必修四第二章测试题
高一数学必修四第二章综合能力检测
第二章综合能力检测一、选择题(本大题共12个小题,每小题5分,共60分) 1.下列命题中正确的是( ) A .若a ·b =0,则a =0或b =0 B .若a ·b =0,则a ∥bC .若a ∥b ,则a 在b 上的投影为|a |D .若a ⊥b ,则a ·b =(a ·b )2 答案:D解析:若a ∥b ,则a 在b 上的投影为|a |或-|a |,平行时分夹角为0°和180°两种情况;a ⊥b ⇒a ·b =0,(a ·b )2=0.2.已知AB →=a +5b ,BC →=-2a +8b ,CD →=3(a -b ),则( ) A .A 、B 、C 三点共线 B .A 、B 、D 三点共线 C .B 、C 、D 三点共线 D .A 、C 、D 三点共线答案:B解析:由题意,知AB →=BC →+CD →=BD →,所以A 、B 、D 三点共线. 3.在平行四边形ABCD 中,AC 为一条对角线.若AB →=(2,4),AC →=(1,3),则BD →=( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)答案:B解析:在平行四边形ABCD 中, AC →=AB →+AD →,BD →=AD →-AB →,∴BD →=(AC →-AB →)-AB → =(1,3)-2(2,4)=(1,3)-(4,8)=(-3,-5).4.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |=( )A. 3 B .2 3 C .4 D .12答案:B解析:a =(2,0),∴|a |=2. |a +2b |2=a 2+4a ·b +4b 2=4+4×2×1×cos60°+4×1=12, ∴|a +2b |=2 3.5.[2011·广东卷]若向量a 、b 、c 满足a ∥b 且a ⊥c ,则c ·(a +2b )=( )A. 4B. 3C. 2D. 0 答案:D解析:由a ∥b 且a ⊥c , 得b ⊥c ,所以a ·c =0,b ·c =0. 所以,c ·(a +2b )=a ·c +2b ·c =0.6.已知向量OB →=(2,0),OC →=(2,2),CA →=(-1,-3),则OA →和OB →的夹角为( )A.π4B.5π12C.π3D.π12答案:A解析:由题意,得OA →=OC →+CA →=(1,-1), 则|OA →|=2,|OB →|=2,OA →·OB →=2, ∴cos 〈OA →,OB →〉=OA →·OB →|OA →||OB →|=22.又0≤〈OA →,OB →〉≤π,∴〈OA →,OB →〉=π4.故选A.7.已知平面向量a 、b 、c 满足|a |=1,|b |=2,|c |=3,且a 、b 、c 两两所成的角相等,则|a +b +c |等于( )A. 3 B .6或 2 C .6 D .6或 3答案:D解析:由题意,得a 、b 、c 两两所成的角均为120°或0°,当夹角为120°时,a ·b =-1,b ·c =-3,a ·c =-32,则|a +b +c |2=|a |2+|b |2+|c |2+2(a ·b +b ·c +a ·c )=3;当夹角为0°时,|a +b +c |=|a |+|b |+|c |=6.故选D.8.已知命题:“若k 1a +k 2b =0,则k 1=k 2=0”是真命题,则下面对a 、b 的判断正确的是( )A .a 与b 一定共线B .a 与b 一定不共线C .a 与b 一定垂直D .a 与b 中至少有一个为0 答案:B解析:根据平行四边形法则及向量共线的条件可知,a 与b 一定不共线.9.在△ABC 中,M 是BC 的中点,AM =1,点P 在AM 上且满足AP =2PM ,则P A →·(PB →+PC →)等于( )A .-49 B .-43 C.43 D.49答案:A解析:由题意可知,P 是△ABC 的重心, ∴P A →+PB →+PC →=0, ∴P A →·(PB →+PC →)=-P A →2 =-(23MA →)2=-49.10.与向量a =(1,3)的夹角为30°的单位向量是( ) A .(12,32)或(1,3) B .(32,12) C .(0,1) D .(0,1)或(32,12) 答案:D解析:设单位向量为e =(x ,y ),则cos30°=x +3y 2=32,x 2+y 2=1,验证即得D.11.对向量a =(x 1,y 1),b =(x 2,y 2)定义一种新的运算“*”的意义为a *b =(x 1y 2,x 2y 1),仍是一个向量;则对任意的向量a ,b ,c 和任意实数λ,μ,下面命题中:①a *b =b *a②(a *b )*b =a *(b *b ) ③(λa )*(μb )=(λμ)(a *b ) ④(a +b )*c =a *c +b *c 其中正确命题的个数为( ) A .3 B .2 C .1 D .0答案:B解析:可结合向量的运算性质加以验证知③④正确.12.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 点为坐标原点,若BP →=2P A →,且OQ →·AB →=1,则P 点的轨迹方程是( )A .3x 2+32y 2=1(x >0,y >0)B .3x 2-32y 2=1(x >0,y >0)C.32x 2-3y 2=1(x >0,y >0) D.32x 2+3y 2=1(x >0,y >0) 答案:D解析:设P (x ,y ),则Q (-x ,y ).设A (x A,0),x A >0,B (0,y B ),y B >0,BP →=(x ,y -y B ),P A →=(x A -x ,-y ).∵BP →=2P A →,∴x =2(x A -x ),y -y B =-2y , ∴x A =32x ,y B =3y (x >0,y >0).又∵OQ →·AB →=1,(-x ,y )·(-x A ,y B )=1, ∴(-x ,y )·(-32x,3y )=1, 即32x 2+3y 2=1(x >0,y >0).二、填空题(本大题共4个小题,每小题5分,共20分) 13.已知向量a =(4,-3),b =(x,2),且a ∥b ,则x =________. 答案:-83解析:由题意,得4×2+3x =0,得x =-83.14.[2011·重庆卷]已知单位向量e 1,e 2的夹角为60°,则|2e 1-e 2|=________.答案: 3解析:|2e 1-e 2|=(2e 1-e 2)2=4e 21+e 22-4e 1e 2=4+1-4×1×1 cos 60° = 3.15.设向量OA →=(3,1),OB →=(-1,2),向量OC →⊥OB →,且向量BC →∥OA →,当OD →+OA →=OC →时,OD →的坐标是______.答案:(11,6)解析:设OD →=(x ,y ),则由OD →+OA →=OC →,可得OC →=(3+x ,y +1),所以BC →=OC →-OB →=(4+x ,y -1),因为OC →⊥OB →及BC →∥OA →,可得⎩⎪⎨⎪⎧(3+x )·(-1)+(y +1)·2=0(4+x )-3(y -1)=0, 解之得⎩⎪⎨⎪⎧x =11,y =6.16.已知向量a =(6,2),b =(-4,12),直线l 过点A (3,-1),且与向量a +2b 垂直,则直线l 的方程为____.答案:2x -3y -9=0解析:设B (x ,y )为直线l 上的任意一点,则l 的方向向量为AB →=(x -3,y +1).又a +2b =(-2,3),直线l 与向量a +2b 垂直,所以(x -3,y +1)·(-2,3)=0,展开化简得2x -3y -9=0.三、解答题(本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知|a |=3,|b |=4,且(2a -b )·(a +2b )≤4,求a 与b 的夹角θ的范围.解:由条件(2a -b )·(a +2b )≤4,可以得含cos θ的不等关系式. ∵(2a -b )·(a +2b )≤4,即2×32-2×42+3a·b ≤4, ∴a ·b ≤6,即|a ||b |cos θ=3×4cos θ≤6. ∴-1≤cos θ≤12,∴π3≤θ≤π.18.(本小题满分12分)等腰△ABC 中,BD 和CE 是两腰上的中线,且BD ⊥CE ,求顶角A 的余弦值.解:建立如图所示的直角坐标系,设A (0,a ),C (c,0),则B (-c,0),OA →=(0,a ),BA →=(c ,a ),OC →=(c,0),BC →=(2c,0).因为BD 和CE 分别为AC ,AB 的中线,所以BD →=12(BC →+BA →)=(3c 2,a2),同理CE →=(-3c 2,a 2),又BD →⊥CE →,故BD →·CE →=0,即-94c 2+a 24=0,故a 2=9c 2.所以cos ∠BAC =AB →·AC →|AB →||AC →|=a 2-c 2a 2+c 2=9c 2-c 29c 2+c 2=45.19.(本小题满分12分)已知|a |=3,|b |=2,a 与b 的夹角为60°,c =3a +5b ,d =m a -b ,c ⊥d ,求m 的值及a 与c 夹角的余弦值.解:由c =3a +5b ,d =m a -b ,可得c ·d =(3a +5b )·(m a -b )=3m a 2-3a ·b +5m a ·b -5b 2.因为|a |=3,|b |=2,a 与b 的夹角为60°,所以a ·b =|a |·|b |·cos60°=3×2×cos60°=3,所以c ·d =27m -3×3+15m -20=0,即42m =29,所以m =2942.因为a ·c =a ·(3a +5b )=3a 2+5a ·b =3×9+5×3=42.|a |=|3a +5b |=(3a +5b )2=9a 2+30a ·b +b 2×25=9×9+30×3+4×25=271,设a 与c 的夹角为θ,则cos θ=a ·c |a |·|c |=423×271=14271271. 20.(本小题满分12分)(1)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,求a 与b 的夹角;(2)设OA →=(2,5),OB →=(3,1),OC →=(6,3),在OC →上是否存在点M ,使MA →⊥MB →,若存在,求出点M 的坐标,若不存在,请说明理由.解:(1)∵(2a -3b )·(2a +b )=61, ∴4a 2-4a ·b -3b 2=61. 又|a |=4,|b |=3,∴a ·b =-6. ∴cos θ=a ·b |a ||b |=-12,∴θ=120°.(2)设存在点M ,且OM →=λOC →=(6λ,3λ)(0<λ≤1),∴MA →=(2-6λ,5-3λ),MB →=(3-6λ,1-3λ).∴(2-6λ)(3-6λ)+(5-3λ)(1-3λ)=0,∴45λ2-48λ+11=0,解得:λ=13或λ=1115,∴OM →=(2,1)或OM →=(225,115).∴存在M (2,1)或M (225,115)满足题意.21.(本小题满分12分)已知向量OA →=(1,5),OB →=(7,1),OM →=(1,2),P 是直线OM 上的一个动点,当P A →·PB →取最小值时,求OP →的坐标,并求出cos ∠APB 的值.解:设OP →=t ·OM →=(t,2t )(t ≠0),所以P A →=OA →-OP →=(1-t,5-2t ),PB →=OB →-OP →=(7-t,1-2t ),所以P A →·PB →=(1-t,5-2t )·(7-t,1-2t )=(1-t )·(7-t )+(5-2t )·(1-2t )=5t 2-20t +12.令f (t )=5t 2-20t +12,则f (t )=5(t -2)2-8,所以当t =2时,f (t )的最小值为-8,此时OP →=(2,4),P A →·PB →=-8,|P A →|=2,|PB →|=34, 所以cos ∠APB =P A →·PB →|P A →|·|PB →|=-82·34=-41717.22.(本小题满分12分)用两条同样长的绳子拉一物体,物体受到的重力为G ,两绳受到的拉力分别为F 1,F 2,夹角为θ,如图.(1)求其中一根绳受的拉力|F 1|与|G |的关系式,用数学观点分析|F 1|的大小与夹角θ的关系;(2)求|F 1|的最小值;(3)如果每根绳的最大承受拉力为|G |,求θ的取值范围. 解:(1)由力的平衡得F 1+F 2+G =0, 设F 1,F 2的合力为F ,则F =-G , ∴F 1+F 2=F 且|F 1|=|F 2|,|F |=|G |,解直角三角形得cos θ2=12|F ||F 1|=|G |2|F 1|, ∴|F 1|=|G |2cos θ2,θ∈[0°,180°]. 由于函数y =cos x 在x ∈[0°,180°]上为减函数,∴θ逐渐增大时,cos θ2逐渐减小,|G |2cos θ2逐渐增大,∴θ增大时,|F 1|也增大.(2)由上述可知,当θ=0°时,|F 1|有最小值为|G |2.(3)依题意,|G |2≤|F 1|<|G |,∴12≤12cos θ2<1,即12<cos θ2≤1.∵y =cos x 在[0°,180°]上为减函数,∴0°≤θ2<60°,∴θ∈[0°,120°).。
(北师大版)高中数学-必修四-同步习题-第二章平面向量 2.7.1 点到直线的距离公式
§7向量应用举例7.1点到直线的距离公式课时过关·能力提升1.已知点(3,m)到直线x的距离等于则等于A或解析:d -故m或答案:D2.若且分别是直线和直线的方向向量则的值可以分别是A.2,1B.1,2C.-1,2D.-2,1解析:直线l1的一个法向量为n1=(a,b-a),直线l2的一个法向量为n2=(a,4b).又分别为直线l1,l2的方向向量,则a+2(b-a)=0,-2a+4b=0,即a=2b,令b=1,则a=2.答案:A3.若点P在直线x+y-4=0上,O为坐标原点,则|OP|的最小值是()A解析:|OP|min即为原点到直线的距离,故|OP|min-答案:B4.已知两条平行直线l1:12x+5y-3=0和l2:12x+5y+m=0的距离为1,则m=()A.10B.-16C.10或-16D.13解析:在l1上取点则M到l2的距离d解得m=10或-16.答案:C5.过点P(1,-3),且与向量m=(5,2)平行的直线方程为.解析:设M(x,y)是所求直线上任一点,则∥m.因为所以2(x-1)-5(y+3)=0,即2x-5y-17=0.答案:2x-5y-17=06.已知点P(4,a)到直线4x-3y-1=0的距离不大于3,则a的取值范围是.解析:由题意,得点P(4,a)到直线4x-3y-1=0----≤3即|15-3a|≤15 解得0≤a≤10.所以a∈[0,10].答案:[0,10]7.已知直线l1:x+2y+10=0,直线l2:5x+my=0,若l1⊥l2,则实数m=. 解析:分别取直线l1和l2的法向量m=(1,2)和n=(5,m),则m⊥n,所以m·n=0.所以1×5+2m=0,解得m=答案:8.已知两点A(3,2),B(-1,4)到直线mx+y+3=0的距离相等,则m=.解析:由已知得直线的一个法向量为n=(m,1),其同向单位向量为n0在直线上任取一点P(0,-3),则依题意有·n0|=·n0|,---解得m或m=-6.答案:或9.已知直线l:mx+2y+6=0,向量(1-m,1)与l平行,则实数m的值为.解析:∵直线l的法向量n=(m,2)与向量(1-m,1)垂直,∴(m 2 · 1-m,1)=0,即m(1-m)+2=0,∴m=-1或m=2.答案:-1或210.用向量方法判断下列各组直线的位置关系.(1)l1:5x+4y=0,l2:5x+4y+1=0;(2)l1:3x+2y+1=0,l2:6x+4y+2=0;(3)l1:7x+y-2=0,l2:x-7y+1=0;(4)l1:4x-y+3=0,l2:3x+2y+1=0.分析利用两条直线的法向量间的关系来判断.解(1)分别取l1和l2的一个法向量m=(5,4)和n=(5,4),则m∥n,但点P(0,0)在l1上,不在l2上,故l1∥l2.(2)分别取l1和l2的一个法向量m=(3,2)和n=(6,4),则m∥n,且-在l1上,也在l2上,故l1与l2重合.(3)分别取l1和l2的一个法向量m=(7,1)和n=(1,-7),则m·n=1×7+1× -7)=0,所以m⊥n.故l1⊥l2.(4)分别取l1和l2的一个法向量m=(4,-1)和n=(3,2),则4×2-(-1 ×3≠0 且4×3+(-1 ×2≠0.所以m与n既不平行也不垂直.故l1和l2相交但不垂直.11.求经过点A(2,1),且与直线l:4x-3y+9=0平行的直线方程.解因为向量(4,-3)与直线l的方向向量垂直,所以向量n=(4,-3)与所求的直线的方向向量垂直.设P(x,y)为所求直线上的一动点,则点P在所求直线上,当且仅当n·所以4(x-2)+(-3)(y-1)=0.整理,得4x-3y-5=0.故所求的直线方程为4x-3y-5=0.★12.在△ABC中,A(4,1),B(7,5),C(-4,7),求∠A的平分线所在直线的方程.解(方法一)向量从而∠A的平分线所在直线的一个方向向量为--则∠A的平分线所在直线的方程可设为将点A(4,1)的坐标代入,得m=整理得∠A的平分线所在直线的方程为7x+y-29=0.(方法二)设为∠A的平分线所在直线的的一个方向向量,则有··由方法一可得即7λ+μ=0,令λ=-1,得μ=7,则从而∠A的平分线所在直线的方程为---即7x+y-29=0.。
高中数学第二章平面向量新人教A版必修4
平面向量一、选择题1.下列命题中正确的是( )( A ) 两个相等的向量的起点,方向,长度必须都相同( B) 若a,b是两个单位向量,则a= b( C) 若向量a和b共线,则向量a, b 的方向相同( D) 零向量的长度为0,方向是任意的2.如图,在平行四边形ABCD 中,下列结论中错误的是( )( A ) ( C) AB DCAB AD BD( B )( D )AD AB ACAD CB03.在四边形ABCD 中,CB AB BA( )(A) DB (B) CA(C) CD (D) DC4.已知a,b为非零向量,且|a+ b|=| a|+| b|,则一定有( )( A ) a=b ( B ) a∥b,且a,b方向相同( C) a=-b ( D ) a∥b,且a,b方向相反5.化简下列向量: ( 1) AB BC CA (2) AB AC BD CD(3) FQ QP EF EM (4) OA OB AB,结果为零向量的个数是( )(A)1 (B)2 (C)3 (D)4二、填空题6.对于下列命题①相反向量就是方向相反的向量②不相等的向量一定不平行③相等的向量一定共线④共线的单位向量一定相等⑤共线的两个向量一定在同一条直线上其中真命题的序号为______.3 3点A 的位置向量为 ______.8.一艘船以 5 km 的速度出发向垂直于对岸的方向行驶,而船实际的航行方向与水流成30°,则船的实际速度的大小为______ ,水流速度的大小为______.9.如图,在□ABCD中,AO a ,DO b ,用向量a, b 表示下列向量CB______AB =_____.10.已知平面内有□ABCD和点O,若OA a ,OB b,OC c ,OD d,则a-b+c -d=______.三、解答题11.化简:(1) AB AC BD(2) AB CD CB DA12.在单位圆中, B 是 OA 的中点, PQ 过 B 且 PQ∥Ox,MP⊥ Ox,NQ⊥ Ox,则在向量OM,ON,MP,NQ,OP,OQ,OB,OA,PQ 中.( 1) 找出相等的向量;( 2) 找出单位向量;( 3) 找出与OM共线的向量;( 4) 向量OM,ON的长度.13.已知正方形A BCD 的边长为1,若AB a ,BC b ,AC c ,求作向量a-b+c,并求出 |a-b+c|.14.已知向量a, b 满足:| a|=3,| a+ b|=5,| a- b|=5,求| b|.向量的线性运算 ( 二 ) 一、选择题1.若 3( x+ 3a) - 2( a-x) =0,则向量 x= ( ) ( A ) 2a ( B) - 2a ( C) 7a ( D ) 7 a5 52.若AB5e, CD7e且 | AD | | BC |,则四边形ABCD 是 ( ) ( A ) 平行四边形( B ) 非等腰梯形( C)菱形( D)等腰梯形3.如图所示, D 是△ ABC 的边上的中点,则向量CD 等于()(A) BC 1BA ( B ) BC1BA 2 2(C) BC 1BA (D) BC 1 BA2 2 )4.已知向量1- 2e2,b=- 2e1+ 4e2,则向量a与b满足关系 (a= e( A ) b= 2a ( B) 共线且方向相反 ( C) 共线且方向相同(D)不平行5.下列结论中正确的个数是 ( )①若| b|=2| a|,则 b=±2a ②若 a∥ b,b∥ c,则 a∥ c ③若 m a=m b,则a=b④ 0a=0⑤若向量a与b共线,则一定存在一个实数,使得 a= b(A)0个(B)1个(C)2个(D)3 个二、填空题6.化简: 5( 3a- 2b) + 4( 2b-3a) = ______.7.与非零向量a共线的单位向量为 ____________.8.数轴上的点 A,B,C 的坐标分别为2x,- 2,x,且AB 3BC ,则x=______;|AB|= ______.9.已知向量 a 与 b 方向相反,|a|=6,| b|=4,则 a=______b.10.在□ ABCD 中,AB a ,AD b ,AN3NC ,M为BC的中点,则 MN____.三、解答题11.点 D 是△ ABC 边 BC 上一点,且BD 1 BC.设试AB a,AC b,用向量a,b表示3AD.12.已知向量a, b 满足求| a|∶| b|.11 1(a3b)(a b)(3a2b) ,求证:向量 a 与 b 共线,并52 513.已知|a|= 1,|b|= 2.若a=b,求|a-b|的值.14.已知平面中不同的四点A,B,C,D 和非零向量a,b,且AB a2b,CD 5a6b,CD =7a-2b.( 1) 证明: A, B, D 三点共线;( 2) 若a与b共线,证明A, B, C,D 四点共线.向量的分解与向量的坐标表示一、选择题1.已知向量a= ( 4,2) ,向量 b=( x,3),且 a∥b,则x=( )(A)9 (B)6 (C)5 (D)32.已知点 A( 0, 1) , B( 1, 2) , C( 3, 4) ,则AB 2BC的坐标为 ( )( A)( 3,3) ( B)( -3,- 3) ( C)( - 3, 3) ( D)( 3,- 3)3.已知基底 { e1,e2} ,实数 x,y 满足 ( 3x- 4y) e1+ ( 2x-3y) e2= 6e1+ 3e2,则 x- y 的值等于( )(A)3(B)-3(C)0(D)24.在基底 { e1,e2} 下,向量a=e1+ 2e2,b= 2e1-e2,若a∥b,则的值为()(A)0(B)-21(D)-4( C)25.设向量a= ( 1,- 3) ,b= ( - 2,4) ,c= ( - 1,- 2) ,若表示向量4a,4b-2c,2( a-c) ,d 的有向线段首尾相连能构成四边形,则向量 d 为( )( A)( 2,6) ( B)( -2,6)( C)( 2,- 6) ( D)( - 2,- 6)二、填空题6.点 A( 1,- 2) 关于点 B 的对称点为 ( - 2, 3) ,则点 B 的坐标为 ______.7.若 M( 3,- 2) ,N( - 5,- 1) 且MP 1 MN,则 P 点的坐标为 ______________.28.已知点 O( 0,0) , A( 1,2) ,B( 4,5) ,点 P 满足OP OA t AB ,当点P在x轴上时,t= _______.9.已知□ABCD 的三个顶点A( - 1, 3) , B( 3, 4) ,C( 2, 2) ,则顶点D的坐标为 ______.10.向量OA(k,12) , OB (4,5) , OB (10, k) 若A、B、C三点共线,则k= ______.三、解答题11.已知梯形ABCD 中,AB2DC ,M,N分别是DC,AB的中点.设 AD a,AB b 选择基底 { a,b} ,求向量DC,NM在此基底下的分解式.12.已知向量a=( 3,-2),b=(-2,1), c=( 7,-4),( 1) 证明:向量a, b 是一组基底;( 2) 在基底 { a,b} 下,若c= x a+ y b,求实数x, y 的值.13.已知向量a=( 1,2), b=(-3,x).若 m=2a+ b, n= a-3b,且 m∥ n,求实数x的值并判断此 m 时 n 与的方向相同还是相反.14.已知点O( 0,0) , A( 1, 4) ,B( 4,- 2) ,线段 AB 的三等分点C,D ( 点 C 靠近 A) .OC2OD平面向量的数量积及其运算律一、选择题1.若| a |= 4, | b |= 3,〈a , b 〉= 135°,则 a 2 b = ( )(A)6( B)(C)6 2 (D) 622.已知 | a |= 8, e 为单位向量,〈 a , e 〉2π,则 a 在 e 方向上的正射影的数量为 ( )3(A)4 3(B)4(C) 43(D)-4 3.若向量 a , b , c 满足 a 2 b = a 2 c ,则必有 ()( A ) a = 0( B) b = c( C) a =0 或 b = c ( D ) a ⊥ ( b - c )4.若| a |= 1,| b |= 2,且 ( a + b ) ⊥ a ,则〈 a , b 〉= ()( A) 30° ( B) 60°( C) 120° (D)150°5.平面上三点 A ,B ,C ,若 | AB | 3,|BC | 4,|CA | 5,则 AB BC BC CA CA AB= ( )A .25 ( B) -25(C)50(D)-50二、填空题6.已知 a 2 b =- 4, a 在 b 方向上的正射影的数量为-8,则在| a |和 | b | 中,可求出具体数值的是 ______,它的值为 ______.7.已知 a , b 均为单位向量, 〈 a , b 〉= 60°,那么| a + 3b | = ______. 8.已知| a |= 4,| b | = 1,| a - 2b | = 4,则 cos 〈a , b 〉= ______.9.下列命题中,正确命题的序号是______.( 1) | a | 2=a 2;( 2) 若向量 a , b 共线,则 a 2 b =| a || b | ;( 3)( a 2 b ) 2= a 22 b 2;( 4) 若 a 2 b = 0,则 a = 0 或 b = 0( 5)( a -b ) 2 ( a +b ) =| a | 2-| b | 2;10.设向量 a , b , c 满足 a + b +c = 0, ( a -b ) ⊥ c , a ⊥b .若| a |= 1,则 | a | 2+| b |2+| c | 2的值是 ______. 三、解答题11.已知| a |= 5,| b |= 4,〈a , b 〉π,求 ( a + b ) 2 a 和| a + b |.312.向量 a , b 满足 ( a - b ) 2 ( 2a + b ) =- 4,且 | a | = 2,| b |= 4,求〈 a ,b 〉.13.已知 O 为△ ABC 所在平面内一点,且满足(OB OC) (OB OA) 0 ,试判断△ ABC的形状.14.已知向量 a , b 满足:| a |= 1,| b | = 2,| a - b | = 7 .( 1) 求| a - 2b |; ( 2) 若 ( a + 2b ) ⊥( k a - b ) ,求实数 k 的值.向量数量积的坐标运算与度量公式一、选择题1.已知 a = ( - 4, 3) , b = ( 5,6) ,则 3a 2-4a 2 b =()(A)83(B)63(C)57(D)232.已知向量 a ( 3, 1) , b 是不平行于 x 轴的单位向量,且 a b3 ,则 b =()(A)(3, 1) (B) (1,3 ) (C) (1,3 3) ( D)( 1,0)2222443.在△ ABC 中, A( 4, 6) , B( - 4,10) , C( 2, 4) ,则△ ABC 是 ( )( A ) 等腰三角形( B) 锐角三角形( C) 钝角三角形( D ) 直角三角形4.已知 a = ( 0, 1) ,b = ( 1,1) ,且〈 aπ的值为( )b ,a 〉,则实数2(A)-1(B)0(C)1(D)25.已知 a = ( 1, 2) ,b = ( - 2,- 4) , | c |5 ,若 (ab )c 5 ),则〈 a , c 〉= (2( A) 30°( B) 60°( C) 120°(D)150°二、填空题,b 〉=.若a + = ( - ,-1) , - =,- ,则=,〈 a ______ .6 b 2 a b ( 4 3) a 2 b ______7.向量 a = ( 5, 2) 在向量 b =( - 2, 1) 方向上的正射影的数量为 ______. 8.在△ ABC 中, A( 1, 0) , B( 3, 1) , C( 2, 0) 则∠ BCA = ____________. 9.若向量 a 与 b = ( 1, 2) 共线,且满足 a 2 b =- 10,则 a = ______.10.已知点 A( 0,3) ,B( 1,4) ,将有向线段 AB 绕点 A 旋转角π到 AC 的位置,则点C 的2坐标为 ______. 三、解答题11.已知 a = ( - 3,2) ,b = ( 1,2) ,求值: | a + 2b |,( 2a - b ) 2 ( a +b ) ,cos 〈a + b ,a - b 〉.12.若 |a |2 13 , b = ( - 2, 3) ,且 a ⊥ b ,求向量 a 的坐标.13.直角坐标系 xOy 中,已知点 A( 0,1) 和点 B( -3, 4) ,OC 为△ AOB 的内角平分线,且OC 与 AB 交于点 C ,求点 C 的坐标.14.已知 k Z ,AB ( k ,1),AC ( 2,4),| AB | 4 ,且△ ABC 为直角三角形, 求实数 k 的值.用心爱心专心测试十二向量的应用Ⅰ学习目标1.会用向量的方法解决某些简单的平面几何问题.2.会用向量的方法解决物理中简单的力学和速度问题;能将物理问题转化为数学问题,同时会用建立起来的数学模型解释相关的物理问题.Ⅱ基础性训练一、选择题1.作用于原点的两个力f1=( 1,1), f2=( 2,3),为使它们平衡,需要增加力f3,则力 f3 的大小为 ( )( A)( 3,4) ( B)( -3,- 4)( C) 5 (D)252.在水流速度为自西向东,10 km / h 的河中,如果要使船以10 3 km/ h的速度从河南岸垂直到达北岸,则船出发时行驶速度的大小和方向( )( A ) 北偏西 30°, 20 km/ h( B ) 北偏西 60°, 20 km / h( C) 北偏东 30°, 20 km/ h( D ) 北偏东 60°, 20 km / h3.若平行四边形ABCD 满足| AB AD | | AB AD |,则平行四边形ABCD 一定是 ( )(A)正方形(B)矩形(C)菱形(D)等腰梯形4.已知□ABCD 对角线的交点为O,P 为平面上任意一点,且PO =a,则PA PB PC PD = ( )( A ) 2a ( B) 4a ( C) 6a ( D ) 8a5.已知非零向量AB与 AC满足(AB AC)BC 0且 AB.AC 1|AB | |AC | |AB| |AC| 2,则△ ABC为 ( )( A ) 三边均不相等的三角形( B ) 直角三角形( C) 等腰非等边三角形( D ) 等边三角形二、填空题6.自 50 m 高处以水平速度10 m/ s 平抛出一物体,不考虑空气阻力,则该物2s 时的速度的大小为 ______,与竖直向下的方向成角为,则tan=______( g=10 m/ s2).7.夹角为 120°的两个力f1和 f2作用于同一点,且| f 1|=| f2|=m( m>0),则 f1和 f2的合力 f 的大小为______, f 与 f2的夹角为____________.8.正方形ABCD 中, E,F 分别为边DC , BC 的中点,则cos∠ EAF = ____________.9.在△ ABC 中,有命题:①AB AC BC ;②若 ( AB AC) ( AB A C )0 ,则△ABC 为等腰三角形;③AB BC CA=0;④若 AB BC 0 ,则为△ABC锐角三角形.上述命题中正确的是____________( 填上你认为正确的所有序号)三、解答题10.水平电线AB 对竖直电杆BD 的拉力为300 N,斜拉索BC 的拉力为600 N,此时电杆恰好不偏斜,求斜拉索与地面成角的大小以及由此引起的电杆对地面的压力( 电杆自重不计).11.某运动员在风速为东偏北60°, 2 m/ s 的情况下正在以 10 m/ s 的速度向东跑.若风停止,运动员用力不变的情况下,求该运动员跑步速度的大小和方向.12.对于平行四边形ABCD ,点 M 是 AB 的中点,点N 在 BD 上,且BN 1 BD.用向量3的方法证明:M, N, C 三点共线.Ⅲ拓展性训练13.在 Rt△ABC 中,∠ C=90°,且 CA= CB, D 是 CB 的中点, E 是 AB 上一点,且AE=2EB.求证: AD ⊥ CE.14.如图,已知点A( 4, 0) , B( 4,4) , C( 2, 6) ,求 AC 与 OB 的交点 P 的坐标.测试十三平面向量全章综合练习一、选择题1.向量( AB MB) (BO CB) OM 化简后等于( )(A) AC (B) BC ( C) AB (D) AM2.点 A 的坐标为 ( 1,- 3) ,向量AB的坐标为 ( 3,7) ,则点 B 的坐标为 ( ) ( A)( 4,4) ( B)( -2,4) ( C)( 2, 10) ( D)( -2,- 10)3.已知向量a= ( -2, 4) ,b= ( - 1,- 2) , c=( 2,3),则( a+ b) 2 ( a- c)的值为( )(A)10 (B)14 ( C) -10 (D)-144.已知向量a= ( 2,t) ,b= ( 1, 2) .若 t= t1时,a∥b; t= t 2时,a⊥b,则 ( ) ( A ) t1=- 4, t2=- 1 ( B ) t1=- 4, t2= 1( C) t1= 4, t2=- 1 ( D ) t1= 4, t2= 15.若点 O 是△ ABC 所在平面内一点,满足OA OB OB OC OC OA ,则点O是△ABC 的 ( )( A ) 三个内角的角分线的交点( B ) 三条边的垂直平分线的交点( C) 三条中线的交点( D ) 三条高线的交点二、填空题6.河水的流速为 2 m/ s,一只小船想要以垂直于河岸方向10 m/ s 的速度驶向对岸,则小船在静水中的速度的大小应为______________.7.数轴上的点A,B,点 A 的坐标为- 3,且向量AB的长度为5,则点 B 的坐标为 ______.8.已知p= ( - 2, 2) ,q= ( 1,3) ,则p在q方向上的正射影的数量为______.9.已知向量a=( 2,3), b=(-1,2),若( a+b)⊥( a+ b),则实数=______.10.给出下列命题:①a b b; a2a②| a|-| b|<| a- b|;③ |a2b|=|a||b|;④ ( b2 c) a- ( c2 a) b与c垂直;⑤已知 a,b 是非零向量,若| a+ b|=| a- b|,则a⊥ b;a2= b2.⑥已知 a, b 是两个单位向量,则所有正确的命题的序号为____________ .三、解答题11.已知点A( - 2, 1) , B( 1,3) .求线段 AB 中点 M 和三等分点P, Q 的坐标.12.已知 | a|= 2, | b|= 4,〈a,b〉2π.求|a-b|和〈a,a-b〉的余弦值.313.已知向量a=( 1,2), b=( x,1).( 1) 求与 a 垂直的单位向量的坐标;( 2) 求| b-2a|的最小值以及此时 b 的坐标;( 3) 当 x 为何值,a+ 2b与b- 2a平行,并确定它们此时是同向还是反向.14.如图,以原点O 和 A( 5,2) 为两个顶点作等腰直角△OAB,使∠ B= 90°.求点 B 的坐标和 AB 的坐标.参考答案第二章平面向量测试七向量的线性运算 ( 一 )一、选择题1.D 2.C 3.C 4.B 5.C二、填空题6.③7.“东偏北 60°, 6 km”或“北偏东30°, 6 km ” 8. 10 km / h 5 3 km/ h9.b-a;a+b10.0三、解答题11.解: ( 1) CD;( 2) 原式=(AB BC CD) DA AD DA =0.12.解: ( 1) MP NQ OB ;( 2) OP,OQ,OA;( 3) ON,PQ ;( 4)|OM | | ON | 3 213.解:AB a, BC b, AC c ,所以DB a b,BE AC c, DE DB BE a b c ,| a- b+ c|=2.14.解:设AB a, AD b ,做□ABCD.则 AC a b, DB a b ,可得 AC BD 5 ,所以□ABCD为矩形,|b | | AD | 52 32=4.测试八 向量的线性运算 ( 二 )一、选择题1.D 2.D 3.A 4. B 5. A二、填空题6. 3a - 2b 7.a 8.- 4; 6 9. a 3b 10. 1 b 1a| a |244三、解答题11.答: AD2 a 1b .33712.略解:化简得 9a = 7b ,即 ab ,所以 a ∥ b ;| a |∶| b |= 7∶ 9.91,λ= 113.略解:由题意,得| a |=| λ|| b |,∴ | λ|=,22| a - b |=| λ- 1|| b |= 2| λ- 1|= 1 或 3.14. (1) 证明:∵ BDCD CB 2a 4b ,∴ BD 2 AB ,∴ AB // BD ,因为二者均经过点 B ,所以 A , B , C 三点共线. (2)证明:∵ a 与 b 共线,设 a = λb ,∴ BD ( 2 4)b , CD (7 2)b∵CD0, BD 0 ∴7λ- 2≠0, 2λ+ 4≠0.∴ BD 24CD ,7 2∴ BD // CD ,所以 B , C , D 三点共线,又 A ,B , D 三点共线.所以 A , B ,C , D 四点共线.测试九 向量的分解与向量的坐标表示一、选择题1.B 2. B 3.A 4.D 5.D 二、填空题6.( 1,1)7.( 1, 3) 8. t2 9.( -2,1) 10.- 2 或 112 223三、解答题11.答: DC1b ; NM a1b .2412. ( 1) 证明:∵32 ,∴ a 与 b 不平行,所以向量 a , b 是一组基底.213x 2 y 7,x 1, ( 2) 略解: ( 7,- 4) = x( 3,- 2) + y( - 2, 1) ,y4,所以2.2x y13.略解: m =( - 1, 4+x) , n =( 10, 2- 3x) ,因为 m ∥ n ,所以- ( 2- 3x) - 10( 4+ x) =0, x =- 6,此时 m = ( - 1,- 2) , n = ( 10, 20) ,有 n =- 10m ,所以 m 与 n 方向相反.14.略解: ( 1) OC OA AC OA 1(1,4)1(2,2) .AB (3, 6)3 3OD OA AD OA 2AB (1,4)2(3, 6) (3,0) .3 3( 2) OC 2OD ( 2,2) 2(3,0) (8,2) .OE OB OC 2OD ( 4, 2) (8,2) (12,0) .测试十平面向量的数量积及其运算律一、选择题1.D 2.D 3.D 4.C 5.B二、填空题6.|b|; 1 7.13 8.19.①⑤10. 42 4提示:10.由a+b+c=0,得c=-a-b,又 ( a-b) ⊥c,∴ (a-b) 2 (-a-b)=0,2 2∴-| a|- a2 b+a2 b+| b|=0,∴|b|=|a|=1.又 c=- a- b,222 2 ∴| c|=|- a- b|=(- a- b) 2 (- a- b)=| a|+2a2 b+| b|=2.另外,可以结合图示,分析解决问题.三、解答题11.解:a2 b= 10, ( a+b) 2 a=a2+a2 b= 35,|a b | ( a b) 2 a 2 2a b b2 61 .12.解:由题意得2a 2-a2 b-b2=- 4,所以 2a2-a2 b-b2=- 4,得a2 b=-4,cos 〈a,b〉 a b 1, 〈a,b〉=120°| a || b | 213.略解:因为(OB OC) (OB OA) 0 ,所以CB AB=0,从而CB AB ,△ABC 为直角三角形.14.略解: ( 1) |a-b|2=a2- 2ab+b2= 7,所以a2 b=- 1,| a-2b|2= a2-4ab+4b2=21,即|a2b | 21.( 2) 由已知得 ( a+ 2b) 2 ( k a-b) = 0,即 k a2-ab+ 2k ab- 2b2= 0,得 k=- 7.测试十一向量数量积的坐标运算与度量公式一、选择题1.A 2.B 3.D 4.A 5.C提示:5.设c= ( x,y) ,由 | c | 5 ,得x2+y2=5,,①,由 ( a b ) c55 5,得 ( 1, 2) ( x, y),∴ x 2 y,, ②222由①②解得 c( 1 3, 13) ,或 c ( 1 3, 13) .22 2213) 时, cos 〈a c5 1 , 当c (3, 1, 〉222a c5 52|a || c |∴〈 a ,c 〉= 120°,另一种情况,计算结果相同.二、填空题6.- 5; 135° 7. 8 510. ( - 1,4) 或 ( 1,2)58.135° 9. ( - 2,- 4)提示:10.设 C( x , y) ,则 AB(1,1), AC ( x, y 3) ,由 AC ⊥ AB 得, AB AC 0 ,即 x + y - 3= 0,, ①又 | AB | AC , ∴ 2= x 2+ ( y - 3) 2,, ②. 结合①②,解得,x 1,x 1y 或y 4 ∴ C( 1, 2) 或 C( -1,4) .2,三、解答题11.答: |a 2b |37 ;( 2a - b ) 2 ( a + b ) =22; cos a b , ab 55.12.解:设 a = ( x ,y) ,则2x 3 y 0 x 6 x6 x2y252,解得:y 4 或,所以 a =( 6,4) 或y 4a = ( -6,- 4) .13.解:设 C( x , y) ,则 OC( x, y) ,由已知可得: 〈 OA,OC 〉=〈 OB, OC 〉AC // ABx y 113 则,所以,解得OC OCOB OC 3 4 x, y,2yxy2|OA ||OB|55所以 C( 1, 3).2 214.解:由 | AB |4 得 k 2≤ 15,∵ k ∈ Z ,∴ k =- 3,- 2,- 1, 0, 1, 2,3,·2k 4 0 所以 k =- 2;当 A = 90°时, AB ACAB ·BC 0,BC (2 - k ,3)当 C= 90°时,,所以 2( 2- k) +12= 0, k= 8( 舍 ) .AC·BC 0,BC (2 - k,3)综上 k=- 1 或- 2 或 3.测试十二向量的应用一、选择题1.C2.A3.B4.B5.D提示:ABm, AC5.设n ,则|m|=|n|=1,|AB| |AC|由已知 (m n) BC 0 .∴ m BC n BC,∴ m BC cos(x B)n BC cos C ∴c osB= c osC,又B、C∈( 0,)∴B= C.又由已知 m n 1,2∴ m n cos A 1 2∴ cos A 1,又(0,π)2∴A= 60°∴△ ABC 为等边三角形.二、填空题18.46. 10 5m/s;7. m, 60°,9.②③2 5三、解答题10.答:= 60°;300 3N.11.解:如图,建立平面直角坐标系,作□ABCD,设|OC | 2,| OB | 10,则C( 1,3 ),B( 10, 0) ,CB (9, 3),得 |CB| 2 21 9.17m/s,tan AOB3.9由计算器计算得∠ AOB≈ 10. 89°.该运动员跑步速度的大小为9. 17 m/ s,方向为东偏南约10. 89°.MN // MC量,再证明二者具有关系 MN MC 即可.设AB e 1 , AD e 2 ,则 BDe 1 e 2 , BN1e 1 1e 2 .3 3MC1e 1 e 2 , MN MB BN 1e 1 ( 1e 11e 2 ) 1 e 1 1e 2 .22 33 6 3所以 MN1MC ,所以 M , N ,C 三点共线.313.证明:设此等腰直角三角形的直角边长为a ,AD CE( AC CD) (CA AE) AC CA AC AECD CA CD AE|AC|2| AC || AE | cos45 0 |CD || AE |cos45a 22 a 21 a 20 所以 AD ⊥ CE .33或以点 C 为原点, CA , CB 所在的直线分别为x ,y 轴建立平面直角坐标系,则 A( a , 0) , D (0, 1 a), E(1 a, 2a), AD ( a, 1 a), CE ( 1 a, 2a),23 3233可得出 AD CE1 a2 1 a 20 ,所以 AD ⊥CE .3 314.解:设 P( x , y) ,则 OP (x, y) , OB = ( 4, 4) ,由 OP,OB ,共线得 4x -4y = 0,,, ①,AP ( x 4, y) , AC = ( - 2, 6) ,由 AP, AC 共线得 6( x - 4) - y( - 2) =0,, ②,由①②解得, P( 3, 3) .测试十三 平面向量全章综合练习一、选择题 1.A2.A3.B4.C5.D二、填空题6. 2 26m/s7.-8 或 2 2 109.1710.④⑤⑥8.59三、解答题11.解: ABOB OA (3,2) ,OM1(OB OA) ( 1,2),所以 M (1,2),2 22OPOA1AB (1, 5) ,所以 p( 1, 5), OQ OA 2AB (0, 7) ,3 3 33 3 7所以 Q(0, ) .2 7 , cos 〈 a , a -b 〉2712.答:| a -b |7.13.略解: ( 1) 设单位向量为 e = k( - 2, 1) = ( - 2k , k) ,因为 | e | = 1,得 k55,2 5 52 5 5e (5 , 5 ) 或 e ( 5 , 5 ) .(2)|b 2 | ( x 2) 29 ,当 x = 2 时, | b - 2a |最小值为 3,此时 b = ( 2,1) .a ( 3) x 1 ,反向.214.解:设 B( x , y) ,则 AB( x 5, y 2), OBAB OB 0(x, y) ,由已知得,| AB| |OB|x( x5) y( y 2) 0x 3x2 7所以,解得 2 或 2 ,x2y2( x 5)21( y 2)2y 1 7 y 2 32 2 所以 B(3,7)或 B(7,3),AB ( 3, 1)或 AB ( 7,3),222 22 22 2用心 爱心 专心。
