二次根式的运算法则(讲义)
二次根式的混合运算法则
二次根式的混合运算法则二次根式是数学中的一个重要概念,也是数学中常见的运算形式。
在二次根式的混合运算中,我们需要遵循一定的法则和步骤,以确保运算结果的准确性。
本文将介绍二次根式的混合运算法则,并通过实例进行说明。
一、二次根式的定义二次根式是指形如√a的数,其中a为非负实数。
在二次根式中,根号内的数称为被开方数,根号外的数称为系数。
二次根式可以进行加、减、乘、除等运算,但需要遵循一定的法则和步骤。
二、二次根式的混合运算法则1. 加法运算当二次根式相加时,要求被开方数相同,系数相加即可。
例如,√2 + √2 = 2√2。
2. 减法运算当二次根式相减时,同样要求被开方数相同,系数相减即可。
例如,√3 - √2 = √3 - √2。
3. 乘法运算当二次根式相乘时,可以将系数相乘,被开方数相乘并合并为一个二次根式。
例如,2√3 * 3√2 = 6√6。
4. 除法运算当二次根式相除时,可以将系数相除,被开方数相除并合并为一个二次根式。
例如,6√6 / 3√2 = 2√3。
5. 混合运算在二次根式的混合运算中,可以按照运算法则依次进行加、减、乘、除等运算。
需要注意的是,乘法和除法运算的优先级高于加法和减法运算。
三、实例分析为了更好地理解二次根式的混合运算法则,我们来看几个实例。
1. 实例一:计算√5 + √3 - √2的值。
根据加法运算法则,√5 + √3 = √5 + √3,再根据减法运算法则,√5 + √3 - √2 = √5 + √3 - √2。
2. 实例二:计算(2√6 - √2) * √3的值。
根据减法运算法则,2√6 - √2 = 2√6 - √2,再根据乘法运算法则,(2√6 - √2) * √3 = 2√18 - √6。
3. 实例三:计算(3√10 + 2√5) / √2的值。
根据加法运算法则,3√10 + 2√5 = 3√10 + 2√5,再根据除法运算法则,(3√10 + 2√5) / √2 = (3√10 + 2√5) / √2。
二次根式的运算知识点总结
二次根式的运算知识点总结二次根式是指具有形如√a的表达式,其中a是非负实数。
在数学中,二次根式的运算是一个重要的知识点,掌握了这个知识点,我们可以更好地理解和利用二次根式。
下面将总结二次根式运算的基本规则和常见的运算方法。
一、二次根式的基本规则1. 二次根式的化简:当被开方数存在平方因子时,可以进行化简。
例如√4×3 = √(4×3) = 2√3。
2. 二次根式的乘法运算:对于两个二次根式的乘法运算,可以将两个二次根式的根号内的数相乘,根号外的数相乘,并进行化简。
例如:√2 × √3 = √(2 × 3) = √6。
3. 二次根式的除法运算:对于两个二次根式的除法运算,可以将两个二次根式的根号内的数相除,根号外的数相除,并进行化简。
例如:√6 ÷ √2 = √(6 ÷ 2) = √3。
4. 二次根式的加减运算:对于两个二次根式的加减运算,只能进行同类项相加减,并进行化简。
例如:√2 + √3 无法进行化简,可以写成2√2 + 3√5。
二、二次根式的运算方法1. 二次根式与整数的运算:当二次根式与整数进行运算时,可以将整数视为二次根式的特殊形式。
例如:√2 + 4 = √2 + √(4×4) = √2 + 2√2 = 3√2。
2. 二次根式的有理化:有时候需要将二次根式的分母变为有理数,这个过程称为有理化。
有理化的方法有两种:(1) 乘以共轭根式:对于分母中含有二次根式的情况,可以通过乘以分母的共轭根式来进行有理化。
例如:(3 + √2)/(1 + √2) = [(3 + √2)/(1 + √2)] * [(1 - √2)/(1 - √2)] = (3 - 3√2 + √2 - 2)/(1 - 2)= (1 - 2√2)/(-1)= 2√2 - 1(2) 分离根号:对于分母中含有二次根式的情况,可以通过将二次根式的根号部分与非根号部分分离,并进行化简,从而实现有理化。
二次根式运算法则
二次根式运算法则二次根式运算法则是指在进行二次根式的加减、乘除运算时所遵循的一些规则和方法。
掌握了这些规则,可以帮助我们简化和求解二次根式的运算,提高计算的准确性和效率。
一、二次根式的加减法则1. 同类项相加减法则对于同类项的二次根式,可以直接对其系数进行相加或相减。
例如:√2 + √3 = √2 + √32√5 - 3√5 = -√52. 不同类项的相加减法则对于不同类项的二次根式,不能直接进行相加或相减。
需要通过化简的方式将其转化为同类项,然后再进行运算。
例如:√2 + 2√3 = √2 + 2√3(√2 + √3)(√2 - √3) = 2 - √6二、二次根式的乘除法则1. 二次根式的乘法法则二次根式的乘法运算可以通过将根号内的数相乘,并合并同类项的方式进行。
例如:√2 × √3 = √6(√2 + √3)(√2 - √3) = 2 - 3 = -12. 二次根式的除法法则二次根式的除法运算可以通过将根号内的数相除,并合并同类项的方式进行。
例如:√6 ÷ √2 = √3(√6 + √2) ÷ √2 = (√6 + √2) × (√2 ÷ √2) = √3 + 1三、二次根式的化简法则对于复杂的二次根式,可以通过化简的方法将其简化为更简单的形式。
常用的化简法则有以下几种:1. 合并同类项法则将同类项的二次根式合并为一个二次根式。
例如:√2 + √2 = 2√22√3 + 3√3 = 5√32. 提取公因数法则将二次根式中的公因数提取出来,使其成为一个单独的因子。
例如:2√2 + 3√2 = 5√24√5 + 6√5 = 10√53. 有理化分母法则将二次根式的分母有理化,即将分母中的根号消去。
例如:1/√2 = √2/21/√3 = √3/3四、二次根式的运算顺序在进行二次根式的复合运算时,需要注意运算的顺序。
一般按照先乘除后加减的原则进行。
二次根式计算讲义
一、教学目标:知识目标:1、使学生能够利用积的算术平方根的性质进行二次根式的化简与计算;2、会进行简单的二次根式的乘除法、加减法运算;过程与方法:1、使学生进一步了解数学知识之间是相互联系的;2、使学生能联系几何课中学习的勾股定理解决实际问题;情感态度与价值观:培养学生努力探索事物之间内在联系的学习习惯。
二、教学重难点重点:会利用积的算术平方根的性质化简二次根式,会进行二次根式的乘除法、加减法计算。
难点:二次根式的乘法与积的算术平方根的关系及应用。
三、教学内容:知识回顾:1、什么叫二次根式?形如a(a≥0)的式子叫做二次根式的概念2、二次根式有哪些性质?(a)2=a(a≥0)新课知识:二次根式的乘除法:计算:(1)425⨯与425⨯(2)169⨯与169⨯(3)2)32(×2)53(与22)53()32(⨯观察以上式子及其运算结果,看看其中有什么规律?概括:二次根式相乘,实际上就是把被开方数相乘,而根号不变: a ·b =ab (a ≥0,b ≥0) 由以上公式逆向运用可得:ab =a ·b (a ≥0,b ≥0)文字语言叙述:积的算术平方根,等于积中各因式的算术平方根的积。
例1、计算:⑴ 2·32 ⑵21·8 ⑶a 2·a 8(a ≥0)例2、化简: ⑴ 2257 ⑵8116 ⑶12⑷3a (a ≥0) ⑸a (a ≥0,b ≥0)练习: 1、化简:(1)18 (2)27 (3)32(4)2312a b (5)273⨯ (6)5153⨯(7)763⋅ (8)23312⨯ (9)2405⨯(10) 3ab ab ⋅ (0a ≥ 0b ≥)2、计算:⑴xy ·y x 3·2xy⑵18·24·27 (3)63142⨯⨯3、已知()()2727x x x x --=-⋅-,求x 的取值范围。
4、已知等腰三角形的腰为26cm ,底边为42cm ,求这个等腰三角形的面积5、观察:a ·b =ab (a ≥0,b ≥0) 思考:a ×b ×c = ?6、如图,在△ABC 中,∠C=90°,AC=10㎝,BC=24㎝,求AB 。
二次根式运算法则
二次根式运算法则1.二次根式的加减法则:当二次根式的根数和被开方数相同时,可以直接合并同类项。
例如:√2+√2=2√22.二次根式的乘法法则:当相同根数的二次根式相乘时,可以将根号内的被开方数相乘,并保留相同的根号。
例如:√2*√3=√(2*3)=√63.二次根式的除法法则:当相同根数的二次根式相除时,可以将根号内的被开方数相除,并保留相同的根号。
例如:√6/√2=√(6/2)=√34.二次根式的乘方法则:当一个二次根式乘以它自身时,可以将根号内的被开方数进行乘方运算,并保留相同的根号。
例如:(√2)²=25.二次根式的化简法则:当一个二次根式的被开方数是一个完全平方数时,可以将二次根式化简为一个整数。
例如:√4=2当一个二次根式与一个无理数相乘或相除时,无法进行化简。
例如:√2*π或(√2)/π通过以上的二次根式运算法则,我们可以更方便地进行复杂二次根式的计算。
下面通过例题来进一步说明二次根式运算法则的应用。
例题1:计算√5+√5+2√5解:根据二次根式的加减法则,合并同类项得到4√5例题2:计算(√3+1)(√3-1)解:根据二次根式的乘法法则,将根号内的被开方数相乘得到3-1=2例题3:计算√18/√6解:根据二次根式的除法法则,将根号内的被开方数相除得到√(18/6)=√3例题4:计算(√2+√3)²解:根据二次根式的乘方法则,将根号内的被开方数进行乘方运算得到2+2√6+3=5+2√6例题5:将√50化简解:根据二次根式的化简法则,将被开方数50化简为25*2,然后提取出完全平方数得到5√2通过以上的例题,我们可以看到二次根式运算法则的应用,能够帮助我们简化计算,使二次根式的运算更加方便快捷。
二次根式基本运算(根式加减)分母有理化讲义
内容 基本要求 略高要求较高要求二次根式的化简和运算 理解二次根式的加、减、乘、除运算法则会进行二次根式的化简,会进行二次根式的混合运算(不要求分母有理化)板块一 二次根式的乘除最简二次根式:a 0a ≥)中的a 称为被开方数.满足下面条件的二次根式我们称为最简二次根式: ⑴被开放数的因数是整数,因式是整式(被开方数不能存在小数、分数形式) ⑵被开方数中不含能开得尽方的因数或因式 ⑶分母中不含二次根式二次根式的计算结果要写成最简根式的形式. 二次根式的乘法法则a b ab 0a ≥,0b ≥) 二次根式的除法法则a a bb =(0a ≥,0b >)利用这两个法则时注意a 、b ab a b =a 、b 都非负,否则不成立, (7)(5)(7)(5)-⋅---一、二次根式的加减1.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 合并同类二次根式:(x x a b x +=+【例1】 35a -3a +是可以合并的二次根式,则____a =。
