(新课程)高中数学《1.2.2组合》教案2 新人教A版选修2-3

合集下载

(新人教版)新版高中数学 第一章1.2 排列与组合 1.2.2 第2课时 组合的综合应用学案 新人教A版选修2-3【提

(新人教版)新版高中数学 第一章1.2 排列与组合 1.2.2 第2课时 组合的综合应用学案 新人教A版选修2-3【提

第2课时组合的综合应用学习目标 1.能应用组合知识解决有关组合的简单实际问题.2.能解决有限制条件的组合问题.知识点组合的特点(1)组合的特点是只取不排组合要求n个元素是不同的,被取出的m个元素也是不同的,即从n个不同的元素中进行m 次不放回地取出.(2)组合的特性元素的无序性,即取出的m个元素不讲究顺序,没有位置的要求.(3)相同的组合根据组合的定义,只要两个组合中的元素完全相同(不管顺序如何),就是相同的组合.类型一有限制条件的组合问题例1 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法?(1)至少有一名队长当选;(2)至多有两名女生当选;(3)既要有队长,又要有女生当选.考点组合的应用题点有限制条件的组合问题解(1)C513-C511=825(种)(2)至多有2名女生当选含有三类:有2名女生;只有1名女生;没有女生,所以共有C25C38+C15C48+C58=966(种)选法.(3)分两类:第一类女队长当选,有C412=495(种)选法,第二类女队长没当选,有C14C37+C24C27+C34C17+C44=295(种)选法,所以共有495+295=790(种)选法.反思与感悟有限制条件的抽(选)取问题,主要有两类:一是“含”与“不含”问题,其解法常用直接分步法,即“含”的先取出,“不含”的可把所指元素去掉再取,分步计数;二是“至多”“至少”问题,其解法常有两种解决思路:一是直接分类法,但要注意分类要不重不漏;二是间接法,注意找准对立面,确保不重不漏.跟踪训练1 某食堂每天中午准备4种不同的荤菜,7种不同的蔬菜,用餐者可以按下述方法之一搭配午餐:(1)任选两种荤菜、两种蔬菜和白米饭;(2)任选一种荤菜、两种蔬菜和蛋炒饭.则每天不同午餐的搭配方法共有( )A.210种 B.420种 C.56种 D.22种考点组合的应用题点有限制条件的组合问题答案 A解析由分类加法计数原理知,两类配餐的搭配方法之和即为所求,所以每天不同午餐的搭配方法共有C24C27+C14C27=210(种).类型二与几何有关的组合应用题例2 如图,在以AB为直径的半圆周上,有异于A,B的六个点C1,C2,…,C6,线段AB上有异于A,B的四个点D1,D2,D3,D4.(1)以这10个点中的3个点为顶点可作多少个三角形?其中含C1点的有多少个?(2)以图中的12个点(包括A,B)中的4个点为顶点,可作出多少个四边形?考点组合的应用题点与几何有关的组合问题解(1)方法一可作出三角形C36+C16·C24+C26·C14=116(个).方法二可作三角形C310-C34=116(个),其中以C1为顶点的三角形有C25+C15·C14+C24=36(个).(2)可作出四边形C46+C36·C16+C26·C26=360(个).反思与感悟(1)图形多少的问题通常是组合问题,要注意共点、共线、共面、异面等情形,防止多算.常用直接法,也可采用间接法.(2)在处理几何问题中的组合问题时,应将几何问题抽象成组合问题来解决.跟踪训练2 空间中有10个点,其中有5个点在同一个平面内,其余点无三点共线,无四点共面,则以这些点为顶点,共可构成四面体的个数为( )A.205 B.110 C.204 D.200考点 组合的应用题点 与几何有关的组合问题 答案 A解析 方法一 可以按从共面的5个点中取0个、1个、2个、3个进行分类,则得到所有的取法总数为C 05C 45+C 15C 35+C 25C 25+C 35C 15=205.方法二 从10个点中任取4个点的方法数中去掉4个点全部取自共面的5个点的情况,得到所有构成四面体的个数为C 410-C 45=205. 类型三 分组、分配问题命题角度1 不同元素分组、分配问题例3 6本不同的书,分为3组,在下列条件下各有多少种不同的分配方法? (1)每组2本(平均分组);(2)一组1本,一组2本,一组3本(不平均分组); (3)一组4本,另外两组各1本(局部平均分组). 考点 排列组合综合问题 题点 分组分配问题解 (1)每组2本,均分为3组的方法数为C 26C 24C 22A 33=15×6×16=15.(2)一组1本,一组2本,一组3本的分组种数为C 36C 23C 11=20×3=60. (3)一组4本,另外两组各1本的分组种数为C 46C 12C 11A 22=15×22=15.反思与感悟 一般地,n 个不同的元素分成p 组,各组内元素数目分别为m 1,m 2,…,m p ,其中k 组元素数目相等,那么分组方法数是C m 1n C m 2n -m 1C m 3n -m 1-m 2…C m p m pA kk. 跟踪训练3 6本不同的书,分给甲、乙、丙3人,在下列条件下各有多少种不同的分配方法? (1)甲2本,乙2本,丙2本; (2)甲1本,乙2本,丙3本; (3)甲4本,乙、丙每人1本; (4)每人2本;(5)一人1本,一人2本,一人3本; (6)一人4本,其余两人每人1本. 考点 排列组合综合问题 题点 分组分配问题解 (1)(2)(3)中,由于每人分的本数固定,属于定向分配问题,由分步乘法计数原理得: (1)共有C 26C 24C 22=90(种)不同的分配方法;(2)共有C16C25C33=60(种)不同的分配方法;(3)共有C46C12C11=30(种)不同的分配方法.(4)(5)(6)属于不定向分配问题,是该类题中比较困难的问题.分配给3人,同一本书给不同的人是不同的分法,属于排列问题.实际上可看作两个步骤:先分为3组,再把这3组分给甲、乙、丙3人的全排列数A33即可.因此,(4)共有C26C24C22÷A33×A33=90(种)不同的分配方法;(5)共有C16C25C33×A33=360(种)不同的分配方法;(6)共有C46C12C11÷A22×A33=90(种)不同的分配方法.命题角度2 相同元素分配问题例4 将6个相同的小球放入4个编号为1,2,3,4的盒子,求下列方法的种数.(1)每个盒子都不空;(2)恰有一个空盒子;(3)恰有两个空盒子.考点排列组合综合问题题点分组分配问题解(1)先把6个相同的小球排成一行,在首尾两球外侧放置一块隔板,然后在小球之间5个空隙中任选3个空隙各插一块隔板,有C35=10(种).(2)恰有一个空盒子,插板分两步进行.先在首尾两球外侧放置一块隔板,并在5个空隙中任选2个空隙各插一块隔板,如|0|000|00|,有C25种插法,然后将剩下的一块隔板与前面任意一块并放形成空盒,如|0|000||00|,有C14种插法,故共有C25·C14=40(种).(3)恰有两个空盒子,插板分两步进行.先在首尾两球外侧放置一块隔板,并在5个空隙中任选1个空隙各插一块隔板,有C15种插法,如|00|0000|,然后将剩下的两块隔板插入形成空盒.①这两块板与前面三块板形成不相邻的两个盒子,如||00||0000|,有C23种插法.②将两块板与前面三块板之一并放,如|00|||0000|,有C13种插法.故共有C15·(C23+C13)=30(种).反思与感悟相同元素分配问题的处理策略(1)隔板法:如果将放有小球的盒子紧挨着成一行放置,便可看作在排成一行的小球的空隙中插入了若干隔板,相邻两块隔板形成一个“盒”.每一种插入隔板的方法对应着小球放入盒子的一种方法,此法称之为隔板法.隔板法专门解决相同元素的分配问题.(2)将n个相同的元素分给m个不同的对象(n≥m),有C m-1n-1种方法.可描述为n-1个空中插入m-1块板.跟踪训练4 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )A.4种B.10种C.18种D.20种考点排列组合综合问题题点分组分配问题答案 B解析由于只剩一本书,且这些画册、集邮册分别相同,可以从剩余的书的类别进行分析.又由于排列、组合针对的是不同的元素,应从4位朋友中进行选取.第一类:当剩余的一本是画册时,相当于把3本相同的集邮册和1本画册分给4位朋友,只有1位朋友得到画册.即把4位朋友分成人数为1,3的两队,有1个元素的那队分给画册,另一队分给集邮册,有C14种分法.第二类:当剩余的一本是集邮册时,相当于把2本相同的画册和2本相同的集邮册分给4位朋友,有2位朋友得到画册,即把4位朋友分成人数为2,2的两队,一队分给画册,另一队分给集邮册,有C24种分法.因此,满足题意的赠送方法共有C14+C24=4+6=10(种).1.某乒乓球队有9名队员,其中2名是种子选手,现在挑选5名选手参加比赛,种子选手必须在内,那么不同选法共有( )A.26种 B.84种 C.35种 D.21种考点组合的应用题点有限制条件的组合问题答案 C解析从7名队员中选出3人有C37=7×6×53×2×1=35(种)选法.2.身高各不相同的7名同学排成一排照相,要求正中间的同学最高,左右两边分别顺次一个比一个低,这样的排法种数是( )A.5 040 B.36 C.18 D.20考点组合的应用题点有限制条件的组合问题答案 D解析最高的同学站中间,从余下6人中选3人在一侧只有一种站法,另3人在另一侧也只有一种站法,所以排法有C36=20(种).3.直角坐标平面xOy上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有( )A.25个 B.36个 C.100个 D.225个考点组合的应用题点与几何有关的组合问题答案 D解析从垂直于x轴的6条直线中任取2条,从垂直于y轴的6条直线中任取2条,四条直线相交得出一个矩形,所以矩形总数为C26×C26=15×15=225.4.从7名志愿者中安排6人在周六、周日两天参加社区公益活动,若每天安排3人,则不同的安排方案共有________种.