、解答题: 19.3 20.解方程组 5x 2y 253x 4y 15.+=⎧⎨+=⎩,21.已知:如图所示的网格中,三角形ABC 的顶点A (0,5)、B (-2,2).(1)根据A 、B 坐标在网格中建立平面直角坐标系,并写出点C 坐标( , ).(2)平移三角形ABC ,使点C 移动到点F (7,-4),画出平移后的三角形DEF ,其中点D 与点A 对应,点E 与点B 对应.22.解不等式组5x 23x 1813x 17x.22+-+⎧⎪⎨--⎪⎩()>(),≤, 并把解集在数轴上表示出来.第21题图23.在一次“献爱心手拉手”捐款活动中,某数学兴趣小组对学校所在社区部分捐款户数进行调查和分组统计,将数据整理成以下统计表和统计图(信息不完整),已知A 、B 两组捐款户数的比为1:5请结合以上信息解答下列问题:(1)a= _______ .本次调查样本的容量是 _________.(2)补全捐款户数统计表和统计图.(3)若该社区有600户居民,根据以上信息估计全社区捐款不少于300元的户数是多少?24. 如图,点D ,E ,F 分别是三角形ABC 的边BC ,CA ,AB 上的点. 请你从以下四个关系 ∠FDE=∠A 、∠BFD=∠DEC 、DE ∥BA 、DF ∥CA 中选择三个适当地填写在下面的横线上,使其形成一个真命题,并有步骤的证明这个命题(证明过程中 注明推理根据).如果 , ,求证: . 证明:25. 列方程组解应用题:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排多少名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套?26. 甲乙两个商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元后,超出200的部分按85%收费;在乙商场累计购物超过100元后,超出100元的部分按90%收费,顾客到哪家商场购物花费少?B 第24题图2013—2014学年第二学期七年级数学试题参考答案及评分标准一、选择题:二、填空题:11.40°;12.≥;1314.-150;15.(-6,4);16.②①④⑤③;17.30;18.528.三、解答题:(共46分)19.3=20.6235--+-()…………………4分…………………5分20.5x2y253x4y15+=⎧⎨+=⎩①②解:①×2-②得 7x=35x=5 …………………2分把x=5代入②得y=0 …………………4分所以这个方程组的解是x5y0.=⎧⎨=⎩,…………………5分21.(1)图略,坐标系建立正确、规范. …………………2分(2,3)…………………3分(2)图略. …………………5分22. 解:解不等式①得5x2->…………………2分解不等式②得x≤4…………………3分这个不等式组的解集是5x2-<≤4…………………4分解集在数轴上表示如下:…………………6分23. (1)2;…………………1分(2)统计表中依次为20,14,4; …………………2分 统计图1中C 组长方形高20(图略) …………………3分 统计图2中分别填4;20. …………………4分(3)600×(28%+8%)=600×36%=216 …………………6分24.答案不唯一。

人教七年级下数学第二学期末七年级质量检测

人教七年级下数学第二学期末七年级质量检测

2013-2014学年第二学期末七年级质量检测数 学 试 题试卷说明:1.本试题共4页,满分120分,考试时间90分钟。

2.请将所有题目答案答在答题纸上,考试结束与本试卷一并交回。

答在本试卷上一律无效。

一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.将长度为5cm 的线段向上平移10cm 后,所得线段的长度是( ) A . 10cm B . 5cm C . 15cm D . 无法确定2.在实数:,0,,π,中,无理数有( ) A . 1个 B . 2个 C . 3个 D . 4个 3. 下列方程是二元一次方程的是( )A .B .C . 3x ﹣8y=11D . 7x+2=4.点P (2,-3)所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.已知,则a+b 等于( )A.3B.83 C.2 D.16.如图,已知AB ∥CD ,∠B=60°,则∠1的度数是( )A.60°B. 100°C. 110°D. 120°7.如图,长方形内有两个相邻的正方形,面积分别为4和9,那么图中阴影部分的面积为() A.1 B.2 C.3 D.48. 下列统计中,能用“全面调查”的是( )A .某厂生产的电灯使用寿命 B . 全国初中生的视力情况C .某校七年级学生的身高情况 D . “娃哈哈”产品的合格率 9. 若点P (x ,y )的坐标满足xy=0,则点P 位于()A .原点上 B . x 轴上 C . y 轴上 D . 坐标轴上 10.下列说法中错误..的个数是( )(1)过一点有且只有一条直线与已知直线平行。

6题图 7题图(2)过一点有且只有一条直线与已知直线垂直。

(3)在同一平面内,不重合的两条直线的位置关系只有相交、平行两种。

湖北省武汉市洪山区-学年七年级下学期期末数学试卷(含解析)

湖北省武汉市洪山区-学年七年级下学期期末数学试卷(含解析)