2019高中数学第二章平面向量单元测试(二)新人教A版必修4
第二章 平面向量注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.设3,sin 2α⎛⎫= ⎪⎝⎭a ,1cos ,3α⎛⎫= ⎪⎝⎭b ,且∥a b ,则锐角α为( )A .30︒B .60︒C .75︒D .45︒2.下列命题正确的是( ) A .单位向量都相等B .若a 与b 共线,b 与c 共线,则a 与c 共线C .若|a +b |=|a -b |,则a ·b =0D .若a 与b 都是单位向量,则a ·b =1.3.设向量()2,3a m m =-+,()21,2b m m =+-,若a 与b 的夹角大于90°,则实数m 的取值范围是( ) A .4,23⎛⎫- ⎪⎝⎭B .()4,2,3⎛⎫-∞-+∞ ⎪⎝⎭C .42,3⎛⎫- ⎪⎝⎭D .()4,2,3⎛⎫-∞+∞ ⎪⎝⎭4.平行四边形ABCD 中,AC 为一条对角线,若()2,4AB =,()1,3AC =,则AD BD ⋅等于( ) A .8B .6C .8-D .6-5.已知1=a ,6=b ,()2⋅-=a b a ,则向量a 与向量b 的夹角是( )A .6π B .4π C .3π D .2π 6.关于平面向量a ,b ,c ,有下列四个命题: ①若a ∥b ,a ≠0,则存在λ∈R ,使得b =λa ; ②若a ·b =0,则a =0或b =0;③存在不全为零的实数λ,μ使得c =λa +μb ; ④若a ·b =a ·c ,则a ⊥(b -c ). 其中正确的命题是( ) A .①③B .①④C .②③D .②④7.已知|a |=5,|b |=3,且12⋅-a b =,则向量a 在向量b 上的投影等于( ) A .4-B .4C .125-D .1258.设O ,A ,M ,B 为平面上四点,()1OM OB OA λλ=+-⋅,且()1,2λ∈,则( ) A .点M 在线段AB 上 B .点B 在线段AM 上 C .点A 在线段BM 上 D .O ,A ,B ,M 四点共线9.P 是△ABC 内的一点,()13AP AB AC =+,则△ABC 的面积与△ABP 的面积之比为( ) A .32B .2C .3D .610.在△ABC 中,2AR RB =,2CP PR =,若AP mAB nAC =+,则m n +等于( ) A .23B .79 C .89D .111.已知3a +4b +5c =0,且|a |=|b |=|c |=1,则a ·(b +c )等于( )A .45-B .35-C .0D .3512.定义平面向量之间的一种运算“⊙”如下:对任意的a =(m ,n ),b =(p ,q ),令a ⊙b =mq -np .下面说法错误的是( ) A .若a 与b 共线,则a ⊙b =0B .a ⊙b =b ⊙aC .对任意的λ∈R ,有(λa )⊙b =λ(a ⊙b )D .(a ⊙b )2+(a ·b )2=|a |2|b |2二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.设向量a =(1,2),b =(2,3),若向量λa +b 与向量()4,7--c =共线,则λ=________.14.a ,b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=________.15.已知向量a =(6,2),14,2⎛⎫=- ⎪⎝⎭b ,直线l 过点A (3,-1),且与向量a +2b 垂直,则直线l 的方程为________.16.已知向量()2,1OP =,()1,7OA =,()5,1OB =,设M 是直线OP 上任意一点(O 为坐标原点),则MA MB ⋅的最小值为________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如图所示,以向量OA =a ,OB =b 为边作AOBD ,又13BM BC =,13CN CD =,用a ,b 表示OM 、ON 、MN .18.(12分)已知a ,b 的夹角为120°,且|a |=4,|b |=2,求:(1)(a -2b )·(a +b ); (2)|a +b |; (3)|3a -4b |.19.(12分)已知)1=-a,12⎛=⎝⎭b,且存在实数k和t,使得x=a+(t2-3)b,y=-k a+t b,且x⊥y,试求2k tt+的最小值.20.(12分)设()2,5OA =,()3,1OB =,()6,3OC =.在线段OC上是否存在点M,使MA⊥MB?若存在,求出点M的坐标;若不存在,请说明理由.21.(12分)设两个向量e1、e2满足|e1|=2,|e2|=1,e1、e2的夹角为60°,若向量2t e1+7e2与e1+t e2的夹角为钝角,求实数t的取值范围.22.(12分)已知线段PQ过△OAB的重心G,且P、Q分别在OA、OB上,设OA =a,OB =b,OP m=a,OQ n=b.求证:113 m n+=.2018-2019学年必修四第二章训练卷平面向量(二)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.【答案】D【解析】31sin cos 23αα⨯=,sin 21α=,290α=︒,45α=︒.故选D .2.【答案】C【解析】∵|a +b |2=a 2+b 2+2a ·b ,|a -b |2=a 2+b 2-2a ·b ,||+-=a b a b . ∴0⋅a b =.故选C . 3.【答案】A【解析】∵a 与b 的夹角大于90°,∴0⋅<a b ,∴()()()()221320m m m m -+++-<,即23280m m -<-,∴423m -<<.故选A .4.【答案】A【解析】∵()1,1AD BC AC AB ==-=--,∴()()()1,12,43,5BD AD AB =-=---=--,∴()()1,13,58AD BD ⋅=--⋅--=. 故选A . 5.【答案】C【解析】∵()22-=⋅-=a b a a b a ,∴3⋅a b =,∴31cos ,·162a b ⋅〈〉===⨯a b a b , ∴,3a b π〈〉=.故选C . 6.【答案】B【解析】由向量共线定理知①正确;若a ·b =0,则a =0或b =0或a ⊥b ,所以②错误;在a ,b 能够作为基底时,对平面上任意向量,存在实数λ,μ使得c =λa +μb , 所以③错误;若⋅⋅a b =a c ,则()0-=a b c ,所以()⊥-a b c ,所以④正确, 即正确命题序号是①④,所以B 选项正确.7.【答案】A【解析】向量a 在向量b 上的投影为12cos ,43a b ⋅⋅〈〉=⋅==-=-a b a b a a a b b . 故选A . 8.【答案】B【解析】∵()()1OM OB OA OA OB OA λλλ=+-⋅=+-,∴AM AB λ=,λ∈(1,2),∴点B 在线段AM 上,故选B . 9.【答案】C【解析】设△ABC 边BC 的中点为D ,则22ABC ABD ABP ABP S S ADS S AP==△△△△. ∵()1233AP AB AC AD =+=,∴32AD AP =,∴32AD AP =.∴3ABC ABP S S =△△.故选C . 10.【答案】B【解析】2224133393AP AC CP AC CR AC AB AC AB AC ⎛⎫=+=+=+-=+ ⎪⎝⎭,故有417939m n +=+=.故选B . 11.【答案】B【解析】由已知得435=--b a c ,将等式两边平方得()()22435=--b a c ,化简得35⋅=-a c .同理由534--c =a b 两边平方得a ·b =0,∴()35=⋅+=⋅-⋅a b c a b +a c .故选B . 12.【答案】B【解析】若a =(m ,n )与b =(p ,q )共线,则mq -np =0,依运算“⊙”知a ⊙b =0,故A 正确.由于a ⊙b =mq -np ,又b ⊙a =np -mq ,因此a ⊙b =-b ⊙a ,故B 不正确. 对于C ,由于λa =(λm ,λn ),因此(λa )⊙b =λmq -λnp ,又λ(a ⊙b )=λ(mq -np )=λmq -λnp ,故C 正确.对于D ,(a ⊙b )2+(a ·b )2=m 2q 2-2mnpq +n 2p 2+(mp +nq )2=m 2(p 2+q 2)+n 2(p 2+q 2)=(m 2+n 2)(p 2+q 2)=|a |2|b |2,故D 正确.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】2【解析】∵a =(1,2),b =(2,3),∴()()(),22,32,23λλλλλ=++++a b =. ∵向量λa +b 与向量()4,7--c =共线,∴-7(λ+2)+4(2λ+3)=0.∴λ=2. 14.【答案】7 【解析】∵()222222125552511310134920⎛⎫==+-⨯+-⨯⨯--⋅=⎝=⨯- ⎪⎭a b a b a b a b .∴|5a -b |=7.15.【答案】2390x y --=【解析】设P (x ,y )是直线上任意一点,根据题意,有()()()23,12,30AP x y ⋅+=-+⋅-=a b ,整理化简得2390x y --=. 16.【答案】8-【解析】设()2,OM tOP t t ==,故有()()()2212,752,152012528MA MB t t t t t t t ⋅=--⋅--=-+=--, 故当t =2时,MA MB ⋅取得最小值8-.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】1566OM =+a b ,2233ON =+a b ,1126MN =-a b .【解析】BA OA OB =-=-a b .∴11153666OM OB BM OB BC OB BA =+=+=+=+a b .又OD =+a b .1122226333ON OC CN OD OD OD =+=+==+a b ,∴221511336626MN ON OM =-=+--=-a b a b a b .18.【答案】(1)12;(2);(3) 【解析】(1)1cos1204242⎛⎫⋅=︒=⨯⨯-=- ⎪⎝⎭a b a b .(a -2b )·(a +b )=a 2-2a ·b +a ·b -2b 2=42-2×(-4)+(-4)-2×22=12. (2)∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=16+2×(-4)+4=12.∴+=a b .(3)|3a -4b |2=9a 2-24a ·b +16b 2=9×42-24×(-4)+16×22=16×19,∴34-=a b 19.【答案】74-.【解析】由题意有2==a,1=b .∵1102⋅=-=a b ,∴⊥a b . ∵x·y =0,∴[a +(t 2-3)b ](-k a +t b )=0.化简得334t tk -=.∴()()222117432444k t t t t t +=+-=+-.即2t =-时,2k t t+有最小值为74-. 20.【答案】存在,M 点的坐标为(2,1)或2211,55⎛⎫⎪⎝⎭.【解析】设OM tOC =,t ∈[0,1],则()6,3OM t t =, 即M (6t,3t ).()26,53MA OA OM t t =-=--,()36,13MB OB OM t t =-=--.若MA ⊥MB ,则()()()()263653130MA MB t t t t ⋅=--+--=.即45t 2-48t +11=0,13t =或1115t =.∴存在点M ,M 点的坐标为(2,1)或2211,55⎛⎫⎪⎝⎭.21.【答案】1417,,2⎛⎛⎫--- ⎪ ⎪⎝⎭⎝⎭. 【解析】由向量2t e 1+7e 2与e 1+t e 2的夹角为钝角,得()()1212121227027t t t t +⋅+<+⋅+e e e e e e e e ,即(2t e 1+7e 2)·(e 1+t e 2)<0.整理得:()222112222770t t t ++⋅+<e e e e .(*)∵|e 1|=2,|e 2|=1,〈e 1,e 2〉=60°.∴e 1·e 2=2×1×cos 60°=1, ∴(*)式化简得:2t 2+15t +7<0.解得:172t -<<-.当向量2t e 1+7e 2与e 1+t e 2夹角为180°时,设2t e 1+7e 2=λ(e 1+t e 2) (λ<0). 对比系数得270t t λλλ=⎧⎪=⎨⎪<⎩,∴2t λ⎧=⎪⎨=⎪⎩,∴所求实数t 的取值范围是1417,,2⎛⎛⎫--- ⎪ ⎪⎝⎭⎝⎭. 22.【答案】见解析. 【解析】证明 如右图所示, ∵()()1122OD OA OB =+=+a b ,∴()2133OG OD ==+a b . ∴()111333PG OG OP m m ⎛⎫=-=+-=-+ ⎪⎝⎭a b a a b .PQ OQ OP n m =-=-b a . 又P 、G 、Q 三点共线,所以存在一个实数λ,使得PG PQ λ=.∴1133m n m λλ⎛⎫-+=- ⎪⎝⎭a b b a ,∴11033m m n λλ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭a +b . ∵a 与b 不共线,∴103103m m n λλ⎧-+=⎪⎪⎨⎪-=⎪⎩①②,由①②消去λ得:113m n +=.。
2019新版高中数学北师大版必修4习题:第二章平面向量 检测
第二章检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列等式成立的是( )A .MN ⃗⃗⃗⃗⃗⃗⃗ =NM ⃗⃗⃗⃗⃗⃗⃗B.a ·0=0C.(a ·b )c =a (b ·c )D.|a +b |≤|a |+|b |答案:D2.设P 是△ABC 所在平面内的一点,BC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ =2BP ⃗⃗⃗⃗⃗ ,则( )A .PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ =0 B .PC ⃗⃗⃗⃗⃗ +PA ⃗⃗⃗⃗⃗ =0C .PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =0D .PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =0解析:由BC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ =2BP ⃗⃗⃗⃗⃗ ,可得P 是边AC 的中点,从而PC ⃗⃗⃗⃗⃗ +PA ⃗⃗⃗⃗⃗ =0.答案:B3.已知非零向量a ,b 满足向量a+b 与向量a-b 的夹角为π2,则下列结论中一定成立的是() A.a=b B.|a|=|b|C.a ⊥bD.a ∥b解析:因为向量a+b 与向量a-b 的夹角为π2,所以(a+b )⊥(a-b ),即(a+b )·(a-b )=0,所以|a|2-|b|2=0,即|a|=|b|.答案:B4.已知点A (1,2),B (2,-1),C (2,2),若BE ⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗⃗ =23BC ⃗⃗⃗⃗⃗ ,则AE ⃗⃗⃗⃗⃗ ·AF ⃗⃗⃗⃗⃗ =( ) A .5B .-5C .3D .-3解析:由已知,得AB⃗⃗⃗⃗⃗ =(1,−3),BC ⃗⃗⃗⃗⃗ =(0,3). ∴BE⃗⃗⃗⃗⃗ =(0,1),BF ⃗⃗⃗⃗⃗ =(0,2). ∴AE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE⃗⃗⃗⃗⃗ =(1,−3)+(0,1)=(1,−2), AF ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ =(1,−3)+(0,2)=(1,−1). ∴AE⃗⃗⃗⃗⃗ ·AF ⃗⃗⃗⃗⃗ =1×1+(−2)×(−1)=3. 答案:C5.设O ,A ,M ,B 为平面上四点,OM⃗⃗⃗⃗⃗⃗ =λOB ⃗⃗⃗⃗⃗ +(1−λ)OA ⃗⃗⃗⃗⃗ ,且λ∈(1,2),则( ) A .点M 在线段AB 上B .点B 在线段AM 上C .点A 在线段BM 上D .O ,A ,M ,B 四点共线解析:由题意可知OM ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =λ(OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ ),即AM ⃗⃗⃗⃗⃗⃗ =λAB⃗⃗⃗⃗⃗ , ∴A ,M ,B 三点共线.又λ∈(1,2),∴|AM⃗⃗⃗⃗⃗⃗ |>|AB ⃗⃗⃗⃗⃗ |,点B 在线段AM 上. 答案:B6.已知△ABC 满足AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ ,则△ABC 是( )A .等边三角形B .锐角三角形C .直角三角形D .钝角三角形解析:AB⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ·(AC ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ )+CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ 2+CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ ,则CA ⃗⃗⃗⃗⃗ ·CB⃗⃗⃗⃗⃗ =0. 故△ABC 为直角三角形.答案:C7.已知C 为△ABC 的一个内角,向量m =(2cos C-1,-2),n =(cos C ,cos C+1).若m ⊥n ,则角C=( )A .π6B.π3C .2π3D.5π6解析:由m ⊥n ,得(2cos C-1)·cos C-2(cos C+1)=0,即2cos 2C-3cos C-2=0,解得cos C=−12或cos C=2(不符合题意,舍去).∵C ∈(0,π),∴C =2π3. 答案:C8.下列说法中正确的个数为( )①AB ⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ +CO ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ ; ②若a ·b <0,则a 与b 的夹角是钝角;③向量e 1=(2,-3),e 2=(12,-34)能作为平面内所有向量的一组基底;④若a ∥b ,则a 在b 方向上的投影为|a |.A .1B .2C .3D .4解析:AB ⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ +CO ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +(CO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ )=AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,①正确; 当|a |=|b |=1且a 与b 反向时,a ·b =-1<0,但a 与b 的夹角为180°,②不正确;因为e 1=4e 2,所以e 1∥e 2,所以向量e 1,e 2不能作为基底,③不正确;若a ∥b ,则a 与b 的夹角为0°或180°,所以a 在b 方向上的投影为|a |·cos θ=±|a |,④不正确.故选A .答案:A9.已知O 是△ABC 外接圆的圆心.若3OA⃗⃗⃗⃗⃗ +5OB ⃗⃗⃗⃗⃗ +7OC ⃗⃗⃗⃗⃗ =0,则∠ACB=( ) A .π6B.π3C.5π6D.2π3解析:由O 是△ABC 外接圆的圆心,设|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=|OC ⃗⃗⃗⃗⃗ |=R,由3OA ⃗⃗⃗⃗⃗ +5OB ⃗⃗⃗⃗⃗ +7OC ⃗⃗⃗⃗⃗ =0,可得OC ⃗⃗⃗⃗⃗ =−17(3OA ⃗⃗⃗⃗⃗ +5OB ⃗⃗⃗⃗⃗ ),平方可得R 2=149(9R2+30R2cos2∠ACB+25R 2),解得cos2∠ACB =12,故由题意得,∠ACB =π6. 答案:A10.已知k ∈Z ,AB⃗⃗⃗⃗⃗ =(k,1),AC ⃗⃗⃗⃗⃗ =(2,4).若|AB ⃗⃗⃗⃗⃗ |≤√10,则△ABC 是直角三角形的概率为( ) A .17B.27C.37D.47解析:由|AB⃗⃗⃗⃗⃗ |≤√10及k ∈Z ,知k ∈{-3,-2,-1,0,1,2,3}. 若AB⃗⃗⃗⃗⃗ =(k,1)与AC ⃗⃗⃗⃗⃗ =(2,4)垂直, 则2k+4=0,解得k=-2;若CB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ =(k −2,−3)与AB⃗⃗⃗⃗⃗ =(k,1)垂直, 则k (k-2)-3=0,解得k=-1或3;若AC ⃗⃗⃗⃗⃗ 与CB⃗⃗⃗⃗⃗ 垂直, 则AC ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ =0,(2,4)·(k-2,-3)=2k-4-12=0,即k=8,不符合题意,所以△ABC 是直角三角形的概率是37.答案:C11.若非零向量a ,b 满足|a |=2√23|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( )A .π4B.π2C.3π4D.π 解析:由(a -b )⊥(3a +2b )知(a -b )·(3a +2b )=0,即3|a |2-a ·b -2|b |2=0.设a 与b 的夹角为θ,所以3|a |2-|a ||b |cos θ-2|b |2=0,即3·(2√23|b |)2−2√23|b |2cos θ-2|b |2=0,整理,得cos θ=√22,故θ=π4. 答案:A12.如图,四边形ABCD 是正方形,延长CD 至点E ,使得DE=CD.若动点P 从点A 出发,沿正方形的边按逆时针方向运动一周回到点A ,其中AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAE ⃗⃗⃗⃗⃗ ,则下列判断中正确的是( )A.满足λ+μ=2的点P 必为BC 的中点B.满足λ+μ=1的点P 有且只有一个C.λ+μ的最大值为3D.λ+μ的最小值不存在解析:由题意可知,λ≥0,μ≥0,当λ=μ=0时,λ+μ的最小值为0,此时点P 与点A 重合,故D 错误;当λ=1,μ=1时,点P 也可以在点D 处,故A 错误;当λ=1,μ=0,λ+μ=1时,点P 在点B 处,当点P 在线段AD 的中点时,λ=μ=12,亦有λ+μ=1.所以B 错误.答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.设向量a =(x ,3),b =(2,1).若对任意的正数m ,n ,向量m a +n b 始终具有固定的方向,则x= . 解析:当a 与b 共线时,向量m a +n b 始终具有固定的方向,所以x=6.答案:6。
(常考题)北师大版高中数学必修四第二章《平面向量》检测题(包含答案解析)(2)
一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( )A .1B .3C .7D .32.已知ABC 为等边三角形,2AB =,ABC 所在平面内的点P 满足1AP AB AC --=,AP 的最小值为( )A .31-B .221-C .231-D .71-3.设向量a ,b ,c 满足||||1a b ==,12a b ⋅=,()()0a c b c -⋅-=,则||c 的最小值是( ) A .31+ B .31- C .3 D .14.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .5.如下图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且2OD =,点P 为BCD 内(含边界)的动点,设(,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于( )A .3B .2C .52D .326.已知,M N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则2PM PN -的最大值为( )A .53+B .53-C .523+D .57.已知向量(3,0)a =,(0,1)b =-,(,3)c k =,若(2)a b c -⊥,则k =( ) A .2B .2-C .32D .32-8.在ABC 中,D 为AB 的中点,60A ∠=︒且2AB AC AB CD ⋅=⋅,若ABC 的面积为43AC 的长为( )A.43B.433C.3 D.239.在ABC∆中,D为BC边上一点,且AD BC⊥,向量AB AC+与向量AD共线,若10AC =,2BC=,0GA GB GC++=,则ABCG=()A.3 B.5C.2 D.10210.如图,一条河的两岸平行,河的宽度d=0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的时间为6 min,则客船在静水中的速度为()A.62km/h B.8 km/hC.234km/h D.10 km/h11.如图所示,在ABC中,点D在线段BC上,且3BD DC=,若AD AB ACλμ=+,则λμ=()A.12B.13C.2 D.2312.设非零向量a与b的夹角是23π,且a a b=+,则22a tbb+的最小值为()A.33B.32C.12D.1二、填空题13.如图,已知四边形ABCD,AD CD⊥,AC BC⊥,E是AB的中点,1CE=,若//AD CE,则AC BD⋅的最小值为___________.14.设123,,e e e 为单位向量,且()312102e e ke k =+>,若以向量12,e e 为邻边的三角形的面积为12,则k 的值为__________. 15.已知向量(1,1,0)a →=,(1,0,2)b →=-,(,1,2)c x →=-,若,,a b c →→→是共面向量,则x =__________.16.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 17.如图,在△ABC 中,13AN NC =,P 是BN 上的一点,若AP =m 211AB AC +,则实数m 的值为_____.18.设向量a ,b ,c ,满足1a b ==,12a b ⋅=-,a c -与b c -的夹角为60︒,则c 的最大值等于________19.在ABC 中,22AB =26AC =G 为ABC 的重心,则AG BC ⋅=________.20.在ABC 中,22AC AB ==,120BAC ∠=,O 是BC 的中点,M 是AO 上一点,且3AO MO =,则MB MC ⋅的值是______.三、解答题21.在ABCD 中,2AB =,23AC =AB 与AD 的夹角为3π. (Ⅰ)求AD ;(Ⅱ)求AC 和BD 夹角的余弦值.22.如图,在梯形ABCD 中,E 为DC 的中点,//,,2AD BC BAD π∠=,3BDA BC BD π∠==.(1)求AE BD ⋅;(2)求AC 与BD 夹角的余弦值. 23.已知向量(1,2)a =-,||25b =. (1)若b a λ=,其中0λ<,求b 的坐标; (2)若a 与b 的夹角为23π,求()(2)a b a b -⋅+的值. 24.已知向量m ,n 不是共线向量,32a m n =+,64b m n =-,c m xn =+ (1)判断,a b 是否共线; (2)若//a c ,求x 的值 25.已知(2,0)a=,||1b =.(1)若a 与b 同向,求b ;(2)若a 与b 的夹角为120,求a b +. 26.已知向量a 与向量b 的夹角为3π,且1a =,()32a a b ⊥-. (1)求b ;(2)若27a mb -=,求m .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题. 【详解】设a 、b 所成角为θ, 由||||2==a b ,2a b,则1cos 2θ=,因为0θπ≤≤ 所以3πθ=,记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴, 建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离, 由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点32Q ⎛ ⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为P 到,A Q 两点的距离和最小,()P x 在直线y =上,()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C 【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛⎝⎭两点间的距离,考查了运算求解能力.2.C解析:C 【分析】计算出AB AC +的值,利用向量模的三角不等式可求得AP 的最小值. 【详解】2222222cos123AB AC AB AC AB AC AB AC AB AC π+=++⋅=++⋅=,所以,23AB AC += 由平面向量模的三角不等式可得()()231AP AP AB AC AB AC AP AB AC AB AC =--++≥---+=.当且仅当AP AB AC --与AB AC +方向相反时,等号成立.因此,AP 的最小值为1. 故选:C. 【点睛】结论点睛:在求解向量模的最值时,可利用向量模的三角不等式来求解:a b a b a b -≤±≤+. 3.B解析:B 【分析】建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为12⎫⎪⎪⎝⎭,21⎫-⎪⎪⎝⎭,设c 的坐标为(),x y ,由已知可得22124x y ⎛-+= ⎝⎭,表示以2⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆,求出圆心到原点的距离,再减去半径即为所求 【详解】解:建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为122⎛⎫ ⎪ ⎪⎝⎭,,221⎛⎫-⎪ ⎪⎝⎭,设c 的坐标为(),x y , 因为()()0a c b c -⋅-=,所以11,,02222x y x y ⎛⎫⎛⎫--⋅---= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,化简得22124x y ⎛-+= ⎝⎭,表示以3,0⎛⎫ ⎪⎪⎝⎭为圆心,12为半径的圆, 则||c 的最小值表示圆上的点到原点的距离的最小值, 因为圆到原点的距离为3,所以圆上的点到原点的距离的最小值为312-,故选:B【点睛】此题考查平面向量的数量积运算,解题的关键是写出满足条件的对应的点,考查数学转化思想,考查数形结合的思想,属于中档题4.C解析:C 【解析】,,又,,则,故选5.D解析:D 【分析】以O 为原点,边OA 和OC 所在的直线分别为x 和y 轴建立如图所示的平面直角坐标系,设(),P x y ,易得1,2y x αβ==,则12x y αβ+=+,再将原问题转化为线性规划问题,求目标函数12x y +在可行域BCD 内(含边界)的最大值,即可求出结果. 【详解】以O 为原点,边OA 和OC 所在的直线分别为x 和y 轴建立如图所示的平面直角坐标系, 则()()0,1,2,0C D ,如下图所示:设(),P x y ,∵ (,)OP OC OD R αβαβ=+∈, ∴()()(),0,12,0)2,(x y αββα=+=,∴2,x y βα==,即1,2y x αβ==,∴12x y αβ+=+, 令1,2z x y =+则12y x z =-+,其中z 为直线12y x z =-+在y 轴上的截距,由图可知,当该直线经过点()1,1B 时,其在y 轴上的截距最大为32, ∴αβ+的最大值为32. 故选:D . 【点睛】本题考查平面向量在几何中的应用,建立坐标系后,可将原问题转化为线性规划中的最值问题,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.6.A解析:A 【分析】根据条件可知22PM PN PO OM ON -=+-2PO OM ON ≤+-,即可求出最大值. 【详解】由1MN =可知,OMN 为等边三角形,则1cos602OM ON OM ON ⋅=⋅⋅︒=, 由PM PO OM =+,PN PO ON =+,得22PM PN PO OM ON -=+-2PO OM ON ≤+-,()224413OM ON OM ON -=-⋅+=,又()3,4P ,则5PO =,因此当PO 与2OM ON -同向时,等号成立,此时2PM PN -的最大值为5+故选:A. 【点睛】本题考查向量模的大小关系,属于中档题.7.B解析:B 【分析】求出2a b -)2=,利用向量垂直数量积为零列方程求解即可.【详解】由(3,0)a =,(0,1)b =-,得2a b -)2=,若(2)c a b -⊥,则(2)?0a b c -=,0,2k +=∴=-.故选B. 【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答.8.B解析:B 【分析】设,,AB c AC b ==先化简2AB AC AB CD ⋅=⋅得3c b =,由ABC 的面积为16bc =,即得AC 的长.【详解】设,,AB c AC b ==由题得2AB AC AB CD ⋅=⋅,所以2()AB AC AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅, 所以3,3cos cos0,332cAB AC AB AD c b c c b π⋅=⋅∴⨯⨯⨯=⨯⨯∴=.因为ABC 的面积为1sin 1623b c bc π⨯⨯⨯=∴=.所以2316,b b =∴=所以3AC =.故选:B 【点睛】本题主要考查平面向量的数量积运算,考查三角形的面积的应用,意在考查学生对这些知识的理解掌握水平.9.B解析:B 【解析】取BC 的中点E ,则2AB AC AE +=与向量AD 共线,所以A 、D 、E 三点共线,即ABC ∆中BC 边上的中线与高线重合,则10AB AC ==.因为0GA GB GC ++=,所以G 为ABC ∆的重心,则2222() 2.32BC GA GE AC ==-=所以22101,112, 5.2AB CE CG CG==+=∴== 本题选择B 选项.10.A解析:A 【解析】设客船在静水中的速度大小为 /v km h 静,水流速度为 v 水,则2/v km h =水,则船实际航行的速度v v v =+静水,60.160t h =,由题意得100.1AB v ≤=. 把船在静水中的速度正交分解为x y v v v 静=+, ∴0.660.1y v ==,在Rt ABC 中,221060.8BC =-=.. ∵80.1x x BCv v v v +=+==水水,∴826x v =-= ∴2262x yv v v 静=+=设v v 静水<,>=θ,则tan 1yxv v θ==,∴2cos 2θ=.此时222272242410102v v v v v v v +=+⋅+=+⨯+=≤静水静静水水= ,满足条件,故选A.11.B解析:B 【分析】由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解. 【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=,故选:B . 