2018年高考湖南卷数学(理)试卷及答案
2018年湖南省高考数学试卷(理科)(全国新课标Ⅰ)
![2018年湖南省高考数学试卷(理科)(全国新课标Ⅰ)](https://img.taocdn.com/s3/m/115b6865dd36a32d7275812c.png)
2018年湖南省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设z=1−i1+i+2i,则|z|=( )A.0B.12C.1D.√22. 已知集合A={x|x2−x−2>0},则∁R A=()A.{x|−1<x<2}B.{x|−1≤x≤2}C.{x|x<−1}∪{x|x>2}D.{x|x≤−1}∪{x|x≥2}3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4. 设S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.−12B.−10C.10D.125. 设函数f(x)=x3+(a−1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0, 0)处的切线方程为()A.y=−2xB.y=−xC.y=2xD.y=x6. 在△ABC中,AD为BC边上的中线,E为AD的中点,则EB→=()A.3 4AB→−14AC→B.14AB→−34AC→C.3 4AB→+14AC→D.14AB→+34AC→7. 某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( ) A.2√17 B.2√5 C.3 D.28. 设抛物线C:y2=4x的焦点为F,过点(−2, 0)且斜率为23的直线与C交于M,N两点,则FM→⋅FN→=()A.5B.6C.7D.89.已知函数f(x)={e x,x≤0,lnx,x>0,g(x)=f(x)+x+a,若g(x)存在2个零点,则a的取值范围是()A.[−1, 0)B.[0, +∞)C.[−1, +∞)D.[1, +∞)10. 如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311. 已知双曲线C:x23−y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.32B.3C.2√3D.412. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.3√34B.2√33C.3√24D.√32二、填空题:本题共4小题,每小题5分,共20分。
2018-2019年湖南高中理科数学高考精品试卷含答案
![2018-2019年湖南高中理科数学高考精品试卷含答案](https://img.taocdn.com/s3/m/4539624ba98271fe910ef952.png)
2018-2019年湖南高中理科数学高考精品试卷含答案解析(时间:60分钟 满分100分)班级__________ ___________ 学号___________注意事项:本试卷分选择题和非选择题,满分120分,考试时间120分钟。
一、选择题(每小题5分,共50分)1.设x ,y 是两个实数,则“x ,y 中至少有一个数大于1”是“x 2+y 2>2”成立的A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件【答案解析】D【详解】若x ,y 中至少有一个数大于1(如x=1.1,y=0.1),则x 2+y 2>2不成立 若x 2+y 2>2(如x=-2,y=-2)则x ,y 中至少有一个数大于1不成立所以“x ,y 中至少有一个数大于1”是“x 2+y 2>2”成立的既非充分又非必要条件 2.函数的图像大致是A B C D【答案解析】A3.设等差数列的前项和为,且满足,,对任意正整数,都有,则的值为( )A .1006B .1007C .1008D .1009【答案解析】C4.计算的结果为( )A.B. C. D.【答案解析】B5.已知非零向量,,满足,,若对每个确定的,的最大值和最小值分别为,,则的值()A.随增大而大 B.随增大小而变小C.等于2 D.等于4【答案解析】D6.已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.-B.C.D.【答案解析】B【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========7.曲线x=|y﹣1|与y=2x﹣5围成封闭区域(含边界)为Ω,直线y=3x+b与区域Ω有公共点,则b的最小值为()A.1 B.﹣1 C.﹣7 D.﹣11【答案解析】D【分析】由约束条件画出平面区域,由y=3x+b得y=3x+B,然后平移直线,利用z的几何意义确定目标函数的最小值即可.【解答】解:x=|y﹣1|与y=2x﹣5围成的平面区域如图,由,解得A(6,7)由y=3x+b,平移直线y=3x+b,则由图象可知当直线经过点A时,直线y=3x+b的截距最小,此时b最小.∴b=﹣3x+y的最小值为﹣18+7=﹣11.故选:D.8.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为()A.90°B.60°C.45°D.30°【答案解析】C如图,当平面BAC⊥平面DAC时,三棱锥体积最大取AC的中点E,则BE⊥平面DAC,故直线BD和平面ABC所成的角为∠DBE,∴∠DBE=.故选C.9.用秦九韶算法求多项式f(x)=208+9x2+6x4+x6,在x=﹣4时,v2的值为()A.﹣4 B.1 C.17 D.22【答案解析】D【考点】秦九韶算法.【分析】先将多项式改写成如下形式:f(x)=(((((x)x+6)x)x+9)x)x+208,将x=﹣4代入并依次计算v0,v1,v2的值,即可得到答案.【解答】解:∵f(x)=208+9x2+6x4+x6=(((((x)x+6)x)x+9)x)x+208,当x=﹣4时,v0=1,v1=1×(﹣4)=﹣4,v2=﹣4×(﹣4)+6=2210.过点A(1,2)且与原点距离最大的直线方程为()A.2x+y﹣4=0 B.x+2y﹣5=0 C.x+3y﹣7=0 D.3x+y﹣5=0【答案解析】B【分析】过点A(1,2)且与原点距离最大的直线与OA垂直,再用点斜式方程求解.【解答】解:根据题意得,当与直线OA垂直时距离最大,因直线OA的斜率为2,所以所求直线斜率为﹣,所以由点斜式方程得:y﹣2=﹣(x﹣1),化简得:x+2y﹣5=0,故选:B二.填空题:(每小题5分,共25分)1.已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为.【答案解析】﹣=1【考点】圆锥曲线的轨迹问题.【分析】利用点差法求出直线AB的斜率,再根据F(3,0)是E的焦点,过F的直线l 与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),可建立方程组,从而可求双曲线的方程.【解答】解:由题意,不妨设双曲线的方程为∵F(3,0)是E的焦点,∴c=3,∴a2+b2=9.设A(x1,y1),B(x2,y2)则有:①;②由①﹣②得:=∵AB的中点为N(﹣12,﹣15),∴又AB的斜率是∴,即4b2=5a2将4b2=5a2代入a2+b2=9,可得a2=4,b2=5∴双曲线标准方程是故答案为:2.一物体在力F(x)=,(单位:N)的作用下沿与力F相同的方向,从x=0处运动到x=4(单位:m)处,则力F(x)做的功为焦.【分析】本题是一个求变力做功的问题,可以利用积分求解,由题意,其积分区间是[0,1],被积函数是力的函数表达式,由积分公式进行计算即可得到答案【解答】解:W===36.故答案为:363.若x10-x5=a0+a1(x-1)+a2(x-1)2+…+a10(x-1)10,则a5=.【答案解析】251【分析】根据x10﹣x5=[(x﹣1)+1]10﹣[(x﹣1)+1]5,利用二项式展开式的通项公式,求得a5的值.【解答】解:∵x10﹣x5=[(x﹣1)+1]10﹣[(x﹣1)+1]5,﹣=251,∴a5=故答案为:2514.取一根长度为3米的绳子,拉直后在任意位置剪断,则剪出的两段的长都不小于1米(记为事件A)的概率为【答案解析】试题分析:记“两段的长都不小于1m”为事件A,则只能在中间1m的绳子上剪断,剪得两段的长都不小于1m,所以事件A发生的概率 P(A)=5.如图1是某高三学生进入高中﹣二年来的数学考试成绩茎叶图,第1次到第 14次.考试成绩依次记为A1,A2,…,A14.如图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是.【分析】该程序的作用是累加12次考试成绩超过90分的人数,由此利用茎叶图能求出结果.【解答】解:分析程序中各变量、各语句的作用, 再根据流程图所示的顺序,可知:该程序的作用是累加12次考试成绩超过90分的人数; 根据茎叶图的含义可得超过90分的人数为10个. 故答案为:10三、解答题(共25分)1.已知四棱锥P ﹣ABCD 的底面ABCD 为直角梯形,AB ∥CD ,∠DAB=90°,PA ⊥底面ABCD ,且PA=AD=DC=AB=1,M 是PB 的中点.(1)求异面直线AC 与PB 所成的角的余弦值; (2)求直线BC 与平面ACM 所成角的正弦值.【答案解析】【分析】(1)建立空间直角坐标系,利用空间向量的数量积,求AC 与PB 所成的角的余弦值,(2)设=(x ,y ,z )为平面的ACM 的一个法向量,求出法向量,利用空间向量的数量积,直线BC 与平面ACM 所成角的正弦值.【解答】解:(1)以A 为坐标原点,分别以AD 、AB 、AP 为x 、y 、z 轴,建立空间直角坐标系,则A (0,0,0),P (0,0,1),C (1,1,0),B (0,2,0),M (0,1,), 所以=(1,1,0),=(0,2,﹣1),||=,||=,=2,cos(,)==,(2)=(1,﹣1,0),=(1,1,0),=(0,1,),设=(x,y,z)为平面的ACM的一个法向量,则,即,令x=1,则y=﹣1,z=2,所以=(1,﹣1,2),则cos<,>===,设直线BC与平面ACM所成的角为α,则sinα=sin[﹣<,>]=cos<,>=2.(1)已知圆(x+2)2+y2=1过椭圆C的一个顶点和焦点,求椭圆C标准方程.(2)已知椭圆的离心率为,求k的值.【答案解析】解:(1)圆(x+2)2+y2=1与x轴的交点为(﹣1,0),(﹣3,0),由题意可得椭圆的一个焦点为(﹣1,0),一个顶点为(﹣3,0),设椭圆方程为+=1(a>b>0),可得a=3,c=1,b==2,即有椭圆的方程为+=1;(2)当焦点在x轴上时,椭圆+=1的a2=8+k,b2=9,c2=k﹣1,e2===,解得k=4;当焦点在y轴上时,椭圆+=1的b2=8+k,a2=9,c2=1﹣k,e2===,解得k=﹣.综上可得k=4或﹣.考点:椭圆的简单性质.专题:计算题;方程思想;分类法;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)求出圆与x轴的交点,可得椭圆的一个焦点和一个顶点,再由a,b,c的关系可得椭圆方程;(2)讨论焦点在x,y轴上,求得a,b,c,e,解方程可得k的值.解答:解:(1)圆(x+2)2+y2=1与x轴的交点为(﹣1,0),(﹣3,0),由题意可得椭圆的一个焦点为(﹣1,0),一个顶点为(﹣3,0),设椭圆方程为+=1(a>b>0),可得a=3,c=1,b==2,即有椭圆的方程为+=1;(2)当焦点在x轴上时,椭圆+=1的a2=8+k,b2=9,c2=k﹣1,e2===,解得k=4;当焦点在y轴上时,椭圆+=1的b2=8+k,a2=9,c2=1﹣k,e2===,解得k=﹣.综上可得k=4或﹣.。
