上海民办尚德实验学校八年级数学下册第二单元《勾股定理》测试(答案解析)
八年级数学下勾股定理_单元测试题(带答案)(2)(2021年整理)
八年级数学下勾股定理_单元测试题(带答案)(2)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下勾股定理_单元测试题(带答案)(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下勾股定理_单元测试题(带答案)(2)(word版可编辑修改)的全部内容。
(第6题)A(第12题)307米5米A八年级下勾股定理测试题一、耐心填一填(每小题3分,共36分)1、在Rt △ABC 中,∠C=90°,AC=3,BC=4,则AB=___________;2、如图,小明的爸爸在院子的门板上钉了一个加固板,从数学的角度看, 这样做的道理是 .3、小明同学要做一个直角三角形小铁架,他现有4根长度分别为4cm 、6cm 、8cm 、10cm 的铁棒,可用于制作成直角三角形铁架的三条铁棒分别是________________________;4、若三角形三条边的长分别为7,24,25,则这个三角形的最大内角是 度.5、在△ABC 中,∠C =90°,若c =10,a ∶b =3∶4,则ab = .6、如图,在等腰△ABC 中,AB=AC=10,BC=12,则高AD=________;7、等腰△ABC 的面积为12cm 2,底上的高AD =3cm , 则它的周长为________.8、在Rt △ABC 中,斜边AB =2,则AB 2+BC 2+CA 2=________.9、有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为 ; 10、有两棵树,一棵高6米,另一棵高3米,两树相距4米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了________米.11、一个三角形的三边的比为5∶12∶13,它的周长为60cm ,则它的面积是________. 12、如图,今年第8号台风“桑美"是50多年以来登陆我国大陆地区 最大的一次台风,一棵大树受“桑美"袭击于离地面5米 处折断倒下,倒下部分的树梢到树的距离为7米, 则这棵大树折断前有__________米(保留到0。
(人教版)上海市八年级数学下册第二单元《勾股定理》检测卷(包含答案解析)
一、选择题1.如图,在四边形ABCD 中,∠A =∠C =90°,AB =A D .若这个四边形的面积为16,求BC +CD 的值是( )A .6B .8C .42D .432.如图,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是()A .CD 、EF 、GHB .AB 、EF 、GHC .AB 、CD 、GH D .AB 、CD 、EF 3.如图,在ABC ∆中,5,60AC C =∠=︒,点DE 、分别在BC AC 、上,且2,CD CE ==将CDE ∆沿DE 所在的直线折叠得到FDE ∆(点F 在四边形ABDE 内),连接,AF 则2AF =( )A .7B .8C .9D .104.如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A 处有一滴蜜糖,在玻璃杯的外壁,A 的相对方向有一小虫P ,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖A 处的最短距离是( )A 73B .10厘米C .82D .8厘米 5.如图,在长方形ACD 中,3AB cm =,9AD cm =,将此长方形折叠,便点D 与点B 重合,折痕为EF ,则ABE △的面积为( )2cm .A .12B .10C .6D .156.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,若30B ∠=︒,3AC =,2AD =,则ABD △的面积为( )A .3B .2C .23D .3 7.已知锐角△ABC 的三边长恰为三个连续整数,AB >BC >CA ,若边BC 上的高为AD ,则BD ﹣DC =( )A .3B .4C .5D .68.如图,在Rt ABC △中,6AB =,8BC =,AD 为BAC ∠的平分线,将ADC 沿直线AD 翻折得ADE ,则DE 的长为( )A .4B .5C .6D .7 9.在△ABC 中,BC=a ,AB=c ,AC=b ,则不能作为判定△ABC 是直角三角形的条件是( ).A .∠A=∠B-∠CB .∠A :∠B :∠C=2:5:3C .a :b :c =7:24:25D .a :b :c =4:5:6 10.()224129x x ++-+ )A .12B .13C .14D .1111.如图,长方形ABCD 中,43,4AB BC ==,点E 是DC 边上的动点,现将BCE 沿直线BE 折叠,使点C 落在点F 处,则点D 到点F 的最短距离为( )A .5B .4C .3D .212.如图,M N 、是线段AB 上的两点,4,2AM MN NB ===.以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连结AC BC 、,则ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形二、填空题13.在直角坐标系中,点A (2,-2)与点B (-2,1)之间的距离AB =__________. 14.平面直角坐标系中,点()()4,2,2,4A B -,点(),0Px 在x 轴上运动,则AP BP +的最小值是_________.15.如图,在Rt ABC △中,90ACB ︒∠=,10AB =,8AC =,D 是AB 的中点,M 是边AC 上一点,连接DM ,以DM 为直角边作等腰直角三角形DME ,斜边DE 交线段CM 于点F ,若2MDF MEF S S =,则CF 的长为________.16.如图,在长方形ABCD 中,4AB =,8BC =,点E 是BC 边上一点,且AE EC =,点P 是AD 边上一动点,连接PE 、PC .给出下列结论:①3BE =;②当5AP =时,//AE CP ;③当256AP =时,AE 平分BEP ∠; ④若PBE EPC ∠=∠,则BPC PEC ∠=∠.其中正确的是______.17.如图,在Rt ABC 中,∠ACB =90°,AC =BC ,边AC 落在数轴上,点A 表示的数是1,点C 表示的数是3.以点A 为圆心、AB 长为半径画弧交数轴负半轴于点B 1,则点B 1所表示的数是_____.18.如图,在ABC 中,AB AC =,120A ∠=︒,AB 的垂直平分线分别交AB ,BC 于D ,E ,3BE =,则EC 的长为_____.19.如图ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB ,交BC 于点E ,若CE =2,则BE =______________.20.如图AD=4,CD=3,∠ADC=90°,AB=13,BC=12,则图形ABCD 的面积=______________.三、解答题21.为迎接十四运,我区强力推进“三改一通一落地”,加速城市更新步伐.绿地广场有一块三角形空地将进行绿化,如图,在ABC 中,AB AC =,E 是AC 上的一点,5CE =,13BC =,12BE =.(1)判断ABE △的形状,并说明理由.(2)求线段AB 的长.22.在△ABC 中,AB =AC =10, AD 是BC 边上的高,点E 在边BC 上,连接AE .(1)当AD =6时,①求△ABC 的面积.②若AE 平分∠BAD ,求CE 的长.(2)探求三条线段AE , BE ,CE 之间的等量关系.23.利用所学的知识计算:(1)已知a b >,且2213a b +=,6ab =,求-a b 的值;(2)已知a 、b 、c 为Rt △ABC 的三边长,若222568a b a b ++=+,求Rt △ABC 的周长.24.如图,某人为了测量小山顶上的塔顶离地面的高度CD ,他在山下的点A 处测得塔尖点D 的仰角为45︒,再沿AC 方向前进60m 到达山脚点B ,测得塔尖点D 的仰角为60︒,求CD 的高度(结果保留根号)25.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面,此时,捕鱼的人发现,花在水平方向上离开原来的位置2尺远,求湖水的深度.26.如图,每个小正方形的边长均为1可以得到每个小正方形的面积为1.⨯的方格内作出边长为13的正方形;(1)请在图中的55-+.(2)请在数轴上表示出113【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】本题可通过作辅助线进行解决,延长CB到E,使BE=DC,连接AE,AC,先证两个三角形全等,利用直角三角形的面积与四边形的面积相等进行列式求解.【详解】解:延长CB到E,使BE=DC,连接AE,AC,∵∠ABE=∠BAC+∠ACB,∠D=180°-∠DAC-∠DCA,∵∠BAD=90°,∠BCD=90°,∴∠BAC+∠ACB=90°-∠DAC+90°-∠DCA=180°-∠DAC-∠DCA,∴∠ABE=∠D,在△ABE和△ADC中,BE DC ABE D AB AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADC(SAS),∴AE=AC ,∠EAB=∠DAC ,∴∠EAC=90°,∴S △AEC =12AE 2=14CE 2, ∵S △AEC =S 四边形ABCD =16, ∴14CE 2=16, ∴CE=8, ∴BC+CD=BC+BE=CE=8,故选:B .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,面积及等积变换问题;巧妙地作出辅助线,把四边形的问题转化为等腰直角三角形来解决是正确解答本题的关键.2.B解析:B【分析】设出正方形的边长,利用勾股定理,解出AB 、CD 、EF 、GH 各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【详解】解:设小正方形的边长为1,则AB 2=22+22=8,CD 2=22+42=20,EF 2=12+22=5,GH 2=22+32=13.因为AB 2+EF 2=GH 2,所以能构成一个直角三角形三边的线段是AB 、EF 、GH .故选:B .【点睛】本题考查了勾股定理逆定理的应用;解题的关键是解出AB 、CD 、EF 、GH 各自的长度. 3.A解析:A【分析】根据折叠的性质和勾股定理可以得到解答.【详解】解:如图,过F 作FG ⊥AC 于G ,则在RT △EGF 中,∠GEF=180°-2∠CED=60°,∴∠GFE=90°-∠GEF=30°,∴GE=112EF =,FG=33GE =, ∴AG=AC-CE-GE=5-2-1=2, ∴在RT △AGF 中,()22222237AF AG FG =+=+=,故选A .【点睛】本题考查三角形的折叠,熟练掌握折叠和直角三角形的性质及勾股定理的应用是解题关键. 4.B解析:B【分析】把圆柱沿着点A 所在母线展开,把圆柱上最短距离转化为将军饮马河型最短问题求解即可.【详解】把圆柱沿着点A 所在母线展开,如图所示,作点A 的对称点B ,连接PB ,则PB 为所求,根据题意,得PC=8,BC=6,根据勾股定理,得PB=10,故选B.【点睛】本题考查了圆柱上的最短问题,利用圆柱展开,把问题转化为将军饮马河问题,灵活使用勾股定理是解题的关键.5.C解析:C【分析】设AE=x ,由折叠BE=ED=9-x ,再在Rt △ABE 中使用勾股定理即可求出x ,进而求出△ABE 的面积.【详解】解:设AE=x ,由折叠可知:BE=ED=9-x ,在Rt △ABE 中,由勾股定理有:AB²+AE²=BE²,代入数据:3²+x²=(9-x)²,解得x=4,故AE=4,此时11=43622∆⨯=⨯⨯=ABE S AE AB , 故选:C .【点睛】本题考查了折叠问题中的勾股定理,利用折叠后对应边相等,设要求的边为x ,在一个直角三角形中,其余边用x 的代数式表示,利用勾股定理建立方程求解x . 6.A解析:A【分析】根据含30度角的直角三角形性质可求出CD=1,过点D 作DE ⊥AB ,证明Rt △ACD ≌Rt △AED ,得AE=AC=3,再证明Rt △BED ≌Rt △AED ,得BE=AE=3,最后利用三角形面积公式即可求出答案.【详解】解:∵30B ∠=︒,90C ∠=︒,∴∠BAC=90゜-30゜=60゜∵AD 平分BAC ∠,∴∠BAD=∠CAD=1302BAC ∠=︒ 在Rt △ACD 中,由AD=2∴CD=1;过点D 作DE ⊥AB ,如图,∵AD 平分BAC ∠,90C ∠=︒,∴DE=DC=1又AD=AD∴Rt △ACD ≌Rt △AED ,∴AE=AC=3 在Rt △ADE 和Rt △BDE 中DAE DBE AED BED DE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴Rt △BED ≌Rt △AED∴BE=AE=3∴AB=AE+BE=23∴11123322ABD S AB DE ∆=⨯=⨯⨯= 故选:A .【点睛】此题主要考查了角平分线的性质、含30度角的直角三角形的性质以及勾股定理,熟练掌握相关定理、性质是解答此题的关键. 7.B解析:B【分析】根据勾股定理,因AD 为公共边可以得到AB 2﹣BD 2=AC 2﹣CD 2再把三边关系代入解答即可.【详解】解:设BC =n ,则有AB =n +1,AC =n ﹣1,AB 2﹣BD 2=AC 2﹣CD 2,∴ AB 2﹣AC 2=BD 2﹣CD 2∴ (n +1)2﹣(n ﹣1)2=(BD ﹣CD )n ,∴BD ﹣CD =4,故选:B .【点睛】此题主要考查了勾股定理,根据题意得出 BD ﹣CD 的长是解题关键.8.B解析:B【分析】由勾股定理求出AC =10,求出BE =4,设DE =x ,则BD =8−x ,得出(8−x )2+42=x 2,解方程求出x 即可得解.