【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题.12.B解析:B 【分析】利用向量a 与b 的夹角是23π,且a a b =+,得出a b a b ==+,进而将22a tb b+化成只含有t 为自变量的二次函数形态,然后利用二次函数的特性来求出最值. 【详解】对于a ,b 和a b +的关系,根据平行四边形法则,如图a BA CD ==,b BC =,a b BD +=,23ABC π∠=,3DCB π∴∠=, a a b =+,CD BD BC ∴==,a b a b ∴==+, 2222222==222a tb a tb a tb bbb+++,a b =,22222222244cos 223=224a t a b t b a tb a tb bbbπ++++=,22222222244cos 4231244a t a b t b a t aa t a t tb aπ++-+==-+当且仅当1t =时,22a tb b+的最小值为2. 故选:B. 【点睛】本题考查平面向量的综合运用,解题的关键点在于把22a tb b+化成只含有t 为自变量的二次函数形态,进而求最值.二、填空题13.【分析】令结合题中已知条件得出通过根据数量积的概念以及二次函数的性质可得结果【详解】令因为所以又因为是的中点所以故可得所以当时取得最小值故答案为:【点睛】关键点点睛:将表示成根据几何关系将所需量用表 解析:1-【分析】令ACD θ∠=,结合题中已知条件得出2CAD πθ∠=-,2CAB πθ∠=-,2sin AC θ=,22sin AD θ=,通过()AC BD AC BA AD ⋅=⋅+,根据数量积的概念以及二次函数的性质可得结果. 【详解】令ACD θ∠=,因为AD CD ⊥,AC BC ⊥,//AD CE , 所以BCE θ∠=,2ACE CAD πθ∠=∠=-,又因为E 是AB 的中点,1CE =,所以2AB =,1CE =,CBA θ∠=,2CAB πθ∠=-,故可得2sin AC θ=,22sin AD θ=,所以()AC BD AC BA AD AC BA AC AD ⋅=⋅+=⋅+⋅2222sin 2cos 2sin 2sin cos 4sin 4sin 22ππθπθθθθθθ⎛⎫⎛⎫=⨯⨯-++⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2214sin 12θ⎛⎫=-- ⎪⎝⎭,当21sin 2θ=时,AC BD ⋅取得最小值1-, 故答案为:1-. 【点睛】关键点点睛:将BD 表示成BA AD +,根据几何关系将所需量用θ表示,将最后结果表示为关于θ的函数.14.【详解】两端平方得又得即夹角为所以即又所以【详解】 两端平方得222114k ke e =++⋅, 又121122S e e sin θ==, 得1sin θ=,即12,e e 夹角为90︒,所以120e e ⋅=, 即234k =,又 0k >, 所以k =.15.-2【详解】由于不共线且和共面根据平面向量的基本定理有即即解得解析:-2 【详解】由于,a b 不共线,且和c 共面,根据平面向量的基本定理,有c ma nb =+,即()(),1,2,,2x m n m n -=--,即122x m n m n =--⎧⎪-=-⎨⎪=⎩,解得1,112m n x ===--=-.16.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos 2OA OC AOC OAOC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①得:22323m n=+,所以229m n =,点C 在AOB ∠内, 所以3mn=. 方法二:以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, , 设()31cos30,sin 30=,2OC λλ⎫=︒︒⎪⎪⎝⎭,又()(()1,033OC mOA nOB m n m n =+=+=,得()31,=32m n λ⎫⎪⎪⎝⎭,即 3=132m nλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.17.【解析】由得设=n 所以+n=+n()=(1-n)=m 由n=得m=1-n= 解析:311【解析】由13AN NC=,得14AN AC=.设BP=n BN,所以AP AB BP AB=+=+n BN =AB+n(AN AB-)=(1-n)14AB nAC+=m211AB AC+.由14n=211,得m=1-n=311.18.【分析】作向量根据已知条件可得出与的夹角为四点共圆再结合正余弦定理可得出结果【详解】解:如下图作向量与的夹角为即又与的夹角为即与夹角为四点共圆当为直径时最大在中由余弦定理得:的外接圆的直径为四点共圆解析:2【分析】作向量OA a=,OB b=,OC c=,根据已知条件可得出a与b的夹角为120︒,A,O,B,C四点共圆,再结合正余弦定理可得出结果.【详解】解:如下图,作向量OA a=,OB b=,OC c=,∴CA a c=-,CB b c=-,1 a b==,1cos,2 a b a b a b⋅=⋅⋅=-,∴a与b的夹角为120︒,即120AOB∠=︒.∴120AOB∠=︒.又a c-与b c-的夹角为60︒,即CA与CB夹角为60︒,∴A,O,B,C四点共圆.∴当OC为直径时c最大,在AOB中,由余弦定理得:2222cos1203AB OA OB OA OB =+-⋅︒=, ∴3AB =.∴AOB 的外接圆的直径为2sin120AB=︒.∴A ,O ,B ,C 四点共圆的圆的直径为2.∴c 的最大值为2.故答案为:2. 【点睛】本题主要考查向量在几何图形中的应用,考查正余弦定理,考查数形结合的能力,分析问题能力,属于中档题.19.6【分析】根据三角形重心的性质转化为以及再求数量积【详解】如图点是的中点为的重心所以故答案为:6【点睛】本题考查向量数量积重心重点考查转化与化归思想计算能力属于基础题型解析:6 【分析】根据三角形重心的性质转化为()13AG AB AC =+,以及BC AC AB =-,再求数量积. 【详解】如图,点D 是BC 的中点,G 为ABC 的重心,∴()()22113323AG AD AB AC AB AC ==⨯+=+,BC AC AB =-,所以()()()221133AG BC AB AC AC AB AC AB ⋅=+⋅-=- ()126863=-=故答案为:6 【点睛】本题考查向量数量积,重心,重点考查转化与化归思想,计算能力,属于基础题型.20.【分析】用表示向量然后利用平面向量数量积的运算律可求得的值【详解】为的中点故答案为:【点睛】本题考查平面向量数量积的计算解答的关键就是选择合适的基底表示向量考查计算能力属于中等题解析:53-【分析】用AB 、AC 表示向量MB 、MC ,然后利用平面向量数量积的运算律可求得MB MC ⋅的值. 【详解】O 为BC 的中点,()12AO AB AC ∴=+, 3AO MO =,()1136MO AO AB AC ∴==+,()2133AM AO AB AC ==+, ()()11233MB AB AM AB AB AC AB AC ∴=-=-+=-, ()()11233MC AC AM AC AB AC AC AB ∴=-=-+=-, 22AC AB ==,120BAC ∠=,()()()22112252299MB MC AB AC AC AB AB AC AB AC∴⋅=-⋅-=⋅--221155122122923⎡⎤⎛⎫=⨯⨯⨯--⨯-⨯=- ⎪⎢⎥⎝⎭⎣⎦. 故答案为:53-. 【点睛】本题考查平面向量数量积的计算,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.三、解答题21.(Ⅰ)2AD =;(Ⅱ)0. 【分析】(Ⅰ)设AB a =,AD b =,利用平面向量加法的平行四边形法则可得AC a b =+,由23AC =b 的方程,即可解得AD b =;(Ⅱ)计算得出0AC BD ⋅=,可得出AC BD ⊥,进而可得出结果. 【详解】(Ⅰ)设AB a =,AD b =,则AC a b =+,BD AD AB b a =-=-.向量AB 与AD 的夹角为3π,cos 3a b a b b π∴⋅=⋅=. ()22222242AC a b a ba ab b b b ∴=+=+=+⋅+=++=整理得2280b b +-=,0b ≥,解得2b =,即2AD =;(Ⅱ)()()220AC BD a b b a b a ⋅=+⋅-=-=,则AC BD ⊥, 因此,AC 和BD 夹角的余弦值为0. 【点睛】本题考查利用平面向量的数量积求向量的模,同时也考查了平面向量夹角余弦值的计算,考查计算能力,属于中等题.22.(1)0;(2)- 【分析】(1)由BCD △为等边三角形得出2BC AD =,由向量的加法和减法运算得出13,22AE AB AD BD AD AB =+=-,再由向量的数量积公式得出AE BD ⋅的值;(2)设AD a =,则3,2,AB BC BD a AC ====,由数量积公式得出AC BD ⋅,进而得出AC 与BD 夹角的余弦值. 【详解】解:(1)因为//AD BC ,,,23BAD BDA BC BD ππ∠=∠==所以BCD △为等边三角形,23BC AB AD == 又E 为DC 的中点 所以1113()(),2222AE AC AD AB BC AD AB AD BD AD AB =+=++=+=- 则221313()02222AE BD AB AD AD AB AB AB AD AD ⎛⎫⋅=+⋅-=--⋅+= ⎪⎝⎭(2)设AD a =,则3,2,7AB a BC BD a AC a ====222(2)()2AC BD AB AD AD AB AB AD AB AD a ⋅=+⋅-=--⋅+=-设AC 与BD 的夹角为θ,则2cos 2AC BDAC BD θ⋅=== 【点睛】本题主要考查了利用定义求向量的数量积以及夹角,属于中档题.23.(1)(2,4)-;(2)5-. 【分析】(1)由向量模的坐标表示求出λ,可得b 的坐标; (2)根据向量数量积的运算律及数量积的定义计算. 【详解】(1)由题知(,2)b λλ=-,2||(|b λλ=+==2λ=-,故(2,4)b =-;(2)21(a =+= ∴222221()(2)22||||cos105220532a b a b a a b b a a b b π⎛⎫-⋅+=-⋅-=-⋅-=-⋅--=- ⎪⎝⎭. 【点睛】本题考查向量模的坐标表示,考查向量数量积的运算律,掌握数量积的运算律是解题关键.24.(1),a b 不共线;(2)23x = 【分析】(1)根据平面向量共线定理判断. (2)由平面向量共线定理计算. 【详解】解:(1)若a 与b 共线,由题知a 为非零向量, 则有b a λ=,即64(32)m n m n λ-=+,6342λλ=⎧∴⎨-=⎩得到2λ=且2λ=-, λ∴不存在,即a 与b 不平行.(2) ∵//a c ,∴存在实数r ,使得c ra =, 即32m xn rm rn +=+, 即132r x r=⎧⎨=⎩,解得23x =.【点睛】本题考查平面向量共线定理,掌握平面向量共线定理是解题基础.25.(1)(1,0)b =;(2)3(,2a b +=-或33(,2a b +=. 【分析】(1)先设(,)b x y =,再根据向量共线定理即可求解即可;(2)由已知结合向量数量积的定义及数量积的坐标表示即可求解. 【详解】解:(1)设(,)b x y =,由题意可得,存在实数0λ>,使得b a λ=, 即(x ,)(2y λ=,0)(2λ=,0),所以2x λ=,0y =, 由||1b =可得241λ=,即12λ=或12λ=-(舍),所以(1,0)b =, (2)设(,)b x y =,所以1·cos12021()12a b a b =︒=⨯⨯-=-, 又因为()()·2,0,2a b x y x =⋅=, 故21x =-即12x =-,因为||1b =,所以221x y +=,故y =当y =,12x =-时,33(,2a b +=,当y =12x =-时,3(,2a b +=-.【点评】本题主要考查了向量共线定理及向量数量积的定义及性质的简单应用,属于中档试题. 26.(1)3b =;(2)13m =-或1m =. 【分析】(1)本小题先求出32a b ⋅=,再求3b =即可; (2)本小题先求出23210m m --=,再求解m .【详解】解:(1)∵()23232320a a b a a b a b ⋅-=-⋅=-⋅=, ∴32a b ⋅=,∴13cos 322a b a b b π⋅=⋅⋅==, ∴3b =.(2)∵27a mb -=, ∴()222227244469a mba mab m b m m =-=-⋅+=-+,整理得:23210m m --=,解得:13m=-或1m=.【点睛】本题考查利用向量垂直求向量的数量积、向量的数量积公式、利用和与差的向量的模求参数,是中档题.。
2015必修四第二章综合练习
单元质量评估(二)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四式不能化简为AD的是( )(A)(AB CD)BC++(B)(AD MB)(BC CM)+++(C)OC OA CD-+(D)MB AD BM+-2.若向量a,b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b=( )(A)-5 (B)-4 (C)-3 (D)-23.下列说法中,正确的个数为( )(1)AB MB BC OM CO AB;++++=(2)已知向量a=(6,2)与b=(-3,k)的夹角是钝角,则k的取值范围是k<0;(3)向量e1=(2,-3),e213()24=-,能作为平面内所有向量的一组基底;(4)若a∥b,则a在b上的投影为|a|.(A)1 (B)2 (C)3 (D)44.(2012·晋江高一检测)若e1和e2是两个不共线的向量,则下面的四组向量中,共线的一组是( )(A)e1+e2和e1-e2(B)3e1-2e2和-6e1+4e2(C)e1+2e2和2e1+e2(D)e2和e1+e25.(2012·浙江高考)设a,b是两个非零向量( )(A)若|a+b|=|a|-|b|,则a⊥b(B)若a⊥b,则|a+b|=|a|-|b| (C)若|a+b|=|a|-|b|,则存在实数λ,使得b=λa(D)若存在实数λ,使得b=λa,则|a+b|=|a|-|b|6.(2012·广州高一检测)已知O是△ABC所在平面内一点,D为BC边中点,且2OA OB OC++=,0那么( )(A)AO OD=(B)AO2OD=(C)AO3OD=(D)2AO OD=7.在直角坐标系xOy中,AB(2,1)AC(3k)=,=,,若三角形ABC是直角三角形,则k的可能值个数是( )(A)1 (B)2 (C)3 (D)48.设向量a=(1,-3),b=(-2,4),c=(-1,-2),若表示向量4a,4b-2c,2(a-c),d的有向线段首尾相接能构成四边形,则d=( )(A)(2,6) (B)(-2,6)(C)(2,-6) (D)(-2,-6)9.(2012·长春高一检测)在△ABC中,已知D为AB边上的一点,若AD 2DB=,1CD CA CB3=+λ,则λ=( )(A)23(B)13(C)13-(D)23-10.已知向量a与向量b的夹角为120°,若向量c=a+b,且a⊥c,则||||ab的值为( ) (A)12(C)211.(易错题)如图,已知正六边形P1P2P3P4P5P6,下列向量的数量积中最大的是( ) (A)1213PP PP (B)1214P P P P (C)1215PP PP (D)1216P P P P12.在平面直角坐标系中,若O 为坐标原点,则A ,B ,C 三点在同一直线上的等价条件为存在唯一的实数λ,使得O C O A (1)O B =λ+-λ成立,此时称实数λ为“向量OC OA OB 关于和的终点共线分解系数”.若已知P 1(3,1),P 2(-1,3),且向量3OP 与向量a =(1,1)垂直,则“向量3OP 关于12OP OP 和的终点共线分解系数”为( ) (A)-3(B)3(C)1(D)-1二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填在题中的横线上)13.在平面直角坐标系xOy 中,若点A(-1,-2),B(2,3),C(-2,-1),则以线段AB,AC 为邻边的平行四边形中较长的一条对角线的长为_______.14.(2012·江西高考)设单位向量m =(x ,y),b =(2,-1).若m ⊥b ,则|x+2y|=_______. 15.(2012·北京高考)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB 的值为_______.16.(能力题)如图,O ,A ,B 是平面上三点,向量OA 3OB 2==,,设P 是线段AB 垂直平分线上一点,则OP(OA OB)-的值为_______.三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2012·太原高一检测)如图,平行四 边形ABCD 中,AB ,AD ==,a b H ,M 是AD ,DC 的中点,1BF BC,3=(1)以a ,b 为基底表示向量AM HF 与;(2)若|a |=3,|b |=4,a 与b 的夹角为120°,求AM HF.18.(12分)已知A ,B ,C 是平面直角坐标系内三点,其坐标分别为A(1,2),B(4,1),C(0,-1). (1)求AB AC ,和∠ACB 的大小,并判断△ABC 的形状. (2)若M 为BC的中点,求BM.19.(12分)(2012·宁波高一检测)已知三点A(2,1),B(3,2),D(-1,4).(1)证明:AB⊥AD;(2)若点C使得四边形ABCD为矩形,求点C的坐标,并求该矩形对角线所夹的锐角的余弦值.20.(12分)(2012·玉溪高一检测)已知e1,e2是平面上的一组基底,若a=e1+λe2,b=-2λe1-e2.(1)若a与b共线,求λ的值;(2)若e1,e2是夹角为60°的单位向量,当λ≥0时,求a·b的最大值.21.(12分)已知|a|=4,|b|=2,且a与b的夹角为120°,求(1)(a-2b)·(a+b);(2)|2a-b|;(3)a与a+b的夹角.22.(12分)平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1),请解答下列问题:(1)求满足a=m b+n c的实数m,n;(2)若(a+k c)∥(2b-a),求实数k;(3)若d满足(d-c)∥(a+b),且|d-c|求d.答案解析2015必修四第三章综合练习1.【解析】选D.(A)可以.(AB CD)BC AB BC CD AD.++=++= (B)可以.(AD MB)(BC CM)AD MB BC CM AD.+++=+++= (C)可以.OC OA CD AC CD AD.-+=+= (D)不可以.MB AD BM 2MB AD AD.+-=+≠2.【解析】选A.∵a +b =(-2,-1),a -b =(4,-3), ∴a =(1,-2),b =(-3,1), ∴a ·b =-3-2=-5.3.【解析】选A.(1)正确.AB MB BC OM CO AB BC CO OM MB AB.++++=++++= (2)错误.当k=-1时,a 与b 反向,夹角为180°,不是钝角.(3)错误.因为(2,-3)134(,)24=-,即e 1=4e 2,所以e 1与e 2共线,所以e 1,e 2不能作为平面内所有向量的一组基底.(4)错误.a 与b 反向时,a 在b 上的投影为-|a |. 4.【解析】选B.∵-6e 1+4e 2=-2(3e 1-2e 2), ∴3e 1-2e 2和-6e 1+4e 2共线.5.【解析】选C.若|a +b |=|a |-|b |,则a 与b 共线,且a 与b 反向,故选项A ,B不对,选项C正确.若a 与b 同向,|a +b |=|a |+|b |,故选项D 不对.6.【解析】选A.以OB OC ,为邻边作□OBEC, 则OB OC OE.+= ∵D 为BC 边中点,1OD OE OE 2OD OB OC 2OD 2∴=∴=+=,,即, 又2OA OB OC ++=,0OB OC 2OA 2OA 2OD AO OD.∴+=-∴-==,,故【变式训练】已知△ABC 的三个顶点A ,B ,C 及平面内一点P ,满足PA PB PC AB ++=,则点P 与△ABC 的关系为( ) (A)P 在△ABC 的内部 (B)P 在△ABC 的外部 (C)P 在AB 边所在直线上 (D)P 是AC 边的三等分点【解析】选D.PA PB PC AB,++=PA PC AB PB AB BP AP,PC AP PA AP AP 2AP,∴+=-=+==-=+=∴P 是AC 边的三等分点.7.【解析】选B.若∠A =90°,则AB AC =6+k =0,k =-6; 若∠B =90°,则AB BC AB (AC AB)0-==,6+k-5=0,k =-1; 若∠C =90°,则AC CB AC (AB AC)0,-==k 2-k +3=0无解.∴综上,k 可能取-6,-1两个数.故选B.【变式训练】已知a =(3,4),b ⊥a ,且b 的起点为(1,2),终点为(x ,3x),则b 等于( )(A)111(,)155- (B)111(,)515-(C)41(,)155-(D)41(,)155【解析】选C.b =(x-1,3x-2), ∵a ⊥b ,∴a ·b =0, 即3(x-1)+4(3x-2)=0,解得1141x (,).15155=-=,故b8.【解析】选D.由题意得4a +4b -2c +2(a -c )+d =0, ∴6a +4b -4c +d =0,∴d =-6a -4b +4c =-6(1,-3)-4(-2,4)+4(-1,-2) =(-2,-6).9.【解析】选A.2AD 2DB,AD AB,3=∴=2CD CA AD CA AB3212CA (CB CA)CA CB.333∴=+=+=+-=+又1CD CA CB 3=+λ且CA CB 与不共线,2.3∴λ=10.【解析】选A.c ·a =(a +b )·a =a 2+a ·b=|a |2+|a ||b |cos120°=|a |212-|a ||b |=0,||1.||2∴=a b 11.【解题指南】根据向量的数量积的定义解答本题,关键是分析两个向量的夹角的大小. 【解析】选A.显然12151216PP PP 0PP PP 0,=<, 设边长为1,则13P P 3.=向量1213PP PP 与的夹角为6π, 12133P P P P 2∴=,而1214P P P P 12cos 1,3π=⨯⨯=故1213PP PP 最大.12.【解析】选D.设3OP =(x,y), 则由3OP ⊥a 知x+y=0, 于是3OP =(x,-x), 设312OP OP (1)OP ,=λ+-λ(x,-x)=λ(3,1)+(1-λ)(-1,3) =(4λ-1,3-2λ)41x 32x λ-=⎧∴⎨-λ=-⎩,, 于是4λ-1+3-2λ=0,λ=-1.13.【解析】由题设知AB =(3,5),AC =(-1,1), 则AB AC (2,6),AB AC (4,4).+=-= 所以AB AC 210,AB AC 4 2.+=-=又>故较长的一条对角线的长为 答案:14.【解题指南】由已知条件联立方程组求得向量m 的坐标,然后求|x+2y|. 【解析】由已知可得2x-y=0,又因为m为单位向量,所以x 2+y 2=1,联立解得x x ,55y y ⎧⎧==-⎪⎪⎪⎪⎨⎨⎪⎪==⎪⎪⎩⎩或 故x 2y += 15.【解题指南】利用图形中的直角关系建系用坐标计算,也可以适当选取基向量进行计算.【解析】方法一:如图所示,以AB ,AD 所在直线 分别为x 轴,y 轴建立平面直角坐标系,设E(t,0), 0≤t ≤1,则D(0,1),B(1,0),C(1,1),DE (t,1),CB (0,1),DE CB 1.=-=-∴=方法二:选取{AB AD},作为基向量,设AE t AB =, 则2DE CB (t AB AD)(AD)t AB AD AD 011.=--=-+=+= 答案:116.【解析】OP (OA OB)-(OC CP)BAOC BA CP BA =+=+,∵CP ⊥BA,C 为AB 的中点,2222221CP BA 0OC (OA OB)2OP (OA OB)1OC BA (OA OB)(OA OB)21(OA OB )21(OA OB )215(32).22∴==+∴-==+-=-=-=-=,,答案:5217.【解析】(1)∵M 为DC 的中点,1DM DC DC AB 211AM AD DM AD AB ,22∴==∴=+=+=+,又,a b∵H 为AD 的中点,1BF BC 3=,11AH AD,BF BC,23BC AD HF HA AB BF 11AD AB AD2311AB AD .66∴===∴=++=-++=-=-又,a b(2)由已知得a ·b =3×4×cos120°=-6,222211AM HF ()()26111(1)212611113(6)4212611.3=+-=+--=⨯+⨯--⨯=-a b a b a a b b18.【解析】(1)∵A(1,2),B(4,1),C(0,-1).AB ∴=(4,1)-(1,2)=(3,-1),AC =(0,-1)-(1,2)=(-1,-3), AB AC 0∴=,∴∠BAC=90°. 方法一:AB AC 10==又∴∠ACB=45°, △ABC 是等腰直角三角形. 方法二:CA AC =-=(1,3),CB =(4,1)-(0,-1)=(4,2), ∴cos ∠ACB 2CA CB CA CB1=== ∴∠ACB=45°,△ABC是等腰直角三角形. (2)∵M 为BC 的中点, ∴点M 的坐标为(2,0),BM ∴=(2,0)-(4,1)=(-2,-1),BM (∴=-=19.【解析】(1)AB =(1,1),AD =(-3,3),AB AD ∴=1×(-3)+1×3=0,∴AB ⊥AD.(2)设点C 的坐标为(x,y),由(1)知AB ⊥AD,所以只要四边形ABCD 是平行四边形就一定是矩形, 则有AC AB AD,=+ ∴(x-2,y-1)=(1,1)+(-3,3),x 22,x 0,y 14,y 5,-=-=⎧⎧∴∴⎨⎨-==⎩⎩ ∴点C 的坐标为(0,5).AC =(-2,4),BD =(-4,2), 设AC BD 与所成的角为θ,则AC BD 4cos ,5AC BDθ===∴该矩形对角线所夹的锐角的余弦值为4.520.【解析】(1)∵a ∥b , ∴存在实数μ,使得b =μa ,212-λ=μ⎧∴λ=±⎨λμ=-⎩,解得, (2)∵e 1,e 2是夹角为60°的单位向量,∴e 1·e 21,2=∴a ·b =(e 1+λe 2)·(-2λe 1-e 2)=-λ2-3λ1.2-在λ∈[0,+∞)上是减函数,∴λ=0时,a ·b 取最大值1.2-21.【解析】由题意得a ·b =4×2×cos120°=-4. (1)(a -2b )·(a +b )=a 2-a ·b -2b 2=42-(-4)-2×22=12. (2)∵(2a -b )2=4a 2-4a ·b +b 2=4×42-4×(-4)+22=84, ∴|2a -b |=== (3)∵(a+b )2=a2+2a ·b+b 2=42+2×(-4)+22=12, ∴|a +b |===a ·(a +b )=a 2+a ·b =42-4=12. 设a 与a +b 的夹角为θ,·()cos ||||+θ===+a a b a a b又θ∈(0,π),6π∴θ=,∴a 与a +b 的夹角为.6π【变式训练】已知|a |=3,|b |=2,a 与b 的夹角为60°,c =3a +5b ,d =m a -b ,c ⊥d ,求m 的值.【解析】a ·b =|a ||b |cos60°=3, ∵c ⊥d ,∴c ·d =0, 即(3a +5b )·(m a -b )=0, ∴3m a 2+(5m-3)a ·b -5b 2=0, ∴27m +3(5m-3)-20=0, 解得29m .42=22.【解题指南】(1)向量相等对应坐标相等,列方程组解之. (2)由两向量平行的充要条件列方程解之.(3)设出d =(x ,y)【解析】(1)由题意得(3,2)=m(-1,2)+n(4,1),5m m 4n 392m n 28n .9⎧⎪-⎧⎪⎨⎨⎩⎪⎪⎩=,+=,所以得+=,=(2)a +k c =(3+4k,2+k),2b -a =(-5,2), ∵(a +k c )∥(2b -a ),∴2×(3+4k)-(-5)(2+k)=0,16k .13∴-= (3)设d =(x ,y),d -c =(x-4,y-1), a +b =(2,4),224(x 4)2(y 1)0(x 4)(y 1)5x 3x 5y 1y 3---⎧⎨--⎩⎧⎧⎨⎨-⎩⎩=,由题意得+=,=,=,解得或=,=,∴d =(3,-1)或d =(5,3).【方法技巧】巧用向量的坐标表示解题(1)运用向量的坐标表示,使向量的运算完全代数化,将数与形有机地结合.(2)根据平行的条件建立方程求参数,是解决这类题目的常用方法,充分体现了方程思想在向量中的应用.。
人教版高二必修四数学第二章平面向量试题
以下是为⼤家整理的关于《⼈教版⾼⼆必修四数学第⼆章平⾯向量试题》的⽂章,供⼤家学习参考!第四部分练习与试卷2.1 平⾯向量的概念及其线性运算(练习)【练习⽬标】1、理解平⾯向量和向量相等的含义,理解向量的⼏何表⽰;2、掌握向量加、减法的运算,并理解其⼏何意义;3、掌握向量数乘的运算,并理解其⼏何意义,以及两个向量共线的含义;4、了解向量线性运算的性质及其⼏何意义。
【⾃我测试】1、下列命题中(1)与⽅向相同(2)与⽅向相反(3)与有相等的模(4)若与垂直其中真命题的个数是 ( )A、0B、1C、2D、32、已知AD、BE是 ABC的边BC、AC上的中线,且,,则为 ( )A、 B、 C、 D、3、O是平⾯上⼀定点,A、B、C是平⾯上不共线的三个点,动点P满⾜,则P的轨迹⼀定经过 ABC的( )A、外⼼B、内⼼C、垂⼼D、重⼼4、若⾮零向量、满⾜| + |=| — |,则与所成⾓的⼤⼩为_________________。
5、已知点M是 ABC的重⼼,若,求的值。
6、 ABC的外接圆的圆⼼为O,两条边上的⾼的交点为H,,求实数的值。
2.2 平⾯向量的坐标运算【练习⽬标】1、知识与技能:了解平⾯向量的基本定理及其意义、掌握平⾯向量的正交分解及其坐标表⽰;理解⽤坐标表⽰的平⾯向量共线的条件。
2、能⼒⽬标:会⽤坐标表⽰平⾯向量的加、减与数乘运算;3、情感⽬标:通过对平⾯向量的基本定理来理解坐标,实现从图形到坐标的转换过程,锻炼学⽣的转化能⼒。
【⾃我测试】1、下列命题正确的是()A、 B、C、 D、2、已知正⽅形ABCD的边长为1,,则 = ()A、0B、3C、D、3、已知,则共线的条件是()A、 B、 C、 D、或4、如图,在中D、E、F分别是AB、BC、CA的中点,则()A、 B、 C、 D、5、若,则实数p、q的值为()A、 B、 C、 D、6、已知A、B、C是坐标平⾯上的三点,其坐标分别为A(1,2),B(4,1),C(0,-1),则是()A、等腰三⾓形B、等腰直⾓三⾓形C、直⾓三⾓形D、以上都不对2.3 平⾯向量的数量积及其运算【学习⽬标】1.知识与技能:(1)理解向量数量积的定义与性质;(2)理解⼀个向量在另⼀个向量上的投影的定义;(3)掌握向量数量积的运算律;(4)理解两个向量的夹⾓定义;【⾃我测试】1、已知,,和的夹⾓为,则为()A. B. C. D.2、已知向量,,若,则()A. B. C. D.3、在△ABC中,a,b,c分别为三个内⾓A,B,C所对的边,设向量,若 ,则⾓A的⼤⼩为()A. B. C. D.4、设是任意的⾮零平⾯向量,且它们相互不共线,下列命题:①②③不与垂直④其中正确的是()A.①②B.②③C.③④D.②④5、若向量与的夹⾓为,,则向量的模为()A. B. C. D.6、为锐⾓三⾓形的充要条件是()A. B.C. D.7、设是两个⾮零向量,是在的⽅向上的投影,⽽是在的⽅向上的投影,若与的夹⾓为钝⾓,则()A. B. C. D.8、在中,若且,则的形状是()A.等边三⾓形 B.直⾓三⾓形 C.等腰⾮等边三⾓形 D.三边均不相等的三⾓形9、若,则与的夹⾓为; = .10、已知, ,如果与的夹⾓为锐⾓,则的取值范围是11、 = 时,与垂直12、设向量其中,则的值是.13、已知向量与的夹⾓为,,则 = .14、已知,⑴求与的夹⾓;⑵求;⑶若,,求的⾯积.15、已知向量且.⑴求及;⑵若的最⼩值是,求的值.2.4平⾯向量的应⽤【学习⽬标】1.经历⽤向量⽅法解决某些简单的平⾯⼏何问题、⼒学问题与其他⼀些实际问题的过程,体会向量是⼀种处理⼏何问题、物理问题等的⼯具,发展运算能⼒2.运⽤向量的有关知识对物理中的问题进⾏相关分析和计算,并在这个过程中培养学⽣探究问题和解决问题的能⼒1.在△ABC中,AB=a,AC=b,当a•b <0时,△ABC为()A.直⾓三⾓形B.锐⾓三⾓形C.钝⾓三⾓形D.等腰三⾓形2.若向量a、b、c满⾜a +b+c=0,|a|=3,|b|=1,|c|=4,则a b+b c+c a等于()A. 11 B. 12 C. 13 D. 143.已知点,则∠BAC 的余弦值为.4.已知,且a 与b的夹⾓为钝⾓,则x的取值范围是.5.的顶点为,重⼼.求:(1)边上的中线长;(2)边上的⾼的长.6.已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.7.已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.8、已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.9、已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.平⾯向量测试卷命题⼈:蓝承⼀、选择题:本⼤题共8⼩题,每⼩题4分,共32分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1、设向量,,则下列结论中正确的是()A、 B、C、与垂直D、∥2、在平⾏四边形ABCD中,AC为⼀条对⾓线,若, ,则()A.(3,5) B.(2,4) C、(-2,-4) D.(-3,-5)3、义平⾯向量之间的⼀种运算“ ”如下,对任意的,,令,下⾯说法错误的是()A.若与共线,则B.C.对任意的,有D.4、已知向量a,b满⾜a•b=0,|a|=1,|b|=2,则|2a-b|=()A、8B、4C、2D、05、在中,,.若点满⾜,则()A. B. C. D.6、设点M是线段BC的中点,点A在直线BC外,则()A、8B、4C、 2D、17、中,点在上,平⽅.若,,,,则()A、 B、 C、 D 、8、已知和点满⾜ .若存在实数使得成⽴,则 =()A. 2 B. 3 C. 4 D. 5⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分.把答案填在答题卡的相应位置.9、如图,在中,,,则 = 。
(典型题)高中数学必修四第二章《平面向量》检测卷(答案解析)
一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( ) A .1 B .3 C .7 D .32.如图,在ABC 中,AD AB ⊥,2AD =,3DC BD =,则AC AD ⋅的值为( )A .3B .8C .12D .16 3.已知ABC 中,2AB AC ==,120CAB ∠=,若P 是其内一点,则AP AB ⋅的取值范围是( )A .(4,2)--B .(2,0)-C .(2,4)-D .(0,2)4.若向量a ,b 满足|a 10 ,b =(﹣2,1),a •b =5,则a 与b 的夹角为( ) A .90° B .60° C .45° D .30°5.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A 2B .1C .2D .226.已知ABC ,若对任意m R ∈,BC mBA CA -≥恒成立,则ABC 为( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不确定 7.已知向量()a 1,2=,()b x,2=-,且a b ⊥,则a b +等于( ).A 5B .5C .42D 31 8.ABC 是边长为1的等边三角形,CD 为边AB 的高,点P 在射线CD 上,则AP CP ⋅的最小值为( )A .18- B .116- C .316- D .09.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2FP QF =,则||QF =( )A .8B .4C .6D .310.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56πB .23πC .3πD .6π 11.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .23 12.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ;②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =;④若//a b ,则一定存在唯一的实数λ,使得a b λ=.A .①③B .①④C .②③D .②④二、填空题13.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题:①若1AB λ=,1AC μ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心;③若1λμ+=,且0μ>,则点P 在线段BC 上;④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内.其中真命题为______14.已知平面向量,,a b c 满足()()||2,||2||a c b c a b a b -⋅-=-==.则c 的最大值是________.15.圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=,且OA AC =,则向量BA 在向量BC 方向上的投影为_____.16.已知正方形ABCD 的边长为4,若3BP PD =,则PA PB ⋅的值为_________________. 17.已知腰长为2的等腰直角△ABC 中,M 为斜边AB 的中点,点P 为该平面内一动点,若2PC =,则()()4PA PB PC PM ⋅+⋅⋅的最小值 ________.18.已知平面向量2a =,3b =,4c =,4d =,0a b c d +++=,则()()a b b c +⋅+=______. 19.在矩形ABCD 中,2AB =,1AD =,动点P 满足||1AP =,设向量AP AB AD λμ=+,则λμ+的取值范围为____________.20.在ABC △中,已知4CA =,3CP =,23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.三、解答题21.已知ABC 中C ∠是直角,CA CB =,点D 是CB 的中点,E 为AB 上一点.(1)设CA a =,CD b =,当12AE AB =,请用a ,b 来表示AB ,CE . (2)当2AE EB =时,求证:AD CE ⊥.22.已知a ,b ,c 在同一平面内,且()1,2a =.(1)若35c =,且//a c ,求c ;(2)若2b =,且()()2a b a b +⊥-,求a 与b 的夹角的余弦值. 23.已知()()1,,3,2a m b ==-.(1)若()a b b +⊥,求m 的值;(2)若·1a b =-,求向量b 在向量a 方向上的投影.24.已知单位向量1e ,2e 的夹角为60︒,向量12a e e =+,21b e te =-,t R ∈. (1)若//a b ,求t 的值;(2)若2t =,求向量a ,b 的夹角.25.已知单位向量1e ,2e ,的夹角为23π,向量12a e e λ=-,向量1223b e e =+. (1)若//a b ,求λ的值;(2)若a b ⊥,求||a .26.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cos sin )2C C =-,, n =(cos2sin )2C C ,,且m n ⊥. (1)求角C ; (2)若22212a b c =+,试求sin()A B -的值【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题.【详解】设a 、b 所成角为θ,由||||2==a b ,2a b, 则1cos 2θ=,因为0θπ≤≤ 所以3πθ=, 记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴,建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离,由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点3,22Q ⎛ ⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为 P 到,A Q 两点的距离和最小,()P x 在直线y =上, ()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛ ⎝⎭两点间的距离,考查了运算求解能力. 