(用数字作答)考点排列组合综合问题题点分组分配问题答案140解析安排方案分为两步完成:从7名志愿者中选3人安排在周六参加社区公益活动,有C37种方法;再从剩下的4名志愿者中选3人安排在周日参加社区公益活动,有C34种方法.故不同的安排方案共有C37C34=7×6×53×2×1×4=140(种).5.正六边形顶点和中心共7个点,可组成________个三角形.考点组合的应用题点与几何有关的组合问题答案32解析不共线的三个点可组成一个三角形,7个点中共线的是:正六边形过中心的3条对角线,即共有3种情况,故组成三角形的个数为C37-3=32.1.无限制条件的组合应用题.其解题步骤为:(1)判断;(2)转化;(3)求值;(4)作答.2.有限制条件的组合应用题:(1)“含”与“不含”问题:这类问题的解题思路是将限制条件视为特殊元素和特殊位置,一般来讲,特殊要先满足,其余则“一视同仁”.若正面入手不易,则从反面入手,寻找问题的突破口,即采用排除法.解题时要注意分清“有且仅有”“至多”“至少”“全是”“都不是”“不都是”等词语的确切含义,准确把握分类标准.(2)几何中的计算问题:在处理几何问题中的组合应用问题时,应先明确几何中的点、线、面及构型,明确平面图形和立体图形中的点、线、面之间的关系,将几何问题抽象成组合问题来解决.(3)分组、分配问题:分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同,是不可区分的,而后者即使两组元素个数相同,但因元素不同,仍然是可区分的.一、选择题1.若从1,2,3,…,9这9个整数中同时取3个不同的数,使其和为奇数,则不同的取法共有( )A.30种 B.33种 C.37种 D.40种考点组合的应用题点有限制条件的组合问题答案 D解析从1,2,3,…,9这9个数中取出3个不同的数,使其和为奇数的情况包括:(1)取出的3个数都是奇数,取法有C35=10(种);(2)取出的3个数中有2个偶数、1个奇数,取法有C24C15=30(种),根据分类加法计数原理,满足题意的取法共有10+30=40(种).2.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A.24种 B.14种 C.28种 D.48种考点组合的应用题点有限制条件的组合问题答案 B解析方法一分两类完成:第1类,选派1名女生、3名男生,有C12·C34种选派方案;第2类,选派2名女生、2名男生,有C22·C24种选派方案.故共有C12·C34+C22·C24=14(种)不同的选派方案.方法二6人中选派4人的组合数为C46,其中都选男生的组合数为C44,所以至少有1名女生的选派方案有C46-C44=14(种).3.直线a∥b,a上有5个点,b上有4个点,以这九个点为顶点的三角形个数为( ) A.C25C14+C15C24B.(C25+C14)(C15+C24)C.C39-9 D.C39-C35考点组合的应用题点 与几何有关的组合问题 答案 A解析 可以分为两类:a 上取两点,b 上取一点,则可构成三角形个数为C 25C 14;a 上取一点,b 上取两点,则可构成三角形个数为C 15C 24,利用分类加法计数原理可得以这九个点为顶点的三角形个数为C 25C 14+C 15C 24,故选A.4.从乒乓球运动员男5名、女6名中组织一场混合双打比赛,不同的组合方法有( ) A .C 25C 26种 B .C 25A 26种 C .C 25A 22C 26A 22种D .A 25A 26种考点 排列组合综合问题 题点 排列与组合的综合应用 答案 B解析 先从5名男选手中任意选取2名,有C 25种选法,再从6名女选手中任意选择两名与选出的男选手打比赛,有C 26A 22,即A 26种.所以共有C 25A 26种.5.将标号为A ,B ,C ,D ,E ,F 的6张卡片放入3个不同的信封中,若每个信封放2张卡片,其中标号为A ,B 的卡片放入同1个信封,则不同的放法共有( ) A .12种 B .18种 C .36种 D .54种 考点 排列组合综合问题 题点 分组分配问题 答案 B解析 由题意知,不同的放法共有C 13C 24=3×4×32=18(种).6.某地招募了20名志愿者,他们编号分别为1号,2号,…,19号,20号,如果要从中任意选取4人再按编号大小分成两组去做一些预备服务工作,其中两个编号较小的人在一组,两个编号较大的人在另一组,那么确保5号与14号入选并被分配到同一组的选取种数是( )A .16B .21C .24D .90 考点 排列组合综合问题 题点 分组分配问题 答案 B 解析 分2类:第1类,5号与14号为编号较大的一组,则另一组编号较小的有C 24=6(种)选取方法. 第2类,5号与14号为编号较小的一组,则编号较大的一组有C 26=15(种)选取方法. 由分类加法计数原理得,共有C 24+C 26=6+15=21(种)选取方法.7.北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作,若每天早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为( ) A .C 1214C 412C 48 B .C 1214A 412A 48 C.C 1214C 412C 48A 33D .C 1214C 412C 48A 38考点 排列组合综合问题 题点 分组分配问题 答案 A解析 首先从14人中选出12人共C 1214种,然后将12人平均分为3组共C 412·C 48·C 44A 33种,然后这两步相乘,得C 1214·C 412·C 48A 33.将三组分配下去共C 1214·C 412·C 48种.故选A. 8.假如北京大学给中山市某三所重点中学7个自主招生的推荐名额,则每所中学至少分到一个名额的方法数为( ) A .30 B .21 C .10 D .15 考点 排列组合综合问题 题点 分组分配问题 答案 D解析 用“隔板法”.在7个名额中间的6个空位上选2个位置加2个隔板,有C 26=15(种)分配方法. 二、填空题9.在2017年的上海高考改革方案中,要求每位考生必须在物理、化学、生物、政治、历史、地理6门学科中选择3门学科参加等级考试.小明同学决定在生物、政治、历史三门中至多选择一门,那么小明同学的选择方案有________种. 考点 组合的应用题点 有限制条件的组合问题 答案 10解析 ①在生物、政治、历史三门中选择1门,则在物理、化学、地理中选2门,有C 13C 23=9(种)选法;②在生物、政治、历史三门中选择0门,则物理、化学、地理全选,有C 33=1(种)选法. 共有选法9+1=10(种).10.如图所示的几何体是由一个正三棱锥P -ABC 与正三棱柱ABC -A 1B 1C 1组合而成,现用3种不同颜色对这个几何体的表面涂色(底面A 1B 1C 1不涂色),要求相邻的面均不同色,则不同的涂色方案共有______种.考点涂色问题题点涂色问题答案12解析先涂三棱锥P-ABC的三个侧面,然后涂三棱柱的三个侧面,共有C13×C12×C11×C12=3×2×1×2=12(种)不同的涂法.11.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)考点排列组合综合问题题点排列与组合的综合应用答案60解析一、二、三等奖,三个人获得,有A34=24(种).一、二、三等奖,有一个人获得2张,一个人获得1张,共有C23A24=36(种),共有24+36=60(种)不同的获奖情况.三、解答题12.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,求不同取法的种数.考点组合的应用题点有限制条件的组合问题解若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色,则有C14×C14×C14=64(种),若2张同色,则有C23×C12×C24×C14=144(种),若红色卡片有1张,剩余2张不同色,则有C14×C23×C14×C14=192(种),剩余2张同色,则有C14×C13×C24=72(种),所以共有64+144+192+72=472(种)不同的取法.13.现有8名青年,其中有5名能胜任英语翻译工作,有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任).现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?考点排列组合综合问题题点分组分配问题解可以分三类.精品试卷第一类,让两项工作都能胜任的青年从事英语翻译工作,有C24C23种选法;第二类,让两项工作都能胜任的青年从事德语翻译工作,有C34C13种选法;第三类,让两项工作都能胜任的青年不从事任何工作,有C34C23种选法.根据分类加法计数原理,一共有C24C23+C34C13+C34C23=42(种)不同的选法.四、探究与拓展14.20个不加区别的小球放入编号为1,2,3的三个盒子中,要求每个盒内的球数不小于它的编号数,则不同的放法种数为________.考点排列组合综合问题题点分组分配问题答案120解析先在编号为2,3的盒内分别放入1,2个球,还剩17个小球,三个盒内分别至少再放入1个球,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中即可,共C216=120(种)方法.15.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?考点排列组合综合问题题点排列与组合的综合应用解(1)先排前4次测试,只能取正品,有A46种不同测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有C24A22=A24(种)测法,再排余下4件的测试位置,有A44种测法.所以共有不同测试方法A46·A24·A44=103 680(种).(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现,所以共有不同测试方法C16C34A44=576(种).欢迎下载。