2018年高考理科数学试题(含全国1卷、2卷、3卷)带参考答案
![2018年高考理科数学试题(含全国1卷、2卷、3卷)带参考答案](https://img.taocdn.com/s3/m/9356e2986c85ec3a87c2c5f8.png)
有
种. (用数字填写答案)
16. 已知函数 f( x) =2sinx+sin2x ,则 f(x)的最小值是
.
三 . 解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题, 每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。 17. ( 12 分)
A、-12 B 、-10 C 、10 D 、12 5、设函数 f (x)=x3+(a-1 ) x2+ax . 若 f(x)为奇函数,则曲线 y= f(x)在点( 0,0)处的Biblioteka 切线方程为( )2
A.y= -2x
B.y= -x C.y=2x D.y=x
6、在 ? ABC中, AD为 BC边上的中线, E 为 AD的中点,则 =( )
5
如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取 20 件产品作检验,再根
据检验结果决定是否对余下的所有产品做检验,设每件产品为不合格品的概率都为
P
( 0<P<1),且各件产品是否为不合格品相互独立。
( 1)记 20 件产品中恰有 2 件不合格品的概率为 f(P),求 f(P)的最大值点
A.
-
B.
-
C.
+
D.
+
7、某圆柱的高为 2,底面周长为 16,其三视图如右图。圆柱表面上的点 M在正视图上的对应 点为 A,圆柱表面上的点 N 在左视图上的对应点为 B,则在此圆柱侧面上, 从 M到 N 的路径中, 最短路径的长度为( )
A. 2 B. 2 C. 3 D. 2 8. 设抛物线 C:y2=4x 的焦点为 F,过点( -2 ,0)且斜率为 的直线与 C 交于 M,N 两点,则 · =( ) A.5 B.6 C.7 D.8
2018年高考全国卷1理科数学(含答案)
![2018年高考全国卷1理科数学(含答案)](https://img.taocdn.com/s3/m/4fe90f7eddccda38376bafed.png)
2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)(2018•新课标Ⅰ)设z=+2i,则|z|=()A.0 B.C.1 D.2.(5分)(2018•新课标Ⅰ)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)(2018•新课标Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)(2018•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.125.(5分)(2018•新课标Ⅰ)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)(2018•新课标Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)(2018•新课标Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2 C.3 D.28.(5分)(2018•新课标Ⅰ)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5 B.6 C.7 D.89.(5分)(2018•新课标Ⅰ)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)(2018•新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.(5分)(2018•新课标Ⅰ)已知双曲线C:﹣y2=1,O为坐标原点,F为C 的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2 D.412.(5分)(2018•新课标Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年全国高考理科数学(全国一卷)试题及答案
![2018年全国高考理科数学(全国一卷)试题及答案](https://img.taocdn.com/s3/m/894682d90066f5335b812191.png)
2018年全国普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。
) 1、设z=,则∣z ∣=( )A.0 B 。
C 。
1 D 。
2、已知集合A={x|x 2—x-2〉0},则A =( )A 、{x |—1<x<2}B 、{x|—1≤x ≤2}C 、{x|x<—1}∪{x |x 〉2}D 、{x|x ≤-1}∪{x |x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍建设前经济收入构成比例建设后经济收入构成比例D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记Sn 为等差数列{an}的前n项和,若3S3= S2+ S4,a1=2,则a5=()A、—12B、—10C、10D、125、设函数f(x)=x³+(a—1)x²+ax .若f(x)为奇函数,则曲线y= f(x)在点(0,0)处的切线方程为( )A。
y= -2x B.y= -x C。
y=2x D.y=x6、在∆ABC中,AD为BC边上的中线,E为AD的中点,则=()A。
- B. - C。
+ D。
+7、某圆柱的高为2,底面周长为16,其三视图如右图。
圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A。
2B。
2C。
3D。
28.设抛物线C:y²=4x的焦点为F,过点(—2,0)且斜率为的直线与C交于M,N两点,则·=( )A.5B.6 C。
7 D.89。
湖南省长沙市2018高三统考理科数学试题Word版答案
![湖南省长沙市2018高三统考理科数学试题Word版答案](https://img.taocdn.com/s3/m/8cc1fd2be518964bcf847c8f.png)
科目:数学(理科)(试题卷)注意事项:1.答题前,考生务必将自己的姓名、准考证号写在答题卡和 该试题卷的封面上,并认真核对条形码的姓名、准考证号和科目。
2.选择题和非选择题均须在答题卡上作答,在本试题卷和草稿纸上作答无效。
考生在答题卡上按答题卡中注意事项的要求答题。
3.本试题卷共7页。
如缺页,考生须及时报告监考老师,否则后果自负。
4.考试结束后,将本试题卷和答题卡一并上交. 姓 名 准考证号 绝密★启用前长沙市2018届高三年级统一模拟考试理科数学长沙市教科院组织名优教师联合命制本试题卷共7页,全卷满分150分,考试用时120分钟。
一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.己知复数iz -=12,则下列结论正确的是 A. z 的虚部为i B.|z|=2C. 2z 为纯虚数 D. z 的共轭复数i z +-=12. 己知命题p: 0x ∃>0,010=-+a x ,若p 为假命题,则a 的取值范围是 A.(-∞,1) B. (-∞,1] C. (1,+∞) D. [1,+∞)3.己知3218==y x ,则=-yx 11 A.1 B. 2 C.-1 D .-24.在△AOB 中,OA = OB=1,OA 丄OB ,点 C 在 AB 边上,且 AB = 4AC ,则AB C ⋅0= A. 21-B. 21C. 23-D. 235.己知某二棱锥的三视图如图所示,其中俯视图由直角三角形和斜边上的中线组成,则该几何体的外接球的体积为 A. π34B. π312C. π4D. π126.己知 53)sin(=+απ,且 α2sin 2<0,则 )4tan(πα+的值为 A. 7 B.-7 C. 71-D. 717.若正整数N 除以正整数m 后的余数为r,则记为 N=r (mod m),例如10 = 2 (mod 4)。
下列程序框图的算法源于我国古代数学名著《孙子算经》中的 “中国剩余定理”,则执行该程序框图输出的i 等于 A. 3B. 9C.27D.818.设函数 )2<<0,0>)(sin()(πϕωϕω+=x x f ,己知)(x f 的最小正周期为π4,且当3π=x 时,)(x f 取得最大值。
2018高考全国1卷理科数学试卷及答案
![2018高考全国1卷理科数学试卷及答案](https://img.taocdn.com/s3/m/8ce2fa8b1b37f111f18583d049649b6648d70990.png)
2018高考全国1卷理科数学试卷及答案2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题,本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设 $z=\frac{1-i+2i}{1+i}$,则 $z=$A.0B.1C.1/2D.22.已知集合 $A=\{x|x-x-2>0\}$,则 $C_R A=$A。
$\{x|-1<x<2\}$B。
$\{x|-1\leq x\leq 2\}$C。
$\{x|x2\}$D。
