河北省保定市2019-2020学年中考数学模拟试题(5)含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省保定市2019-2020学年中考数学模拟试题(5)
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数
y=k
x
(x<0)的图象经过菱形OABC中心E点,则k的值为()
A.6 B.8 C.10 D.12
2.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()
A.B.C.D.
3.如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为()
A.5 B.4 C.3 D.2
4.方程37
1
x x
-=
+
的解是().
A.
1
4
x=B.
3
4
x=C.
4
3
x=D.1
x=-
5.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()
A.1.8×105B.1.8×104C.0.18×106D.18×104
6.下列实数中,最小的数是()
A3B.π
-C.0 D.2-
7.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()
A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2+5
8.如图,在平面直角坐标系xOy中,A(2,0),B(0,2),⊙C的圆心为点C(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于E点,则△ABE面积的最小值是()
A.2 B.C.D.
9.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()
A.B.
C.D.
10.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为占有市场份额,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价()元.
A.3 B.2.5 C.2 D.5
11.在3-,1-,0,1这四个数中,最小的数是()
A.3-B.1-C.0 D.1
12.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()
A.4 B.5 C.6 D.7
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.
14.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP
的大小为_______.
15.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是
16.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=62,点D,E分别是边BC,AC上的动点,则DA+DE 的最小值为_____.
17.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为.
18.已知:如图,矩形ABCD中,AB=5,BC=3,E为AD上一点,把矩形ABCD沿BE折叠,若点A 恰好落在CD上点F处,则AE的长为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米.若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.登山多长时间时,甲、乙两人距地面的高度差为50米?
20.(6分)在平面直角坐标系中,抛物线y =(x ﹣h )2+k 的对称轴是直线x =1.若抛物线与x 轴交于原点,求k 的值;当﹣1<x <0时,抛物线与x 轴有且只有一个公共点,求k 的取值范围.
21.(6分)如图,Rt △ABC 中,∠C=90°,⊙O 是Rt △ABC 的外接圆,过点C 作⊙O 的切线交BA 的延长线于点E ,BD ⊥CE 于点D ,连接DO 交BC 于点M.
(1)求证:BC 平分∠DBA ;
(2)若2
3EA AO =,求DM MO
的值.
22.(8分)计算:|﹣2|++(2017﹣π)0﹣4cos45°
23.(8分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离” (1)求抛物线y =x 2﹣2x+3与x 轴的“亲近距离”;
(2)在探究问题:求抛物线y =x 2﹣2x+3与直线y =x ﹣1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x 轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由. (3)若抛物线y =x 2﹣2x+3与抛物线y =214x +c 的“亲近距离”为23
,求c 的值. 24.(10分)先化简22442x x x x -+-÷(x-4x
),然后从55x 的值代入求值.
25.(10分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元.今年的总收入和总支出计划各是多少万元? 26.(12分)计算:(13
)-1+32+027. 27.(12分)计算:203182sin 60(1)2-︒⎛⎫+-+ ⎪⎝⎭解不等式组3(1)45513x x x x --⎧⎪-⎨->⎪⎩
…,并写出它的所有整数解.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.B
【解析】
【分析】
根据勾股定理得到,根据菱形的性质得到AB=OA=5,AB∥x轴,求得B(-8,-4),得到E(-4,-2),于是得到结论.
【详解】
∵点A的坐标为(﹣3,﹣4),
∴,
∵四边形AOCB是菱形,
∴AB=OA=5,AB∥x轴,
∴B(﹣8,﹣4),
∵点E是菱形AOCB的中心,
∴E(﹣4,﹣2),
∴k=﹣4×(﹣2)=8,
故选B.
【点睛】
本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键.2.C
【解析】
【详解】
左视图就是从物体的左边往右边看.小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错
误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形1
3
,故D
错误,所以C正确.故此题选C.
3.B
【解析】
【分析】
根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.
【详解】
解:∵△ABC绕点A顺时针旋转 60°得到△AED,
∴AB=AE,∠BAE=60°,
∴△AEB是等边三角形,
∴BE=AB,
∵AB=1,
∴BE=1.
故选B.
【点睛】
本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.4.B
【解析】
【分析】
直接解分式方程,注意要验根.
【详解】
解:37
1
x x
-
+
=0,
方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,
解这个一元一次方程,得:x=3
4