1.2.2组合学案(人教A版选修2-3)

1.2.2组合学案(人教A版选修2-3)

1.2.3组合与组合数公式课前预习学案一、预习目标预习:(1)理解组合的定义,掌握组合数的计算公式(2)正确认识组合与排列的区别与联系(3)会解决一些简单的组合问题二、预习内容1.组合的定义:2.组合与排列的区别与联系(1)共同点。

(2)不同点。

3.组合数mA= = =n4.归纳提升(1)区分组合与排列(2)组合数计算问题三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案一、学习目标(1)理解组合的定义,掌握组合数的计算公式(2)正确认识组合与排列的区别与联系(3)会解决一些简单的组合问题学习重难点:组合与排列的区分二、学习过程问题探究情境问题一:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题二:从甲、乙、丙3名同学中选出2名去参加某天一项活动,有多少种不同的选法?合作探究:探究1:组合的定义?一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.探究2:排列与组合的概念有什么共同点与不同点? 不同点: 排列与元素的顺序有关, 而组合则与元素的顺序无关.共同点: 都要“从n 个不同元素中任取m 个元素” 问题三:判断下列问题是组合问题还是排列问题?(1)设集合A={a ,b ,c ,d ,e },则集合A 的含有3个元素的子集有多少个? (2)某铁路线上有5个车站,则这条铁路线上共需准备多少种车票? 组合是选择的结果,排列是选择后再排序的结果.探究3:写出从a,b,c,d 四个元素中任取三个元素的所有组合abc , abd , acd ,bcd 每一个组合又能对应几个排列?问题四:你能得出组合数的计算公式吗?mn C = = =规定: 典例分析例1判断下列问题是排列问题还是组合问题?(1)a 、b 、c 、d 四支足球队之间进行单循环比赛,共需要多少场比赛? (2)a 、b 、c 、d 四支足球队争夺冠亚军,有多少场不同的比赛? 变式训练1 已知ABCDE 五个元素,写出取出3个元素的所有组合 例2计算下列各式的值(1)97999699C C组合 排列abc abd acd bcdabc baccababd baddabacd caddacbcd cbddbc(2)nn n nC C 321383+-+ 变式训练2 (1)解方程247353---=x x x A C (2)已知m8765C 10711求m m mCCC=+三、反思总结1区分组合与排列 2组合数的计算公式的说明① ② ③ ④ 四、当堂检测1、计算=++293828C C C ( )A120 B240 C60 D480 2、已知2n C =10,则n=( )A10 B5 C3 D23、如果436m m C A =,则m=( )A6 B7 C8 D9答案:1、A 2、B 3、B课后练习与提高1、给出下面几个问题,其中是组合问题的有( )①由1,2,3,4构成的2个元素的集合 ②五个队进行单循环比赛的分组情况 ③由1,2,3组成两位数的不同方法数④由1,2,3组成无重复数字的两位数 A ①③ B ②④ C ①② D ①②④2、rr C C -++1710110的不同值有( )A1个 B2个 C3个 D4个3、已知集合A={1,2,3,4,5,6},B={1,2},若集合M 满足B ⊂M ⊂A ,则这样的集合M 共有 ( )A12个 B13个 C14个 D15个 4、已知的值为与则n m ,43211+-==m nmn m nC C C5、若x 满足112x 1x 3C 2-+-+<x x C ,则x=6、已知的值求n ,15)4(420231355+-++++=n n n n A C n C参考答案:1C 2B 3C 4 m=14,n=34 5 2,3,4,5, 6 n=21.2.4组合应用题课前预习学案一、预习目标预习:(1)理解组合的定义,掌握组合数的计算公式(2)会解决一些简单的组合问题(3)体会简单的排列组合综合问题二、预习内容1.组合的定义:2.组合数mA= = =n3. 课本几个组合应用题,并将24页的探究写在下面三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案一、学习目标(1)理解组合的定义,掌握组合数的计算公式(2)会解决一些简单的组合问题(3)体会简单的排列组合综合问题学习重难点:解决一些简单的组合典型问题二、学习过程问题探究情境问题一:高一(1)班有30名男生,20名女生,现要抽取6人参加一次有意义的活动,问一下条件下有多少种不同的抽法?⑴只在男生中抽取⑵男女生各一半⑶女生至少一人问题二:10个不同的小球,装入3个不同的盒子中,每盒至少一个,共有多少种装法?合作探究:完成问题一问题二的方法总结①②典例分析例1六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端,乙不站右端. 变式练习1.、7名学生站成一排,下列情况各有多少种不同的排法?(1)甲乙必须排在一起;(2)甲、乙、丙互不相邻;(3)甲乙相邻,但不和丙相邻.例2.平面上给定10个点,任意三点不共线,由这10个点确定的直线中,无三条直线交于同一点(除原10点外),无两条直线互相平行。

高中数学第一章《组合》教案2新人教A版选修2-3

高中数学第一章《组合》教案2新人教A版选修2-3

1.2.2组合 (第二课时)教学目标:1掌握组合数的两个性质;2.进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题 教学重点:掌握组合数的两个性质 教学过程 一、复习引入:1 组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同2.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号mn C 表示. 3.组合数公式的推导:(1)一般地,求从n 个不同元素中取出m 个元素的排列数mn A ,可以分如下两步:① 先求从n 个不同元素中取出m 个元素的组合数m n C ;② 求每一个组合中m 个元素全排列数m m A ,根据分步计数原理得:m n A =m n C mmA ⋅. (2)组合数的公式:(1)(2)(1)!m mn nm m A n n n n m C A m ---+==L 或)!(!!m n m n C m n-=),,(n m N m n ≤∈*且 二、讲解新课:1 组合数的性质1:mn nm n C C -=. 一般地,从n 个不同元素中取出m 个元素后,剩下n m -个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n - m 个元素的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:m n nm n C C -=.在这里,主要体现:“取法”与“剩法”是“一一对应”的思想 证明:∵)!(!!)]!([)!(!m n m n m n n m n n C mn n -=---=-又 )!(!!m n m n C m n -=,∴m n n m n C C -=说明:①规定:10=n C ;②等式特点:等式两边下标同,上标之和等于下标; ③y n x n C C =y x =⇒或n y x =+.2.组合数的性质2:m n C 1+=m n C +1-m nC . 一般地,从121,,,+n a a a Λ这n +1个不同元素中取出m 个元素的组合数是m n C 1+,这些组合可以分为两类:一类含有元素1a ,一类不含有1a .含有1a 的组合是从132,,,+n a a a Λ这n 个元素中取出m -1个元素与1a 组成的,共有1-m n C 个;不含有1a 的组合是从132,,,+n a a a Λ这n 个元素中取出m 个元素组成的,共有mnC 个.根据分类计数原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.证明:)]!1([)!1(!)!(!!1---+-=+-m n m n m n m n C C m n m n )!1(!!)1(!+-++-=m n m m n m n n )!1(!!)1(+-++-=m n m n m m n )!1(!)!1(+-+=m n m n m n C 1+=∴m n C 1+=m n C +1-m nC . 3.例子1.(1)计算:69584737C C C C +++; (2)求证:n m C 2+=n m C +12-n m C +2-n m C .解:(1)原式4565664889991010210C C C C C C C =++=+===;证明:(2)右边1121112()()n n n n n n n m m m m m m m C C C C C C C ----+++=+++=+==左边2.解方程:(1)3213113-+=x x C C ;(2)解方程:333222101+-+-+=+x x x x x A C C . 解:(1)由原方程得123x x +=-或12313x x ++-=,∴4x =或5x =,又由111312313x x x N *⎧≤+≤⎪≤-≤⎨⎪∈⎩得28x ≤≤且x N *∈,∴原方程的解为4x =或5x =上述求解过程中的不等式组可以不解,直接把4x =和5x =代入检验,这样运算量小得多.(2)原方程可化为2333110x x x C A -++=,即5333110x x C A ++=,∴(3)!(3)!5!(2)!10!x x x x ++=-⋅, ∴11120(2)!10(1)(2)!x x x x =-⋅-⋅-, ∴2120x x --=,解得4x =或3x =-,经检验:4x =是原方程的解3. 有同样大小的4个红球,6个白球。