【详解】∵AB =6,BC =8,∠ABC =90°,∴10=,∵将△ADC 沿直线AD 翻折得△ADE ,∴AC =AE =10,DC =DE ,∴BE =AE−AB =10−6=4,在Rt △BDE 中,设DE =x ,则BD =8−x ,∵BD 2+BE 2=DE 2,∴(8−x )2+42=x 2,解得:x =5,∴DE =5.故选B .【点睛】本题考主要查了勾股定理,直角三角形的性质,折叠的性质等知识,熟练掌握勾股定理是解题的关键.9.D解析:D【分析】根据三角形的内角和定理,勾股定理的逆定理依次判断.【详解】A 、∵∠A=∠B-∠C ,∴∠A+∠C =∠B ,得到∠B=90︒,即△ABC 是直角三角形; B 、设∠A=2x ,∠B=5x ,∠C=3x ,故235180x x x ++=︒,解得x=18︒,∴∠B=5x=90︒,即△ABC 是直角三角形;C 、设a=7x ,则b=24x ,c=25x ,∵222(7)(24)(25)x x x +=,∴222+=a b c ,∴△ABC 是直角三角形;D 、设a=4x ,b=5x ,c=6x ,∵222(4)(5)(6)x x x +≠,∴222a b c +≠,∴△ABC 不是直角三角形;故选:D .此题考查三角形的内角和定理,勾股定理的逆定理,掌握直角三角形根据边或角判定的方法是解题的关键.10.B解析:B【分析】建立直角坐标系,设P 点坐标为P (x ,0),设A (0,-2),B (12,3),过点B 作BC ⊥x 轴,交AC 于点C ,则AB 的长即为代数式()224129x x ++-+ 的最小值,然后根据Rt △ABC ,利用直角三角形的性质可求得AB 的值. 【详解】解:如图所示:设P 点坐标为P (x ,0),设A (0,-2),B (12,3),过点B 作BC ⊥x 轴,交AC 于点C ,∴BC=3-(-2)=5,AC=12()()()()2222002203x x ⎡⎤+--+-+-⎣⎦-1, ()()22002x ⎡⎤+--⎣⎦-AP ()()22203x -+-1BP , ∴()224129x x +-+=AP +BP根据两点之间线段最短AB ()224129x x +-+ 的最小值 ∴AB 22BC AC +13.()224129x x +-+的最小值为13.故选:B .【点睛】 本题主要考查了最短路线问题以及勾股定理的应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键.11.B解析:B【分析】连接DB ,DF ,根据三角形三边关系可得DF+BF >DB ,得到当F 在线段DB 上时,点D 到点F 的距离最短,根据勾股定理计算即可.解:连接DB,DF,在△FDB中,DF+BF>DB,由折叠的性质可知,FB=CB=4,∴当F在线段DB上时,点D到点F的距离最短,在Rt△DCB中,228+=,BD DC BC此时DF=8-4=4,故选:B.【点睛】本题考查的是翻转变换的性质,勾股定理,三角形三边关系.翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.12.B解析:B【分析】先根据题意确定AC、BC、AB的长,然后运用勾股定理逆定理判定即可.【详解】解:由题意得:AC=AN=2AM=8,BC=MB=MN+NB=4+2=6,AB=AM+MN+NB=10∴AC2=64, BC2=36, AB2=100,∴AC2+BC2=AB2∴ABC一定是直角三角形.故选:B.【点睛】本题主要考查了勾股定理逆定理的应用,根据题意确定AC、BC、AB的长是解答本题的关键.二、填空题13.【分析】直接运用两点间的距离公式求解即可【详解】解:∵(2-2)(-21)∴AB=故答案为5【点睛】本题主要考查了两点间的距离公式牢记两点间的距离公式是解答本题的关键解析:【分析】直接运用两点间的距离公式求解即可.【详解】解:∵A (2,-2)、B (-2,1)∴AB=()()()22222221435--+--=+-=⎡⎤⎣⎦. 故答案为5.【点睛】本题主要考查了两点间的距离公式,牢记两点间的距离公式是解答本题的关键. 14.【分析】根据题意先做点A 关于x 轴的对称点求出坐标连结A′B 交x 轴于C 用勾股定理求出A′B 即可【详解】解:如图根据题意做A 点关于x 轴的对称点A '连结A′B 交x 轴于C=A′P+BP≥A′B 得到A '(-4 解析:62.【分析】根据题意先做点A 关于x 轴的对称点'A ,求出'A 坐标,连结A′B ,交x 轴于C ,用勾股定理求出A′B 即可.【详解】解:如图根据题意做A 点关于x 轴的对称点A ',连结A′B ,交x 轴于C ,AP BP +=A′P+BP≥A′B ,得到A '(-4,-2),当点P 与C 点重合时,PA+PB 最短,点B (2,4)由勾股定理()()222+4+4+2=62AP BP +的最小值为:62故答案为: 2【点睛】本题主要考查了点关于直线的对称,两点之间线段最短,勾股定理的应用,正确转化AP BP +的值最小是解题的关键.15.3【分析】作DG ⊥AC 于GEH ⊥AC 于H 则∠DGM =∠MHE =90°DG ∥BC 由勾股定理得出BC =6证出DG 是△ABC 的中位线得出DG =BC =3AG =CG =AC =4证明△MDG ≌△EMH (ASA )得解析:3【分析】作DG ⊥AC 于G ,EH ⊥AC 于H ,则∠DGM =∠MHE =90°,DG ∥BC ,由勾股定理得出BC =6,证出DG 是△ABC 的中位线,得出DG =12BC =3,AG =CG =12AC =4,证明△MDG ≌△EMH (ASA ),得出MG =EH ,由三角形面积关系得出DG =2EH =3,得出MG=EH =32,再证明∆DGF~∆EHF ,从而求出GF ,进而即可得出答案. 【详解】作DG ⊥AC 于G ,EH ⊥AC 于H ,如图所示:则∠DGM =∠MHE =90°,DG ∥BC ,∵∠ACB =90°,AB =10,AC =8, ∴BC6=,∵DG ∥BC ,D 是AB 的中点,∴DG 是△ABC 的中位线,∴DG =12BC =3,AG =CG =12AC =4, ∵△DME 是等腰直角三角形,∴∠DME =90°,DM =ME ,∵∠DMG +∠GDM =∠DMG +∠EMH =90°,∴∠GDM =∠EMH ,在△MDG 和△EMH 中,DGM MHE DM MEGDM EMH ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△MDG ≌△EMH (ASA ),∴MG =EH ,∵S △MDF =2S △MEF ,∴DG =2EH =3,∴MG =EH =32, ∵DG ∥EH ,∴∆DGF~∆EHF , ∴21DG GF EH HF ==,∵GH=MH-MG=DG-MG=3-32=32,∴GF=32×221+=1,∴CF=AC-AG-GF=8-4-1=3,故答案是:3..【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、相似三角形的判定和性质;添加辅助线,构造三角形全等是解题的关键.16.①②③④【分析】设BE=x则=8-x利用勾股定理列出方程即可判断①;利用SAS证出△AEP≌△CPE即可证出∠AEP=∠CPE从而判断②;过点E 作EH⊥AD于H利用勾股定理求出PE从而得出PA=PE解析:①②③④【分析】设BE=x,则AE EC==8-x,利用勾股定理列出方程即可判断①;利用SAS证出△AEP≌△CPE,即可证出∠AEP=∠CPE,从而判断②;过点E作EH⊥AD于H,利用勾股定理求出PE,从而得出PA=PE,利用等边对等角可得∠PAE=∠PEA,再根据平行线的性质可得∠AEB=∠PAE,从而判断③;根据三角形的内角和定理即可判断④.【详解】解:设BE=x,则AE EC==8-x,在Rt△ABE中,AB2+BE2=AE2∴42+x2=(8-x)2解得:x=3即BE=3,故①正确;∴BE=EC=5若5AP=∴AP=CE,∵四边形ABCD为长方形∴AD∥BC∴∠APE=∠CEP∵PE=EP∴△AEP≌△CPE∴∠AEP=∠CPE∴//AE CP,故②正确;当256AP=时,过点E作EH⊥AD于H,∴AH=BE=3,HE=AB=4∴PH=AP-AH=76∴22PH HE+25 6∴PA=PE∴∠PAE=∠PEA∵AD∥BC∴∠AEB=∠PAE,∴∠AEB=∠PEA∴EA平分BEP∠,故③正确;∵∠BPC=180°-∠PCB-∠PBE∠PEC=180°-∠PCB-∠EPC∵PBE EPC∠=∠∴BPC PEC∠=∠,故④正确;综上:正确的有①②③④故答案为:①②③④.【点睛】此题考查的是勾股定理、全等三角形的判定及性质、等腰三角形的性质、平行线的判定及性质和三角形内角和定理的应用,掌握勾股定理、全等三角形的判定及性质、平行线的判定及性质和三角形内角和定理是解题关键.17.1﹣2【分析】先求出AC的长度再根据勾股定理求出AB的长度然后根据数轴的特点从点A向左AB个单位即可得到点B1【详解】解:根据题意AC=3﹣1=2∵∠ACB=90°AC=BC∴AB=∴点B1表示的数解析:1﹣2【分析】先求出AC的长度,再根据勾股定理求出AB的长度,然后根据数轴的特点,从点A向左AB个单位即可得到点B1.【详解】解:根据题意,AC =3﹣1=2,∵∠ACB =90°,AC =BC ,∴AB =22222222AC BC +=+=∴点B 1表示的数是1﹣22.故答案为:1﹣22.【点睛】本题考查勾股定理、实数与数轴,解题的关键是利用勾股定理求出AB .18.6【分析】根据等腰三角形的性质可求出两底角的度数连接AE 可得出AE=BE ∠EAD=推出∠EAC=利用勾股定理解直角三角形即可得出答案【详解】解:连接AE ∵AB=AC ∠A=∴∠B=∠C=∵ED 垂直平分解析:6【分析】根据等腰三角形的性质可求出两底角的度数,连接AE ,可得出AE=BE , ∠EAD=30︒,推出 ∠EAC=90︒,利用勾股定理解直角三角形即可得出答案.【详解】解:连接AE ,∵ AB=AC ,∠A=120︒ ,∴ ∠B=∠C=()1180120302︒-︒=︒, ∵ED 垂直平分AB , ∴AE=BE ,∠EAD=30︒ ,∵BE=3,∴DE=1322BE = ∴2233BD BE DE =-= ∴AB=AC=2BD=33,∵ ∠A=120︒ ,∴ ∠EAC=90︒ ,∴22366CE AC AE =+==, 故答案为:6.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质、勾股定理、直角三角形30︒角所对的直角边等于斜边的一半的性质,熟记性质并作辅助线构造出直角三角形是解题的关键.19.2【分析】根据线段垂直平分线的性质和等腰直角三角形的性质即可得到结论【详解】∵DE 垂直平分AB ∴AE =BE ∴∠EAB =∠B =225°∴∠AEC =∠EAB +∠B =45°∵∠C =90°∴AC =CE =2A解析:22 【分析】 根据线段垂直平分线的性质和等腰直角三角形的性质即可得到结论.【详解】∵DE 垂直平分AB ,∴AE =BE ,∴∠EAB =∠B =22.5°,∴∠AEC =∠EAB +∠B =45°,∵∠C =90°,∴AC =CE =2,AE 2=AC 2+CE 2,∴AE =2CE =22,∴BE =AE =22.故答案为:22.【点睛】此题考查了线段垂直平分线的性质以及等腰直角三角形性质.此题难度不大,注意数形结合思想的应用.20.24【分析】连接AC 在中根据勾股定理求得AC 的长度利用勾股定理逆定理可得为直角三角形根据即可求解【详解】解:连接AC 在中∴∵∴∴为直角三角形∴故答案为:24【点睛】本题考查勾股定理及其逆定理掌握勾股 解析:24【分析】连接AC ,在Rt ACD △中根据勾股定理求得AC 的长度,利用勾股定理逆定理可得ABC 为直角三角形,根据ABCD ABC ACD S SS =-即可求解.【详解】解:连接AC , ,在Rt ACD △中,90ADC ∠=︒,4=AD ,3CD =,∴5AC ==,∵13AB =,12BC =,∴222AC BC AB +=,∴ABC 为直角三角形,90ACB ∠=︒, ∴112422ABCD ABC ACD S S S AC BC AD CD =-=⋅-⋅=, 故答案为:24.【点睛】本题考查勾股定理及其逆定理,掌握勾股定理的内容是解题的关键.三、解答题21.(1)ABE △是直角三角形;理由见解析;(2)线段AB 的长为16.9.【分析】(1)根据勾股定理的逆定理证明即可;(2)设AB AC x ==,则5AE x =-,由勾股定理列得222BE AE AB +=,代入数值得22212(5)x x +-=,计算即可.【详解】解:(1)ABE △是直角三角形.理由:∵22222213169,12144,525BC BE CE ======,∴222169BE CE BC +==,∴90BEC ∠=︒,∴BE AC ⊥,∴ABE △是直角三角形.(2)设AB AC x ==,则5AE x =-,由(1)可知ABE △是直角三角形,∴222BE AE AB +=,∴22212(5)x x +-=,解得16.9x =,∴线段AB 的长为16.9.【点睛】此题考查勾股定理及逆定理,熟练掌握勾股定理及逆定理的运算及应用是解题的关键. 22.(1)①△ABC 的面积=48;②CE=11;(2)2100AE BE CE =-⋅.【分析】(1)①利用等腰三角形三线合一和勾股定理可求得BC=16,再计算面积即可;②作EF ⊥AB ,与AB 相交于F ,根据角平分线的性质可得EF=ED ,利用等面积法即可求得ED ,从而求得EC ;(2)在Rt △AED 和Rt △ADC 利用勾股定理可得等量关系式,再借助线段的和差和等量代换即可得出AE , BE ,CE 之间的等量关系.【详解】解:(1)①∵AB =AC =10, AD 是BC 边上的高,∴DC=BC=2BD,AD ⊥BC ,∵AD =6,在Rt △ABD 中,根据勾股定理 22221068BD AB AD =-=-=,∴BC=16,△ABC 的面积=111664822BC AD ⋅=⨯⨯=; ②作EF ⊥AB ,与AB 相交于F ,∵AD ⊥BC ,AE 平分∠BAD ,∴EF=ED ,∵AD =6,AB=10,∴111()8222ABD S AB FE AD ED ED AB AD ED =⋅+⋅=⋅+=, 11862422ABD S BD AD =⋅=⨯⨯=, ∴3ED =, ∴CE=DC+ED=8+3=11;(2)在Rt △AED 中222AE AD ED =+,在Rt △ADC 中,222221()2AD AC DC AC BC =-=-, 12DE BD BE BC BE =-=-, ∴222211()()22AE AC BC BC BE =-+-=22221144AC BC BC BC BE BE -+-⋅+=22AC BC BE BE -⋅+=2()AC BE BC BE --=2AC BE CE -⋅=100BE CE -⋅,故2100AE BE CE =-⋅.