2.D解析:D【分析】利用AB 、AD 表示向量AC ,再利用平面向量数量积的运算性质可求得AC AD ⋅的值.【详解】()3343AC AD DC AD BD AD AD AB AD AB =+=+=+-=-, AD AB ⊥,则0⋅=AD AB ,所以,()224344216AC AD AD AB AD AD ⋅=-⋅==⨯=.【点睛】方法点睛:求两个向量的数量积有三种方法:(1)利用定义:(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.3.C解析:C【分析】以A 为坐标原点,以过点A 垂直于BC 的直线为y 轴,建立平面直角坐标系,求出()3,1B --,()3,1C -,设(),P x y ,因为点P 是其内一点,所以3x 3-<<,10y -<<,计算3AP AB x y ⋅=--得最值,即可求解.【详解】建立如图所示的空间直角坐标系:则()0,0A ,因为120CAB ∠=,所以30ABC ACB ∠=∠=,可得2cos303= ,2sin301,所以()3,1B -- ,()3,1C -, 设(),P x y ,因为点P 是其内一点,所以33,10x y <<-<<,()(),3,13AP AB x y x y ⋅=⋅--=--, 当3x =1y =-时AP AB ⋅最大为((()3314-⨯--=,当3,1x y ==-时AP AB ⋅最小为(()3312--=-, 所以AP AB ⋅的取值范围是(2,4)-,故选:C【点睛】关键点点睛:本题解题的关键点是建立直角坐标系,将数量积利用坐标表示,根据点(),P x y 是其内一点,可求出,x y 的范围,可求最值.4.C【详解】 由题意可得22(2)15b =-+=,所以2cos ,52a b a b a b ⋅===⋅,又因为,[0,180]<>∈a b ,所以,45<>=a b ,选C.5.B解析:B【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值.【详解】如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B.【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.6.C解析:C【分析】在直线AB 上取一点D ,根据向量减法运算可得到DC CA ≥,由垂线段最短可确定结论.【详解】在直线AB 上取一点D ,使得mBA BD =,则BC mBA BC BD DC -=-=,DC CA ∴≥.对于任意m R ∈,都有不等式成立,由垂线段最短可知:AC AD ⊥,即AC AB ⊥, ABC ∴为直角三角形.故选:C .【点睛】本题考查与平面向量结合的三角形形状的判断,关键是能够利用平面向量数乘运算和减法运算的几何意义准确化简不等式.7.B解析:B【分析】由向量垂直可得0a b ⋅=,求得x ,及向量b 的坐标表示,再利用向量加法的坐标运算和向量模的坐标运算可求得模.【详解】 由a b ⊥,可得0a b ⋅=,代入坐标运算可得x-4=0,解得x=4,所以a b + ()5,0=,得a b +=5,选B. 【点睛】求向量的模的方法:一是利用坐标()22,a x y a x y =⇒=+,二是利用性质2a a =,结合向量数量积求解.8.C解析:C【分析】建立平面直角坐标系,()0,P t ,t ≤,则 223(2416⋅=-=--AP CP t t ,进而可求最小值.【详解】以D 点为坐标原点,DC 所在直线为y 轴,DA 所在直线为x 轴建立直角坐标系,1(,0)2A ,1(,0)2B -,(0,2C ,设()0,P t ,其中2t ≤1(,)2AP t =-,(0,CP t ==,223(16⋅==-AP CP t t ,当t =时取最小值为316-,所以AP CP ⋅的最小值为316-. 故选:C【点睛】本题考查了平面向量的数量积运算,用坐标法求最值问题,考查了运算求解能力,属于一般题目.9.D解析:D【分析】设点()1,P t -、(),Q x y ,由2FP QF =,可计算出点Q 的横坐标x 的值,再利用抛物线的定义可求出QF .【详解】设点()1,P t -、(),Q x y ,易知点()1,0F ,()2,FP t =-,()1,QF x y =--,()212x ∴-=-,解得2x =,因此,13QF x =+=,故选D.【点睛】本题考查抛物线的定义,解题的关键在于利用向量共线求出相应点的坐标,考查计算能力,属于中等题.10.B解析:B【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C .【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-. ()20,,3C C ππ∈∴=. 故选:B.【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.11.B解析:B【分析】 由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解.【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=, 故选:B .【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题. 12.B解析:B 【分析】根据向量共线定理判断①④,由模长关系只能说明向量a ,b 的长度关系判断②,举反例判断③.【详解】对于①,由向量共线定理可知,//a b ,则存在唯一的实数1λ,使得1λa b ,//b c ,则存在唯一的实数2λ,使得2λb c ,由此得出存在唯一的实数12λλ⋅,使得12a c λλ=⋅,即//a c ,则①正确;对于②,模长关系只能说明向量a ,b 的长度关系,与方向无关,则②错误; 对于③,当a b =时,由题意可得()5x y a a +=,则5x y +=,不能说明2x =,3y =,则③错误;由向量共线定理可知,④正确;故选:B.【点睛】本题主要考查了向量共线定理以及向量的定义,属于中档题.二、填空题13.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断.【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.14.【分析】设根据得到取中点为D 又由中点坐标得到再由得到的范围然后由求解【详解】设如图所示:因为所以取中点为D 因为所以解得所以所以点C 是以D 为圆心半径为的圆上运动又因为所以当AOB 共线时取等号所以所以【解析:3【分析】设,,OA a OB b OC c ===,根据||2,||2||a b a b -==,得到||2,||2||AB OA OB ==,取AB 中点为D ,又()()2a c b c CA CB -⋅-=⋅=,由中点坐标得到CD ==⎭2OA OB AB -≤=,得到||OA OD ⎛= 范围,然后由||||||||3c OC OD DC OD =≤+≤+.【详解】设,,OA a OB b OC c ===, 如图所示:因为||2,||2||a b a b -==, 所以||2,||2||AB OA OB ==, 取AB 中点为D ,因为()()2a c b c CA CB -⋅-=⋅=,所以2222||||24AB CB CA CB CA CB CA =-=+-⋅=, 解得228CB CA +=,所以22212322CB CA CD CB CA CB CA ⎛⎫+==++⋅= ⎪⎝⎭所以点C 是以D 3的圆上运动, 又因为2OA OB AB -≤=,所以2OB ≤,当A ,O ,B 共线时,取等号,所以2221||222OA OB OD OB OA OB OA ⎛⎫+==++⋅ ⎪⎝⎭, ()222112104322OB OA AB OB =+-=-≤, 所以||||||||333c OC OD DC OD =≤+≤+≤. 【点睛】关键点点睛:平面向量的中点坐标公式的两次应用:一是22CB CA CD ⎛⎫+= ⎪⎝⎭||2,||2||AB OA OB ==求得定值,得到点C 是以D 为圆心的圆上,实现数形结合;二是||2OA OD ⎛= ⎝⎭2OA OB AB -≤=确定范围,然后由||||||c OC OD DC =≤+求解.15.3【分析】根据向量关系即可确定的形状再根据向量投影的计算公式即可求得结果【详解】因为圆O 为△ABC 的外接圆半径为2若故可得是以角为直角的直角三角形又因为且外接圆半径是故可得则故向量在向量方向上的投影解析:3 【分析】根据向量关系,即可确定ABC 的形状,再根据向量投影的计算公式,即可求得结果.【详解】因为圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=, 故可得ABC 是以角A 为直角的直角三角形.又因为OA AC =,且外接圆半径是2, 故可得224BC OA AC ===,则AB =,AB cos ABC BC ∠==,故向量BA 在向量BC 方向上的投影为32AB cos ABC ⨯∠==. 故答案为:3. 【点睛】本题考查向量数量积的几何意义,属中档题.16.6【分析】建立平面直角坐标系求得点P 的坐标进而得到的坐标再利用数量积的坐标运算求解【详解】如图所示建立平面直角坐标系:则设因为解得所以所以所以故答案为:【点睛】本题主要考查平面向量的坐标表示和数量积解析:6 【分析】建立平面直角坐标系,求得点P 的坐标,进而得到,PA PB 的坐标,再利用数量积的坐标运算求解. 【详解】如图所示建立平面直角坐标系:则()()()()04,00,40,44A B C D ,,,,,设(),P x y ,()(),,4,4BP x y PD x y ==--, 因为3BP PD =,()()3434x x y y ⎧=⨯-⎪⎨=⨯-⎪⎩,解得33x y =⎧⎨=⎩,所以()3,3P ,所以()()3,1,3,3PA PB =-=--, 所以()()()33136PA PB ⋅=-⨯-+⨯-=, 故答案为:6. 【点睛】本题主要考查平面向量的坐标表示和数量积运算,还考查了运算求解的能力,属于中档题.17.【详解】如图建立平面直角坐标系∴当sin 时得到最小值为故选 解析:48322-【详解】如图建立平面直角坐标系,()((P 2cos θ2sin θA 22B22M 02-,,,,,,,∴()()((42cos θ2θ22cos θ2θ24PA PB PC PM ⎡⎤⋅+⋅=+⋅-++⎣⎦,,()(22cos θ2sin θ2cos θ2sin θ216sin θ322sin θ32⎡⎤⋅+=++⎣⎦,,, 当sin θ1=-时,得到最小值为48322-48322-18.【分析】根据得到然后两边平方结合求得再由求解即可【详解】因为所以所以所以因为所以故答案为:【点睛】本题主要考查平面向量的数量积运算还考查了运算求解的能力属于中档题解析:52【分析】根据0a b c d +++=,得到++=-a b c d ,然后两边平方结合2a =,3b =,4c =,4d =,求得⋅+⋅+⋅a b a c b c ,再由()()a b b c +⋅+=2⋅+⋅+⋅+a b a c b c b 求解即可. 【详解】因为0a b c d +++=, 所以++=-a b c d ,所以()()22++=-a b cd ,所以()()()()2222222+++⋅+⋅+⋅=-a b c a b a c b c d ,因为2a =,3b =,4c =,4d =, 所以132⋅+⋅+⋅=-a b a c b c , ()()a b b c +⋅+=252⋅+⋅+⋅+=a b a c b c b . 故答案为:52【点睛】本题主要考查平面向量的数量积运算,还考查了运算求解的能力,属于中档题.19.【分析】由已知得应用向量的运算律求出关系利用三角换元结合正弦函数的有界性即可求解【详解】在矩形中令其中最小值最大值分别为的取值范围为故答案为:【点睛】本题考查向量的模长以及向量的数量积运算解题的关键解析:⎡⎢⎣⎦. 【分析】由已知得2||1AP =,应用向量的运算律,求出,λμ关系,利用三角换元结合正弦函数的有界性,即可求解. 【详解】在矩形ABCD 中,,0AB AD AB AD ⊥∴⋅=22222222||()41AP AB AD AB AD λμλμλμ=+=+=+=,令12cos ,sin ,cos sin sin()22λθμθλμθθθϕ==+=+=+,其中1tan 2ϕ=,λμ+最小值、最大值分别为22-,λμ+的取值范围为55,⎡⎤-⎢⎥⎣⎦. 故答案为:55,⎡⎤-⎢⎥⎣⎦【点睛】本题考查向量的模长以及向量的数量积运算,解题的关键用换元法将问题转化为求三角函数的最值,属于中档题.20.6【分析】根据平方处理求得即可得解【详解】在中已知点是边的中点解得则故答案为:6【点睛】此题考查平面向量的基本运算关键在于根据向量的运算法则求出模长根据数量积的运算律计算求解解析:6 【分析】 根据()12CP CA CB =+,平方处理求得2CB =,()12CP CA CA CB CA ⋅=+⋅即可得解. 【详解】在ABC △中,已知4CA =,3CP 23ACB π∠=,点P 是边AB 的中点, ()12CP CA CB =+ ()222124CP CA CB CA CB =++⋅ 211316842CB CB ⎛⎫⎛⎫=++⨯- ⎪ ⎪⎝⎭⎝⎭,解得2CB = 则()()21111162462222CP CA CA CB CA CA CB CA ⎛⎫⎛⎫⋅=+⋅=+⋅=+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:6 【点睛】此题考查平面向量的基本运算,关键在于根据向量的运算法则求出模长,根据数量积的运算律计算求解.三、解答题21.(1)2AB b a =-,12CE a b =+;(2)证明见解析. 【分析】(1)求出2CB b =,利用AB CB CA =-与12CE CA AB =+化简可得答案; (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a , 求出,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 可得0AD CE ⋅=,进而可得答案.【详解】(1)∵CA a =,CD b =,点D 是CB 的中点, ∴2CB b =,∴2AB CB CA b a =-=-,∵()1112222CE CA AE a AB a b a a b =+=+=+-=+. (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a ,∴B 点坐标为(),0a ,另设点E 坐标为(),x y ,∵点D 是CB 的中点, ∴点D 坐标为,02a ⎛⎫⎪⎝⎭, 又∵2AE EB =,∴()(),2,x y a a x y -=--,∴23a x =,3a y =, 所以,2a AD a ⎛⎫=-⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 所以()20233a a aAD CE a ⋅=⨯+-⨯=, ∴AD CE ⊥.【点睛】方法点睛:平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.22.(1)()3,6c =或()3,6c =--;(2)10-. 【分析】(1)设(),c x y =,由平面向量平行的坐标表示及模的坐标表示可得2y x=⎧=即可得解;(2)由平面向量垂直可得()()20a b a b +⋅-=,再由平面向量数量积的运算可得1a b ⋅=-,最后由cos ,a ba b a b⋅=⋅即可得解. 【详解】(1)设(),c x y =,因为()1,2a =,//a c ,35c =,所以235y x x y =⎧+=⎪⎩36x y =⎧⎨=⎩或36x y =-⎧⎨=-⎩, 所以()3,6c =或()3,6c =--;(2)因为()1,2a =,所以14a =+又()()2a b a b +⊥-,2b =,所以()()22225220a b a b aa b ba b +⋅-=+⋅-=+⋅-⨯=,所以1a b ⋅=-, 所以cos ,5a b a b a b⋅===⨯⋅【点睛】本题考查了平面向量共线及模的坐标表示,考查了平面向量数量积的应用及运算求解能力,属于中档题. 23.(1)8m =(2)【分析】(1)先得到()4,2a b m +=-,根据()a b b +⊥可得()0a b b +⋅=,即可求出m ;(2)根据·1a b =-求出m=2,再根据cos ,a b b a b b a b⋅=⋅求b 在向量a 方向上的投影.【详解】()()14,2a b m +=-;()a b b +⊥;()34220m ∴⋅--=;8m ∴=;()2321a b m ⋅=-=-;2m ∴=;()1,2a ∴=;b ∴在向量a 方向上的投影为cos ,55a b b a b b a b⋅=⋅==-.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题. 24.(1)1t =-;(2)23π. 【分析】(1)根据题意,设a kb =,则有122112()()e e k e te kte ke +=-=-+,分析可得11ktk=-⎧⎨=⎩,解可得t 的值;(2)根据题意,设向量a ,b 的夹角为θ;由数量积的计算公式可得a 、||b 以及a b , 由cos a b a bθ⋅=计算可得答案.【详解】(1)∵根据题意,向量12a e e =+,21b e te =-,若//a b ,则设a kb =, 则有122112()()e e k e te kte ke +=-=-+,则有11kt k =-⎧⎨=⎩,解可得1t =-;(2)根据题意,设向量a ,b 的夹角为θ;若2t =,则212b e e =-,则2221||(2)3b e e =-=,则||3b =, 又由12a e e =+,则2212||()3a e e =+=,则||3a =, 又由12213()(2)2a b e e e e =+-=-,则312cos 2||||3a b a b θ-===-⨯,又由0θπ,则23πθ=; 故向量a ,b 的夹角为23π. 【点睛】本题考查向量数量积的计算,涉及向量模的计算公式,属于基础题.25.(1)23-;(2 【分析】(1)由//a b ,所以存在唯一实数t,使得b ta =,建立方程组可得答案;(2)由已知求得12e e ⋅,再由a b ⊥得()()1212230e e e e λ-⋅+=,可解得λ,再利用向量的模的计算方法可求得答案. 【详解】(1)因为//a b ,所以存在唯一实数t,使得b ta =,即()121223e e t e e λ+=-, 所以23t tλ=⎧⎨=-⎩,解得23λ=-;(2)由已知得122111cos32e e π⋅=⨯⨯=-,由a b ⊥得()()1212230e e e e λ-⋅+=,即()12+32302λλ⎛⎫-⨯--= ⎪⎝⎭,解得4λ=,所以124a e e =-,所以22121212||416821a e e e e e e =-=+-⋅=||21a =.【点睛】本题考查向量平行的条件和向量垂直的条件,以及向量的模的计算,属于中档题.26.(1)60C =︒;(2. 【分析】(1)利用两个向量垂直的性质,两个向量数量积公式以及二倍角公式,求得cos C 的值,可得C 的值.(2)利用两角差的正弦公式,正弦定理和余弦定理化简,可得结果. 【详解】(1)由题意知,0m n =,即222cos2sin 02CC -=,21cos 2(1cos )0C C +--=, 22cos cos 10C C +-=,即cos 1C =-,或1cos 2C =, 因为0C π<<,所以60C =︒. (2)2222221122a b c a b c =+⇒-=,222222sin()sin cos sin cos 2222a a c b b b c a A B A B B A R ac R bc+-+--=-=- ()222214442a b c c sinC cR cR R -=====. 【点睛】本题主要考查两个向量数量积公式,两角差的正弦公式,正弦定理和余弦定理的应用,属于中档题.。
(压轴题)高中数学必修四第二章《平面向量》检测卷(有答案解析)
一、选择题1.己知平面向量,a b 满足1a a b =-=,则32a b a b -++的最大值为( )A .4B .C .3+D .62.设向量a ,b ,c 满足||||1a b ==,12a b ⋅=,()()0a c b c -⋅-=,则||c 的最小值是( )A .12B .12C D .13.已知非零向量a →,b →夹角为45︒,且2a =,2a b -=,则b →等于( )A .B .2C D4.已知ABC 是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,与CE 交于点O ,则下列说法正确的是( )A .1AB CD ⋅=- B .1233BD BC BA =+ C .3OA OB OC ++=D .ED 在BC 方向上的投影为765.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( )A .(1⎤⎦B .(1⎤⎦C .1⎤⎦D .)1,+∞6.在ABC 中,4A π=,3B π=,2BC =,AC 的垂直平分线交AB 于D ,则AC CD ⋅=( )A .1-B .2-C .3-D .37.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==8.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .3-C .3D .39.在ABC 中,||:||:||3:4:5AB AC BC =,圆O 是ABC 的内切圆,且与BC 切于D 点,设AB a =,AC b =,则AD =( )A .2355a b + B .3255a b + C .2133a b +D .1233a b +10.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( ) A .14B .12C .2D .411.直线0ax by c与圆22:4O x y +=相交于M ,N 两点,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为( ) A .[2,6]-B .[]2,4-C .[]1,4D .[1,4]-12.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,23AB =,2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 二、填空题13.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题: ①若1ABλ=,1ACμ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心; ③若1λμ+=,且0μ>,则点P 在线段BC 上; ④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内. 其中真命题为______14.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.15.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,) OC mOA nOB m n R =+∈,则mn等于.16.已知ABC的三边长3AC=,4BC=,5AB=,P为AB边上任意一点,则()CP BA BC⋅-的最大值为______________.17.已知ABC∆中,3AB=,5AC=,7BC=,若点D满足1132AD AB AC=+,则DB DC⋅=__________.18.已知向量()()2,3,1,2==-a b,若ma b+与2a b-平行,则实数m等于______. 19.已知点O是ABC∆内部一点,并且满足230OA OB OC++=,BOC∆的面积为1S,ABC∆的面积为2S,则12SS=______.20.如图,在四边形ABCD中,60B∠=︒,2AB=,6BC=,1AD=,若M,N是线段BC上的动点,且||1MN=,则DM DN⋅的取值范围为_________.三、解答题21.在ABC中,3AB=,6AC=,23BACπ∠=,D为边BC的中点,M为中线AD 的中点.(1)求中线AD的长;(2)求BM与AD的夹角θ的余弦值.22.在直角坐标系xoy中,单位圆O的圆周上两动点A B、满足60AOB∠=︒(如图),C 坐标为()1,0,记COAα∠=(1)求点A与点B纵坐标差A By y-的取值范围;(2)求AO CB ⋅的取值范围;23.在OAB 的边OA ,OB 上分别有一点P ,Q ,已知:1:2OP PA =,:3:2OQ QB =,连接AQ ,BP ,设它们交于点R ,若OA a =,OB b =.(1)用a 与b 表示OR ;(2)过R 作RH AB ⊥,垂足为H ,若1a =,2b =,a 与b 的夹角2,33ππθ⎡⎤∈⎢⎥⎣⎦,求BHBA的范围.24.如图,在ABC 中,1AB AC ==,120BAC ∠=.(Ⅰ)求AB BC 的值;(Ⅱ)设点P 在以A 为圆心,AB 为半径的圆弧BC 上运动,且AP x AB y AC →→→=+,其中,x y R ∈. 求xy 的最大值.25.如图,四边形ABOC 是边长为1的菱形,120CAB ∠=︒,E 为OC 中点.(1)求BC 和BE ;(2)若点M 满足ME MB =,问BE BM ⋅的值是否为定值?若是定值请求出这个值;若不是定值,说明理由.26.在ABC 中,D 是线段AB 上靠近B 的一个三等分点,E 是线段AC 上靠近A 的一个四等分点,4DF FE =,设AB m =,BC n =. (1)用m ,n 表示AF ;(2)设G 是线段BC 上一点,且使//EG AF ,求CG CB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用1a a b =-=得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,利用平面向量的运算法则得到29832a b a b t -+-=+,再利用基本不等式即可求解. 【详解】因为1a a b =-=, 所以22222cos ,1a a ba ab a b b =-=-〈〉+=,则2cos ,b a b =〈〉, 令[]cos ,,1,1t a b t =〈〉∈-, 所以2b t =, 则()23232a b a b -=-22124a a b t b =-+== ()2222a b a b a a b t b +=+=++22418t t =+=+,所以29832a b a b t -+-=+,利用基本不等式知:2a b a b +≤+≤,≤=,=此时2t =±.则32a b a b -++的最大值为 故选:B. 【点睛】思路点睛:利用已知条件得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,把问题化为了单一变量的函数问题,再利用平面向量的运算法则得到29832a b a b t -+-=+,最后利用基本不等式即可解决.2.B解析:B 【分析】建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为122⎛⎫ ⎪ ⎪⎝⎭,,221⎛⎫- ⎪ ⎪⎝⎭,设c 的坐标为(),x y ,由已知可得2214x y ⎛+= ⎝⎭,表示以2⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆,求出圆心到原点的距离,再减去半径即为所求 【详解】解:建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为12⎫⎪⎪⎝⎭,21⎫-⎪⎪⎝⎭,设c 的坐标为(),x y , 因为()()0a c b c -⋅-=,所以11,,022x y x y ⎫⎫--⋅---=⎪⎪⎪⎪⎝⎭⎝⎭,化简得22124x y ⎛-+= ⎝⎭,表示以,02⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆, 则||c 的最小值表示圆上的点到原点的距离的最小值,因为圆到原点的距离为2,所以圆上的点到原点的距离的最小值为122-,故选:B【点睛】此题考查平面向量的数量积运算,解题的关键是写出满足条件的对应的点,考查数学转化思想,考查数形结合的思想,属于中档题3.A解析:A 【分析】根据数量积的运算,2a b →→-=两边平方即可求解. 【详解】2a b →→-=,=2a →,a →,b →夹角为45︒,2222()24a b a b a a b b →→→→→→→→∴-=-=-⋅+=, 2422||cos||44b b π→→∴-⨯+=,解得:||22b →= 故选:A 【点睛】本题主要考查了向量数量积的运算性质,数量积的定义,属于中档题.4.D解析:D 【分析】利用CE AB ⊥,判断出A 错误;由2AD DC =结合平面向量的基本定理,判断出选项B 错误;以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,写出各点坐标,计算出OA OB OC ++的值,判断出选项C 错误;利用投影的定义计算出D 正确. 【详解】由题E 为AB 中点,则CE AB ⊥,0AB CE ⋅=,所以选项A 错误;由平面向量线性运算得2133BD BC BA =+,所以选项B 错误; 以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示,()0,0E ,1,0A ,()1,0B -,(3C ,1233D ⎛ ⎝⎭,设()0,O y ,(3y ∈,()1,BO y =,123,33DO y ⎛=-- ⎝⎭, //BO DO ,所以,3133y y -=-,解:32y =, 32OA OB OC OE OE OE ++=+==,所以选项C 错误; 123,33ED ⎛⎫= ⎪ ⎪⎝⎭,(1,3BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,故选:D . 【点睛】本题考查平面向量数量积的应用,考查平面向量基本定理,考查投影的定义,考查平面向量的坐标表示,属于中档题.5.C解析:C 【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围. 法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出22OB x y d =+=,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 取得最小值21-,O 在BM 的延长线上时,OB 取得最大值21+. 故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,()()2222222ax cy ac xy x y +≤++=+,取等号条件:ay cx =,令22OB x y d =+=,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得2121d -≤≤+.故选:C 【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.6.C解析:C 【分析】由AC 的垂直平分线交AB 于D ,且4A π=可得ACD △为等腰直角三角形,且4A ACD π∠=∠=,2ADC BDC π∠=∠=;进而由2BC =可求出,,DB CD AC 的长,从而求出AC CD ⋅的值. 【详解】解:因为AC 的垂直平分线交AB 于D 、4A π=,所以ACD △为等腰直角三角形,4A ACD π∠=∠=,2ADC BDC π∠=∠=,在BDC 中,3B π=,2BDC π∠=,2BC =,所以1,3BD CD ==,所以3AD CD ==,26AC CD ==,所以32cos63()342AC CD AC CD π⋅=⋅=⨯⨯-=-.故选:C. 【点睛】本题主要考查平面向量的数量积,考查运算求解能力,属于基础题型.7.B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.8.C解析:C 【分析】由题意结合平面向量数量积的运算可得13a b ⋅=,进而可得()b a a +⋅、a b +,代入投影表达式即可得解. 【详解】因为a ,b 为单位向量,所以1==a b , 又2a b a b +=-,所以()()222a ba b +=-所以22222242a a b b a a b b +⋅+=-⋅+,即121242a b a b +⋅+=-⋅+,所以13a b ⋅=,则()2263a b a b+=+=,()243a a b a a b ⋅+=+⋅=,所以a 在a b +上的投影为()4326a a b a b⋅+==+ 故选:C. 【点睛】本题考查了平面向量数量积的应用,考查了一个向量在另一个向量上投影的求解,属于中档题.9.B解析:B 【分析】由题得三角形是直角三角形,设3,4,5AB AC BC ===,设,=,,DB BF x AD AE y EC CF z =====求出,,x y z ,再利用平面向量的线性运算求解.【详解】因为||:||:||3:4:5AB AC BC =,所以ABC 是直角三角形,设3,4, 5.AB AC BC ===如图,设,=,,DB BF x AD AE y EC CF z =====由题得34,2,1,35x y y z x y z x z +=⎧⎪+=∴===⎨⎪+=⎩,所以2232()5555AD AB BD AB BC AB AC AB AB AC =+=+=+-=+3255a b =+. 故选:B 【点睛】本题主要考查平面向量的线性运算,意在考查学生对这些知识的理解掌握水平.10.C解析:C 【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos62b a b t aaπ⋅=-=-时,()g t 取得最小值1,变形可得22sin16b π=,从而可求出b 【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+, 因为2222224()44(cos 1)06a b a b a b π∆=⋅-=-<,所以()g t 恒大于零,所以当232cos622b b a b taaaπ⋅=-=-=-时,()g t 取得最小值1,所以22233321222b b bg a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =,所以2b =, 故选:C 【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题11.A解析:A 【分析】取MN 的中点A ,连接OA 、OP ,由点到直线的距离公式可得1OA =,于是推出1cos 2AON ∠=,1cos 2MON ∠=-,而||||cos 2OM ON OM ON MON ⋅=⋅∠=-,()()PM PN OM OP ON OP ⋅=-⋅-()224cos OM ON OPOP OM ON AOP =⋅+-⋅+=-∠,其中cos [1,1]AOP ∠∈-,从而得解. 【详解】解:取MN 的中点A ,连接OA 、OP ,则OA MN ⊥,∵222c a b =+,∴点O 到直线MN 的距离221OA a b==+,在Rt AON 中,1cos 2OA AON ON ∠==, ∴2211cos 2cos 12122MON AON ⎛⎫∠=∠-=⨯-=- ⎪⎝⎭, ∴1||||cos 2222OM ON OM ON MON ⎛⎫⋅=⋅∠=⨯⨯-=- ⎪⎝⎭,∴()()PM PN OM OP ON OP ⋅=-⋅-2()OM ON OP OP OM ON =⋅+-⋅+24222||||cos OP OA OP OA AOP =-+-⋅=-⋅∠24cos AOP =-∠,当OP ,OA 同向时,取得最小值,为242-=-; 当OP ,OA 反向时,取得最大值,为246+=. ∴PM PN ⋅的取值范围为[]2,6-. 故选:A. 【点睛】本题考查点到直线距离公式、向量的数量积运算、直线与圆的方程,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查运算求解能力.12.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.二、填空题13.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④ 【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断. 【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.14.【分析】延长BC 作圆M 的切线设切点为A1切线与BD 的交点D 结合数量积的几何意义可得点A 运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC 作圆M 的切线设切点为A1切 解析:2-延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,结合数量积的几何意义可得点A 运动到A 1时,CA 在CB 上的投影最小,设CP x =,将结果表示为关于x 的二次函数,求出最值即可. 【详解】 如图,延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,由数量积的几何意义,CA CB ⋅等于CA 在CB 上的投影与CB 之积,当点A 运动到A 1时,CA 在CB 上的投影最小; 设BC 中点P ,连MP ,MA 1,则四边形MPDA 1为矩形; 设CP =x ,则CD =2-x ,CB =2x ,CA CB ⋅=()()222224212x x x x x --⋅=-=--,[]02x ∈,, 所以当1x =时,CA CB ⋅最小,最小值为2-, 故答案为:2-. 【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.15.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos 2OA OC AOC OA OC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①22323m n=+,所以229m n =,点C 在AOB ∠内, 所以3mn=.以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, , 设()31cos30,sin 30=,22OC λλλ⎛⎫=︒︒ ⎪ ⎪⎝⎭,又()(()1,033OC mOA nOB m n m n =+=+=,得()31,=322m n λ⎛⎫ ⎪ ⎪⎝⎭,即 3=2132m nλλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.16.9【分析】根据题意建立直角坐标系用坐标法解决即可得答案【详解】解:根据题意如图建立直角坐标系∴∴∴∴的最大值为故答案为:【点睛】本题考查坐标法表示向量向量的数量积运算线性运算的坐标表示等是中档题解析:9 【分析】根据题意,建立直角坐标系,用坐标法解决即可得答案. 【详解】解:根据题意,如图建立直角坐标系,∴ ()0,3A ()4,0B ,()0,0C , ∴ ()4,3AB =-,()()()0,34,34,33CP CA AP CA AB λλλλλ=+=+=+-=-,[]0,1λ∈,∴ ()()()[]4,330,3990,9CP BA BC CP CA λλλ⋅-=⋅=-⋅=-∈∴()CP BA BC ⋅-的最大值为9.故答案为:9 . 【点睛】本题考查坐标法表示向量,向量的数量积运算,线性运算的坐标表示等,是中档题.17.【分析】根据以为一组基底由得到再由求解【详解】因为又因为所以所以故答案为:-12【点睛】本题主要考查平面向量基本定理和向量的线性运算还考查了运算求解的能力属于中档题 解析:12-【分析】 根据1132AD AB AC =+,以,AB AC 为一组基底,由2222()2BC AC AB AC AB AB AC =-=+-⋅,得到152AB AC ⋅=-,再由2111()()3223⎛⎫⎛⎫⋅=-⋅-=-⋅- ⎪ ⎪⎝⎭⎝⎭DB DC AB AD AC AD AB AC AC AB 求解.【详解】因为2222()2BC AC AB AC AB AB AC =-=+-⋅ 又因为3AB =,5AC =,7BC = 所以152AB AC ⋅=-,所以2111()()3223DB DC AB AD AC AD AB AC AC AB ⎛⎫⎛⎫⋅=-⋅-=-⋅-=⎪ ⎪⎝⎭⎝⎭22211251521294244AB AC AB AC --+⋅=---=-. 故答案为:-12 【点睛】本题主要考查平面向量基本定理和向量的线性运算,还考查了运算求解的能力,属于中档题.18.