1.2.2《组合》教案(新人教选修2-3)

1.2.2《组合》教案(新人教选修2-3)

1.2.2组合(第一课时)教学目标:1.理解组合的意义,掌握组合数的计算公式;2.能正确认识组合与排列的联系与区别 教学重点:理解组合的意义,掌握组合数的计算公式 教学过程一、复习引入: 1.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定..的顺序...排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列; (2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 2.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号mn A 表示注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m 个元素按照一定的顺序.....排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数所以符号mn A 只表示排列数,而不表示具体的排列3.排列数公式及其推导:(1)(2)(1)m n A n n n n m =---+L (,,m n N m n *∈≤)全排列数:(1)(2)21!nn A n n n n =--⋅=L (叫做n 的阶乘)二、讲解新课:1 组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同2.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号mn C 表示. 3.组合数公式的推导:(1)一般地,求从n 个不同元素中取出m 个元素的排列数mn A ,可以分如下两步:① 先求从n 个不同元素中取出m 个元素的组合数mn C ;② 求每一个组合中m 个元素全排列数mm A ,根据分步计数原理得:m n A =m n C mm A ⋅.(2)组合数的公式:(1)(2)(1)!m mn nm m A n n n n m C A m ---+==L 或)!(!!m n m n C mn -=,,(n m N m n ≤∈*且 例子:1、计算:(1)47C ; (2)710C ;(1)解: 4776544!C ⨯⨯⨯==35;(2)解法1:710109876547!C ⨯⨯⨯⨯⨯⨯==120.解法2:71010!10987!3!3!C ⨯⨯===120. 2、求证:11+⋅-+=m n mn C mn m C .证明:∵)!(!!m n m n C mn -=111!(1)!(1)!m nm m n C n mn m m n m +++⋅=⋅--+-- =1!(1)!()(1)!m n m n m n m +⋅+---=!!()!n m n m -∴11+⋅-+=m n mn C mn m C3、在52件产品中,有50件合格品,2件次品,从中任取5件进行检查. (1)全是合格品的抽法有多少种? (2)次品全被抽出的抽法有多少种?(3)恰有一件次品被抽出的抽法有多少种? (4)至少有一件次品被抽出的抽法有多少种? 4、名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,分别有34C ,1624C C ⋅,2614C C ⋅,所以,一共有34C +1624C C ⋅+2614C C ⋅=100种方法.解法二:(间接法)10036310=-C C课堂小节:本节课学习了组合的意义,组合数的计算公式 课堂练习:第26页练习课后作业:第27页习题A:7.8.91.2.2组合(第二课时)教学目标:1掌握组合数的两个性质;2.进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题 教学重点:掌握组合数的两个性质 教学过程一、复习引入:1 组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n个不同元素中取出m 个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同2.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号mn C 表示. 3.组合数公式的推导:(1)一般地,求从n 个不同元素中取出m 个元素的排列数mn A ,可以分如下两步:① 先求从n 个不同元素中取出m 个元素的组合数mn C ;② 求每一个组合中m 个元素全排列数mm A ,根据分步计数原理得:m n A =m n C mm A ⋅.(2)组合数的公式:(1)(2)(1)!m mn nm m A n n n n m C A m ---+==L 或)!(!!m n m n C mn -=),,(n m N m n ≤∈*且 二、讲解新课:1 组合数的性质1:mn n m n C C -=.一般地,从n 个不同元素中取出m 个元素后,剩下n m -个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n m 个元素的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n m 个元素的组合数,即:mn n m n C C -=.在这里,主要体现:“取法”与“剩法”是“一一对应”的思想证明:∵)!(!!)]!([)!(!m n m n m n n m n n C m n n -=---=- 又 )!(!!m n m n C mn -=,∴m n n m n C C -=说明:①规定:10=n C ;②等式特点:等式两边下标同,上标之和等于下标;③yn x n C C =y x =⇒或n y x =+.2.组合数的性质2:m n C 1+=m n C +1-m nC .一般地,从121,,,+n a a a Λ这n +1个不同元素中取出m 个元素的组合数是mn C 1+,这些组合可以分为两类:一类含有元素1a ,一类不含有1a .含有1a 的组合是从132,,,+n a a a Λ这n 个元素中取出m1个元素与1a 组成的,共有1-m nC 个;不含有1a 的组合是从132,,,+n a a a Λ这n 个元素中取出m 个元素组成的,共有mn C 个.根据分类计数原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.证明:)]!1([)!1(!)!(!!1---+-=+-m n m n m n m n C C m n m n )!1(!!)1(!+-++-=m n m m n m n n )!1(!!)1(+-++-=m n m n m m n )!1(!)!1(+-+=m n m n m n C 1+= ∴m n C 1+=m n C +1-m n C .3.例子1.(1)计算:69584737C C C C +++;(2)求证:n m C 2+=n m C +12-n m C +2-n m C .解:(1)原式4565664889991010210C C C C C C C =++=+===;证明:(2)右边1121112()()n n n n n n n m m m m m m m C C C C C C C ----+++=+++=+==左边2.解方程:(1)3213113-+=x x C C ;(2)解方程:333222101+-+-+=+x x x x x A C C . 解:(1)由原方程得123x x +=-或12313x x ++-=,∴4x =或5x =,又由111312313x x x N *⎧≤+≤⎪≤-≤⎨⎪∈⎩得28x ≤≤且x N *∈,∴原方程的解为4x =或x =上述求解过程中的不等式组可以不解,直接把4x =和5x =代入检验,这样运算量小得多.(2)原方程可化为2333110x x x C A -++=,即5333110x x C A ++=,∴(3)!(3)!5!(2)!10!x x x x ++=-⋅, ∴11120(2)!10(1)(2)!x x x x =-⋅-⋅-,∴2120x x --=,解得4x =或3x =-,经检验:4x =是原方程的解3. 有同样大小的4个红球,6个白球。