湖北省武汉市洪山区七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)5的平方根是()A.B.﹣C.±D.52.(3分)下列调查中,适合采用抽样调查的是()A.了解神舟飞船的设备零件的质量情况B.了解一批袋装食品是否含有防腐剂C.全国人口普查D.企业招聘,对应聘人员进行面试3.(3分)如图,下列四个选项中,不能判断AB∥DC的是()A.∠1=∠3B.∠B+∠BCD=180°C.∠2=∠4D.∠D+∠BAD=180°4.(3分)若是关于x和y的二元一次方程ax+y=3的解,则a的值等于()A.﹣1B.0C.1D.25.(3分)若a<b,下列不等式不一定成立的是()A.1﹣a>1﹣b B.﹣2a>﹣2b C.2a+1<2b+3D.m2a<m2b 6.(3分)已知点Q(2x,﹣y)在第一象限,则点P(x,y)在()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)用含药30%和75%的两种防腐药水,配制含药50%的防腐药水27千克,两种药水各需()A.18千克,9千克B.17千克,10千克C.15千克,12千克D.16千克,11千克8.(3分)若不等式的解都能使不等式3x<2x+a成立,则a的取值范围是()A.B.C.D.9.(3分)在平面直角坐标系中,A(m,﹣3),B(2,n),C(2,6﹣m),其中m+n=2,并且3≤2m+n≤8,则△ABC面积的最大值为()A.7B.8C.9D.1010.(3分)作业本中有这样一道题:“小明去郊游上午8时30分从家中出发,先走平路,然后登山,中午12时到达山顶,原地休息1h后沿原路返回,正好下午3时到家.若他平路每小时走4km,登山每小时走3km,下山每小时走6km,求小明家到山顶的路程.”小李查看解答时发现答案中的方程组中有污损:,则答案中另一个方程应为()A.3a+b=12B.C.D.二、填空题(共6小题,每小题3分,共18分)11.(3分)写出一个二元一次方程:,使它有一个解为.12.(3分)学校为了考察我校八年级同学的视力情况,从八年级的14个班共740名学生中,抽取了70名同学的视力情况进行分析,在这个问题中,样本的容量是.13.(3分)已知第二象限内的点P坐标为(4﹣a,3a﹣14),且P点到两坐标轴的距离相等,则a的值为.14.(3分)若关于x的不等式组恰好有4个整数解,则m的取值范围是.15.(3分)如图,图①是四边形纸条ABCD,其中AB∥CD,E,F分别为AB、CD上的两个点,将纸条ABCD沿EF折叠得到图②,再将图②沿DF折叠得到图③,若在图③中,∠FEM=24°,则∠EFC为.16.(3分)如图,点A,B分别在直线MN,ST上,点C在MN与ST之间,点E在线段BC上,已知∠MAC+∠ACB+∠SBC=360°.有以下列结论:①MN∥ST;②∠ACB=∠CAN+∠CBT;③若∠ACB=60°,AD∥CB,且∠DAE=3∠CBT,则∠CAE=3∠CAN;④若为整数且n≥1),∠MAE=(n+1)∠CBT,则∠CAE:∠CAN=n.其中结论正确的有(填写正确结论的序号).三、解答题(共8小题,共72分)17.(8分)(1)计算:;(2)解方程组:.18.(8分)解不等式组,请按下列步骤完成解答:(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(IV)原不等式组的解集为.19.(8分)4月18日,为迎接第28个世界读书日,我校初一年级开展了《名著知识知多少》答题比赛.现随机抽取了若干个学生的答题成绩(单位:分,满分100分)进行整理分析,并绘制了如下不完整的统计图:(数据分为4组:A组:0≤x<70,B组:70≤x<80,C组:80≤x<90,D组:90≤x≤100,x表示成绩,成绩为整数).请根据图中信息,解答下列问题:(1)本次抽取学生人数为人,m=,扇形统计图中A组所对应的扇形圆心角的度数为°;(2)补全频数分布直方图;(3)我校初一年级共有3200名学生,请据此估计我校初一年级学生答题成绩处于C组和D组的共有多少人.20.(8分)如图,点D,H分别在AB,AC上,点E,F都在BC上,DE交FH于点G,AG平分∠BAC,∠BED=∠C,∠1+∠2=90°.(1)求证:FH⊥DE;(2)若∠3=∠4,∠BAC=68°,求∠DFH的度数.21.(8分)如图,在平面直角坐标系中,已知A(﹣1,4),B(﹣4,0),且AB=5.将线段AB向右平移4个单位,再向下平移3个单位得到线段DC(A对应D,B对应C).(1)画出线段CD,连接AD,BC;(2)线段AB与CD的位置关系为,数量关系为;(3)四边形ABCD的面积为;(4)已知点E(3,﹣3),点F在线段CD上运动,则EF的最小值为.22.(10分)如图1所示的A型(1×1)正方形板材和B型(3×1)长方形板材,可用于制作成如图2所示的竖式和横式两种无盖箱子(不计损耗).已知板材每平方米20元.(1)若用7800元的资金去购买A,B两种型号板材,并全部制作竖式箱子,问可以制作竖式箱子多少个?(2)若有A型板材67张,B型板材135张,用这批板材制作两种类型的箱子共40个,问有哪几种制作方案?(3)若有A型板材162张,B型板材a张,做成上述两种箱子,板材恰好用完.已知290<a<306.直接写出a的所有可能的取值.23.(10分)已知:E,F分别是直线AB和CD上的点,AB∥CD,G,H点为平面内两个动点.(1)如图1,G,H在两条直线之间时,∠G=∠H,试说明:∠AEG=∠HFD;(2)如图2,作直线EF,G点在CD下方,H点在AB和CD之间,连接EH,HF,∠HEF和∠HFM的角平分线交于点G.探究∠H与∠G的数量关系;(3)如图3,H,G在直线EF上,射线EH绕点E以每秒12°的速度逆时针旋转,射线FG在EH旋转6秒后开始绕点F以每秒8°的速度顺时针旋转.射线FG旋转160°后两条射线同时停止.设射线FG旋转t秒时,射线EH∥FG,直接写出t的值.24.(12分)如图,平面直角坐标系中,已知点,0),B(0,1),点P(x,y)在直线AB上.(1)请找到x与y之间的数量关系y=(用含x的式子表示);(2)已知点C(3,0),M(a,b)和N(a+2,b+1),且有b=3a:①若P(1,y),且线段PC与线段MN有交点,求a的取值范围;②若a=1,将线段MC向右平移2个单位,且在平移过程中,存在△PMC的面积等于3,求P点横坐标x的取值范围.湖北省武汉市洪山区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)5的平方根是()A.B.﹣C.±D.5【分析】根据平方根定义求出即可.【解答】解:5的平方根是±,故选:C.【点评】本题考查了平方根的应用,能理解平方根定义是解此题的关键,注意:一个正数有两个平方根,它们互为相反数.2.(3分)下列调查中,适合采用抽样调查的是()A.了解神舟飞船的设备零件的质量情况B.了解一批袋装食品是否含有防腐剂C.全国人口普查D.企业招聘,对应聘人员进行面试【分析】根据全面调查与抽样调查的定义,逐一判断即可解答.【解答】解:A、了解神舟飞船的设备零件的质量情况,适合普查,故A不符合题意;B、了解一批袋装食品是否含有防腐剂,适合抽样调查,故B符合题意;C、全国人口普查,适合普查,故C不符合题意;D、企业招聘,对应聘人员进行面试,适合普查,故D不符合题意;故选:B.【点评】本题考查了抽样调查和全面调查,熟练掌握全面调查与抽样调查的定义是解题的关键.3.(3分)如图,下列四个选项中,不能判断AB∥DC的是()A.∠1=∠3B.∠B+∠BCD=180°C.∠2=∠4D.∠D+∠BAD=180°【分析】根据平行线的判定定理对各选项进行判断即可.【解答】解:A、∠1=∠3,能判定AB∥CD,故不符合题意;B、∠B+∠BCD=180°,能判定AB∥CD,故不符合题意;C、∠2=∠4,能判定AD∥CD,故符合题意;D、∠D+∠BAD=180°,能判定AB∥CD,故不符合题意.故选:C.【点评】本题考查了平行线的判定,掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.4.(3分)若是关于x和y的二元一次方程ax+y=3的解,则a的值等于()A.﹣1B.0C.1D.2【分析】将方程的解代入方程得到关于a的方程,从而可求得a的值.【解答】解:将是代入方程ax+y=3得:﹣a+2=3,解得:a=﹣1.故选:A.【点评】本题考查了二元一次方程的解,熟记方程的解:就是使方程的左右两边相等的未知数的值是解题的关键.5.(3分)若a<b,下列不等式不一定成立的是()A.1﹣a>1﹣b B.﹣2a>﹣2b C.2a+1<2b+3D.m2a<m2b【分析】根据不等式的性质逐个判断即可.【解答】解:A.∵a<b,∴﹣a>﹣b,∴1﹣a>1﹣b,故本选项不符合题意;B.∵a<b,∴﹣2a>﹣2b,故本选项不符合题意;C.∵a<b,∴2a<2b,∴2a+1<2b+3,故本选项不符合题意;D.当m=0时,m2a=m2b,故本选项符合题意.故选:D.【点评】此题主要考查了不等式的性质:(1)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;(2)不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边同时乘(或除以)同一个负数,不等号的方向改变.6.(3分)已知点Q(2x,﹣y)在第一象限,则点P(x,y)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特点得出x,y的取值范围,进而得出答案.【解答】解:∵点Q(2x,﹣y)在第一象限,∴2x>0,﹣y>0,∴x>0,y<0,∴点P(x,y)在第四象限.故选:D.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.(3分)用含药30%和75%的两种防腐药水,配制含药50%的防腐药水27千克,两种药水各需()A.18千克,9千克B.17千克,10千克C.15千克,12千克D.16千克,11千克【分析】根据含药30%和75%的两种防腐药水中的药的质量和等于含药50%的防腐药水27千克中药的质量列方程可解得答案.【解答】解:设含药30%的防腐药水需x千克,则含药75%的防腐药水(27﹣x)千克,根据题意得:30%x+75%(27﹣x)=50%×27,解得:x=15,∴27﹣x=27﹣15=12,∴含药30%的防腐药水需15千克,含药75%的防腐药水12千克,故选:C.【点评】本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系列方程.8.(3分)若不等式的解都能使不等式3x<2x+a成立,则a的取值范围是()A.B.C.D.【分析】按照解一元一次不等式的步骤,进行计算即可解答.【解答】解:,2(x+1)﹣3(2x﹣5)≥12,2x+2﹣6x+15≥12,2x﹣6x≥12﹣2﹣15,﹣4x≥﹣5,x≤,∵3x<2x+a,∴3x﹣2x<a,∴x<a,∵不等式的解都能使不等式3x<2x+a成立,∴a>,故选:C.【点评】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤是解题的关键.9.(3分)在平面直角坐标系中,A(m,﹣3),B(2,n),C(2,6﹣m),其中m+n=2,并且3≤2m+n≤8,则△ABC面积的最大值为()A.7B.8C.9D.10【分析】观察三个点的坐标可知BC=6﹣m﹣n=4,再由m+n=2,并且3≤2m+n≤8可得1≤m≤6,可得BC边上高的最大值,再根据三角形面积公式即可求解.【解答】解:∵B(2,n),C(2,6﹣m),m+n=2,∴BC=6﹣m﹣n=4,∵m+n=2,并且3≤2m+n≤8,∴1≤m≤6,∴BC边上高的最大值是4,∴△ABC面积的最大值为4×4÷2=8.故选:B.【点评】考查了坐标与图形性质,三角形的面积,关键是得到BC的长和BC边上高的最大值.10.(3分)作业本中有这样一道题:“小明去郊游上午8时30分从家中出发,先走平路,然后登山,中午12时到达山顶,原地休息1h后沿原路返回,正好下午3时到家.若他平路每小时走4km,登山每小时走3km,下山每小时走6km,求小明家到山顶的路程.”小李查看解答时发现答案中的方程组中有污损:,则答案中另一个方程应为()A.3a+b=12B.C.D.【分析】由3a=6b可知a表示上山所用时间,b表示下山所用时间,分别求出从家到山顶、从山顶到家所用的时间,两者之差等于上山与下山所用时间之差,由此列出方程即可.【解答】解:由题意知,3a=6b表示上山的路程等于下山的路程,∴a表示上山用的时间,b表示下山用的时间,由题意知,小明从家到山顶所用时间为12﹣8.5=3.5(h),从山顶回到家所用时间为3﹣1=2(h),∴上山比下山多用时间为:3.5﹣2=1.5(h),∴a﹣b=,故选:D.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题(共6小题,每小题3分,共18分)11.(3分)写出一个二元一次方程:(答案不唯一),使它有一个解为.【分析】根据所给二元一次方程组的解写出符合条件的二元一次方程组即可.【解答】解:∵二元一次方程组的解为,∴二元一次方程组为,故答案为:(答案不唯一).【点评】本题考查二元一次方程组的解,熟练掌握二元一次方程组的解与二元一次方程的关系是解题的关键.12.(3分)学校为了考察我校八年级同学的视力情况,从八年级的14个班共740名学生中,抽取了70名同学的视力情况进行分析,在这个问题中,样本的容量是70.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:学校为了考察我校八年级同学的视力情况,从八年级的14个班共740名学生中,抽取了70名同学的视力情况进行分析,在这个问题中,样本的容量是70.故答案为:70.【点评】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.13.(3分)已知第二象限内的点P坐标为(4﹣a,3a﹣14),且P点到两坐标轴的距离相等,则a的值为5.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵第二象限内的点P坐标为(4﹣a,3a﹣14),且P点到两坐标轴的距离相等,∴4﹣a=﹣(3a﹣14),解得a=5.故答案是:5.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.14.(3分)若关于x的不等式组恰好有4个整数解,则m的取值范围是6≤m<7.【分析】先根据求不等式组解集的规律求出不等式组的解集,根据不等式组恰好有4个整数解得出﹣8<﹣1﹣m≤﹣7,再求出m的范围即可.【解答】解:,解不等式①,得x<﹣3,解不等式②,得x≥﹣1﹣m,所以不等式组的解集是﹣1﹣m≤x<﹣3,∵关于x的不等式组恰好有4个整数解(是﹣4,﹣5,﹣6,﹣7),∴﹣8<﹣1﹣m≤﹣7,解得:6≤m<7.故答案为:6≤m<7.【点评】本题考查了解一元一次不等式组和一元一次不等式组的整数解,能得出关于m 的不等式﹣8<﹣1﹣m≤﹣7是解此题的关键.15.(3分)如图,图①是四边形纸条ABCD,其中AB∥CD,E,F分别为AB、CD上的两个点,将纸条ABCD沿EF折叠得到图②,再将图②沿DF折叠得到图③,若在图③中,∠FEM=24°,则∠EFC为108°.【分析】利用折叠,得到全等图形,会得到相等的角、相等的边这一性质推理即可.【解答】解:第一次折叠后,∵∠B′EF=∠BEF,∠FEM=24°,∴∠B′EM=2∠FEM=48°,∵AB′∥DF,∴∠B′EM=∠FMB=48°,∠B′EF=∠EFM=24°,第二次折叠后,∵BM∥CF,∴∠BMF=∠FMB″=48°,∠BMF+∠MFC=180°,∴∠MFC=180°﹣48°=132°,∵∠MFC=∠EFM+EFC,∴∠EFC=132°﹣24°=108°.故答案为:108°.【点评】本题考查了折叠问题,解题的关键是熟练掌握平行线的性质和折叠后的对应角相等.16.(3分)如图,点A,B分别在直线MN,ST上,点C在MN与ST之间,点E在线段BC上,已知∠MAC+∠ACB+∠SBC=360°.有以下列结论:①MN∥ST;②∠ACB=∠CAN+∠CBT;③若∠ACB=60°,AD∥CB,且∠DAE=3∠CBT,则∠CAE=3∠CAN;④若为整数且n≥1),∠MAE=(n+1)∠CBT,则∠CAE:∠CAN=n.其中结论正确的有①②③④(填写正确结论的序号).【分析】利用平行线的判定和性质,将角度进行转化求解.【解答】解:如图,连接AB,作CF∥ST,∵∠MAC+∠ACB+∠SBC=360°,∠ACB+∠ABC+∠BAC=180°,∴∠MAB+∠SBA=180°,∴MN∥ST,故①正确;∵CF∥ST,MN∥ST,∴MN∥ST∥CF,∴∠CAN=∠ACF,∠CBT=∠BCF,∴∠ACB=∠ACF+∠BCF=∠CAN+∠CBT,故②正确;设∠CBT=α,则∠DAE=2α,∠BCF=∠CBT=α,∠CAN=∠ACF=60°﹣α,∵AD∥BC,∠ACB=60°,∴∠DAC=180°﹣∠ACB=120°,∴∠CAE=120°﹣∠DAE=120°﹣2α=2(60°﹣α),∴∠CAE≠=2∠CAN,故③正确;设∠CBT=β,则∠MAE=nβ,∵CF∥ST,∴∠CBT=∠BCF=β,∴∠ACF=∠CAN=,∴∠CAE=180°﹣∠MAE﹣∠CAN=180°﹣nβ﹣,∴∠CAE:∠CAN=(180°﹣nβ):=:=n﹣1,故④正确,故答案为:①②③④.【点评】本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式.三、解答题(共8小题,共72分)17.(8分)(1)计算:;(2)解方程组:.【分析】根据绝对值的性质计算;利用二元一次方程组的解法解方程即可.【解答】解:(1)原式=﹣1﹣8+2﹣=﹣7﹣.(2)解方程组:,②﹣①×2得:7y=7,解得y=1,将y=1代入①中,解得x=6,∴原方程组的解为:.【点评】本题为计算题,考查了学生的运算能力,解决问题的关键是明确解方程组的解法即可.18.(8分)解不等式组,请按下列步骤完成解答:(Ⅰ)解不等式①,得x<1;(Ⅱ)解不等式②,得x≥﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(IV)原不等式组的解集为﹣1≤x<1.【分析】按照解一元一次不等式组的步骤,进行计算即可解答.【解答】解:(Ⅰ)解不等式①,得x<1;(Ⅱ)解不等式②,得x≥﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(IV)原不等式组的解集为﹣1≤x<1;故答案为:(Ⅰ)x<1;(Ⅱ)x≥﹣1;(Ⅳ)﹣1≤x<1.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,熟练掌握解一元一次不等式组的步骤是解题的关键.19.(8分)4月18日,为迎接第28个世界读书日,我校初一年级开展了《名著知识知多少》答题比赛.现随机抽取了若干个学生的答题成绩(单位:分,满分100分)进行整理分析,并绘制了如下不完整的统计图:(数据分为4组:A组:0≤x<70,B组:70≤x<80,C组:80≤x<90,D组:90≤x≤100,x表示成绩,成绩为整数).请根据图中信息,解答下列问题:(1)本次抽取学生人数为60人,m=60,扇形统计图中A组所对应的扇形圆心角的度数为36°;(2)补全频数分布直方图;(3)我校初一年级共有3200名学生,请据此估计我校初一年级学生答题成绩处于C组和D组的共有多少人.【分析】(1)根据D组人数和所占百分比即可求出本次抽取学生人数;C组人数除以总人数化成百分比即可求出m;求出A组所占百分比,再乘以360°即可得到扇形统计图中A组所对应的扇形圆心角的度数;(2)先求出B组人数,再补全频数分布直方图即可;(3)将学生答题成绩处于C组和D组所占百分比的和乘以3200即可作出估计.【解答】解:(1)∵D组6人,占10%,∴本次抽取学生人数为:6÷10%=60(人);∵C组36人,∴m%=,∴m=60;A组所对应的扇形圆心角的度数为:=36°.故答案为:60,60,36;(2)B组人数为:60﹣6﹣36﹣6=12(人),补全频数分布直方图如下:(3)估计我校初一年级学生答题成绩处于C组和D组的共有:(60%+10%)×3200=2240(人),答:估计我校初一年级学生答题成绩处于C组和D组的共有2240人.【点评】本题考查频数分布直方图,扇形统计图,用样本估计总体,能从统计图中获取有用信息,熟悉样本估计总体的方法是解题的关键.20.(8分)如图,点D,H分别在AB,AC上,点E,F都在BC上,DE交FH于点G,AG平分∠BAC,∠BED=∠C,∠1+∠2=90°.(1)求证:FH⊥DE;(2)若∠3=∠4,∠BAC=68°,求∠DFH的度数.【分析】(1)由∠BED=∠C,得到DE∥AC,由角平分线定义得到∠1=∠GAH,又∠1+∠2=90°,因此∠2+∠GAH=90°,得到GH⊥AC,即可证明HF⊥DE;(2)由角平分线定义得到∠GAH=∠BAC=34°,即可求出∠2的度数,由条件可以证明DF∥AG,得到∠DFH=∠2.【解答】(1)证明:∵∠BED=∠C,∴DE∥AC,∵AG平分∠BAC,∴∠1=∠GAH,∵∠1+∠2=90°,∴∠2+∠GAH=90°,∴GH⊥AC,∴HF⊥DE;(2)解:∵AG平分∠BAC,∴∠GAH=∠BAC=34°,∴∠2=90°﹣34°=56°,∵DE∥AC,∴∠3=∠GAH,∵∠1=∠GAH,∴∠1=∠3,∵∠3=∠4,∴∠3=∠4,∴DF∥AG,∴∠DFH=∠2=56°.【点评】本题考查平行线的判定和性质,垂线,熟练掌握平行线的判定和性质是解题的关键.21.(8分)如图,在平面直角坐标系中,已知A(﹣1,4),B(﹣4,0),且AB=5.将线段AB向右平移4个单位,再向下平移3个单位得到线段DC(A对应D,B对应C).(1)画出线段CD,连接AD,BC;(2)线段AB与CD的位置关系为AB∥DC,数量关系为AB=DC;(3)四边形ABCD的面积为25;(4)已知点E(3,﹣3),点F在线段CD上运动,则EF的最小值为.【分析】(1)根据平移的性质、线段的画法画出图形;(2)由平移的性质可直接得出结论;(3)利用间接法,平行四边形的面积由一个矩形的面积减去4个大小一样的三角形的面积,由此即可得结果;(4)由垂线段最短,利用三角形的面积法可求EF的最小值.【解答】解:(1)画出线段CD,连接AD,BC,图形如下;(2)根据平移的性质可得:AB∥DC,AB=DC,故答案为:AB∥DC,AB=DC.(3)∵A(﹣1,4),B(﹣4,0),C(0,﹣3),D(3,1),∴平行四边形ABCD的面积是:7×7﹣×3×4×4=25,故答案为:25.(4)如图,连接DE、CE,∵E是CE外一点,∴当EF⊥CE时,EF最小;C(0,﹣3),D(3,1),E(3,﹣3),则△CDE是直角三角形,CE=3,DE=4,又∵CD=AB=5,∴,∴,故答案为:.【点评】本题考查了平移作图、点坐标的平移变换、平行四边形的面积、坐标与图形,垂线段最短等内容,熟练掌握平移作图是解题关键.22.(10分)如图1所示的A型(1×1)正方形板材和B型(3×1)长方形板材,可用于制作成如图2所示的竖式和横式两种无盖箱子(不计损耗).已知板材每平方米20元.(1)若用7800元的资金去购买A,B两种型号板材,并全部制作竖式箱子,问可以制作竖式箱子多少个?(2)若有A型板材67张,B型板材135张,用这批板材制作两种类型的箱子共40个,问有哪几种制作方案?(3)若有A型板材162张,B型板材a张,做成上述两种箱子,板材恰好用完.已知290<a<306.直接写出a的所有可能的取值293或298或303.【分析】(1)根据题意列方程求解;(2)根据题意列不等式组求解;(3)根据题意列方程和不等式混合组求解.【解答】解:(1)设制作竖式箱子x个,则:x+4×2x=7800÷20,解得:x=30,答:制作竖式箱子30个;(2)设制作竖式箱子x个.则横式箱子(40﹣x)个,则:,解得:13≤x≤15,∴x的整数解有13,14,15三个,∴有三种方案,为:①制作竖式箱子13个,则横式箱子27个;②制作竖式箱子14个.则横式箱子26个;③制作竖式箱子15个.则横式箱子25个;(3)设制作竖式箱子x个.则横式箱子y个,则:,且x,y,a都为整数,解得:,,,故答案为:293或298或303.【点评】本题考查了一元一次方程和一元一次不等式组的应用,理解题意找出相等关系或不等关系是解题的关键.23.(10分)已知:E,F分别是直线AB和CD上的点,AB∥CD,G,H点为平面内两个动点.(1)如图1,G,H在两条直线之间时,∠G=∠H,试说明:∠AEG=∠HFD;(2)如图2,作直线EF,G点在CD下方,H点在AB和CD之间,连接EH,HF,∠HEF和∠HFM的角平分线交于点G.探究∠H与∠G的数量关系;(3)如图3,H,G在直线EF上,射线EH绕点E以每秒12°的速度逆时针旋转,射线FG在EH旋转6秒后开始绕点F以每秒8°的速度顺时针旋转.射线FG旋转160°后两条射线同时停止.设射线FG旋转t秒时,射线EH∥FG,直接写出t的值.【分析】(1)过点G作GM∥AB,过点H作HN∥CD,然后利用平行线的性质和等角的补角相等即可得证;(2)根据角平分线的意义以及三角形的一个外角等于与它不相邻的两个内角的和探究出∠H与∠G的数量关系;(3)根据旋转的意义和平行线的性质列出关于t的方程,解方程即可求出t值.【解答】(1)证明:如图1,过点G作GM∥AB,过点H作HN∥CD,又∵AB∥CD,∴GM∥HN,∴∠MGH=∠NHG,又∵∠EGH=∠GHF,∴∠EGM=∠FHN,∵GM∥AB,HN∥CD,∴∠BEG=∠EGM,∠CHF=∠FHN,∴∠CHF=∠BEG,又∵∠AEG+∠BEG=180°,∠CHF+∠HFD=180°,∴∠AEG=∠HFD;(2)证明:∵EG平分∠HEF,EG平分∠HFM,∴∠HEM=2∠GEM,∠HEF=2∠GEF,又∵∠HEM=∠HEF+∠H,∠GEM=∠GEF+∠G,∴∠HEF+∠H=2∠GEF+2∠G,∴∠H=2∠G;(3)解:分两种情况:如图3①,由题意得,∠HEH'=12×(6+t),∠GFG'=8t,则∠EFG'=180﹣8t,当EH'∥FG'时,∠HEH'=∠EFG',∴12×(6+t)=180﹣8t,解得:t=;如图3②,∠FEH“=12×(6+t)﹣180,∠EFG“=180﹣8t,当EH“∥FG“时,∠FEH“=∠EFG“,∴12×(6+t)﹣180=180﹣8t,解得:t=;综上所述,t的值为或;【点评】本题为几何变换综合题,主要考查平行线的性质,角平分线定义,三角形的外角以及旋转的意义,深入理解题意,熟练运用分类讨论是解决问题的关键.24.(12分)如图,平面直角坐标系中,已知点,0),B(0,1),点P(x,y)在直线AB上.(1)请找到x与y之间的数量关系y=2x+1(用含x的式子表示);(2)已知点C(3,0),M(a,b)和N(a+2,b+1),且有b=3a:①若P(1,y),且线段PC与线段MN有交点,求a的取值范围;②若a=1,将线段MC向右平移2个单位,且在平移过程中,存在△PMC的面积等于3,求P点横坐标x的取值范围.【分析】(1)用待定系数法求出直线AB解析式为y=2x+1,因点P(x,y)在直线AB上,故y=2x+1;(2)①求出P(1,3),得直线PC解析式为y=﹣x+,由M(a,b),N(a+2,b+1),且有b=3a,知M(a,3a),N(a+2,3a+1),直线MN的解析式为y=x+a,可得直线PC与直线MN的交点坐标为(,),根据线段PC与线段MN有交点,得1≤≤3,即可解得a的取值范围是﹣≤a≤1;②当a=1时,M(1,3),得直线MC解析式为y=﹣x+,将线段MC向右平移2个单位得M'(3,3),C(5,0),直线M'C'解析式为y=﹣x+,过P作PH∥y轴交直线MC于H,当P在MC左侧时,PH=(﹣x+)﹣(2x+1)=﹣x+,(﹣x+)×(3﹣1)=3,x=;当P'在M'C'右侧时,P'H'=(2x+1)﹣(﹣x+)=x﹣,(x﹣)×(5﹣3)=3,得x=,即可得P点横坐标x的取值范围是≤x≤.【解答】解:(1)设直线AB解析式为y=kx+b,把,0),B(0,1)代入得:,解得,∴直线AB解析式为y=2x+1,∵点P(x,y)在直线AB上,∴y=2x+1;故答案为:2x+1;(2)①在y=2x+1中,令x=1得y=3,∴P(1,3),由P(1,3),C(3,0)得直线PC解析式为y=﹣x+,∵M(a,b),N(a+2,b+1),且有b=3a,∴M(a,3a),N(a+2,3a+1),∴直线MN的解析式为y=x+a,联立,解得:,∴直线PC与直线MN的交点坐标为(,),∵线段PC与线段MN有交点,∴1≤≤3,解得﹣≤a≤1,∴a的取值范围是﹣≤a≤1;②当a=1时,M(1,3),∵C(3,0),∴直线MC解析式为y=﹣x+,将线段MC向右平移2个单位得M'(3,3),C(5,0),∴直线M'C'解析式为y=﹣x+,过P作PH∥y轴交直线MC于H,如图:当P在MC左侧时,P(x,2x+1),H(x,﹣+),∴PH=(﹣x+)﹣(2x+1)=﹣x+,当S△PMC=3时,(﹣x+)×(3﹣1)=3,解得x=;当P'在M'C'右侧时,P'(x,2x+1),H'(x,﹣x+),∴P'H'=(2x+1)﹣(﹣x+)=x﹣,当S△P'M'C'=3时,(x﹣)×(5﹣3)=3,解得x=,由图可知,当P在线段PP'上时,存在△PMC的面积等于3,∴P点横坐标x的取值范围是≤x≤.【点评】本题考查几何变换综合应用,涉及待定系数法,函数图象上点坐标特征,三角形面积等知识,解题的关键是用含x的代数式表示相关线段的长度和三角形面积.。