$\{x|x\leq -1\}\cup\{x|x\geq 2\}$3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。
为更好地了解该地区农村的经济收入变化情况,统计和该地图新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记 $S_n$ 为等差数列 $\{a_n\}$ 的前 $n$ 项和,若$3S_3=S_2+S_4$,$a_1=2$,则 $a_5=$A。
$-12$B。
$-10$C。
10D。
125.设函数 $f(x)=x+(a-1)x+ax$,若 $f(-x)$ 为奇函数,则曲线 $y=f(x)$ 在点 $(3,32)$ 处的切线方程为A。
$y=-2x$B。
$y=-x$XXXD。
$y=x$6.在 $\triangle ABC$ 中,$AD$ 为 $BC$ 边上的中线,$E$ 为 $AD$ 的中点,则 $EB=\frac{1}{3}AB-\frac{1}{4}AC$A。
$\frac{3}{11}AB-\frac{8}{11}AC$B。
$\frac{4}{11}AB-\frac{7}{11}AC$C。
$\frac{7}{11}AB-\frac{4}{11}AC$D。
2018湖南高考数学[理科]高考试题[版][附答案解析]
![2018湖南高考数学[理科]高考试题[版][附答案解析]](https://img.taocdn.com/s3/m/77fb15551eb91a37f1115cf7.png)
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z =A .0B .12C .1D2.已知集合{}220A x x x =-->,则A =R ð A .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 ABCD二、填空题:本题共4小题,每小题5分,共20分。
2018年全国高考理科数学(全国一卷)试题及参考答案(2021年整理)
![2018年全国高考理科数学(全国一卷)试题及参考答案(2021年整理)](https://img.taocdn.com/s3/m/c5142d6984868762cbaed54a.png)
(完整word)2018年全国高考理科数学(全国一卷)试题及参考答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)2018年全国高考理科数学(全国一卷)试题及参考答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)2018年全国高考理科数学(全国一卷)试题及参考答案(word版可编辑修改)的全部内容。
2018年全国普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。
) 1、设z=,则∣z ∣=()A 。
0B.C.1D.2、已知集合A={x|x 2-x —2>0},则A =()A 、{x |-1〈x 〈2}B 、{x |—1≤x ≤2}C 、{x |x<-1}∪{x |x>2}D 、{x|x ≤-1}∪{x |x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=()建设前经济收入构成比例 建设后经济收入构成比例A、—12B、—10C、10D、125、设函数f(x)=x3+(a—1)x2+ax。
2018年高考全国一卷理科数学答案及解析
![2018年高考全国一卷理科数学答案及解析](https://img.taocdn.com/s3/m/2b4d6dbae87101f69e3195c3.png)
1、设z= ,则|z|=
A、0
B、
C、1
D、
【答案】C
【解析】由题可得 ,所以|z|=1
【考点定位】复数
2、已知集合A={x|x2-x-2>0},则 A=
A、{x|-1<x<2}
B、{x|-1 x 2}
D.[1,+∞)
【答案】C
【解析】
根据题意:f(x)+x+a=0有两个解。令M(x)=-a,
N(x)=f(x)+x =
分段求导:N‘(x)=f(x)+x = 说明分段是增函数。考虑极限位置,图形如下:
M(x)=-a在区间(-∞,+1]上有2个交点。
∴a的取值范围是C.[-1,+∞)
【考点定位】分段函数、函数的导数、分离参数法
【解析】
S1=2a1+1=a1∴a1=-1
n>1时,Sn=2an+1,Sn-1=2an-1+1 两式相减:Sn-Sn-1= an=2an-2an-1∴an=2an-1
an=a1×2n-1= (-1)×2n-1
则下面结论中不正确的是:
A、新农村建设后,种植收入减少。
B、新农村建设后,其他收入增加了一倍以上。
C、新农村建设后,养殖收入增加了一倍。
D、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A
【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,
【考点定位】简单统计
M、N的坐标(1,2),(4,4)
则 · =(0,2)·(3,4)=0*3+2*4=8
2018年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
![2018年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)](https://img.taocdn.com/s3/m/14b875042bf90242a8956bec0975f46527d3a7b1.png)
2018年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2} 2.(5分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.4.(5分)若sinα=,则cos2α=()A.B.C.﹣D.﹣5.(5分)(x2+)5的展开式中x4的系数为()A.10B.20C.40D.806.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3] 7.(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.<P(X=6),则p=()9.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.(5分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2C.D.12.(5分)设a=log2A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b 二、填空题:本题共4小题,每小题5分,共20分。
最新-2018年普通高等学校招生全国统一考试数学理试题湖南卷 精品003
![最新-2018年普通高等学校招生全国统一考试数学理试题湖南卷 精品003](https://img.taocdn.com/s3/m/8c48462e4a7302768e9939e6.png)
2018年普通高等学校招生全国统一考试数学理试题(湖南卷,解析版)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={-1,0,1},N={x|x 2≤x},则M ∩N= A.{0} B.{0,1} C.{-1,1} D.{-1,0,0} 【答案】B 【解析】{}0,1N = M={-1,0,1} ∴M ∩N={0,1}.【点评】本题考查了集合的基本运算,较简单,易得分. 先求出{}0,1N =,再利用交集定义得出M ∩N.2.命题“若α=4π,则tan α=1”的逆否命题是 A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1C. 若tan α≠1,则α≠4πD. 若tan α≠1,则α=4π【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以 “若α=4π,则tan α=1”的逆否命题是 “若tan α≠1,则α≠4π”. 【点评】本题考查了“若p ,则q ”形式的命题的逆命题、否命题与逆否命题,考查分析问题的能力.3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【点评】本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型. 4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x-85.71,则下列结论中不正确的是A.y 与x 具有正的线性相关关系B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1cm ,则其体重约增加0.85kgD.若该大学某女生身高为170cm ,则可断定其体重比为58.79kg 【答案】D【解析】【解析】由回归方程为y =0.85x-85.71知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程得过程知ˆ()ybx a bx y bx a y bx =+=+-=-,所以回归直线过样本点的中心(x ,y ),利用回归方程可以预测估计总体,所以D 不正确. 【点评】本题组要考查两个变量间的相关性、最小二乘法及正相关、负相关的概念,并且是找不正确的答案,易错.5. 已知双曲线C :22x a -22y b =1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为A .220x -25y =1 B.25x -220y =1 C.280x -220y =1 D.220x -280y =1【答案】A【解析】设双曲线C :22x a -22y b=1的半焦距为c ,则210,5c c ==.又C 的渐近线为b y x a =±,点P (2,1)在C 的渐近线上,12ba∴=,即2a b =.又222c a b =+,a ∴==∴C 的方程为220x -25y =1.【点评】本题考查双曲线的方程、双曲线的渐近线方程等基础知识,考查了数形结合的思想和基本运算能力,是近年来常考题型. 6. 函数f (x )=sinx-cos(x+6π)的值域为A .2, 2] 【答案】B【解析】f (x )=sinx-cos(x+6π)1sin sin )26x x x x π=+=-,[]sin()1,16x π-∈-,()f x ∴值域为【点评】利用三角恒等变换把()f x 化成sin()A x ωϕ+的形式,利用[]sin()1,1x ωϕ+∈-,求得()f x 的值域.7. 