2022年高中数学新人教版A版精品教案《1.2.2 组合》

2022年高中数学新人教版A版精品教案《1.2.2 组合》

组合教学目标:知识与技能:理解组合的意义,能写出一些简单问题的所有组合。

明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题。

过程与方法:了解组合数的意义,理解排列数与组合数之间的联系,掌握组合数公式,能运用组合数公式进行计算。

情感、态度与价值观:能运用组合要领分析简单的实际问题,提高分析问题的能力。

教学重点:组合的概念和组合数公式教学难点:组合的概念和组合数公式授课类型:新授课课时安排:2课时内容分析:排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题排列与组合的区别在于问题是否与顺序有关与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系指导学生根据生活经验和问题的内涵领悟其中表达出来的顺序教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯穿能列举出某种方法时,让学生通过交换元素位置的方法加以鉴别学生易于区分组合、全排列问题,而排列问题就是先组合后全排列在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步那么考虑元素是否需全排列,如果不需要,是组合问题;否那么是排列问题排列、组合问题大都情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班〞的处理问题的过程据笔者观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法〔很可能是有悖于常理或常规的做法〕要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,假设能借助适当的工具,模拟做事的过程,那么更能说明问题久而久之,学生的逻辑思维能力将会大大提高教学过程:一、复习引入:1.排列的概念:从个不同元素中,任取〔〕个元素〔这里的被取元素各不相同〕按照一定的顺序.........排成一列,叫做从个不同元素中取出个元素的一个排列2.排列数的定义:从个不同元素中,任取〔〕个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示3.排列数公式:〔〕4.排列数的另一个计算公式:=5提出问题:问题1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?引导观察: 1中不但要求选出2名同学,而且还要按照一定的顺序“排列〞,而2只要求选出2名同学,是与顺序无关的引出课题:组合...二、讲解新课:1组合的概念:一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合说明:⑴不同元素;⑵“只取不排〞——无序性;⑶相同组合:元素相同例1.判断以下问题是组合还是排列〔1〕在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?有多少种不同的飞机票价?〔2〕高中部11个班进行篮球单循环比赛,需要进行多少场比赛?〔3〕从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?选出三人参加某项劳动,有多少种不同的选法?〔4〕10个人互相通信一次,共写了多少封信?〔5〕10个人互通一次,共多少个?问题:〔1〕1、2、3和3、1、2是相同的组合吗?〔2〕什么样的两个组合就叫相同的组合2.组合数的概念:从个不同元素中取出个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数....用符号表示.3.组合数公式的推导:〔1〕从4个不同元素中取出3个元素的组合数是多少呢?启发:由于排列是先组合再排列.........,而从4个不同元素中取出3个元素的排列数可以求得,故我们可以考察一下和的关系,如下:组合排列由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数,可以分如下两步:①考虑从4个不同元素中取出3个元素的组合,共有个;②对每一个组合的3个不同元素进行全排列,各有种方法.由分步计数原理得:=,所以,.〔2〕推广:一般地,求从n个不同元素中取出m个元素的排列数,可以分如下两步:①先求从n个不同元素中取出m个元素的组合数;②求每一个组合中m个元素全排列数,根据分步计数原理得:=.〔3〕组合数的公式:或规定:三、讲解范例:例2.计算:〔1〕;〔2〕;〔1〕解:=35;〔2〕解法1:=12021 解法2:=12021例3.一位教练的足球队共有 17 名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规那么,比赛时一个足球队的上场队员是11人.问:这位教练从这 17 名学员中可以形成多少种学员上场方案?2如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?分析:对于〔1,根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从 17 个不同元素中选出11个元素的组合问题;对于〔 2 ,守门员的位置是特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题.解: 1〕由于上场学员没有角色差异,所以可以形成的学员上场方案有 C }手= 12 376 〔种〕2〕教练员可以分两步完成这件事情:第1步,从17名学员中选出 n 人组成上场小组,共有种选法;第2步,从选出的 n 人中选出 1 名守门员,共有种选法.所以教练员做这件事情的方法数有=136136〔种〕例4.〔1〕平面内有10 个点,以其中每2 个点为端点的线段共有多少条?2〕平面内有 10 个点,以其中每 2 个点为端点的有向线段共有多少条?解:1〕以平面内 10 个点中每 2 个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段共有〔条〕2〕由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每 2 个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有〔条〕五、小结:组合的意义与组合数公式;解决实际问题时首先要看是否与顺序有关,从而确定是排列问题还是组合问题,必要时要利用分类和分步计数原理学生探究过程:〔完成如下表格〕六、课后作业:。

数学人教A版选修2-3教案:1.2.2组合第三课时含解析

数学人教A版选修2-3教案:1.2.2组合第三课时含解析

第三课时教学目标知识与技能理解排列组合的区别和联系,综合运用排列组合解决计数问题.过程与方法通过具体实例,经历把具体事例抽象为排列组合问题,利用排列、组合数公式求解的过程.情感、态度与价值观能运用排列组合要领分析简单的实际问题,提高分析问题的能力.重点难点教学重点:综合运用排列组合解决计数问题.教学难点:综合运用排列组合解决计数问题.错误!错误!提出问题1:判断下列问题是组合问题还是排列问题?并求出下列问题的解.(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共打了多少个电话?活动设计:学生自主完成,教师提问.活动成果:(1)(3)(4)是排列;(2)(5)是组合.(1)A错误!=6;(2)C错误!=55;(3)A错误!=10 626;(4)A错误!=90;(5)C错误!=45。

1.从n个不同元素中,任取m(m≤n)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m 个元素的一个排列.2.排列数公式:A错误!=n(n-1)(n-2)…(n-m+1)(m,n∈N,m≤n).A错误!=n(n-1)(n-2)…(n-m+1)=错误!=错误!。

3.组合的概念:一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.4.C m,n=错误!=错误!或C错误!=错误!(n,m∈N,且m≤n).设计意图:回顾本单元基础知识,为本节课的学习服务.错误!类型一:排数字问题1(1)用0,1,2,3,4能组成多少个无重复数字的四位数?(2)这四位数中能被3整除的数有多少个?思路分析:可以从特殊元素或特殊位置入手直接分析,也可以从对立面间接排除.解:(1)直接分类法:①特殊元素分析法:分两类:选0,有A错误!A错误!=72个;不选0,有A4,4=24个.根据分类加法计数原理可得共有72+24=96个.②特殊位置分析法:先考虑首位,可以从1,2,3,4四个数字中任取一个,共A错误!种方法,再考虑其他三个位置,可以从剩下的四个数字中任取3个,即A错误!种方法.根据分步乘法计数原理共有A错误! A错误!=96种方法,即96个无重复数字的四位数.③间接排除法:先从五个数字中任取四个排成四位数:A错误!,再排除不符合要求的四位数,即0在首位的四位数:A错误!。

高中数学 1.2.2组合教案 新人教版选修2-3最新修正版

高中数学 1.2.2组合教案 新人教版选修2-3最新修正版

§1.2.2组合教学目标:知识与技能:理解组合的意义,能写出一些简单问题的所有组合。

明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题。

过程与方法:了解组合数的意义,理解排列数m n A 与组合数 之间的联系,掌握组合数公式,能运用组合数公式进行计算。

情感、态度与价值观:能运用组合要领分析简单的实际问题,提高分析问题的能力。

教学重点:组合的概念和组合数公式 教学难点:组合的概念和组合数公式 授课类型:新授课 课时安排:2课时 内容分析:排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.能列举出某种方法时,让学生通过交换元素位置的办法加以鉴别.学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题.排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据笔者观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.教学过程:一、复习引入:1、分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m12n N m m m =+++种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法mn C3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的...顺序..排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号mn A 表示5.排列数公式:(1)(2)(1)mn A n n n n m =---+(,,m n N m n *∈≤)阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.7.排列数的另一个计算公式:mn A =!()!n n m -8.提出问题:示例1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法? 引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的引出课题:组合...二、讲解新课:组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同 例1.判断下列问题是组合还是排列(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?有多少种不同的飞机票价?(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?选出三人参加某项劳动,有多少种不同的选法?(4)10个人互相通信一次,共写了多少封信? (5)10个人互通电话一次,共多少个电话? 问题:(1)1、2、3和3、1、2是相同的组合吗? (2)什么样的两个组合就叫相同的组合2.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号mn C 表示.3.组合数公式的推导:(1)从4个不同元素,,,a b c d 中取出3个元素的组合数34C 是多少呢?启发:由于排列是先组合再排列.........,而从4个不同元素中取出3个元素的排列数34A 可以求得,故我们可以考察一下34C 和34A 的关系,如下:组 合 排列dcbcdb bdc dbc cbd bcd bcd dca cda adc dac cad acd acd dba bda adb dab bad abd abd cba bca acb cab bac abc abc ,,,,,,,,,,,,,,,,,,,,→→→→ 由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数34A ,可以分如下两步:① 考虑从4个不同元素中取出3个元素的组合,共有34C 个;② 对每一个组合的3个不同元素进行全排列,各有33A 种方法.由分步计数原理得:34A =⋅34C 33A ,所以,333434A A C =.(2)推广:一般地,求从n 个不同元素中取出m 个元素的排列数mn A ,可以分如下两步: ① 先求从n 个不同元素中取出m 个元素的组合数mn C ;② 求每一个组合中m 个元素全排列数m m A ,根据分步计数原理得:m n A =m n C mm A ⋅.(3)组合数的公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+==或)!(!!m n m n C mn -=,,(n m N m n ≤∈*且 规定: 01nC =.三、讲解范例:例2.用计算器计算710C .解:由计算器可得例3.计算:(1)47C ; (2)710C ;(1)解: 4776544!C ⨯⨯⨯==35;(2)解法1:710109876547!C ⨯⨯⨯⨯⨯⨯==120.解法2:71010!10987!3!3!C ⨯⨯===120.例4.求证:11+⋅-+=m n mn C mn m C .证明:∵)!(!!m n m n C mn -=111!(1)!(1)!m nm m n C n mn m m n m +++⋅=⋅--+-- =1!(1)!()(1)!m n m n m n m +⋅+---=!!()!n m n m -∴11+⋅-+=m n mn C mn m C例5.设,+∈N x 求321132-+--+x x x x C C 的值解:由题意可得:⎩⎨⎧-≥+-≥-321132x x x x ,解得24x ≤≤, ∵x N +∈, ∴2x =或3x =或4x =,当2x =时原式值为7;当3x =时原式值为7;当4x =时原式值为11. ∴所求值为4或7或11.例6. 一位教练的足球队共有 17 名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:(l)这位教练从这 17 名学员中可以形成多少种学员上场方案?(2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情? 分析:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从 17 个不同元素中选出11个元素的组合问题;对于( 2 ) ,守门员的位置是特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题.解: (1)由于上场学员没有角色差异,所以可以形成的学员上场方案有 C }手= 12 376 (种) . (2)教练员可以分两步完成这件事情:第1步,从17名学员中选出 n 人组成上场小组,共有1117C 种选法; 第2步,从选出的 n 人中选出 1 名守门员,共有111C 种选法. 所以教练员做这件事情的方法数有1111711C C ⨯=136136(种).例7.(1)平面内有10 个点,以其中每2 个点为端点的线段共有多少条?(2)平面内有 10 个点,以其中每 2 个点为端点的有向线段共有多少条?解:(1)以平面内 10 个点中每 2 个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段共有2101094512C⨯==⨯(条). (2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每 2 个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有21010990A =⨯=(条).例8.在 100 件产品中,有 98 件合格品,2 件次品.从这 100 件产品中任意抽出 3 件 .(1)有多少种不同的抽法?(2)抽出的 3 件中恰好有 1 件是次品的抽法有多少种? (3)抽出的 3 件中至少有 1 件是次品的抽法有多少种?解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有31001009998123C⨯⨯=⨯⨯= 161700 (种).(2)从2 件次品中抽出 1 件次品的抽法有12C 种,从 98 件合格品中抽出 2 件合格品的抽法有298C 种,因此抽出的 3 件中恰好有 1 件次品的抽法有12298C C ⋅=9506(种).(3)解法 1 从 100 件产品抽出的 3 件中至少有 1 件是次品,包括有1件次品和有 2 件次品两种情况.在第(2)小题中已求得其中1件是次品的抽法有12298C C ⋅种,因此根据分类加法计数原理,抽出的3 件中至少有一件是次品的抽法有12298C C ⋅+21298C C ⋅=9 604 (种) .解法2 抽出的3 件产品中至少有 1 件是次品的抽法的种数,也就是从100件中抽出3 件的抽法种数减去3 件中都是合格品的抽法的种数,即3310098C C -=161 700-152 096 = 9 604 (种).说明:“至少”“至多”的问题,通常用分类法或间接法求解。