【分析】由向量坐标的数乘及加减法运算求出与然后利用向量共线的坐标表示列式求解【详解】解:由向量和所以由与平行所以解得故答案为:【点睛】本题考查了平行向量与共线向量考查了平面向量的坐标运算属于基础题解析:12-【分析】由向量坐标的数乘及加减法运算求出ma b +与2a b -,然后利用向量共线的坐标表示列式求解. 【详解】解:由向量(2,3)a =和(1,2)b =-,所以()()()2,31,221,32m m m b m a ++=-=-+,()()()22,321,24,1a b -=--=-,由ma b +与2a b -平行,所以4(32)(21)0m m ++-=. 解得12m =-. 故答案为:12-. 【点睛】本题考查了平行向量与共线向量,考查了平面向量的坐标运算,属于基础题.19.【分析】将化为再构造向量和得出比例关系最后求解【详解】因为所以分别取的中点则所以即三点共线且如图所示则由于为中点所以所以故答案为:【点睛】本题考查向量的线性运算但是在三角形中考查又和三角形面积综合在解析:16【分析】将230OA OB OC ++=化为()2OA OC OB OC +=-+,再构造向量()12OA OC +和()12OB OC +,得出比例关系,最后求解12.S S【详解】因为230OA OB OC ++=,所以()2OA OC OB OC +=-+,分别取AC ,BC 的中点D ,E ,则2OA OC OD +=,2OB OC OE +=. 所以2OD OE =-,即O ,D ,E 三点共线且2OD OE =.如图所示,则13OBC DBC S S ∆∆=,由于D 为AC 中点,所以12DBC ABC S S ∆∆=,所以16OBC ABC S S ∆∆=. 故答案为:16【点睛】本题考查向量的线性运算,但是在三角形中考查,又和三角形面积综合在一起,属于中档题.20.【分析】首先以点为原点建立空间直角坐标系利用向量的坐标表示再求取值范围【详解】如图建立平面直角坐标系当时取得最小值当时取得最大值所以的取值范围为故答案为:【点睛】关键点点睛:本题的关键是利用坐标法解解析:11,154⎡⎤⎢⎥⎣⎦【分析】首先以点B 为原点,建立空间直角坐标系,利用向量的坐标表示DM DN ⋅,再求取值范围. 【详解】如图,建立平面直角坐标系,(3A ,(3D ,(),0M x ,()1,0N x +,(2,3DM x =--,(1,3DN x =--,[]0,5x ∈,()()212335DM DN x x x x ⋅=--+=-+231124x ⎛⎫=-+ ⎪⎝⎭,当32x =时,取得最小值114,当5x =时,取得最大值15,所以DM DN ⋅的取值范围为11,154⎡⎤⎢⎥⎣⎦故答案为:11,154⎡⎤⎢⎥⎣⎦【点睛】关键点点睛:本题的关键是利用坐标法解决数量积的范围问题.三、解答题21.(1)332;(257【分析】 (1)由于()12AD AB AC =+,进而根据向量的模的计算求解即可; (2)由于3144BM AB AC =-+,()12AD AB AC =+,进而根据向量数量积得278BM AD ⋅=,故57cos BM AD BM AD θ⋅==. 【详解】解:(1)由已知,236cos 93AB AC π⋅=⨯=-, 又()12AD AB AC =+, 所以()222124AD AB AB AC AC =+⋅+()1279183644=-+=, 所以33AD =. (2)由(1)知,()131444BM AM AB AB AC AB AB AC =-=+-=-+, 所以()293117199361681616BM=⨯-⨯-+⨯=,从而319BM =. ()311442BM AD AB AC AB AC ⎛⎫⋅=-+⋅+= ⎪⎝⎭()3212799368888-⨯-⨯-+⨯=,所以2757cos 831933BM AD BM ADθ⋅=== 解法2:(1)以点A 为原点,AB 为x 轴,过点A 且垂直于AB 的直线为y 轴建系,则()0,0A ,()3,0B ,(C -,因为D 为边BC 的中点,所以0,2D ⎛ ⎝⎭,0,2AD ⎛= ⎝⎭,所以332AD =.(2)因为M 为中线AD 的中点,由(1)知,0,4M ⎛⎫ ⎪ ⎪⎝⎭,所以3,4BM ⎛⎫=- ⎪ ⎪⎝⎭,所以9164BM ==,278BM AD ⋅=,所以27cos8BM AD BM AD θ⋅=== 【点睛】本题考查向量的数量积运算,向量夹角的计算,考查运算求解能力与化归转化思想,是中档题.本题解题的关键在于向量表示中线向量()12AD AB AC =+,进而根据向量模的计算公式计算.22.(1)[ 1.1]A B y y -∈-;(2)31,22⎡⎤-⎢⎥⎣⎦. 【分析】(1)根据三角函数的定义写出点A 与点B 纵坐标,从而将A B y y -表示成关于α的三角函数;(2)写出向量数量积的坐标运算,即AO CB OA BC ⋅=⋅,再利用三角函数的有界性,即可得答案;【详解】由题意得:()sin ,sin 60A B y y αα︒==-,∴A B y y -()1sin sin 60sin sin cos 22ααααα︒⎛⎫=--=-⋅-⋅ ⎪ ⎪⎝⎭1sin sin 223πααα⎛⎫=+=+ ⎪⎝⎭ 02απ<,∴1sin 13πα⎛⎫-≤+≤ ⎪⎝⎭,∴[ 1.1]A B y y -∈-.(2)()()() (cos ,sin )1cos 60,sin 60AO CB OA BC αααα︒︒⋅=⋅=⋅---- ()()cos cos cos 60sin sin 60ααααα︒︒=-⋅--⋅- ()22133cos sin cos sin cos sin cos 2ααααααα=-+-⋅+⋅ 1cos 2α=-, 02απ≤<,3111cos 1cos 222αα∴-≤≤⇒-≤-≤, ∴31,22AO CB ⎡⎤⋅∈-⎢⎥⎣⎦. 【点睛】根据三角函数的定义及三角恒等变换、三角函数的有界性是求解本题的关键.23.(1)1162OR a b =+;(2)171,422⎡⎤⎢⎥⎣⎦. 【分析】(1)利用,,A R Q 三点共线和,,B R P 三点共线,结合平面向量共线定理,可构造方程组求得结果;(2)设BHt BA =,利用0BH AB ⋅=,结合平面向量线性运算将两个向量转化为用,a b 表示的向量,利用平面向量数量积的运算律可整理得到t 关于cos θ的函数形式,利用cos θ的范围即可求得结果.【详解】(1)设OR OA OQ λμ=+,,,A R Q 三点共线,1λμ∴+=,又:3:2OQ QB =,35OQ OB ∴=,35OR OA OB μλ∴=+;设OR mOP nOB =+,同理可得:1m n +=,3m OR OA nOB =+, ,OA OB 不共线,335m n λμ⎧=⎪⎪∴⎨⎪=⎪⎩,51331m n m n ⎧+=⎪∴⎨⎪+=⎩,解得:1212m n ⎧=⎪⎪⎨⎪=⎪⎩,1162OR OA OB ∴=+, 即1162OR a b =+. (2)设BH t BA =,则BH tBA =,()()1162RH BH BR tBA OR OB t OA OB OA OB ⎛⎫=-=--=--- ⎪⎝⎭ 11116262t OA t OB t a t b ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 又AB OB OA b a =-=-,BH AB ⊥,0BH AB ∴⋅=,()2211112262623t a t b b a t a t b t a b ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴-+-⋅-=-+-+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦14134244cos 54cos cos 06363t t t t t θθθ⎛⎫=-+-+-=-+-= ⎪⎝⎭, 整理可得:134cos 138cos 136354cos 3024cos 33024cos t θθθθθ--===+---, 2,33ππθ⎡⎤∈⎢⎥⎣⎦,11cos ,22θ⎡⎤∴∈-⎢⎥⎣⎦,171,422t ⎡⎤∴∈⎢⎥⎣⎦, 即BHBA 的取值范围为171,422⎡⎤⎢⎥⎣⎦. 【点睛】思路点睛:本题考查了平面向量线性运算和数量积运算的综合应用,处理数量积运算问题时,通常利用线性运算将所求向量进行等价转化,利用模长和夹角已知的两个向量来表示所求向量,如本题中利用,a b 表示出,BH AB ,再结合数量积的运算律来进行求解. 24.(Ⅰ)32-;(Ⅱ)1. 【分析】(I )建立坐标系,求出向量坐标,代入数量积公式计算;(II )利用向量坐标运算,得到三角函数,根据三角函数求出最大值.【详解】(Ⅰ)()AB BC AB AC AB →→→→→⋅=⋅- 213122AB AC AB →→→=⋅-=--=-. (Ⅱ)建立如图所示的平面直角坐标系,则(1,0)B ,13(,)22C -. 设(cos ,sin )P θθ,[0,]3θ2π∈,由AP x AB y AC →→→=+,得13(cos ,sin )(1,0)(2x y θθ=+-. 所以3cos ,sin 22y x y θθ=-=. 所以3cos sin 3x θθ=+,33y θ=, 2232311sin cos sin 2cos 233333xy θθθθθ=+=+- 2311(2cos 2)3223θθ=-+ 21sin(2)363πθ=-+, 因为2[0,]3πθ∈,72[,]666πππθ-∈-. 所以,当262ππθ-=,即3πθ=时,xy 的最大值为1. 【点睛】本题主要考查了平面向量的数量积运算,向量的坐标运算,正弦型函数的图象与性质,属于中档题.25.(1)3BC =;72BE =;(2)是定值,78. 【分析】 (1)由()22BC AC AB =-,()2212BE BO BC ⎡⎤=+⎢⎥⎣⎦,结合数量积公式得出BC 和BE ;(2)取BE 的中点N ,连接MN ,由ME MB =,得出MN BE ⊥,由BM BN NM =+,结合数量积公式计算BE BM ⋅,即可得出定值.【详解】(1)∵BC AC AB =-∴222211211cos1203BC AC AB AB AC =+-⋅=+-⨯⨯⨯︒=∴3BC =又()12BE BO BC =+ ∴()22211372132134424BE BO BC BO BC ⎛⎫=++⋅=++⨯⨯⨯= ⎪⎝⎭ ∴7BE = (2)取BE 的中点N ,连接MN∵ME MB =,∴MN BE ⊥,且BM BN NM =+∴()BE BM BE BN NM BE BN BE NM ⋅=⋅+=⋅+⋅211177022248BE BE BE =⋅+==⨯= ∴78BE BM ⋅=(为定值)【点睛】本题主要考查了利用定义计算数量积以及模长,涉及了向量加减法的应用,属于中档题.26.(1)1135AF m n =+(2)310CG CB = 【分析】(1)依题意可得23AD AB =、14AE AC =,再根据DE AE AD =-,AF AD DF =+计算可得;(2)设存在实数λ,使得(01)CG CB λλ=<<,由因为//EG AF ,所以存在实数μ, 使AF EG μ=,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D 是线段AB 上靠近B 的一个三等分点,所以23AD AB =. 因为E 是线段AC 上靠近A 的一个四等分点,所以14AE AC =, 所以1243DE AE AD AC AB =-=-. 因为4DF FE =,所以4185515DF DE AC AB ==-, 则2183515AF AD DF AB AC AB =+=+- 2111()15535AB AB BC AB BC =++=+. 又AB m =,BC n =. 所以11113535AF AB BC m n =+=+. (2)因为G 是线段BC 上一点,所以存在实数λ,使得(01)CG CB λλ=<<,则33()44EG EC CG AC CB AB BC BC λλ=+=+=+- 3333()()4444AB BC m n λλ=+-=+- 因为//EG AF ,所以存在实数μ, 使AF EG μ=,即1133[()]3544m n m n μλ+=+-, 整理得31,4331(),45μμλ⎧=⎪⎪⎨⎪-=⎪⎩解得310λ=,故310 CGCB.【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.。
人教A版高中数学必修4第二章 平面向量2.1 平面向量的实际背景及基本概念习题(4)
2.1平面向量的实际背景及基本概念一、选择题1.【题文】下列各量中不是向量的是( ) A .浮力 B .风速 C .位移D .密度2.【题文】在下列判断中,正确的是( )①长度为的向量都是零向量;②零向量的方向都是相同的;③单位向量的长度都相等; ④单位向量都是同方向;⑤任意向量与零向量都共线. A .①②③ B .②③④ C .①②⑤ D .①③⑤3.【题文】若AB AD =且BA CD =,则四边形ABCD 的形状为( ) A .平行四边形 B .矩形 C .菱形 D .等腰梯形4.【题文】已知:如图,D ,E ,F 依次是等边三角形ABC 的边AB ,BC ,CA 的中点,在以A ,B ,C ,D ,E ,F 为起点或终点的向量中,与向量AD 共线的向量有()A .个B .个C .个D .个5.【题文】下列说法正确的有( )①方向相同的向量叫相等向量;②零向量的长度为;③共线向量是在同一条直线上的向量;④零向量是没有方向的向量;⑤共线向量不一定相等;⑥平行向量方向相同. A .个 B .个 C .个 D .个6.【题文】给出下列说法:①AB 和BA 的模相等;②方向不同的两个向量一定不平行;③向量就是有向线段;④0=0;⑤AB CD >,其中正确说法的个数是( )A. B. C. D.7.【题文】若四边形ABCD 是矩形,则下列说法中不正确的是 ( ) A .AB 与CD 共线B .AC 与BD 共线C .AD 与CB 是相反向量 D .AB 与CD 的模相等8.【题文】下列说法正确的是( )A .有向线段AB 与BA 表示同一向量 B .两个有公共终点的向量是平行向量C .零向量与单位向量是平行向量D .对任一向量,aa是一个单位向量 二、填空题9.【题文】如图,正六边形ABCDEF 中,点O 为中心,以,,,,,,A B C D E F O 为起点与终点的向量中,与向量AB 平行的向量有个(含AB ).10.【题文】给出下列四个条件:①=a b ;②=a b ;③与的方向相反;④0=a 或0=b ,其中能使a b 成立的条件有________.11.【题文】下列说法中,正确的是 . ①向量AB 的长度与BA 的长度相等;②向量a与向量b平行,则a与b的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④向量AB与向量CD是相等向量,则A、B、C、D能构成平行四边形.三、解答题12.【题文】如图,D,E,F分别是△ABC的边AB,BC,CA的中点,在以A,B,C,D,E,F为起点和终点的向量中:(1)找出与向量EF相等的向量;(2)找出与向量DF相等的向量.13.【题文】如图,在△ABC中,D,E分别是边AB,AC的中点,F,G分别是DB,EC 的中点,求证:向量DE与FG共线.14.【题文】如图,EF是△ABC的中位线,AD是BC边上的中线,在以A,B,C,D,E,F为端点的有向线段表示的向量中请分别写出:(1)与向量CD共线的向量;(2)与向量DF的模相等的向量;(3)与向量DE相等的向量.2.1平面向量的实际背景及基本概念参考答案与解析一、选择题1.【答案】D【解析】根据向量的定义,从大小和方向两个方面考虑,可知密度不是向量.考点:平面向量的概念.【题型】选择题【难度】较易2.【答案】D【解析】由零向量与单位向量的概念知①③⑤正确.考点:零向量与单位向量.【题型】选择题【难度】较易3.【答案】C【解析】四边形ABCD中,∵BA CD=,∴BA CD,且BA CD=,∴四边形ABCD是平行四边形.又AB AD=,∴平行四边形ABCD是菱形.考点:相等向量.【题型】选择题【难度】较易4.【答案】C【解析】∵D,E,F分别为AB,BC,CA的中点,∴AD∥EF ,∴与向量AD共线的向量有AB,FE,EF,DA,BA,BD,DB,共7个.考点:共线向量.【题型】选择题【难度】较易5.【答案】A【解析】长度相等且方向相同的向量叫做相等向量,故①错误;长度为的向量叫零向量,故②正确;通过平移能够移到同一条直线上的向量叫共线向量,故③错误;零向量的方向是任意的,故④错误;共线向量方向相同或相反,⑤正确;平行向量方向相同或相反,故⑥错误,因此②与⑤正确,其余都是错误的,故选C.考点:相等向量,共线向量.【题型】选择题【难度】一般6.【答案】B【解析】①正确,AB与BA是方向相反、模相等的两个向量;②错误,方向不同包括共线反向的向量;③错误,向量用有向线段表示,但二者并不等同;④错误,是一个向量,而为一数量,应为0=0;⑤错误,向量不能比较大小.只有①正确,故选B.考点:向量的有关概念.【题型】选择题【难度】一般7.【答案】B【解析】∵四边形ABCD是矩形,∴AB CD且AB CD=,AD CB,∴AB 与CD共线,且模相等,AD与CB是相反向量,∵AC与BD相交,∴AC与BD不共线,故B错误.考点:共线向量,相等向量.【题型】选择题【难度】一般 8. 【答案】C【解析】向量AB 与BA 方向相反,不是同一向量;有公共终点的向量的方向不一定相同或相反;当=0a 时,aa无意义,故A 、B 、D 错误.零向量与任何向量都是平行向量,C 正确.考点:平行向量;单位向量. 【题型】选择题 【难度】较难二、填空题 9. 【答案】10【解析】正六边形ABCDEF 中,点O 为中心,以,,,,,,A B C D E F O 为起点与终点的向量中,与向量AB 平行的向量有,,,,,,,,,AB BA OC CO OF FO CF FC DE ED ,共10个. 考点:平行向量. 【题型】填空题 【难度】较易 10.【答案】①③④【解析】因为与为相等向量,所以a b ,即①能够使a b 成立;=a b 并没有确定与的方向,即②不能够使ab 成立;与方向相反时,a b ,即③能够使a b 成立;因为零向量与任意向量共线,所以0=a 或0=b 时,a b 能够成立.故使a b 成立的条件是①③④.考点:平行向量. 【题型】填空题 【难度】一般11. 【答案】①【解析】对于①,向量AB 与BA 互为相反向量,长度相等,正确;对于②,因为零向量与任何向量平行,但零向量的方向是任意的,不能说方向相同或相反,所以②错误;对于③,两个有共同起点的单位向量,其终点不一定相同,因为方向不一定相同,所以③错误; 对于④,向量AB 与向量CD 是相等向量,则A 、B 、C 、D 可能在同一直线上,则A 、B 、C 、D 四点不一定能构成平行四边形,所以④错误.综上,正确的是①. 考点:平面向量的概念. 【题型】填空题 【难度】一般三、解答题 12.【答案】(1),BD DA (2),BE EC【解析】(1)∵E ,F 分别为BC ,AC 的中点, ∴EFBA ,且12EF BA =,又D 是BA 的中点, ∴EF BD DA ==,∴与向量EF 相等的向量是,BD DA .(2)∵D ,F 分别为BA ,AC 的中点, ∴DFBC ,且12DF BC =, 又E 是BC 的中点,∴DF BE EC ==, ∴与向量DF 相等的向量是,BE EC . 考点:共线向量.【题型】解答题【难度】较易13.【答案】详见解析【解析】证明:∵D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∴DE BC,∴四边形DBCE是梯形.又∵F,G分别是DB,EC的中点,∴FG是梯形DBCE的中位线,∴FG DE.∴向量DE与FG共线.考点:向量共线.【题型】解答题【难度】一般14.【答案】(1),,,,,,BD BC EF DB CB FE DC(2),,,,FD AE EA EB BE(3),CF FA【解析】根据三角形中位线的性质及共线向量及相等向量的概念即可得到:(1)与向量CD共线的向量为,,,,,,BD BC EF DB CB FE DC.(2)与向量DF的模相等的向量为,,,,FD AE EA EB BE.(3)与向量DE相等的向量为,CF FA.考点:相等向量,平行向量. 【题型】解答题【难度】一般。
(典型题)高中数学必修四第二章《平面向量》测试题(有答案解析)
一、选择题1.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且(),OP xOA yOB x y R =+∈,则下列结论正确的个数为( )①当0x =时,[]2,3y ∈②当P 是线段CE 的中点时,12x =-,52y =③若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段 ④x y -的最大值为1- A .1 B .2C .3D .42.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .3.若12,e e 是夹角为60︒的两个单位向量,则向量1212,2a e e b e e =+=-+的夹角为( ) A .30B .60︒C .90︒D .120︒4.在AOB ∆中,0,5,25,OA OB OA OB AB ⋅===边上的高为,OD D 在AB 上,点E 位于线段OD 上,若34OE EA ⋅=,则向量EA 在向量OD 上的投影为( ) A .12或32B .1C .1或12D .325.已知1a ,2a ,1b ,2b ,()*k b k ⋅⋅⋅∈N是平面内两两互不相等的向量,121a a-=,且对任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈,则k 最大值为( ) A .3B .4C .5D .66.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6B .4C .3D .27.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A B .1C .2D .8.已知向量,a b 满足2(1,2),(1,)+==a b m b m ,且a 在b ,则实数m =( )A .2±B .2C .5±D 9.已知两个非零向量a ,b 的夹角为23π,且=2a b -,则·ab 的取值范围是( ) A .2,03⎛⎫- ⎪⎝⎭B .[)2,0-C .2,03⎡⎫-⎪⎢⎣⎭D .[)1,0-10.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,AB =,2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 11.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( ) A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定12.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56πB .23π C .3π D .6π 二、填空题13.已知平面向量a ,b ,c ,d 满足1a b ==,2c =,0a b ⋅=,1c d -=,则2a b d ++的取值范围为______.14.已知向量1e ,2e 是平面α内的一组基向量,O 为α内的定点,对于α内任意一点P ,当12OP xe ye =+时,则称有序实数对(),x y 为点P 的广义坐标,若点A 、B 的广义坐标分别为()11,x y 、()22,x y ,对于下列命题: ① 线段A 、B 的中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭;② A 、B③ 向量OA 平行于向量OB 的充要条件是1221x y x y =; ④ 向量OA 垂直于向量OB 的充要条件是12120x x y y +=. 其中的真命题是________(请写出所有真命题的序号)15.如图,在Rt ABC ∆中,2,60,90AB BAC B =∠=︒∠=︒,G 是ABC ∆的重心,则GB GC ⋅=__________.16.在平面内,定点,,A B C 满足DA DB DC ==,2DA DB DB DC DC DA ⋅=⋅=⋅=-,动点,P M 满足1AP PM MC ==,则2BM 的最大值为________.17.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.18.如图,在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒,E F 、分别是边AB AC 、上的点,且,AE AB AF AC λμ==,其中(),0,1λμ∈且41λμ+=,若线段EF BC 、的中点分别为M N 、,则MN 的最小值是_____.19.已知O 为ABC 内一点,且满足305OA OB OC =++,延长AO 交BC 于点D .若BD DC λ=,则λ=_____.20.已知平面向量a ,b 满足3a b +=,3a b -=,则向量a 与b 夹角的取值范围是______.三、解答题21.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=. (1)求32a b c +-;(2)求满足a mb nc =+的实数m 和n ; (3)若()(2)a kc b a +⊥-,求实数k . 22.已知向量a 与b 的夹角为3π,且1a =,2b =. (1)求a b +;(2)求向量a b +与向量a 的夹角的余弦值. 23.已知向量,a b 满足:16,()2a b a b a ==⋅-=,. (1)求向量a 与b 的夹角; (2)求2a b -.24.如图,正六边形ABCDEF 的边长为1.M ,N 分别是BC ,DE 上的动点,且满足BM DN =.(1)若M ,N 分别是BC ,DE 的中点,求AM AN ⋅的值; (2)求AM AN ⋅的取值范围.25.已知向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭且函数()f x u v =⋅,若函数f (x )的图象上两个相邻的对称轴距离为2π. (1)求函数f (x )的解析式; (2)将函数y =f (x )的图象向左平移12π个单位后,得到函数y =g (x )的图象,求函数g (x )的表达式并其对称轴;(3)若方程f (x )=m (m >0)在0,2x π⎡⎤∈⎢⎥⎣⎦时,有两个不同实数根x 1,x 2,求实数m 的取值范围,并求出x 1+x 2的值.26.在ABC 中,D 是线段AB 上靠近B 的一个三等分点,E 是线段AC 上靠近A 的一个四等分点,4DF FE =,设AB m =,BC n =. (1)用m ,n 表示AF ;(2)设G 是线段BC 上一点,且使//EG AF ,求CG CB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用向量共线的充要条件判断出①错,③正确;利用向量的运算法则求出OP ,求出x ,y 判断出②正确,利用三点共线解得④正确 【详解】当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故①错 当P 是线段CE 的中点时,13()2OP OE EP OB EB BC =+=++ ()11153(2)32222OB OB AB OB OB OB OA OA OB =+-+=-+-=-+,故②对x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故③对如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N , 则:OP ON OM =+;又OP xOA yOB =+;0x ∴≤,1y ≥;由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故④正确 所以选项②③④正确. 故选:C 【点睛】结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.2.C解析:C 【解析】,,又,,则,故选3.B解析:B 【分析】首先分别求出12a e e =+与122b e e =-+的数量积以及各自的模,利用数量积公式求之. 【详解】 由已知,1212e e ⋅=,所以(()1212)2e e e e +-+=32,|12e e +3,|122e e -+3, 设向量1212,2a e e b e e =+=-+的夹角为α,则312cos ,2333παα==∴=⋅.故答案为B 【点睛】(1)本题主要考查向量的夹角的求法,意在考查学生对该知识的掌握水平和分析推理计算能力.(2) 求两个向量的夹角一般有两种方法,方法一:·cos ,ab a b a b=,方法二:设a =11(,)x y ,b =22(,)x y ,θ为向量a 与b 的夹角,则121222221122cos x y x yθ=+⋅+.4.A解析:A 【解析】Rt AOB 中,0OA OB ⋅=,∴2AOB π∠=,∵5OA =,25OB =,∴225AB OA OB += , ∵AB 边上的高线为OD ,点E 位于线段OD 上,建立平面直角坐标系,如图所示; 则)5,0A、(025B ,、设(),D m n ,则OAD BAO ∽,∴OA ADAB OA=, ∴1AD =,∴15AD AB =, 即()(155,255m n =-,,求得45m =, ∴4525D ⎝⎭;则45254525OE OD λλ⎫===⎪⎪⎝⎭⎝⎭, 45255,EA ⎛⎫= ⎪ ⎪⎭;∵34OE EA ⋅=, ∴2454525354⎫⎫⋅-=⎪⎪⎪⎪⎭⎝⎭, 解得34λ=或14λ=;∴向量EA 在向量OD 上的投影为))452511ED OD OE λλ⎛⎫=-=-- ⎪⎪⎝⎭, 当34λ=时,5512ED ⎛== ⎝⎭;当14λ=时,353532ED ==⎝⎭. 即向量EA 在向量OD 上的投影为12或32,故选A.5.D解析:D 【分析】根据向量的几何意义把抽象问题具体化,转化到圆与圆的位置关系问题. 【详解】如图所示,设11OA a =,22OA a =,此时121A A =,由题意可知:对于任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈, 作j j OB b =则有1j A B 等于1或2,且2j A B 等于1或2, 所以点(1,2,,)j B j k =同时在以(1,2)i A i =为圆心,半径为1或2的圆上,由图可知共有6个交点满足条件,故k 的最大值为6.故选:D. 【点睛】本题主要考查平面向量的线性运算和平面向量的应用.6.C解析:C 【分析】根据向量的运算法则,求得12AM AD AB =+,2132MN AD AB =-+,再结合向量的数量积的运算公式,即可求解. 【详解】由题意,作出图形,如图所示:由图及题意,根据向量的运算法则,可得12AM AD DM AD AB =+=+, 2132MN CN CM CB CD =-=-21213232BC DC AD AB =-+=-+,所以2212121||||23234AM MN AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+=-⋅+⋅ ⎪ ⎪⎝⎭⎝⎭21936334=-⨯+⨯=.故选C .【点睛】本题主要考查了向量的运算法则,以及平面向量的数量积的运算,其中解答中熟练应用向量的运算法则和向量的数量积的运算公式是解答的关键,着重考查推理与运算能力.7.B解析:B 【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值. 【详解】 如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B. 【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.8.A解析:A 【分析】根据2(1,2),(1,)+==a b m b m 可得0,2m a ⎛⎫= ⎪⎝⎭,结合||cos a θ=,列出等式,即可解出答案. 【详解】因为向量,a b 满足2(1,2),(1,)a b m b m +==,22(0,)a a b b m =+-=,所以20,,22m m a a b ⎛⎫=⋅= ⎪⎝⎭,若向量,a b 的夹角为θ,则2225||(||cos )152m b a m a b θ=+⋅=⋅=, 所以42516160m m --=,即()()225440m m +-=,解得2m =±. 故选:A . 【点睛】本题主要考查向量的投影及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是||||cos a b a b θ⋅=,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角,cos ||||a ba b θ⋅=⋅(此时a b ⋅往往用坐标形式求解);(2)求投影,a 在b 上的投影是||a bb ⋅;(3),a b 向量垂直则0a b ⋅=;(4)求向量ma nb +的模(平方后需求a b ⋅). 9.C解析:C 【分析】对=2a b -两边平方后,结合2·cos 3a b a b π=⋅进行化简可得:224a b b +⋅+=;由基本不等式可得222a b a b +⋅,于是推出403a b<⋅,再结合平面向量数量积即可得解. 【详解】因为2a b -=,所以 2224a a b b -⋅+=,所以2222cos 43b b a a π-⋅+=,即224a a b b +⋅+=, 由基本不等式的性质可知,222a ba b +⋅,403a b∴<⋅, 所以212·cos ,0323a b a b a b π⎡⎫=⋅⋅=-⋅∈-⎪⎢⎣⎭. 故选:C . 【点睛】本题主要考查平面向量数量积运算,考查利用基本不等式求最值,难度一般.对于平面向量的模长问题,一般采用平方处理,然后结合平面向量数量积的运算公式求解即可.10.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.11.C解析:C 【分析】由0a b c ++=,可得2222222().2()a b c a b b c a b c =-+=-+、2222()a c b a c =-+,利用||||||a b c <<,即可比较. 【详解】解:由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()b c a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c . 故选:C . 【点睛】本题考查了向量的数量积运算,属于中档题.12.B解析:B 【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C . 【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-.()20,,3C C ππ∈∴=.故选:B. 【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.二、填空题13.【分析】用几何意义求解不妨设则在圆心在原点半径为2的圆上设则在以为圆心半径为1的圆上运动后形成的轨迹是圆心在原点大圆半径为3小圆半径为1的圆环表示圆环内的点与定点的距离由图形可得最大值和最小值【详解解析:3⎡⎤⎣⎦【分析】用几何意义求解.不妨设()1,0a =,()0,1b =,(),c x y =,则(,)C x y 在圆心在原点,半径为2的圆上,设(),d x y '=',则(,)D x y ''在以C 为圆心半径为1的圆上,C 运动后,D 形成的轨迹是圆心在原点,大圆半径为3,小圆半径为1的圆环,2a b d ++表示圆环内的点D 与定点()2,1P --的距离,由图形可得最大值和最小值.【详解】令()1,0a =,()0,1b =,(),c x y =,设C 的坐标为(),x y ,C 的轨迹为圆心在原点,半径为2的圆上.设(),d x y '=',D 的坐标为(),x y '',D 的轨迹为圆心在原点,大圆半径为3,小圆半径为1的圆环上.()22,1a b d d ++=---表示D 与点()2,1P --的距离,由图可知,故2a b d ++的取值范围为0,53⎡⎤+⎣⎦. 故答案为:0,53⎡⎤+⎣⎦【点睛】本题考查向量模的几何意义,考查模的最值,解题关键是设()1,0a =,()0,1b =,(),c x y =,(),d x y '=',固定,a b 后得出了,C D 的轨迹,然后由模2a b d ++的几何意义得出最值.14.①③【分析】根据点的广义坐标分别为利用向量的运算公式分别计算①②③④得出结论【详解】点的广义坐标分别为对于①线段的中点设为M 根据=()=中点的广义坐标为故①正确对于②∵(x2﹣x1)A 两点间的距离为解析:①③ 【分析】根据点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,利用向量的运算公式分别计算①②③④,得出结论.【详解】点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,对于①,线段A 、B 的中点设为M ,根据OM =12(OA OB +)=12112211()()22x x e y y e +++∴中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,故①正确. 对于②,∵AB =(x 2﹣x 1)()1212e y y e +-,∴A 、B 12e ,故②不一定正确.对于③,向量OA 平行于向量OB ,则t OA OB =,即(11,x y )=t ()22,x y ,1221x y x y ∴=,故③正确.对于④,向量OA 垂直于向量OB ,则OA OB =0,221211221121220x x e x y x y e e y y e ∴+++=(),故④不一定正确.故答案为①③. 【点睛】本题在新情境下考查了数量积运算性质、数量积定义,考查了推理能力与计算能力,属于中档题.15.【解析】分析:建立平面直角坐标系结合平面向量数量积的坐标运算整理计算即可求得最终结果详解:建立如图所示的平面直角坐标系则:由中心坐标公式可得:即据此有:结合平面向量数量积的坐标运算法则可得:点睛:求 解析:209-【解析】分析:建立平面直角坐标系,结合平面向量数量积的坐标运算整理计算即可求得最终结果.详解:建立如图所示的平面直角坐标系,则:()0,2A ,()0,0B ,()C ,由中心坐标公式可得:2003G ⎫++⎪⎪⎝⎭,即23G ⎫⎪⎭, 据此有:233GB ⎛⎫=-- ⎪⎝⎭,4233GC ⎛⎫=-⎪⎭, 结合平面向量数量积的坐标运算法则可得:222203339GB GC ⎛⎛⎫⎛⎫⋅=--⨯-=- ⎪ ⎪⎝⎝⎭⎝⎭.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.16.【分析】由可得为的外心又可得为的垂心则为的中心即为正三角形运用向量的数量积定义可得的边长以为坐标原点所在直线为轴建立直角坐标系求得的坐标再设由中点坐标公式可得的坐标运用两点的距离公式可得的长运用三角 解析:494【分析】由DA DB DC ==,可得D 为ABC ∆的外心,又DA DB DB DC DC DA ⋅=⋅=⋅,可得D 为ABC ∆的垂心,则D 为ABC ∆的中心,即ABC ∆为正三角形.运用向量的数量积定义可得ABC ∆的边长,以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy ,求得,B C 的坐标,再设(cos ,sin ),(02)P θθθπ≤<,由中点坐标公式可得M 的坐标,运用两点的距离公式可得BM 的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值. 【详解】解: 由DA DB DC ==,可得D 为ABC ∆的外心, 又DA DB DB DC DC DA ⋅=⋅=⋅,可得()0,(DB DA DC DC DB ⋅-=⋅ )0DA -=,即0DB AC DC AB ⋅=⋅=, 即有,DB AC DC AB ⊥⊥,可得D 为ABC ∆的垂心, 则D 为ABC ∆的中心,即ABC ∆为正三角形, 由2DA DB ⋅=-,即有||||cos1202DA DB ︒⋅=-, 解得||2DA =,ABC ∆的边长为4cos3023︒=以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy , 可得B(3,3),C(3,3),D(2,0)-, 由||1AP =,可设(cos ,sin ),(02)P θθθπ≤<,由PM MC =,可得M 为PC 中点,即有3cos 3sin (2M θθ++,则2223cos3sin||3=3+2BMθθ⎛⎫++⎛⎫-+⎪⎪ ⎪⎝⎭⎝22(3cos)(33sin)376cos63sin4θθθθ-+-+=+=3712sin64πθ⎛⎫+-⎪⎝⎭=,当sin16πθ⎛⎫-=⎪⎝⎭,即23πθ=时,取得最大值,且为494.故答案为:494.【点睛】本题考查向量的定义和性质,以及模的最值的求法,注意运用坐标法,转化为三角函数的最值的求法,考查化简整理的运算能力,属于中档题.17.