【点睛】本题考查勾股定理,等腰三角形的性质,角平分线的性质.(1)中掌握等面积法是解题关键;(2)中能借助勾股定理列出等量关系式建立线段之间的联系是解题关键.23.(1)1;(2)12或7+【分析】(1)根据完全平方公式变形解答;(2)先移项,将25变形为9+16,利用完全平方公式变形为22(3)(4)0a b -+-=,求得a=3,b=4,分情况,利用勾股定理求出c ,即可得到周长.【详解】(1)∵2213a b +=,6ab =,∴222()213261a b a b ab =+-=-⨯=-,∴a-b=1或a-b=-1(舍去);(2)222568a b a b ++=+2225680a b a b ++--=22698160a a b b -++-+=22(3)(4)0a b -+-=∴a-3=0,b-4=0,∴a=3,b=4,当a 与b 都是直角边时,5=,∴Rt △ABC 的周长=3+4+5=12;当a 为直角边,b 为斜边时,=,∴Rt △ABC 的周长=7【点睛】此题考查完全平方公式的变形计算,勾股定理,正确掌握并熟练应用完全平方公式是解题的关键.24.(90m +【分析】由题意得出∠DAC=45°,∠DBC=60°,∠DCA=90°,设BC=x ,表示出BD ,CD 和AC 的长,利用AB=60得到方程,求出x ,最后根据得到结果.【详解】解:由题知,∠DAC=45°,∠DBC=60°,∠DCA=90°,∴∠BDC=30°,△ACD 是等腰直角三角形,设BC=x ,∴BD=2x ,∴CD=22BD BC-=3x=AC,∴AB=AC-BC=3x-x=(3-1)x=60,解得:x=31-=() 3031+,∴DC=3x=90303+,答:塔高约为(90303)m+.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形,利用勾股定理的知识求解,难度一般.25.75尺【分析】根据题意,运用勾股定理,列方程求解即可.【详解】设湖水的深度为x尺,则荷花的长是(x+0.5)尺,在图中的直角三角形中,由勾股定理得(x+0.5)2=x2+22,解得x=3.75,故湖水的深度为3.75尺.【点睛】本题考查了勾股定理得应用,能从实际问题中抽象出数学模型是解题的关键.26.(1)见解析;(2)见解析.【分析】(1132和3的直角三角形,它的斜边长即所求;(21313交于点A,再以A为圆心,1为半径画弧,与OA相交于点B,则OB为所求.【详解】解:(1)如图所示,ABCD为所求作正方形.-+为所求.(2)如图所示,OB=113.【点睛】本题考查了勾股定理,利用勾股定理作图时找出相应线段是解题的关键.。
(人教版)上海市八年级数学下册第二单元《勾股定理》测试题(含答案解析)
一、选择题1.如图,在四边形ABCD 中,∠A =∠C =90°,AB =A D .若这个四边形的面积为16,求BC +CD 的值是( )A .6B .8C .42D .432.如图,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是()A .CD 、EF 、GHB .AB 、EF 、GHC .AB 、CD 、GH D .AB 、CD 、EF3.已知直角三角形纸片的两条直角边长分别为m 和3(m <3),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则( ) A .m 2+6m +9=0B .m 2﹣6m +9=0C .m 2+6m ﹣9=0D .m 2﹣6m ﹣9=04.如图,在ABC 中,AB AC =,8BC cm =,AE 平分BAC ∠,交BC 于点E ,D 为AE 上一点,且ACD CAD ∠=∠,3DE cm =,连接CD .过点作DF AB ⊥,垂足为点F .则下列结论正确的有( )①5CD cm =;②10AC cm =;③3DF cm =;④ACD △的面积为210cmA .1B .2C .3D .45.如图①,直角三角形纸片的两直角边长分别为6、8,按如图②方式折叠,使点A 与点CB 重合,折痕为DE ,则BCE 与ADE 的面积之比为( )A .2:3B .4:9C .9:25D .14:256.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为123S S S 、、;如图2,分别以直角三角形三边长为半径向外作半圆,面积分别为456S S S 、、.其中125616,45,11,14S S S S ====,则34S S +=( )A .86B .64C .54D .487.如图,以AB 为直径的半圆O 过点C ,4AB =,在半径OB 上取一点D ,使AD AC =,30CAB ∠=︒,则点O 到CD 的距离OE 是( )A .2B .1C .2D .228.如图,将一根长为20cm 的筷子置于底面直径为5cm ,高为12cm 的圆柱形水杯中,筷子露在杯子外面的长度为( )A .13cmB .8cmC .7cmD .15cm9.如图,在△ABC 中,∠C =90°,点D 在边BC 上,AD =BD ,DE 平分∠ADB 交AB 于点E .若AC =12,BC =16,则AE 的长为( )A .6B .8C .10D .1210.若实数m 、n 满足340m n -+-=,且m 、n 恰好是Rt ABC △的两条边长,则第三条边长为( ). A .5B .7C .5或7D .以上都不对11.2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,则2()a b +的值为( )A .25B .19C .13D .16912.下列条件能使ABC (a ,b ,c 为ABC 的三边长)为直角三角形的是( )A .a b c +=B .::4:5:3a b c =C .2A B C ∠+∠=∠D .::5:12:13A B C ∠∠∠=二、填空题13.如图,数轴上点C 表示的数的平方为______.14.如图,已知A 、B 是线段MN 上的两点,MN=4,MA=1,MB >1.以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成ABC .设AB=x ,若ABC 为直角三角形,则x=__.15.如图,已知OA OB =,若点A 对应的数是a ,则a 与52-的大小关系是a ____52-.16.如图,已知正方形ABCD 的面积为4,正方形FHIJ 的面积为3,点D 、C 、G 、J 、I 在同一水平面上,则正方形BEFG 的面积为__________.17.如图,45,AOB AOB ∠=︒∠内有一定点P ,且1OP =,在OA 上有一动点Q ,OB 上有一动点R ,若PQR 周长最小,则最小周长是___________.18.如图,在ABC 中,90A ∠=,AB AC =,点E ,点F 为BC 边上的三等分点,且12BC =,点P 在AB 边上运动(包括A 、B 两点),连结PE 、 PF ,若设PE PF a +=,则a 的取值范围为______.19.如图,在边长为23的等边三角形ABC 中,过点C 作垂直于BC 的直线交∠ABC 的平分线于点P ,则点P 到边AB 所在直线的距离为_________.20.如图,正方形OABC 的边OC 落在数轴上,点C 表示的数为1,点P 表示的数为﹣1,以P 点为圆心,PB 长为半径作圆弧与数轴交于点D ,则点D 表示的数为___________.三、解答题21.已知,等腰,,在直角边的左侧直线,点关于直线的对称点为,连接,,其中交直线于点.(1)依题意,在图1中补全示意图:当时,求的度数;(2)当且时,求的度数;(3)如图2,若,用等式表示线段,,之间的数量关系,并证明.22.如图,某港口P 位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于Q 、R 处,且相距30海里.如果知道“远航”号沿北偏东50°方向航行,则“海天”号沿哪个方向航行?23.如图,一次“台风”过后,一根旗杆被台风从离地面9米处吹断,倒下的旗杆的顶端落在离旗杆底部12米处,那么这根旗杆被吹断前至少有多高?24.如图,在ABC 中,90ACB ∠=︒,5AB =,3BC =,点P 从点A 出发,以每秒2个单位长度的速度沿折线A C B A ---运动.设点P 的运动时间为t 秒()0t >. (1)求AC 的长及斜边AB 上的高. (2)当点P 在CB 上时,①CP 的长为______________(用含t 的代数式表示). ②若点P 在BAC ∠的角平分线上,则t 的值为______________. (3)在整个运动过程中,直接写出BCP 是等腰三角形时t 的值.25.已知:在ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 边上一动点(与点B 不重合),连接AD ,以AD 始边作()0180DAE αα∠=︒<<︒.(1)如图一,当90α=︒且AE AD =时,试说明CE 和BD 的位置关系和数量关系; (2)如图二,当45α=︒且点E 在边BC 上时,求证:222BD CE DE +=. 26.在△ABC 中,∠A 、∠B 、∠C 的对边分别用a 、b 、c 来表示,且a 、b 、c 满足关系40a -+|a ﹣b +1|+(c ﹣9)2=0,试判断△ABC 的形状,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】本题可通过作辅助线进行解决,延长CB 到E ,使BE=DC ,连接AE ,AC ,先证两个三角形全等,利用直角三角形的面积与四边形的面积相等进行列式求解. 【详解】解:延长CB 到E ,使BE=DC ,连接AE ,AC ,∵∠ABE=∠BAC+∠ACB , ∠D=180°-∠DAC-∠DCA , ∵∠BAD=90°,∠BCD=90°,∴∠BAC+∠ACB=90°-∠DAC+90°-∠DCA=180°-∠DAC-∠DCA , ∴∠ABE=∠D , 在△ABE 和△ADC 中,BE DC ABE D AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ADC(SAS), ∴AE=AC ,∠EAB=∠DAC , ∴∠EAC=90°,∴S △AEC =12AE 2=14CE 2, ∵S △AEC =S 四边形ABCD =16,∴14CE 2=16, ∴CE=8,∴BC+CD=BC+BE=CE=8, 故选:B . 【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,面积及等积变换问题;巧妙地作出辅助线,把四边形的问题转化为等腰直角三角形来解决是正确解答本题的关键.2.B解析:B 【分析】设出正方形的边长,利用勾股定理,解出AB 、CD 、EF 、GH 各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形. 【详解】解:设小正方形的边长为1, 则AB 2=22+22=8, CD 2=22+42=20,EF 2=12+22=5, GH 2=22+32=13. 因为AB 2+EF 2=GH 2,所以能构成一个直角三角形三边的线段是AB 、EF 、GH . 故选:B . 【点睛】本题考查了勾股定理逆定理的应用;解题的关键是解出AB 、CD 、EF 、GH 各自的长度.3.C解析:C 【分析】如图,根据等腰三角形的性质和勾股定理可得m 2+m 2=(3﹣m )2,整理即可解答. 【详解】 解:如图,m 2+m 2=(3﹣m )2, 2m 2=32﹣6m +m 2, m 2+6m ﹣9=0. 故选:C . 【点睛】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.4.B解析:B 【分析】根据AB AC =,AE 平分BAC ∠,得AE BC ⊥,12BE EC BC ==,从而得CD ,结合ACD CAD ∠=∠,得AD CD =,从而计算得AE ;连接BD ,通过证明BED CED △≌△,得BD CD AD ==,通过勾股定理得DF ,即可完成求解. 【详解】∵AB AC =,AE 平分BAC ∠∴AE BC ⊥,142BE EC BC ===∴2222345CD DE EC =+=+=∵ACD CAD ∠=∠∴5AD CD ==cm ,故①正确;∴8AE AD DE =+= ∴22224845AC EC AE =+=+=cm ,故②错误;∴45AB AC ==如图,连接BD∵90DE DE DEB DEF BE EC =⎧⎪∠=∠=⎨⎪=⎩∴BED CED △≌△ ∴BD CD = ∴5BD CD AD === ∵DF AB ⊥ ∴1252AF BF AB === ∴()22225255DF AD AF =-=-=cm ,故③错误;∴11541022ACD S AD EC =⨯=⨯⨯=△cm ,故④正确; 故选:B . 【点睛】本题考查了等腰三角形、勾股定理、全等三角形的知识;解题的关键是熟练掌握等腰三角形三线合一、勾股定理、全等三角形的性质,从而完成求解.5.D解析:D 【分析】由折叠可得5AD BD ==,AE BE =,根据勾股定理可得CE ,AE ,DE 的长度,即可求面积比. 【详解】解:6BC =,8AC =,10AB ∴=,折叠,5AD BD ∴==,AE BE =, 22BC CE BE +=2,2236(8)CE CE ∴+=-, 74CE ∴=, 725844AE ∴=-=,154DE ∴=, 11::14:2522BCE ADE S S BC CE AD DE ∆∆∴=⨯⨯⨯=, 故选:D . 【点睛】本题考查了折叠问题,勾股定理,关键是熟练运用勾股定理求线段的长度.6.C解析:C 【分析】分别用AB 、BC 和AC 表示出 S 1、S 2、S 3,然后根据AB 2=AC 2+BC 2即可得出S 1、S 2、S 3的关系.同理,得出S 4、S 5、S 6的关系,即可得到结果. 