【例2】 a )A .2aB .23aC .3aD .4a中考要求例题精讲二次根式基本运算、分母有理化【巩固】判断下列各组二次根式是不是同类二次根式:【例3】下列二次根式中,哪些是同类二次根式?(字母均为正数).【例4】若最简二次根式a2b-的值.a【巩固】若a b,的值是(),为非负数,a a bA.02a b,或11==,D.20====,a b==a b,B.11a b,C.02==a b【例5】已知最简根式a a,b的值()A.不存在B.有一组C.有二组D.多于二组【巩固】若a a,b为整数,则a=______,b=________;【例6】=的整数解有组.…这1999是同类二次根式的共有多少个?2.二次根式的加减【例7】【例8】【巩固】-【例9】3【例10】计算:+【巩固】计算:-【例11】 计算:-【巩固】+-【例12】 先化简后求值。
二次根式的概念和运算
二次根式的概念和运算二次根式是数学中的一种特殊形式,它是指一个数的平方根。
在本文中,我们将探讨二次根式的概念和运算法则。
一、概念二次根式是指一个数的平方根,可以表示为√a的形式,其中a 是一个非负实数。
如果a是一个正实数,则二次根式√a是一个正实数;如果a是零,则二次根式√0等于零;如果a是一个负实数,则二次根式√a 是一个虚数。
例如,√4 = 2,因为2的平方等于4;√9 = 3,因为3的平方等于9;√0 = 0;而√-1是一个虚数,通常表示为i。
二、运算法则1. 二次根式的加法和减法当我们进行二次根式的加法和减法运算时,需要满足被开方数相同的条件。
例如,√5 + √5 = 2√5,√3 - √3 = 0。
2. 二次根式的乘法二次根式的乘法遵循以下法则:√a * √b = √(a * b)。
例如,√2 * √3 = √(2 * 3) = √6。
3. 二次根式的除法二次根式的除法遵循以下法则:√a / √b = √(a / b)。
例如,√8 / √2 = √(8 / 2) = √4 = 2。
注意,当二次根式的分母含有根号时,需要进行有理化处理,即将分母有理化为不含根号的形式。
例如,√2 / (√3 + √2)可以有理化为(√2 / (√3 + √2)) * ((√3 - √2) / (√3 - √2)),得到(√2 * (√3 - √2)) / ((√3)^2 - (√2)^2) = (√6 - 2) / (3 - 2) = √6 - 2。
4. 二次根式的化简当我们遇到二次根式较复杂的情况时,可以尝试对其进行化简。
例如,√72可以化简为√(36 * 2),进一步化简为√36 * √2,即6√2。
另外,还存在一些特殊的二次根式,如√4 = 2,√1 = 1等。
三、实例演练接下来,让我们通过一些实例来加深对二次根式运算法则的理解。
例1:计算√5 + 2√5。
解:根据二次根式的加法法则,√5 + 2√5 = 3√5。
二次根式的运算和应用-讲义
教师学科教案[ 20 – 20 学年度第__学期]
任教学科:_____________
任教年级:_____________
任教老师:_____________
xx市实验学校
学科:数学 专题:二次根式的运算和应用 重难点易错点解析 运算时,不要忽略字母的取值范围. 金题精讲 题一
题面:若201120121
m =
-,则54322011m m m --的值是 .
题二
题面:计算:
(1)(23326)(23326)+--+; (2)22131322⎛⎫⎛⎫-+--+ ⎪ ⎪ ⎪ ⎪⎝
⎭⎝⎭; (3)ab -b a ―a b +2++a
b b a (a >0,b >0)
满分冲刺
题一
题面:若811-的整数部分是a ,小数部分是b ,则22ab b -= .
题二
题面:如果524-+=+b a b a ,那么b a 2+=_____.
题三 题面:化简22)1(111+++n n ,所得的结果为( )
A .1111+++n n
B .1111++-n n
C .1111+-+n n
D .1
111+--n n
思维拓展
题面:一只蚂蚁想从长方体表面的A 点爬向G 点,其中AB =3,BC =1,AE =2,求蚂蚁所走的最短路径是多少?
讲义参考答案金题精讲
题一
答案:0
题二
(2)2(3)ab
答案:(1)12312
满分冲刺
题一
答案:5
题二
答案:6
题三
答案:C
思维拓展
答案:2。
二次根式的讲义
专题一 二次根式【知识点1】二次根式的概念:一般地,我们把形如)0(0≥≥a a 的式子叫做二次根式。
二次根式的实质是一个非负数数a 的算数平方根。
【注】二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。
例1 以下各式1〕22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________〔填序号〕. 例2 使x +1x-2有意义的x 的取值范围是〔 〕 A .x ≥0 B .x ≠2 C .x>2 D .x ≥0且x ≠2. 例3 假设y=5-x +x -5+2021,那么x+y=练习1使代数式43--x x 有意义的x 的取值范围是〔 〕 A 、x>3 B 、x ≥3 C 、 x>4D 、x ≥3且x ≠4练习2假设11x x ---2()x y =+,那么x -y 的值为〔 〕A .-1B .1C .2D .3例4 假设230a b -+-=,那么 2a b -= 。
例5 在实数的范围内分解因式:X 4 - 4X 2+ 4= ________ 例6 假设a 、b 为正实数,以下等式中一定成立的是〔 〕: A 、a 2 +b 2 =a 2+b 2 ; B 、〔a 2+b 2〕2 =a 2+b 2; C 、〔 a + b 〕2= a 2+b 2; D 、〔a —b 〕2 =a —b ;【知识点2】二次根式的性质:〔1〕二次根式的非负性,)0(0≥≥a a 的最小值是0;也就是说〔〕是一个非负数,即0〔〕。
注:因为二次根式〔〕表示a 的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数〔〕的算术平方根是非负数,即0〔〕,这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如假设,那么a=0,b=0;假设,那么a=0,b=0;假设,那么a=0,b=0。
二次根式基本运算(根式加减)分母有理化讲义
二次根式基本运算、分母有理化中考要求内容基本要求略高要求较高要求二次根式的理解二次根式的加、减、乘、除运算法则会进行二次根式的化简,会进行二次根化简和运算式的混合运算(不要求分母有理化)例题精讲板块一二次根式的乘除最简二次根式:二次根式 a ( a 0 )中的 a 称为被开方数.满足下面条件的二次根式我们称为最简二次根式:⑴ 被开放数的因数是整数,因式是整式(被开方数不能存在小数、分数形式)⑵ 被开方数中不含能开得尽方的因数或因式⑶ 分母中不含二次根式二次根式的计算结果要写成最简根式的形式.二次根式的乘法法则: a bab ( a 0 , b 0 )二次根式的除法法则: a a( a 0 ,b 0 )b b利用这两个法则时注意a 、 b 的取值范围,对于aba b , a 、 b 都非负,否则不成立,如 (7)(5)(7) ( 5)一、二次根式的加减1.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.合并同类二次根式: a x b x (a b) x .同类二次根式才可加减合并.【例 1】若最简二次根式3a 5 与 a 3 是可以合并的二次根式,则 a ____ 。
【例 2】下列二次根式中,与 a 是可以合并的是()A .2a B.3a 2C.a3D. a 4【巩固】判断下列各组二次根式是不是同类二次根式:⑴2x3 y和 2x3 yz ⑵2b和aa 2b⑶27 x和 3xy ⑷ 4 a3 b2 和 a2 b34 y85 5【例 3】下列二次根式中,哪些是同类二次根式?(字母均为正数)127 ;48 ;20;1125;1y; y x .5 2 x x y【例 4】若最简二次根式 a b 2a b与 a 2b 是同类根式,求a2b的值.【巩固】若 a ,b 为非负数, a b 4b 与3a b 是可以合并的二次根式,则 a ,b 的值是()A . a 0 ,b 2 B. a 1,b 1 C. a 0,b 2 或 a 1,b 1 D. a 2 ,b 0【例 5】已知最简根式 a2a b与a b 7 是同类二次根式,则满足条件的a ,b 的值()A .不存在B.有一组C.有二组D.多于二组【巩固】若a b4与最简二次根式3a b 为同类二次根式,其中a,b为整数,则a ______,b________;b【例 6】方程x y 1998 的整数解有组 .【巩固】在 1 , 2 , 3 ,⋯,1999 这 1999 个式子中,与2000 是同类二次根式的共有多少个?2.二次根式的加减【例 7】化简:a26a 9a210a 25【例 8】计算:48 1 2 17527 81 1【巩固】 (3 0.5 4 1.5)( 0.24 4 )2 2【例 9】3x y y x x3 yxy3x y【例 10】计算: 5 2 8 7 18【巩固】计算:1 1 2 12315348 3 3【巩固】计算:2 1 240.5 2 63 8【例 11】计算:8 2 0.251150 2 728 31 1【巩固】(27) (12 45)3 5【例 12】先化简后求值。
二次根式的运算法则
二次根式的运算法则二次根式是数学中常见的一种形式,它可以表示方程中的未知数,也可以用于求解几何问题等。
在进行二次根式的运算时,有一些特定的法则需要遵循,这些法则能够帮助我们简化运算并得到准确的结果。
一、二次根式的乘法法则当我们需要计算两个二次根式的乘积时,可以按照以下步骤进行:步骤一:将每个二次根式的根号内的数相乘,这个过程叫做“合并”根号内的数。
步骤二:将两个二次根式的合并结果相乘,这个过程叫做“合并”二次根式。
举例来说,假设有两个二次根式√a和√b,它们的乘积可以表示为√a * √b = √(a * b)。
在计算过程中,我们先将根号内的数相乘,然后再合并二次根式。
二、二次根式的除法法则当我们需要计算两个二次根式的除法时,可以按照以下步骤进行:步骤一:将被除数和除数的根号内的数分别合并。
步骤二:将被除数的根号内的数除以除数的根号内的数。
步骤三:将合并后的数放在根号内。
举例来说,假设有两个二次根式√a和√b,它们的除法可以表示为√a / √b = √(a/b)。
在计算过程中,我们首先将根号内的数合并,然后再进行除法运算。
三、二次根式的加减法法则当我们需要计算两个二次根式的加法或减法时,可以按照以下步骤进行:步骤一:将每个二次根式的根号内的数合并。
步骤二:对合并后的数进行加法或减法运算。
步骤三:将结果放在根号内。
举例来说,假设有两个二次根式√a和√b,它们的加法可以表示为√a + √b,减法可以表示为√a - √b。
在计算过程中,我们先将根号内的数合并,然后再进行加法或减法运算。
综上所述,二次根式的运算法则包括乘法法则、除法法则和加减法法则。
这些法则可以帮助我们在处理二次根式时,简化运算、得到准确的结果。
通过熟练掌握这些法则,我们可以更加高效地解决与二次根式相关的数学问题。
二次根式复习专题讲义[1]
二次根式复习专题讲义一、二次根式的概念:1.二次根式:形如a(a≥0)的式子叫做二次根式,“”称为二次根号。