【分析】延长BC作圆M的切线设切点为A1切线与BD的交点D结合数量积的几何意义可得点A运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC作圆M的切线设切点为A1切解析:2-【分析】延长BC,作圆M的切线,设切点为A1,切线与BD的交点D,结合数量积的几何意义可得点A运动到A1时,CA在CB上的投影最小,设CP x=,将结果表示为关于x的二次函数,求出最值即可.【详解】如图,延长BC,作圆M的切线,设切点为A1,切线与BD的交点D,由数量积的几何意义,CA CB⋅等于CA在CB上的投影与CB之积,当点A运动到A1时,CA在CB上的投影最小;设BC中点P,连MP,MA1,则四边形MPDA1为矩形;设CP=x,则CD=2-x,CB=2x,CA CB⋅=()()222224212x x x x x--⋅=-=--,[]02x∈,,所以当1x =时,CA CB ⋅最小,最小值为2-, 故答案为:2-. 【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.18.【分析】根据条件及向量数量积运算求得连接由三角形中线的性质表示出根据向量的线性运算及数量积公式表示出结合二次函数性质即可求得最小值【详解】根据题意连接如下图所示:在等腰三角形中已知则由向量数量积运算 解析:77【分析】根据条件及向量数量积运算求得AB AC ⋅,连接,AM AN ,由三角形中线的性质表示出,AM AN .根据向量的线性运算及数量积公式表示出2MN ,结合二次函数性质即可求得最小值. 【详解】根据题意,连接,AM AN ,如下图所示:在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒则由向量数量积运算可知1cos 11cos1202AB AC AB AC A ⋅=⋅=⨯⨯=- 线段EF BC 、的中点分别为M N 、则()()1122AM AE AF AB AC λμ=+=+ ()12AN AB AC =+ 由向量减法的线性运算可得11112222MN AN AM AB AC λμ⎛⎫⎛⎫=-=-+-⎪ ⎪⎝⎭⎝⎭所以2211112222MN AB AC λμ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦222211111111222222222AB AC AB AC λμλμ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭221111111112222222222λμλμ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭因为41λμ+=,代入化简可得22221312111424477MN μμμ⎛⎫=-+=-+ ⎪⎝⎭因为(),0,1λμ∈且41λμ+=10,4μ⎛⎫∴∈ ⎪⎝⎭所以当17μ=时, 2MN 取得最小值17因而minMN==故答案为: 7【点睛】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.19.【分析】将已知条件转化为结合得到设列出关于的方程组由此求得【详解】由于所以所以即因为即化简得设所以解得故答案为:【点睛】本小题主要考查平面向量的基本定理考查平面向量的线性运算考查化归与转化的数学思想解析:53【分析】将已知条件转化为1539AO AB AC =+,结合BD DC λ=,得到111AD AB AC λλλ=+++,设AO k AD =,列出关于,k λ的方程组,由此求得λ. 【详解】 由于305OA OB OC =++,所以()()350OA AB AO AC AO +-+-=,所以935AO AB AC =+,即1539AO AB AC =+. 因为BD DC λ=,即()AD AB AC AD λ-=-, 化简得111AD AB AC λλλ=+++, 设11k k AO k AD AB AC λλλ==+++,所以1 13519kkλλλ⎧=⎪⎪+⎨⎪=⎪+⎩,解得53λ=.故答案为:53【点睛】本小题主要考查平面向量的基本定理,考查平面向量的线性运算,考查化归与转化的数学思想方法,属于中档题.20.【分析】由已知得由得由不等式可知再由得最后由可得解【详解】由得即由得即由得由得所以故答案为:【点睛】本题考查了向量及其模的运算考查了向量的夹角公式和基本不等式考查了计算能力属于中档题解析:0,3π⎡⎤⎢⎥⎣⎦【分析】由已知,得22222923a ab ba ab b+⋅⎧⎪⎨⎪+=-⋅+=⎩②①,由+①②,得226a b+=,由不等式可知3a b ≤,再由-①②,得32a b⋅=,最后由cos,a ba ba b⋅=可得解.【详解】由3a b+=,3a b-=,得()()2239baab⎧⎪⎨⎪-==+⎩,即22222923a ab ba ab b+⋅⎧⎪⎨⎪+=-⋅+=⎩②①由+①②,得226a b+=,即226a b+=由-①②,得32a b⋅=由222a b a b +≥,得3a b ≤1cos ,2a b a b a b⋅=≥所以,0,3a b π≤≤.故答案为:0,3π⎡⎤⎢⎥⎣⎦【点睛】本题考查了向量及其模的运算,考查了向量的夹角公式和基本不等式,考查了计算能力,属于中档题.三、解答题21.(1)6;(2)58,99m n ==;(3)1118k =-.【分析】(1)利用向量加法的坐标运算得到()320,6a b c +-=,再求模长即可;(2)先写mb nc +的坐标,再根据a mb nc =+使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可. 【详解】解:(1)由(3,2),(1,2),(4,1)a b c ==-=,得3(9,6),(1,2),2(8,2)a b c ==-=∴()()32918,6220,6a b c +-=--+-=,∴23206a b c +-=+=;(2)()(),2,4,mb m m nc n n =-=, ∴()4,2mb nc n m m n +=-+,a mb nc =+,∴()4,2(3,2)a n m m n ==-+,故4322n m m n -=⎧⎨+=⎩,解得58,99m n ==;(3)(3,2),(4,)a kc k k ==,∴()34,2a kc k k +=++,(3,2),2(2,4)a b ==-,∴()25,2b a -=-,()()2a kc b a +⊥-,∴()()20a kc b a +⋅-=,即()()534220k k -+++=,解得1118k =-. 【点睛】 结论点睛:若()()1122,,,a x y b x y == ,则//a b 等价于12210x y x y -=;a b ⊥等价于12120x x y y +=.22.(1;(2. 【分析】(1)由已知利用平面向量数量积公式可得1a b ⋅=,平方后根据向量数量积的运算可求||a b +的值.(2)结合(1),根据已知条件,由向量夹角的余弦公式即可求解.【详解】(1)向量a 与b 的夹角为3π,且||1a =,||2b =, ∴||||cos a b a b a ⋅=<,112cos12132b π>=⨯⨯=⨯⨯=.222||()2142a b a b a b a b ∴+=+=++⋅=++=.(2)设向量a b +与向量a 的夹角θ,22()||27cos ||||||||||||71a b a a a b a a b a b a a b a a b a θ+⋅+⋅+⋅∴=====+⋅+⋅+⋅⨯. 【点睛】本题主要考查了向量数量积的运算及计算公式,向量夹角的余弦公式,属于中档题.23.(1)π3;(2) 【分析】(1)设向量a 与b 的夹角θ,利用向量的数量积公式计算()2a b a ⋅-=,可得向量的夹角;(2)利用向量的模长公式:2a a =,代入计算可得. 【详解】 (1)设向量a 与b 的夹角θ, ()16cos 12a b a a b θ⋅-=⋅-=-=,解得1cos 2θ=, 又[]0πθ∈,,π3θ∴= (2)由向量的模长公式可得:()222a b a b -=-==. 【点睛】 本题主要考查向量数量积公式的应用,向量模长的计算,求向量的模长需要熟记公式2a a =,考查学生的逻辑推理与计算能力,属于基础题.24.(1)118;(2)31.2⎡⎤⎢⎥⎣⎦. 【分析】 (1)首先以点A 为坐标原点建立平面直角坐标系.求AM ,AN 的坐标,再求数量积;(2)首先利用BM DN =,设BM DN t ==,表示向量AM ,AN ,利用数量积的坐标表示转化为二次函数求取值范围. 【详解】 (1)如图,以AB 所在直线为x 轴,以A 为坐标原点建立平面直角坐标系.因为ABCDEF 是边长为1的正六边形,且M ,N 分别是BC ,DE 的中点, 所以53,44M ⎛⎫ ⎪ ⎪⎝⎭,132N ⎛ ⎝, 所以5311848AM AN ⋅=+=. (2)设BM DN t ==,则[]0,1t ∈.所以31,22t M ⎛⎫+ ⎪ ⎪⎝⎭,(13N t -. 所以()()223113*********t AM AN t t t t t ⎛⎫⋅=+⋅-+=-++=--+ ⎪⎝⎭. 当0t =时,AM AN ⋅取得最小值1;当1t =时,AM AN ⋅取得最大值32. 所以AM AN ⋅的取值范围为31.2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查数量积的坐标表示,重点考查计算能力,属于基础题型.25.(1)()26f x sin x π⎛⎫=- ⎪⎝⎭;(2)()2g x sin x =, 对称轴为,42k x k Z ππ=+∈;(3)112m ≤<,,1223x x π+=. 【分析】 (1) 根据向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭和函数()f x u v =⋅,利用数量积结合倍角公式和辅助角法得到,()26πω⎛⎫=-⎪⎝⎭f x sin x ,再根据函数f (x )的图象上两个相邻的对称轴距离为2π求解. (2)依据左加右减,将函数y =f (x )的图象向左平移12π个单位后,得到函数()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,令2,2ππ=+∈x k k Z 求其对称轴. (3)作出函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上图象,根据函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点求解.再令2,62x k k Z πππ-=+∈,求对称轴. 【详解】(1)()()21122ωωωωωω=-=-f x sin x sin x x sin x xcos x ,1222226πωωω⎛⎫=-=- ⎪⎝⎭sin x cos x sin x ∵函数f (x )的图象上两个相邻的对称轴距离为2π, ∴22T π=, ∴2(0)2ππωω=>, ∴ω=1, 故函数f (x )的解析式为()sin 26f x x π⎛⎫=-⎪⎝⎭; (2)依题意,()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦, 令2,2ππ=+∈x k k Z ,则,42ππ=+∈k x k Z , ∴函数g (x )的对称轴为,42ππ=+∈k x k Z ;(3)∵0,2x π⎡⎤∈⎢⎥⎣⎦, ∴52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, ∴12,162sin x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的草图如下,依题意,函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点,则112m ≤<, 令2,62x k k Z πππ-=+∈,则,32k x k Z ππ=+∈, ∴函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的对称轴为3x π=,则1223x x π+=. 【点睛】 本题主要考查了平面向量和三角函数,三角函数的图象和性质及其应用,还考查了数形结合的思想和运算求解的能力,属于中档题.26.(1)1135AF m n =+(2)310CG CB = 【分析】(1)依题意可得23AD AB =、14AE AC =,再根据DE AE AD =-,AF AD DF =+计算可得;(2)设存在实数λ,使得(01)CG CB λλ=<<,由因为//EG AF ,所以存在实数μ, 使AF EG μ=,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D 是线段AB 上靠近B 的一个三等分点,所以23AD AB =.因为E 是线段AC 上靠近A 的一个四等分点,所以14AE AC =, 所以1243DE AE AD AC AB =-=-. 因为4DF FE =,所以4185515DF DE AC AB ==-, 则2183515AF AD DF AB AC AB =+=+- 2111()15535AB AB BC AB BC =++=+. 又AB m =,BC n =. 所以11113535AF AB BC m n =+=+. (2)因为G 是线段BC 上一点,所以存在实数λ,使得(01)CG CB λλ=<<, 则33()44EG EC CG AC CB AB BC BC λλ=+=+=+- 3333()()4444AB BC m n λλ=+-=+- 因为//EG AF ,所以存在实数μ,使AF EG μ=,即1133[()]3544m n m n μλ+=+-, 整理得31,4331(),45μμλ⎧=⎪⎪⎨⎪-=⎪⎩解得310λ=, 故310CGCB =. 【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.。
2020-2021学年人教A版必修4第二章平面向量综合测试卷(A)含答案(共3套)
必修4 第二章 向量(一)一、选择题:1.下列各量中不是向量的是 ( )A .浮力B .风速C .位移D .密度2.下列命题正确的是( )A .向量AB 与BA 是两平行向量B .若a 、b 都是单位向量,则a =bC .若AB =DC ,则A 、B 、C 、D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同3.在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则 MC MB MA -+等于( )A .OB .MD 4C .MF 4D .ME 44.已知向量b a 与反向,下列等式中成立的是 ( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+5.在△ABC 中,AB =AC ,D 、E 分别是AB 、AC 的中点,则( )A .AB 与AC 共线 B .DE 与CB 共线 C .与相等D .与相等6.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( ) A .3 B .-3 C .0 D .2 7. 设P (3,-6),Q (-5,2),R 的纵坐标为-9,且P 、Q 、R 三点共线,则R 点的横坐标为 ( ) A .-9 B .-6 C .9 D .6 8. 已知a 3=,b 23=,a ⋅b =-3,则a 与b 的夹角是( )A .150︒B .120︒C .60︒D .30︒9.下列命题中,不正确的是( )A .a =2aB .λ(a ⋅b )=a ⋅(λb )C .(a -b )c =a ⋅c -b ⋅cD .a 与b 共线⇔a ⋅b =a b10.下列命题正确的个数是( ) ①=+0 ②0=⋅0③=-④(a ⋅b )c =a (b ⋅c )A .1B .2C .3D .411.已知P 1(2,3),P 2(-1,4),且12P P 2PP =,点P 在线段P 1P 2的延长线上,则P 点的坐标为( )A .(34,-35) B .(-34,35) C .(4,-5)D .(-4,5) 12.已知a 3=,b 4=,且(a +k b )⊥(a -k b ),则k 等于( )A .34±B .43±C .53±D .54±二、填空题13.已知点A(-1,5)和向量a ={2,3},若AB =3a ,则点B 的坐标为 . 14.若3=OA 1e ,3=OB 2e ,且P 、Q 是AB 的两个三等分点,则=OP ,=OQ . 15.若向量a =(2,-x )与b =(x, -8)共线且方向相反,则x= . 16.已知e 为一单位向量,a 与e 之间的夹角是120O ,而a 在e 方向上的投影为-2,则a = .三、解答题17.已知菱形ABCD 的边长为2,求向量AB -CB +CD 的模的长.18.设OA 、OB 不共线,P 点在AB 上.求证: OP =λOA +μOB 且λ+μ=1,λ、μ∈R .19.已知向量,,32,32212121e e e e e e 与其中+=-=不共线向量,9221e e -=,问是否存在这样的实数,,μλ使向量c b a d 与μλ+=共线20.i、j是两个不共线的向量,已知AB=3i+2j,CB=i+λj, CD=-2i+j,若A、B、D三点共线,试求实数λ的值.必修4 第二章 向量(一)必修4第三章向量(一)参考答案 一、选择题1.D 2.A 3.C 4.C 5.B 6. A 7. D 8.C 9.B 10.A 11.D 12.C 二、填空题 13.3 14.12e 2e +122e e + 15.4- 16.4三、解答题17.解析: ∵AB -CB +CD =AB +(CD -CB )=AB +BD =AD又|AD |=2 ∴|AB -CB +CD |=|AD |=218.证明: ∵P 点在AB 上,∴AP 与AB 共线.∴AP =t AB (t ∈R )∴OP =OA +AP =OA +t AB =OA +t (OB -OA )=OA (1-t )+ OB令λ=1-t ,μ=t ∴λ+μ=1∴OP =λOA +μOB 且λ+μ=1,λ、μ∈R19.解析:222,2,,.2339,k R k λμλμλμλμλμ+=⎧=-∈=-⎨-+=-⎩解之故存在只要即可.20.解析: ∵BD =CD -CB =(-2i +j )-(i +λj )=-3i +(1-λ)j∵A 、B 、D 三点共线,∴向量AB 与BD 共线,因此存在实数μ,使得AB =μBD , 即3i +2j =μ[-3i +(1-λ)j ]=-3μi +μ(1-λ)j ∵i 与j 是两不共线向量,由基本定理得:⎩⎨⎧=-=∴⎩⎨⎧=-=-312)1(33λμλμμ 故当A 、B 、D 三点共线时,λ=3.第二章平面向量(A 卷)(测试时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ). A. 20 B. 10 C. 10- D. 20- 【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭.故选:C .2.【2017届北京房山高三上期末】已知向量31,2BA ⎛⎫= ⎪ ⎪⎝⎭, ()0,1BC =,则向量BA 与BC 夹角的大小为( ) A.π6 B. π4 C. π3 D. 2π3【答案】C3.【2018届四川省成都市郫都区高三上期中】已知向量()11a =-,, ()12b =-,,则()2a b a +⋅=( ) A. 1- B. 0 C. 1 D. 2 【答案】C【解析】()()()21,01,11a b a +⋅=-=,故选:C. 4.已知向量,若,则实数m 的值为 ( ) A. 0 B. 2 C. D. 2或【答案】C 【解析】∵向量,且∴, ∴.选C.5.如上图,向量1e , 2e , a 的起点与终点均在正方形网格的格点上,则向量a 用基底1e , 2e 表示为( )A. 1e +2eB. 21e -2eC. -21e +2eD. 21e +2e 【答案】C6.若三点()1,2A --、()0,1B -、()5,C a 共线,则a 的值为( ) A. 4 B. 4- C. 2 D. 2- 【答案】A 【解析】()1,2A --, ()()0,1,5B C a -,三点共线ABACλ∴→=→即()()1162a λ=+,,()16{ 12a λλ==+ 16λ∴=, 4a = 故答案选A .7.【2018届全国名校大联考高三第二次联考】已知平面向量,a b 的夹角为60°,()1,3a =, 1b =,则a b +=( )A. 2B. 23C. 7D. 4 【答案】C8.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ). A. 20 B. 10 C. 10- D. 20- 【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭.故选:C .9.【2018届福建省福安市一中上学期高三期中】已知向量()()()3,1,0,1,,3a b c k ==-=,若(2a b -)与c 互相垂直,则k 的值为 A. 1 B. 1- C. 3 D. 3- 【答案】D 【解析】()23,3a b -=,因为(2a b -)与c 互相垂直,则()233303a b c k k -⋅=+=⇒=-,选D.10.【2018届河南省中原名校高三第三次考评】已知点()0,1A , ()1,2B , ()2,1C --, ()3,4D ,则向量AB 在CD 方向上的投影为( )A.322 B. 2 C. 322- D. 3152- 【答案】B【解析】()()1,1.5,5AB CD ==则向量AB 在CD 方向上的投影为10cos ,252AB CD AB AB CD AB AB CD⋅=⋅== 故选B.11.【2018届黑龙江省齐齐哈尔地区八校高三期中联考】在矩形ABCD 中, 3AB =, 3BC =,2BE EC =,点F 在边CD 上,若•3AB AF =,则•AE BF 的值为( )A. 0B. 833C. 4-D. 4 【答案】C【解析】12.【2018届河南省漯河市高级中学高三上期中】已知ABC ∆是边长为4的等边三角形, P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值为 ( ) A. 3- B. 6- C. 2- D. 83- 【答案】B【解析】如图建立坐标系, (()()0,23,2,0,2,0A B C -,设(),P x y ,则()()(),23,2,,2,PA x y PB x y PC x y =--=---=--,()()()22,232,22243PA PB PC x y x y x y ∴⋅+=-⋅--=+-()222366x y ⎡⎤=+--≥-⎢⎥⎣⎦, ∴最小值为6-,故选B.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设a 与b 是两个不共线向量,且向量a b λ+与2a b -共线,则λ=__________. 【答案】12-【解析】由题意得()11:2:12λλ=-∴=-. 14.【2018届河北省邢台市高三上学期第二次月考】已知单位向量a , b 满足()1•232a a b -=,则向量a 与b 的夹角为__________. 【答案】60°(或3π) 【解析】因为()1232a a b ⋅-=,化简得: 2123232a a b a b -⋅=-⋅=,即12a b ⋅=,所以1cos ,2a b a b a b⋅==⋅,又0,a b π≤≤,所以,3a b π=,故填3π. 15.【2018届福建省三明市第一中学高三上学期期中】在平行四边形ABCD 中, AC 与BD 交于点 O ,E 是线段OD 的中点, AE 的延长线与CD 交于点F . 若AC a =, BD b =,则AF 等于_______【答案】2133a b +【解析】∵AC a =, BD b =,∴11112222AD AC BD a b =+=+. ∵E 是OD 的中点,∴=,∴DF =AB .∴111111332266DF AB AC BD a b ⎛⎫==-=- ⎪⎝⎭, ∴111121226633AF AD DF a b a b a b =+=++-=+. 16.已知正方形ABCD 的边长为1,点E 在线段AB 边上运动(包含线段端点),则DE CB ⋅的值为__________; DE DB ⋅的取值范围为__________. 【答案】 1 []1,2【解析】如图,以D 为坐标原点,以DC , DA 分别为x , y 轴,建立平面直角坐标系, ()0,0D , ()0,1DE x , ()1,1B , ()0,1CB ,()1,0C , ()1,1DB , ()0,1E x , []00,1x ∈,∴1DE CB ⋅=, 01DE DB x ⋅=+,∵001x ≤≤,0112x ≤+≤,∴DE DB ⋅的取值范围为[]1,2,故答案为1, []1,2.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题10分)已知四点A (-3,1),B (-1,-2),C (2,0),D (23,4m m +) (1)求证: AB BC ⊥;【答案】(1)见解析(2) 12-或1 【解析】试题分析:(1)分别根据向量的坐标运算得出AB BC ,算出AB BC ⋅(2)由向量的平行进行坐标运算即可. 试题解析:(1)依题意得, ()()2,3,3,2AB BC =-= 所以()23320AB BC ⋅=⨯+-⨯= 所以AB BC ⊥.18.(本小题12分)已知向量()1,2a =,()3,4b =-. (1)求a b +与a b -的夹角; (2)若()a ab λ⊥+,求实数λ的值. 【答案】(1)34π;(2)1-. 【解析】(1)因为()1,2a =,()3,4b =-,所以()2,6a b +=-,()4,2a b -=- 所以2,64,22cos ,240204020a b a b -⋅-+-===-⨯⨯,由[],0,a b a b π+-∈,则3,4a b a b π+-=; (2)当()a ab λ⊥+时,()0a a b λ⋅+=,又()13,24a b λλλ+=-+,所以13480λλ-++=,解λ=-.得:119.(本小题12分)已知是夹角为的两个单位向量,,.(1)求;(2)求与的夹角.【答案】(1) ;(2) 与的夹角为.【解析】试题分析:(1)向量点积的运算规律可得到再展开根据向量点积公式得最终结果;(2)同第一问,由向量点积公式展开=0.∵是夹角为的两个单位向量,∴,(1)(2) ,,∴,∴与的夹角为.20.(本小题12分)如图,在平行四边形中,,是上一点,且. (1)求实数的值;(2)记,,试用表示向量,,.【答案】(1);(2),,.【解析】试题分析:(1)根据平面向量共线定理得到,由系数和等于1,得到即。
新版高中数学人教A版必修4习题:第二章平面向量 检测B(1)
第二章检测(B )(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1已知向量a =(1,2),b =(3,-1),c =(-2,4),则a (b ·c )=( )A .(-2,4)B .(-10,-20)C .(2,-4)D .(10,20)解析:∵a =(1,2),b =(3,-1),c =(-2,4),∴a (b ·c )=-10a =(-10,-20). 答案:B2已知点A (1,3),B (4,-1),则与向量AB⃗⃗⃗⃗⃗ 同方向的单位向量为( ) A .(35,-45)B .(45,-35)C .(-35,45)D .(-45,35)解析:与向量AB ⃗⃗⃗⃗⃗ 同方向的单位向量为AB ⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|=(3,-4)√3+(-4)=(35,-45),故选A .答案:A3设点A (2,0),B (4,2),若点P 在直线AB 上,且|AB ⃗⃗⃗⃗⃗ |=2|AP ⃗⃗⃗⃗⃗ |,则点P 的坐标为( ) A .(3,1) B .(1,-1) C .(3,1)或(1,-1)D .无数多个解析:设P (x ,y ),由|AB ⃗⃗⃗⃗⃗ |=2|AP ⃗⃗⃗⃗⃗ |得AB ⃗⃗⃗⃗⃗ =2AP ⃗⃗⃗⃗⃗ 或AB⃗⃗⃗⃗⃗ =−2AP ⃗⃗⃗⃗⃗ . ∵AB⃗⃗⃗⃗⃗ =(2,2),AP ⃗⃗⃗⃗⃗ =(x −2,y), ∴由AB ⃗⃗⃗⃗⃗ =2AP ⃗⃗⃗⃗⃗ ,得(2,2)=2(x-2,y ),x=3,y=1,得P (3,1). 由AB ⃗⃗⃗⃗⃗ =−2AP ⃗⃗⃗⃗⃗ ,得(2,2)=-2(x-2,y ),x=1,y=-1,得P (1,-1). 答案:C4若向量α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则向量a 在另一组基底m =(-1,1),n =(1,2)下的坐标为( ) A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)解析:∵a 在基底p ,q 下的坐标为(-2,2),∴a =-2p +2q =(2,4).设a =x m +y n ,则a =(-x+y ,x+2y )=(2,4),即{-x +y =2,x +2y =4,解得{x =0,y =2,∴a 在基底m ,n 下的坐标为(0,2). 答案:D5在平面直角坐标系xOy 中,AB ⃗⃗⃗⃗⃗ =(2,1),AC ⃗⃗⃗⃗⃗ =(3,k),若三角形ABC 是直角三角形,则k 的可能值的个数是( ) A .1B .2C .3D .4解析:若∠A=90°,则AB⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =6+k =0,k =−6; 若∠B=90°,则AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ ·(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=0,6+k −5=0,k =−1;若∠C=90°,则AC ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ ·(AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=0,k2−k +3=0,无解. 综上,k 可能取-6,-1两个数.故选B . 答案:B6在△ABC 中,点D 在线段BC 的延长线上,且BC ⃗⃗⃗⃗⃗ =2CD ⃗⃗⃗⃗⃗ ,点O 在线段CD 上(与点C,D 不重合),若AO⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +(1−x)AC ⃗⃗⃗⃗⃗ ,则x 的取值范围是( ) A .(0,12)B.(0,13)C .(-12,0)D.(-13,0)解析:由AO ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +(1−x)AC ⃗⃗⃗⃗⃗ ,得AO ⃗⃗⃗⃗⃗ −AC⃗⃗⃗⃗⃗ =x(AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ),∴CO ⃗⃗⃗⃗⃗ =xCB ⃗⃗⃗⃗⃗ =−2xCD ⃗⃗⃗⃗⃗ , 又点O 在线段CD 上(与点C ,D 不重合),∴0<-2x<1,∴−12<x <0.答案:C7已知菱形ABCD 的边长为2,∠BAD=120°,点E ,F 分别在边BC ,DC 上,BE=λBC ,DF=μDC.若AE ⃗⃗⃗⃗⃗ ·AF⃗⃗⃗⃗⃗ =1,CE ⃗⃗⃗⃗⃗ ·CF ⃗⃗⃗⃗⃗ =−23,则λ+μ=( ) A .12B.23C.56D.712解析:由于菱形边长为2,所以BE=λBC=2λ,DF=μDC=2μ,从而CE=2-2λ,CF=2-2μ.由AE ⃗⃗⃗⃗⃗ ·AF ⃗⃗⃗⃗⃗ =1, 得(AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ )·(AD ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ·DF ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ ·DF ⃗⃗⃗⃗⃗=2×2×cos120°+2·(2μ)+2λ·2+2λ·2μ·cos120° =-2+4(λ+μ)-2λμ=1, 所以4(λ+μ)-2λμ=3.由CE ⃗⃗⃗⃗⃗ ·CF ⃗⃗⃗⃗⃗ =−23,得(2-2λ)·(2-2μ)·(-12)=−23, 所以λμ=λ+μ−23,因此有4(λ+μ)-2(λ+μ)+43=3,解得λ+μ=56,故选C .答案:C8在△ABC 中,已知向量AB ⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗⃗ 满足(AB⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |+AC⃗⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗⃗|)·BC ⃗⃗⃗⃗⃗ =0,且AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |·AC⃗⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗⃗ |=12,则△ABC 为( )A .等边三角形B .直角三角形C .等腰非等边三角形D .三边均不相等的三角形解析:因为AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |,AC ⃗⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗⃗ |分别为AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 方向上的单位向量,故由(AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗⃗ |)·BC⃗⃗⃗⃗⃗ =0可得BC ⊥AM (M 是∠BAC 的平分线与BC 的交点),所以△ABC 是以BC 为底边的等腰三角形,又AB ⃗⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗⃗ |·AC⃗⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗⃗ |=12,所以∠BAC=60°,所以△ABC 为等边三角形. 答案:A9若a ,b 是两个不共线的非零向量,a 与b 的起点相同,已知a ,t b ,13(a +b )三个向量的终点在同一条直线上,则t=( )A .13B.12C.23D.1解析:设OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =t b ,OC ⃗⃗⃗⃗⃗ =13(a +b )=13OA ⃗⃗⃗⃗⃗ +13tOB ⃗⃗⃗⃗⃗ .∵A,B,C 三点共线,∴13+13t=1,t =12.答案:B10已知点A ,B ,C 是直线l 上不同的三个点,点O 不在l 上,且实数x 满足x 2OA ⃗⃗⃗⃗⃗ +xOB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =0,则由实数x 组成的集合为( ) A.⌀B.{-1}C .{-1-√52,-1+√52}D.{−1,0} 解析:由于AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ ,又AB ⃗⃗⃗⃗⃗ ∥AC ⃗⃗⃗⃗⃗ ,则存在实数λ,使AC ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,则AC ⃗⃗⃗⃗⃗ =λ(OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=λOB ⃗⃗⃗⃗⃗ −λOA ⃗⃗⃗⃗⃗ ,所以有λOA⃗⃗⃗⃗⃗ −λOB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =0,由于OA ⃗⃗⃗⃗⃗ 和OB ⃗⃗⃗⃗⃗ 不共线,又x 2OA ⃗⃗⃗⃗⃗ +xOB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =0, 所以{x 2=λ,x =-λ.由于AC⃗⃗⃗⃗⃗ 是任意非零向量,则实数λ是任意实数,则等式λ2=λ不一定成立,所以实数x 满足x 2OA ⃗⃗⃗⃗⃗ +xOB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =0的集合为⌀. 答案:A二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11已知O 是直角坐标系的原点,A (2,2),B (4,1),在x 轴上有一点P ,使AP ⃗⃗⃗⃗⃗ ·BP ⃗⃗⃗⃗⃗ 取得最小值,则点P 的坐标为 .解析:设P (x ,0),则AP ⃗⃗⃗⃗⃗ ·BP ⃗⃗⃗⃗⃗ =(x −3)2+1,故当x=3时取到最小值,故P (3,0). 答案:(3,0)12在平面直角坐标系中,O 为原点,A (-1,0),B (0,√3),C(3,0),动点D 满足|CD ⃗⃗⃗⃗⃗ |=1,则|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OD⃗⃗⃗⃗⃗⃗ |的最大值是 . 解析:设动点D (x ,y ),则由|CD⃗⃗⃗⃗⃗ |=1,得(x-3)2+y 2=1,D 点轨迹为以(3,0)为圆心,半径为1的圆. 又OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OD⃗⃗⃗⃗⃗⃗ =(x −1,y +√3), 所以|OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=√(x -1)2+(y +√3)2,故|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |的最大值为点(3,0)与(1,−√3)之间的距离与1的和,即√(3-1)2+(0+√3)2+1=1+√7. 答案:1+√713在以OA 为边,OB 为对角线的矩形中,OA ⃗⃗⃗⃗⃗ =(−3,1),OB ⃗⃗⃗⃗⃗ =(−2,k),则实数k = . 解析:∵OA ⃗⃗⃗⃗⃗ =(−3,1),OB ⃗⃗⃗⃗⃗ =(−2,k),∴AB⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(−2,k)−(−3,1)=(1,k −1). 又OA ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ 为矩形相邻两边所对应的向量,∴OA ⃗⃗⃗⃗⃗ ⊥AB⃗⃗⃗⃗⃗ , 即OA⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =−3×1+1×(k −1)=−4+k =0, 即k=4. 答案:414如图,点A ,B 是圆O 上的两点,∠AOB=60°,点D 是圆O 上异于A ,B 的任意一点,若OD ⃗⃗⃗⃗⃗⃗ =μOA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ ,则μ与λ的关系是 .解析:设圆的半径为r ,则OA=OB=OD=r.∵OD⃗⃗⃗⃗⃗⃗ =μOA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ , ∴OD⃗⃗⃗⃗⃗⃗ 2=(μOA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ )2, 即r 2=μ2r 2+2λμr 2·cos60°+λ2r 2, 整理得μ2+λ2+λμ=1. 答案:μ2+λ2+λμ=115如图,在平面斜坐标系xOy 中,∠xOy=60°,平面上任一点P 在斜坐标系中的斜坐标是这样定义的:若OP⃗⃗⃗⃗⃗ =x e 1+y e 2(其中e 1,e 2分别为与x 轴、y 轴正方向相同的单位向量),则点P 的斜坐标为(x ,y ).若点P 的斜坐标为(3,-4),则点P 到原点O 的距离|PO|= .解析:|OP ⃗⃗⃗⃗⃗ |2=(3e 1-4e 2)2=9|e 1|2-24e 1·e 2+16|e 2|2=9-24cos60°+16=13,所以|OP ⃗⃗⃗⃗⃗ |=√13,所以点P 到原点O 的距离|PO|=√13. 答案:√13三、解答题(本大题共5小题,共45分.解答时应写出必要的文字说明、证明过程或演算步骤)16(8分)在四边形ABCD (A ,B ,C ,D 为顺时针排列)中,AB ⃗⃗⃗⃗⃗ =(6,1),CD ⃗⃗⃗⃗⃗ =(−2,−3),若BC ⃗⃗⃗⃗⃗ ∥AD ⃗⃗⃗⃗⃗ ,且AC ⃗⃗⃗⃗⃗ ⊥BD⃗⃗⃗⃗⃗⃗ ,求BC ⃗⃗⃗⃗⃗ 的坐标. 解设BC ⃗⃗⃗⃗⃗ =(x,y),则AD ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =(6,1)+(x,y)+(−2,−3)=(x +4,y −2). 因为BC ⃗⃗⃗⃗⃗ ∥AD ⃗⃗⃗⃗⃗ , 所以y (x+4)-x (y-2)=0, 整理得x=-2y.①AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =(6,1)+(x,y)=(6+x,y +1),BD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =(x −2,y −3). 