经检验,x=3
4
是原方程的解.
故选B.
【点睛】
本题考查了解分式方程,解分式方程不要忘记验根.
5.A
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
180000=1.8×105,
故选A.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
6.B
【解析】
【分析】
根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.
【详解】
∵π
∴最小的数是-π,
故选B.
【点睛】
此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.7.A
【解析】
【分析】
结合向左平移的法则,即可得到答案.
【详解】
解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,
故选A.
【点睛】
此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答. 8.C
【解析】
当⊙C与AD相切时,△ABE面积最大,
连接CD,
则∠CDA=90°,
∵A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1,
∴CD=1,AC=2+1=3,
∴AD==2,
∵∠AOE=∠ADC=90°,∠EAO=∠CAD,
∴△AOE∽△ADC,

即,∴OE=,
∴BE=OB+OE=2+
∴S△ABE=
BE?OA=×(2+)×2=2+
故答案为C.
9.C
【解析】
【分析】
根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,
即可得出a、b之间的关系式.
【详解】
∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,
∴2014年我省财政收入为a(1+8.9%)亿元,
∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,
∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);
故选C.
【点睛】
此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题.
10.A
【解析】
【分析】
设售价为x元时,每星期盈利为6125元,那么每件利润为(x-40),原来售价为每件60元时,每星期可卖出300件,所以现在可以卖出[300+20(60-x)]件,然后根据盈利为6120元即可列出方程解决问题.【详解】
解:设售价为x元时,每星期盈利为6120元,
由题意得(x-40)[300+20(60-x)]=6120,
解得:x1=57,x2=1,
由已知,要多占市场份额,故销售量要尽量大,即售价要低,故舍去x2=1.
∴每件商品应降价60-57=3元.
故选:A.
【点睛】
本题考查了一元二次方程的应用.此题找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.
11.A
【解析】
【分析】根据正数大于零,零大于负数,正数大于一切负数,即可得答案.
【详解】由正数大于零,零大于负数,得
-<-<<,
3101
-,
最小的数是3
故选A.
【点睛】本题考查了有理数比较大小,利用好“正数大于零,零大于负数,两个负数绝对值大的反而小”是解题关键.
12.B
【解析】
试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.
此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知
∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根据勾股定理可得22
+22
'
BC BD
+.故选B.
34
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.3 4
【解析】
【分析】
根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.
【详解】
根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭
成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=3 4 .
故其概率为:3
4

【点睛】
本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.
14.40°
【解析】
:在△QOC中,OC=OQ,
∴∠OQC=∠OCQ,
在△OPQ中,QP=QO,
∴∠QOP=∠QPO,
又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,
∴3∠OCP=120°,
∴∠OCP=40°
15.1
3

【解析】
【分析】
分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.
【详解】
有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的
概率是21 63 .
故答案为1 3
【点睛】
考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.
16.16 3
【解析】
【分析】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AE⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长,根据相似三角形对应边的比可得结论.【详解】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AE⊥AC于E,交
BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长;
Rt△ABC中,∠BAC=90°,AB=3,,
∴,
S△ABC=1
2
AB•AC=
1
2
BC•AF,
∴3×=9AF,

∴,
∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,
∵∠AEA'=∠BAC=90°,
∴△AEA'∽△BAC,

'
'
AA BC
A E AC
=,

'A E
=,
∴A'E=16
3

即AD+DE的最小值是16
3

故答案为16
3

【点睛】本题考查轴对称﹣最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题.
17.7
【解析】
试题分析:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC.
∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.
∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.
又∵∠B=∠C=60°,∴△ABD∽△DCE.
∴AB DC
BD CE
=,即
96
CE2
3CE
=⇒=.
∴AE AC CE927
=-=-=.
18.5 3
【解析】
【分析】
根据矩形的性质得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根据折叠得到BF=AB=5,EF=EA,根据勾股定理求出CF,由此得到DF的长,再根据勾股定理即可求出AE.
【详解】
∵矩形ABCD中,AB=5,BC=3,
∴CD=AB=5,AD=BC=3,∠D=∠C=90°,
由折叠的性质可知,BF=AB=5,EF=EA,
在Rt△BCF中,CF22
BF BC
-4,
∴DF=DC﹣CF=1,
设AE=x,则EF=x,DE=3﹣x,
在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,
解得,x=5
3