2013-2014武汉市洪山区七年级(下)期末数学试卷

2013-2014武汉市洪山区七年级(下)期末数学试卷

2013-2014学年湖北省武汉市洪山区七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2014春•洪山区期末)下列调查中,调查方式选择正确的是()A.为了了解大连电视台“法制天地”栏目的收视率,选择全面调查方式B.为了了解某班40名同学的调查成绩,选择抽样调查方式C.为了了解一批灯泡的使用寿命,选择全面调查方式D.为了保证“神舟九号载人飞船发射成功”,对重要零部件的检查选择全面调查方式2.(3分)(2014春•洪山区期末)方程组的解是()A.B.C.D.3.(3分)(2014春•洪山区期末)不等式组的解集在数轴上表示正确的是()A.B.C.D.4.(3分)(2012•菏泽)已知是二元一次方程组的解,则2m﹣n的算术平方根为()A.±2 B.C.2 D.45.(3分)(2015春•通州区期末)已知点P位于第二象限,且距离x轴4个单位长度,距离y轴3个单位长度,则点P的坐标是()A.(﹣3,4)B.(3,﹣4)C.(﹣4,3)D.(4,﹣3)6.(3分)(2014春•洪山区期末)现有一段旧围墙长20米,李叔叔想紧靠这段围墙圈一块长方形空地作为兔舍饲养小兔.已知他圈好的空地如图所示,是一个长方形,它的一条边用墙代替,另三边用总长度为50米的篱笆围成.设垂直于墙的一边的长度为a米,则a的取值范围是()A.20<a<50 B.15≤a<25 C.20≤a<25 D.15≤a≤207.(3分)(2013•重庆)下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2cm2,第(2)个图形的面积为8cm2,第(3)个图形的面积为18cm2,…,则第(10)个图形的面积为()A.196cm2B.200cm2C.216cm2D.256cm28.(3分)(2014•武汉模拟)2014年4月1日起至30日,武汉全民阅读月之武汉图书馆“24小时自助图书馆宣传推广”活动顺利开展.学习如春起之苗,不见其增,日有所长,整座江城洋溢着春日里朗朗的读书声.图书馆统计了2013年10月至2014年3月期间到市图书馆的读者的职业分布情况,统计图如下:若今年4月到市图书馆的读者共28000名,估计其中约有职工为()A.3500 B.7000 C.10500 D.140009.(3分)(2014春•洪山区期末)不等式组的所有整数解的和是()A.﹣3 B.﹣2 C.0 D.﹣510.(3分)(2014春•洪山区期末)某车间生产甲,乙两种产品,已知一件甲种产品的售价比一件乙种的产品的售价少10元,8件甲产品的售价正好和7件乙种产品的售价相等.若该车间计划生产甲种产品不超过5件,且预计总售价为599元,需生产乙种产品至少()件.A.1 B.2 C.3 D.4二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2014春•洪山区期末)已知一个正数的平方根是3x﹣2和6﹣5x,则这个数是.12.(3分)(2014春•洪山区期末)如图,已知AB∥DC∥EO,∠1=70°,∠2=30°,OG平分∠BOD,则∠BOG=.13.(3分)(2014春•洪山区期末)关于x的方程2a﹣x=4的解是非负数,则a的取值范围是.14.(3分)(2014春•洪山区期末)已知方程组和方程组的解相同,则(2a+b)3=.15.(3分)(2014春•洪山区期末)来自某综合市场财务部的报告表明,商场2014年1﹣4月份的投资总额一共是2017万元,商场2014年第一季度每月利润统计图和2014年1﹣4月份利润率统计图如下(利润率=利润÷投资金额).则商场2014年4月份利润是万元.16.(3分)(2014春•洪山区期末)我区某中学为丰富学生的校园生活,准备从军跃体育用品商店一次购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元,根据的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买个篮球.三、解答题(共7小题,满分52分)17.(6分)(2014春•洪山区期末)解方程组.18.(8分)(2014春•洪山区期末)解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).19.(6分)(2015春•日照期末)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.20.(6分)(2014春•洪山区期末)某学校为了学生的身体健康,每天开展体育活动一小时,共开设了排球、篮球、羽毛球、体操四项体育活动课.全校每个学生都可根据自己的爱好任选其中一项,体育老师在所有学生的报名中,随机抽取了部分学生的报名情况进行了统计,并将结果整理后绘制了如下两幅不完整的统计图:根据以上统计图解答:(1)体育老师随机抽取了名学生,并将条形统计图补充完整;(2)在扇形统计图中,求出“排球”部分所对应的圆心角的度数并补全扇形统计图;(3)若学校一共有1200名学生,请估计该校报名参加“篮球”这一项目的人数.21.(8分)(2014春•洪山区期末)如图,在7×8网格中,每个小正方形的边长均为1,线段AB的端点和点C都在网格的格点上,以网格的两条格线建立直角坐标系,原点为0,A (2,3).(1)平移线段AB到线段CD,使点A与点C重合,写出D点坐标,并画出线段CD;(2)写出∠OAC,∠OBD,∠AOB满足的关系式,并说明理由.22.(8分)(2014春•洪山区期末)某学校计划在总费用不超过2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要一名教师.现有甲,乙两种大客车,它们的载客量和租金如下表:甲种客车乙种客车载客量(人/辆)45 30租金(元/辆)400 280(1)若设租甲种客车x(辆),根据题意,求出x的取值.(2)有几种租车方案?最少的租车费用是多少?23.(10分)(2014春•洪山区期末)如乙图,长方形ABCD在平面直角坐标系中,点A(1,8),B(1,6),C(7,6).点X,Y分别在x,y轴上.(1)请直接写出D点的坐标.(2)连接线段OB,OD,OD交BC于E,如甲图,∠BOY的平分线和∠BEO的平分线交于点F,若∠BOE=n,∠OFE的度数.(3)若长方形ABCD以每秒个单位的速度向下运动,设运动的时间为t秒,问第一象限内是否存在某一时刻t,使△OBD的面积等于长方形ABCD的面积的?若存在,请求出t 的值;若不存在,请说明理由.2013-2014学年湖北省武汉市洪山区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2014春•洪山区期末)下列调查中,调查方式选择正确的是()A.为了了解大连电视台“法制天地”栏目的收视率,选择全面调查方式B.为了了解某班40名同学的调查成绩,选择抽样调查方式C.为了了解一批灯泡的使用寿命,选择全面调查方式D.为了保证“神舟九号载人飞船发射成功”,对重要零部件的检查选择全面调查方式【解答】解:A、为了了解大连电视台“法制天地”栏目的收视率,应选择抽样调查方式,故本选项错误;B、为了了解某班40名同学的调查成绩,应选择普查调查方式,故本选项错误;C、为了了解一批灯泡的使用寿命,应选择抽样调查方式,故本选项错误;D、为了保证“神舟九号载人飞船发射成功”,对重要零部件的检查选择全面调查方式,故本选项正确.故选D.2.(3分)(2014春•洪山区期末)方程组的解是()A.B.C.D.【解答】解:①×2+②×5得19x=57,x=3,把x=3代入①得6+5y=﹣4,y=﹣2,,故选:D.3.(3分)(2014春•洪山区期末)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:,解得,故不等式组的解集是﹣1<x≤2,故选:A.4.(3分)(2012•菏泽)已知是二元一次方程组的解,则2m﹣n的算术平方根为()A.±2 B.C.2 D.4【解答】解:∵是二元一次方程组的解,∴,解得:,∴2m﹣n=4,∴2m﹣n的算术平方根为2.故选C.5.(3分)(2015春•通州区期末)已知点P位于第二象限,且距离x轴4个单位长度,距离y轴3个单位长度,则点P的坐标是()A.(﹣3,4)B.(3,﹣4)C.(﹣4,3)D.(4,﹣3)【解答】解:∵点P位于第二象限,距离x轴4个单位长度,∴点P的纵坐标为4,∵距离y轴3个单位长度,∴点P的横坐标为﹣3,∴点P的坐标是(﹣3,4).故选A.6.(3分)(2014春•洪山区期末)现有一段旧围墙长20米,李叔叔想紧靠这段围墙圈一块长方形空地作为兔舍饲养小兔.已知他圈好的空地如图所示,是一个长方形,它的一条边用墙代替,另三边用总长度为50米的篱笆围成.设垂直于墙的一边的长度为a米,则a的取值范围是()A.20<a<50 B.15≤a<25 C.20≤a<25 D.15≤a≤20【解答】解:根据题意得:,解得:15≤a<25,则a的取值范围是15≤a<25;故选B.7.(3分)(2013•重庆)下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2cm2,第(2)个图形的面积为8cm2,第(3)个图形的面积为18cm2,…,则第(10)个图形的面积为()A.196cm2B.200cm2C.216cm2D.256cm2【解答】解:∵第一个图形面积为:2=1×2(cm2),第二个图形面积为:8=22×2(cm2),第三个图形面积为:18=32×2(cm2)…∴第(10)个图形的面积为:102×2=200(cm2).故选:B.8.(3分)(2014•武汉模拟)2014年4月1日起至30日,武汉全民阅读月之武汉图书馆“24小时自助图书馆宣传推广”活动顺利开展.学习如春起之苗,不见其增,日有所长,整座江城洋溢着春日里朗朗的读书声.图书馆统计了2013年10月至2014年3月期间到市图书馆的读者的职业分布情况,统计图如下:若今年4月到市图书馆的读者共28000名,估计其中约有职工为()A.3500 B.7000 C.10500 D.14000【解答】解:根据题意得:=16(万人),职工人数是16﹣4﹣2﹣4=6(万人),则其中约有职工数是×28000=10500(人);故选C.9.(3分)(2014春•洪山区期末)不等式组的所有整数解的和是()A.﹣3 B.﹣2 C.0 D.﹣5【解答】解:∵由①得:x≤1,由②得:x>﹣,∴不等式组的解集是﹣≤x≤1,∴不等式组的整数解为﹣2,﹣1,0,1,∴不等式组的所有整数解的和为:(﹣2)+(﹣1)+0+1=﹣2.故选B.10.(3分)(2014春•洪山区期末)某车间生产甲,乙两种产品,已知一件甲种产品的售价比一件乙种的产品的售价少10元,8件甲产品的售价正好和7件乙种产品的售价相等.若该车间计划生产甲种产品不超过5件,且预计总售价为599元,需生产乙种产品至少()件.A.1 B.2 C.3 D.4【解答】解:(1)设甲、乙两种产品每件分别是x元和y元,由题意,得,解得:.即:甲、乙两种产品每件分别是70元和80元;设车间计划生产甲种产品和乙种产品分别为m件、n件,由题意,得,由①,得m=.∴0<≤5,∴n≥∵n是正整数,∴需生产乙种产品至少4件.故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2014春•洪山区期末)已知一个正数的平方根是3x﹣2和6﹣5x,则这个数是16.【解答】解:∵正数x的两个平方根是3x﹣2和6﹣5x,∴3x﹣2+6﹣5x=0,解得:x=2,∴这个正数的两个平方根是±4,∴这个正数是16,故答案为:16.12.(3分)(2014春•洪山区期末)如图,已知AB∥DC∥EO,∠1=70°,∠2=30°,OG平分∠BOD,则∠BOG=50°.【解答】解:∵AB∥DC∥EO,∠1=70°,∠2=30°,∴∠BOE=∠1=70°,∠DOE=∠2=30°,∴∠BOD=∠BOE+∠DOE=70°+30°=100°,∵OG平分∠BOD,∴∠BOG=∠BOD=×100°=50°.故答案为:50°.13.(3分)(2014春•洪山区期末)关于x的方程2a﹣x=4的解是非负数,则a的取值范围是a≥2.【解答】解;程2a﹣x=4解得x=2a﹣4≥0,2a﹣4≥0,a≥2,故答案为:a≥2.14.(3分)(2014春•洪山区期末)已知方程组和方程组的解相同,则(2a+b)3=1.【解答】解:联立得:,①+②得:5x=10,即x=2,将x=2代入①得:y=﹣6,将x=2,y=﹣6代入得:,①×3+②得:10b=﹣10,即b=﹣1,将b=﹣1代入②得:a=1,则(2a+b)3=1.故答案为:115.(3分)(2014春•洪山区期末)来自某综合市场财务部的报告表明,商场2014年1﹣4月份的投资总额一共是2017万元,商场2014年第一季度每月利润统计图和2014年1﹣4月份利润率统计图如下(利润率=利润÷投资金额).则商场2014年4月份利润是123万元.【解答】解:∵2014年第一季度中1月份投资金额为125÷20%=625万元,2月份投资金额为120÷30%=400万元,3月份投资金额为130÷26%=500万元,∴商场2014年4月份利润是(2017﹣625﹣400﹣500)×25%=123(万元).故答案为123.16.(3分)(2014春•洪山区期末)我区某中学为丰富学生的校园生活,准备从军跃体育用品商店一次购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元,根据的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买30个篮球.【解答】解:设一个篮球a元,一个足球b元,由题意得,,解得:,即一个篮球80元,一个足球50元,设这所中学购买x个篮球,(96﹣x)个足球,由题意得,80x+(96﹣x)×50≤5720,解得:x≤,则这所中学最多可以购买30个篮球.故答案为:30.三、解答题(共7小题,满分52分)17.(6分)(2014春•洪山区期末)解方程组.【解答】解:,①×4﹣②×3得:﹣13y=39,即y=﹣3,将y=﹣3代入①得:3x+21=9,即x=﹣4,则方程组的解为.18.(8分)(2014春•洪山区期末)解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).【解答】解:(1),解①得x<1,解②得x≤﹣2,所以不等式组的解集为x≤﹣2,用数轴表示为:;(2),解①得x>﹣2,解②得x≤2,所以不等式组的解集为﹣2<x≤2,用数轴表示为:.19.(6分)(2015春•日照期末)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.【解答】证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.20.(6分)(2014春•洪山区期末)某学校为了学生的身体健康,每天开展体育活动一小时,共开设了排球、篮球、羽毛球、体操四项体育活动课.全校每个学生都可根据自己的爱好任选其中一项,体育老师在所有学生的报名中,随机抽取了部分学生的报名情况进行了统计,并将结果整理后绘制了如下两幅不完整的统计图:根据以上统计图解答:(1)体育老师随机抽取了400名学生,并将条形统计图补充完整;(2)在扇形统计图中,求出“排球”部分所对应的圆心角的度数并补全扇形统计图;(3)若学校一共有1200名学生,请估计该校报名参加“篮球”这一项目的人数.【解答】解:(1)由两个统计图可知该校报名总人数是=400(人);则羽毛球的有:400×25%=100(人)补全条形统计图如图:(2)因为选排球的人数是100人,所以×100%=25%,所占圆心角的度数为:25%×360°=90°;选篮球的人数所占百分比为:100%﹣25%﹣40%﹣﹣25%=10%,补全扇形统计图如图:(3)该校报名参加“篮球”这一项目的人数为:×1200=120(人).21.(8分)(2014春•洪山区期末)如图,在7×8网格中,每个小正方形的边长均为1,线段AB的端点和点C都在网格的格点上,以网格的两条格线建立直角坐标系,原点为0,A (2,3).(1)平移线段AB到线段CD,使点A与点C重合,写出D点坐标(0,﹣2),并画出线段CD;(2)写出∠OAC,∠OBD,∠AOB满足的关系式,并说明理由.【解答】解:(1)线段CD如图所示,D(0,﹣2),故答案为:(0,﹣2).(2)∠AOB=∠OAC+∠OBD.理由如下:如图,连接AC、BD、OA、OB,∵线段CD由线段AB平移而成,∴AC∥BD,过点O作OE∥AC,∵AC∥BD,OE∥AC,∴OE∥BD,∴∠OAC=∠EOA,∠OBD=∠EOB,∴∠AOB=∠AOE+∠BOE=∠OAC+∠OBD.22.(8分)(2014春•洪山区期末)某学校计划在总费用不超过2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要一名教师.现有甲,乙两种大客车,它们的载客量和租金如下表:甲种客车乙种客车载客量(人/辆)45 30租金(元/辆)400 280(1)若设租甲种客车x(辆),根据题意,求出x的取值.(2)有几种租车方案?最少的租车费用是多少?【解答】解:(1)由题意可知,租用5辆车不能将学生和老师运送完,因为每辆汽车上至少要一名教师,所以只能租6辆.设租甲种客车x辆,则租乙种客车(6﹣x)辆,由题意得,,解得:4≤x≤,∵x为整数,∴x的值为4或5;(2 )有两种租车方案:①甲种客车4辆,乙种客车2辆,租车需花费:400×4+280×2=2160(元);②甲种客车5辆,乙种客车1辆,租车需花费:400×5+280=2280(元).∵2280>2160,∴最少租车费用是2160元.23.(10分)(2014春•洪山区期末)如乙图,长方形ABCD在平面直角坐标系中,点A(1,8),B(1,6),C(7,6).点X,Y分别在x,y轴上.(1)请直接写出D点的坐标(7,8).(2)连接线段OB,OD,OD交BC于E,如甲图,∠BOY的平分线和∠BEO的平分线交于点F,若∠BOE=n,∠OFE的度数.(3)若长方形ABCD以每秒个单位的速度向下运动,设运动的时间为t秒,问第一象限内是否存在某一时刻t,使△OBD的面积等于长方形ABCD的面积的?若存在,请求出t的值;若不存在,请说明理由.【解答】解:(1)∵四边形ABCD是长方形,∴AB=DC,AD=BC,∵点A(1,8),B(1,6),C(7,6),∴AB=DC=2,∴D点的坐标为:(7,8);故答案为:(7,8);(2)∵∠BOY的平分线和∠BEO的平分线交于点F,∴∠BOF=∠FOY=∠BOY,∠BEF=∠OEF=∠BEO,∵BC∥OX,∴∠BEO=∠EOX,设∠BEO=2x,则∠EOX=2x,作FG∥OX,如图1所示:则∠FOX=∠BOY+∠BOE+∠EOX=∠BOY+n+2x,又∵∠BOY=(90°﹣n+2x)=45°﹣n﹣x,∴∠FOX=45°﹣n﹣x+n+2x=45°+n+x,∵BC∥FG∥OX,∴∠EFG=∠BEF=x,∴∠OFG=180°﹣∠FOX=135°﹣n﹣x,∴∠OFE=∠EFG+∠OFG=135°﹣n;(3)存在某一时刻,使△OBD的面积等于长方形ABCD面积的,t=2;理由如下:作AM⊥y轴于M,如图2所示:∵S矩形ABCD=2×6=12,S△OBD=S△ODM﹣S△ABD﹣S梯形AMOB=12×,∴×(8﹣t)×7﹣×12﹣(2+8﹣t)×1=12×,解得:t=2.参与本试卷答题和审题的老师有:星期八;2300680618;zcx;lantin;gbl210;zjx111;nhx600;wkd;sks;HJJ;caicl;gsls;HLing;zhjh;wdzyzmsy@(排名不分先后)菁优网2016年4月30日。