①.式子中,被开方数(式)必须大于等于零。
②. a(a≥0)是一个非负数。
③. (a)2=a(a≥0);2a=a(a≥0)2.二次根式的乘:①.一般的,有a²b=a b.(a≥0,b≥0)②.反过来,有ab=a³b( a ≥0 ,b ≥0 )3.二次根式的除:①. 一般地,对二次根式的除法规定:a b =ab(a≥0,b>0),②. 反过来,ab =ab(a≥0,b>0)4. 二次根式的加减法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。
典型例题分析:例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x 、x(x>0)、0、42、-2、1x y+、x y+(x≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0。
解:二次根式有:2、x (x>0)、0、-2、x y +(x≥0,y ≥0);不是二次根式的有:33、1x、42、1x y+。
例2.当x 是多少时,23x ++11x +在实数范围内有意义? 分析:要使23x ++11x +在实数范围内有意义,必须同时满足23x +中的≥0和11x +中的x+1≠0.解:依题意,得23010x x +≥⎧⎨+≠⎩由①得:x ≥-32由②得:x ≠-1当x ≥-32且x ≠-1时,23x ++11x +在实数范围内有意义。
变式题1:当x 是多少时,31x -在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,•31x -才能有意义.解:由3x-1≥0,得:x ≥13当x ≥13时,31x -在实数范围内有意义.变式题2:①.当x 是多少时,23x x++x 2在实数范围内有意义?解:依题意得:2300x x +≥⎧⎨≠⎩,320x x ⎧≥-⎪⎨⎪≠⎩∴当x>-32且x≠0时,23xx++x2在实数范围内没有意义。
实数及二次根式乘除运算 (讲义及答案)
实数及二次根式乘除运算(讲义)➢课前预习1.我们知道有理数包括整数和分数,请把下列分数写成小数的形式:5 2=____;35-=____;274=____;43=____;911=____.我们发现,上面的分数都可以写成有限小数或无限_________的形式.事实上,如果把整数看成小数点后是0的小数(例如,将3看成3.0),那么任何一个有理数都可以写成__________或___________的形式.反过来,任何_________或___________也都是有理数.2.在下列由边长为1的正方形组成的网格中,尝试利用勾股定理画出一个边长3.请根据算术平方根的定义与幂的运算法则,解决下列问题:(1=a≥0,b≥0):①根据算术平方根的定义可知,ab的算术平方根是______;②2=22⋅=_________.是_________的算术平方根.对比①②的结果,你能得到的结论是___________________.(2)类似(1=a≥0,b>0):①根据算术平方根的定义可知,ab的算术平方根是_______;②2.是_________的算术平方根.对比①②的结果,你能得到的结论是___________________.➢知识点睛1._____________________称为无理数.2._____________________统称为实数,即实数可以分为有理数和数也可以分为_______、_______、_______.3.表示一个实数.即实数和数轴上的点是 _____________.4. 在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.实数与有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则与运算律对实数仍然适用.5. 一般地,形如_______________的式子叫做二次根式,”称为二次根号. 6. 二次根式的性质:=______(a ≥0,b ≥0)=_____(a ≥0,b >0). 7. 一般地,被开方数不含_____,也不含能开得尽方的________,这样的二次根式叫做最简二次根式.化简时,通常要求最终结果中分母不含有_______,而且各个二次根式是________二次根式.8. 二次根式的乘法法则和除法法则:_________________________;_________________________.➢ 精讲精练1. 把下列各数填入相应的集合中:17-,0.3,2π,•7.3,3.141 59,0,-0.575 775 7775…(相邻两个5之间7的个数逐次加1).(1)有理数集合{_______________________________…}; (2)无理数集合{_______________________________…}; (3)正实数集合{_______________________________…}; (4)负实数集合{_______________________________…}.2.下列说法正确的是()A.无限小数都是无理数B.无理数都是无限小数C.有理数都是有限小数D.带根号的数都是无理数3.下列说法错误的是()A.任何实数不是有理数就是无理数B.每一个实数都可以用数轴上一个点来表示C.绝对值最小的实数是0D.实数可分为正实数和负实数4.的相反数为_______2的相反数为_______;_______,_______.5.如图,已知OA=OB,则数轴上的点A所表示的数为______.6.1的点.321-1-2-3321-1-2-3321-1-2-37.a的取值范围是_____________.8.,,其中是最简二次根式的有()个.A.1 B.2 C.3D.49.化简:(1;(2;解:原式= 解:原式=(3;(4;解:原式= 解:原式=(5)(6解:原式= 解:原式=;(8;(7(9(10解:原式= 解:原式= 10.计算:(1);(2解:原式= 解:原式=(3(4解:原式= 解:原式=(5)(;(6÷解:原式= 解:原式=;(8(7)2解:原式= 解:原式=(9(10)÷4解:原式= 解:原式=(12)(-(11)解:原式= 解:原式=【参考答案】 ➢ 课前预习1. 2.5,0.6-,6.75,1.3·,0.8·1·循环小数有限小数,无限循环小数.有限小数,无限循环小数 2. 略3. (1ab ;ab =(2a b ;a b = ➢ 知识点睛1. 无限不循环小数2. 有理数和无理数,无理数,正实数,0,负实数3. 一一对应的5.0a ≥)6. ①a ,a,7. 分母,因数或因式,根号,最简8.00a b =≥≥,)00a b=>≥,)➢ 精讲精练1. (1)17-,0.3,3.7•,3.141 59,0(2,2π,0.5757757775-⋅⋅⋅(3,0.3,2π,3.7•,3.141 59(4)17-,0.5757757775-⋅⋅⋅2. B3. D4. ,2;45.6. 略7. 1a ≥8. B9. (1)21;(2) (3)(4) (5);(6)3;(7 (8(9)4;(1010. (1) (2)12;(3)32;(4) (5); (6)(7) (8; (9)(10)10; (11)5; (12)5-.。
二次根式复习讲义
二次根式复习讲义知识点一:二次根式的概念【知识要点】二次根式的定义:形如11的式子叫二次根式,其中」叫被幵方数,只有当-是一个非负数时,■/-:才有意义.【典型例题】【例1 】下列各式(1), 1,2)、,=,3)「X1 2 32,4).,4,5)、(-;)2。
仁,7) a2-2a 1 ,其中是二次根式的是 _________ (填序号).1、下列各式中,一定是二次根式的是()A、、. aB、,:T OC、. a 1D、丁2、在苗、疏、声1、后7、胎中是二次根式的个数有 ________________ 个【例2】若式子有意义,则x的取值范围是J x - 3举一反三:2使代数式有意义的x的取值范围是()x -4A、x>3B、x^3C、x>4D、x^3 且x 羽3使代数式、.-x2,2x-1有意义的x的取值范围是 _________________3、如果代数式..1有意义,那么,直角坐标系中点P (m,n)的位*mn置在()举一反三:A、第一象限B、第二象限C、第三象限D、第四象限【例3】若y=、x 一5 +- x +2009,贝U x+y=x「5 _ 0解题思路:式子苗(a 为),i ~ , x = 5 , y=2009,贝U x+y=20145-xKO举一反三:1、若— .1 —X =(x y)2,则x —y 的值为( )A1 B . 1 C . 2 D . 32、若x、y都是实数,且y= •-2x -3二3 -2x • 4,求xy的值3、当a取什么值时,代数式''2a 1 1取值最小,并求出这个最小值。
4、已知a是.5整数部分,b是.5的小数部分,求—的值。
b + 25、若.3的整数部分是a,小数部分是b,贝V .、3a-b二_______ 。
2 +丄6、若17的整数部分为x,小数部分为y,求X ~的值•知识点二:二次根式的性质【知识要点】71.非负性:•. a(a_0)是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2.( .a)2-0).注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式: a = (•• a)2(a _0)$ —嘗0)注意:(1)字母不一定是正数.(2)能幵得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把 负号留在根号外. 4.公式a 2=|a| 与( ..a)2=aa 0)的区别与联系l-a(acO)(1) ,a 2表示求一个数的平方的算术根,a 的范围是一切实数.(2)C.a)2表示一个数的算术平方根的平方,a 的范围是非负数.(3) -,a 2和C..a)2的运算结果都是非负的.【典型例题】[例 4】若a-21 "b —3+(c-4) =0,则 a-b + c=.举一反三:1、若.m -3 • (n 1)2=0,贝卩m n 的值为 _______________ 2、已知x,y 为实数,且、x-1,3y-22 = 0,则x-y 的值为()A . 3B . - 3C . 1D . - 13、 已知直角三角形两边 x 、y 的长满足| x 2— 4 | + y 2「5y • 6 = 0,贝U 第三边长为 ___________ .____________ 20054、 若a_b 1与'-a2b 4互为相反数,则a_b二 ---------------------- 。
初中数学二次根式的运算(含解析)