在△ABC 中,AB=2,AC=3,AB BC = 1则___BC=.【答案】A【解析】由下图知AB BC = cos()2(cos )1AB BC B BC B π-=⨯⨯-=.1cos 2B BC ∴=-.又由余弦定理知222cos 2AB BC AC B AB BC+-=⋅,解得BC .【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.需要注意,AB BC 的夹角为B ∠的外角.8.已知两条直线1l :y =m 和2l : y=821m +(m >0),1l 与函数2log y x =的图像从左至右相交于点A ,B ,2l 与函数2log y x =的图像从左至右相交于C,D .记线段AC和BD 在X 轴上的投影长度分别为a ,b ,当m 变化时,ba的最小值为 A.B.【答案】BAC【解析】在同一坐标系中作出y=m ,y=821m +(m >0),2log y x =图像如下图,由2log x = m ,得122,2m m x x -==,2log x = 821m +,得821821342,2m m x x +-+==.依照题意得8218218218212222,22,22m m m mmm m m b a b a++--+--+-=-=-=-821821222m m mm +++==.8141114312122222m m m m +=++-≥-=++,min ()b a ∴=【点评】在同一坐标系中作出y=m ,y=821m +(m >0),2log y x =图像,结合图像可解得.二 、填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第9、10、 11三题中任选两题作答,如果全做,则按前两题记分 ) 9. 在直角坐标系xOy 中,已知曲线1C :1,12x t y t =+⎧⎨=-⎩ (t 为参数)与曲线2C :sin ,3cos x a y θθ=⎧⎨=⎩(θ为参数,0a >) 有一个公共点在X 轴上,则__a =. 【答案】32【解析】曲线1C :1,12x t y t=+⎧⎨=-⎩直角坐标方程为32y x =-,与x 轴交点为3(,0)2;曲线2C :sin ,3cos x a y θθ=⎧⎨=⎩直角坐标方程为22219x y a +=,其与x 轴交点为(,0),(,0)a a -, 由0a >,曲线1C 与曲线2C 有一个公共点在X 轴上,知32a =. 821m =+xm【点评】本题考查直线的参数方程、椭圆的参数方程,考查等价转化的思想方法等.曲线1C 与曲线2C 的参数方程分别等价转化为直角坐标方程,找出与x 轴交点,即可求得. 10.不等式|2x+1|-2|x-1|>0的解集为_______. 【答案】14x x ⎧⎫>⎨⎬⎩⎭【解析】令()2121f x x x =+--,则由()f x 13,()2141,(1)23,(1)x x x x ⎧-<-⎪⎪⎪=--≤≤⎨⎪>⎪⎪⎩得()f x 0>的解集为14x x ⎧⎫>⎨⎬⎩⎭.【点评】绝对值不等式解法的关键步骤是去绝对值,转化为代数不等式(组).11.如图2,过点P 的直线与圆O 相交于A ,B 两点.若PA=1,AB=2,PO=3,则圆O 的半径等于_______.【解析】设PO 交圆O 于C ,D ,如图,设圆的半径为R ,由割线定理知,1(12)(3-)(3),PA PB PC PD r r r ⋅=⋅⨯+=+∴=即【点评】本题考查切割线定理,考查数形结合思想,由切割线定理知PA PB PCPD ⋅=⋅,从而求得圆的半径.PO(二)必做题(12~16题)12.已知复数2(3)z i =+ (i 为虚数单位),则|z|=_____. 【答案】10【解析】2(3)z i =+=29686i i i ++=+,10z ==.【点评】本题考查复数的运算、复数的模.把复数化成标准的(,)a bi a b R +∈形式,利用z =.13.()6的二项展开式中的常数项为 .(用数字作答) 【答案】-160【解析】()6的展开式项公式是663166C (C 2(1)r r r r rr r r T x ---+==-.由题意知30,3r r -==,所以二项展开式中的常数项为33346C 2(1)160T =-=-.【点评】本题主要考察二项式定理,写出二项展开式的通项公式是解决这类问题的常规办法. 14.如果执行如图3所示的程序框图,输入1x =-,n =3,则输出的数S = .【答案】4-【解析】输入1x =-,n =3,,执行过程如下:2:6233i S ==-++=-;1:3(1)115i S ==--++=;0:5(1)014i S ==-++=-,所以输出的是4-.【点评】本题考查算法流程图,要明白循环结构中的内容,一般解法是逐步执行,一步步将执行结果写出,特别是程序框图的执行次数不能出错.15.函数f (x )=sin (x ωϕ+)的导函数()y f x '=的部分图像如图4所示,其中,P 为图像与y 轴的交点,A,C 为图像与x 轴的两个交点,B 为图像的最低点. (1)若6πϕ=,点P 的坐标为(0,2),则ω= ; (2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为.【答案】(1)3;(2)4π【解析】(1)()y f x '=cos()x ωωϕ=+,当6πϕ=,点P 的坐标为(0,2cos36πωω=∴=; (2)由图知222T AC ππωω===,122ABCS AC πω=⋅=,设,A B 的横坐标分别为,a b . 设曲线段ABC与x 轴所围成的区域的面积为S则()()sin()sin()2bbaaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC 内的概率为224ABCSP Sππ===. 【点评】本题考查三角函数的图像与性质、几何概型等,(1)利用点P 在图像上求ω, (2)几何概型,求出三角形面积及曲边形面积,代入公式即得.16.设N =2n (n ∈N *,n ≥2),将N 个数x 1,x 2,…,x N 依次放入编号为1,2,…,N 的N 个位置,得到排列P 0=x 1x 2…x N .将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N个位置,得到排列P 1=x 1x 3…x N-1x 2x 4…x N ,将此操作称为C 变换,将P 1分成两段,每段2N 个数,并对每段作C 变换,得到2p ;当2≤i ≤n-2时,将P i 分成2i段,每段2iN 个数,并对每段C 变换,得到P i+1,例如,当N=8时,P 2=x 1x 5x 3x 7x 2x 6x 4x 8,此时x 7位于P 2中的第4个位置.(1)当N=16时,x 7位于P 2中的第___个位置;(2)当N=2n(n ≥8)时,x 173位于P 4中的第___个位置. 【答案】(1)6;(2)43211n -⨯+【解析】(1)当N=16时,012345616P x x x x x x x =,可设为(1,2,3,4,5,6,,16), 113571524616P x x x x x x x x x =,即为(1,3,5,7,9,2,4,6,8,,16),2159133711152616P x x x x x x x x x x x =,即(1,5,9,13,3,7,11,15,2,6,,16), x 7位于P 2中的第6个位置,;(2)方法同(1),归纳推理知x 173位于P 4中的第43211n -⨯+个位置.【点评】本题考查在新环境下的创新意识,考查运算能力,考查创造性解决问题的能力. 需要在学习中培养自己动脑的习惯,才可顺利解决此类问题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率. (注:将频率视为概率)【解析】(1)由已知,得251055,35,y x y ++=+=所以15,20.x y ==该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得153303251(1),( 1.5),(2),10020100101004p X p X p X ========= 201101( 2.5),(3).100510010p X p X ======X 的分布为X 的数学期望为 33111()1 1.52 2.53 1.920104510E X =⨯+⨯+⨯+⨯+⨯=. (Ⅱ)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,(1,2)i X i =为该顾客前面第i 位顾客的结算时间,则121212()(11)(1 1.5)( 1.51)P A P X X P X X P X X ===+==+==且且且. 由于顾客的结算相互独立,且12,X X 的分布列都与X 的分布列相同,所以121212()(1)1)(1)( 1.5)( 1.5)(1)P A P X P X P X P X P X P X ==⨯=+=⨯=+=⨯=( 333333920202010102080=⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过2.5分钟的概率为980. 【点评】本题考查概率统计的基础知识,考查分布列及数学期望的计算,考查运算能力、分析问题能力.第一问中根据统计表和100位顾客中的一次购物量超过8件的顾客占55%知251010055%,35,y x y ++=⨯+=从而解得,x y ,计算每一个变量对应的概率,从而求得分布列和期望;第二问,通过设事件,判断事件之间互斥关系,从而求得 该顾客结算前的等候时间不超过...2.5分钟的概率.18.(本小题满分12分)如图5,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E 是CD 的中点.(Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P-ABCD 的体积.【解析】解法1(Ⅰ如图(1)),连接AC ,由AB=4,3BC =,90 5.ABC AC ∠==,得5,AD =又E是CD的中点,所以.CD AE ⊥,,PA ABCD CD ABCD ⊥⊂平面平面所以.PA CD ⊥而,PA AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE. (Ⅱ)过点B作,,,,.BG CD AE AD F G PF //分别与相交于连接由(Ⅰ)CD ⊥平面PAE 知,BG⊥平面PAE.于是BPF ∠为直线PB与平面PAE 所成的角,且BG AE ⊥.