20132014学年度七年级第二学期期末调研考试数学试题含答案

20132014学年度七年级第二学期期末调研考试数学试题含答案

20132014学年度七年级第二学期期末调研考试数学试题含答案一、选择题1. 下列哪个是一个合数?A. 2B. 3C. 4D. 5答案:C解析:合数是大于1且除了1和本身还有其他因数的数。

4可以被2整除,所以是一个合数。

2. 已知a = 2,b = 3,c = 4,那么a + 2b - c的值等于多少?A. 5B. 6C. 7D. 8答案:C解析:a + 2b - c = 2 + 2 × 3 - 4 = 2 + 6 - 4 = 8 - 4 = 4,选项C的值为7。

3. 下列哪个图形是一个正方形?A. △ABCB. ○OC. ■DEFGD. ▲PQR答案:C解析:正方形是四条边相等且四个角都是直角的四边形,选项C符合这个定义。

4. 如果数轴上两点A和B的坐标分别是-3和4,那么A和B之间的距离是多少?A. 1B. 2C. 3D. 7答案:D解析:A和B之间的距离等于两点坐标的差的绝对值,即|4 - (-3)| = |4 + 3| = |7| = 7。

5. 一辆汽车在3小时内以60公里/小时的速度行驶,那么这辆汽车行驶的距离是多少?A. 120公里B. 140公里C. 160公里D. 180公里答案:B解析:汽车行驶的距离等于速度乘以时间,即60 × 3 = 180公里,选项B的值为140公里。

二、填空题1. 12 ÷ 2 × 3 = ______。

答案:18解析:按照四则运算法则,先进行除法运算,再进行乘法运算。

2. 24 ÷(8 - 4)= ______。

答案:6解析:按照四则运算法则,先进行括号内的减法运算,再进行除法运算。

3. 用小数表示2/5,结果是 ______。

答案:0.4解析:2 ÷ 5 = 0.44. 互补角之和为 ______ 度。

答案:90解析:互补角是指两个角之和为90度。

5. 对称轴上的点到图形的距离为 ______。

2013-2014年度七年级第二学期数学期末考试试卷

2013-2014年度七年级第二学期数学期末考试试卷

七年级期末调考数学试题说明:1. 本试卷分为第Ⅰ卷和第Ⅱ卷. 第Ⅰ卷1~2页,第Ⅱ卷3~8页. 第Ⅰ卷的答案选项用2B 铅笔填涂在机读卡上;第Ⅱ卷用蓝、黑色钢笔或圆珠笔直接答在试卷上.2. 本试卷满分120分,答题时间为120分钟. 交卷时只交第Ⅱ卷,第Ⅰ卷由学生自己保存.3. 不使用计算器解题.第Ⅰ卷选择题(36分)一、选择题(本大题共12个小题,每小题3分,满分36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1. 在平面直角坐标系中,点P (2,4)的位置在A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 如图,表示下列某个不等式的解集,其中正确的是A. x >2B. x <2C. x ≥2D. x ≤-23. 下列调查中,适合用全面调查方式的是A. 了解我国东海水域是否受到日本核辐射污染B. 了解我们班50名同学上次月考的数学成绩C. 了解一批节能灯泡的使用寿命D. 了解一批我国最新生产的核弹头的杀伤半径4. 如图,由AB ∥CD ,可以得到A. ∠1=∠2B. ∠2=∠3C. ∠1=∠4D. ∠3=∠45. 方程组%.12)200(%50%5200%,4)200(%30%2200y xy y x x 其解法的步骤顺序是①去括号;②移项;③去分母,将方程两边同乘以100;④合并同类项化为一般式.A. ①②③④B. ③②①④C. ③①②④D. ③①④②6. 如图,∠1+∠2=180°,∠3=108°,则∠4的度数是A. 108°B. 82°C. 80°D. 72°7. 据统计,某班60名学生参加今年中考,获得A 、B 、C 等级的学生情况如图所示,则该班得A 等的学生有A. 30名 B. 20名C. 18名D. 12名8. 下列正多边形中,与正三角形同时使用,能进行镶嵌的是A. 正十二边形B. 正十边形C. 正八边形D. 正五边形9. 在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、CE 的中点,且S △ABC =4cm 2,则阴影部分的面积等于A. 2cm 2B. 1cm2C.21cm 2D.23cm210. 某种商品进价为1500元,标价2000元. 由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最少可以打A. 9折B. 8折C. 7折D. 6折11. 如图所示,若在象棋盘上建立直角坐标系,使“将”位于点(1,-2),则“炮”位于点A.(―1,2) B.(1,―2)C.(1,―1)D.(―1,1)12. 一个机器人从数轴原点出发,沿数轴正方向以每前进3步后退2步的规则运动. 设该机器人每秒钟前进或后退1步,并且每步的距离是1个单位长度,x n 表示第n 秒时机器人在数轴上的位置所对应的数. 有下列结论:①x 3=3;②x 5=1;③x 103<x 104;④x 2010<x 2011,其中正确的是A. ①③B. ②③C. ①②④D. ①②③中江县初中2011年春季七年级期末考试数学试题全卷总分表号总分分人查人分第Ⅱ卷非选择题(84分)二、填空题(本大题共8个小题,每小题3分,满分24分)将答案直接填在题中的横线上.13. 当a时,式子15-7a 的值是正数.14. 如图,已知AB ∥CD ,∠A =60°,∠B =49°,则∠1=度,∠2=度.15. 关于x ,y 的二元一次方程组kyxk y x 117的解也是二元一次方程2x +5y =24的解,则k 的值是.16. 如图是根据某县2006年至2010年财政收入绘制的折线统计图,观察统计图,可得同上年相比该县财政收入增长速度最快的年份是年.17. 一个n 边形的内角和是外角和的2倍,那么n 等于.18. 请将三元一次方程组.232,18153zyxz y x 消去一个未知数化为二元一次方程组为.(要求用最简捷的方法消元,不解)19. 如图,在平面直角坐标系内,已知A (3,3)、B (6,0)、D (4,2),则△AOD 的面积是.20. 在平面直角坐标系中,线段AB 的端点A 的坐标为(-3,得分评卷人,1794zx2),将其先向右平移4个单位,再向下平移3个单位,得到线段A ′B ′,则点A 对应点A ′的坐标为.三、解方程和不等式(组)(本大题2个题,第21题10分,第22题7分,本大题满分17分)21.(1)解二元一次方程组:.402,22yxy x (2)解不等式:45-x >2615x .22. 解不等式组.12>32,52≥)1(3x x x 把它的解集在数轴上表示出来,并写出所有的整数解.四、解答题(本大题共2个题,满分15分,其中第23题7分,第24题8分)23. 小明爷爷七十岁生日,来了好多客人,中午吃饭:如果每桌12人,还有一桌空着,其余桌均坐满;如果每桌10人,则再加两桌,人就能刚好坐满. 请你计算,小明家准备了多少桌?共有多少人?得分评卷人得分评卷人-x24. 如图,△ABC 中,已知AD 是∠BAC 的平分线,DE ⊥AC 于E ,∠B =64°,∠C =56°. 求∠ADB 和∠ADE 的度数.五、解答题(本大题共2个题,满分18分,其中第25题8分,第26题10分)25. 如图,已知CD ⊥AB 于D ,点E 为BC 上任意一点,EF ⊥AB 于F ,且∠1=∠2=58°,∠3=98°,求∠ACB 的度数.得分评卷人26. 为了调查某校七年级600名学生的期末数学考试成绩,抽取了一部分学生的成绩绘制了如图所示的频数分布直方图(满分120分),根据图中提供的信息回答下列问题:(1)本次调查的总体是什么?样本容量是多少?(2)被抽取部分的考试成绩,哪一分数段的人数最多?是多少人?(3)若90分以上(包括90分)为优秀,则优生率是多少?(4)请你估计该校七年级获优秀的学生人数. A:50分以下B:50~60分C:60~70分D:70~80分E:80~90分F:90~100分G:100~110分H:大于等于110分注:每组包括最小值,不包括最大值.六、应用题(本大题满分10分)27. 好消息:“灾后重建”完成后,今年下半年,我县将对最后几所未“重建”的一类中学和二类中学的校舍进行改造. 根据预算,改造1所一类中学和2所二类中学的校舍共需资金440万元,改造3所一类中学和1所二类中学共需资金720万元.(1)求改造1所一类中学的校舍和1所二类中学的校舍所需资金分别是多少万元?(2)我县还未“灾后重建”的一类中学和二类中学现共有8所需要改造. 改造资金由国家财政和地方财政共同承担. 若国家财政拨付的改造资金不超过1220万元,地方财政投入的资金不少于280万元,其中地方财政投入一类中学和二类中学的改造资金分别为每所40万元和20万元,请你通过计算求出有几种改造方案,每个方案中一类中学和二类中学各有几所?得分评卷人。

2013-2014学年下学期期末质量检测卷七年级数学试题及答案

2013-2014学年下学期期末质量检测卷七年级数学试题及答案

{2-3-<>x x ⎪⎩⎪⎨⎧⎩⎨⎧===-=13102,x y xy {ay x ay x --=++=-7312013-2014学年度第二学期期末质量检测七年级数学试卷及答案一.选择题.(本大题共10小题,每小题3分,共30分. 在每小题给出的四个选项中只有一项是符合要求的,请将正确答案的序号填入对应题目的下表内) 1.下列图形中,∠1与∠2是同位角的是( )A .(2)(3)B .(2)(3)(4)C .(1)(2)(4)D .(3)(4) 2.立方根等于它本身的数有( )个A 、 同一平面内,若a ⊥b ,b ⊥c ,则a ∥cB .若a ∥b ,a ∥c ,则b ∥cC 、一个角的补角与这个角的余角的差是90°D 、相等的两个角是对顶角 3. 下列有关2的叙述错误的是A .2是正数B .2是2的平方根C .1<2<2D .22 4、在平面直角坐标系中,点P (-1,12+m )关于y 轴的对称点2P 一定在 ( )A 、第一象限B .第二象限C .第三象限D .第四象限 5. 把面值为2元的纸币换成1角、5角都有的硬币,共有几种换法( ) A .2种 B .3种 C .4种 D .5种 7. 不等式组A. x <-3B. X <-2C.-3<x <-2D. 无解 7. 已知实数x 、y 满足()013222=++-y x ,则x-y=A .3B .-3 C.1 D .-1 都是关于x 、y 的方程6=+by x a 的解,则a+b 的值为 ( )8.若A.4B.-10C.4或-10D.-4或109.四个电子宠物排座位,一开始,小鼠、小猴、小兔、小猫分别坐在1,2,3,4号座位上(如图所示),以后它们不停地变换位置,第一次上下两排交换,第二次是在第一次换位后,再左右两列交换位置,第三次再上下两排交换,第四次再左右两列交换…这样一直下去,则第2005次交换位置后,小兔所在的号位是( )A.1B. 2C. 3D. 4 10. 已知方程组的解x 为非正数,y 为非负数,,则a 的取值范围是A 、3a 2≤-<B 、3a 2<≤-C 、3a 2<<-D 、3a 2≤≤-{520≤-+x m x {4237)2(3)(2=---=-y x y x y x二、填空题(本题共8题,每小题3分,满分24分)11、若y -3x 35b a -7与xy b a+是同类项,则x+y=12、 若点P (m-2,m+1)在平面直角坐标系的y 轴上,则点P 的坐标为 。