初中数学二次根式的运算考试要求:重难点:1.(0)a≥的内涵,(0)a≥是一个非负数;2a=(0)a≥;a=(0)a≥ 及其运用.2.二次根式乘除法的规定及其运用.3.二次根式的加减运算.例题精讲:模块一二次根式的加减运算二次根式的加减法法则:二次根式加减时,可以先将二次根式化成最简二次根式,再对同类二次根式进行合并.二次根式加减法的实质是合并同类二次根式,合并时只把系数相加减,根指数和被开方数不变.二次根式的加减法步骤:(1)将每一个二次根式化成最简二次根式;(2)找出并合并同类二次根式.【例1】计算:(1)(2【难度】1星【解析】如果几个二次根式的被开方数相同,可以直接进行加减运算;如果所给的二次根式不是最简二次根式应该先化简,再进行加减运算.(1)(3=+;(2(2==+【答案】(1);(2).【巩固】485127-=______.【难度】1星【解析】485127-7=5(14⨯⨯=-=-【答案】-【例2】计算:(1)(2【难度】1星【解析】先化简成最简二次根式,再对同类二次根式进行合并.(1)1132(41)242=⨯⨯⨯-+;(2=1443(212)99⨯⨯-+=【答案】(1(2【巩固】计算:(1) (2【难度】2星 【解析】(1)1(64)5=+=-+=(2)=1(22=--= 【答案】(1(2).【例3】 如图,一架长为10m 的梯子AB 斜靠在墙上,梯子的顶端距地面的垂直距离为8m .如果梯子的顶端下滑1m ,那么它的底端是否也下滑1m ?【难度】1星【解析】如图所示,在RT ABC ∆中,由勾股定理,得BC = 当AC=8m时,6BC ==m ; 当AC=7m时,BC =,所以梯子的顶端下滑1m6 1.1≈m .【答案】梯子的顶端下滑1m ,那么它的底端不是下滑1m ,而是滑动1.1m .模块二 二次根式的混合运算在进行二次根式的混合运算时,要注意几点: (1) 整式和分式的运算法则仍然适用.如CBA=== (2) 多项式的乘法法则及乘法公式在运算中同样是适用的.乘法公式:22()()a b a b a b +-=-;222()2a b a b ab ±=+±.【例4】 计算:(1 (26x 【难度】1星【解析】(1)原式==(2)原式=23223⋅=-【答案】(1(2)-【例5】 计算:(1)2 (2)(2(3)22(2(2-+ (4)20112012(3(3-【难度】2星 【解析】(1)用完全平方公式;(2)逆用平方差公式;(3)用平方差公式;(4)逆用平方差公式.(1)2222184866=-⨯=-=-(2)(2=22[224(82484-+=-=-+=----(3)22(2(2-+(2224(==⨯-=- ;(4)20112012(3(320112011[(3(3(98)(33=-+=-+=+【答案】(1)66- (2)4--(3) -; (4)3+【巩固】(1) (2(3) (4)3ab (0,0a b ≥≥) 【难度】2星【解析】在二次根式的乘除法中,首先确定结果的符号,同时要注意指数和运算顺序,最后的结果必须化成最简二次根式.(1)2(1218624==++-=+;(21=;(3)(61834=⨯⨯⨯⨯;(4)3ab3ab a ==-【答案】(1)24+; (2)1; (3) (4)a -.【例6】 解方程或不等式:(1))11x x +>- (21+=【难度】2星【解析】解不等式时,在系数化为1时,要注意系数的正负.(1))11x x +>- (21x +=x >=x <x =13x <+ x =x【答案】(1)13x <+ (2.【巩固】已知1018222=++a a a a,求a 的值. 【难度】2星【解析】先化原方程中的二次根式为最简二次根式,然后按着解一般整式方程的步骤去解即可.10=10=2=a =【答案】a =模块三 二次根式的化简求值【例7】 (2008年西城二模)先化简,再求值:2221412211m m m m m m --⋅÷+-+-,其中m =. 【难度】1星【解析】2221412211m m m m m m --⋅÷+-+-21(2)(2)(1)(1)(1)(2)2(1)m m m m m m m m m --+=⋅⋅-+=+-+-22m m =--,当m 时,原式21-=【答案】1【例8】 (2009年西城二模)先化简,再求值222x y xyx y x y x y +++--,其中x =-,y =.【难度】1星【解析】222x y xyx y x y x y +++-- 222()()22()()()()()()()()()()()x x y y x y xy x xy y xy xy x y x y x y x y x y x y x y x y x y x y x y x y x y-+-+++++=++===+-+-+-+-+--.当x =-y =时,原式15==.【答案】15【巩固】(2011年东城区一模)先化简,再求值:2232()111x x xx x x +÷---,其中1x =. 【难度】1星【解析】原式232132[]2(1)(1)111x x x x x x x x x x x --=-⨯=-=-+-++,当1x =时,原式1===-【答案】1【巩固】(2011年东城区二模)先化简,再求值:2(21)(2)(2)4(1)x x x x x +++--+,其中x =. 【难度】2星 【解析】原式222441444x x x x x =+++---23x =- .当x =时 ,原式227153344=-=-=⎝⎭.【答案】154总结:解此类题目时,一定要先化简再代入求值.【例9】已知x =,y =,求2y x x y ++的值.【难度】2星【解析】当分母中含有根号时,要先化简再求值.x ==231)+,y231)=-=, ∴2y xx y ++222(3336===+-=. 【答案】36【例10】 已知121x x +=,121x x ⋅=-,求12x x 的值. 【难度】3星【解析】12x x -==,12x x ∴-=22221111212221122()()22x x x x x x x x x x x x ⋅++-∴==⋅21212121212[()2][()()]2x x x x x x x x x x +-++-==.总结:该类题目直接将a ,b (或a ,b 化简后的结果)代入所求的式子中,计算都相对繁琐.在类似的题目中,要灵活的应用公式的变形,以便使计算过程大大的简化.【例11】2011++的值. 【难度】2星【解析】通过观察可以知道,先进行分母有理化,通过前几项的分母有理化发现,每一项的结果都是分母的后一项前去分母前一项,这样把每项展开,即可相加减,也就得出了结果. 原式1201211+-=-+【答案】1-+【例12】【巩固】2011+【难度】2星【解析】原式=2[1)(20122(12⨯---=-⨯-+=-【答案】2-总结:=利用这个公式解题.【例13】当a=,求代数式2963a aa-++-的值.【难度】2星【解析】原式=211(3)33(1)(1)a aaaa a aa a---+=-+---,2)212a a=-∴=-=<+原式=111333(1)(1)a aa a aa a a a a---+=-+=----,当a=时,原式= 2321+=.【答案】1【巩固】已知13a=-,12b=【难度】2星【解析】由题可知,0b a->,∴原式13a=-,12b=时,原式=115231622+==⨯.总结:在这类题目中,依然是对原题目进行化简,化简过程中出现了绝对值,此时应特别注意绝对值里面式子的正负,不能贸然的去掉绝对值符号.模块四二次根式的大小比较通过平方比较大小【例14】比较大小(1)1+(2)133-【难度】1星【解析】比较大小可以左右平方,比较平方数的大小,对于两个正数,平方大的就大;对于两个负数,平方大的反而小.(1)2(13=+23=,3223+>,1∴(2)2(10=,221101001(3)()113399-===,110119<,133-.【巩固】比较大小:【难度】1星【解析】略 【答案】>【巩固】实数-3-的大小关系是 .(用“>”表示) 【难度】1星【解析】通过比较平方数的大小来比较原数的大小.【答案】3->-.总结:在比较两个数或式子的大小时,如果只是数,可以平方之后再比较原数的大小;如果是式子且每个式子只含有一个根号时,可以采用平方法比较大小.通过做差比较大小【例15】 比较大小【难度】2星【解析】直接比较大小,无从入手,所以可以通过做差的方法比较大小.0=,<通过取倒数比较大小【例16】 比较大小(1 (2【难度】2星【解析】(1=====65+(2=2011+,【答案】(1<;(2<.总结:在比较两个式子的大小,且每一个式子都含有两个二次根式,可以通过取倒数比较大小.由上题我模块五 非负数性质的综合应用0≥且0a ≥,以前所学的平方和绝对值同样具有非负性,这也是中考中必考的三个非负性.【例17】 2(4)0y -=,则y x 的值等于 . 【难度】1星【解析】对二次根式和平方非负性的直接考察. 【答案】1【例18】 如果2y =,则2x y += . 【难度】1星【解析】对二次根式非负性的直接考察. 解:注意到230320x x -≥-≥,, 0230230x x ∴≤-≤-=, 232x y ∴==, 25x y ∴+=. 【答案】5【例19】 当x【难度】1星【解析】因为二次根式的被开方数大于或等于零,所以222012x x x≥-+.因为x >,.【巩固】已知0a <的值.【难度】2星【解析】原式= (*)因为21()0a a --≥但21()0a a --≤故只有21()0a a --=即1a a=又0a <,所以1a =- 代入(*)得:原式=2-. 【答案】2-【例20】 已知实数x ,y ,z满足2144104x y z z -+-+=,求2()x z y +⋅的值. 【难度】2星【解析】对绝对值、二次根式和平方非负性的考察.原式可化为1441()02x y z -+-=,441020102x y y z z ⎧⎪-+=⎪∴+=⎨⎪⎪-=⎩,解得121412x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩22111()()()0224x z y ∴+⋅=-+⨯-=.【答案】0【巩固】已知实数a ,b ,c满足212102a b c c -+-+=,求()a b c +【难度】2星【解析】略【答案】14-课堂检测:【练习1】下列计算正确的是( )A B C D【难度】1星【解析】考察二次根式的运算.【答案】A【练习22得( ).A 2B C D【难度】1星【解析】 因为230x -≥,23232x x ≥=-,,所以210|21|21x x x ->-=-221(23)2x x =---=.故选A .【答案】A【练习3化简,然后自选一个合适的x 值,代入化简后的式子求值.【难度】2星【解析】这是一道结论开放题,它留给我们较大的发挥和创造空间.但要注意x 的取值范围是2x >.原式===2,x >∴取4x =,原式=2.【答案】2(合理即可)【练习4】设22a b c==-==,则a,b,c的大小关系是()A a b c>>B a c b>> C c b a>> D b c a>>【难度】2星【解析】1a===,同理1122b c=220>>,所以1110,c b ac b a>>><<.故选A.【答案】A【练习53x=+,求11xy++的值.