又因为AC ⃗⃗⃗⃗⃗ ⊥BD⃗⃗⃗⃗⃗⃗ , 所以(6+x )(x-2)+(y+1)(y-3)=0, 整理得x 2+4x+y 2-2y-15=0, ② 由①②得{x =2,y =-1或{x =-6,y =3.所以BC⃗⃗⃗⃗⃗ 的坐标为(2,-1)或(-6,3).17(8分)已知向量a =(cos(-θ),sin(-θ)),b =(cos (π2-θ),sin (π2-θ)). (1)求证:a ⊥b ;(2)若存在不等于0的实数k 和t ,使x =a +(t 2+3)b ,y =-k a +t b 满足x ⊥y ,试求此时k+t 2t 的最小值.(1)证明∵a =(cos(-θ),sin(-θ))=(cos θ,-sin θ),b =(cos (π2-θ),sin (π2-θ))=(sin θ,cos θ),∴a ·b =(cos θ,-sin θ)·(sin θ,cos θ)=cos θsin θ-sin θcos θ=0. ∴a ⊥b .(2)解由x ⊥y ,得x ·y =0,即[a +(t 2+3)b ]·(-k a +t b )=0,∴-k a 2+(t 3+3t )b 2+[t-k (t 2+3)]a ·b =0, ∴-k|a |2+(t 3+3t )|b |2=0. 又|a |2=1,|b |2=1,∴-k+t 3+3t=0, ∴k=t 3+3t ,∴k +t 2t =t 3+t 2+3t t =t2+t +3=(t +12)2+114.故当t=−12时,k+t 2t 有最小值114.18(9分)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值; (2)若|a |=|b |,0<θ<π,求θ的值. 解(1)∵a ∥b ,∴2sin θ=cos θ-2sin θ,于是4sin θ=cos θ,故tan θ=14.(2)由|a |=|b |知,sin 2θ+(cos θ-2sin θ)2=5, 即sin 2θ-sin θcos θ=1. 若cos θ=0,又0<θ<π, 则θ=π2,等式成立.若cos θ≠0,sin 2θ-sin θcos θ=sin 2θ-sinθcosθsin 2θ+cos 2θ=tan 2θ-tanθtan 2θ+1=1,即tan θ=-1,∴θ=3π4. ∴θ的值为π2或3π4.19(10分)已知O 为坐标原点,直线y=x+a 与圆x 2+y 2=4分别交于A ,B 两点.若OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =−2,求实数a 的值.解由{x 2+y 2=4,y =x +a ,消去y 得,2x 2+2ax+a 2-4=0.设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是方程2x 2+2ax+a 2-4=0的解.由根与系数的关系,得x 1+x 2=-a ,x 1x 2=a 2-42.所以OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =x1x2+y1y2=x1x2+(x1+a)(x2+a)=2x1x2+a(x1+x2)+a2=a2−4−a2+a2=−2,所以a 2=2,即a=±√2.20(10分)在平面直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC ⃗⃗⃗⃗⃗ =13OA ⃗⃗⃗⃗⃗ +23OB ⃗⃗⃗⃗⃗ . (1)求证:A ,B ,C 三点共线;(2)求|AC⃗⃗⃗⃗⃗⃗ ||CB⃗⃗⃗⃗⃗⃗ |的值; (3)已知A (1,cos x ),B (1+cos x ,cos x ),x ∈[0,π2],f(x)=OA ⃗⃗⃗⃗⃗ ·OC⃗⃗⃗⃗⃗ −(2m +23)|AB ⃗⃗⃗⃗⃗ |的最小值为−32,求实数m 的值.(1)证明∵OC ⃗⃗⃗⃗⃗ =13OA ⃗⃗⃗⃗⃗ +23OB ⃗⃗⃗⃗⃗ ,∴OC⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =23(OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗), 即AC⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗ . ∴AC ⃗⃗⃗⃗⃗ ∥AB⃗⃗⃗⃗⃗ . 又AC ,AB 有公共点A ,∴A ,B ,C 三点共线. (2)解由(1)得AC ⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗ =23(AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ), ∴13AC ⃗⃗⃗⃗⃗ =23CB ⃗⃗⃗⃗⃗ , ∴AC⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ ,∴|AC ⃗⃗⃗⃗⃗⃗ ||CB⃗⃗⃗⃗⃗⃗ |=2.(3)解AB⃗⃗⃗⃗⃗ =(1+cos x ,cos x )-(1,cos x )=(cos x ,0). ∵x ∈[0,π2], ∴cos x ∈[0,1]. ∴|AB⃗⃗⃗⃗⃗ |=|cos x|=cos x. ∵AC⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ , ∴OC⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =2(OB ⃗⃗⃗⃗⃗ −OC ⃗⃗⃗⃗⃗ ). ∴3OC⃗⃗⃗⃗⃗ =2OB ⃗⃗⃗⃗⃗ +OA ⃗⃗⃗⃗⃗ =2(1+cos x ,cos x )+(1,cos x )=(3+2cos x ,3cos x ), ∴OC⃗⃗⃗⃗⃗ =(1+23cosx ,cosx). ∴f (x )=OA ⃗⃗⃗⃗⃗ ·OC⃗⃗⃗⃗⃗ −(2m +23)|AB ⃗⃗⃗⃗⃗ | =1+23cos x+cos 2x −(2m +23)cos x=(cos x-m)2+1-m2,cos x∈[0,1].当m<0时,当且仅当cos x=0时,f(x)取得最小值1,与已知最小值为−32相矛盾,即m<0不合题意; 当0≤m≤1时,当且仅当cos x=m时,f(x)取得最小值1-m2.由1-m2=−32,得m=±√102(舍去);当m>1时,当且仅当cos x=1时,f(x)取得最小值2-2m,由2-2m=−32,得m=74>1.综上所述,实数m的值为74.。
高中数学 第二章 《平面向量》测试题B卷 新人教A版必修4
高中数学必修4 第二章 《平面向量》测试题B 卷考试时间:100分钟,满分:150分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.化简AB →+BD →-AC →-CD →等于 ( ) A.AD → B .0 C.BC → D.DA →2.已知MA →=(-2,4),MB →=(2,6),则12AB →= ( )A .(0,5)B .(0,1)C .(2,5)D .(2,1) 3.下列说法正确的是( )A .(a ·b )c =a (b ·c )B .a ·c =b ·c 且c ≠0,则a =bC .若a ≠0,a ·b =0,则b =0D .|a ·b |≤|a |·|b |4.设向量a =(1,0),b =(12,12),则下列结论中正确的是 ( )A .|a |=|b |B .a ·b =22C .a -b 与b 垂直D .a ∥b 5.如图,正方形ABCD 中,点E 、F 分别是DC 、BC 的中点,那么EF →= ( )A.12AB →+12AD → B .-12AB →-12AD → C .-12AB →+12AD → D.12AB →-12AD 6.已知△ABC 中,AB →=a ,AC →=b ,a ·b <0,S △ABC =154,|a |=3,|b |=5,则a 与b 的夹角为( )A .30°B .-150°C .150°D .30°或150°7.已知a 、b 、c 是共起点的向量,a 、b 不共线,且存在m 、n ∈R 使c =m a +n b 成立,若a 、b 、c 的终点共线,则必有( )A .m +n =0B .m -n =1C .m +n =1D .m +n =-18.已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( )A.322B.3152 C .-322D .-31529.设向量a ,b ,c 满足|a |=|b |=1,a ·b =-12,〈a -c ,b -c 〉=60°,则|c |的最大值等于 ( )A .2 B. 3 C. 2D .110.设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2,已知点C (c,0),D (d,0),(c ,d∈R )调和分割点A (0,0),B (1,0),则下面说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上 D .C ,D 不可能同时在线段AB 的延长线上 二、填空题(每小题6分,共计24分).11.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则A 、B 、C 、D 四点中一定共线的三点是____________.12.已知向量a =(1,1),b = (2,-3),若k a -2b 与a 垂直,则实数k 等于________. 13.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ的值为____________.14.正三角形ABC 边长为2,设BC →=2BD →,AC →=3AE →,则AD →·BE →=________.三、解答题(共76分).15.(本题满分12分)已知向量a =(1,2),b =(x,1) (1)若〈a ,b 〉为锐角,求x 的范围; (2)当(a +2b )⊥(2a -b )时,求x 的值.16.(本题满分12分)设e 1、e 2是正交单位向量,如果OA →=2e 1+m e 2,OB →=n e 1-e 2,OC →=5e 1-e 2,若A 、B 、C 三点在一条直线上,且m =2n ,求m 、n 的值. 17.(本题满分12分)已知a 和b 是两个非零的已知向量,当a +t b (t ∈R )的模取最小值时. (1)求t 的值;(2)已知a 与b 成45°角,求证:b 与a +t b (t ∈R )垂直.18.(本题满分12分)已知向量a =(3,-1),b =(12,32).(1)求证:a ⊥b ;(2)是否存在不等于0的实数k 和t ,使x =a +(t 2-3)b ,y =-k a +t b ,且x ⊥y ?如果存在,试确定k 和t 的关系;如果不存在,请说明理由.19.(本题满分14分)已知A (3,0),B (0,3),C (cos α,sin α).(1)若AC →·BC →=-1,求sin ⎝⎛⎭⎪⎫α+π4的值; (2)若|OA →+OC →|=13,且α∈(0,π),求OB →与OC →的夹角.20.(本题满分14分)如图,已知△ABC 的三个顶点坐标为A (0,-4),B (4,0),C (-6,2).(1)求△ABC 的面积;(2)若四边形的ABCD 为平行四边形,求D 点的坐标.高中数学必修4 第二章 《平面向量》测试题B 卷参考答案一、 选择题1. 【答案】B.【解析】 AB →+BD →-AC →-CD →=AD →-(AC →+CD →)=AD →-AD →=0. 2. 【答案】D.【解析】∵AB →=MB →-MA →=(4,2),∴12AB →=(2,1).3. 【答案】D.【解析】对于A :向量的数量积不满足结合律;对于B :向量的数量积不满足消去律;对于C :只要a 与b 垂直时就有a ·b =0;对于D :由数量积定义有|a ·b |=||a ||b |cos θ|≤|a ||b |,这里θ是a 与b 的夹角,只有θ=0或θ=π时,等号成立. 4. 【答案】C.【解析】 a =(1,0),b =(12,12),∴|a |=1,|b |=14+14=22,∴A 错误;∵a ·b =1×12+0×12=12,∴B 错误;∵a -b =(12,-12),∴(a -b )·b =12×12-12×12=0,∴C 正确;∵1×12-0×12=12≠0,∴D 错误.5. 【答案】 D【解析】 EF →=12DB →=12(AB →-AD →).6.【答案】 C【解析】由a ·b <0可知a ,b 的夹角θ为钝角,又S △ABC =12|a |·|b |sin θ,∴12×3×5×sin θ=154,∴sin θ=12⇒θ=150°. 7.【答案】 C【解析】设OA →=a ,OB →=b ,OC →=c ,∵a 、b 、c 的终点共线,∴设AC →=λAB →,即OC →-OA →=λ(OB →-OA →),∴OC →=(1-λ)OA →+λOB →, 即c =(1-λ)a +λb ,又c =m a +n b ,∴⎩⎪⎨⎪⎧1-λ=m ,λ=n ,∴m +n=1.8. 【答案】 A【解析】本题考查向量数量积的几何意义及坐标运算. 由条件知AB →=(2,1),CD →=(5,5),AB →·CD →=10+5=15. |CD →|=52+52=52,则AB →在CD →方向上的投影为|AB →|cos 〈AB →,CD →〉=AB →·CD →|CD →|=1552=322,故选A.9. 【答案】A.【解析】如图,设OA →=a , OB →=b ,OC →=c ,则CA →=a -c ,CB →=b -c .∵|a |=|b |=1,∴OA =OB =1. 又∵a ·b =-12, ∴|a |·|b |·cos∠AOB =-12, ∴cos∠AOB =-12.∴∠AOB =120°.又∵〈 a -c ,b -c 〉=60°,而120°+60°=180°,∴O 、A 、C 、B 四点共圆.∴当OC 为圆的直径时,|c |最大,此时∠OAC =∠OBC =90°,∴Rt △AOC ≌Rt △BOC ,∴∠ACO =∠BCO =30°,∴|OA |=12|OC |,∴|OC |=2|OA |=2.10. 【答案】D.【解析】依题意,若C ,D 调和分割点A ,B ,则有AC →=λAB →,AD →=μAB →,且1λ+1μ=2.若C是线段AB 的中点,则有AC →=12AB →,此时λ=12.又1λ+1μ=2,所以1μ=0,不可能成立.因此A 不对,同理B 不对.当C ,D 同时在线段AB 上时,由AC →=λAB →,AD →=μAB →知0<λ<1,0<μ<1,此时1λ+1μ>2,与已知条件1λ+1μ=2矛盾,因此C 不对.若C ,D 同时在线段AB 的延长线上,则AC →=λAB →时,λ>1,AD →=μAB →时,μ>1,此时1λ+1μ<2,与已知1λ+1μ=2矛盾,故C ,D 不可能同时在线段AB 的延长线上.二、 填空题11.【答案】A ,B ,D【解析】 BD →=BC →+CD →=(-5a +6b )+(7a -2b )=2a +4b =2(a +2b )=2AB →. 12.【答案】 -1【解析】 (k a -2b )·a =0,[k (1,1)-2(2,-3)]·(1,1)=0,即(k -4,k +6)·(1,1)=0,k -4+k +6=0, ∴k =-1. 13.【答案】 12【解析】 a +λb =(1,2)+λ(1,0)=(1+λ,2),∵(a +λb )∥c ,∴4(1+λ)-3×2=0,解得λ=12.14. 【答案】 -2【解析】 ∵AD →=AB →+BD →=AB →+12BC →,BE →=AE →-AB →=13AC →-AB →,∴AD →·BE →=(AB →+12BC →)·(13AC →-AB →)=13AB →·AC →+16BC →·AC →-12BC →·AB →-AB →2=13×2×2×12+16×2×2×12+12×2×2×12-22=-2.三、 解答题15. 解: (1)若〈a ,b 〉为锐角,则a ·b >0且a 、b 不同向.a ·b =x +2>0,∴x >-2当x =12时,a 、b 同向.∴x >-2且x ≠12(2)a +2b =(1+2x,4),(2a -b )=(2-x,3) (2x +1)(2-x )+3×4=0 即-2x 2+3x +14=0 解得:x =72或x =-2.16. 解: 以O 为原点,e 1、e 2的方向分别为x ,y 轴的正方向,建立平面直角坐标系xOy , 则OA →=(2,m ),OB →=(n ,-1),OC →=(5,-1), 所以AC →=(3,-1-m ),BC →=(5-n,0),又因为A 、B 、C 三点在一条直线上,所以AC →∥BC →, 所以3×0-(-1-m )·(5-n )=0,与m =2n 构成方程组⎩⎪⎨⎪⎧mn -5m +n -5=0m =2n ,解得⎩⎪⎨⎪⎧m =-1n =-12或⎩⎪⎨⎪⎧m =10,n =5.17. 解: (1)设a 与b 的夹角为θ,则|a +t b |2=|a |2+t 2|b |2+2t ·a ·b =|a |2+t 2·|b |2+2|a |·|b |·t ·c os θ=|b |2(t +|a ||b |cos θ)2+|a |2(1-cos 2θ).∴当t =-|a ||b |cos θ时,|a +t b |取最小值|a |sin θ.(2)∵a 与b 的夹角为45°,∴cos θ=22,从而t =-|a ||b |·22,b ·(a +t b )=a ·b +t ·|b |2=|a |·|b |·22-22·|a ||b |·|b |2=0,所以b 与a +t b (t ∈R )垂直,即原结论成立. 18. 解: (1)a ·b =(3,-1)·(12,32)=32-32=0,∴a ⊥b .(2)假设存在非零实数k ,t 使x ⊥y ,则[a +(t 2-3)b ]·(-k a +t b )=0, 整理得-k a 2+[t -k (t 2-3)]a ·b +t (t 2-3)b 2=0. 又a ·b =0,a 2=4,b 2=1.∴-4k +t (t 2-3)=0,即k =14(t 2-3t )(t ≠0),故存在非零实数k 、t ,使x ⊥y 成立, 其关系为k =14(t 3-3t )(t ≠0).19. 解:(1)∵AC →=(cos α-3,sin α),BC →=(cos α,sin α-3), ∴AC →·BC →=(cos α-3)cos α+sin α(sin α-3)=-1,得cos 2+sin 2α-3(cos α+sin α)=-1,∴cos α+sin α=23,∴sin ⎝⎛⎭⎪⎫α+π4=23. (2)∵|OA →+OC →|=13,∴(3+cos α)2+sin 2α=13,∴cos α=12,∵α∈(0,π),∴α=π3,sin α=32,∴C ⎝ ⎛⎭⎪⎫12,32,∴OB →·OC →=332,设OB →与OC →的夹角为θ,则cos θ=OB →·OC →|OB →|·|OC →|=3323=32.∵θ∈[0,π],∴θ=π6即为所求的角.20. 解:如图,(1)作BC 边上的高为AE ,设E (x ,y ),∴AE →=(x ,y +4),BE →=(x -4,y ),BC →=(-10,2), 由AE →⊥BC →,则-10x +2(y +4)=0①由于BE →与BC →共线,则2(x -4)+10y =0② 由①②解得⎩⎪⎨⎪⎧x =1213y =813,因此S △ABC =12|BC →|·|AE →|=12·104·122+602132=26×122613=24. (2)设D (x ,y ),则AD →=(x ,y +4),BC →=(-10,2),由题意可知AD →=BC →,∴(x ,y +4)=(-10,2), 即⎩⎪⎨⎪⎧ x =-10y +4=2,∴⎩⎪⎨⎪⎧x =-10y =-2, 所以,所求点D 的坐标为(-10,-2).。
人教A版高中数学必修4第二章 平面向量2.3 平面向量的基本定理及坐标表示习题(4)
2.3.4平面向量共线的坐标表示课后篇巩固探究1.已知向量a=(-1,m),b=(-m,2m+3),且a∥b,则m等于()A.-1B.-2C.-1或3D.0或-2解析由已知得-(2m+3)+m2=0,∴m=-1或m=3.答案C2.若a=(6,6),b=(5,7),c=(2,4),则下列结论成立的是()A.a-c与b共线B.b+c与a共线C.a与b-c共线D.a+b与c共线解析∵b=(5,7),c=(2,4),∴b-c=(3,3).∴b-c=a.∴a与b-c共线.答案C3.已知向量a=(2,3),b=(-1,2),若a-2b与非零向量m a+n b共线,则等于()A.-2B.2C.-D.解析因为向量a=(2,3),b=(-1,2),所以a-2b=(2,3)-(-2,4)=(4,-1),m a+n b=(2m-n,3m+2n).因为a-2b与非零向量m a+n b共线,所以,解得14m=-7n,=-.答案C4.已知a=(-2,1-cos θ),b=,且a∥b,则锐角θ等于()A.45°B.30°C.60°D.30°或60°解析由a∥b,得-2×=1-cos2θ=sin2θ,∵θ为锐角,∴sin θ=.∴θ=45°.答案A5.已知点A(,1),B(0,0),C(,0).设∠BAC的平分线AE与BC相交于点E,设=λ,则λ等于()A.2B.C.-3D.-解析如图,由已知得,∠ABC=∠BAE=∠EAC=30°,∠AEC=60°,|AC|=1,∴|EC|=.∵=λ,λ<0,∴|λ|==3.∴λ=-3.答案C6.(2018全国Ⅲ高考)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ=. 解析2a+b=2(1,2)+(2,-2)=(4,2),c=(1,λ),由c∥(2a+b),得4λ-2=0,得λ=.答案7.已知平面向量a=(2,1),b=(m,2),且a∥b,则3a+2b=.解析因为向量a=(2,1),b=(m,2),且a∥b,所以1·m-2×2=0,解得m=4.所以b=(4,2).故3a+2b=(6,3)+(8,4)=(14,7).答案(14,7)8.导学号68254080已知=(-2,m),=(n,1),=(5,-1),若点A,B,C在同一条直线上,且m=2n,则m+n=.解析=(n,1)-(-2,m)=(n+2,1-m),=(5,-1)-(n,1)=(5-n,-2).因为A,B,C共线,所以共线,所以-2(n+2)=(1-m)(5-n).①又m=2n, ②解①②组成的方程组得所以m+n=9或m+n=.答案9或9.已知点A(x,0),B(2x,1),C(2,x),D(6,2x).(1)求实数x的值,使向量共线;(2)当向量共线时,点A,B,C,D是否在一条直线上? 解(1)=(x,1),=(4,x).∵,∴x2=4,x=±2.(2)由已知得=(2-2x,x-1),当x=2时,=(-2,1),=(2,1),∴不平行,此时A,B,C,D不在一条直线上.当x=-2时,=(6,-3),=(-2,1),∴,此时A,B,C三点共线.又,∴A,B,C,D四点在一条直线上.综上,当x=-2时,A,B,C,D四点在一条直线上.10.导学号68254081如图,已知△AOB中,A(0,5),O(0,0),B(4,3),,AD与BC相交于点M,求点M的坐标.解因为(0,5)=,所以C.因为(4,3)=,所以D.设M(x,y),则=(x,y-5),-(0,5)=.因为,所以-x-2(y-5)=0,即7x+4y=20.①因为,所以x-4=0,即7x-16y=-20.②联立①②,解得x=,y=2,故点M的坐标为.11.如图,已知四边形ABCD是正方形,,||=||,EC的延长线交BA的延长线于点F,求证:AF=AE.证明建立如图所示的平面直角坐标系,设正方形的边长为1,则A(-1,1),B(0,1),设点E的坐标为(x,y)(x>0),则=(x,y-1),=(1,-1).∵,∴x×(-1)-1×(y-1)=0.①又||=||,∴x2+y2=2.②由①②联立,解得点E的坐标为.设点F的坐标为(x',1),由=(x',1)和共线,得x'-=0,∴x'=-(2+),∴点F的坐标为(-2-,1).∴=(-1-,0),, ∴||=1+=||,即AF=AE.。
第二章平面向量单元综合测试卷(带答案新人教A版必修4 )
第二章平面向量单元综合测试卷(带答案新人教A版必修4 )第二章平面向量单元综合测试卷(带答案新人教A版必修4 ) (120分钟 150分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2013•三明高一检测)化简 - + - 得( ) A. B. C. D.0 2.已知a,b都是单位向量,则下列结论正确的是( ) A.a•b=1 B.a2=b2C.a∥b a=bD.a•b=0 3.已知A,B,C为平面上不共线的三点,若向量 =(1,1),n=(1,-1),且n• =2,则n• 等于( ) A.-2 B.2 C.0 D.2或-2 4.点C在线段AB上,且 = ,若 =λ,则λ等于( ) A. B. C.- D.- 5.若a=(1,2),b=(-3,0),(2a+b)∥(a-mb),则m= ( ) A.- B. C.2 D.-2 6.(2013•牡丹江高一检测)已知a+b=(1,2),c=(-3,-4),且b⊥c,则a在c方向上的投影是( ) A. B.-11C.-D.11 7.(2013•兰州高一检测)若|a|=1,|b|=2,c=a+b,且c⊥a,则向量a与b的夹角为( ) A.30° B.60° C.120° D.150° 8.已知△ABC满足2= • + • + • ,则△ABC是( ) A.等边三角形B.锐角三角形 C.直角三角形 D.钝角三角形9.(2013•西城高一检测)在矩形ABCD中,AB= ,BC=1,E是CD上一点,且• =1,则• 的值为( ) A.3 B.2 C. D. 10.已知向量a=(1,2),b=(2,-3).若向量c满足(c+a)∥b,c⊥(a+b),则c= ( ) A. B. C. D.11.(2013•六安高一检测)△ABC中,AB边上的高为CD,若 =a, =b,a•b=0,|a|=1,|b|=2,则 = ( ) A. a- b B. a- b C. a- b D. a- b 12.在△ABC所在平面内有一点P,如果 + + = ,则△PAB与△ABC 的面积之比是( ) A. B. C. D. 二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.已知a=(2,4),b=(-1,-3),则|3a+2b|= . 14.已知向量a=(1, ),b=(-2,2 ),则a与b的夹角是. 15.(2013•江西高考)设e1,e2为单位向量.且e1,e2的夹角为,若a=e1+3e2,b=2e1,则向量a在b 方向上的射影为. 16.(2013•武汉高一检测)下列命题中:①a∥b 存在唯一的实数λ∈R,使得b=λa;②e为单位向量,且a∥e,则a=±|a|e;③|a•a•a|=|a|3;④a与b共线,b与c共线,则a与c共线;⑤若a•b=b•c且b≠0,则a=c. 其中正确命题的序号是. 三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知梯形ABCD中,AB∥CD,∠CDA=∠DAB=90°,CD=DA= AB. 求证:AC⊥BC. 18.(12分)(2013•无锡高一检测)设 =(2,-1), =(3,0), =(m,3). (1)当m=8时,将用和表示. (2)若A,B,C三点能构成三角形,求实数m应满足的条件. 19.(12分)在边长为1的等边三角形ABC中,设=2 , =3 . (1)用向量,作为基底表示向量 . (2)求• . 20.(12分)(2013•唐山高一检测)已知a,b,c是同一平面内的三个向量,其中a=(1,2). (1)若|b|=2 ,且a∥b,求b的坐标. (2)若|c|= ,且2a+c与4a-3c垂直,求a与c的夹角θ. 21.(12分)(能力挑战题)已知a=(1,cosx),b=(,sinx),x∈(0,π). (1)若a∥b,求的值. (2)若a⊥b,求sinx-cosx的值. 22.(12分)(能力挑战题)已知向量a,b满足|a|=|b|=1, |ka+b|= |a-kb|(k>0,k∈R). (1)求a•b 关于k的解析式f(k). (2)若a∥b,求实数k的值. (3)求向量a与b夹角的最大值.答案解析 1.【解析】选D. - + - = + - = - =0. 2.【解析】选B.因为a,b都是单位向量,所以|a|=|b|=1,所以|a|2=|b|2,即a2=b2.3.【解析】选B.因为n• =n•( - ) =n• -n• ,又n• =(1,-1)•(1,1)=1-1=0,所以n• =n• =2.4.【解析】选C.由 = 知,| |∶| |=2∶3,且方向相反(如图所示),所以 =- ,所以λ=- .5.【解析】选A.因为a=(1,2),b=(-3,0),所以2a+b=(-1,4),a-mb=(1+3m,2),又因为(2a+b)∥(a-mb),所以(-1)×2=4(1+3m),解得m=- . 【拓展提升】证明共线(或平行)问题的主要依据 (1)对于向量a,b,若存在实数λ,使得b=λa,则向量a与b共线(平行). (2)a=(x1,y1),b=(x2,y2),若x1y2-x2y1=0,则向量a∥b. (3)对于向量a,b,若|a•b|=|a|•|b|,则a与b共线. 向量平行的等价条件有两种形式,其一是共线定理,其二是共线定理的坐标形式.其中,共线定理的坐标形式更具有普遍性,不必考虑向量是否为零和引入参数的存在性及唯一性. 6.【解析】选C.a•c=[(a+b)-b]•c=(a+b)•c-b•c. 因为a+b=(1,2),c=(-3,-4),且b⊥c,所以a•c=(a+b)•c =(1,2)•(-3,-4)=1×(-3)+2×(-4)=-11,所以a在c方向上的投影是 = =- . 7.【解析】选C.因为c=a+b,c⊥a,所以c•a=(a+b)•a=a2+b•a=0,所以a•b=-a2=-|a|2=-12=-1,设向量a与b的夹角为θ,则cosθ= = =- ,又0°≤θ≤180°,所以θ=120°. 8.【解析】选C.因为= • + • + • ,所以2= • + • + • ,所以•( - - )= • ,所以•( - )= • ,所以• =0,所以⊥ ,所以△ABC是直角三角形. 【变式备选】在四边形ABCD中, =a+2b, =-4a-b, =-5a-3b,其中a,b不共线,则四边形ABCD为( ) A.平行四边形 B.矩形 C.梯形 D.菱形【解析】选C.因为 = + + =-8a-2b=2 ,所以四边形ABCD为梯形. 9.【解析】选B.如图所示,以A为原点,AB所在直线为x轴建立平面直角坐标系. A(0,0),B( ,0),C( ,1),设点E 坐标为(x,1),则 =(x,1), =( ,0),所以• =(x,1)•( ,0)= x=1,x= ,所以• = •( ,1)= × +1×1=2. 10.【解析】选D.设c=(x,y),则c+a=(x+1,y+2), a+b=(1,2)+(2,-3)= ,因为(c+a)∥b,c⊥(a+b),所以即解得所以c= . 【误区警示】解答本题易混淆向量平行和垂直的坐标表示,导致计算错误. 11.【解析】选D.因为a•b=0,所以⊥ ,所以AB= = ,又因为CD⊥AB,所以△ACD∽△ABC,所以 = ,所以AD= = = ,所以 = = = (a-b)= a- b. 12.【解题指南】先对 + + = 进行变形,分析点P所在的位置,然后结合三角形面积公式分析△PAB与△ABC的面积的关系. 【解析】选A.因为 + + = = - ,所以2 + =0, =-2 =2 ,所以点P是线段AC的三等分点(如图所示). 所以△PAB与△ABC的面积之比是 . 13.【解析】因为3a+2b=3(2,4)+2(-1,-3) =(6,12)+(-2,-6)=(4,6),所以|3a+2b|= =2 . 答案:2 14.【解析】设a与b的夹角为θ,a•b=(1,)•(-2,2 )=1×(-2)+ ×2 =4, |a|= =2,|b|= =4,所以cosθ= = = ,又0°≤θ≤180°,所以θ=60°. 答案:60° 15.【解析】设a,b的夹角为θ,则向量a在b方向上的射影为|a|cosθ=|a| = ,而a•b=(e1+3e2)•2e1=2+6cos =5,|b|=2,所以所求射影为 . 答案: 16.【解析】①错误.a∥b且a≠0 存在唯一的实数λ∈R,使得b=λa;②正确.e为单位向量,且a∥e,则a=±|a|e;③正确. = = = ;④错误.当b=0时,a与b共线,b与c共线,则a与c不一定共线;⑤错误.只要a,c在b方向上的投影相等,就有a•b=b•c. 答案:②③17.【证明】以A为原点,AB所在直线为x轴,建立直角坐标系如图,设AD=1,则A(0,0),B(2,0), C(1,1),D(0,1),所以 =(-1,1), =(1,1),• =-1×1+1×1=0,所以AC⊥BC. 18.【解析】(1)当m=8时, =(8,3),设 =x +y ,则 (8,3)=x(2,-1)+y(3,0)=(2x+3y,-x),所以所以所以 =-3 + . (2)因为A,B,C三点能构成三角形,所以,不共线, =(1,1), =(m-2,4),所以1×4-1×(m-2)≠0,所以m≠6. 19.【解析】(1) = + =- + . (2) • = •(- + ) = •(- )+ • =| |•| |cos150°+ | |•| |cos30° = ×1× + × ×1× =- . 20.【解析】(1)设b=(x,y),因为a∥b,所以y=2x;① 又因为|b|=2 ,所以x2+y2=20;② 由①②联立,解得b=(2,4)或b=(-2,-4). (2)由已知(2a+c)⊥(4a-3c),(2a+c)•(4a-3c)=8a2-3c2-2a•c=0,又|a|= ,|c|= ,解得a•c=5,所以cosθ= = ,θ∈[0,π],所以a与c的夹角θ= . 21.【解题指南】一方面要正确利用向量平行与垂直的坐标表示,另一方面要注意同角三角函数关系的应用. 【解析】(1)因为a∥b,所以sinx= cosx⇒tanx= ,所以 = = =-2. (2)因为a⊥b,所以 +sinxcosx=0⇒sinxcosx=- ,所以(sinx-cosx)2=1-2sinxcosx= . 又因为x∈(0,π)且sinxcosx<0,所以x∈ ⇒sinx-cosx>0,所以sinx-cosx= . 22.【解题指南】(1)先利用a2=|a|2,将已知条件两边平方,然后根据数量积定义和运算律化简、变形求f . (2)先根据k>0和a∥b,判断a与b同向,再利用数量积的定义列方程求k的值. (3)先用求向量a与b夹角的公式表示出夹角的余弦值,再利用配方法求余弦值的最小值,最后根据余弦函数的单调性求夹角的最大值. 【解析】(1)由已知|ka+b|= |a-kb| 有|ka+b|2=( |a-kb|)2,k2a2+2ka•b+b2=3a2-6ka•b+3k2b2. 又因为|a|=|b|=1,得8ka•b=2k2+2,所以a•b= 即f(k)= (k>0). (2)因为a∥b,k>0,所以a•b= >0,则a与b同向. 因为|a|=|b|=1,所以a•b=1,即 =1,整理得k2-4k+1=0,所以k=2± ,所以当k=2± 时,a∥b. (3)设a,b的夹角为θ,则cosθ= =a•b = = = .当 = ,即k=1时,cosθ取最小值,又0≤θ≤π,所以θ= . 即向量a与b夹角的最大值为 .。
2016高中数学人教A版必修四第二章 71点到直线的距离公式72向量的应用举例 练习题含答案