-学年度第二学期期中调考七年级数学试卷

-学年度第二学期期中调考七年级数学试卷

洪山区2014~2015学年度第二学期期中调考七年级数学试卷一、选择题(共10小题,每小题3分,共30分) 1.下列等式正确的是( ) A .39±=B .283-=-C .4)4(2-=-D .01.01.0=2.如图,下列条件中不能判定AB ∥CD 的条件是( ) A .∠B +∠BCD =180°B .∠1=∠2C .∠3=∠4D .∠B =∠53.下列各数:723、3.14、27、∙2.0、-0.8、38中,其中无理数有( )个A .1个B .2个C .3个D .4个 4.若P 在第四象限,且到x 轴的距离为4,到y 轴的距离为3,则点P 的坐标为( ) A .(3,-4)B .(-3,4)C .(-4,3)D .(4,-3)5.下列说法错误的是( ) A .-3是9的平方根 B .5的平方等于5 C .9的算术平方根是3D .-27的立方根是±36.平面直角坐标系中,点A (-3,0)、B (0,2),以O 、A 、B 为顶点作平行四边形,第四个顶点的坐标不可能是( ) A .(-3,2) B .(3,2) C .(3,-2) D .(-3,-2) 7.将一副三角板如图放置,使点A 在DE 上,BC ∥DE ,则∠ACD 的度数为( )A .55°B .60°C .65°D .75°8.如图,若在象棋上建立直角坐标系,使“帅”位于点(-1,-2),“馬”位于点(2,-2),则“兵”位于点( ) A .(-1,1)B .(3,1)C .(1,-3)D .(-3,1) 9.如图,AB ∥EF ,∠C =90°,则α、β、γ的关系是( ) A .β+γ-α=90°B .α+β+γ=180°C .α+β-γ=90°D .β=α+γ10.如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当带你P 第2015次碰到长方形的边时,点P 的坐标为( ) A .(1,4)B .(5,0)C .(6,4)D .(8,3)二、填空题(共6小题,每题3分,共18分)11.已知一个数的平方根为a +3与2a -12,则这个数是_________12.△DEF 是由△ABC 平移得到的,点A (6,-4)的对应点为D (2,-1),则点E (-3,1)的对应点B 的坐标为_________13.如图,直角坐标系中,△ABC 的顶点都在网格点上,A 点坐标为(2,-1),原来△ABC 各个顶点横坐标保持不变,纵坐标都增加2,所得三角形面积是_________14.求一个正数的算术平方根,有些数可以直接求得,如24=,有些数则不能直接求得:如7,但可以利用计算器求得,还可以通过一组数的内在联系,运用规律求得,请同学们观察下表:n 0.04 4 400 40000 …… n0.2220200……已知435.1061.2≈,539.561.20≈,运用你发现的规律求20610=_________15.如图,已知BC ∥GE ,AF ∥DE ,∠EDQ =50°.若AQ 平分∠F AC ,交BC 于点Q ,则∠Q =15°,则∠ACB 的度数为_________16.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (-6,5)、B (-4,0)、C (0,5),若A 点向右运动,B 点在x 轴上运动,某一时刻∠ABC =∠BAC ,延长AB 与∠BCO 的平分线交于M 点,则∠ABC 与∠OCM 之间的数量关系是____________________ 三、解答题(共7小题,共52分)17.(本题8分)求值或计算:(1) 求满足条件的x 值:03312=-x (2) 计算:1627)3(32----18.(本题6分)完成下面推理过程,已知:如图,AC ∥DF ,直线AF 分别与直线BD 、CE 相交于点G 、H ,∠1=∠2,求证:∠C =∠D 解:∵∠1=∠2(已知)∠1=∠DGH ( )∴∠2=_______∴BD ∥_______( ) ∴∠C =∠ABG ( ) 又∵AC ∥DF (已知)∴∠D =∠ABG ( ) ∴∠C =∠D19.(本题6分)如图,MN∥HP,直线l交MN于A,交HP于B点,点C在线段AB上,CE ∥HP,点D在射线BP上.请写出∠BDC+∠BCD与∠MAB之间的数量关系并说明理由20.(本题8分)如图,在平面直角坐标系中有三个点A(-2,1)、B(1,3)、C(-1,-2),P(a,b)是△ABC的边BC上的一点,△ABC经平移后得到△A1B1C1,平移后点P的对应点为P1(a-2,b+2)(1) 画出平移后的△A1B1C1,写出A1、B1、C1的坐标(2) 直接写出平移过程中线段BC扫过的面积_________21.(本题6分)如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°(1) 求∠EDC的度数(2) 若∠BCD=n°,直接写出∠BED的度数是_________22.(本题8分)某区进行课堂教学改革,将学生分成5个学习小组,采取团团坐的方式.如图,这是某校八(1)班教室简图,点A 、B 、C 、D 、E 分别代表五个学习小组的位置.已知C 点的坐标为(3,-2)(1) 请按题意建立平面直角坐标系(横轴和纵轴均为小正方形的边所在直线,每个小正方形边长为1个单位长度),写出图中其他几个学习小组的坐标(2) 若x 轴上有一点P ,使得∠PEC +∠EPB =180°,请直接写出P 点的坐标__________23.(本题10分)如图,在平面直角坐标系中,A (a ,0)、C (b ,4),且满足(a +4)2+4-b =0,过C 作CB ⊥x 轴于B ,AC 交y 轴于Q ,过B 作BD ∥AC 交y 轴于B (1) 若点K 为CB 延长线上一点,连QK 、DK ,QK 交BD 于E ,求BDKQKDCQK ∠∠-∠的值(2) 若点G 在AD 上,AD 、CB 的延长线交于F 点,当点M 在DB 延长线上,点N 在GB 的延长线上,且∠BMN =∠AQO ,请在图中画出图形,探究∠GBF 与∠MNB 的数量关系(3) 在y 轴上是否存在点P ,使得△ABC 和△ACP 的面积相等?若存在,求出P 点坐标;若不存在,请说明理由。

2013-2014学年度第二学期七年级数学期末试卷及答案

2013-2014学年度第二学期七年级数学期末试卷及答案

2013~2014学年度第二学期期末调研试卷七 年 级 数 学(考试时间100分钟 总分100分)一、选择题:本题共10小题;每小题2分,共20分.下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的,请把正确结论的代号填在答题卡相应的位置上. 1.ABC.2D.-22. 下列调查中,必须用全面调查的是A .了解全县学生的视力情况B .了解全县中学生课外阅读的情况C .了解全县百岁以上老人的健康情况D .了解全县老年人参加晨练的情况 3. 不等式x -5>4x -1的最大整数解是A .-2B .-1C .0D .1 4. 下列说法中,不正确的是 A .在同一平面内,经过一个已知点能画一条且只能画一条直线与已知直线平行B .从直线外一点到这条直线的垂线段的长度叫做点到直线的距离C .一条直线的垂线可以画无数条D .连接直线外一点与直线上各点的所有线段中,垂线段最短 5.已知点P (a +1,2a -3)在第四象限,则a 的取值范围是A .1a <-B .32a > C. 312a -<< D. -1<a <326. 若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的个数是A .1B .2C .3D .4 7. 下列各数中,3.14159,0.131131113······,-π,17-,无理数的个数有 A .5个 B .4个 C .3个 D .2个 8. 如图,AB ∥DE ,则下列等式中正确的是 A .∠1+∠2-∠3=90° B .∠2+∠3-∠1=180°C .∠1-∠2+∠3=180°D .∠1+∠2+∠3=180°A BD E C 31 2D E C B A第8题 第12题9. 芳芳放学从校门向东走400米,再往北走200米到家;丽丽出校门向东走200 米到家,则丽丽家在芳芳家的 A .东南方向 B .东北方向 C .西南方向 D .西北方向10.已知关于x 、y 的方程组241x y x y a +=⎧⎨-=-⎩,,给出下列结论:①51x y =⎧⎨=-⎩,是方程组的解;②当a =9时,x 、y 的值互为相反数;③若方程组有解,且y 的值为正数,则a 的取值范围是a <3; ④若x ≤1,则1≤y ≤4. 其中正确的是 A .①② B .②③ C .②③④D .①③④二、填空题:本题共8小题,每小题3分,共24分.把最后的结果填在答题卡中横线上. 11.已知方程组3425x y x y +=⎧⎨+=⎩,则5x +5y = ▲ .12.如图,AE 平分∠BAC ,AD ⊥BC 于点D ,若∠BAC =128°,∠B =36°,则∠DAE = ▲ 度. 13.在x =-4,-1,0,3中,满足不等式组⎩⎨⎧->+<2)1(2,2x x 的x 值有 ▲ .14.对于同一平面内的三条直线,给出下列五个论断:①a ∥b ,②b ∥c ,③a ⊥b ,④a ∥c ,⑤ a ⊥c ,以其中的两个论断为条件,一个论断为结论,组成一个你认为正确的命题. ▲ (填序号). 15.已知12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某二元一次方程的解,这个二元一次方程可以是 ▲ .16.在平面直角坐标系中,以A (-0.5,0)、B (2,0)、C (0,1)三点为顶点作平行四边形,第四个顶点不可能在第 ▲ 象限. 17.把边长相等的正五边形ABGHI 和正六边形ABCDEF 的AB 边重合,按照如图的方式叠合在一起,连接EB ,交HI 于点K ,则∠BKI = ▲ 度.第17题 第18题 18.如图,在长方形ABCD 中,AB =8,BC =6,△BEC 的面积比△DEF 的面积大5,则DF = ▲ . 三、解答题:本题共9小题,共56分.解答时应写出必要文字说明、证明过程或演算步骤....................... 19.(本小题满分8分)计算(12(22)3(33+; (2)3(2)421152x x x x -->⎧⎪-+⎨>⎪⎩.20.(本小题满分4分) 天气晴朗时,一个人能看到大海的最远距离s (单位:km )可用公式s 2=16.88h 来估计,其中h(单位:m )是眼睛离海平面的高度.(1)如果一个人站在岸边观察,当眼睛离海平面1.6m 时,他能看多远(精确到1km )?(2)如果登上一个观望台,当眼睛离海平面的高度是32m 时,能看到多远(精确到1km )?FED A某学校有 3000 名学生参加“中国梦,我的梦” 知识竞赛活动.为了了解本次知识竞赛的成绩请你根据不完整的表格,解答下列问题: (1)补全频数分布直方图;(2)若将得分转化为等级,规定 50≤x <60 评为“D ”,60≤x <70 评为“C ”,70≤x <90 评为“B ”,90≤x <100评为“A ”.这次该学校参加竞赛的学生约有多少学生参赛成绩被评为“D ”? 22.(本小题满分6分)若方程组25334x y ax by -=-⎧⎨+=⎩与2343ax by x y +=⎧⎨-+=-⎩的解相同,求a ,b .23.(本小题满分6分)周末,20人去海边春游,现有甲、乙两种型号的小汽车可供选择.甲种车每辆有8个座位,乙种车每辆有4个座位,两种车辆都必须用到,且所用的车辆不留空座,也不能超载.共有多少种不同的选车方案? 24.(本小题满分8分)如图,在平面直角坐标系中,点B 、点P 的坐标分别为(3,0)、(2,0),CB 垂直于x 轴,且点C 位于第一象限,将点C 向左平移两个单位,再向上平移两个单位,得到点D . (1)若BC =a ,试用含a 的代数式表示四边形OBCD 的面积.(2)连接DP ,当a 为何值时,线段DP 恰好将四边形OBCD 分成面积相等的两个部分?小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.她去学校共用了16分钟.请问小颖从学校回家需要多长时间? 26.(本小题满分12分)三角尺的直角顶点C 在平面直角坐标的第四象限,三角尺的两条直角边分别与x 轴正半轴和y 轴负半轴交于点D 和点B .(1)求证:∠OBC +∠ODC =180°.(2)如图1,若DE 平分∠ODC ,BF 平分∠CBM ,写出DE 与BF 的位置关系,并证明. (3)如图2,若BF 、DG 分别平分∠OBC 、∠ODC 的外角,写出BF 与DE 的位置关系,并证明.图1 图22013~2014年七年级第二学期期末调研试卷数 学 答 题 纸(考试时间:100分钟 总分:100分)一、选择题:本题共10小题;每小题2分,共20分.下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的,请把正确结论二、填空题:本题共8小题,每小题3分,共24分.把最后的结果填在题中 横线上.11.______________; 12.______________;13.______________;14.______________; 15.______________; 16.______________;17.______________;18.______________.三、解答题:本题共9小题,共56分.解答时应写出必要文字说明、证明过程或..................演算步骤.....19.(本小题满分8分) 20.(本小题满分4分)22.(本小题满分6分)23.(本小题满分6分)25.(本小题满分6分)图1 图22013~2014学年度第二学期期末调研试卷七年级数学参考答案一、选择题:本题共10小题;每小题2分,共20分.下列各题都有代号为A、B、C、D的四个结论供选择,其中只有一个结论是正确的,请把正确结论的代号填在答题卡相应的位置上.1.A 2.C 3.A 4.A 5.D 6.B 7.D 8.B 9.C 10.B二、填空题:本题共8小题,每小题3分,共24分.把最后的结果填在答题卡中横线上.11.15 12.10°13.-1和014.答案不唯一,如如果①②,那么④;或者如果①③,那么⑤等;15.答案不唯一:如x-y=3,2x-2y=6等.16.三17.84 18.19 4三、解答题:本题共9小题,共56分.解答时应写出必要文字说明、证明过程或演算步骤.......................19.(本小题满分8分)(1)原式=231++-------------------------------------------------------------------------------- 2分=6+----------------------------------------------------------------------------------------- 4分(2)解不等式①,得x<1. ------------------------------------------------------------------------------ 1分解不等式②,得x<-7.----------------------------------------------------------------------------- 2分∴不等式组的解集为x<-7.-------------------------------------------------------------------------- 4分20.(本小题满分4分)(1)解:当h=1.5时,s2=16.88h=16.88×1.5=27.008 ----------------------------------------------------------------------------- 1分∵52=25,5.52=30.25,∴s≈5∴当眼睛离海平面1.6m时,他能看5km远. -------------------------------------------------------- 2分(2)当h=32时,s2=16.88h=16.88×32=220.16 ----------------------------------------------------------------------------- 3分∵14.52=210.25,152=225,∴s≈15∴当眼睛离海平面的高度是32m时,能看到15km远. ----------------------------------------- 4分21.(本小题满分6分)(1)70≤x<80人数:200×0.2=40人. -------------------------------------------------------------------- 1分补全频数分布直方图如下图:---------------------------------------------------------------- 3分(2)由表知:评为D 的频率是10120020=, -------------------------------------------------------------- 4分由此估计全区八年级参加竞赛的学生约有1300015020⨯=(人)被评为D. ------------------ 6分22.(本小题满分6分)解:由题意方程组25343x yx y-=-⎧⎨-+=-⎩与2334ax byax by+=⎧⎨+=⎩的解相同.解方程组25343x y x y -=-⎧⎨-+=-⎩得11x y =⎧⎨=⎩, ------------------------------------------ 3分把11x y =⎧⎨=⎩代入2334ax by ax by +=⎧⎨+=⎩得2334a b a b +=⎧⎨+=⎩, 解得11a b =⎧⎨=⎩. -------------------------------------------------------------------------------------------------- 6分23.(本小题满分6分)解:设8座和4座小汽车分别为x 辆和y 辆,依题意,得8x +4y =20, ----------------------------------------------------------------------------------- 2分 整理得:y =5-2x ≥1, 又∵x 为正整数,∴1≤x ≤2, ----------------------------------------------------------------------------------------------------- 4分 当x =1时,y =3;当x =2时,y =1.所以,有两种拼车方案. ------------------------------------------------------------------------------------ 6分 24.(本小题满分8分) (1)连接BD∵BC =a ,B (3,0),CB 垂直于x 轴, ∴C (3,a ),∴D (1,a +2).S 四边形OBCD =S △BOD +S △BCD =12×3(a +2)+12×a ×2=52a +3. ------------------------------------ 4分 (2)∵线段DP 恰好将四边形分成面积相等,∴S △POD =12S 四边形OBCD . ∴12×2(a +2)=12(52a +3),解得a =2. ∴a 的值为2. ----------------------------------------------------------------------------------------------- 8分25.(本小题满分6分)解:设小颖去学校时,上坡共x 千米,下坡路共y 千米,根据题意可列方程组. --------- 1分1.2163560x y x y +=⎧⎪⎨+=⎪⎩ , ----------------------------------------------------------------------------------------------- 3分解得:0.21x y =⎧⎨=⎩ ------------------------------------------------------------------------------------------------ 4分∴小颖从学校回家需要0.2153+=2875小时(或22.4分钟) ---------------------------------------- 6分26.(本小题满分12分)(1)在四边形OBCD 中,∠BOD =90°,∠C =90°, ∵∠BOD +∠OBC +∠C +∠ODC =360°, ∴∠OBC +∠ODC =180°. --------------------------------------------------------------------------------- 4分 (2)延长DE 交BF 于G .图1∵∠OBC+∠CBM=180°,∠OBC+∠ODC=180°,∴∠ODC=∠CBM.∵DE平分∠ODC,BF平分∠CBM,∴∠CDE=∠EBF.∵∠CED=∠BEG,∴∠EGB=∠C=90°,∴DE⊥BF.------------------------------------------------ 8分(3)解法一:如图2,连接BD,易证∠NDC+∠MBC=180°.∴∠EDC+∠CBF=90°,∴∠EDC+∠CDB+∠CBD+∠FBC=180゜,∴DE∥BF. ---------------------------------------------------------------------------------------- 12分图2 图3 图4解法2:如图3,作OH平分∠ODC,交BF于点H,由(2)结论可知,DH⊥BF∵DG平分∠NDC,DH平分∠ODC,∴∠GDC=12∠NDC,∠CDH=12∠ODC.∵∠NDC+∠ODC=180°,∴∠GDC+∠CDH=90°,∴DH⊥DG,∴BF∥DG.---------------------------------------------------------------------------------------------------------- 12分解法3:如图4,过点C作CH∥DG.易证∠NDC+∠MBC=180°.∴∠GDC+∠CBF=90°,∵CH∥DG,∴∠GDC=∠HCD.∵∠DCH+∠HCB=90°,∴∠HCB=∠CBF,∴CH∥BF.∴DG∥BF.---------------------------------------------------------------------------------------------------------- 12分FxyODCBMNEG。

2013-2014学年七年级下期末考试数学试题及答案(2)

2013-2014学年七年级下期末考试数学试题及答案(2)