【详解】解:如图1,过点E 作AB 的垂线,垂足为D , ∵△ABE 是等边三角形, ∴∠AED=∠BED=30°,设AB=x , ∴AD=BD=12AB=12x ,∴,∴S 2=122x x ⨯⨯=24AB ,同理:S 1=24AC ,S 32BC , ∵BC 2=AB 2-AC 2, ∴S 3=S 2-S 1,如图2,S 4=21122AB π⎛⎫⨯ ⎪⎝⎭=28AB π,同理S 5=28AC π,S 6=28BC π,则S 4=S 5+S 6,∴S 3+S 4=45-16+11+14=54.【点睛】本题考查了勾股定理、等边三角形的性质.勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.7.A解析:A【分析】在等腰ACD ∆中,顶角30A ∠=︒,易求得75ACD ∠=︒,根据等边对等角,可得30OCA A ∠=∠=︒,由此可得45OCD ∠=︒,即OCE ∆是等腰直角三角形,则2OE =【详解】∵AC AD =,30A ∠=︒,∴75ACD ADC ∠=∠=︒,∵AO OC =,∴30OCA A ∠=∠=︒,∴45OCD ∠=︒,即OCE ∆是等腰直角三角形. 在等腰Rt OCE ∆中,2OC =,因此 2OE =故选:A .【点睛】本题综合考查了等腰三角形的性质、三角形的内角和定理、解直角三角形等知识的应用. 8.C解析:C【分析】根据勾股定理求出杯子内的筷子长度,即可得到答案.【详解】解:由题意可得: 22512+,则筷子露在杯子外面的筷子长度为:20﹣13=7(cm ).故选:C .【点睛】此题考查勾股定理的实际应用,熟记勾股定理的计算公式是解题的关键.9.C解析:C【分析】首先根据勾股定理求得斜边AB 的长度,然后结合等腰三角形的性质来求AE 的长度.【详解】解:如图,在△ABC 中,∠C=90°,AC=12,BC=16,由勾股定理知:20AB ===,∵AD=BD ,DE 平分∠ADB 交AB 于点E . ∴1102AE BE AB ===, 故选:C .【点睛】本题主要考查了勾股定理和等腰三角形三线合一.在直角三角形中,两条直角边长的平方之和一定等于斜边长的平方. 10.C解析:C【分析】根据绝对值的非负性及算术平方根的非负性求出m=3,n=4,再分两种情况利用勾股定理求出第三边.【详解】∵30m -=,30m -≥≥,∴m-3=0,n-4=0,解得m=3,n=4,当3、4都是直角三角形的直角边长时,第三边长;当3是直角边长,4是斜边长时,第三边长=故选:C .【点睛】此题考查绝对值的非负性及算术平方根的非负性,勾股定理,根据绝对值的非负性及算术平方根的非负性求出m=3,n=4是解题的关键.注意:没有明确给出的是直角三角形直角边长还是斜边长时,应分情况求解第三边长.11.A解析:A【分析】根据正方形的面积及直角边的关系,列出方程组,然后求解.【详解】解:由条件可得:22131131240a b ab a b ⎧+=⎪-⎪=⎨⎪>>⎪⎩, 解之得:32a b =⎧⎨=⎩. 所以2()25a b +=,故选A【点睛】本题考查了正方形、直角三角形的性质及分析问题的推理能力和运算能力.12.B解析:B【分析】根据三角形三边关系可分析出A 的正误;根据勾股定理逆定理可分析出B 的正误;根据三角形内角和定理可分析出C 、D 的正误;【详解】解:A 、a b c +=,不能组成三角形,不是直角三角形;B 、222a c b +=,符合勾股定理的逆定理,是直角三角形;C 、由∠A+∠B=2∠C ,可得∠C=60°,∠A+∠B=120°,不一定是直角三角形;D 、由∠A :∠B :∠C=5:12:13,可得最大角131807830C ∠=︒⨯=︒,不是直角三角形. 故选:B .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.也考查了三角形内角和定理. 二、填空题13.5【分析】由作图痕迹得到图中各线段的长度后根据勾股定理即可得到解答【详解】解:由作图痕迹及题意可知:OB=2AB=1AB ⊥OBOC=OA ∴由勾股定理可知:故答案为5【点睛】本题考查尺规作图与勾股定理解析:5【分析】由作图痕迹得到图中各线段的长度后根据勾股定理即可得到解答 .【详解】解:由作图痕迹及题意可知:OB=2,AB=1,AB ⊥OB ,OC=OA ,∴由勾股定理可知:222222215OC OA OB AB ==+=+=,故答案为5.【点睛】本题考查尺规作图与勾股定理的综合运用,熟练掌握常见图形的作图方法及勾股定理的应用是解题关键.14.或【分析】根据三角形的三边关系:两边之和大于第三边即可得到关于x 的不等式组求出x 的取值范围再根据勾股定理即可列方程求解【详解】解:∵在△ABC 中AC=1AB=xBC=3-x 解得1<x <2;①∵1<x 解析:43或53【分析】 根据三角形的三边关系:两边之和大于第三边,即可得到关于x 的不等式组,求出x 的取值范围,再根据勾股定理,即可列方程求解.【详解】解:∵在△ABC 中,AC=1,AB=x ,BC=3-x .1313x x x x +>-⎧∴⎨+->⎩, 解得1<x <2;①∵1<x ,∴AC 不能为斜边,②若AB 为斜边,则x 2=(3-x )2+1,解得x=53,满足1<x <2, ③若BC 为斜边,则(3-x )2=1+x 2,解得x=43 ,满足1<x <2, 故x 的值为:43或53, 故答案为:43或53. 【点睛】本题主要考查了三角形的三边关系以及勾股定理,正确理解分类讨论是解题的关键. 15.>【分析】根据勾股定理求出OB 长确定点A 表示的数再用估算法比较大小即可【详解】解:由图可知∴则点A 表示的数为∵∴∴故答案为:>【点睛】本题考查了勾股定理实数在数轴上的表示和实数大小的比较熟练的运用勾 解析:>【分析】根据勾股定理求出OB 长,确定点A 表示的数,再用估算法比较大小即可.【详解】解:由图可知,OB = ∴OA OB ==A 表示的数为∵225()2<,∴52<,∴52>-, 故答案为:>.【点睛】 本题考查了勾股定理、实数在数轴上的表示和实数大小的比较,熟练的运用勾股定理求出OB 长,确定A 点表示的数,能够利用算术平方根与被开方数大小之间的关系是解题关键.16.7【分析】根据已知利用全等三角形的判定可得到△BCG ≌△GJF 从而得到正方形BEFG 的面积=正方形ABCD 的面积+正方形FHIJ 的面积【详解】解:∵∠BGC+∠FGJ=90°∠GFJ+∠FGJ=90解析:7【分析】根据已知利用全等三角形的判定可得到△BCG ≌△GJF ,从而得到正方形BEFG 的面积=正方形ABCD 的面积+正方形FHIJ 的面积.【详解】解:∵∠BGC +∠FGJ =90°,∠GFJ +∠FGJ =90°∴∠BGC =∠GFJ∵∠BCG =∠GJF ,BG =GF∴△BCG ≌△GJF∴CG =FJ ,BC =GJ ,∴BG 2=BC 2+CG 2=BC 2+FJ 2∴正方形DEFG 的面积=正方形ABCD 的面积+正方形FHIJ 的面积=4+3=7.【点睛】本题考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.17.【分析】作点P 关于OA 的对称点关于OB 的对称点连接与OAOB 分别相交于点QR 根据轴对称的性质可得从而得到△PQR 的周长并且此时有最小值连接再求出为等腰直角三角形再根据等腰直角三角形的性质求解即可【详【分析】作点P 关于OA 的对称点1P ,关于OB 的对称点2P ,连接12PP 与OA 、OB 分别相交于点Q 、R ,根据轴对称的性质可得1PQ PQ =,2PR P R =,从而得到△PQR 的周长12PP =,并且此时有最小值,连接12,PO P O ,再求出12POP△为等腰直角三角形,再根据等腰直角三角形的性质求解即可.【详解】解:如图,作点P 关于OA 的对称点1P ,关于OB 的对称点2P ,连接12PP 与OA 、OB 分别相交于点Q 、R ,所以,1PQ PQ =,2PR P R =, 所以,PQR 的周长1212PQ QR PR PQ QR P R PP ++=++=,由两点之间线段最短得,此时PQR 周长最小,连接12,PO P O ,则1122,,AOP AOP OP OP BOP BOP OP OP ∠=∠=∠=∠=,,所以,12121224590OP OP OP POP AOB ===∠=∠=⨯︒=︒,,所以,12POP △为等腰直角三角, 所以,22121222PP OP OP ===, 即PQR 2. 2.【点睛】本题考查了轴对称确定最短路线问题,轴对称的性质,等腰直角三角形的判定与性质,勾股定理的应用,难点在于作辅助线得到与PQR 周长相等的线段.18.≤a≤【分析】根据已知条件首先求出BEEFCF 的值再分别求出点P 与点A 重合时点P 与点B 重合时PE+PF 的值再根据对称性求出PE+PF 的最小值综合比较即可【详解】解:∵∠A=90°AB=ACBC=12 解析:45410【分析】根据已知条件首先求出BE 、EF 、CF 的值,再分别求出点P 与点A 重合时,点P 与点B 重合时PE+PF 的值,再根据对称性求出PE+PF 的最小值,综合比较即可.【详解】解:∵∠A=90°,AB=AC ,BC=12,E 、F 是BC 的三等分点,∴BE=EF=CF=4,当点P与点A重合时,如图,过点A作BC的垂线,垂足为Q,∴BQ=CQ=AQ=6,∴EQ=FQ=2,∴PE=PF=22+=210,62∴PE+PF=410;当点P与点B重合时,PE+PF=4+8=12;作点E关于AB的对称点E′,连接E′F,与AB交于点P,此时PE+PF最短,即为E′F的长,∵△ABC是等腰直角三角形,∴∠ABC=45°,∵E和E′关于AB对称,∴∠ABC=∠ABE′=45°,∴∠E′BE=90°,BE′=BE=4,∴E′F=22'+=45,E B BF∵10160144,∴PE+PF的最大值为1045∴a的取值范围是510,故答案为:510.【点睛】本题考查了等腰直角三角形的判定和性质,无理数的估算,最短路径问题,勾股定理,知识点较多,解题的关键是求出a的最小值和特殊值.19.2【分析】根据△ABC 为等边三角形BP 平分∠ABC 得到∠PBC=30°利用PC ⊥BC 所以∠PCB=90°根据含30°直角三角形边的特殊关系和勾股定理即可解答【详解】解:∵△ABC 为等边三角形BP 平分解析:2【分析】根据△ABC 为等边三角形,BP 平分∠ABC ,得到∠PBC=30°,利用PC ⊥BC ,所以∠PCB=90°,根据含30°直角三角形边的特殊关系和勾股定理即可解答.【详解】解:∵△ABC 为等边三角形,BP 平分∠ABC , ∴1302PBC ABC ∠=∠=︒ , ∵PC ⊥BC ,∴∠PCB=90°,在Rt △PCB 中,设PC x =,则 2PB x =,根据勾股定理可得:(()2222x x +=,且0x >, 解得:2x =,∵∠ABC 的平分线是PB ,∴点P 到边AB 所在直线的距离与点P 到边BC 所在直线的距离相等.故答案为:2.【点睛】本题考查了等边三角形的性质、角平分线的性质、利用勾股定理求值,解决本题的关键是等边三角形的性质. 20.【分析】根据勾股定理求出PB 的长即PD 的长再根据两点间的距离公式求出点D 对应的数【详解】由勾股定理知:PB ===∴PD =∴点D 表示的数为﹣1故答案是:﹣1【点睛】此题考查勾股定理及圆的半径数轴等知识1【分析】根据勾股定理求出PB 的长,即PD 的长,再根据两点间的距离公式求出点D 对应的数.【详解】由勾股定理知:PB∴PD∴点D ﹣1.1.【点睛】此题考查勾股定理及圆的半径、数轴等知识,结合各知识点熟练运用是解题关键.三、解答题21.(1);(2)或;(3),证明见解析【分析】(1)由轴对称的性质和等腰三角形的性质得出,得出,证出AE=AC,由等腰三角形的性质和三角形内角和定理即可得出结果(2)分两种情况:当时,当时分别求解即可(3)作CG⊥AP于G,由AAS证明,得出CG=AM,证出点A是的外接圆的圆心,,得出和是等腰直角三角形,由勾股定理即可得出结论【详解】解:(1)补全示意图如图所示连接AE,设AP与BE交于点M,如图:由轴对称的性质得AE=AB,BM=EM,AM⊥BE,∵是等腰直角三角形∴AB=AC∴AE=AC∴(2)当时,如图:由(1)得,,在中∴∴∴∵AE=AB,AF=AF,FE=FB∴∴当时,如图:∵AE=AB,AF=AF,FE=FB∴∴∵AE=AB=AC∴∴即在与中,∴∴由上可知,的度数为或(3),理由如下:由(2)得:FE=FB,∴∴∵在中∴【点睛】本题考查了轴对称的性质,三角形全等的判定及性质,等腰直角三角形的性质,勾股定理等内容,熟练运用这些性质进行推理是解本题的关键22.“海天”号沿北偏西40°方向航行.【分析】先根据速度求出路程,再用勾股定理的逆定理判断出∠RPQ为90°,求出∠RPS即可.【详解】解:根据题意可知,PQ=16×1.5=24(海里),PR=12×1.5=18(海里),因为QR=30,242+182=302,即PQ2+PR2=QR2,所以∠QPR=90°.由“远航”号沿北偏东50°方向航行可知,∠QPS=50°.因此∠RPS=∠QPR-∠QPS=90°-50°=40°,即“海天”号沿北偏西40°方向航行.【点睛】此题主要考查了勾股定理的逆定理以及速度路程的关系,正确得出各线段长是解题关键.23.22米【分析】先根据勾股定理求出BC的长,再由旗杆高度=AB+BC解答即可.【详解】解:如下图所示,∵旗杆剩余部分、折断部分与地面正好构成直角三角形,∴222291215AB BC+=+=,∴旗杆的高=AB+BC=9+15=24m,答:这根旗杆被吹断裂前有24米高.【点睛】本题考查勾股定理在实际生活中的应用,解答此题的关键是从题中抽象出勾股定理这一数学模型,再根据勾股定理进行解答.24.(1)125;(2)①24t-;②83;(3)t的值为0.5或4.75或5或5.3.【分析】(1)直接利用勾股定理即可求得AC 的长,再利用等面积法即可求得斜边AB 上的高; (2)①CP 的长度等于运动的路程减去AC 的长度,②过点P '作P 'D ⊥AB ,证明Rt △AC P '≌Rt △AD P '得出AD=AC=4,分别表示各线段,在Rt △BD P '利用勾股定理即可求得t 的值;(3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,②当点P 在线段AB 上时,又分三种情况:BC=BP ;PC=BC ;PC=PB ,分别求得点P 运动的路程,再除以速度即可得出答案.