§7向量应用举例7、1点到直线的距离公式7、2向量的应用举例,)1、问题导航(1)已知直线l的方向向量(M,N)或法向量(A,B),如何设l的方程?(2)向量可以解决哪些常见的几何问题?(3)向量可以解决哪些物理问题?2、例题导读P102例1、通过本例学习,学会利用点到直线的距离公式计算点到直线的距离、试一试:教材P102练习T1,T2,T3您会不?P102例2、通过本例学习,学会利用向量方法解答平面几何问题的方法步骤、试一试:教材P104习题2-7 B组T1您会不?P103例3,例4、通过此两例学习,学会利用向量方法解答物理中位移、力等问题、试一试:教材P104习题2-7 A组T3,B组T2您会不?1、直线l:Ax+By+C=0的法向量(1)与直线的方向向量垂直的向量称为该直线的法向量、(2)若直线l的方向向量v=(B,-A),则直线l的法向量n=(A,B)、(3)与直线l的法向量n同向的单位向量n0=错误!=错误!、2、点到直线的距离公式点M(x0,y0)到直线l:Ax+By+C=0的距离d=错误!、3、用向量解决平面几何中的问题(1)证明线段平行或相等,可以用向量的数乘、平行向量定理、(2)证明线段垂直,可以用向量数量积运算、(3)利用向量数量积运算,可以求线段的长度、夹角及平面图形的面积、4、用向量解决解析几何中的问题解析几何就是在平面直角坐标系内研究图形的性质,这类问题大多适用于向量的坐标运算,建立适当的平面直角坐标系,设出向量的坐标,将几何问题转化为向量的线性运算或数量积的运算、5、向量在物理中的应用向量有着丰富的物理背景,向量的物理背景就是位移、力、速度等,向量数量积的物理背景就是力所做的功,因此,利用向量可以解决一些物理问题、用向量法解决物理问题时,要作出相应的几何图形,以帮助我们建立数学模型、向量在物理中的应用,如求力的合成与分解,力做功等,实际上就是把物理问题转化为向量问题,然后通过向量运算解决向量问题,最后再用获得的结果解释物理现象、1、判断正误、(正确的打“√",错误的打“×")(1)求力F1与F2的合力可按照向量加法的三角形法则求解、()(2)若△ABC为直角三角形,则有错误!·错误!=0、()(3)若向量错误!∥错误!,则AB∥CD、()解析:(1)正确、物理中的力既有大小又有方向,所以力可以瞧作向量,F1,F2的合力可按照向量加法的三角形法则求解、(2)错误、因为△ABC为直角三角形,角A并不一定就是直角,有可能就是角B或角C 为直角、(3)错误、向量错误!∥错误!时,直线AB∥CD或AB,CD重合、答案:(1)√(2)×(3)×2、已知A,B,C,D四点的坐标分别为(1,0),(4,3),(2,4),(0,2),则此四边形为()A、梯形B、菱形C、矩形D、正方形解析:选A、错误!=(3,3),错误!=(-2,-2),所以错误!=-错误!错误!,错误!与错误!共线,但|错误!|≠|错误!|,故此四边形为梯形、3、两个大小相等的共点力F1,F2,当它们间的夹角为90°时合力大小为20 N,则当它们的夹角为120°时,合力的大小为________N、解析:根据题意,当F1,F2夹角为90°时,|F1|2+|F2|2=202,因为|F1|=|F2|,所以|F1|=|F2|=102,则当F1,F2夹角为120°时,它们的合力大小为|错误!|=10错误!、答案:10错误!4、在△ABC中,若C=90°,AC=BC=4,则错误!·错误!=________、解析:因为C=90°,AC=BC=4,所以△ABC为等腰直角三角形,所以BA=42,∠ABC=45°,所以错误!·错误!=16、答案:161、对直线l:Ax+By+C=0的方向向量及法向量的两点说明(1)设P1(x1,y1),P2(x2,y2)为直线上不重合的两点,则错误!=(x2-x1,y2-y1)及其共线的向量λ错误!均为直线的方向向量、显然当x1≠x2时,向量错误!与错误!共线,因此向量错误!=错误!(B,-A)为直线l的方向向量,由共线向量的特征可知(B,-A)为直线l的方向向量、(2)结合法向量的定义可知,向量(A,B)与(B,-A)垂直,从而向量(A,B)为直线l 的法向量、2、向量法在几何证明与计算中的几个主要应用(1)A、B、C三点共线的证法只需证错误!=λ错误!或错误!=(x1,y1),错误!=(x2,y2)满足x1y2-x2y1=0、(2)证明AB⊥AC的方法只需证错误!·错误!=0、(3)求A、B两点间距离的方法可把错误!表示成λa+μb或者求坐标(x,y),然后利用向量的运算求解、(4)求∠AOB的方法利用数量积定义的变形cos∠AOB=错误!、3、向量在物理中应用时应注意的三个问题(1)把物理问题转化为数学问题,也就就是将物理量之间的关系抽象成数学模型、(2)利用建立起来的数学模型解释与回答相关的物理现象、(3)在解决具体问题时,要明确与掌握用向量方法研究物理问题的相关知识:①力、速度、加速度与位移都就是向量;②力、速度、加速度与位移的合成与分解就就是向量的加、减法;③动量m v就是数乘向量;④功就是力F与在力F的作用下物体所产生的位移s的数量积、向量在解析几何中的应用(1)经过点A(-1,2),且平行于向量a=(3,2)的直线方程就是________、(2)已知圆C:(x-3)2+(y-3)2=4及点A(1,1),M就是圆C上的任一点,点N在线段MA的延长线上,且错误!=2错误!,求点N的轨迹方程、[解](1)在直线上任取一点P(x,y),则错误!=(x+1,y-2),由错误!∥a,得(x+1)×2-(y-2)×3=0,即2x-3y+8=0、故填2x-3y+8=0、(2)设N(x,y),M(x0,y0)、因为错误!=2错误!,所以(1-x0,1-y0)=2(x-1,y-1),所以错误!即错误!又因为点M(x0,y0)在圆C:(x-3)2+(y-3)2=4上,所以(x0-3)2+(y0-3)2=4,所以(2x)2+(2y)2=4,即x2+y2=1,所以点N的轨迹方程为x2+y2=1、将本例(1)中的“平行于向量”改为“法向量为”结果如何?解:由法向量a=(3,2),设直线的方程为3x+2y+c=0,又A(-1,2)在直线上,所以3×(-1)+2×2+c=0,得c=-1,即3x+2y-1=0、方法归纳向量在解析几何中的应用问题向量与解析几何的综合就是高考的热点、主要题型有:(1)向量的概念、运算、性质、几何意义与解析几何问题结合、(2)将向量作为描述问题或解决问题的工具、(3)以向量坐标运算为工具,考查直线与曲线相交、轨迹等问题、1、(1)已知两点A(3,2),B(-1,4)到直线mx+y+3=0的距离相等,则m=________、(2)已知点P(-3,0),点A在y轴上,点Q在x轴的正半轴上,点M在直线AQ上,满足错误!·错误!=0,错误!=-错误!错误!、当点A在y轴上移动时,求动点M的轨迹方程、解:(1)由已知得直线的一个法向量为n=(m,1),其单位向量为n0=错误!=错误!(m,1),在直线上任取一点P(0,-3),则错误!=(-3,-5),错误!=(1,-7)、依题意有|错误!·n0|=|错误!·n0|,即错误!=错误!,解得m=错误!或m=-6、故填错误!或-6、(2)设点M(x,y)为轨迹上的任一点,设A(0,b),Q(a,0)(a>0),则错误!=(x,y -b),错误!=(a-x,-y)、因为错误!=-错误!错误!,所以(x,y-b)=-错误!(a-x,-y)、所以a=错误!,b=-错误!,即A错误!,Q错误!、错误!=错误!,错误!=错误!、因为错误!·错误!=0,所以3x-错误!y2=0、即所求轨迹方程为y2=4x(x>0)、向量在平面几何中的应用如图正三角形ABC中,D、E分别就是AB、BC上的一个三等分点,且AE、CD交于点P、求证:BP⊥DC、(链接教材P100例2)[证明]设错误!=λ错误!,并设三角形ABC的边长为a,则有:错误!=错误!+错误!=λ错误!+错误!错误!=λ错误!+错误!错误!=错误!(2λ+1)错误!-λ错误!、又错误!=错误!-错误!错误!,错误!∥错误!,所以错误!(2λ+1)错误!-λ错误!=k错误!-错误!k错误!,于就是有错误!解得λ=错误!、所以错误!=错误!错误!、所以错误!=错误!+错误!=错误!错误!+错误!错误!,错误!=错误!错误!-错误!、所以错误!·错误!=错误!·错误!=错误!a2-错误!a2-错误!a2cos 60°=0、所以由向量垂直的等价条件知BP⊥DC、方法归纳用向量解决平面几何问题的两种常见思路(1)向量的线性运算法错误!―→错误!―→利用向量的线性运算或数量积找相应关系―→错误!(2)向量的坐标运算法建立适当的平面直角坐标系―→错误!―→错误!―→错误!2、(1)如图,在▱ABCD中,E,F在对角线BD上,且BE=FD,则四边形AECF的形状就是________、(2)如图所示,在平行四边形ABCD中,BC=2BA,∠ABC=60°,作AE⊥BD交BC于点E,求BE∶EC的值、解:(1)由已知可设错误!=错误!=a,错误!=错误!=b,故错误!=错误!+错误!=a +b,错误!=错误!+错误!=b+a,又a+b=b+a,则错误!=错误!,即AE,FC平行且相等,故四边形AECF就是平行四边形、故填平行四边形、(2)法一:设错误!=a,错误!=b,|a|=1,|b|=2,则a·b=|a||b|cos 60°=1,错误!=a+b、设错误!=λ错误!=λb,则错误!=错误!-错误!=λb-a、由AE⊥BD,得错误!·错误!=0,即(λb-a)·(a+b)=0,解得λ=错误!,所以BE∶EC=错误!∶错误!=2∶3、法二:以B为坐标原点,BC所在直线为x轴建立平面直角坐标系,设B(0,0),C(2,0),则A错误!,D错误!、设E(m,0),则错误!=错误!,错误!=错误!,由AE⊥BD,得错误!·错误!=0,即错误!(m-错误!)-错误!×错误!=0,解得m=错误!,所以BE∶EC=错误!∶错误!=2∶3、向量在物理中的应用一个物体受到同一平面内三个力F1,F2,F3的作用,沿北偏东45°的方向移动了8 m、已知|F1|=2 N,方向为北偏东30°,|F2|=4 N,方向为北偏东60°,|F3|=6 N,方向为北偏西30°,求这三个力的合力F所做的功、(链接教材P103例4)[解]以三个力的作用点为原点,正东方向为x轴正半轴,正北方向为y轴正半轴建立平面直角坐标系,如图所示、由已知可得F 1=(1,错误!),F 2=(2错误!,2),F 3=(-3,3错误!)、所以F =F 1+F 2+F 3=(2错误!-2,4错误!+2)、又位移s =(4错误!,4错误!),所以F ·s =(23-2)×4错误!+(4错误!+2)×4错误!=24错误!(J)、故这三个力的合力F 所做的功就是24错误! J 、方法归纳利用向量解决物理问题的思路及注意问题(1)向量在物理中的应用,实际上就是把物理问题转化为向量问题,然后通过向量运算解决向量问题,最后用所获得的结果解释物理现象、(2)在用向量法解决物理问题时,应作出相应图形,以帮助建立数学模型,分析解题思路、(3)注意问题:①如何把物理问题转化为数学问题,也就就是将物理之间的关系抽象成数学模型;②如何利用建立起来的数学模型解释与回答相关的物理现象、3、(1)一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态、已知F 1,F 2成60°角,且F 1,F 2的大小分别为2与4,则F 3的大小为( )A 、6B 、2C 、2错误!D 、2错误!(2)点P 在平面上做匀速直线运动,速度向量v =(4,-3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位)、设开始时点P 0的坐标为(-10,10),则5秒后点P 的坐标为( )A 、(-2,4)B 、(-30,25)C 、(10,-5)D 、(5,-10)(3)已知两恒力F 1=(3,4)、F 2=(6,-5)作用于同一质点,使之由点A (20,15)移动到点B (7,0),试求:①F 1、F 2分别对质点所做的功;②F 1,F 2的合力F 对质点所做的功、解:(1)选D 、因为力F 就是一个向量,由向量加法的平行四边形法则知F 3的大小等于以F 1,F 2为邻边的平行四边形的对角线的长,故|F 3|2=|F 1|2+|F 2|2+2|F 1||F 2|·cos 60°=4+16+8=28,所以|F 3|=2错误!、(2)选C 、由题意知,P 0P ,→=5v =(20,-15),设点P 的坐标为(x ,y ),则错误!解得点P 的坐标为(10,-5)、(3)设物体在力F 作用下的位移为s ,则所做的功为W =F ·s ,错误!=(7,0)-(20,15)=(-13,-15)、①W 1=F 1·错误!=(3,4)·(-13,-15)=3×(-13)+4×(-15)=-99(J ),W 2=F 2·错误!=(6,-5)·(-13,-15)=6×(-13)+(-5)×(-15)=-3(J )、②W =F ·错误!=(F 1+F 2)·错误!=[(3,4)+(6,-5)]·(-13,-15)=(9,-1)·(-13,-15)=9×(-13)+(-1)×(-15)=-117+15=-102(J )、易错警示 向量在几何应用中的误区在△ABC 中,已知向量错误!与错误!满足错误!·错误!=0且错误!=错误!,则△ABC 的形状为________、[解析] 因为向量错误!,错误!分别表示与向量错误!,错误!同向的单位向量,所以以错误!,错误!为邻边的平行四边形就是菱形、根据平行四边形法则作错误!=错误!+错误!(如图所示),则AD 就是∠BAC 的平分线、因为非零向量满足错误!·错误!=0,所以∠BAC 的平分线AD 垂直于BC ,所以AB =AC ,又cos ∠BAC =错误!=错误!,且∠BAC ∈(0,π),所以∠BAC =错误!,所以△ABC 为等边三角形、[答案] 等边三角形[错因与防范] (1)解答本题常会给出错误的答案为“直角三角形”,原因在于未能正确分析挖掘题设中的条件,直接根据数量积为零,就判断△ABC 为直角三角形、(2)为杜绝上述可能发生的错误,应该:①注意知识的积累向量线性运算与数量积的几何意义就是解决向量问题的依据,如本例中错误!,错误!的含义,邻边相等的平行四边形就是菱形,菱形的对角线平分对角、②树立数形结合意识推导图形的形状时要以题目条件为依据全面进行推导,回答应力求准确,如本例求解时,以图形辅助解题,较为形象直观、4、(1)设A 1,A 2,A 3,A 4就是平面直角坐标系中两两不同的四点,若错误!=λ错误!(λ∈R ),错误!=μ错误!(μ∈R ),且错误!+错误!=2,则称A 3,A 4调与分割A 1,A 2、已知平面上的点C ,D 调与分割点A ,B ,则下面说法正确的就是( )A 、C 可能就是线段AB 的中点B 、D 可能就是线段AB 的中点C 、C 、D 可能同时在线段AB 上D 、C 、D 不可能同时在线段AB 的延长线上(2)设O 为△ABC 所在平面上一点,动点P 满足错误!=错误!+λ错误!,λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( )A 、重心B 、垂心C 、外心D 、内心解析:(1)选D 、因为C ,D 调与分割点A ,B ,所以错误!=λ错误!,错误!=μ错误!,且错误!+错误!=2(*),不妨设A (0,0),B (1,0),则C (λ,0),D (μ,0),对A ,若C 为AB 的中点,则错误!=错误!错误!,即λ=错误!,将其代入(*)式,得错误!=0,这就是无意义的,故A 错误;对B ,若D 为AB 的中点,则μ=错误!,同理得错误!=0,故B 错误;对C ,要使C ,D 同时在线段AB 上,则0<λ<1,且0<μ<1,所以错误!>1,错误!>1,所以错误!+错误!>2,这与错误!+错误!=2矛盾;故C 错误;显然D 正确、(2)选C 、设线段BC 的中点为D ,则错误!=错误!、所以错误!=错误!+λ 错误!=错误!+λ 错误!,所以OP →-错误!=λ 错误!=错误!,所以错误!·错误!=λ 错误!·错误!=λ 错误!=λ 错误!=λ(-|错误!|+|错误!|)=0,所以DP ⊥BC ,即点P 一定在线段BC 的垂直平分线上,即动点P 的轨迹一定通过△ABC 的外心、1、已知直线x +3y +9=0,则直线的一个法向量为( )A 、a =(1,3)B 、a =(3,1)C 、a =(3,-1)D 、a =(-3,-1)解析:选A 、直线Ax +By +C =0的法向量可以为(A ,B )、2、在△ABC 中,若错误!·错误!+|错误!|2=0,则△ABC 的形状就是( )A 、锐角三角形B 、等腰三角形C 、直角三角形D 、钝角三角形解析:选C 、因为AB →·错误!+|错误!|2=0,所以错误!·错误!+错误!2=0,即错误!·(错误!+错误!)=0、所以错误!·错误!=0,所以错误!⊥错误!,即AB ⊥AC 、所以A =90°、所以△ABC 就是直角三角形、3、一只鹰正以与水平方向成30°角的方向向下飞行,直扑猎物,太阳光从头上直照下来,鹰在地面上的影子的速度就是40 m/s ,则鹰的飞行速率为( )A 、错误! m/sB 、错误! m/sC 、错误! m/sD 、错误! m/s解析:选C 、设鹰的飞行速度为v 1,鹰在地面上的影子的速度为v 2,则v 2=40 m/s ,因为鹰的运动方向就是与水平方向成30°角向下,故|v 1|=错误!=错误!(m/s ),故选C 、, [学生用书单独成册])[A 、基础达标]错误!一个人骑自行车行驶速度为v 1,风速为v 2,则逆风行驶的速度的大小为( )A 、v 1-v 2B 、v 1+v 2C 、|v 1|-|v 2|D 、错误!解析:选C 、根据速度的合成可知、错误!若错误!=(2,2),错误!=(-2,3)分别表示F 1,F 2,则|F 1+F 2|为( )A 、(0,5)B 、25C 、2错误!D 、5解析:选D 、因为F 1+F 2=(0,5),所以|F 1+F 2|=错误!=5、3、过点A (2,3)且垂直于向量a =(2,1)的直线方程为( )A 、2x +y -7=0B 、2x +y +7=0C 、x -2y +4=0D 、x -2y -4=0解析:选A 、设所求直线上任一点P (x ,y ),则错误!⊥a 、又因为错误!=(x -2,y -3),所以2(x -2)+(y -3)=0,即所求的直线方程为2x +y -7=0、错误!若A i (i =1,2,3,4,…,n)就是△AOB 所在平面内的点,且错误!·错误!=错误!·错误!、给出下列说法:①|错误!|=|错误!|=…=|错误!|=|错误!|;②|错误!|的最小值一定就是|错误!|;③点A 、A i 在一条直线上、其中正确的个数就是( )A 、0B 、1C 、2D 、3解析:选B 、由错误!·错误!=错误!·错误!,可得(错误!-错误!)·错误!=0,即错误!·错误!=0,所以错误!⊥错误!,即点A i 在边OB 过点A 的垂线上、故三个命题中,只有③正确,故选B 、5、已知△ABC 中,A(2,-1),B(3,2),C(-3,-1),BC 边上的高为AD ,则错误!等于( )A 、(-1,2)B 、(1,-2)C 、(1,2)D 、(-1,-2)解析:选A 、设D (x ,y ),则错误!=(x -2,y +1),错误!=(x -3,y -2),错误!=(-6,-3)、因为错误!⊥错误!,错误!∥错误!、所以错误!解得错误!所以错误!=(-1,2)、错误!已知三个力F 1=(3,4),F 2=(2,-5),F 3=(x ,y ),满足F 1+F 2+F 3=0,若F 1与F 2的合力为F ,则合力F 与力F 1夹角的余弦值为________、解析:因为F 1+F 2+F 3=0,F 1+F 2=F ,所以F =-F 3,因为F 3的坐标为(-5,1),所以F =-F 3=(5,-1),设合力F 与力F 1的夹角为θ,则cos θ=错误!=错误!=错误!、答案:错误!错误!已知直线的方向向量为a =(3,1),且过点A (-2,1),则直线方程为____________、 解析:由题意知,直线的斜率为错误!,设直线方程为x -3y +c =0,把(-2,1)代入得c =5,故所求直线方程为x -3y +5=0、答案:x -3y +5=08、已知|a |=错误!,|b |=4,|c |=2错误!,且a +b +c =0,则a ·b +b ·c +c ·a =________、解析:(a +b +c )2=|a |2+|b |2+|c |2+2(a ·c +b ·c +a ·b )=0,所以a ·b +b ·c +c ·a =-错误!、答案:-错误!9、在△ABC 中,错误!·错误!=|错误!-错误!|=6,M 为BC 边的中点,求中线AM 的长、解:因为|错误!-错误!|=6,所以(错误!-错误!)2=36、即错误!2+错误!2-2错误!·错误!=36、又因为错误!·错误!=6,所以错误!2+错误!2=48、又因为错误!=错误!(错误!+错误!),所以AM →2=错误!(错误!2+错误!2+2错误!·错误!)=错误!×(48+12)=15,所以|错误!|=错误!,即中线AM 的长为错误!、10、已知点A (-1,0),B (0,1),点P (x ,y )为直线y =x -1上的一个动点、(1)求证:∠APB 恒为锐角;(2)若四边形ABPQ 为菱形,求错误!·错误!的值、解:(1)证明:因为点P (x ,y )在直线y =x -1上,所以点P (x ,x -1),所以错误!=(-1-x ,1-x ),错误!=(-x ,2-x ),所以错误!·错误!=2x 2-2x +2=2(x 2-x +1)=2错误!>0,所以cos ∠APB =错误!>0,若A ,P ,B 三点在一条直线上,则错误!∥错误!,得到(x +1)(x -2)-(x -1)x =0,方程无解,所以∠APB ≠0,所以∠APB 恒为锐角、(2)因为四边形ABPQ 为菱形,所以|错误!|=|错误!|,即错误!=错误!,化简得到x 2-2x +1=0,所以x =1,所以P (1,0),设Q (a ,b ),因为错误!=错误!,所以(a -1,b )=(-1,-1),所以错误!所以错误!·错误!=(0,-2)·(1,-1)=2、[B 、能力提升]1、水平面上的物体受到力F 1,F 2的作用,F 1水平向右,F 2与水平向右方向的夹角为θ,物体在运动过程中,力F 1与F 2的合力所做的功为W ,若物体一直沿水平地面运动,则力F 2对物体做功的大小为( )A 、错误!WB 、错误!WC 、错误!WD 、错误!W解析:选D 、设物体的位移就是s ,根据题意有(|F 1|+|F 2|·cos θ)|s |=W ,即|s |=错误!,所以力F 2对物体做功的大小为错误!W 、2、记max{x ,y }=错误!min {x ,y }=错误!设a ,b 为平面向量,则( )A 、min{|a +b |,|a -b |}≤min {|a |,|b |}B 、min {|a +b|,|a -b |}≥min{|a |,|b |}C 、max{|a +b|2,|a -b |2}≤|a|2+|b|2D 、max{|a +b |2,|a -b |2}≥|a|2+|b|2解析:选D 、对于min {|a +b|,|a -b |}与min {|a |,|b|},相当于平行四边形的对角线长度的较小者与两邻边长的较小者比较,它们的大小关系不确定,因此A ,B 均错,而|a +b |,|a -b |中的较大者与|a |,|b |可构成非锐角三角形的三边,因此有max {|a +b |2,|a -b|2}≥|a |2+|b|2、3、已知△ABC 的面积为10,P 就是△ABC 所在平面上的一点,满足P A ,→+错误!+2错误!=3错误!,则△ABP 的面积为________、解析:由错误!+错误!+2错误!=3错误!,得错误!+错误!+2错误!=3(错误!-错误!),所以4错误!+2(错误!-错误!)=0,所以2错误!=错误!,由此可得P A 与CB 平行且|CB |=2|P A |,故△ABP 的面积为△ABC 的面积的一半,故△ABP 的面积为5、答案:54、在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|错误!|=1,则|错误!+错误!+错误!|的最大值就是________、解析:设D (x ,y ),由|错误!|=1,得(x -3)2+y 2=1,向量错误!+错误!+错误!=(x -1,y +错误!),故|错误!+错误!+错误!|=错误!的最大值为圆(x -3)2+y 2=1上的动点到点(1,-错误!)距离的最大值,其最大值为圆(x -3)2+y 2=1的圆心(3,0)到点(1,-错误!)的距离加上圆的半径,即错误!+1=1+错误!、答案:1+错误!5、在平面直角坐标系xOy 中,已知向量AB →=(6,1),错误!=(x ,y ),错误!=(-2,-3),且错误!∥错误!、(1)求x 与y 间的关系;(2)若错误!⊥错误!,求x 与y 的值及四边形ABCD 的面积、解:(1)由题意得错误!=错误!+错误!+错误!=(x +4,y -2),错误!=(x ,y ), 因为错误!∥错误!,所以(x +4)y -(y -2)x =0,即x +2y =0、①(2)由题意得错误!=错误!+错误!=(x +6,y +1),错误!=错误!+错误!=(x -2,y -3),因为错误!⊥错误!,所以错误!·错误!=0,即(x +6)(x -2)+(y +1)(y -3)=0,即x 2+y 2+4x -2y -15=0,②由①②得错误!或错误!当错误!时,错误!=(8,0),错误!=(0,-4),则S 四边形ABCD =错误!|错误!||错误!|=16,当错误!时,错误!=(0,4),错误!=(-8,0),则S 四边形ABCD =错误!|错误!||错误!|=16,综上错误!或错误!四边形ABCD 的面积为16、6、(选做题)已知e 1=(1,0),e 2=(0,1),现有动点P 从P 0(-1,2)开始,沿着与向量e 1+e 2相同的方向做匀速直线运动,速度为|e 1+e 2|;另一动点Q 从Q 0(-2,-1)开始,沿着与向量3e 1+2e 2相同的方向做匀速直线运动,速度为|3e 1+2e 2|,设P 、Q 在t =0 s 时分别在P0、Q0处,问当错误!⊥错误!时所需的时间为多少?解:e1+e2=(1,1),|e1+e2|=2,其单位向量为错误!;3e1+2e2=(3,2),|3e1+2e2|=错误!,其单位向量为错误!、依题意,|错误!|=错误!t,|错误!|=错误!t,所以错误!=|错误!|错误!=(t,t),错误!=|错误!|错误!=(3t,2t),由P0(-1,2),Q0(-2,-1),得P(t-1,t+2),Q(3t-2,2t-1),所以错误!=(-1,-3),错误!=(2t-1,t-3),因为错误!⊥错误!,所以错误!·错误!=0,即2t-1+3t-9=0,解得t=2、即当错误!⊥错误!时所需的时间为2 s、。
高中数学必修四第二章《平面向量》单元测试题(含答案)
高中数学必修四第二章单元测试题《平面向量》(时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20-2.已知向量31,22BA ⎛⎫=⎪ ⎪⎝⎭, ()0,1BC =,则向量BA 与BC 夹角的大小为( ) A. π6 B. π4 C. π3 D. 2π33.已知向量()11a =-,, ()12b =-,,则()2a b a +⋅=( )A. 1-B. 0C. 1D. 24.已知向量,若,则实数m 的值为 ( ) A. 0 B. 2 C. D. 2或 5.如上图,向量1e , 2e , a 的起点与终点均在正方形网格的格点上,则向量a 用基底1e , 2e 表示为( )A. 1e +2eB. 21e -2eC. -21e +2eD. 21e +2e6.若三点()1,2A --、()0,1B -、()5,C a 共线,则a 的值为( )A. 4B. 4-C. 2D. 2-7.已知平面向量,a b 的夹角为60°,()1,3a =, 1b =,则a b +=( )A. 2B. 37 D. 48.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20-9.已知向量()()()3,1,0,1,,3a b c k ==-=,若(2a b -)与c 互相垂直,则k 的值为 A. 1 B. 1- C. 3 D. 3-10.已知点()0,1A , ()1,2B , ()2,1C --, ()3,4D ,则向量AB 在CD 方向上的投影为( ) A. 322 B. 2 C. 322- D. 3152- 11.在矩形ABCD 中, 3AB =, 3BC =, 2BE EC =,点F 在边CD 上,若•3AB AF =,则•AE BF 的值为( )A. 0B. 833C. 4-D. 4 12.已知ABC ∆是边长为4的等边三角形, P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值为 ( )A. 3-B. 6-C. 2-D. 83-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设a 与b 是两个不共线向量,且向量a b λ+与2a b -共线,则λ=__________.14.已知单位向量a , b 满足()1•232a ab -=,则向量a 与b 的夹角为__________. 15.在平行四边形ABCD 中, AC 与BD 交于点O , E 是线段OD 的中点, AE 的延长线与CD 交于点F . 若AC a =, BD b =,则AF 等于_______(用a , b 表示).16.已知正方形ABCD 的边长为1,点E 在线段AB 边上运动(包含线段端点),则DE CB ⋅的值为__________; DE DB ⋅的取值范围为__________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题10分)已知四点A (-3,1),B (-1,-2),C (2,0),D (23,4m m +)(1)求证: AB BC ⊥;(2) //AD BC ,求实数m 的值.18.(本小题12分)已知向量()1,2a =,()3,4b =-.(1)求a b +与a b -的夹角;(2)若()a ab λ⊥+,求实数λ的值.19.(本小题12分)已知是夹角为的两个单位向量,,.(1)求;(2)求与的夹角.20.(本小题12分)如图,在平行四边形中,,是上一点,且. (1)求实数的值;(2)记,,试用表示向量,,.21.(本小题12分)已知向量a 与b 的夹角为120︒, 2,3a b ==, 32,2m a b n a kb =-=+. (I )若m n ⊥,求实数k 的值; (II )是否存在实数k ,使得//m n ?说明理由.22.(本小题12分)已知点(1,0),(0,1)A B -,点(,)P x y 为直线1y x =-上的一个动点.(1)求证:APB ∠恒为锐角;(2)若四边形ABPQ 为菱形,求BQ AQ ⋅的值.高中数学必修四第二章单元测试题《平面向量》参考答案(时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20- 【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭. 故选:C .2.【2017届北京房山高三上期末】已知向量31,22BA ⎛⎫=⎪ ⎪⎝⎭, ()0,1BC =,则向量BA 与BC 夹角的大小为( )A. π6B. π4C. π3D. 2π3【答案】C3.【2018届四川省成都市郫都区高三上期中】已知向量()11a =-,, ()12b =-,,则()2a b a +⋅=( ) A. 1- B. 0 C. 1 D. 2【答案】C【解析】()()()21,01,11a b a +⋅=-=,故选:C.4.已知向量,若,则实数m 的值为 ( ) A. 0 B. 2 C.D. 2或 【答案】C 【解析】∵向量,且 ∴, ∴.选C. 5.如上图,向量1e , 2e , a 的起点与终点均在正方形网格的格点上,则向量a 用基底1e , 2e 表示为( )A. 1e +2eB. 21e -2eC. -21e +2eD. 21e +2e【答案】C6.若三点()1,2A --、()0,1B -、()5,C a 共线,则a 的值为( )A. 4B. 4-C. 2D. 2-【答案】A【解析】()1,2A --, ()()0,1,5B C a -,三点共线ABAC λ∴→=→即()()1162a λ=+,,()16{ 12a λλ==+ 16λ∴=, 4a = 故答案选A .7.【2018届全国名校大联考高三第二次联考】已知平面向量,a b 的夹角为60°,()1,3a =, 1b =,则a b +=( ) A. 2 B. 23 C. 7 D. 4 【答案】C 8.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20-【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭. 故选:C .9.【2018届福建省福安市一中上学期高三期中】已知向量()()()3,1,0,1,,3a b c k ==-=,若(2a b -)与c 互相垂直,则k 的值为A. 1B. 1-C. 3D. 3-【答案】D【解析】()23,3a b -=,因为(2a b -)与c 互相垂直,则()233303a b c k k -⋅=+=⇒=-,选D. 10.【2018届河南省中原名校高三第三次考评】已知点()0,1A , ()1,2B , ()2,1C --, ()3,4D ,则向量AB 在CD 方向上的投影为( )A. 322B. 2C. 322-D. 3152-【答案】B【解析】()()1,1.5,5AB CD ==则向量AB 在CD 方向上的投影为10cos ,252AB CDAB AB CD AB AB CD ⋅=⋅==故选B.11.【2018届黑龙江省齐齐哈尔地区八校高三期中联考】在矩形ABCD 中, 3AB =,3BC =, 2BE EC =,点F 在边CD 上,若•3AB AF =,则•AE BF 的值为( )A. 0B. 833 C. 4- D. 4【答案】C【解析】12.【2018届河南省漯河市高级中学高三上期中】已知ABC ∆是边长为4的等边三角形, P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值为 ( )A. 3-B. 6-C. 2-D. 83-【答案】B【解析】如图建立坐标系, (()()0,23,2,0,2,0A B C -,设(),P x y ,则()()(),23,2,,2,PA x y PB x y PC x y =--=---=--,()()()22,232,22243PA PB PC x y x y x y ∴⋅+=-⋅--=+-(222366x y ⎡⎤=+--≥-⎢⎥⎣⎦,∴最小值为6-,故选B.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设a 与b 是两个不共线向量,且向量a b λ+与2a b -共线,则λ=__________.【答案】12-【解析】由题意得()11:2:12λλ=-∴=- .14.【2018届河北省邢台市高三上学期第二次月考】已知单位向量a , b 满足()1•232a ab -=,则向量a 与b 的夹角为__________. 【答案】60°(或3π) 【解析】因为()1232a a b ⋅-=,化简得: 2123232a a b a b -⋅=-⋅=,即12a b ⋅=,所以1cos ,2a b a b a b⋅==⋅,又0,a b π≤≤,所以,3a b π=,故填3π. 15.【2018届福建省三明市第一中学高三上学期期中】在平行四边形ABCD 中, AC 与BD 交于点O ,E 是线段OD 的中点, AE 的延长线与CD 交于点F . 若AC a =, BD b =,则AF 等于_______(用a ,b 表示).【答案】2133a b + 【解析】∵AC a =, BD b =,∴11112222AD AC BD a b =+=+. ∵E 是OD 的中点,∴=,∴DF=AB .∴111111332266DF AB AC BD a b ⎛⎫==-=- ⎪⎝⎭, ∴111121226633AF AD DF a b a b a b =+=++-=+. 16.已知正方形ABCD 的边长为1,点E 在线段AB 边上运动(包含线段端点),则DE CB ⋅的值为__________; DE DB ⋅的取值范围为__________. 【答案】 1 []1,2【解析】如图,以D 为坐标原点,以DC , DA 分别为x , y 轴,建立平面直角坐标系, ()0,0D , ()0,1DE x , ()1,1B , ()0,1CB ,()1,0C , ()1,1DB , ()0,1E x , []00,1x ∈,∴1DE CB ⋅=, 01DE DB x ⋅=+,∵001x ≤≤,0112x ≤+≤,∴DE DB ⋅的取值范围为[]1,2,故答案为1, []1,2.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题10分)已知四点A (-3,1),B (-1,-2),C (2,0),D (23,4m m +) (1)求证: AB BC ⊥; (2) //AD BC ,求实数m 的值. 【答案】(1)见解析(2) 12-或1 【解析】试题分析:(1)分别根据向量的坐标运算得出AB BC ,算出AB BC ⋅(2)由向量的平行进行坐标运算即可. 试题解析:(1)依题意得, ()()2,3,3,2AB BC =-= 所以()23320AB BC ⋅=⨯+-⨯= 所以AB BC ⊥.18.(本小题12分)已知向量()1,2a =,()3,4b =-. (1)求a b +与a b -的夹角; (2)若()a ab λ⊥+,求实数λ的值. 【答案】(1)34π;(2)1-. 【解析】(1)因为()1,2a =,()3,4b =-,所以()2,6a b +=-,()4,2a b -=- 所以()()2,64,2202cos ,240204020a b a b -⋅--+-===-⨯⨯,由[],0,a b a b π+-∈,则3,4a b a b π+-=; (2)当()a ab λ⊥+时,()0a a b λ⋅+=,又()13,24a b λλλ+=-+,所以13480λλ-++=,解得:1λ=-.19.(本小题12分)已知是夹角为的两个单位向量,,.(1)求; (2)求与的夹角. 【答案】(1);(2)与的夹角为.【解析】试题分析:(1)向量点积的运算规律可得到再展开根据向量点积公式得最终结果;(2)同第一问,由向量点积公式展开=0.∵是夹角为的两个单位向量,∴,(1)(2) ,,∴,∴与的夹角为.20.(本小题12分)如图,在平行四边形中,,是上一点,且. (1)求实数的值;(2)记,,试用表示向量,,.【答案】(1);(2),,.【解析】试题分析:(1)根据平面向量共线定理得到,由系数和等于1,得到即。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
祁东一中高一数学必修四第二章测试题一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中只有一个是符合题目要求的)1.设a =(1,-2),b =(-3,4),c =(3,2),则(a +2b )·c =( ) A .(-15,12) B .0 C .-3 D .-112.已知a =(1,-1),b =(λ,1),a 与b 的夹角为钝角,则λ的取值范围是( ) A .λ>1 B .λ<1 C .λ<-1 D .λ<-1或-1<λ<13.在四边形ABCD 中,若AB →·CD →=-|AB →|·|CD →|,且BC →·AD →=|AD →|·|BC →|,则该四边形一定是( )A .平行四边形B .矩形C .菱形D .正方形4.如果两个非零向量a 和b 满足等式|a |+|b |=|a +b |,则a ,b 应满足( ) A .a ·b =0 B .a ·b =|a |·|b | C .a ·b =-|a |·|b | D .a ∥b5.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且DC →=2BD →,CE →=2EA →,AF →=2FB →,则AD →+BE →+CF →与BC →( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直6.在▱ABCD 中,已知AC →=(-4,2),BD →=(2,-6),那么|2AB →+AD →|=( ) A .5 5 B .2 5 C .210 D.857.如右图,在梯形ABCD 中,AD ∥BC ,OA →=a ,OB →=b ,OC →=c ,OD →=d ,且E 、F 分别为AB 、CD 的中点,则( )A.EF →=12(a +b +c +d )B.EF →=12(a -b +c -d )C.EF →=12(c +d -a -b )D.EF →=12(a +b -c -d )8.在矩形ABCD 中,AE →=12AB →,BF →=12BC →,设AB →=(a,0),AD→=(0,b ),当EF →⊥DE →时,求得|a ||b |的值为( )A .3B .2 C. 3 D. 29.已知向量OA →=(2,2),OB →=(4,1),在x 轴上求一点P ,使AP →·BP →取最小值,则P 点的坐标是( )A .(3,0)B .(-3,0)C .(2,0)D .(4,0)10.已知a 、b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2 C. 2 D.2211.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |=( ) A. 3 B .2 3 C .4 D .1212.设e 1与e 2为两不共线向量,AB →=2e 1-3e 2,BC →=-5e 1+4e 2,CD →=e 1+2e 2,则( ) A .A 、B 、D 三点共线 B .A 、C 、D 三点共线 C .B 、C 、D 三点共线 D .A 、B 、C 三点共线二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.与向量a =(-5,12)共线的单位向量为________.14.在△ABC 中,AB =2,AC =3,D 是边BC 的中点,则AD →·BC →=________.15.已知a +b =2e 1-8e 2,a -b =-8e 1+16e 2,其中|e 1|=|e 2|=1,e 1⊥e 2,则a ·b =________.16.已知OA →=(k,2),OB →=(1,2k ),OC →=(1-k ,-1),且相异三点A 、B 、C 共线,则实数k =________.13、 ; 14、 。
15、 ; 16、 。
三、解答题(本大题共6个小题,共56分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分8分)已知a =(1,1),且a 与a +2b 的方向相同,求a ·b 的取值范围.18.(本题满分8分)已知a=(1,2),b=(-3,2),当k为何值时,(1)k a+b与a-3b垂直?(2)k a+b与a-3b平行?平行时它们是同向还是反向?19.(本题满分10分)已知a=3i-4j,a+b=4i-3j,(其中,i,j是互相垂直的单位向量)(1)求向量a、b的夹角的余弦值;(2)对非零向量p,q,如果存在不为零的常数α,β使αp+βq=0,那么称向量p,q是线性相关的,否则称向量p,q是线性无关的.向量a,b是线性相关还是线性无关的?为什么?20.(本题满分10分)已知正方形ABCD,P为对角线AC上任一点,PE⊥AB于点E,PF⊥BC 于点F.求证:DP⊥EF.21.(本题满分10分)设直线l:mx+y+2=0与线段AB有公共点P,其中A(-2,3),B(3,2),试用向量的方法求实数m的取值范围.22.(本题满分10分)已知a,b是两个非零向量,夹角为θ,当a+t b(t∈R)的模取最小值时.(1)求t的值;(2)求b与a+t b的夹角.参考答案一、 选择题 CDABADCDACBA 二、 填空题13、⎝ ⎛⎭⎪⎫-513,1213和⎝ ⎛⎭⎪⎫513,-1213 14、 52 15、-63 16、-14三、解答题17、[解析] ∵a 与a +2b 方向相同,且a ≠0, ∴存在正数λ,使a +2b =λa ,∴b =12(λ-1)a .∴a ·b =a ·⎣⎢⎡⎦⎥⎤12(λ-1)a =12(λ-1)|a |2=λ-1>-1.即a ·b 的取值范围是(-1,+∞). 18、[解析] (1)k a +b =k ×(1,2)+(-3,2) =(k -3,2k +2),a -3b =(1,2)-3×(-3,2)=(10,-4).当(k a +b )·(a -3b )=0时,这两个向量垂直. 由10(k -3)+(2k +2)(-4)=0,解得k =19. 即当k =19时,k a +b 与a -3b 垂直.(2)当k a +b 与a -3b 平行时,存在唯一的实数λ使k a +b =λ(a -3b ). 由(k -3,2k +2)=λ(10,-4)得,⎩⎪⎨⎪⎧k -3=10λ,2k +2=-4λ,解得⎩⎪⎨⎪⎧k =-13,λ=-13.即当k =-13时,两向量平行.∵λ=-13,∴-13a +b 与a -3b 反向.19、[解析] (1)b =(a +b )-a =i +j ,设a 与b 夹角为θ,根据两向量夹角公式:cos θ=a ·b |a ||b |=3-452=-210.(2)设存在不为零的常数α,β使得αa +βb =0,那么⎩⎪⎨⎪⎧3α+β=0-4α+β=0⇒⎩⎪⎨⎪⎧α=0β=0,所以不存在非零常数α,β,使得αa +βb =0成立.故a 和b 线性无关. 20、[证明] 以A 为原点,AB 、AD 分别为x 轴、y 轴建立直角坐标系,设正方形边长为1,则AB →=(1,0),AD →=(0,1).由已知,可设AP →=(a ,a ),并可得EB →=(1-a,0),BF →=(0,a ),EF →=(1-a ,a ),DP →=AP →-AD →=(a ,a -1),∵DP →·EF →=(1-a ,a )·(a ,a -1)=(1-a )a +a (a -1)=0.∴DP →⊥EF →,因此DP ⊥EF .21、[解析] (1)P 与A 重合时,m ×(-2)+3+2=0,∴m =52.P 与B 重合时,3m +2+2=0,∴m =-43.(2)P 与A 、B 不重合时,设AP →=λPB →,则λ>0. 设P (x ,y ),则AP →=(x +2,y -3),PB →=(3-x,2-y ).∴⎩⎪⎨⎪⎧x +2=λ(3-x )y -3=λ(2-y ),∴⎩⎪⎨⎪⎧x =3λ-2λ+1y =2λ+3λ+1,把x ,y 代入mx +y +2=0可解得λ=2m -53m +4,又∵λ>0,∴2m -53m +4>0.∴m <-43或m >52.由(1)(2)知,所求实数m 的取值范围是(-∞,-43)∪⎣⎢⎡⎭⎪⎫52,+∞.22、[解析] (1)|a +t b |2=a 2+2t a ·b +t 2b 2=|b |2t 2+2|a ||b |cos θ·t +|a |2. ∴当t =-|a |cos θ|b |时,|a +t b |有最小值.(2)当t =-|a |cos θ|b |时,b ·(a +t b )=a ·b +t |b |2=|a |·|b |cos θ-|a |cos θ|b |·|b |2=0.∴b ⊥(a +t b ),即b 与a +t b 的夹角为90°.。