2013-2014初一下数学期末学业水平质量检测2014年7月考生须知:1.本试卷共有三个大题,29个小题,共6页,满分100分. 2.考试时间为90分钟,请用蓝色或黑色钢笔、圆珠笔答卷.一、精心选一选:(每小题只有一个正确答案,每题3分,共30分) 1. 下列运算,正确的是( ) A .34a a a+=B .()222a b a b+=+C .1025a a a ÷= D .236()a a =2.下列各式由左边到右边的变形中,是因式分解的是( )A .()a x y ax ay +=+B .()24444x x x x -+=-+C .()2105521x x x x -=- D .()()2163443x x x x x -+=+-+3.不等式23x >-的最小整数解是( )A .-1B .0C .2D .34. 如图,∠AOB =15°,∠AOC =90°,点B 、O 、D 在同一直线上,那么∠COD 的度数为( ) A .75° B .15° C .105° D . 165°5. 计算()()2342515205m m n m m +-÷-结果正确的是()A .2134mn m -+B .2134m m --+C .2431m mn -- D .243m mn -6. 已知一组数据8,9,10,m ,6的众数是8,那么这组数据的中位数是( )A. 6B. 8C. 8.5D. 97. 已知22a b -=,那么代数式2244a b b --的值是 ( )A .2B .0C .4D .68.如图,下列能判定AB ∥CD 的条件有( )个.(1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B .A .1B .2C .3D .49.如图,从边长为1a +的正方形纸片中剪去一个边长为1a -的正方形(a >1),剩余部分沿虚线剪开,再拼成一个矩形(不重叠无缝隙),那么该矩形的面积是( )第4题图COBAE54321第8题图D CAA .2B . 2aC . 4aD . 21a -10.将正整数1,2,3,…,从小到大按下面规律排列.那么第i 行第j 列的数为( )A .i j +B .in j +C .1n i j -+D .(1)i n j -+ 二、专心填一填:(每题2分,共16分) 11.已知⎩⎨⎧==32y x 是方程570x ky --=的一个解,那么k = . 12.水是生命之源,水是由氢原子和氧原子组成的,其中氢原子的直径为0.0000000001m ,把数0.0000000001用科学记数法表示为_______________________.13. 计算:2220142013-=____________.14. 如图,一把矩形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上,如果∠ADE =128°,那么∠DBC 的度数为___________.15.如果关于的不等式组12x m x m >-⎧⎨>+⎩,的解集是1x >-,那么m =________.16. 将命题“对顶角相等”改写成“如果……,那么……”的形式为______________________________________________. 17. 某班40如果这个班的数学平均成绩是69分,那么x =___________,y =____________.18. 定义一种新的运算叫对数,如果有n a N = ,那么log a N n =, 其中0a >且1a ≠,0N >. 例如,如果328=,那么2log 83=;如果3128-=,那么21log 8=_________. 由于,22log 816log 1287⨯==,因此,222log 8log 16log 816+=⨯. 可以验证 log log log a a a M N MN +=. 请根据上述知识计算:228log 6log 3+=_______. 三、耐心做一做:(共54分)19. (3分)计算:02211(π2014)()33--+--+; 20.(3分)计算:()()()2322643xy y x ÷-⋅;第14题图FEDCB A21.把下列各式进行因式分解:(每题3分,共6分)(1)22363ax axy ay -+; (2)()()2x x y y x -+-;22. (4分)解方程组25,437.x y x y +=⎧⎨+=⎩ 23. (4分) 解不等式组:26(3),5(2)14(1).x x x x ->+⎧⎨--≤+⎩24.(5分)已知425x y +=,求()()()()222282x y x y x y xy y ⎡⎤--+-+÷-⎣⎦的值.25.看图填空:(6分)如图,∠1的同位角是___________________,∠1的内错角是___________________, 如果∠1=∠BCD , 那么 ∥ ,根据是 ; 如果∠ACD =∠EGF , 那么 ∥ ,根据是 .26. (4分)对于形如222x xa a ++这样的二次三项式,可以用公式法将它分解成()2x a +的形式. 但对于二次三项式2223x xa a +-,就不能直接运用公式了. 小红是这样想的:在二次三项式2223x xa a +-中先加上一项2a ,使它与22x xa +的和成为一个完全平方式,再减去2a ,整个式子的值不变,于是有:()2222222323x xa a x ax a a a +-=++--第25题图GF E 1D CBA()224x a a =+-()()222x a a =+-()()3x a x a =+-像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.参考小红思考问题的方法,利用“配方法”把268a a -+进行因式分解.27. 列方程(组)解应用题:(5分)漕运码头的游船有两种类型,一种有4个座位,另一种有6个座位.这两种游船的收费标准是:一条4座游船每小时的租金为60元,一条6座游船每小时的租金为100元.某公司组织38名员工到漕运码头租船游览,如果每条船正好坐满,并且1小时共花费租金600元,求该公司分别租用4座游船和6座游船的数量.28. (5分)某校为了更好地开展“阳光体育一小时”活动,围绕着“你最喜欢的体育活动项目是什么(只写一项)?”的问题,对本校学生进行了随机抽样调查,以下是根据得到的相关数据绘制的统计图的一部分.各年级学生人数统计表图2图1%其它 10%踢毽子 20%跳绳 40%投篮各运动项目的喜欢人数占抽样总人数百分比统计图抽样调查学生最喜欢的运动项目的人数统计图请根据以上信息解答下列问题: (1)该校对多少名学生进行了抽样调查? (2)请将图1和图2补充完整;(3)已知该校七年级学生比九年级学生少20人,请你补全上表,并利用样本数据估计全校学生中最喜欢踢毽子运动的人数约为多少?29.(9分)直线1l 平行于直线2l ,直线3l 、4l 分别与1l 、2l 交于点B 、F 和A 、E ,点D 是直线3l上一动点,AB DC //交4l 于点C .(1)如图,当点D 在1l 、2l 两线之间运动时,试找出BAD ∠、DEF ∠、ADE ∠之间的等量关系,并说明理由;(2)当点D 在1l 、2l 两线外侧运动时,试探索BAD ∠、DEF ∠、ADE ∠之间的等量关系(点D 和B 、F 不重合),画出图形,直接写出结论.初一数学期末学业水平质量检测参考答案一、精心选一选:(每小题只有一个正确答案,每题3分,共30分)第29题图FED C B A l2l3l 4l 1二、专心填一填:(每题2分,共16分)三、耐心做一做:(共54分)19. 解:原式= 1199+-+ ; ………………… 2分;= 2; ………………… 3分.20. 解:原式= 43229(4)36x y x y ⋅-÷; ………………… 2分;=43223636x y x y -÷;= 2x y -. ………………… 3分.21. 把下列各式进行因式分解:(每题3分,共6分)(1)解:原式=()2232a x xy y -+; ………………… 1分;=()23a x y -. ………………… 3分.(2)解:原式=()()2xx y x y ---; ………………… 1分;= ()()21x y x --; ………………… 2分;=()()()11x y x x -+-. ………………… 3分.22. (4分)解方程组25,437.x y x y +=⎧⎨+=⎩①②解:3⨯-①②得:2=8x ; ………………… 1分;4x=, ………………… 2分;把4x=代入①得,5y=8+,3y=-. ………………… 3分;所以原方程组的解为=4= 3.x y ⎧⎨-⎩ ………………… 4分.23. (4分) 解不等式组: 6(3)5(2)14(1).x x x x -2>+⎧⎨--≤+⎩, ①②解:解不等式①,2618x x+->; 520x ->;4x<-; ………………… 1分;解不等式②,510144x x --≤+;15x ≤; ………………… 2分;………………… 3分; 所以这个不等式组的解集是4x <-. ………………… 4分.24. 解:原式=()2222[4448](2)x xy y x y xy y -+--+÷-; ……………… 2分;=2222[4448](2)x xy y x y xy y -+-++÷- ;=2(42)(2)xy y y +÷-; ………………… 3分; =2x y --. ………………… 4分; ∵425x y +=, ∴522x y --=-. ………………… 5分. 25.看图填空:(6分)如图,∠1的同位角是∠EFG , ………………… 1分; ∠1的内错角是∠BCD 、∠AED , ………………… 2分; (少写一个扣0.5分,用它控制满分) 如果∠1=∠BCD ,那么 DE ∥ BC , ………………… 3分; 根据是内错角相等,两直线平行; ………………… 4分; 如果∠ACD =∠EGF ,那么 FG ∥ DC , ………………… 5分; 根据是同位角相等,两直线平行. ………………… 6分. 26. (4分)利用“配方法”把268a a -+进行因式分解.解:原式=26989a a -++-; ………………… 1分;=()231a --; ………………… 2分;=()()3131a a -+--; ………………… 3分;=()()24a a --. ………………… 4分. 备注:学生用十字相乘法分解且结果正确只能给1分.27. 解:设租用4座游船x 条,租用6座游船y 条.根据题意得:4638,60100600.x y x y +=⎧⎨+=⎩①②; ………………… 2分;解得:5,3x y =⎧⎨=⎩. ………………… 4分; 答:租用4座游船5条,租用6座游船3条. ………………… 5分. 28.(1)解:408020=200.20%40%10%或或(名) ……………………… 1分; (2)如图所示: ……………………… 3分;(3)表中填200. …………………… 4分;(180+120+200)⨯20%=100. …………………… 5分. 答:全校学生中最喜欢踢毽子运动的人数约为100名. 29.(1)结论:BAD DEF ADE ∠+∠=∠. ……………… 1分; 证明:∵AB DC //,(已知)∴BAD ADC ∠=∠(两直线平行,内错角相等); ……………… 2分;∵1l ∥2l ,AB DC //,(已知)∴//DC EF ,(平行于同一条直线的两条直线平行); ……………… 3分; ∴CDE DEF ∠=∠(两直线平行,内错角相等); ……………… 4分;∵ADC CDE ADE ∠+∠=∠,∴BAD DEF ADE ∠+∠=∠(等量代换). ……………… 5分. 注:理由注错不扣分,其它证法酌情给分. (2)30抽样调查学生最喜欢的运动项目的人数统计图各运动项目的喜欢人数占抽样总人数百分比统计图投篮跳绳 40%踢毽子 20%其它10%%图1图2D C B A l3l 4l 1画图正确,……………… 6分;当点D 在直线1l 上方运动时,DEF BAD ADE ∠-∠=∠, ……………… 7分;画图正确,……………… 8分;当点D 在直线2l 下方运动时,BAD DEF ADE ∠-∠=∠. ……………… 9分.第29题图F ED C BAl2l3l 4l 1。

湖北省武汉市洪山区七年级下期末数学试卷(含答案解析)

湖北省武汉市洪山区七年级下期末数学试卷(含答案解析)