故答案为:5
3

【点睛】
此题考查矩形的性质,勾股定理,折叠的性质,由折叠得到BF的长度是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(1)10,30;(2)y=
15(02)
3030(211)
x x
x x
≤≤


-≤≤

;(3)登山4分钟、9分钟或15分钟时,甲、乙两人距地
面的高度差为50米.
【解析】
【分析】
(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;
(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;
(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度﹣甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.
【详解】
(1)(300﹣100)÷20=10(米/分钟),
b=15÷1×2=30,
故答案为10,30;
(2)当0≤x≤2时,y=15x;
当x≥2时,y=30+10×3(x﹣2)=30x﹣30,
当y=30x﹣30=300时,x=11,
∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=
()
()
1502 3030211
x x
x x
⎧≤≤


-≤≤
⎪⎩

(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=50时,解得:x=4,
当30x﹣30﹣(10x+100)=50时,解得:x=9,
当300﹣(10x+100)=50时,解得:x=15,
答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.
【点睛】
本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.
20.(1)k=﹣1;(2)当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.
【解析】
【分析】
(1)由抛物线的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;
(2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当﹣1<x<2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.
【详解】
解:(1)∵抛物线y=(x﹣h)2+k的对称轴是直线x=1,
∴h=1,
把原点坐标代入y=(x﹣1)2+k,得,
(2﹣1)2+k=2,
解得k=﹣1;
(2)∵抛物线y=(x﹣1)2+k与x轴有公共点,
∴对于方程(x﹣1)2+k=2,判别式b2﹣4ac=﹣4k≥2,
∴k≤2.
当x=﹣1时,y=4+k;当x=2时,y=1+k,
∵抛物线的对称轴为x=1,且当﹣1<x<2时,抛物线与x轴有且只有一个公共点,
∴4+k>2且1+k<2,解得﹣4<k<﹣1,
综上,当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.
【点睛】
抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.
21.(1)证明见解析;(2)8 5
【解析】
分析:
(1)如下图,连接OC,由已知易得OC⊥DE,结合BD⊥DE可得OC∥BD,从而可得∠1=∠2,结合由OB=OC所得的∠1=∠3,即可得到∠2=∠3,从而可得BC平分∠DBA;
(2)由OC∥BD可得△EBD∽△EOC和△DBM∽△OCM,由根据相似三角形的性质可得得EB DM EO MO
=,

2
3
EA
AO
=,设EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到
8
5
DM EB
MO EO
==.
详解:
(1)证明:连结OC,
∵DE与⊙O相切于点C,∴OC⊥DE.
∵BD⊥DE,
∴OC∥BD. .
∴∠1=∠2,
∵OB=OC,
∴∠1=∠3,
∴∠2=∠3,
即BC平分∠DBA. .
(2)∵OC∥BD,
∴△EBD∽△EOC,△DBM∽△OCM,.
∴BD EB BD DM CO EO CO MO
==
,,
∴EB DM EO MO
=,

2
3
EA
AO
=,设EA=2k,AO=3k,
∴OC=OA=OB=3k.