【详解】解:(1)∵90C ∠=︒,5AB =,3BC =,∴在Rt ABC ∆中, 2222534AC AB BC =-=-=.∴AC 的长为4.设斜边AB 上的高为h .∵1122AB h AC BC ⨯⨯=⨯⨯, ∴1153422h ⨯⨯=⨯⨯, ∴125h =. ∴斜边AB 上的高为125. (2)已知点P 从点A 出发,以每秒2个单位长度的速度沿折线A-C-B-A 运动, ①当点P 在CB 上时,点P 运动的长度为:AC+CP=2t ,∵AC=4,∴CP=2t-AC=2t-4.故答案为:2t-4.②当点P '在∠BAC 的角平分线上时,过点P '作P 'D ⊥AB ,如图:∵A P '平分∠BAC ,P 'C ⊥AC ,P 'D ⊥AB ,∴P 'D=P 'C=2t-4,∵BC=3,∴B P '=3-(2t-4)=7-2t ,在Rt △AC P '和Rt △AD P '中,AP AP P D P C ''''=⎧⎨=⎩, ∴Rt △AC P '≌Rt △AD P '(HL ),∴AD=AC=4,又∵AB=5,∴BD=1,在Rt △BD P '中,由勾股定理得:2221(24)(72)t t +-=- 解得:83t =, 故答案为:83; (3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上, ①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,∴此时CP=BC=3,∴AP=AC-CP=4-3=1,∴2t=1,∴t=0.5;②当点P 在线段AB 上时,若BC=BP ,则点P 运动的长度为:AC+BC+BP=4+3+3=10,∴2t=10,∴t=5;若PC=BC ,如图2,过点C 作CH ⊥AB 于点H ,则BP=2BH ,在△ABC 中,∠ACB=90°,AB=5,BC=3,AC=4,∴AB•CH=AC•BC ,∴5CH=4×3,∴125CH =, 在Rt △BCH 中,由勾股定理得:22123() 1.85BH =-=, ∴BP=3.6, ∴点P 运动的长度为:AC+BC+BP=4+3+3.6=10.6,∴2t=10.6,∴t=5.3;若PC=PB ,如图3所示,过点P 作PQ ⊥BC 于点Q ,则30.52BQ CQ BC ==⨯=,∠PQB=90°, ∴∠ACB=∠PQB=90°,∴PQ ∥AC ,∴PQ 为△ABC 的中位线,∴PQ=0.5×AC=0.5×4=2, 在Rt △BPQ 中,由勾股定理得:223()2 2.52BP =+=, 点P 运动的长度为:AC+BC+BP=4+3+2.5=9.5,∴2t=9.5,∴t=4.75.综上,t 的值为0.5或4.75或5或5.3.【点睛】本题考查勾股定理,HL 定理,等腰三角形的性质和判定.掌握等面积法和分类讨论思想是解题关键.25.(1)CE BD ⊥,CE BD =,理由见解析;(2)见解析【分析】(1)利用等腰直角三角形的性质证明:ABD △≌ACE △,利用全等三角形的性质可得答案;(2)将AD 绕点A 逆时针旋转90︒,得到AG .连接EG ,CG ,同(1)理证明:90GCB ∠=︒,CG BD =,再证明:ADE ≌AGE ,可得:ED GE =,由勾股定理可得:222CG CE EG +=,等量代换后可得结论.【详解】解:(1)∵90BAC DAE ∠=∠=︒,∴BAD CAE ∠=∠.又BA CA =,AD AE =,∴ABD △≌ACE △(SAS ),∴CE BD =,45ACE B ∠=∠=︒.90BAC ∠=︒,AB AC =,∴ 45ACB B ∠=∠=︒,∴454590ECB ∠=︒+︒=︒,∴CE BD ⊥.∴CE 与BD 位置关系是CE BD ⊥,数量关系是CE BD =.(2)将AD 绕点A 逆时针旋转90︒,得到AG .连接EG ,CG ,如图二,同(1)理:可得90GCB ∠=︒,CG BD =.∵90DAG =︒∠,45DAE ∠=︒,∴45GAE DAE ∠=∠=︒,∵AD AG =,AE AE =,∴ADE ≌AGE (SAS ).∴ED GE =,又∵90GCB ∠=︒, ∴222CG CE EG +=,∴222BD EC DE +=.【点睛】本题考查的是等腰直角三角形的性质,三角形全等的判定与性质,勾股定理的应用,掌握以上知识是解题的关键.26.△ABC 是直角三角形;理由见解析.【分析】先求出a 、b 、c 的值,再通过计算得到a 2+c 2=b 2,根据勾股定理逆定理即可判断△ABC 是直角三角形.【详解】解:△ABC 是直角三角形.理由是:据题意得:a ﹣40=0,a ﹣b +1=0,c ﹣9=0,解得:a =40,c =9,b =41,∵a 2+c 2=402+92=1681, b 2=412=1681,∴a 2+c 2=b 2,∴△ABC 是直角三角形.【点睛】本题考查了勾股定理逆定理,算术平方根、绝对值、偶次方的非负性,根据题意求出a 、b 、c 的值是解题关键.。
初中数学八年级下册《勾股定理》测试卷(附参考答案解析)
八年级数学下册《勾股定理》测试卷班级考号姓名总分一、选择题1.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=52.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或253.正方形的面积是4,则它的对角线长是()A.2 B.C.D.44.如果直角三角形两直角边为5:12,则斜边上的高与斜边的比为()A.60:13 B.5:12 C.12:13 D.60:1695.如下图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()5题图 6题图 8题图A.6 B.C.D.46.已知,如上图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里 B.30海里 C.35海里 D.40海里7.三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形 B.钝角三角形 C.直角三角形 D.锐角三角形8.如上图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则BE的长是()A.3 B.4 C.5 D.6二、填空题9.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为().10.在△ABC中,∠C=90°,AB=5,则AB2+AC2+BC2=().11.正方形的对角线为4,则它的边长AB=().12.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为().13.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有()米.三、解答题14.如图是由16个边长为1的小正方形拼成的,任意连接这些小正方形的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段,并写出这两条线段的长度.15.如图:带阴影部分的半圆的面积是多少?(π取3)16.如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.17.在Rt△ABC中,∠C=90°.(1)已知c=25,b=15,求a; (2)已知a=,∠A=60°,求b、c.18.有一只小鸟在一棵高4m的小树梢上捉虫子,它的伙伴在离该树12m,高20m的一棵大树的树梢上发出友好的叫声,它立刻以4m/s的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?19.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.20.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,求梯子顶端A下落了多少米?附:参考答案解析1.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=5【考点】勾股定理的逆定理.【专题】选择题.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A、∵1.52+22≠32,∴该三角形不是直角三角形,故A选项符合题意;B、∵72+242=252,∴该三角形是直角三角形,故B选项不符合题意;C、∵62+82=102,∴该三角形是直角三角形,故C选项不符合题意;D、∵32+42=52,∴该三角形不是直角三角形,故D选项不符合题意.故选A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或25【考点】勾股定理的逆定理.【专题】选择题.【分析】已知的这两条边可以为直角边,也可以是一条直角边一条斜边,从而分两种情况进行讨论解答.【解答】解:分两种情况:(1)3、4都为直角边,由勾股定理得,斜边为5;(2)3为直角边,4为斜边,由勾股定理得,直角边为.∴第三边长的平方是25或7,故选D.【点评】本题利用了分类讨论思想,是数学中常用的一种解题方法.3.正方形的面积是4,则它的对角线长是()A.2 B.C.D.4【考点】勾股定理.【专题】选择题.【分析】设正方形的对角线为x,然后根据勾股定理列式计算即可得解.【解答】解:设正方形的对角线为x,∵正方形的面积是4,∴边长的平方为4,∴由勾股定理得,x==2.故选C.【点评】本题考查了勾股定理,正方形的性质,熟记定理和性质是解题的关键.。
上海民办协和双语学校八年级数学下册第二单元《勾股定理》测试题(有答案解析)
一、选择题1.如图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边,AB AC ,灰色部分面积记为1S ,黑色部分面积记为2S ,白色部分面积记为3S ,则( )A .12S SB .23S S =C .13S S =D .123S S S =- 2.如图,在Rt △ABC 中,∠ACB =90°,AB =10,AC =8,AB 的垂直平分线DE 交BC 的延长线于点E ,则DE 的长为( )A .103B .256C .203D .1543.如图,△ABC 中,∠ACB =90°,∠B =60°,CD ⊥AB 于点D ,△ABC 的面积为120,则△BCD 的面积为( )A .20B .24C .30D .404.如图,90MON ∠=︒,已知ABC ∆中,10AC BC ==,12AB =,ABC ∆的顶点A 、B 分别在边OM 、ON 上,当点B 在边ON 上运动时,点A 随之在边OM 上运动,ABC ∆的形状保持不变,在运动过程中,点C 到点O 的最大距离为( )A .12.5B .13C .14D .155.《九章算术》是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多6尺,门的对角线长10尺,那么门的高和宽各是多少?如果设门的宽为x 尺,根据题意可列方程( )A .222(6)10x x ++=B .222(6)10x x -+=C .222(6)10x x +-=D .222610x += 6.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( )A .514B .8C .16D .647.如图,在长为10的线段AB 上,作如下操作:经过点B 作BC AB ⊥,使得12BC AB =;连接AC ,在CA 上截取CE CB =;在AB 上截取AD AE =,则AD 的长为( )A .555-B .1055-C .10510-D .555+ 8.有四个三角形,分别满足下列条件,其中不是直角三角形的是( )A .一个内角等于另外两个内角之和B .三个内角之比为3:4:5C .三边之比为5:12:13D .三边长分别为7、24、259.如图,以AB 为直径的半圆O 过点C ,4AB =,在半径OB 上取一点D ,使AD AC =,30CAB ∠=︒,则点O 到CD 的距离OE 是( )A 2B .1C .2D .2210.若ABC 的三边a 、b 、c 满足2(3)450a b c ---=,则ABC 的面积是( )A .3B .6C .12D .1011.如图,在平面直角坐标系中,点P 为x 轴上一点,且到A (0,2)和点B (5,5)的距离相等,则线段OP 的长度为( )A .3B .4C .4.6D .2512.1876年,美国总统伽菲尔德利用如图所示的方法验证了勾股定理,其中两个全等的直角三角形的边AE ,EB 在一条直线上,证明中用到的面积相等关系是( )A .EDA CEB S S =△△B .EDA CDE CEB ABCD S S S S ++=△△△四边形C .EDA CEB CDE S S S +=△△△D .AECD DEBC S S =四边形四边形二、填空题13.如图,已知A 、B 是线段MN 上的两点,MN=4,MA=1,MB >1.以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成ABC .设AB=x ,若ABC 为直角三角形,则x=__.14.已知:如图,ABC 中,∠ACB=90°,AC=BC=2,ABD 是等边三角形,则CD 的长度为______.15.如图,点G 为△ABC 的重心.如果AG =CG ,BG =2,AC =4,那么AB 的长等于_________.16.如图,在Rt ABC 中,∠ACB =90°,AC =BC ,边AC 落在数轴上,点A 表示的数是1,点C 表示的数是3.以点A 为圆心、AB 长为半径画弧交数轴负半轴于点B 1,则点B 1所表示的数是_____.17.如图,在ABC 中,AB AC =,120A ∠=︒,AB 的垂直平分线分别交AB ,BC 于D ,E ,3BE =,则EC 的长为_____.18.已知一个三角形三边的长分别为5,10,15,则这个三角形的面积是_________________.19.已知直角坐标平面内的Rt △ABC 三个顶点的坐标分别为A (4,3)、B (1,2)、C (3,-4),则直角顶点是_________.20.