湖北省武汉市洪山区七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)分 1.(3分)计算结果为( )A .±9B .﹣9C .3D .92.(3分)下列调查中,适合用全面调查方式的是( ) A .调查我校某班学生喜欢上数学课的情况 B .了解央视“春晚”节目的收视率 C .调査某类烟花爆竹燃放的安全情况D .了解武汉市中小学生的眼睛视力情况3.(3分)如图,不等式组的解集在数轴上表示正确的是( )A .B .C .D .4.(3分)如图,点E 在AC 的延长线上,下列条件不能判断AC ∥BD 的是( )A .∠3=∠4B .∠D =∠DCEC .∠1=∠2D .∠D +∠ACD =180°5.(3分)下列说法正确的是( ) A .﹣3是﹣9的平方根 B .3是(﹣3)2的算术平方根C .(﹣2)2的平方根是2D .8的立方根是±26.(3分)《九章算术》中的方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”设每只雀、燕的重量各为两,y 两,列方程组为( )A .B .C .D .7.(3分)如图,某乡镇第一季度“家电下乡”产品的购买情况绘制成的两幅不完整的统计图根据统计图提供的信息得到第一季度购买的“家电下乡”产品中热水器的台数为()A.125 B.100 C.75 D.508.(3分)在平面直角坐标系Oy中,已知点A(t,0),B(t+2,0),M(3,4).以点M为圆心,1为半径画圆.点P是圆上的动点,则△ABP的面积S的范围是()A.2≤s≤4 B.4≤s≤5 C.3≤s≤5 D.6≤s≤109.(3分)若关于的不等式组有解,且关于的方程=2(﹣2)﹣(3+2)有非负整数解,则符合条件的所有整数的和为()A.﹣5 B.﹣9 C.﹣12 D.﹣1610.(3分)如图,点M在线段BC上,点E和N在线段AC上,EM∥AB,BE和MN分别平分∠ABC 和∠EMC.下列结论中不正确的是()A.∠MBE=∠MEB B.MN∥BEC.S△BEM=S△BEN D.∠MBN=∠MNB二.填空题(共6小题,每小题3分,共18分)11.(3分)平面直角坐标系中,点A在第二象限,到轴的距离是2,到y轴的距离是4,则点A的坐标为.12.(3分)某音像制品公司将某一天的销售数据绘制成如下两幅尚不完整的统计图,若该公司民歌,流行歌曲,故事片,其它等音像制品的销售中,每张制品销售的利润分别为3元,5元,8元,4元,则这一天的销售中,该公司共赢利了元.13.(3分)如图,把一个长方形纸条ABCD沿AF折叠,点B落在点E处.已知∠ADB=24°,AE∥BD,则∠FAE的度数是.14.(3分)已知不等式组的解集为﹣2<<4,则a+b=.15.(3分)对于平面直角坐标系Oy中的点P(a,b),若点P′的坐标为(a+b,a+b)(其中为常数,且≠0),则称点P′为点P的“属派生点”,例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).若点P在轴的正半轴上,点P的“属派生点”为P′点.且线段PP'的长度为线段OP长度的3倍,则的值.16.(3分)已知购买60件A商品和30件B商品共需1080元,购买50件A商品和20件B商品共需880元.若某商店需购买B商品的件数比购买A商品的件数的2倍少4件,且商店购买的A、B两种商品的总费用不超过296元,则购买A商品的件数最多为件.三.解答题(共8小,共72分)2+5y=817.(8分)解二元一次方程组18.(8分)小明随机调查了若干市民租用公共自行车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是多少?(2)试求表示A组的扇形圆心角的度数,并补全条形统计图.(3)如果骑自行车的平均速度为12m/h,请估算,在租用公共自行车的市民中,骑车路程不超过6m的人数所占的百分比.19.(8分)解不等式组并将不等式组的解集在数轴上表示出.20.(8分)如图,已知:B,C,E三点在同一直线上,A,F,E三点在同一直线上,∠1=∠2=∠E,∠3=∠4.(1)求证:AB∥CD;(2)CD是∠ACE的角平分线,则∠2和∠4满足的数量关系是.21.(8分)在平面直角坐标系中,O为坐标原点,点A的坐标(a,3),点B坐标为(b,6),若a,b的方程组满足(1)当m=﹣3时,点A的坐标为;点B的坐标为.(2)当这个方程组的解a,b满足,求m的取值范围;(3)若AC⊥轴,垂足为C,BD⊥轴,垂足为D,则四边形ACDB的面积为.22.(10分)某市准备将一批帐篷和食品送往扶贫区.已知帐篷和食品共320件,且帐篷比食品多80件.(1)直接写出帐篷有件,食品有件;(2)现计划租用A、B两种货车共8辆,一次性将这批物资全部送到扶贫区,已知两种车可装帐篷和食品的件数以及每辆货车所需付运费情况如表,问:共有几种租车的方案?最少运费是多少?AD∥BE(1)求证:∠B+∠C﹣∠A=180°:(2)如图②,AQ、BQ分别为∠DAC、∠EBC的平分线所在直线,试探究∠C与∠AQB的数量关系;(3)如图③,在(2)的前提下,且有AC∥QB,直线AQ、BC交于点P,QP⊥PB,直接写出∠DAC:∠ACB:∠CBE=.24.(12分)平面直角坐标系中,点A,B,C的坐标分别为A(a,3),B(b,6),C(c,1)且a,b,c满足(1)请用含m的式子分别表示a,b,c;(2)如图1,已知线段AB与y轴相交,若S△AOC=S△ABC,求实数m值;(3)当实数m变化时,若线段AB与y轴相交,线段OB与线段AC交于点P,且PA>PC,求实数m 的取值范围.2017-2018学年湖北省武汉市洪山区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)分1.(3分)计算结果为()A.±9 B.﹣9 C.3 D.9【解答】解:=9,故选:D.2.(3分)下列调查中,适合用全面调查方式的是()A.调查我校某班学生喜欢上数学课的情况B.了解央视“春晚”节目的收视率C.调査某类烟花爆竹燃放的安全情况D.了解武汉市中小学生的眼睛视力情况【解答】解:A、调查我校某班学生喜欢上数学课的情况,适合全面调查,故A选项正确;B、了解央视“春晚”节目的收视率,适合抽样调查,故B选项错误;C、调査某类烟花爆竹燃放的安全情况,适合抽样调查,故C选项错误;D、了解武汉市中小学生的眼睛视力情况,适于抽样调查,故D选项错误.故选:A.3.(3分)如图,不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:∵解不等式①得:≥1,解不等式②得:>2,∴不等式组的解集为>2,在数轴上表示为:,故选:A.4.(3分)如图,点E在AC的延长线上,下列条件不能判断AC∥BD的是()A.∠3=∠4 B.∠D=∠DCEC.∠1=∠2 D.∠D+∠ACD=180°【解答】解:根据∠3=∠4,可得AC∥BD,故A选项能判定;根据∠D=∠DCE,可得AC∥BD,故B选项能判定;根据∠1=∠2,可得AB∥CD,而不能判定AC∥BD,故C选项符合题意;根据∠D+∠ACD=180°,可得AC∥BD,故D选项能判定;故选:C.5.(3分)下列说法正确的是()A.﹣3是﹣9的平方根B.3是(﹣3)2的算术平方根C.(﹣2)2的平方根是2 D.8的立方根是±2【解答】解:A、负数没有平方根,故A错误;B、3是(﹣3)2的算术平方根,故B正确;C、(﹣2)2的平方根是±2,故C错误;D、8的立方根是2,故D错误.故选:B.6.(3分)《九章算术》中的方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”设每只雀、燕的重量各为两,y两,列方程组为()A.B.C.D.【解答】解:由题意可得,,故选:C.7.(3分)如图,某乡镇第一季度“家电下乡”产品的购买情况绘制成的两幅不完整的统计图根据统计图提供的信息得到第一季度购买的“家电下乡”产品中热水器的台数为()A.125 B.100 C.75 D.50【解答】解:∵产品的总台数为175÷35%=500(台)∴洗衣机所占的百分比为×100%=30%,则热水器所占的百分比为1﹣(5%+35%+10%+30%)=20%.∴热水器的台数为500×20%=100(台),故选:B.8.(3分)在平面直角坐标系Oy中,已知点A(t,0),B(t+2,0),M(3,4).以点M为圆心,1为半径画圆.点P是圆上的动点,则△ABP的面积S的范围是()A.2≤s≤4 B.4≤s≤5 C.3≤s≤5 D.6≤s≤10【解答】解:如图,由A(t,0),B(t+2,0)知AB=2,当点P位于点P1(3,3)时,△ABP的面积最小,为×2×3=3,当点P位于点P2(3,5)时,△ABP的面积最大,为×2×5=5,则3≤s≤5,故选:C.9.(3分)若关于的不等式组有解,且关于的方程=2(﹣2)﹣(3+2)有非负整数解,则符合条件的所有整数的和为()A.﹣5 B.﹣9 C.﹣12 D.﹣16【解答】解:,解①得:≥1+4,解②得:≤6+5,∴不等式组的解集为:1+4≤≤6+5,1+4≤6+5,≥﹣5,解关于的方程=2(﹣2)﹣(3+2)得,=﹣,因为关于的方程=2(﹣2)﹣(3+2)有非负整数解,当=﹣4时,=2,当=﹣3时,=3,当=﹣2时,=6,∴﹣4﹣3﹣2=﹣9;故选:B.10.(3分)如图,点M在线段BC上,点E和N在线段AC上,EM∥AB,BE和MN分别平分∠ABC 和∠EMC.下列结论中不正确的是()A.∠MBE=∠MEB B.MN∥BEC.S△BEM=S△BEN D.∠MBN=∠MNB【解答】解:∵EM∥AB,BE和MN分别平分∠ABC和∠EMC,∴∠MEB=∠ABE,∠ABC=∠EMC,∠ABE=∠MBE,∠EMN=∠NMC,∴∠MEB=∠MBE(故A正确),∠EBM=∠NMC,∴MN∥BE(故B正确),∴MN和BE之间的距离处处相等,∴S△BEM=S△BEN(故C正确),∵∠MNB=∠EBN,而∠EBN和∠MBN的关系不知,∴∠MBN和∠MNB的关系无法确定,故D错误,故选:D.二.填空题(共6小题,每小题3分,共18分)11.(3分)平面直角坐标系中,点A在第二象限,到轴的距离是2,到y轴的距离是4,则点A的坐标为(﹣4,2).【解答】解:∵点A在第二象限,到轴的距离是2,到y轴的距离是4,∴点A的坐标为:(﹣4,2).故答案为:(﹣4,2).12.(3分)某音像制品公司将某一天的销售数据绘制成如下两幅尚不完整的统计图,若该公司民歌,流行歌曲,故事片,其它等音像制品的销售中,每张制品销售的利润分别为3元,5元,8元,4元,则这一天的销售中,该公司共赢利了2130 元.【解答】解:90×3+100×5+130×8+80×4=2130(元),故答案为:2130.13.(3分)如图,把一个长方形纸条ABCD沿AF折叠,点B落在点E处.已知∠ADB=24°,AE∥BD,则∠FAE的度数是57°.【解答】解:∵长方形纸片ABCD沿AF折叠,使B点落在E处,∴∠EAF=∠BAF,∵AE∥BD,∴∠EAF=∠AOB,∵∠BAD=90°,∠ADB=24°∴∠ABD=66°由折叠得:∠BAF=∠EAF∴∠BAF=∠AOB==57°∴∠FAE=57°故答案为:57°.14.(3分)已知不等式组的解集为﹣2<<4,则a+b=﹣7 .【解答】解:解不等式10﹣<﹣(a﹣2),得:>a+8,解不等式3b﹣2>1,得:<,∵不等式组的解集为﹣2<<4,∴,解得:a=﹣10、b=3,则a+b=﹣10+3=﹣7,故答案为:﹣7.15.(3分)对于平面直角坐标系Oy中的点P(a,b),若点P′的坐标为(a+b,a+b)(其中为常数,且≠0),则称点P′为点P的“属派生点”,例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).若点P在轴的正半轴上,点P的“属派生点”为P′点.且线段PP'的长度为线段OP长度的3倍,则的值±3 .【解答】解:设P(m,0)(m>0),由题意:P′(m,m),∵PP′=3OP,∴|m|=3m,∵m>0,∴||=3,∴=±3.故答案为±316.(3分)已知购买60件A商品和30件B商品共需1080元,购买50件A商品和20件B商品共需880元.若某商店需购买B商品的件数比购买A商品的件数的2倍少4件,且商店购买的A、B两种商品的总费用不超过296元,则购买A商品的件数最多为13 件.【解答】解:设A商品的单价为元/件,B商品的单价为y元/件,根据题意得:,解得:.设该商店购买m件A商品,则购买(2m﹣4)件B商品,根据题意得:16m+4(2m﹣4)≤296,解得:m≤13.答:该商店最多可购买13件A商品.故答案为:13.三.解答题(共8小,共72分)2+5y=817.(8分)解二元一次方程组【解答】解:,①×3﹣②×2,得:7y=14,解得:y=2,将y=2代入①,得:2+10=8,解得:=﹣1,所以方程组的解为.18.(8分)小明随机调查了若干市民租用公共自行车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是多少?(2)试求表示A组的扇形圆心角的度数,并补全条形统计图.(3)如果骑自行车的平均速度为12m/h,请估算,在租用公共自行车的市民中,骑车路程不超过6m的人数所占的百分比.【解答】解:(1)调查的总人数是:19÷38%=50(人);(2)A组所占圆心角的度数是:360×=108°,C组的人数是:50﹣15﹣19﹣4=12.;(3)路程是6m时所用的时间是:6÷12=0.5(小时)=30(分钟),则骑车路程不超过6m的人数所占的百分比是:×100%=92%.19.(8分)解不等式组并将不等式组的解集在数轴上表示出.【解答】解:,解不等式①,得≤4,解不等式①,得>﹣2.5,所以原不等式组的加减为﹣2.5<≤4.把不等式的解集在数轴上表示为:20.(8分)如图,已知:B,C,E三点在同一直线上,A,F,E三点在同一直线上,∠1=∠2=∠E,∠3=∠4.(1)求证:AB∥CD;(2)CD是∠ACE的角平分线,则∠2和∠4满足的数量关系是∠2=.【解答】证明:(1)∵∠2=∠E(已知)∴AD∥BC(内错角相等,两直线平行)∴∠3=∠DAC(两直线平行,内错角相等)∵∠3=∠4(已知)∴∠4=∠DAC(等量关系)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF即∠BAF=∠DAC∴∠4=∠BAC(等量代换)∴AB∥CD(同位角相等,两直线平行)(2)∵AD∥BC,∴∠DCE=∠D,∵CD是∠ACE的角平分线,∴∠ACD=∠DCE,∵∠4=180°﹣∠2﹣∠D,∵∠3=∠4=180°﹣∠ACD﹣∠DCE,∴∠2=∠ACD=∠DCE=.故答案为:∠2=.21.(8分)在平面直角坐标系中,O为坐标原点,点A的坐标(a,3),点B坐标为(b,6),若a,b的方程组满足(1)当m=﹣3时,点A的坐标为(﹣4,3);点B的坐标为(﹣2,6).(2)当这个方程组的解a,b满足,求m的取值范围;(3)若AC⊥轴,垂足为C,BD⊥轴,垂足为D,则四边形ACDB的面积为9 .【解答】解:(1)将原方程组整理可得,解得:,当m=﹣3时,a=﹣4、b=﹣2,∴点A坐标为(﹣4,3)、点B坐标为(﹣2,6),故答案为:(﹣4,3)、(﹣2,6);(2)将代入不等式组,得:解得:2≤m≤5;(3)由(1)知A(m﹣1,3)、B(m+1,6),∴CD=m+1﹣(m﹣1)=2,AC=3、BD=6,则四边形ACDB的面积为×CD×(AC+BD)=×2×9=9,故答案为:9.22.(10分)某市准备将一批帐篷和食品送往扶贫区.已知帐篷和食品共320件,且帐篷比食品多80件.(1)直接写出帐篷有200 件,食品有120 件;(2)现计划租用A、B两种货车共8辆,一次性将这批物资全部送到扶贫区,已知两种车可装帐篷和食品的件数以及每辆货车所需付运费情况如表,问:共有几种租车的方案?最少运费是多少?+(+80)=320,解得:=120.则帐篷有120+80=200件.故答案为200,120;(2)设租用A种货车a辆,则B种货车(8﹣a)辆,由题意,得,解得:2≤a≤4.∵a为整数,∴a=2,3,4.∴B种货车为:6,5,4.∴租车方案有3种:方案一:A车2辆,B车6辆;方案二:A车3辆,B车5辆;方案三:A车4辆,B车4辆;3种方案的运费分别为:①2×780+6×700=5760(元);②3×780+5×700=5840(元);③4×780+4×700=5920(元).则方案①运费最少,最少运费是5760元.23.(10分)如图,已知:点A、C、B不在同一条直线,AD∥BE(1)求证:∠B+∠C﹣∠A=180°:(2)如图②,AQ、BQ分别为∠DAC、∠EBC的平分线所在直线,试探究∠C与∠AQB的数量关系;(3)如图③,在(2)的前提下,且有AC∥QB,直线AQ、BC交于点P,QP⊥PB,直接写出∠DAC:∠ACB:∠CBE=1:2:2 .【解答】解:(1)在图①中,过点C作CF∥AD,则CF∥BE.∵CF∥AD∥BE,∴∠ACF=∠A,∠BCF=180°﹣∠B,∴∠ACF+∠BCF+∠B﹣∠A=∠A+180°﹣∠B+∠B﹣∠A=180°.(2)在图2中,过点Q作QM∥AD,则QM∥BE.∵QM∥AD,QM∥BE,∴∠AQM=∠NAD,∠BQM=∠EBQ.∵AQ平分∠CAD,BQ平分∠CBE,∴∠NAD=∠CAD,∠EBQ=∠CBE,∴∠AQB=∠BQM﹣∠AQM=(∠CBE﹣∠CAD).∵∠C=180°﹣(∠CBE﹣∠CAD)=180°﹣2∠AQB,∴2∠AQB+∠C=180°.(3)∵AC∥QB,∴∠AQB=∠CAP=∠CAD,∠ACP=∠PBQ=∠CBE,∴∠ACB=180°﹣∠ACP=180°﹣∠CBE.∵2∠AQB+∠ACB=180°,∴∠CAD=∠CBE.又∵QP⊥PB,∴∠CAP+∠ACP=90°,即∠CAD+∠CBE=180°,∴∠CAD=60°,∠CBE=120°,∴∠ACB=180°﹣(∠CBE﹣∠CAD)=120°,∴∠DAC:∠ACB:∠CBE=60°:120°:120°=1:2:2,故答案为:1:2:2.24.(12分)平面直角坐标系中,点A,B,C的坐标分别为A(a,3),B(b,6),C(c,1)且a,b,c满足(1)请用含m的式子分别表示a,b,c;(2)如图1,已知线段AB与y轴相交,若S△AOC=S△ABC,求实数m值;(3)当实数m变化时,若线段AB与y轴相交,线段OB与线段AC交于点P,且PA>PC,求实数m 的取值范围.【解答】解:(1)由解得:,∴a=m,b=m+4,c=m+6.(2)∵S△AOC=S△ABC,∴(3+1)×6﹣×3×(﹣m)﹣×1×(m+6)=•[30﹣×3×4﹣×5×2﹣×6×2],解得m=﹣.(3)∵A(m,3),B(m+4,6),C(m+6,1),∴直线OB的解析式为y=,当点P是AC中点时,P(m+3,2),把点P(m+3,2)代入y=,得到,2=•(m+3),解得:m=﹣,观察图象可知:当PA>PC,且线段AB与y轴相交时,,∴﹣4≤m<﹣.。

湖北省武汉市洪山区2023-2024学年七年级下学期期末数学试题(含答案)

湖北省武汉市洪山区2023-2024学年七年级下学期期末数学试题(含答案)