8
5 DM EB
MO EO
==.
点睛:(1)作出如图所示的辅助线,由“切线的性质”得到OC⊥DE结合BD⊥DE得到OC∥BD是解答第1小题的关键;(2)解答第2小题的关键是由OC∥BD得到△EBD∽△EOC和△DBM∽△OCM这样利用相似三角形的性质结合已知条件即可求得所求值了.
22.1.
【解析】
【分析】
直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.
【详解】
解:原式=2+2+1﹣4×
=2+2+1﹣2
=1.
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
23.(1)2;(2)不同意他的看法,理由详见解析;(3)c=1.
【解析】
【分析】
(1)把y=x 2﹣2x+3配成顶点式得到抛物线上的点到x 轴的最短距离,然后根据题意解决问题;
(2)如图,P 点为抛物线y=x 2﹣2x+3任意一点,作PQ ∥y 轴交直线y=x ﹣1于Q ,设P(t ,t 2﹣2t+3),则Q(t ,t ﹣1),则PQ=t 2﹣2t+3﹣(t ﹣1),然后利用二次函数的性质得到抛物线y=x 2﹣2x+3与直线y=x ﹣1的“亲近距离”,然后对他的看法进行判断;
(3)M 点为抛物线y=x 2﹣2x+3任意一点,作MN ∥y 轴交抛物线214y x c =+于N ,设M(t ,t 2﹣2t+3),则N(t ,14t 2+c),与(2)方法一样得到MN 的最小值为53﹣c ,从而得到抛物线y=x 2﹣2x+3与抛物线214
y x c =+的“亲近距离”,所以5233c =﹣,然后解方程即可. 【详解】
(1)∵y=x 2﹣2x+3=(x ﹣1)2+2,
∴抛物线上的点到x 轴的最短距离为2,
∴抛物线y=x 2﹣2x+3与x 轴的“亲近距离”为:2;
(2)不同意他的看法.理由如下:
如图,P 点为抛物线y=x 2﹣2x+3任意一点,作PQ ∥y 轴交直线y=x ﹣1于Q ,
设P(t ,t 2﹣2t+3),则Q(t ,t ﹣1),
∴PQ=t 2﹣2t+3﹣(t ﹣1)=t 2﹣3t+4=(t ﹣
32)2+74
, 当t=32时,PQ 有最小值,最小值为74, ∴抛物线y=x 2﹣2x+3与直线y=x ﹣1的“亲近距离”为74
, 而过抛物线的顶点向x 轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,
∴不同意他的看法;
(3)M 点为抛物线y=x 2﹣2x+3任意一点,作MN ∥y 轴交抛物线214
y x c =+于N ,
设M(t ,t 2﹣2t+3),则N(t ,
14t 2+c), ∴MN=t 2﹣2t+3﹣(14t 2+c)=34t 2﹣2t+3﹣c=34(t ﹣43)2+53
﹣c , 当t=43时,MN 有最小值,最小值为53
﹣c , ∴抛物线y=x 2﹣2x+3与抛物线214y x c =+的“亲近距离”为53
﹣c , ∴5233
c =﹣, ∴c=1.
【点睛】
本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定义是解题的关键.
24.当x=-1时,原式=
1=11+2-; 当x=1时,原式=11=1+23
【解析】
【分析】
先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算.
【详解】 原式=22(2)4(2)x x x x x
--÷- =()2(2)•(2)2(2)
x x x x x x --+- =12
x +
∵x x 为整数,
∴若使分式有意义,x 只能取-1和1
当x=1时,原式=13
.或:当x=-1时,原式=1 25.今年的总收入为220万元,总支出为1万元.
【解析】
试题分析:设去年总收入为x 万元,总支出为y 万元,根据利润=收入-支出即可得出关于x 、y 的二元一次方程组,解之即可得出结论.
试题解析:
设去年的总收入为x 万元,总支出为y 万元.
根据题意,得(
)()50110%120%100x y x y -=⎧⎨+--=⎩, 解这个方程组,得200150x y =⎧⎨=⎩
, ∴(1+10%)x=220,(1-20%)y=1.
答:今年的总收入为220万元,总支出为1万元.
26.
【解析】
【分析】
原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.
【详解】
原式
-2×2
27.(1
)7-
(1)0,1,1. 【解析】
【分析】
(1)本题涉及零指数幂、负指数幂、特殊角的三角函数值,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果
(1)先求出每个不等式的解集,再求出不等式组的解集,最后再找出整数解即可
【详解】
解:(1)原式=1﹣
, =7
(1)()3145{513
x x x x -≥---①
>② , 解不等式①得:x≤1,
解不等式②得:x >﹣1,
∴不等式组的解集是:﹣1<x≤1.
故不等式组的整数解是:0,1,1.
【点睛】
此题考查零指数幂、负指数幂、特殊角的三角函数值,一元一次不等式组的整数解,掌握运算法则是解题关键。

相关文档
最新文档