【难度】2星【解析】考察的是非负性,同时也对分式进行了考察.3x=+,2309030x yxx-=⎧⎪∴-=⎨⎪+≠⎩,解得31xy=⎧⎨=⎩,1312111xy++∴==++.【答案】2课后作业:1.化简时,==,乙的解法:==,以下判断正确的是().A 甲的解法正确,乙的解法不正确B 甲的解法不正确,乙的解法正确C 甲、乙的解法都正确D 甲、乙的解法都不正确【难度】2星【解析】甲是将分子和分母同乘以进行分母有理化,乙是利用3=进行约分,所以二人都是正确的,故选C .【答案】C2. 计算:(1)(2) 【难度】1星【解析】题中每个二次根式都不是最简二次根式,应“先化简——再判断——最后合并”.(1)原式=1121023⎛⎛=+-- ⎝⎝= (2)原式=2a b b a b =⎛=- -⎝= 【答案】(1(23.化简 【难度】1星 【解析】初看此题像没有给出化简条件,但充分发掘隐含条件,由二次根式的定义可知10a->,即.故用分母有理化化简的第三步中1a 应为1a -. 原式1a a a a ===⋅=- 【答案】4.已知x=,y=222)x xy y x y+++-的值.【难度】2星【解析】x=2)2==2222)())x xy y x y x y x y∴+++-=++-,把x y==代入得原式=2402416=-=.【答案】165.请先化简下列式子,再选取两个能使原式有意义,而你又喜爱的数代入化简后的式子中求值.÷【难度】2星【解析】原式====当2x=时,原式=当3x=时,原式=.2x=时,原式=3x=时,原式=.6.=a、x、y是两两不同的实数,求22223x xy yx xy y+--+的值.【难度】3星【解析】由题可知,()0()0a x aa y ax aa y-≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩,解得x aaa ya≥⎧⎪≥⎪⎨≥⎪⎪≤⎩,0a∴=,此时,原式变为0,x y=-把x y=-代入有222222222222222233()()3()()3x xy y y y y y y y y yx xy y y y y y y y y y+--+----∴===-+---+++,a、x、y是两两不同的实数,0y∴≠,原式13=.【答案】13。
八年级二次根式 教师讲义带答案
第五章二次根式知识网络知识点一:二次根式的概念形如的式子叫做二次根式;注:在二次根式中,被开方数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式;知识点二:取值范围1. 二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可;2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义;知识点三:二次根式的非负性表示a的算术平方根,也就是说,是一个非负数,即0;注:因为二次根式表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数的算术平方根是非负数,即0,这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似;这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0;知识点四:二次根式的性质文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数;注:二次根式的性质公式是逆用平方根的定义得出的结论;上面的公式也可以反过来应用:若,则,如:,.知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值;注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简;知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数;但与都是非负数,即,;因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.知识点七:二次根式的运算1.二次根式的乘除运算1运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.2注意知道每一步运算的算理;3乘法公式的推广:2.二次根式的加减运算先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质;3.二次根式的混合运算1对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的;2二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.要点诠释:怎样快速准确地进行二次根式的混合运算.1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.1加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于理解和掌握.在运算过程中,对于各个根式不一定要先化简,可以先乘除,进行约分,达到化简的目的,但最后结果一定要化简.例如进行化简,使计算繁琐,可以先根据乘法分配律进行乘法运算,43+=+=+通过约分达到化简目的;2多项式的乘法法则及乘法公式在二次根式的混合运算中同样适用.如:221+-=-=,利用了平方差公式.所以,在进行二次根式的混合运算时,借助乘法公式,会使运算简化. 4.分母有理化把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:2a a +-互为有理化因式;一般地a a +--互为有理化因式;一般地+-式.专题总结及应用一、知识性专题专题1 二次根式的最值问题专题解读涉及二次根式的最值问题,应根据题目的具体情况来决定应采用的方法,不能一概而论,但一般情况下利用二次根式的非负性来求解.例1 当x 取何值时,3的值最小最小值是多少分析 00,因为3是常数,3的最小值为3.0,33≥,∴当9x +1=0,即19x =-时,3有最小值,最小值为3.解题策略解决此类问题一定要熟练掌握二次根式的非负性,0a ≥0. 专题2 二次根式的化简及混合运算专题解读对于二次根式的化简问题,可根据定义,也可以利用||a =这一性质,但应用性质时,要根据具体情况对有关字母的取值范围进行讨论.例2 下列计算正确的是 分析 根据具体选项,应先进行化简,再计算. A 选项中,==B 选若可化为=,C 选项逆用平方差公式可求得2(=4-5=-1,而D 得22=.故选A.例3 计算2006200721)21)的结果是 分析 本题可逆用公式ab m=a m b m及平方差公式,将原式化为2006[(21)(21)]21)2 1.=故选D.例4 书知2228442142x x y x x x y y x x++=--+,求的值. 分析 本题主要利用二次根式的定义及非负性确定x 的值,但要注意所得x 的值应使分式有意义.解:由二次根式的定义及分式性质,得2240,4,2,20,x x x x ⎧-⎪-∴=⎨⎪+⎩≥≥0≠解题策略 本题中所求字母x 的取值必须使原代数式有意义. 例5 223541294-202522a a a a a -++-(≤≤).解题策略 本题应根据条件直接进行化简,2(0)||-(0).a a a a a a ⎧==⎨⎩≥,<例6 已知实数,a ,b ,c 在数轴上的位置如图21-8所示,化简222||()().a a c c a b -+-解:由a ,b ,c 在数轴上的位置可知:解题策略 利用间接给出的或隐含的条件进行化简时,要充分挖掘题目中的隐含条件,再进行化简.规律·方法 对于无约束条件的化简问题需要分类讨论,用这种方法解题分为以下步骤:首先,求出绝对值为零时未知数的值,这些未知数的值在数轴上的对应点称为零点;其次,以这些零点为分点,把数轴划分为若干部分,即把实数集划分为若干个集合,在每个集合中分别进行化简,简称“零点分区间法”.例8 已知3,12,.a ba b ab ba b a+=-=求的值 图21-8分析 这是一道二次根式化简题,在化为最简二次根式的过程中,要注意a ,b 的符号,本题中没明确告诉,a ,b 的符号,但可从a +b =-3,ab =12中分析得到.解:∵a +b =-3,ab =12,∴a <0,b <0.解题策略 本题最容易出现的错误就是不考虑a ,b 的符号,把所求的式子化简,直接代入.专题3 利用二次根式比较大小、进行计算或化简例9 的运算结果应在 A. 6到7之间 B. 7到8之间 C. 8到9之间D. 9到10之间分析 本题应计算出所给算式的结果,原式4==+,由于即2 2.5849+,所以<. 故选C.例10 已知m 是,n ,求m nm n-+的值. 解:∵9<13<16,即3 43,即m =3,3,即,∴m n m n -===+ 二、规律方法专题专题4 配方法专题解读 把被开方数配方,a |化简.例11 化简规律·方法一般地,对于a±型的根式,可采用观察法进行配方,即找出x,yx>y>0,使得xy=b,x+y=a,则2a±=,于是==,.例12 若a,b为实数,且b15,值.分析本题中根据b15可以求出a,b,对.解:由二次根式的性质得3503350..5305aa aa-⎧∴-=∴=⎨-⎩≥,≥,当3215.55a b====,时,原式解题策略对于形如22b a b aa b a b++-+或形式的代数式都要变为2()a bab+或2()a bab-的形式,当它们作为被开方式进行化简时,要注意.a b a b ab+-和以及的符号专题5 换元法专题解读通过换元将根式的化简和计算问题转化为方程问题.例13计算解:令x两边同时平方得:∴x2=33专题6 代入法专题解读通过代入求代数式的值.例14 已知22==a b ab2400,5760,.专题7 约分法专题解读通过约去分子和分母的公因式将第二次根式化简.例15 化简例16 化简).≠x y三、思想方法专题专题8 类比思想专题解读类比是根据两对象都具有一些相同或类似的属性,并且其中一个对象还具有另外某一些属性,从而推出另一对象也具有与该对象相同或相似的性质.本章类比同类项的概念,得到同类二次根式的概念,即把二次根式化简成最简二次根式后,若被开方数相同,则这样的二次根式叫做同类二次根式.我们还可以类比合并同类项去合并同类二次根式.例17 计算.解:1原式2原式=3+2.解题策略对于二次根式的加减法,应先将各式化为最简二次根式,再类比合并同类项的方法去合同类二次根式.专题9 转化思想专题解读当问题比较复杂难于解决时,一般应采取转化思想,化繁为简,化难为易,本章在研究二次根式有意义的条件及一些化简求值问题时,常转化为不等式或分式等知识加以解决.例18 函数y 24x -中,自变量x 的取值范围是 .分析 本题比较容易,主要考查函数自变量的取值范围的求法,24x -是二次根式,所以被开方数2x -4≥0,所以x ≥2.故填x ≥2.