由PA ABCD ⊥平面知,PBA ∠为直线PB 与平面ABCD 所成的角.4,2,,AB AG BG AF ==⊥由题意,知,PBA BPF ∠=∠因为sin ,sin ,PA BF PBA BPF PB PB∠=∠=所以.PA BF = 由90//,//,DAB ABC AD BC BG CD ∠=∠=知,又所以四边形BCDG 是平行四边形,故3.GD BC ==于是 2.AG =在Rt ΔBAG 中,4,2,,AB AG BG AF ==⊥所以2AB BG BF BG =====于是5PA BF ==2111633V S PA =⨯⨯=⨯=解法2:如图(2),以A 为坐标原点,,,AB AD AP 所在直线分别为x y z 轴,轴,轴建立空间直角坐标系.设,PA h =则相关的各点坐标为:(4,0,0),(4,0,0),(4,3,0),(0,5,0),(2,4,0),(0,0,).A B C D E P h(Ⅰ)易知(4,2,0),(2,4,0),(0,0,).CD AE AP h =-==因为8800,0,CD AE CD AP ⋅=-++=⋅=所以,.CD AE CD AP ⊥⊥而,AP AE 是平面PAE 内的两条相交直线,所以.CD PAE ⊥平面(Ⅱ)由题设和(Ⅰ)知,,CD AP 分别是PAE 平面,ABCD 平面的法向量,而PB 与PAE 平面所成的角和PB 与ABCD 平面所成的角相等,所以cos ,cos ,.CD PB PA PB CD PB PA PB CD PBPA PB⋅⋅<>=<>=⋅⋅,即由(Ⅰ)知,(4,2,0),(0,0,),CD AP h =-=-由(4,0,),PB h =-故=解得h =.2111633V S PA =⨯⨯=⨯=【点评】本题考查空间线面垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明PA CD ⊥即可,第二问算出梯形的面积和棱锥的高,由13V S PA =⨯⨯算得体积,或者建立空间直角坐标系,求得高几体积. 19.(本小题满分12分)已知数列{a n }的各项均为正数,记A (n )=a 1+a 2+……+a n ,B (n )=a 2+a 3+……+a n +1,C (n )=a 3+a 4+……+a n +2,n =1,2,……(1) 若a 1=1,a 2=5,且对任意n ∈N ﹡,三个数A (n ),B (n ),C (n )组成等差数列,求数列{ a n }的通项公式. (2) 证明:数列{ a n }是公比为q 的等比数列的充分必要条件是:对任意N n *∈,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.【解析】解(1)对任意N n *∈,三个数(),(),()A n B n C n 是等差数列,所以 ()()()(),B n A n C n B n -=- 即112,n n a a a ++-=亦即2121 4.n n a a a a +--=-=故数列{}n a 是首项为1,公差为4的等差数列.于是1(1)44 3.n a n n =+-⨯=- (Ⅱ)(1)必要性:若数列{}n a 是公比为q的等比数列,则对任意N n *∈,有1.n nq a a -=由0n a >知,(),(),()A n B n C n 均大于0,于是12)2311212(......(),()......n n n n q a a a a a a B n q A n a a a a a a +++++++===++++++231)342231231(......(),()......n n n n q a a a a a a C n q B n a a a a a a ++++++++++===++++++ 即()()B n A n =()()C n B n =q ,所以三个数(),(),()A n B n C n 组成公比为q 的等比数列. (2)充分性:若对于任意N n *∈,三个数(),(),()A n B n C n 组成公比为q 的等比数列, 则()(),()B n q A n C n q B n==,于是[]()()()(),C n B n q B n A n -=-得2211(),n n a a q a a ++-=-即 212.n n a qa a a ++-=-由1n =有(1)(1),B qA =即21a qa =,从而210n n a qa ++-=. 因为0n a >,所以2211n n a a q a a ++==,故数列{}n a 是首项为1a ,公比为q 的等比数列, 综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈N ﹡,三个数(),(),()A n B n C n 组成公比为q 的等比数列.【点评】本题考查等差数列、等比数列的定义、性质及充要条件的证明.第一问由等差数列定义可得;第二问要从充分性、必要性两方面来证明,利用等比数列的定义及性质易得证.20.(本小题满分13分)某企业接到生产3000台某产品的A ,B ,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k (k 为正整数).(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;(2)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案. 【解析】 解:(Ⅰ)设完成A,B,C 三种部件的生产任务需要的时间(单位:天)分别为123(),(),(),T x T x T x 由题设有12323000100020001500(),(),(),6200(1)T x T x T x x x kx k x⨯====-+ 期中,,200(1)x kx k x -+均为1到200之间的正整数.(Ⅱ)完成订单任务的时间为{}123()max (),(),(),f x T x T x T x =其定义域为2000,.1x x x N k *⎧⎫<<∈⎨⎬+⎩⎭易知,12(),()T x T x 为减函数,3()T x 为增函数.注意到 212()(),T x T x k=于是(1)当2k =时,12()(),T x T x = 此时{}1310001500()max (),()max ,2003f x T x T x x x ⎧⎫==⎨⎬-⎩⎭,由函数13(),()T x T x 的单调性知,当100015002003x x=-时()f x 取得最小值,解得 4009x =.由于 134002503004445,(44)(44),(45)(45),(44)(45)91113f T f T f f <<====<而.故当44x =时完成订单任务的时间最短,且最短时间为250(44)11f =.(2)当2k >时,12()(),T x T x > 由于k 为正整数,故3k ≥,此时{}1375(),()max (),()50T x x T x T x xϕ==-易知()T x 为增函数,则 {}13()max (),()f x T x T x = {}1max (),()T x T x ≥1000375()max ,50x x x ϕ⎧⎫==⎨⎬-⎩⎭.由函数1(),()T x T x 的单调性知,当100037550x x =-时()x ϕ取得最小值,解得40011x =.由于14002502503752503637,(36)(36),(37)(37),119111311T T ϕϕ<<==>==>而此时完成订单任务的最短时间大于25011.(3)当2k <时,12()(),T x T x < 由于k 为正整数,故1k =,此时{}232000750()max (),()max ,.100f x T x T x x x ⎧⎫==⎨⎬-⎩⎭由函数23(),()T x T x 的单调性知,当2000750100x x =-时()f x 取得最小值,解得80011x =.类似(1)的讨论.此时 完成订单任务的最短时间为2509,大于25011.综上所述,当2k =时完成订单任务的时间最短,此时生产A,B,C三种部件的人数分别为44,88,68.【点评】本题为函数的应用题,考查分段函数、函数单调性、最值等,考查运算能力及用数学知识分析解决实际应用问题的能力.第一问建立函数模型;第二问利用单调性与最值来解决,体现分类讨论思想.21.(本小题满分13分)在直角坐标系xOy 中,曲线C 1的点均在C 2:(x-5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x=﹣2的距离等于该点与圆C 2上点的距离的最小值. (Ⅰ)求曲线C 1的方程;(Ⅱ)设P(x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D.证明:当P 在直线x=﹣4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值. 【解析】(Ⅰ)解法1 :设M 的坐标为(,)x y ,由已知得23x +=,易知圆2C 上的点位于直线2x =-的右侧.于是20x +>,所以5x =+.化简得曲线1C 的方程为220y x =.解法2 :由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离,因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线,故其方程为220y x =.(Ⅱ)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆2C 相切得直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4),y y k x -=+0即kx-y+y +4k=0.于是3.=整理得2200721890.k y k y ++-= ①设过P 所作的两条切线,PA PC 的斜率分别为12,k k ,则12,k k 是方程①的两个实根,故001218.724y yk k +=-=- ②由101240,20,k x y y k y x -++=⎧⎨=⎩得21012020(4)0.k y y y k -++= ③ 设四点A,B,C,D 的纵坐标分别为1234,,,y y y y ,则是方程③的两个实根,所以0112120(4).y k y y k +⋅=④同理可得0234220(4).y k y y k +⋅=⑤于是由②,④,⑤三式得010*******400(4)(4)y k y k y y y y k k ++=2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦=22001212400166400y y k k k k ⎡⎤-+⎣⎦=.