高中数学新人教版A版精品教案《1.2.2 组合》

高中数学新人教版A版精品教案《1.2.2 组合》

组合与组合数公式教学目标:(一)知识和技能目标1、理解组合,组合数的概念;2、能应用计数原理,排列数公式推导组合数公式;(二)过程和方法目标理解组合与组合数的概念,由特殊到一般的方法合作探究出组合数公式,培养学生的实践能力和分析问题解决问题的能力;体会从特殊到一般,转化与化归及类比思想。

(三)情感价值目标学生感受到探究和协作精神的重要性,从而提高学习数学的兴趣。

教学重点:类比排列掌握组合与组合数公式。

教学难点:推导m m m n mn A C A ⨯=,进而得出组合数公式。

教学过程:一、问题引入问题一: 从甲、乙、丙3名同学中选出2名担任我班班委,其中1名担任我班班长,另1名担任学习委员,有多少种不同的排法?你能列举出来吗?问题二:从甲、乙、丙3名同学中选出2名担任我班班委,有多少种不同的选法?你能列举出来吗? 思考:两个问题之间区别?(引出课题:组合)二、新课讲授(一) 类比排列的定义给出组合的概念排列的定义:一般地,从n 个不同元素中取出m (m ≤n )个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列组合的定义:一般地,从n 个不同元素中取出m (m ≤n )个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合(1)思考:排列与组合的区别是什么?(类比得到)(2)定义巩固:判断下列问题哪些是排列问题,哪些是组合问题(二) 组合数的概念从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数。

用符号mn C 表示。

注意:组合数与组合的区别。

(三) 组合数公式利用排列与组合之间的关系得到组合数公式,采用特殊到一般的方法(1)借助图形用列举法得出=24C 6(2)引导学生以“元素相同”为标准,把“从4个不同元素中任取2个的排列”进行分类,并以框图的形式直观表示,体会排列与组合之间的关系得出222424A C A ⨯=(3)类比上述方法分析4C 34=(4)进一步分析 222424A C A ⨯=的实际意义,发现排列可以分为“先取后排”两个步骤(5)将上述结果推广到一般情形,得出组合数公式一般地,求从n 个不同元素中取出m 个元素的排列数,可以分为以下2步:第1步,从这n 个不同元素中取出m 个元素 ,共有m n C 种不同的方法;第2步,将m 个元素做全排列,共有m m A 种不同排法。