例19 如图21-9所示的是一个简单的数值运算程序,若输入x 3,则输出的数值为 .图21-9分析 本题比较容易,根据程序给定的运算顺序将问题化为二次根式求值问题,易知图中所表示的代数式为21x -,3-1=2.故填2.专题10 分类讨论思想专题解读 当遇到某些数学问题存在多种情况时,应进行分类讨论.本意在运用公式2||a a =进行化简时,若字母的取值范围不确定,应进行分类讨论.例20 若化简2|1|816x x x ---+25x -,则x 的取值范围是 A. x 为任意实数 B. 1≤x ≤4 C. x ≥1 D. x ≤4分析 由题意可知|1||4|25x x x ---=-,由此可知|1|1x x -=-,且|4|4x x -=-,由绝对值的意义可知10x -≥,且40x -≥,所以14x x ≤≤,即的取值范围是14x ≤≤.故选B.解题策略 2a |a |形式的式子的化简都应分类讨论.例21 如图21-10所示的是一块长、宽、高分别为7cm,5cm 和3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面爬到和顶点A 相对的顶点B 处吃食物,那么它要爬行的最短路径的长是多少分析 这是一个求最短路径的问题,一个长方体有六个面,蚂蚁有三种不同的爬行方法,计算时要分类讨论各种方法,进而确定最佳方案.解:沿前、右两个面爬,=cm. 沿前、上两个面爬,=cm. 沿左、上两个面爬,=cm.所以它要爬行的最短路径长为规律·方法 沿表面从长方体的一个顶点爬到相对的顶点去,共有三个爬行路线,每个路线长分别是它爬行两个展开图的对角线的长.二次根式单元测试题一判断题:每小题1分,共5分1.ab 2)2(-=-2ab .………………… 2.3-2的倒数是3+2. 3.2)1(-x =2)1(-x .… 4.ab 、31b a 3、bax 2-是同类二次根式.… 5.x 8,31,29x +都不是最简二次根式. 二填空题:每小题2分,共20分 6.当x __________时,式子31-x 有意义. 7.化简-81527102÷31225a= . 8.a -12-a 的有理化因式是____________.9.当1<x <4时,|x -4|+122+-x x =________________.10.方程2x -1=x +1的解是____________. 11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______.12.比较大小:-721_________-341.13.化简:7-522000·-7-522001=______________. 14.若1+x +3-y =0,则x -12+y +32=____________.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________. 三选择题:每小题3分,共15分16.已知233x x +=-x 3+x ,则………………A x ≤0B x ≤-3C x ≥-3D -3≤x ≤017.若x <y <0,则222y xy x +-+222y xy x ++=……………………… A2x B2y C -2x D -2y18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于……………………… A x2 B -x2 C -2x D2x19.化简aa 3-(a <0)得……………………………………………………………… A a - B -a C -a - D a20.当a <0,b <0时,-a +2ab -b 可变形为……………………………………… A 2)(b a + B -2)(b a - C 2)(b a -+- D 2)(b a ---四计算题:每小题6分,共24分 21.235+-235--;22.1145--7114--732+;23.a 2m n -m ab mn +m n n m ÷a 2b 2mn ; 24.a +ba abb +-÷b ab a ++a ab b --ab b a +a ≠b .五求值:每小题7分,共14分25.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 26.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.六、 解答题:每小题8分,共16分 27.计算25+1211++321++431++…+100991+. 28. 若x ,y 为实数,且y =x 41-+14-x +21.求x y y x ++2-xyy x +-2的值. 一判断题:每小题1分,共5分 1、提示2)2(-=|-2|=2.答案×. 2、提示231-=4323-+=-3+2.答案×.3、提示2)1(-x =|x -1|,2)1(-x =x -1x ≥1.两式相等,必须x ≥1.但等式左边x 可取任何数.答案×. 4、提示31b a 3、bax 2-化成最简二次根式后再判断.答案√.5、29x +是最简二次根式.答案×. 二填空题:每小题2分,共20分6、提示x 何时有意义x ≥0.分式何时有意义分母不等于零.答案x ≥0且x ≠9.7、答案-2a a .点评注意除法法则和积的算术平方根性质的运用.8、提示a -12-a ________=a 2-22)1(-a .a +12-a .答案a +12-a . 9、提示x 2-2x +1= 2,x -1.当1<x <4时,x -4,x -1是正数还是负数 x -4是负数,x -1是正数.答案3.10、提示把方程整理成ax =b 的形式后,a 、b 分别是多少12-,12+.答案x =3+22.11、提示22d c =|cd |=-cd .答案ab +cd .点评∵ ab =2)(ab ab >0,∴ ab -c 2d 2=cd ab +cd ab -.12、提示27=28,43=48.答案<.点评先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13、提示-7-522001=-7-522000·_________-7-52.7-52·-7-52=1.答案-7-52.点评注意在化简过程中运用幂的运算法则和平方差公式. 14、答案40.点评1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0. 15、提示∵ 3<11<4,∴ _______<8-11<__________.4,5.由于8-11介于4与5之间,则其整数部分x =小数部分y =x =4,y =4-11答案5.点评求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. 三选择题:每小题3分,共15分 16、答案D .点评本题考查积的算术平方根性质成立的条件,A 、C 不正确是因为只考虑了其中一个算术平方根的意义.17、提示∵ x <y <0,∴ x -y <0,x +y <0. ∴222y xy x +-=2)(y x -=|x -y |=y -x . 222y xy x ++=2)(y x +=|x +y |=-x -y .答案C .点评本题考查二次根式的性质2a =|a |.18、提示x -x 12+4=x +x 12,x +x 12-4=x -x 12.又∵ 0<x <1, ∴ x +x 1>0,x -x1<0.答案D .点评本题考查完全平方公式和二次根式的性质.A 不正确是因为用性质时没有注意当0<x <1时,x -x1<0.19、提示3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.答案C . 20、提示∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --. 答案C .点评本题考查逆向运用公式2)(a =aa ≥0和完全平方公式.注意A 、B 不正确是因为a <0,b <0时,a 、b 都没有意义. 四计算题:每小题6分,共24分21、提示将35-看成一个整体,先用平方差公式,再用完全平方公式. 解原式=35-2-2)2(=5-215+3-2=6-215. 22、提示先分别分母有理化,再合并同类二次根式. 解原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.23、提示先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 解原式=a 2m n -m ab mn +m n n m ·221b a n m=21b n m m n ⋅-mab 1n m mn ⋅+22b ma n nmn m ⋅ =21b-ab 1+221ba =2221b a ab a +-.24、提示本题应先将两个括号内的分式分别通分,然后分解因式并约分. 解原式=ba ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a b a ++÷))((2222b a b a ab b a b ab b ab a a -++----=b a b a ++·)())((b a ab b a b a ab +-+-=-b a +. 点评本题如果先分母有理化,那么计算较烦琐. 五求值:每小题7分,共14分25、提示先将已知条件化简,再将分式化简最后将已知条件代入求值. 解∵ x =2323-+=2)23(+=5+26, y =2323+-=2)23(-=5-26. ∴ x +y =10,x -y =46,xy =52-262=1.32234232yx y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 点评本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷.26、提示注意:x 2+a 2=222)(a x +, ∴ x 2+a 2-x 22a x +=22a x +22a x +-x ,x 2-x 22a x +=-x 22a x +-x .解原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x-++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x1.当x =1-2时,原式=211-=-1-2.点评本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x xa x +--+-)11(22x x a x --++221a x +=x 1. 六、解答题:每小题8分,共16分27、提示先将每个部分分母有理化后,再计算.解原式=25+11212--+2323--+3434--+…+9910099100--=25+112-+23-+34-+…+99100- =25+11100- =925+1.点评本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.28、提示要使y 有意义,必须满足什么条件].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗].2141[⎪⎪⎩⎪⎪⎨⎧==y x 解要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵ xy y x ++2-xy y x +-2=2)(xy y x+-2)(xy y x -=|xy yx+|-|xy y x-|∵ x =41,y =21,∴y x <x y . ∴ 原式=x y y x +-y x x y +=2yx 当x =41,y =21时,原式=22141=2.点评解本题的关键是利用二次根式的意义求出x 的值,进而求出y的值.。