所以,当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400.【点评】本题考查曲线与方程、直线与曲线的位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法.第一问用直接法或定义法求出曲线的方程;第二问设出切线方程,把直线与曲线方程联立,由一元二次方程根与系数的关系得到,,,A B C D 四点纵坐标之积为定值,体现“设而不求”思想. 22.(本小题满分13分)已知函数()f x =axe x =-,其中a ≠0.(1) 若对一切x ∈R ,()f x ≥1恒成立,求a 的取值集合.(2)在函数()f x 的图像上取定两点11(,())A x f x ,22(,())B x f x 12()x x <,记直线AB 的斜率为K ,问:是否存在x 0∈(x 1,x 2),使0()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.【解析】(Ⅰ)若0a <,则对一切0x >,()f x 1ax e x =-<,这与题设矛盾,又0a ≠,故0a >.而()1,axf x ae '=-令11()0,ln .f x x a a'==得 当11ln x a a <时,()0,()f x f x '<单调递减;当11ln x a a >时,()0,()f x f x '>单调递增,故当11ln x a a =时,()f x 取最小值11111(ln )ln .f a a a a a=-于是对一切,()1x R f x ∈≥恒成立,当且仅当111ln 1a a a-≥. ① 令()ln ,g t t t t =-则()ln .g t t '=-当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减. 故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当11a=即1a =时,①式成立. 综上所述,a 的取值集合为{}1.(Ⅱ)由题意知,21212121()() 1.ax ax f x f x e e k x x x x --==---令2121()(),ax ax axe e xf x k ae x x ϕ-'=-=--则121()12121()()1,ax a x x e x e a x x x x ϕ-⎡⎤=----⎣⎦- 212()21221()()1.ax a x x e x e a x x x x ϕ-⎡⎤=---⎣⎦- 令()1t F t e t =--,则()1t F t e '=-.当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增.故当0t =,()(0)0,F t F >=即10.te t -->从而21()21()10a x x ea x x ---->,12()12()10,a x x ea x x ---->又1210,ax e x x >-2210,ax e x x >- 所以1()0,x ϕ<2()0.x ϕ>因为函数()y x ϕ=在区间[]12,x x 上的图像是连续不断的一条曲线,所以存在012(,)x x x ∈使0()0,x ϕ=2()0,()axx a e x ϕϕ'=>单调递增,故这样的c 是唯一的,且21211ln()ax ax e e c a a x x -=-.故当且仅当212211(ln ,)()ax ax e e x x a a x x -∈-时, 0()f x k '>.综上所述,存在012(,)x x x ∈使0()f x k '>成立.且0x 的取值范围为212211(ln ,)()ax ax e e x a a x x --. 【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想,转化与划归思想等数学思想方法.第一问利用导函数法求出()f x 取最小值11111(ln )ln .f a a a a a=-对一切x ∈R ,f(x) ≥1恒成立转化为min ()1f x ≥,从而得出a 的取值集合;第二问在假设存在的情况下进行推理,通过构造函数,研究这个函数的单调性及最值来进行分析判断.。
2018年高考湖南卷数学(理)试卷及答案
![2018年高考湖南卷数学(理)试卷及答案](https://img.taocdn.com/s3/m/fb528f71f01dc281e53af0a9.png)
2018年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数()()1z i i i =+为虚数单位在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是A .抽签法B .随机数法C .系统抽样法D .分层抽样法 3.在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于 A .12π B .6π C .4π D .3π 4.若变量,x y 满足约束条件211y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,2x y +则的最大值是A .5-2 B .0 C .53 D .525.函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为 A .3 B .2 C .1 D .06. 已知,a b 是单位向量,0a b =.若向量c 满足1,c a b c --=则的取值范围是A.⎤⎦B.⎤⎦C.1⎡⎤⎣⎦D.1⎡⎤⎣⎦7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 A .1 B.2 D.28.在等腰三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图1).若光线QR 经过ABC ∆的中心,则AP 等A .2B .1C .83 D .43二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.(一)选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前两题计分)9.在平面直角坐标系xoy 中,若,3cos ,:(t )C :2sin x t x l y t a y ϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆 ()ϕ为参数的右顶点,则常数a 的值为 .10.已知222,,,236,49a b c a b c a b c ∈++=++则的最小值为 12 .11.如图2O 中,弦,AB CD 相交于点,2P PA PB ==,1PD =,则圆心O 到弦CD 的距离为 .必做题(12-16题) 12.若209,Tx dx T =⎰则常数的值为 .13.执行如图3所示的程序框图,如果输入1,2,a b a ==则输出的的值为 9 .14.设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30,则C 的离心率为___。
最新-2018年普通高等学校招生全国统一考试数学理试题
![最新-2018年普通高等学校招生全国统一考试数学理试题](https://img.taocdn.com/s3/m/62ca474ba98271fe910ef9e1.png)
2018年普通高等学校招生全国统一考试数学理试题(湖南卷,含答案)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2,3M =,{}2,3,4N =,则 A .M N ⊆ B .N M ⊆ C .{}2,3MN = D .{}1,4M N =2.下列命题中的假命题...是 A .R x ∀∈,120x -> B .N x *∀∈,()10x -2>C .R x ∃∈,lg x <1D . R x ∃∈,tan 2x =3.极坐标方程cos ρθ=和参数方程1,23x t y t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .圆、直线B .直线、圆C .圆、圆D .直线、直线4.在Rt ABC ∆中,90C ∠=,4AC =,则AB AC 等于 A .16- B .8- C .8 D .16 5.421d x x⎰等于 A .2ln 2- B .2ln 2 C .ln 2- D .ln 26.在ABC ∆中,角A ,B ,C 所对的边长分别为a ,b ,c .若120C ∠=,c =,则A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定7.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为A.10B.11C.12D.158.用{}min ,a b 表示,a b 两数中的最小值.若函数{}()min ,f x x x t =+的图像关于直线12x =-对称,则t 的值为A .2-B .2C .1-D .1二、填空题:本大题共7小题,每小题5分,共35分.把答案填在答题卡...中对应题号后的横线上.9.已知一种材料的最佳加入量在110g 到210g 之间.若用0.618法安排实验,则第一次试点的加入量可以是 g .10.如图1所示,过O 外一点P 作一条直线与O 交于A,B 两点.已知PA=2,点P 到O 的切线长PT=4,则弦AB 的长为 .11.在区间[]1,2-上随机取一个数x ,则1x ≤的概率为 .12.图2是求222123+++2…+100的值的程序框图,则正整数n = .13.图3中的三个直角三角形是一个体积为203cm 的几何体的三视图,则h = cm .图214.过抛物线22(0)x py p =>的焦点作斜率为1的直线与该抛物线交于,A B 两点,,A B 在x 轴上的正射影分别为,D C .若梯形ABCD 的面积为,则p = .15.若数列{}n a 满足:对任意的n N *∈,只有有限个正整数m 使得m a n <成立,记这样的m 的个数为()n a *,则得到一个新数列{}()n a *.例如,若数列{}n a 是1,2,3,n …,…,则数列{}()n a *是0,1,2,1,n -…,….已知对任意的N n *∈,2n a n =,则5()a *= ,(())n a **= .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数2()22sin f x x x =-. (Ⅰ)求函数()f x 的最大值; (Ⅱ)求函数()f x 的零点的集合. 