如图,∠AOD =90°,OA =OB =BC =CD ,若AC =3,则AD =_______.三、解答题21.如图,ABC ∆中,,AB AC AD >是BC 边上的高,将ADC 沿AD 所在的直线翻折,使点C 落在BC 边上的点E 处.()1若20,13,5AB AC CD ===,求ABC ∆的面积;()2求证:22AB AC BE BC -=⋅.22.《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中夹,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其底面是边长是10尺的正方形,一根芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B'(如图).水深和芦苇长各多少尺?23.已知△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°(1)若D 为△ACB 内部一点,如图,AE =BD 吗?说明理由(2)若D 为AB 边上一点,AD =5,BD =12,求DE 的长24.如图,在ABC 中,90ACB ∠=︒,5AB =,3BC =,点P 从点A 出发,以每秒2个单位长度的速度沿折线A C B A ---运动.设点P 的运动时间为t 秒()0t >. (1)求AC 的长及斜边AB 上的高.(2)当点P 在CB 上时,①CP 的长为______________(用含t 的代数式表示).②若点P 在BAC ∠的角平分线上,则t 的值为______________.(3)在整个运动过程中,直接写出BCP 是等腰三角形时t 的值.25.阅读下面的情景对话,然后解答问题:老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.小华:等边三角形一定是奇异三角形!小明:那直角三角形是否存在奇异三角形呢?(1)根据“奇异三角形”的定义,请你判断小华的说法:“等边三角形一定是奇异三角形”______正确(填“是”或“不是”)(2)在Rt ABC 中,两边长分别是52a =、10c =,这个三角形是否是奇异三角形?请说明理由.26.已知长方形纸片ABCD ,将长方形纸片按如图所示的方式折叠,使点D 与点B 重合,折痕为EF .(1)△BEF 是等腰三角形吗?若是,请说明理由;(2)若AB =4,AD =8,求BE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由勾股定理,由整个图形的面积减去以BC 为直径的半圆的面积,即可得出结论.【详解】Rt △ABC 中,∵AB 2+AC 2=BC 2∴S 2=222111*********ABC AB AC BC S πππ⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()22218ABC AB AC BCS π∆+-+=S 1.故选A .【点睛】 本题考查了勾股定理、圆面积公式以及数学常识;熟练掌握勾股定理是解题的关键. 2.C解析:C【分析】利用勾股定理求BC 的长度,连接AE ,然后设BE=AE=x ,结合勾股定理列方程求解.【详解】解:如图,∵Rt △ABC 中,∠ACB=90°, ∴22221086BC AB AC =-=-=,∵DE 是AB 的垂直平分线,∴BD=12AB=5,∠EDB=90°,AE=BE 连接AE ,设AE=BE=x ,则CE=x-6在Rt △ACE 中,222(6)8x x -+=,解得:253x =∴BE=AE=253 在Rt △BDE 中,ED=22222520()533BE BD -=-=. 故选:C .【点睛】本题考查了勾股定理解直角三角形和线段垂直平分线的性质,掌握相关性质定理正确推理计算是解题关键.3.C解析:C【分析】根据已知条件可知∠A =∠BCD =30°,在Rt △BCD 中设BD =x ,则BC =2x ,由勾股定理求得CD 3x ,在Rt △ACD 中,AC =2BC =23x ,根据△ABC 的面积为120,即11202AC BC ⨯=,求得2x 的值,用三角形的面积公式即可得出△BCD 的面积. 【详解】解:∵△ABC 中,∠ACB =90°,∠B =60°,CD ⊥AB 于点D ,∴在Rt △ABC 中,∠A =30°,在Rt △BCD 中,∠BCD =30°,∴ 设BD =x ,则BC =2BD =2x ,CD ()222223BC BD x x x -=-=,∴ 在Rt △ACD 中,∠A =30°,∴AC =2BC =23x , ∵△ABC 的面积为120, ∴1122312022ABC S AC BC x x =⨯⨯=⨯⨯=, 解得:2=203x ,∵211333=203=3022BCD S BD CD x x x =⨯⨯=⨯⨯=⨯, 故选:C .【点睛】本题考查了直角三角形中,30°所对的直角边是斜边的一半和勾股定理.熟练掌握各定理所示解题的关键.4.C解析:C【分析】取AB 的中点D ,连接CD ,根据三角形的边角关系得到O C≤OD+DC ,只有当O 、D 及C 共线时,OC 取得最大值,最大值为OD+CD ,根据D 为AB 中点,得到BD=3,根据三线合一得到CD 垂直于AB ,在Rt △BCD 中,根据勾股定理求出CD 的长,在Rt △AOB 中,OD 为斜边AB 上的中线,根据直角三角形斜边上的中线等于斜边的一半可得OD 的值,进而求出DC+OD ,即为OC 的最大值.【详解】解:如图,取AB 的中点D ,连接CD ,∵AC=BC=10,AB=12,∵点D 是AB 边中点,∴BD=12AB=6,CD ⊥AB , ∴22221068BC BD -=-=,连接OD ,OC ,有OC≤OD+DC ,当O 、D 、C 共线时,OC 有最大值,最大值=OD+CD ,∵△AOB 为直角三角形,D 为斜边AB 的中点,∴OD=12AB=6∴OD+CD=6+8=14,即OC 的最大值=14,故选:C .【点睛】本题主要考查等腰三角形的性质,直角三角形的性质以及三角形三边之间的关系,掌握三角形任意两边之和大于第三边,是解题的关键.5.A解析:A【分析】设门的宽为x 尺,则高为(x+6)尺,根据勾股定理解答.【详解】设门的宽为x 尺,则高为(x+6)尺,根据题意可列方程222(6)10x x ++=,故选:A .【点睛】此题考查勾股定理计算,正确理解题意掌握勾股定理计算公式是解题的关键. 6.D解析:D【分析】设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,代入得到2225289a +=,计算求出答案即可.【详解】如图,设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,∴2225289a +=,∴字母A 所代表的正方形的面积264a =,故选:D ..【点睛】此题考查以弦图为背景的证明,熟记勾股定理的计算公式、理解三个正方形的面积关系是解题的关键.7.A解析:A【分析】由勾股定理求出AC=55AD=AE=AC-CE=55-5即可.【详解】解:∵BC ⊥AB ,AB=10,CE =BC=1110522AB =⨯=,∴==∴AD=AE=AC-CE=5,故选:A【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.8.B解析:B【分析】根据三角形的内角和定理或勾股定理的逆定理即可进行判断,从而得到答案.【详解】解:A 、设一个内角为x ,则另外两个内角之和为x ,则x +x =180°,解得x=90°,故是直角三角形;B 、设较小的角为3x ,则其于两角为4x ,5x ,则3x +4x+5x =180°,解得x=15°,则三个角分别为45°,60°,75°,故不是直角三角形;C 、因为52+122=132符合勾股定理的逆定理,故是直角三角形;D 、因为72+242=252符合勾股定理的逆定理,故是直角三角形.故选:B .【点睛】本题考查三角形内角和定理,勾股定理的逆定理,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9.A解析:A【分析】在等腰ACD ∆中,顶角30A ∠=︒,易求得75ACD ∠=︒,根据等边对等角,可得30OCA A ∠=∠=︒,由此可得45OCD ∠=︒,即OCE ∆是等腰直角三角形,则OE =【详解】∵AC AD =,30A ∠=︒,∴75ACD ADC ∠=∠=︒,∵AO OC =,∴30OCA A ∠=∠=︒,∴45OCD ∠=︒,即OCE ∆是等腰直角三角形. 在等腰Rt OCE ∆中,2OC =,因此 OE =故选:A .【点睛】本题综合考查了等腰三角形的性质、三角形的内角和定理、解直角三角形等知识的应用. 10.B解析:B【分析】根据绝对值,乘方和算术平方根的非负性求得a 、b 、c 的值,再结合勾股定理逆定理判断△ABC 为直角三角形,由此根据直角三角形面积等于两直角边乘积的一半可得面积.【详解】解:∵2(3)50a c --=,∴30,40,50a b c -=-=-=,解得3,4,5a b c ===,又∵222223425a b c +=+==,∴△ABC 为直角三角形, ∴13462ABC S =⨯⨯=△. 故选:B .【点睛】本题考查非负数的性质,勾股定理的逆定理.理解几个非负数(式)的和为0,那么这几个数(式)都为0是解题关键. 11.C解析:C【分析】设点P (x ,0),根据两点间的距离公式列方程,即可得到结论.【详解】解:设点P (x ,0),根据题意得,x 2+22=(5﹣x )2+52,解得:x =4.6,∴OP =4.6,故选:C .【点睛】本题考查了利用勾股定理求两点间的距离,熟练掌握两点间的距离公式是解题的关键. 12.B解析:B【分析】直接根据梯形ABCD 的面积的两种算法进行解答即可.【详解】解:由图形可得:EDA CDE CEB ABCD S S S S ++=△△△四边形故答案为B .【点睛】本题主要考查了勾股定理的证明方法,将图形的面积用两种方式表示出来成为解答本题的关键.二、填空题13.或【分析】根据三角形的三边关系:两边之和大于第三边即可得到关于x 的不等式组求出x 的取值范围再根据勾股定理即可列方程求解【详解】解:∵在△ABC 中AC=1AB=xBC=3-x 解得1<x <2;①∵1<x 解析:43或53【分析】 根据三角形的三边关系:两边之和大于第三边,即可得到关于x 的不等式组,求出x 的取值范围,再根据勾股定理,即可列方程求解.【详解】解:∵在△ABC 中,AC=1,AB=x ,BC=3-x .1313x x x x +>-⎧∴⎨+->⎩, 解得1<x <2;①∵1<x ,∴AC 不能为斜边,②若AB 为斜边,则x 2=(3-x )2+1,解得x=53,满足1<x <2, ③若BC 为斜边,则(3-x )2=1+x 2,解得x=43 ,满足1<x <2, 故x 的值为:43或53, 故答案为:43或53. 【点睛】本题主要考查了三角形的三边关系以及勾股定理,正确理解分类讨论是解题的关键. 14.【分析】由勾股定理求出AB 根据等边三角形的性质得出AB=AD=BD=2∠DAB=∠ABD=60°证出AB ⊥CD 于E 且AE=BE=1求出AE=CE=1由勾股定理求出DE 即可得出结果【详解】解:∵∠AC1【分析】由勾股定理求出AB ,根据等边三角形的性质得出AB=AD=BD=2,∠DAB=∠ABD=60°,证出AB ⊥CD 于E ,且AE=BE=1,求出AE=CE=1,由勾股定理求出DE ,即可得出结果.【详解】解:∵∠ACB=90°,,∴AB=()()2222222AC BC +=+=,∠CAB=∠CBA=45°, ∵ABD 是等边三角形,∴AB=AD=BD=2,∠DAB=∠ABD=60°,∵AC=BC ,AD=BD ,∴AB ⊥CD 于E ,且AE=BE=1,在Rt △AEC 中,∠AEC=90°,∠EAC=45°,∴∠EAC=∠ACE=45°,∴AE=CE=1,在Rt △AED 中,∠AED=90°,AD=2,AE=1,∴DE=223AD AE -=,∴CD=31+.故答案为31+.【点睛】本题考查了勾股定理,等腰直角三角形的性质,等边三角形的性质,线段垂直平分线的性质等知识.运用勾股定理求出DE 是解决本题的关键.15.【分析】先延长BG 交AC 与点D 再根据重心的性质得出BD=3;证∆A DG∆CDG 得出BD ⊥AC 再利用勾股定理求出AB 的长【详解】解:(如图)延长BG 交AC 与点D ∵点G 为△ABC 的重心BG=2∴AD=C解析:13【分析】先延长BG 交AC 与点D ,再根据重心的性质得出BD =3;证∆ADG ≅∆CDG ,得出BD ⊥AC ,再利用勾股定理求出AB 的长.【详解】解:(如图)延长BG 交AC 与点D ,∵点G 为△ABC 的重心,BG =2,∴AD=CD,BD=3,又∵AG=CG,GD=GD,∴∆ADG≅∆CDG,∴∠ADG=∠CDG,∴BD⊥AC,∵AC=4,∴AD=2,∴AB【点睛】本题主要考查了三角形重心的性质,三角形全等和勾股定理,正确做出辅助线,求出BD、AD的长以及证明∆ADG≅∆CDG是解决本题的关键.16.1﹣2【分析】先求出AC的长度再根据勾股定理求出AB的长度然后根据数轴的特点从点A向左AB个单位即可得到点B1【详解】解:根据题意AC=3﹣1=2∵∠ACB=90°AC=BC∴AB=∴点B1表示的数解析:1﹣【分析】先求出AC的长度,再根据勾股定理求出AB的长度,然后根据数轴的特点,从点A向左AB个单位即可得到点B1.【详解】解:根据题意,AC=3﹣1=2,∵∠ACB=90°,AC=BC,∴AB==∴点B1表示的数是1﹣故答案为:1﹣.【点睛】本题考查勾股定理、实数与数轴,解题的关键是利用勾股定理求出AB.17.6【分析】根据等腰三角形的性质可求出两底角的度数连接AE可得出AE=BE∠EAD=推出∠EAC=利用勾股定理解直角三角形即可得出答案【详解】解:连接AE∵AB=AC∠A=∴∠B=∠C=∵ED垂直平分解析:6【分析】根据等腰三角形的性质可求出两底角的度数,连接AE,可得出AE=BE ,∠EAD=30︒,推出∠EAC=90︒,利用勾股定理解直角三角形即可得出答案.【详解】解:连接AE,∵ AB=AC ,∠A=120︒ ,∴ ∠B=∠C=()1180120302︒-︒=︒, ∵ED 垂直平分AB , ∴AE=BE ,∠EAD=30︒ ,∵BE=3,∴DE=1322BE = ∴2233BD BE DE =-= ∴AB=AC=2BD=33,∵ ∠A=120︒ ,∴ ∠EAC=90︒ , ∴22366CE AC AE =+==, 故答案为:6.