2019-2020年高中数学《1.2.2组合》教案2 新人教A版选修2-3

2019-2020年高中数学《1.2.2组合》教案2 新人教A版选修2-3

2019-2020年高中数学《1.2.2组合》教案2 新人教A 版选修2-3一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,……,在第n 类办法中有种不同的方法那么完成这件事共有 种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第n 步有种不同的方法,那么完成这件事有 种不同的方法3.排列的概念:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一.定的顺序....排成一列,叫做从个不同元素中取出个元素的一个排列....4.排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示5.排列数公式:(1)(2)(1)m n A n n n n m =---+()6阶乘:表示正整数1到的连乘积,叫做的阶乘规定.7.排列数的另一个计算公式:=8.提出问题:示例1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法? 引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的引出课题:组合... 二、讲解新课:1组合的概念:一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同例1.判断下列问题是组合还是排列(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?有多少种不同的飞机票价?(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?选出三人参加某项劳动,有多少种不同的选法?(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共多少个电话?问题:(1)1、2、3和3、1、2是相同的组合吗?(2)什么样的两个组合就叫相同的组合2.组合数的概念:从个不同元素中取出个元素的所有组合的个数,叫做从 个不同元素中取出个元素的组合数....用符号表示. 例2.用计算器计算.解:由计算器可得例3.计算:(1); (2);(1)解: =35;(2)解法1:710109876547!C⨯⨯⨯⨯⨯⨯==120.解法2:=120.2019-2020年高中数学《1.2.3 循环语句》教案新人教A版必修3教学分析通过前面的学习,学生学会了输入语句、输出语句、赋值语句和条件语句的基本用法,本节将介绍循环语句的用法. 程序中的循环语句与程序框图中的循环结构存在一一对应关系,这种对应关系对于学生理解循环语句的结构,进一步理解算法中的循环结构都是很有帮助的.我们可以给出循环语句的一般格式,让学生自己画出相应的程序框图,也可以给出程序框图,让学生写出算法语句,提高学生的应用能力.三维目标1.理解学习基本算法语句的意义.2.学会循环语句的基本用法.3.理解算法步骤、程序框图和算法语句的关系,学会算法语句的写法.重点难点教学重点:循环语句的基本用法.教学难点:循环语句的写法.课时安排1课时教学过程导入新课思路1(情境导入)一位同学不小心违反了学校纪律,班主任令其写检查,他写完后交给班主任,班主任看后说:“认识不深刻,拿回去重写,直到认识深刻为止”.这位同学一想,这不是一个循环结构吗?可惜我还没学循环语句,不然可以写一个算法语句输入计算机了.同学们,今天我们开始学习循环语句.思路2(直接导入)前面我们学习了程序框图的画法,为了让计算机能够理解算法步骤、程序框图,上一节我们学习了输入语句、输出语句、赋值语句和条件语句,今天我们开始学习循环语句.推进新课新知探究提出问题(1)试用程序框图表示循环结构.(2)指出循环语句的格式及功能.(3)指出两种循环语句的相同点与不同点.(4)揭示程序中的循环语句与程序框图中的条件结构存在一一对应关系.讨论结果:(1)循环结构循环结构有两种形式:当型循环结构和直到型循环结构.1°当型循环结构,如图(1)所示2°直到型循环结构,如图(2)所示,(1)当型循环结构(2)直到型循环结构(2)循环语句1°当型循环语句当型(WHILE型)语句的一般格式为:WHILE 条件循环体WEND功能:计算机执行此程序时,遇到WHILE语句,先判断条件是否成立,如果成立,则执行WHILE和WEND之间的循环体;然后返回到WHILE语句再判断上述条件是否成立,如果成立,再执行循环体,这个过程反复执行,直到一次返回到WHILE语句判断上述条件不成立为止,这时不再执行循环体,而是跳到WEND语句后,执行WEND后面的语句.因此当型循环又称“前测试型”循环,也就是我们经常讲的“先测试后执行”“先判断后循环”.2°直到型循环语句直到型(UNTIL型)语句的一般格式为:DO循环体LOOP UNTIL 条件功能:计算机执行UNTIL语句时,先执行DO和LOOP UNTIL之间的循环体,然后判断“LOOP UNTIL”后面的条件是否成立,如果条件不成立,返回DO语句处重新执行循环体.这个过程反复执行,直到一次判断“LOOP UNTIL”后面的条件成立为止,这时不再返回执行循环体,而是跳出循环体执行“LOOP UNTIL条件”下面的语句.因此直到型循环又称“后测试型”循环,也就是我们经常讲的“先执行后测试”“先循环后判断”.(3)相同点:都是反复执行循环体语句.不同点:当型循环语句是先判断后循环,直到型循环语句是先循环后判断.(4)下面为循环语句与程序框图中的条件结构的一一对应关系.1°直到型循环结构:2°当型循环结构:应用示例思路1例1 修改前面编写过的求函数y=x3+3x2-24x+30的值的程序,连续输入11个自变量的取值,输出相应的函数值.算法分析:与前面不同的是,本例要求连续输入11个自变量的取值.并输出相应的函数值,先写出解决本例的算法步骤:第一步,输入自变量x的值.第二步,计算y=x3+3x2-24x+30.第三步,输出y.第四步,记录输入次数.第五步,判断输入的次数是否大于11.若是,则结束算法;否则,返回第一步.显然,可以用计数变量n(1≤n≤11)记录次数,通过循环结构来实现算法.程序框图如下图:程序:n=1DOINPUT xy=x^3+3*x^2-24*x+30PRINT yn=n+1LOOP UNTIL n>11END例2 教材中的用“二分法”求方程x2-2=0(x>0)的近似解的程序框图(见教材图1.120)包含了顺序结构、条件结构和循环结构.下面,我们把这个程序框图转化为相应的程序. 解:程序为:INPUT “a,b,d=”;a,b,dDOm=(a+b)/2g=a^2-2f=m^2-2IF g*f<0 THENb=mELSEa=mEND IFLOOP UNTIL ABS(a-b)<d OR f=0PRINT mEND点评:ABS()是一个函数,用来求某个数的绝对值,即ABS(x)=|x|.例3 设计一个计算1×3×5×7×…×99的算法,编写算法程序.解:算法如下:第一步,s=1.第二步,i=3.第三步,s=s×i.第四步,i=i+2.第五步,如果i≤99,那么转到第三步.第六步,输出s.程序如下:(“WHILE型”循环语句)s=1i=3WHILE i<=99s=s*ii=i+2WENDPRINT sEND点评:前面我们已经学过“求和”问题,这是一个“求积”问题,这两个问题都是典型的算法问题,注意它们的联系与区别.例4 编写一个程序,求1!+2!+…+10!的值(其中n!=1×2×3×…×n).分析:这个问题可以用“WHILE+ WHILE”循环嵌套语句格式来实现.程序结构要做到如下步骤:①处理“n!”的值;(注:处理n!的值的变量是一个内循环变量)②累加“n!”的值.(注:累加n!的值的变量是一个外循环变量)显然,通过10次循环可分别求出1!、2!、…、10!的值,并同时累加起来, 可求得S的值.而求T=n!,又可以用一个循环(内循环)来实现.解:程序为:s=0i=1WHILE i<=10j=1t=1WHILE j<=it=t*jj=j+1WENDs=s+ti=i+1WENDPRINT sEND思考:上面程序中哪个变量是内循环变量,哪个变量是外循环变量?解答:内循环变量:j,t.外循环变量:s,i.上面的程序是一个的“WHILE+WHILE”型循环嵌套语句格式.这是一个比较好想的方法,但实际上对于求n!,我们也可以根据求出的(n-1)!乘上n即可得到,而无需重新从1再累乘到n.程序可改为:s=0i=1j=1WHILE i<=10j=j*is=s+ji=i+1WENDPRINT sEND显然第二个程序的效率要比第一个高得多.第一程序要进行1+2+…+10=55次循环,而第二程序进行10次循环.如题目中求的是1!+2!+…+1 000!,则两个程序的效率区别会更明显.点评:解决具体的构造循环语句的算法问题,要尽可能地少引入循环变量,否则较多的变量会使得设计程序比较麻烦,并且较多的变量会使得计算机占用大量的系统资源,致使系统缓慢.另外,也尽可能使得循环嵌套的层数少,否则也浪费计算机的系统资源.变式训练某种蛋白质是由四种氨基酸组合而成.这四种氨基酸的相对分子质量分别是57,71,97,101.实验测定蛋白质的相对分子质量为800.问这种蛋白质的组成有几种可能?分析:该问题即求如下不定方程的整数解:设四种氨基酸在蛋白质的组成中分别各有x,y,z,w个.则由题意可得57x+71y+97z+101w=800,(x,y,z,w是非负整数)这里0≤x≤14,0≤y≤11,0≤z≤8,0≤w≤7,利用穷取法,考虑一切可能出现的情况.运用多层循环嵌套处理即可.解:编写程序如下:w=0WHILE w<=7z=0WHILE z<=8y=0WHILE y<=11x=0WHILE x<=14IF 57*x+71*y+97*z+101*w=800 THENPRINT x ,y ,z ,wEND IFx=x+1WENDy=y+1WENDz=z+1WENDw=w+1WENDEND知能训练 设计算法求100991431321211⨯++⨯+⨯+⨯ 的值.要求画出程序框图,写出用基本语句编写的程序.解:这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.程序框图如下图所示:程序如下:s=0i=1Dos=s+1/(i*(i+1))i=i+1LOOP UNTIL i>99PRINT sEND拓展提升青年歌手电视大赛共有10名选手参加,并请了12名评委,在计算每位选手的平均分数时,为了避免个别评委所给的极端分数的影响,必须去掉一个最高分和一个最低分后再求平均分.试设计一个算法解决该问题,要求画出程序框图,写出程序(假定分数采用10分制,即每位选手的分数最高分为10分,最低分为0分).解:由于共有12位评委,所以每位选手会有12个分数,我们可以用循环语句来完成这12个分数的输入,同时设计累加变量求出这12个分数的和,本问题的关键在于从这12个输入分数中找出最大数与最小数,以便从总分中减去这两个数.由于每位选手的分数都介于0分和10分之间,我们可以先假设其中的最大数为0,最小数为10,然后每次输入一个评委的分数,就进行一次比较,若输入的数大于0,就将之代替最大数,若输入的数小于10,就用它代替最小数,依次下去,就能找出这12个数中的最大数与最小数,循环结束后,从总和中减去最大数与最小数,再除以10,就得到该选手最后的平均分.程序框图如右图:程序如下:s=0i=1max=0min=10DOINPUT xs=s+xIF max<=x THENmax=xEND IFIF min>=x THENmin=xEND IFi=i+1LOOP UNTIL i>12s1=s-max-mina=s1/10PRINT aEND课堂小结(1)学会两种循环语句的应用.(2)熟练应用两种循环语句编写计算机程序,巩固算法应用.作业习题1.2A组3.设计感想本节的导入符合学生心理要求,能够激发学生的学习兴趣.算法像一个故事,循环语句就是故事的高潮,它以前面的内容为基础,是前面内容的总结和发展.本节选用了大量的精彩例题为故事高潮的到来作好了铺垫,精彩的点评把本节推向了高潮,所以本节教案值得期待.。

高中数学人教A版选修2-3第一章《1.2.2 组合》优质课公开课教案教师资格证面试试讲教案

高中数学人教A版选修2-3第一章《1.2.2 组合》优质课公开课教案教师资格证面试试讲教案

高中数学人教A版选修2-3第一章《1.2.2 组合》优质课公开课教案教师资格证面试试讲教案
1教学目标
知识与技能:理解组合的意义,能写出一些简单问题的所有组合。

明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题。

过程与方法:了解组合数的意义,理解排列数与组合数之间的联系,掌握组合数公式,能运用组合数公式进行计算。

情感、态度与价值观:能运用组合要领分析简单的实际问题,提高分析问题的能力。

2学情分析
学生数学基础较差,特别是对数学概念的学习比较吃力。

3重点难点
教学重点:组合的概念和组合数公式
教学难点:组合的概念和组合数公式
4教学过程
4.1第一学时
教学活动
1【导入】1.2.2组合(1)
一、复习引入:
1 分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,……,在第n类办法中有种不同的方法
那么完成这件事共有种不同的方法
2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事有种不同的方法
3.排列的概念:从个不同元素中,任取 ( )个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列。