学生版二次根式的运算(基础)知识讲解
二次根式的运算(基础)知识讲解【学习目标】1、理解并掌握二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算;3、会利用运算律和运算法则进行二次根式的混合运算.【要点梳理】要点一、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.要点诠释:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用. (2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;要点二、二次根式的乘法及积的算术平方根1.乘法法则:(a≥0,b≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1).在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).(2).该法则可以推广到多个二次根式相乘的运算:≥0,≥0,…..≥0).(3).若二次根式相乘的结果能写成的形式,则应化简,如.2.积的算术平方根:(a≥0,b≥0),即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足a≥0,b≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了; (2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.要点三、二次根式的除法及商的算术平方根1.除法法则:(a≥0,b>0),即两个二次根式相除,根指数不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a、b的取值范围应特别注意,a≥0,b>0,因为b在分母上,故b不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.2.商的算术平方根的性质:(a ≥0,b >0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点诠释:运用此性质也可以进行二次根式的化简,运用时仍要注意符号问题. 要点四、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用. 要点诠释:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用; (3)二次根式混合运算的结果要写成最简形式. 【典型例题】类型一、二次根式的加减运算1.计算: (1).+(2). 311932a a a a a+-举一反三:【变式】计算:011(1)()527232π--++--类型二、二次根式的乘除法2.(1)×; (2)×; (3); (4);举一反三【变式】各式是否正确,不正确的请予以改正:(1); (2)×=4××=4×=4=8.3.算:(1))4323(4819-÷- (2)21521)74181(2133÷-⨯类型三、二次根式的混合运算4.(聊城模拟)下列计算正确的是( ) A .5﹣2=3 B .2×3=6 C .=3 D .3=35、计算: 已知625,625-=+=b a ,则ab =_______,a b +=________.举一反三:【变式】(汉阳区期中)已知x=1﹣,y=1+,则x 2+y 2﹣xy ﹣2x ﹣2y 的值为 .二次根式的运算(基础)巩固练习【巩固练习】一、 选择题1.计算18827÷⨯的结果是( ). A .463 B.186 C.932 D.1642. (广西)下列计算正确的是( ) A .﹣=B .3×2=6C .(2)2=16D .=13. 化简二次根式3a -的正确结果是( ).A .a a --B .a a -C .a aD .a a - 4. (泰安模拟)下列计算或化简正确的是( ). A. 2+4=6B.=4C.=﹣3 D.=35.若,则的值等于( ).A. 4B.C. 2D.6.下列计算正确的是( ).A. 2=b a b ++(a ) B. a b ab +=C.22+a b a b =+D. 1aa a= 二. 填空题 7.计算:4118(2854)33-÷⋅=____________________________. 8.(潍坊)计算:(+)= .9. 化简:(1).111a a +=_________,(2).2411a a a+=___________. 10. (新泰市期末)若=,则x 的取值范围为 .11. 一个三角形的三边长分别为,,,则它的周长是________cm.12. 101100103103)()(-+=________________. 三 综合题13. (1)11(318504)52+-÷32 (2)()1212328-⎪⎭⎫⎝⎛+--14.(市南区校级期中)某居民小区有一块长方形绿地,先进行如下改造:将长方形的长减少米,宽增加米,得到一块正方形绿地,它的面积是原长方形绿地的2倍,求改造后的正方形绿地的边长是多少米?(结果精确到1米)15.(1)先化简,再求值:(a +((6)a a a --,其中12a =.(2).已知251,251+=-=b a ,求722++b a 的值.。
二次根式及其运算知识讲义(解析版)
专题01 二次根式及其运算知识讲义【相关概念】二次根式:a≥0)的式子叫做二次根式.a为被开方数,a可以是数字或代数式.代数式:含有字母的数学表达式称为代数式.整式、分式均为代数式.最简二次根式:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.【二次根式运算】乘法=a≥0,b≥0)除法=(a≥0,b >0)加(减)法先把各根式化成最简根式,再合并同类根式分母有理化====【二次根式性质】,a≥0非负数:|a|,a 2n()()00a a a a ≥⎧=⎨-≤⎩2a =【二次根式应用】因式的内移和外移:(1)负号不能移到根号下;(2)根号下的负号不能移到根号外.【题型一】二次根式有意义条件例1. (2020·m 能取的最小整数值是()A .m = 0B .m = 1C .m = 2D .m = 3【答案】B.3m -1≥0,解得:m≥13, 所以,m 能取的最小整数值是1.故答案为:B .例2. (2020·=-,那么x 的取值范围是_______. 【答案】-3≤x≤0.【解析】解:∵233x x +-∴x≤0,且x+3≥0,解得:-3≤x≤0,故答案为:-3≤x≤0.例3.(2019·=x 的取值范围是______. 【答案】x≥2.=∴x≥0,x−2≥0,∴x≥2.故答案为:x≥2.【题型二】同类二次根式例4. (2020·是同类二次根式,那么满足条件的m 中最小正整数是________.【答案】4.【解析】解:当5m+8=7时,m=-15,不合题意,,即5m+8=28时,m=4,是同类二次根式,那么m 的最小正整数是4,故答案为:4.例5. mn =_________.【答案】10.∴n=2,2m-5=5,∴m=5,n=2∴mn=10故答案为:10.例6. mn=________.【答案】21.∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴mn=21故答案为:21.【题型三】变式考查例7. (2020·浙江宁波市期中)我们把形如b(a,b为最简二次根式)32是()A型无理数B C型无理数D型无理数【答案】B.【解析】解:2故答案为:B.例8. (1n所有可能的值;(2是整数,求正整数n的最小值.【答案】(1)自然数n 的值为2、9、14、17、18;(2)正整数n 的最小值为6.【解析】解:(1是整数,∴18-n=0或1或4或9或16,解得:n=18或17或14或9或2,则自然数n 的值为2,9,14,17,18;(2=是整数,n 为正整数,∴正整数n 的最小值为6.例9.(2020·21x =-,则x=__________. 【答案】12或1.21x =-,∴2x-1=0或2x-1=1,解得:x=12或x=1. 故答案为12或1. 【题型四】二次根式运算例10.(2020·周长为( )A .B .C .D .无法确定【答案】A.若,,则周长为若,∴,此三角形不存在,∴个三角形的周长为故答案为:A .例11)2211-.)2211--1313=--+-=例12.(2020·福建省泉州月考)已知1x =,x 的整数部分为a ,小数部分为b ,求a b的值..【解析】解:∵3,∴+1<4,故a=3,-2,∴)3232274a b ====-. 例13.(2020·广东佛山市月考)先阅读,再解答:由222=-= 可以看出,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,在进行二次根式计算时,利用有理化因式,有时可以化去分母中的根号,例如:==,请完成下列问题:1的有理化因式是;(2)= .(直接写结果)>或<)(4)利用你发现的规律计算下列式子的值:)1+【答案】(1+1;(2);(3)<;(4)2017.【解析】解:(1+1;(2333==+;(3=>(4)原式=)120181+=)11=2018-1=2017.例14. 若a,b都是正整数,且a<b是可以合并的二次根式,是否存在a,b,=a,b的值;若不存在,请说明理由.【答案】当a=3,b=48;当a=12,b=27.,m、n为正整数,m<n,∴m=1,n=4或m=2,n=3故a=3,b=48或a=12,b=27.例15.(2019·辽宁大连市期中)[观察]请你观察下列式子的特点,并直接写出结果:11112=+-=;11123=+-=;11134=+-=;……[发现]根据你的阅读回答下列问题:(1)请根据上面式子的规律填空:=(n为正整数);(2)请证明(1) 中你所发现的规律.[应用]请直接写出下面式子的结果:11n++=.【答案】[观察]32,76,1312;[发现](1)1111n n+-+或221n nn n+++;(2)证明见解析;[应用]221n nn++.