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质、勾股定理、直角三角形30︒角所对的直角边等于斜边的一半的性质,熟记性质并作辅助线构造出直角三角形是解题的关键. 18.【分析】根据勾股定理的逆定理判断这是一个直角三角形再结合面积公式求解【详解】解:∵∴∴该三角形为直角三角形∴其面积为故答案为:【点睛】本题考查了勾股定理的逆定理以及二次根式的乘法法则熟练掌握勾股定理 522【分析】根据勾股定理的逆定理,判断这是一个直角三角形,再结合面积公式求解.【详解】解:∵2215))015+=,2(15)15=, ∴222(5)()10()15+=,∴该三角形为直角三角形,∴其面积为15510222=【点睛】本题考查了勾股定理的逆定理以及二次根式的乘法法则,熟练掌握勾股定理的逆定理是解决本题的关键.19.B【分析】先根据两点间的距离公式得到AB2BC2AC2的值然后根据勾股定理的逆定理即可解答【详解】解:∵A(43)B(12)C(3-4)∴AB2=(4-1)2+(3-2)2=10AC2=(3-4)2解析:B【分析】先根据两点间的距离公式得到AB2、BC2、AC2的值,然后根据勾股定理的逆定理即可解答.【详解】解:∵A(4,3)、B(1,2)、C(3,-4),∴AB2=(4-1)2+(3-2)2=10,AC2=(3-4)2+(-4-3)2=50,BC2=(3-1)2+(-4-2)2=40,∴AC2=AB2+BC2,∴△ABC为直角三角形,∴∠B=90°,即该直角三角形的直角顶点为B.故答案为B.【点睛】本题主要考查勾股定理的逆定理、两点间的距离公式,正确的运用相关的定理、公式成为解答本题的关键.20.【分析】设OA=OB=BC=CD=a可知AB=AC=AD=由题意知AC=3即可求出AD 的长;【详解】∵OA=OB=BC=CD∴设OA=OB=BC=CD=a∵∠AOD=90°∴AC===∴∵AC==3解析:【分析】设OA=OB=BC=CD=a,可知,, ,由题意知AC=3,即可求出AD的长;【详解】∵ OA=OB=BC=CD,∴设OA=OB=BC=CD=a,∵∠AOD=90°,∴,∴AD===,∵=3,∴ a=355 ∴ AD=3510⨯ =32 故答案为:32.【点睛】本意考查了等腰直角三角形的性质,勾股定理,正确掌握等腰直角三角形的性质和勾股定理是解题的关键;三、解答题21.(1)126;(2)见解析【分析】(1)利用勾股定理容易求出AD 长;进而求出BD ,从而得到BC 长,再由三角形面积公式即可求解;(2)利用勾股定理易得2222AB AC BD DE -=-,再利用平方差公式分解因式可得()()22AB AC BD DE BD DE -=-+,根据折叠性质和线段和差关系即可得出结论.【详解】(1)解:AD 是BC 边上的高,90ADB ADC ∴∠=∠= 在Rt ADC 中, 13,5,AC CD ==2213514412AD ∴=-=在Rt ADB 中,20,12,AB AD ==22201225616BD ∴=-==16521,BC BD CD ∴=+=+=11211212622ABC S BC AD ∴=⨯⨯=⨯⨯=(平方单位). (2)证明:ADC 沿AD 所在的直线翻折得到,ADE,,AC AE DC DE ∴==在Rt ADC 中,由勾股定理,得222,AC AD DC =+在Rt ADB 中,由勾股定理,得222BD AB AD =-, ()22222AB AC AB AD DC ∴-=-+222AB AD DC =-- 22BD DE =-()(),BD DE BD DE =-+,,BE BD DE BC BD DC BD DE =-=+=+22AB AC BE BC ∴-=⋅.【点睛】本题主要考查了勾股定理;熟练掌握翻折变换的性质,利用由勾股定理求解是解决问题的关键.22.水深12尺,芦苇长13尺【分析】依题意画出图形,设芦苇长AB =AB '=x 尺,则水深AC =(x -1)尺,因为B 'E =10尺,所以B 'C =5尺,利用勾股定理求出x 的值即可得到答案.【详解】解:依题意画出图形,如下图,设芦苇长AB =AB '=x 尺,则水深AC =(x -1)尺,因为B 'E =10尺,所以B 'C =5尺,在Rt △ACB '中,52+(x -1)2=x 2,解得:x =13,即水深12尺,芦苇长13尺.【点睛】此题考查勾股定理的实际应用,正确理解题意,构建直角三角形利用勾股定理解决问题是解题的关键.23.(1)AE =BD ,见解析;(2)13【分析】(1)由“SAS”可证△ACE ≌△BCD ,可得AE=BD ;(2)由全等三角形的性质可得BD=AE=12,∠CAE=∠CBD=45°,由勾股定理可求DE 的长.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形,∴CD =CE ,AC =BC ,∠ECD =∠ACB =90°,∴∠ACE =∠BCD在△ACE 和△BCD 中∵EC =CD ,∠ACE =∠BCD ,AC =BC ,∴△ACE ≌△BCD (SAS )∴AE =BD ;(2)如图,由(1)可知:△ACE ≌△BCD ,∴BD =AE =12,∠CAE =∠CBD =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,即52+122=ED 2∴DE =13;【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,证明△ACE ≌△BCD 是本题的关键.24.(1)125;(2)①24t -;②83;(3)t 的值为0.5或4.75或5或5.3. 【分析】(1)直接利用勾股定理即可求得AC 的长,再利用等面积法即可求得斜边AB 上的高; (2)①CP 的长度等于运动的路程减去AC 的长度,②过点P '作P 'D ⊥AB ,证明Rt △AC P '≌Rt △AD P '得出AD=AC=4,分别表示各线段,在Rt △BD P '利用勾股定理即可求得t 的值;(3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,②当点P 在线段AB 上时,又分三种情况:BC=BP ;PC=BC ;PC=PB ,分别求得点P 运动的路程,再除以速度即可得出答案.【详解】解:(1)∵90C ∠=︒,5AB =,3BC =,∴在Rt ABC ∆中, 2222534AC AB BC =-=-=.∴AC 的长为4.设斜边AB 上的高为h .∵1122AB h AC BC ⨯⨯=⨯⨯, ∴1153422h ⨯⨯=⨯⨯, ∴125h =. ∴斜边AB 上的高为125. (2)已知点P 从点A 出发,以每秒2个单位长度的速度沿折线A-C-B-A 运动, ①当点P 在CB 上时,点P 运动的长度为:AC+CP=2t ,∵AC=4,∴CP=2t-AC=2t-4.故答案为:2t-4.②当点P '在∠BAC 的角平分线上时,过点P '作P 'D ⊥AB ,如图:∵A P '平分∠BAC ,P 'C ⊥AC ,P 'D ⊥AB ,∴P 'D=P 'C=2t-4,∵BC=3, ∴B P '=3-(2t-4)=7-2t ,在Rt △AC P '和Rt △AD P '中,AP AP P D P C ''''=⎧⎨=⎩, ∴Rt △AC P '≌Rt △AD P '(HL ),∴AD=AC=4,又∵AB=5,∴BD=1,在Rt △BD P '中,由勾股定理得:2221(24)(72)t t +-=-解得:83t =, 故答案为:83; (3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上, ①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,∴此时CP=BC=3,∴AP=AC-CP=4-3=1,∴2t=1,∴t=0.5;②当点P 在线段AB 上时,若BC=BP ,则点P 运动的长度为:AC+BC+BP=4+3+3=10,∴2t=10,∴t=5;若PC=BC ,如图2,过点C 作CH ⊥AB 于点H ,则BP=2BH ,在△ABC 中,∠ACB=90°,AB=5,BC=3,AC=4,∴AB•CH=AC•BC ,∴5CH=4×3, ∴125CH =, 在Rt △BCH 中,由勾股定理得:22123() 1.85BH =-=, ∴BP=3.6, ∴点P 运动的长度为:AC+BC+BP=4+3+3.6=10.6,∴2t=10.6,∴t=5.3;若PC=PB ,如图3所示,过点P 作PQ ⊥BC 于点Q ,则30.52BQ CQ BC ==⨯=,∠PQB=90°, ∴∠ACB=∠PQB=90°,∴PQ ∥AC ,∴PQ 为△ABC 的中位线,∴PQ=0.5×AC=0.5×4=2,在Rt △BPQ 中,由勾股定理得: 2.5BP ==, 点P 运动的长度为:AC+BC+BP=4+3+2.5=9.5,∴2t=9.5,∴t=4.75.综上,t 的值为0.5或4.75或5或5.3.【点睛】本题考查勾股定理,HL 定理,等腰三角形的性质和判定.掌握等面积法和分类讨论思想是解题关键.25.(1)是;(2)①当c 为斜边时,Rt △ABC 不是奇异三角形;②当b 为斜边时,Rt △ABC 是奇异三角形.【分析】(1)根据题中所给的奇异三角形的定义直接进行判断即可;(2)分c 是斜边和b 是斜边两种情况,再根据勾股定理判断出所给的三角形是否符合奇异三角形的定义.【详解】解:(1)设等边三角形的边长为a ,∵a 2+a 2=2a 2,∴等边三角形一定是奇异三角形,∴“等边三角形一定是奇异三角形”是正确的,故答案为:是;(2)①当c 为斜边时,Rt △ABC 不是奇异三角形;②当b 为斜边时,Rt △ABC 是奇异三角形;理由如下,分两种情况:①当c 为斜边时,=∴a=b ,∴a 2+c 2≠2b 2(或b 2+c 2≠2a 2),∴Rt △ABC 不是奇异三角形;②当b 为斜边时,=,∵a 2+b 2=200,∴2c 2=200,∴a 2+b 2=2c 2,∴Rt △ABC 是奇异三角形.【点睛】本题考查的是勾股定理的应用,需要熟练掌握勾股定理的公式,运用分类讨论的思想是解决第(2)问的关键.26.(1)BEF 是等腰三角形,理由见解析;(2)5.【分析】(1)先根据长方形的性质可得//AD BC ,再根据平行线的性质可得DEF BFE ∠=∠,然后根据折叠的性质可得DEF BEF ∠=∠,从而可得BFE BEF ∠=∠,最后根据等腰三角形的判定即可得;(2)先根据长方形的性质可得90A ∠=︒,再根据折叠的性质可得BE DE =,然后设BE DE x ==,从而可得8AE x =-,最后在Rt ABE △中,利用勾股定理即可得.【详解】(1)BEF 是等腰三角形,理由如下:四边形ABCD 是长方形,//AD BC ∴,DEF BFE ∴∠=∠,由折叠的性质得:DEF BEF ∠=∠,BFE BEF ∴∠=∠,BEF ∴是等腰三角形;(2)四边形ABCD 是长方形,90A ∴∠=︒,由折叠的性质得:BE DE =,设BE DE x ==,则8AE AD DE x =-=-,在Rt ABE △中,222AB AE BE +=,即2224(8)x x +-=,解得5x =,即BE 的长为5.【点睛】本题考查了长方形与折叠问题、勾股定理、等腰三角形的判定等知识点,熟练掌握各判定定理与性质是解题关键.。
上海兰生复旦八年级数学下册第二单元《勾股定理》测试(答案解析)
一、选择题1.以下列各组数为三边的三角形中不是直角三角形的是 ( )A .1,2,5B .3,5,4C .5,12,13D .1,3,7 2.如图,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是()A .CD 、EF 、GHB .AB 、EF 、GHC .AB 、CD 、GH D .AB 、CD 、EF 3.下列条件不能判定一个三角形为直角三角形的是( )A .三个内角之比为1︰2︰3B .一边上的中线等于该边的一半C .三边为111,,12135D .三边长为()222220m n m n mn m n +->>、、4.下列线段不能组成直角三角形的是( )A .6,8,10B .1,2,3C .43,1,53D .2,4,6 5.如图1,分别以直角三角形三边为边向外作正方形,面积分别为1S ,2S ,3S ;如图2,分别以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6S .其中11S =,23S =,52S =,64S =,则34S S +=( )A .10B .9C .8D .76.如图所示,在Rt ABC 中,90,3,5C AC BC ∠=︒==,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则线段CD 的长是( )A .85B .165C .175D .2457.已知锐角△ABC 的三边长恰为三个连续整数,AB >BC >CA ,若边BC 上的高为AD ,则BD ﹣DC =( )A .3B .4C .5D .68.如图,在长为10的线段AB 上,作如下操作:经过点B 作BC AB ⊥,使得12BC AB =;连接AC ,在CA 上截取CE CB =;在AB 上截取AD AE =,则AD 的长为( )A .555-B .1055-C .10510-D .555+ 9.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,下列结论:①AD 是BAC ∠的平分线;②∠ADB=120°;③DB=2CD ;④若CD=4,83AB =,则△DAB 的面积为20.其中正确的结论共有( )A .1个B .2个C .3个D .4个10.如图,以AB 为直径的半圆O 过点C ,4AB =,在半径OB 上取一点D ,使AD AC =,30CAB ∠=︒,则点O 到CD 的距离OE 是( )A .2B .1C .2D .22 11.2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,则2()a b +的值为( )A .25B .19C .13D .169 12.