高中数学 1.2.2第2课时 组合(二) 新人教A版选修2-3

高中数学 1.2.2第2课时 组合(二) 新人教A版选修2-3

()
A.232种
B.252种
C.256种
D.472种
[答案ห้องสมุดไป่ตู้ D
[分析] 利用间接法,先按没有限制条件选取,再排除有
限制条件的,问题得以解决.
[解析] 由题意,不考虑特殊情况,共有 C316=560 种取法, 其中 3 张卡片同色的有 4C34=16 种取法,
其中两张红色卡片的共有 C24C112=72 种取法, 故所求的取法共有 560-16-72=472 种. 故选 D.
(3)男、女生都要有的不同的选法共有 C37-C34-C33=30 种, 或 C14C23+C24C13=30 种.
[方法规律总结] 解答组合应用题的基本思想是“化 归”,即由实际问题来建立组合模型,再由组合数公式来计算 其结果,从而得出实际问题的解.其关键环节是分析判断实际 问题有无顺序.元素顺序改变不影响其结果的便是组合问题.
第三类,从 5 名钳工中选 2 人,和 2 名既会车工又会钳工 的 2 人共 4 人干钳工,4 名只会车工的工人全部干车工,有 C25·C22·C44=10 种选法.
由分类加法计数原理知,不同的选派方法共有 75+100+ 10=185 种.
典例探究学案
简单的组合应用题
(2013·晋中祁县二中高二期末) 从4名男生,3名女生中选出3名代表,(1)不同的选法共有多少 种?(2)至少有一名女生的不同的选法共有多少种?(3)代表中 男、女都要有的不同的选法共有多少种?
成才之路 ·数学
人教A版 ·选修2-3
路漫漫其修远兮 吾将上下而求索
计数原理 第一章
1.2 排列与组合 1.2.2 组合
第2课时 组 合 (二)
第一章
1 自主预习学案 2 典例探究学案 3 课时作业

[学习资料]高中数学 1.2.2 组合学案 新人教A版选修2-3(教师版)

[学习资料]高中数学 1.2.2  组合学案 新人教A版选修2-3(教师版)

小初高K12学习教材1.2.2 组合学习目标:1、通过实例理解组合的概念,能用计数原理推导组合数公式;2、会用组合数公式解决简单的实际问题。

一、主要知识:1、组合的定义: 。

2、组合数: ;3、组合数公式:(1);(2)。

4、组合数的性质:(1);(2)。

二、典例分析:〖例1〗:计算:(1)4331073C C A -;(2)328532C C -;(3)321132-+--+x x x x C C 。

〖例2〗:(1)已知56711710m m m C C C -=,求m 的值;(2)解不等式:46n n C C >; (3)化简:33132171312112n n n n n n n n C C C C ---+++++++;(4)化简:2222345100C C C C ++++。

〖例3〗:“抗震救灾,众志成城”,在“5·12”抗震救灾中,某医院从10医疗专家中抽调6名奔赴赈灾前线,其中这10名医疗专家中有4名是外科志家。

问:(1)抽调的6名专家中恰有2名是外科专家的抽调方法有多少种?(2)至少有2名外科专家的抽调方法有多少种?(3)至多有2名外科专家的抽调方法有多少种?〖例4〗:(1)以一个正方体的顶点为顶点的四面体共有 个。

(2)以一个正方体的8个顶点连成的异面直线共有 对。

小初高K12学习教材 三、课后作业:1、9796959898982C C C ++=( )A 、9799CB 、97100C C 、9899CD 、98100C2、某校高一年级有5个班,高二年级有7个班,高三年级有4个班,分年级进行班与班之间的篮球单循环赛,共需进行的比赛场数为( )A 、222574C C C ++B 、222574C C C C 、222574A A A ++ D 、216C 3、某科技小组有六名学生,现从中选出三名去参观展览,至少有一名女生入选的不同选法有16种,则该小组中的女生人数为( )A 、2B 、3C 、4D 、54、北京《财富》全球论坛开幕期间,某高校有14名志愿者参加接待工作,若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为( )A 、44414106A A A B 、44414106C C CC 、4441410633C C C AD 、4443141063C C C A5、高三某班6名同学站成一排照相,其中甲、乙不能相邻,且甲在乙的右边,则不同的排法数共有( )A 、120B 、240C 、210D 、1056、某班级有一个7人小组,现任选其中3人相互调整座位,其余4人座位不位,则不同的调整方案的种数有( )A 、35B 、70C 、210D 、1057、某球队有2名队长和10名队员,现选派5人上场参加比赛,如果场上最少有1名队长,那么共有 种不同的选法。

(新课程)高中数学《1.2.2组合》教案5新人教A版选修.

(新课程)高中数学《1.2.2组合》教案5新人教A版选修.

高中新课程数学(新课标人教A版选修2-3《1.2.2组合》教案5组合数的性质1:m n n m n C C -=.一般地,从n个不同元素中取出m个元素后,剩下n m -个元素.因为从n个不同元素中取出m个元素的每一个组合,与剩下的n-m个元素的每一个组合一一对应....所以从n个不同元素中取出m个元素的组合数,等于从这n个元素中取出n - m个元素的组合数,即:mn C C -=.在这里,主要体现:取法”与剩法”是一一对应”的思想证明:■/ !(!!]!([!(!m n m n m n n m n n C m n n -=又!(!!m n m n C m n -=,二mm n C C -=说明:①规定:10=n C ;②等式特点:等式两边下标同,上标之和等于下标;③此性质作用:当2 n m >时,计算m n C可变为计算mn nC -,能够使运算简化•例如20012002C =200120022002-C =12002C =2002;④yn x n C C =y x =?或n y x =+.2.组合数的性质2:m n C 1+=m n C +1-m nC .一般地,从121,,,+n a a a这n +1个不同元素中取出m个元素的组合数是n C 1+,这些组合可以分为两类:一类含有元素1a,一类不含有1a含有1a的组合是从132,,,+n a a a这n个元素中取出m -1个元素与1a组成的,共有1-m nC个;不含有1a的组合是从132,,,+n a a a这n个元素中取出m个元素组成的,共有mn C个.根据分类计数原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,含与不含其元素”的分类思想.证明:]!1([!1(!!(!!1---+-=+-m n m n m n m n C C m n m n !1(!!1(!+-++-=m n m m n m n n!1(!!1(+-++-=m n m n m m n !1(!!1(+-+=m n m n mn C 1+=n C 1+=mn C +1-m nC .说明:①公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与大的相同的一个组合数;②此性质的作用:恒等变形,简化运算例11.一个口袋内装有大小不同的7个白球和1个黑球,(1从口袋内取出3个球,共有多少种取法?(2从口袋内取出3个球,使其中含有1个黑球,有多少种取法? (3从口袋内取出3 个球,使其中不含黑球,有多少种取法?解:(15638=C,或=38C +27C 37C ,;(22127=C ;(33537=C .例12.(1 计算:69584737C C C C +++;(2 求证:n m C 2+=n m C +12-n m C +2-n m C .解:(1 原式4565664889991010210C C C C C C C =++=+===;证明:(2 右边1121112((n n n n n n n m m m m m m m C C C C C C C ----+++=+++=+==左边例13.解方程:(13213113-+=x x C C ;(2 解方程:333222101+-+-+ =+x x x x x A C C .解:(1 由原方程得123x x +=-或12313x x ++-=,「• 4x =或5x =,又由111312313x x x N*? < +?«?? € ?得28x W且x N * 原方程的解为4x =或5x =上述求解过程中的不等式组可以不解,直接把4x =和5x =代入检验,这样运算量小得多•(2原方程可化为2333110x x x C A -++=,即5333110x x C A ++=(3!(3 ⑸(2! 10!x x x x ++=-? ・J11120(2! 10(1(2! x x x x =-? -?- ・・ J••• 2120x x --=,解得4x =或3x =-, 经检验:4x =是原方程的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.2组合
第一课时
一、复习引入:
1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不
同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++ 2.分步乘法计数原理:做一
件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法
3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....
4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m
n A 表示
5.排列数公式:(1)(2)(1)m
n A n n n n m =---+ (,,m n N m n *∈≤)
阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.
7.排列数的另一个计算公式:m
n A =!()!
n n m -
8.提出问题:
示例1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?
示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法? 引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的..
. 二、讲解新课:
1组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不
同元素中取出m 个元素的一个组合
说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同 例1.判断下列问题是组合还是排列
(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?有多少种不同的飞机票价?
(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?
(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?选出三人参加某项劳动,有多少种不同的选法?
(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共多少个电话?
问题:(1)1、2、3和3、1、2是相同的组合吗? (2)什么样的两个组合就叫相同的组合
2.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个
不同元素中取出m 个元素的组合数...
.用符号m
n C 表示. 例2.用计算器计算7
10C .
解:由计算器可得
例3.计算:(1)47C ; (2)710C ;
(1)解: 4
77654
4!
C ⨯⨯⨯=
=35;
(2)解法1:7
1010987654
7!
C ⨯⨯⨯⨯⨯⨯==120.
解法2:7
1010!1098
7!3!
3!
C ⨯⨯==
=120.。

相关文档
最新文档