17.(本小题满分12分)图4是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图. (Ⅰ)求直方图中x 的值.(Ⅱ)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X 的分布列和数学期望. 18.(本小题满分12分)如图5所示,在正方体1111ABCD A B C D -中,E 是棱1DD 的中点. (Ⅰ)求直线BE 的平面11ABB A 所成的角的正弦值;(Ⅱ)在棱11C D 上是否存在一点F ,使1B F ∥平面1A BE ?证明你的结论.19.(本小题满分13分)为了考察冰川的融化状况,一支科考队在某冰川上相距8km 的A ,B 两点各建一个考察基地.视冰川面为平面形,以过A ,B 两点的直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系(图6).在直线2x =的右侧,考察范围为到点B 的距离不超过km 的区域;在直线2x =的左侧,考察范围为到A ,B 两点的距离之和不超过的区域. (Ⅰ)求考察区域边界曲线的方程;(Ⅱ)如图6所示,设线段12PP ,23P P 是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km ,以后每年移动的距离为前一年的2倍,求冰川边界线移动到考察区域所需的最短时间. 20.(本小题满分13分)已知函数2()(,),f x x bx c b c R =++∈对任意的x R ∈,恒有'()f x ≤()f x . (Ⅰ)证明:当0x ≥时,2()()f x x c ≤+;(Ⅱ)若对满足题设条件的任意b ,c ,不等式22()()()f c f b M c b -≤-恒成立,求M 的最小值. 21.(本小题满分13分)数列{}*()n a n N ∈中,11,n a a a +=是函数322211()(3)332n n n f x x a n x n a x =-++的极小值点.(Ⅰ)当0a =时,求通项n a ;(Ⅱ)是否存在a ,使数列{}n a 是等比数列?若存在,求a 的取值范围;若不存在,请说明理由.参考答案一、选择题1.C2.B3.A4.D5.D6.A7.B8.D 二、填空题9.171.8或148.2 10.6 11.2312.100 13.4 14.2 15.2 2n 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解法2:由()0f x =得2cos 2sin x x x =,于是sin 0x =sin x x =即tan x =由sin 0x =可知x k π=;由tan x =3x k ππ=+.故函数()f x 的零点的集合为,,3x x k x k k Z πππ⎧⎫==+∈⎨⎬⎩⎭或17.(本小题满分12分)解:(Ⅰ)依题意及频率分布直方图知,0.020.10.370.391x ++++=,解得0.12x =. (Ⅱ)由题意知,XB(3,0.1).因此031233P(0)0.90.729,(1)0.10.90.243X C P X C ==⨯===⨯⨯=,223333P(2)0.10.90.027,(3)0.10.001X C P X C ==⨯⨯===⨯=.XX 的数学期望为EX=30.1=0.3⨯.18.(本小题满分12分)解法1:设正方体的棱长为1.如图所示,以1ABAD AA ,,为单位正交基底建立空间直角坐标系.(Ⅰ)依题意,得1(1,0,0),(0,1,),(0,0,0),(0,1,0)2B E A D , 所以1=(1,1,),(0,1,0)2BE AD -=.在正方体1111ABCD A BC D -中,因为11AD ABB A ⊥平面,所以AD 是平面11ABB A 的一个法向量,设直线BE 和平面11ABB A 所成的角为θ,则12sin 3312BE AD BE ADθ===⨯. 即直线BE 和平面11ABB A 所成的角的正弦值为23.设F 是棱11C D 上的点,则(,1,1)(01)F t t ≤≤.又1(1,0,1)B ,所以1(1,1,0)B F t =-.而11B F A BE ⊄平面,于是11110(1,1,0)(2,1,2)02(1)102B F A BE B F n t t t F ⇔=⇔-=⇔-+=⇔=⇔∥平面为11C D 的中点,这说明在棱11C D 上存在点F(11C D 的中点),使11B F A BE ∥平面 解法2:(Ⅰ)如图(a )所示,取1AA 的中点M ,连结EM,BM.因为E 是1DD 的中点,四边形11DD A A 为正方形,所以EM ∥AD.即直线BE 和平面11ABB A 所成的角的正弦值为23.(Ⅱ)在棱11C D 上存在点F ,使11B F A BE ∥平面.事实上,如图(b )所示,分别取11C D 和CD 的中点F ,G ,连结1EG,BG,,FG CD .因1111A D B C BC ∥∥,且11A D BC =,所以四边形11A BCD 是平行四边形,因此11D C A B ∥.又E,G 分别为1D D ,CD 的中点,所以1DC EG ∥,从而1B EG ∥A .这说明1A ,B ,G ,E 共面,所以1BG BE ⊂平面A .因四边形11C CDD 与11B BCC 皆为正方形,F ,G 分别为11C D 和CD 的中点,所以11FG C B B ∥C ∥,且11FG C B B =C=,因此四边形1B BGF 是平行四边形,所以1BG B F ∥.而11⊄B F 平面A BE ,1BG BE ⊂平面A ,故11B F A BE ∥平面.19.(本小题满分13分)解:(Ⅰ)设边界曲线上点P 的坐标为(,)x y , 当2x ≥时,由题意知2236(4)5x y -+=.当2x <时,由PA PB +=点P 在以A ,B 为焦点,长轴长为2a =.此时短半轴长2b ==.因而其方程为221204x y +=. 故考察区域边界曲线(如图)的方程为22221236:(4)(2):1(2)5204x y C x y x C x -+=≥+=<和.(Ⅱ)设过点12,P P 的直线为1l ,过点23,P P 的直线为2l ,则直线1l ,2l 的方程分别为14,6y y =+=.程为8y +,l 与1l 之间的距离为3d ==.又直线2l 到1C 和2C 的最短距离6d '=,而3d '>,所以考察区域边界到冰川边界线的最短距离为3.设冰川边界线移动到考察区域所需的时间为n 年,则由题设及等比数列求和公式,得0.2(21)321n -≥-,所以4n ≥.故冰川边界线移动到考察区域所需的最短时间为4年. 20.(本小题满分13分)解:(Ⅰ)易知()2f x x b '=+.由题设,对任意的2,2x R x b x bx c ∈+≤++,即2(2)0x b x c b +-+-≥恒成立,所以2(2)4()0b c b ---≤,从而214b c ≥+.于是1c ≥,且c b ≥=,因此2()0c b c c b -=+->.故当0x ≥时,有2()()(2)(1)0x c f x c b x c c +-=-+-≥. 即当0x ≥时,2()()f x x c ≤+.当c b =时,由(Ⅰ)知,2,2b c =±=.此时()()8f c f b -=-或0,220c b -=,从而223()()()2f c f b c b -≤-恒成立. 综上所述,M 的最小值为3221.(本小题满分13分)解:易知2222()(3)3(3)()n n n n f x x a n x n a x a x n '=-++=--. 令212()03,n n f x x a x n '===,得. (1)若23n a n <,则当3n x a <时,()0,()n n f x f x '>单调递增; 当23n a x n <<时,()0,()n n f x f x '<单调递减; 当2x n >时,()0,()n n f x f x '>单调递增.故()n f x 在2x n =取得极小值.由此猜测:当3n ≥时,343n n a -=⨯.下面先用数学归纳法证明:当3n ≥时,23n a n >. 事实上,当3n =时,由前面的讨论知结论成立.假设当(3)n k k =≥时,23k a k >成立,则由(2)知,213k k a a k +=>,从而22213(1)3(1)2(2)210k a k k k k k k +-+>-+=-+->,所以213(1)k a k +>+. 故当3n ≥时,23n a n >成立.于是由(2)知,当3n ≥时,13n n a a +=,而34a =,因此343n n a -=⨯. 综上所述,当0a =时,10a =,21a =,343(3)n n a n -=⨯≥. (Ⅱ)存在a ,使数列{}n a 是等比数列.事实上,由(2)知,若对任意的n ,都有23n a n >,则13n n a a +=.即数列{}n a 是首项为a ,公比为3的等比数列,且33n n a a -=.而要使23n a n >,即23na n >对一切n N *∈都成立,只需23n n a >对一切n N *∈都成立.记23n n b =,则123141,,,.393b b b ===令23xxy=,则()()22112ln3233x xy x x x x'=-<-.因此,当2x≥时,0y'<,从而函数当13a<时,可得1234,1,4,12,,a a a a a====数列{}n a不是等比数列.综上所述,存在a,使数列{}n a是等比数列,且a的取值范围为4,9⎛⎫+∞⎪⎝⎭.。
2018年(全国卷Ⅲ)高考数学理真题试题含答案
![2018年(全国卷Ⅲ)高考数学理真题试题含答案](https://img.taocdn.com/s3/m/584359f619e8b8f67c1cb9e6.png)