【解析】[观察]32,76,1312,[发现](1)1111n n+-+或221n nn n+++(2)左边=====∵n 为正整数,∴()11111011n n n n +-=+>++ ∴左边=右边[应用11n +++111111111111223341n n =+-++-++-+++-+…… 1111n n =⨯+-+ 1n n n =++ 22=1n n n ++. 【题型五】化简求值例16. (2021·江苏南通市期末)化简2+的结果是( ) A .152x -B .1-C .27x -D .1 【答案】A.【解析】解:∵二次根式被开方数为非负数,∴7-x≥0,则x≤7∴x-8<0,原式=7-x+8-x=15-2x故答案为:A .例17.(2020·浙江杭州期中)实数a ,b 在数轴上的位置如图,||a b -的结果为( )A .2aB .2a -C .2bD .2b -【答案】B.【解析】解:由题意得:a >b ,|a |<|b |,a >0,b <0,∴a -b >0,a +b <0,∴原式=-a -b -a +b =-2a ,故答案为:B .例18.若数轴上表示数x 的点在原点的左边,则化简3x + ) A .4x - B .4x C .2x - D .2x【答案】C.【解析】解:∵数x 的点在原点的左边,∴x <0,∴原式=|3x +|x ||=|3x -x |=|2x |=-2x .故答案为:C .例19.(2020·温州月考)下列四个式子中,与(a -的值相等的是() AB .CD .【答案】D.【解析】解:由题意得:2021-a>0,得:a<2021,∴a-2021<0,∴原式=(2021a --== 故答案为:D . 例20.下列给出的四个命题:①若a b = ,则a a b b =;②若a 2﹣5a+5=01a =- ;③(1a -=其中是真命题是【答案】②.【解析】解:①当a=-1,b=1时,命题不成立,是假命题,②a 2=5a-5,∴5a-5≥0,即a≥1,,是真命题;③(a -==,是假命题, 故答案为:②.【题型六】阅读材料例21.(2021·北京延庆区期末)我们规定用(a ,b )表示一对数对.给出如下定义:记m=,n = a > 0,b > 0),将(m ,n )与(n ,m )称为数对(a ,b )的一对“对称数对”.例如:(4,1)的一对“对称数对”为(12,1)和(1,12); (1)数对(9,3)的一对“对称数对”是 ;(2)若数对(3,y )的一对“对称数对”相同,则y 的值为 ;(3)若数对(x ,2)的一个“对称数对”,1),则x 的值为 ;(4)若数对(a ,b )的一个“对称数对”,,求ab 的值.【答案】(1)1(3与1)3, ;(2)13;(3)1 ;(4)16或6.【解析】解:(1)由题意得13=,∴数对(9,3)的一对“对称数对”是1(3与1)3,;(2)由题意得,∴数对(3,y )的一对“对称数对”为⎝与⎭, ∵数对(3,y )的一对“对称数对”相同,= ∴y=13;(3)∵数对(x ,2)的一对“对称数对”是与而数对(x ,2)的一个“对称数对”,1), 1=, ∴x=1;(4)∵数对(a ,b)的一对“对称数对”是与,而数对(a ,b)的一个“对称数对”是,==1,183a b == ∴11863ab =⨯=;==1,318a b ==, ∴113186ab =⨯=,综上所述,16ab =或6ab =. 例22. 阅读理解:二次根式的除法,要化去分母中的根号,需将分子、分母同乘以一个恰当的二次根式..11==. 类比应用:(1= ; (29++=+ . 拓展延伸:的矩形叫黄金矩形.如图①,已知黄金矩形ABCD 的宽AB =1. (1)黄金矩形ABCD 的长BC = ;(2)如图②,将图①中的黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的矩形DCEF ,猜想矩形DCEF 是否为黄金矩形,并证明你的结论;(3)在图②中,连结AE ,则点D 到线段AE 的距离为 .【答案】类比应用:(1);(2)2;拓展延伸:(1)12;(2)矩形DCEF为黄金矩形,理由见解析;(3【解析】解:类比应用:(1)根据题意可得:== (2)根据题意可得:9++(9+++19-+-1=2;拓展延伸:(1的矩形叫黄金矩形, 若黄金矩形ABCD 的宽AB =1,则黄金矩形ABCD 的长BC; (2)矩形DCEF 为黄金矩形,理由是:由裁剪可知:AB=AF=BE=EF=CD=1,根据黄金矩形的性质可得:AD=BC=1=∴FD=EC=AD-AF=112-=12,∴DF EF =11122÷=,故矩形DCEF 为黄金矩形;(3)连接AE ,DE ,过D 作DG ⊥AE 于点G ,∵AB=EF=1,,∴=在△AED 中,S △AED =1122AD EF AE DG ⨯⨯=⨯⨯,即AD EF AE DG ⨯=⨯1DG =,解得∴点D 到线段AE 的距离为4+. 例23. (2019·四川月考)阅读下列材料,然后回答问题.一样的式子,其实我们还可以将其进一步化简:====1以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知 a +b =2,ab = -3 ,求 a 2 + b 2 .我们可以把a +b 和ab 看成是一个整体,令 x =a +b , y = ab ,则 a 2 + b 2 = (a + b)2 - 2ab = x 2- 2y = 4+ 6=10.这样,我们不用求出a ,b ,就可以得到最后的结果.(1...+(2)已知 m 是正整数, ab且 2a 2+ 1823ab + 2b 2 = 2019 .求 m . (31=【答案】(1)12;(2)2;(3)9. 【解析】解:(1)原式12019+2222=+++2019++== (2)∵ab∴=2(2m+1),=1∵2a 2+ 1823ab + 2b 2 = 2019∴2(a 2+b 2)+1823=2019∴a 2+b 2=98∴4(2m+1)2=100∴m=2或m=-3∵m是正整数∴m=2.(31=,得:21=20=2281=-+=0≥≥.例24.(2020·湖南怀化市期末)同学们,我们以前学过完全平方公式222)2(a ab b a b ±+=±,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的非负数(以及0)都可以看作是一个数的平方,如23=,25=,下面我们观察:)2221211213=-⨯=-=-23211)-=-=,∴231)-=1= 求:(1;(2(3=,则m 、n 与a 、b 的关系是什么?并说明理由.【答案】(11;(21;(3)m+n=a ,mn=b ,理由见解析.【解析】解:(11;(21==;(3)m+n =a ,mn =b.=∴2a =+,∴,∴m+n =a ,mn =b.例25.(2020·安徽安庆市)阅读理解题,下面我们观察:2221)211213=-⨯=-=-反之23211)-=-=,所以231)-=1= 完成下列各题:(1)在实数范围内因式分解:(2(3.【答案】(1)2(1+;(21;(3【解析】解:(1)22231(1+=+=+(21==(3==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式的运算法则(讲义)
➢ 课前预习
1. 已知a ,b 均为非负数,请根据幂的运算法则与算术平方根的定义,解决下
列问题:
(1)①根据算术平方根的定义可知,ab 的算术平方根是____.
②2
=22⋅ =_________
是_________的算术平方根. 对比①②的结果,你能得到的结论是___________________.
(2)类似(1
0b =≠):
①根据算术平方根的定义可知,a
b
的算术平方根是_______.
②2
⎛
=________
_________的算术平方根. 对比①②的结果,你能得到的结论是___________________.
➢ 知识点睛
1. ________________________________叫做二次根式,它具有
_________________________,即_______________________. 2. 最简二次根式(①②同时具备):
①_________________________________________________; ②_________________________________________________. 3. 二次根式的乘除法则:
①_________________________________________________; ②_________________________________________________. 4. 同类二次根式:_____________________________________. 5. 二次根式的加减法则:
①______________________;②_______________________.
➢ 精讲精练
1.
,,,其中是最简二次根
A.1 B.2 C.3 D.4
2.化简:
(1(2
解:原式= 解:原式=
(3(4
解:原式= 解:原式=
(5(6
解:原式= 解:原式=
(7(8)
解:原式= 解:原式=
(9(10
解:原式= 解:原式=
(11(12
解:原式= 解:原式=
3.计算:
(1)(2
解:原式= 解:原式=
(3 (4( 解:原式=
解:原式=
(5
(6 解:原式=
解:原式=
(7 (8
解:原式=
解:原式=
(9
(10解:原式=
解:原式=
4. 下列各式与3是同类二次根式的是( )
A .6
B .8
C .
2
1
D 5. 下列是同类二次根式的是( )
A B
C
D 6. 下列运算正确的是( )
A 0.12=
B =
C
=
D 3===
7. 下列运算错误的是( )
A =
B =
C =
D .-=
8. 计算:
(1
(2)
解:原式=
解:原式=
(3 (4) 解:原式=
解:原式=
(5 (6 解:原式=
解:原式=
(7
+ (8 解:原式=
解:原式=
(92
- (10解:原式=
解:原式=
9. 当x =______1+有最小值,此最小值为______.
10. 若|x -2|+3-y =0,则xy =______.
【参考答案】 ➢ 课前预习
1. (1ab ,ab ⋅
(2
a b ,a b ➢ 知识点睛
1. a ≥00,a ≥0
2. ①被开方数中不含能开得尽方的因数或因式;
②根号下不含分母,分母中不含根号
3. ⋅a ≥0,b ≥0)
a ≥0,
b >0)
4. 化成最简二次根式后,被开方数相同
5. ①化成最简二次根式;②合并同类二次根式
➢ 精讲精练
1. B
2. (1)12;(2)(3)(4)(5)(6)(7)
8)9;(10;(1112
3. (1)2)12;(3)18;(4)-5)6)15;
(7)2;(8)2;(9)3
2
;(10)4.
D 5. C 6. D 7.
A
8. (1)2)-3;(4)5)
(6)3-
;(7)2;(8)5;(9)1;(10)7
9.
1
10,1 10. 6。