洪山区2023—2024学年度第二学期期末质量检测七年级数学试卷洪山区教育科学研究院命制 2024.06.27亲爱的同学:在你答题前,请认真阅读下面的注意事项.1.本卷共6页,24题,满分120分.考试用时120分钟.2.答题前,请将你的学校、班级、姓名、考号填在试卷和答题卡相应的位置,并核对条码上的信息.3.答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后再选涂其他答案.答在“试卷”上无效.4.认真阅读答题卡上的注意事项.预祝你取得优异成绩!第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.16的算数平方根为( )A .B .4C .D .2.下列调查中,最适合采用抽样调查的是( )A .全国人口普查B .高铁站对上车旅客进行安检C .企业招聘,对应聘人员进行面试D .了解湖北省居民的日平均用电量3.如图,点E 在的延长线上,下列条件中能判断的是()A .B .C .D .4.下列说法不正确的是( )A .若,则B .若,则C .若,则D .若,则5.在平面直角坐标系中,若点位于第三象限,则m 、n 的取值范围分别是()A .B .C .D .6.己知,若点B 位于第二象限,且直线轴,则( )A .B .C .4D .57.关于x 的不等式组的解集为,则a 、b 的值是()4-4±8±AC AB CD ∥24∠=∠D DCE ∠=∠180D DCA ∠+∠=︒13∠=∠a b <22a b -<-a b >a c b c ->-22a b ->-a b <22ac bc <a b<(4,3)A m n -+00m n <⎧⎨<⎩43m n <⎧⎨<-⎩40m n >⎧⎨<⎩43m n >⎧⎨>-⎩(,3),(2,)A a B b -3AB =AB y ∥a b +=5-2-23237x a bx a b>+⎧⎨<+⎩45x <<A .B .C .D .8.中国古代数学著作《算法统宗》中记载了这样一个题目,其大意是:用一千八百文钱共买了三百个陶罐和铁罐,其中十六文钱可以买陶罐三个,二十五文钱可以买铁罐四个,问:陶、铁罐各有几个?设陶罐有x 个,铁罐有y 个,则可列方程组为()A .B .C .D .9.用现代高等代数的符号可以将方程组的系数排成一个表,这种由数列排成的表叫做矩阵.矩阵表示三元一次方程组,若为定值,则t 与m 关系( )A .B .C .D .10.小明同学在一次数学探究活动中,将小正方形放置在如图所示的平面直角坐标系中,使得小正方形的中心(即正方形对角线的交点)位于原点,各顶点在坐标轴上,若各顶点到原点的距离为1.接下来,按如图方式作新正方形,即从第二个正方形开始,以前一个正方形的一条对角线为边作正方形,则第十个正方形中心的坐标为()A .B .C .D .第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11有意义,则x 的取值范围是____________.21a b =⎧⎨=⎩21a b =⎧⎨=-⎩21a b =-⎧⎨=⎩21a b =-⎧⎨=-⎩16251800300x y x y +=⎧⎨+=⎩341800300x y x y +=⎧⎨+=⎩1625180034300x y x y ⎧+=⎪⎨⎪+=⎩3418001625300x y x y ⎧+=⎪⎨⎪+=⎩524x y x y +=⎧⎨-=⎩115214⎛⎫ ⎪-⎝⎭11321 2t m ⎛⎫⎪-⎝⎭,,x y z 4x y z +-21m t -=-21m t +=21m t -=21t m +=-10O ()8,16()8,20()15,46()15,4812.在不久前结束的体育中考中,某校902班体育委员统计了本班52名同学一分钟跳绳的次数,最多197次,最少63次,若取组距为20,则可以分为____________组.13.如图,直线,直线l 与直线a 相交于点P ,直线l 与直线b 相交于点Q ,且垂直于l ,若,则____________°14.如图,在矩形中,放入六个形状大小相同的长方形,若,则图中空白部分的总面积是____________.15.如图,的角平分线交的角平分线的反向延长线于点P ,直线交于点N ,若,则____________°16,且,则;③若关于x 的不等式组无解,则;④若关于x 的不等式组有解且每个解都不在的范围内,.其中正确说法是____________.(填正确a b ∥PM 138∠=︒2∠=ABCD 10cm,2cm AD FG ==2cm ,AB CD ABM ∠∥BP HCD ∠PB CD 224HCD BNC ∠-∠=︒P H ∠+∠= 1.77≈17.7≈314x ≈-2352x a x b ≥-⎧⎨≤-⎩4a b +≥213243x a x a ≥+⎧⎨-≤+⎩13x -<≤5a >结论的序号)三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程.17.(本题满分8分)(1)计算:(2)解方程组:18.(本题满分8分)解不等式组请按下列步骤完成解答:(1)解不等式①,得____________;(2)解不等式②,得____________;(3)将不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为____________.19.(本题满分8分)武汉是一座英雄的城市,亦是一座文明之城.为迎接2024年全国文明城市评选活动,武汉市政府召开专题会议,动员部署全国文明城市创建工作.洪山区某中学积极响应政府的号召,组织全校学生进行了“文明校园专项知识”竞赛活动,满分100分,每名学生的成绩记作x 分,教务处从中抽取了m 名学生的答题成绩,分成A ,B ,C ,D 四组(;;;),得到如下不完整的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)m 的值为____________,C 组的学生占被抽取学生总数的____________%;(2)请补全频数分布直方图并计算扇形统计图中“D ”组的扇形圆心角度数为____________°;(3)本次竞赛成绩90分以上(包含90分)的学生被评为校园“文明之星”,请你估计全校2400名学生中被评为“文明之星”的学生有多少?20.(本题满分8分)如图,,.||π-4237x y x y +=⎧⎨+=⎩314123x x x +>⎧⎨-≤+⎩①②:6070A x ≤<:7080B x ≤<:8090C x ≤<:90100D x ≤≤180CHG DFH ∠+∠=︒180AEG BFD ∠+∠=︒(1)试判断与之间的数量关系,并说明理由;(2)若比的一半大,求的度数.21.(本题满分8分)已知.(1)平移线段,使A 的对应点刚好落在y 轴上,B 的对应点刚好落在x 轴上,在图上画出四边形,并写出以下两点坐标________________________(2)在(1)的条件下,求出线段扫过的面积____________;(3)P 点为直线上一动点,写出的最小值____________.22.(本题满分10分)四季莫负春光日,人生不负少年时!为了体验成长,收获快乐,学校计划组织8名老师和392名学生开展以“欢乐嘉年华,挑战致青春”为主题的研学活动.租车公司有A 、B 两种型号的客车可以租用,已知1辆A 型车可以载乘客55人,1辆B 型车可以载乘客40人.其中租用3辆A 型车和2辆B 型车需要1800元,租用4辆A 型车和1辆B 型车需要1900元,根据相关要求每辆客车上至少需要一名老师.(1)求租用一辆A 型车和一辆B 型车的费用分别是多少?(2)在保证将全部师生送达目的地的前提下租车费用不超过3150元,学校可以选择几种租车方案?最少租车费用是多少?(3)为响应国家重视教育的号召,租车公司决定降价出租,每辆A 型车降价元,每辆B 型车降价m 元,在(2)的租车方案的前提下,若学校的最少租车费用为2650元,直接写出m 的值.23.(本题满分10分)已知分别在上.G ∠CFG ∠,DF FG G ⊥∠C ∠15︒C ∠()()1,45,1,5A B AB =、AB 1A 1B 11AA B B 1A 1B AB AB OP 2m ,,AB CD M N ∥,AB CD(1) (2)(3) 备用图(1)如图(1),求证:;(2)如图(2),若F 在之间,平分,若,求与的数量关系;(3)如图(3),射线从开始,绕M 点以每秒的速度逆时针旋转,同时射线从开始,绕N 点以每秒的速度逆时针旋转,直线与直线交于P ,若直线与直线相交所夹的锐角为,直接写出运动时间t 秒的值.24.(本题满分12分)在平面直角坐标系中,,若x ,y 满足,(1)写出点A ,B 的坐标;(2)过y 轴上点作直线l 交直线于点P ,若,求点P 的坐标; (3)过y 轴上点作直线,点为直线t 上一动点,己知点,若,求出m的取值范围.MEN AME CNE ∠=∠+∠,AB CD 3,EMF BMF NF ∠=∠END ∠2F E ∠=∠AME ∠CNE ∠ME MA 10︒NF ND 25︒ME NF ME NF 30︒()014t ≤≤()(),0,0,A x By |2|0x +=(0,3)C AB 12BCP ABC S S =△△(0,3)C t AB ∥(,)P m n (2,0)D ADP ACP S S ≤△△参考答案一、选择题题号12345678910答案BDDABCACDC二、填空题题号111213141516答案7523236②④(16题对一个得两分,对两个得三分)三、解答题17.(8分)(若结果错误,酌情给步骤分)(1) 4分(2)8分18.(8分)解:(1) 2分(2)4分(3)6分(4)8分19.(8分)(1)60;402分(2)4分726分(3)(人)答:全校2400名学生中被评为“文明之星”的学生约有480名 8分20.(8分)解:(1),理由如下:1x ≥3π-51x y =⎧⎨=-⎩2x >-2x ≤22x -<≤240020%480⨯=G CFG ∠=∠180CHG DFH ∠+∠=︒ 180CHG EHG ∠+∠=︒DFH EHG ∴∠=∠DF AC∴∥又4分(其他证明方法,酌情给分)(2),,又,.设,则,,,又,, 8分21.(8分)(1) 2分4分BFD C∴∠=∠180AEG BFD ∠+∠=︒AEG DEC∠=∠180DEC C ∴∠+∠=︒DG BC∴∥G CFG ∴∠=∠DF FG ⊥ 90DFG ∴∠=︒DG BC ∥G CFH ∴∠=∠C x ∠=1152G x ∠=+︒1152CFH x ∴∠=+︒DF AC ∥180DFG CFH C ∠+∠+∠=︒115901802x x ∴+︒++︒=︒50x ∴=︒50C ∴∠=︒()()10,314,0A B(2)7 6分(3)8分22.(10分,第一问3分,第二问4分,第三问3分,结果正确的酌情给步骤分)(1)解:设租用一辆A 型客车需x 元,租用一辆B 型客车需y 元,则1分解得:,2分客:租用一辆A 型客车需400元,租用一辆B 型客车需300元 3分(2)设总租车数量为a ,由题意得,又,即,又a 为整数,,4分设租用A 型客车b 辆,B 型客车辆,由题意得5分解得,又为整数,或7, 6分①当时,②当时,答:学校可以选择2种租车方案.最少租车费用是3000元 7分(3) 10分23.(10分)解:(1)如图1过E 作,,①又.②得,,3分图1(2)如图2,由已知,设,则,设,则,19532180041900x y x y +=⎧⎨+=⎩400300x y =⎧⎨=⎩8a ≤40055a ≥8080,81111a a ≥∴≤≤8a ∴=()8b -5540(8)400400300(8)3150b b b b +-≥⎧⎨+-≤⎩157.53b ≤≤b 6b ∴=6b =82,400630023000b -=∴⨯+⨯=7b =81,400730013100b -=∴⨯+⨯=31003000∴>25m =ET AB ∥MET AME ∴∠=∠,,,AB CD ET CD TEN CNE ∴∠=∠∥∥+①②MET TEN AME CNE ∠+∠=∠+∠MEN AME CNE ∴∠=∠+∠BMF y ∠=3EMF y ∠=ENF x ∠=DNF x ∠=由(1)可知,同理可得又,则,(8)由,得,③由,得④将③④代入(8)可得7分图2(3)或10或1410分24.(12分,第一问3分,第二问5分,第三问4分)解:(1) 1分2分点A 的坐标为,点B 的标为3分(2)如图(1),过点P 作,轴于点E ,过点P 作轴于点F ,由,则或,.,6分如图(2),过点P 作轴于点轴于点,同理可得,()()18041802E AME CNE y x ∠=∠+∠=︒-+︒-36042y x=︒--F x y∠=+()2,236042F E x y y x ∠=∠∴+=︒--95720y x +=︒1804AME y ∠=︒-1804AMEy ︒-∠=1802CNE x ∠=︒-1802CNEx ︒-∠=910540AME CNE ∠+∠=︒2t =40,440y y y -≥⎧∴=⎨-≥⎩ 0,2x =∴=-(2,0)-(0,4)PE y ⊥PF x ⊥1111121,2222ABC BCP S BC OA S BC PE =⨯=⨯⨯=∴==⨯△△1,1p PE x ==-1p x =11111,()22222ACP PFOC APF ACO S S S S PF CO PE AF PF AO CO =+-=∴+⨯+⨯-⨯= △△△1111(3)1123,22222PF PF PF ∴+⨯+⨯⨯-⨯⨯==(1,2)P ∴-PF x '⊥,F PE y ''⊥E '32ACP APF PCOF ACO S S S S ''-=-=△△△1,6,(1,6)PE PF P ''==∴综上所述,点P 得到坐标为. 8分(1)(3)或.(对一个得2分)如图(2),由直线,且过点C ,可得直线t 的方程:,又在直线t 上,①当在第一象限,,得,,又,无解.②当在第二象限,,得,,又,.③当在第三象限,得,同理可得;又;(1,2),(1,6)P -12372m -≤<-3423m -<≤-t AB ∥23y x =+(,)P m n 23n m ∴=+(,)P m n 0230m m >⎧⎨+>⎩0m >1246,22ADP P ACP AOP AOC CPO m S AD y n m S S S S =⋅==+=--=△△△△△12,46,27ADP ACP m S S m m ≤∴+≤≤-△△m ∴(,)P m n 0230m m <⎧⎨+>⎩302m -<<1246,22ADP P ACP AOP AOC CPO m S AD y n m S S S S =⋅==+=--=-△△△△△4,46,23AOP ACP m S S m m ≤∴+≤-≤-△△3423m ∴-<≤-(,)P m n 0230m m <⎧⎨+<⎩32m <-46,2ADP ACP m S m S =--=-△△12,46,27AOP ACP m S S m m ≤--≤-≥-△△.综上所述:或. 12分(2)12372m ∴-≤<-12372m -≤<-3423m -<≤-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

洪山区2013~2014学年度第二学期期末调考七年级数学试题
一、选择题(共10小题,每小题3分,共30分) 1.在3.14、8
23
、3-、364、π、2.01001这六个数中,无理数有( )个 A .1
B .2
C .3
D .4
2.下列调查中,适合用全面调查方式的是( ) A .调查某批次的汽车的抗撞击力
B .了解武汉电视台某栏目的收视率
C .了解某班学生对“武汉精神”的知晓率
D .了解长江中鱼的种类 3.点P 在第二象限,且到x 轴的距离为6,到y 轴的距离为7,则点P 的坐标为( ) A .(-7,6)
B .(6,-7)
C .(-6,7)
D .(7,-6)
4.不等式组⎩⎨⎧->-≥+3
457
43x x 的解集在数轴上表示为( )
5.若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1
242a y x b y ax 的解,则a 与b 和的平方根为( )
A .2
B .2±
C .±2
D .4
6.如图,AF ∥CD ,BC 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD ,下列结论中错误的是( ) A .∠BCD +∠D =90° B .AC ∥BE
C .BC 平分∠ABE
D .∠DBF =2∠ABC
7.不等式组⎪⎩⎪
⎨⎧-<--+≥+-x
x x x 8)1(311323
的所有整数解的和是( )
A .-3
B .-2
C .0
D .1
8.(2015·武汉模拟)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).
根据以上信息,如下结论错误的是( ) A .被抽取的天数为50天
B .空气轻微污染的所占比例为10%
C .扇形统计图中表示优的扇形的圆心角度数57.6°
D .估计该市这一年(365天)达到优和良的总天数不多于290天
9.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表: 16进制 0 1 2 3 4 5 6 7 8 9 A
B
C
D E F 10进制 0 1 2
3
4
5
6
7
8
9
10 11 12 13
14
15
例如,用十六进制表示5+
A =F ,3+F =
12,E +D =1B ,那么A +C =( )
A .1C
B .16
C .1A
D .22
10.某市民政部门将租用甲乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,使所付的费用最少是( )元 A .20700
B .20300
C .21300
D .21700
二、填空题(共6小题,每题3分,共18分)
11.若一个数的平方根是3a +2和1-2a ,则这个数是__________
12.如图,直线AB ∥CD ∥EF ,且∠B =35°,∠C =120°,则∠CGB =_________ 13.平面直角坐标系中,点P (6-2x ,x -4)在第四象限,则x 的取值范围是__________ 14.学校准备开设兴趣课堂,在全校对学生绘画、书法、舞蹈、乐器这四个兴趣小组的喜爱情况,进行随机抽样调查,并根据收集的数据绘制了下面两幅统计图(信息尚不完整)
若我校共有2000名学生参加这4个课外兴趣小组,而每个教师最多只能辅导本组的25名学生,估计书法兴趣小组至多需要准备__________名教师
15.已知关于x 、y 的二元一次方程组⎩⎨⎧-=-+=+5
33m y x m y x 的解为x 的值是负数,y 的值是正数,则满
足条件的整数值m 有__________个
16.有甲、乙、丙三种货物,若购甲7件、乙3件、丙1件,共需316元;购甲10件、乙4件、丙1件,共需420元,则购甲、乙、丙各一件需_________元 三、解答题(共8小题,共52分)
17.(本题6分)解二元一次方程组:⎩
⎨⎧=-=+36512
32y x y x
18.(本题8分)解下列不等式组并将不等式组的解集在数轴上表示出来
(1) ⎩⎨⎧-≤-->-x x x x 632)1(315 (2) ⎪⎩
⎪⎨⎧-+<-≥--1
235124
)2(3x x x x
19.(本题6分)填空:已知,如图BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,求证:AD∥BE
证明:∵AB∥CD(已知)
∴∠4=∠______()
∵∠3=∠4(已知)
∴∠3=∠______(等量代换)
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(等式的性质)
即_______________
∴∠3=∠_______(等量代换)
∴AD∥BE()
20.(本题8分)武汉某中学改变学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下的两个统计图.请根据下面两个不完整的统计图回答以下问题:
(1) 这次抽样调查中,共调查了_________名学生
(2) 补全两幅统计图
(3) 根据抽样调查的结果,估算该校1000名学生中大约有_________人选择“小组合作学习”
21.(本题7分)如图,P(x0,y0)是△ABC内任意一点,将△AB平移后,点P的对应点为P1(x0+5,y0-3)
(1) 写出将平移△ABC后,点A、B、C的对应点A1、B1、C1的坐标______________,并画出△A1B1C1
(2) 若△ABC外有一点M经过同样的平移后得到点M1(5,3),写出M点的坐标_________
(3) 若连接线段MM1、PP1,则这两线段之间的关系是_____________
22.(本题8分)某工厂用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图2所示的竖式与横式两种无盖的长方体纸盒,设加工竖式纸盒x 个,横式纸盒y 个 (1) 根据题意,完成以下表格:
纸盒 纸板
竖式纸盒(个)
横式纸盒(个)
x y 长方形纸板(张) 3y 正方形纸板(张)
x
(2) 工人小李从仓库领来了长方形纸板2012张,正方形纸板1003张,请你帮她计划竖式纸盒、横式纸盒各加工多少个,恰好将领来的纸板全部用完
(3) 小李有一张领取材料的清单,上面写着:长方形纸板a 张(碰巧a 处的数字看不清了,她只记得不超过142张),正方形纸板90张.并且领来的材料恰好全部用于加工上述两种纸盒,试求出她加工这两种盒子各多少个?
23.(本题10分)如图,以长方形ABCO 的顶点O 为原点,以OC 、OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a )、C (b ,0)满足0|2|2=-+-b b a (1) 求点A 、B 和C 的坐标
(2) 已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿O →A →B 的路线移动,点Q 到达B 点整个运动随之结束.若长方形对角线AC 、BD 的交点D 的坐标是(1,2),设运动时间为t (t >0)秒,问:是否存在这样的t ,使S △ODP =S △ODQ ,若存在,请求出t 的值;若不存在,请说明理由
(3) F 是线段AC 上一点,使∠POC =∠FCO ,点G 是第二象限中一点,连OG ,使∠AOG =∠AOF ,点E 是线段OA 上一动点,连CE 交DF 于点H ,求
OEC
ACE
OHC ∠∠+∠的值。

相关文档
最新文档