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =-≥,{}012B =,,,则A B = A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-=A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos 2α=A .B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与轴,轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.3 9.ABC △的内角A B C ,,的对边分别为,,,若ABC △的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为 A .123B .183C .243D .543 11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为A .5B .2C .3D .2 12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =________. 15.函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为的直线与C 交于A ,B 两点.若 90AMB =︒∠,则k =________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(12分)等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异? 附:()()()()()22n ad bc K a b c d a c b d -=++++,()2P K k ≥ 0.050 0.0100.0013.8416.635 10.82819.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AM D ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为的直线与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差. 21.(12分)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求.(二)选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩,(为参数),过点()02-,且倾斜角为α的直线与O ⊙交于A B ,两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. 23.选修4—5:不等式选讲](10分)设函数()211f x x x =++-.(1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b +≤,求a b +的最小值.参考答案:1 2 3 4 5 6 7 8 9 10 11 12 CDABCADBCBCB13.1214.3- 15. 16.2 17.(12分)解:(1)设{}n a 的公比为,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m -=-,此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m=,解得6m =. 综上,6m =.18.(12分)解:(1)第二种生产方式的效率更高. 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii )由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知7981802m +==. 列联表如下:超过m 不超过m第一种生产方式 15 5 第二种生产方式515(3)由于2240(151555)10 6.63520202020K ⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.19.(12分) 解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM . 又 BC CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz .当三棱锥M −ABC 体积最大时,M 为CD 的中点.由题设得(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M ,(2,1,1),(0,2,0),(2,0,0)AM AB DA =-== 设(,,)x y z =n 是平面MAB 的法向量,则 0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA 是平面MCD 的法向量,因此5cos ,5||||DA DA DA ⋅==n n n , 25sin ,5DA =n , 所以面MAB 与面MCD 所成二面角的正弦值是255. 20.(12分)解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得1122043y x y k x +++⋅=. 由题设知12121,22x y x y m ++==,于是 34k m=-.①由题设得302m <<,故12k <-.(2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=.由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =.于是222211111||(1)(1)3(1)242x x FA x x y =-+=-+-=-.同理2||22x FB =-. 所以121||||4()32FA FB x x +=-+=. 故2||||||FP FA FB =+,即||,||,||FA FP FB 成等差数列.设该数列的公差为d ,则1122212112||||||||||()422FB FA x x x x x x d =-=-=+-.② 将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得321||28d =.所以该数列的公差为32128或32128-. 21.(12分)解:(1)当0a =时,()(2)ln(1)2f x x x x =++-,()ln(1)1xf x x x'=+-+. 设函数()()ln(1)1x g x f x x x '==+-+,则2()(1)xg x x '=+. 当10x -<<时,()0g x '<;当0x >时,()0g x '>.故当1x >-时,()(0)0g x g ≥=,且仅当0x =时,()0g x =,从而()0f x '≥,且仅当0x =时,()0f x '=. 所以()f x 在(1,)-+∞单调递增.学#又(0)0f =,故当10x -<<时,()0f x <;当0x >时,()0f x >. (2)(i )若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与0x =是()f x 的极大值点矛盾.(ii )若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax==+-++++. 由于当1||min{1,}||x a <时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当0x =是()h x 的极大值点. 2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++. 如果610a +>,则当6104a x a +<<-,且1||min{1,}||x a <时,()0h x '>,故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,故当1(,0)x x ∈,且1||min{1,}||x a <时,()0h x '<,所以0x =不是()h x 的极大值点.如果610a +=,则322(24)()(1)(612)x x h x x x x -'=+--.则当(1,0)x ∈-时,()0h x '>;当(0,1)x ∈时,()0h x '<.所以0x =是()h x 的极大值点,从而0x =是()f x 的极大值点综上,16a =-.22.选修4—4:坐标系与参数方程](10分)【解析】(1)O 的直角坐标方程为221x y +=.当2απ=时,与O 交于两点. 当2απ≠时,记tan k α=,则的方程为2y kx =-.与O 交于两点当且仅当22||11k<+,解得1k <-或1k >,即(,)42αππ∈或(,)24απ3π∈.综上,α的取值范围是(,)44π3π.(2)的参数方程为cos ,(2sin x t t y t αα=⎧⎪⎨=-+⎪⎩为参数,44απ3π<<.设A ,B ,P 对应的参数分别为A t ,B t ,P t ,则2A B P t tt +=,且A t ,B t 满足222sin 10t t α-+=.于是22sin A B t t α+=,2sin P t α=.又点P 的坐标(,)x y 满足cos ,2sin .P P x t y t αα=⎧⎪⎨=-+⎪⎩ 所以点P 的轨迹的参数方程是2sin 2,222cos 222x y αα⎧=⎪⎪⎨⎪=--⎪⎩(α为参数,44απ3π<<.23.选修4—5:不等式选讲](10分)【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[0,)+∞成立,因此a b +的最小值为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试(湖南卷)
数学(理工农医类)
本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.复数()()1z i i i =+为虚数单位在复平面上对应的点位于
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是
A .抽签法
B .随机数法
C .系统抽样法
D .分层抽样法
3.在锐角中ABC ∆,角,A B 所对的边长分别为,a b .
若2sin ,a B A =则角等于
A .12π
B .6π
C .4π
D .3
π 4.若变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩
,2x y +则的最大值是
A .5-2
B .0
C .53
D .52
5.函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为
A .3
B .2
C .1
D .0
6. 已知,a b 是单位向量,0a b =.若向量c 满足1,c a b c --=则的取值范围是
A
.⎤⎦ B
.⎤⎦ C
.1⎡⎤⎣⎦ D
.1⎡⎤⎣⎦
7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...
等于 A .1 B
.2 D
.2
8.在等腰三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图1).若光线QR 经过ABC ∆的中心,则AP 等。