若ABC 的三边a 、b 、c 满足2(3)450a b c -+-+-=,则ABC 的面积是( )A .3B .6C .12D .10二、填空题13.已知在ABC 中,45ABC ︒∠=,32AB =,1BC =,且以AB 为边作等腰Rt ABD ,90ABD ︒∠=,连结CD ,则CD 的长为________.14.如图,数轴上点C 表示的数的平方为______.15.如图在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,点D 是AB 的中点,过点D 作DE 垂直AB 交BC 的延长线于点E ,则CE 的长是_______.16.如图,点P 是等边ABC 内的一点,6PA =,8PB =,10PC =.若点P '是ABC 外的一点,且P AB PAC '≌△△,则APB ∠的度数为_____.17.如图,在长方形ABCD 中,4AB =,8BC =,点E 是BC 边上一点,且AE EC =,点P 是AD 边上一动点,连接PE 、PC .给出下列结论:①3BE =;②当5AP =时,//AE CP ;③当256AP =时,AE 平分BEP ∠; ④若PBE EPC ∠=∠,则BPC PEC ∠=∠.其中正确的是______.18.在平面直角坐标系中有两点A(5,0),B(2,1),如果点C 在坐标平面内,且由点A 、O 、C 连成的三角形与△AOB 全等(△AOC 与△AOB 不重合),则点C 的坐标是_________ 19.如图,在ABC 中,45ABC ︒∠=,3AB =,AD BC ⊥于点D ,BE AC ⊥于点F .1AE =,连接DE ,将AED 沿直线AE 翻折至ABC 所在的平面,得AEF ,连接DF .过点D 作DG DE ⊥交BE 于点G ,则四边形DFEG 的周长为________.20.如图,在Rt ABC 中,90B ∠=︒,AC 的垂直平分线DE 分别交AB ,AC 于,D E 两点,若4AB =,3BC =,则CD 的长为______________.三、解答题21.Rt △ABC 中,∠ACB =90°,AC =3,AB =5.(1)如图1,点E 在边BC 上,且∠AEC =2∠B .①在图1中用尺规作图作出点E ,并连结AE (保留作图痕迹,不写作法与证明过程); ②求CE 的长.(2)如图2,点D 为斜边上的动点,连接CD ,当△ACD 是以AC 为底的等腰三角形时,求AD 的长.22.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC 中,∠ACB =90°.AC =b ,BC =a ,AB =c ,请你利用这个图形解决下列问题:(1)试说明:a 2+b 2=c 2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a +b )2的值.23.如图,在ABC 中,2,1,20AB AC BAC AD BC ︒==∠=⊥于点D ,延长AD 至点E ,使DE AD =,连接BE 和CE .(1)补全图形;(2)若点F 是AC 的中点,请在BC 上找一点P 使AP FP +的值最小,并求出最小值. 24.如图,已知长方形ABCD 中,AB =8cm ,BC =10cm ,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求EF 的长.25.定义:在边长为1的小正方形方格纸中,把顶点落在方格交点上的线段、三角形、四边形分别称为格点线段、格点三角形、格点四边形,请按要求画图:(1)在图1中画出一个面积为1的格点等腰直角三角形ABC;(2)在图2中画出一个面积为13的格点正方形DEFG;(3)在图3中画出一条长为5,且不与正方形方格纸的边平行的格点线段1H;(4)在图4中画出一个周长为3210的格点直角三角形JKL.26.在△ABC中,∠A、∠B、∠C的对边分别用a、b、c来表示,且a、b、c满足关系40a-+|a﹣b +1|+(c﹣9)2=0,试判断△ABC的形状,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】直接利用勾股定理的逆定理验证即可.【详解】A、∵2221255+==,∴以1、25为三边的三角形是直角三角形,A不符合题意;B、∵22234255+==,∴以3、5、4为三边的三角形是直角三角形,B不符合题意;C、∵22251216913+==,∴以5、12、13为三边的三角形是直角三角形,C 不符合题意;D 、∵2221310+=≠,∴以1、3为三边的三角形不是直角三角形,D 符合题意;故选:D .【点睛】本题考查了勾股定理的逆定理的应用,熟练掌握勾股定理的逆定理是解题的关键. 2.B解析:B【分析】设出正方形的边长,利用勾股定理,解出AB 、CD 、EF 、GH 各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【详解】解:设小正方形的边长为1,则AB 2=22+22=8,CD 2=22+42=20,EF 2=12+22=5,GH 2=22+32=13.因为AB 2+EF 2=GH 2,所以能构成一个直角三角形三边的线段是AB 、EF 、GH .故选:B .【点睛】本题考查了勾股定理逆定理的应用;解题的关键是解出AB 、CD 、EF 、GH 各自的长度. 3.C解析:C【分析】根据直角三角形的判定条件分别判断即可;【详解】三个内角之比为1︰2︰3,三角形有一个内角为90︒,故A 不符合题意;直角三角形中,斜边上的中线等于斜边的一半,故B 不符合题意;22211112135⎛⎫⎛⎫⎛⎫=≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 符合题意;三边长的关系为()()()()222222220mn m n mn m n +=-+>>,故D 不符合题意;故选:C .【点睛】本题主要考查了勾股定理逆定理和三角形内角和定理,准确分析判断是解题的关键.4.D解析:D【分析】直接利用勾股定理的逆定理带入判断即可;【详解】A 、2226810+=,能组成直角三角形;B 、2221+= 能组成直角三角形; C 、22245()1()33+= ,能组成直角三角形;D 、22224+≠ ,不能组成直角三角形.故选:D .【点睛】本题考查了勾股定理逆定理的运算,正确掌握勾股定理的逆运算是解题的关键; 5.A解析:A【分析】由题意可得S 1+S 2=S 3, S 5+S 6=S 4,然后根据S 1=1,S 2=3,S 5=2,S 6=4,然后求出S 3+S 4的值即可.【详解】解:如图:∵S 1=a 2,S 2=b 2,S 3=c 2,∴a 2+b 2=c 2,即S 1+S 2=S 3,同理可得:S 5+S 6=S 4,∵S 1=1,S 2=3,S 5=2,S 6=4∴S 3+S 4=(1+3)+(2+4)=4+6=10.故答案为A .【点睛】本题主要考查勾股定理的应用以及正方形的面积、圆的面积的解法,审清题意、灵活运用数形结合的思想成为解答本题的关键.6.A解析:A【分析】连接AD ,由三角形全等以及三线合一可知PQ 垂直平分线段AB ,推出AD DB =,设AD DB x ==,在Rt ACD △中,90C ∠=︒ ,根据222AD AC CD =+构建方程即可解决问题.【详解】如图,连接AD ,由已知条件可知PQ 垂直平分线段AB ,∴AD DB =,设AD DB x ==,5CD x =-,在Rt ACD △中,90C ∠=︒ ,∴222AD AC CD =+,∴2223(5)x x =+-, 解得:751x =, ∴178555CD BC DB =-=-=, 故选:A .【点睛】本题考查了基本作图,圆的性质,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.7.B解析:B【分析】根据勾股定理,因AD 为公共边可以得到AB 2﹣BD 2=AC 2﹣CD 2再把三边关系代入解答即可.【详解】解:设BC =n ,则有AB =n +1,AC =n ﹣1,AB 2﹣BD 2=AC 2﹣CD 2,∴ AB 2﹣AC 2=BD 2﹣CD 2∴ (n +1)2﹣(n ﹣1)2=(BD ﹣CD )n ,∴BD ﹣CD =4,故选:B .【点睛】此题主要考查了勾股定理,根据题意得出 BD ﹣CD 的长是解题关键.8.A解析:A【分析】由勾股定理求出AC=AD=AE=AC-CE=-5即可.【详解】解:∵BC ⊥AB ,AB=10,CE =BC=1110522AB =⨯=,∴==∴AD=AE=AC-CE=5,故选:A【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.9.C解析:C【分析】连接PN 、PM .根据题意易证明APM APN ≅,即可证明①正确;根据三角形外角的性质即可求出=120ADB ∠︒,故②正确;由30BAD B ∠=∠=︒,可说明AD=BD ,再由AD=2CD ,即可证明BD=2CD ,故③正确;由④所给条件可求出AC 和DB 的长,即可求出DAB S ④错误.【详解】如图,连接PN 、PM .由题意可知AM=AN ,PM=PN ,AP=AP ,903060BAC ∠=︒-︒=︒.∴APM APN ≅, ∴1302CAD BAD BAC ∠=∠=∠=︒,即AD 是BAC ∠的平分线,故①正确; ∵=ADB C CAD ∠∠+∠,∴=9030=120ADB ∠︒+︒︒,故②正确;在Rt ACD △中,30CAD ∠=︒,∴AD=2CD ,又∵30BAD B ∠=∠=︒,∴AD=BD ,∴BD=2CD .故③正确;在Rt ABC 中,30B ∠=︒, ∴3122BC AB ==, ∴=1248BD BC CD -=-=,又在Rt ACD △中,30CAD ∠=︒,∴343AC CD ==, ∴11==843=16322DAB S BD AC ⨯⨯,故④错误.故选:C .【点睛】本题考查三角形全等的判定和性质,三角形外角的性质,等腰三角形的判定和性质,角平分线的判定以及勾股定理.熟练掌握各个知识点是解答本题的关键.10.A解析:A【分析】在等腰ACD ∆中,顶角30A ∠=︒,易求得75ACD ∠=︒,根据等边对等角,可得30OCA A ∠=∠=︒,由此可得45OCD ∠=︒,即OCE ∆是等腰直角三角形,则2OE =【详解】∵AC AD =,30A ∠=︒,∴75ACD ADC ∠=∠=︒,∵AO OC =,∴30OCA A ∠=∠=︒,∴45OCD ∠=︒,即OCE ∆是等腰直角三角形. 在等腰Rt OCE ∆中,2OC =,因此 2OE =故选:A .【点睛】本题综合考查了等腰三角形的性质、三角形的内角和定理、解直角三角形等知识的应用. 11.A解析:A根据正方形的面积及直角边的关系,列出方程组,然后求解.【详解】 解:由条件可得:22131131240a b ab a b ⎧+=⎪-⎪=⎨⎪>>⎪⎩, 解之得:32a b =⎧⎨=⎩. 所以2()25a b +=,故选A【点睛】本题考查了正方形、直角三角形的性质及分析问题的推理能力和运算能力.12.B解析:B【分析】根据绝对值,乘方和算术平方根的非负性求得a 、b 、c 的值,再结合勾股定理逆定理判断△ABC 为直角三角形,由此根据直角三角形面积等于两直角边乘积的一半可得面积.【详解】解:∵2(3)50a c --=,∴30,40,50a b c -=-=-=,解得3,4,5a b c ===,又∵222223425a b c +=+==,∴△ABC 为直角三角形, ∴13462ABC S =⨯⨯=△. 故选:B .【点睛】本题考查非负数的性质,勾股定理的逆定理.理解几个非负数(式)的和为0,那么这几个数(式)都为0是解题关键. 二、填空题13.或5【分析】根据点C 和点D 与AB 的位置关系分类讨论分别画出对应的图形根据等腰直角三角形的性质勾股定理分别求解即可【详解】解:若点C 和点D 在AB 的同侧时如下图所示延长BC 交AD 于E ∵△ABD 为等腰直角5根据点C 和点D 与AB 的位置关系分类讨论,分别画出对应的图形,根据等腰直角三角形的性质、勾股定理分别求解即可.【详解】解:若点C 和点D 在AB 的同侧时,如下图所示,延长BC 交AD 于E∵△ABD 为等腰直角三角形,∠ABD=90°,45ABC ︒∠=∴BD=32AB =,∠DBC=∠ABD -∠ABC=45°∴AD=226AB BD +=,∠DBC=∠ABC∴BE ⊥AD ,BE 是AD 的中线 ∴BE=DE=12AD=3 ∴CE=BE -BC=2在Rt △CDE 中,CD=2213CE DE +=;若点C 和点D 在AB 的两侧时,如下图所示,过点D 作DE ⊥CB 交CB 延长线于E∵△ABD 为等腰直角三角形,∠ABD=90°,45ABC ︒∠=∴BD=32AB =∠DBE=180°-∠ABD -∠ABC=45°∴△EDB 为等腰直角三角形,DE=BE∵DE 2+BE 2=BD 2∴2DE 2=(232解得:DE=3∴BE=3∴CE=BE +BC=4在Rt △CDE 中,225CE DE +=;综上:135.135.【点睛】此题考查的是等腰直角三角形的性质及判定和勾股定理,掌握等腰直角三角形的性质及判定、勾股定理和分类讨论的数学思想是解题关键.14.5【分析】由作图痕迹得到图中各线段的长度后根据勾股定理即可得到解答【详解】解:由作图痕迹及题意可知:OB=2AB=1AB ⊥OBOC=OA ∴由勾股定理可知:故答案为5【点睛】本题考查尺规作图与勾股定理解析:5【分析】由作图痕迹得到图中各线段的长度后根据勾股定理即可得到解答 .【详解】解:由作图痕迹及题意可知:OB=2,AB=1,AB ⊥OB ,OC=OA ,∴由勾股定理可知:222222215OC OA OB AB ==+=+=,故答案为5.【点睛】本题考查尺规作图与勾股定理的综合运用,熟练掌握常见图形的作图方法及勾股定理的应用是解题关键.15.【分析】连接AE 设CE =x 由线段垂直平分线的性质可知AE =BE =BC +CE 在Rt △ACE 中利用勾股定理即可求出CE 的长度【详解】解:如图连接AE 设∵点D 是线段AB 的中点且∴DE 是AB 的垂直平分线∴∴ 解析:76【分析】连接AE ,设CE =x ,由线段垂直平分线的性质可知AE =BE =BC +CE ,在Rt △ACE 中,利用勾股定理即可求出CE 的长度.【详解】解:如图,连接AE ,设CE x =, ∵点D 是线段AB 的中点,且DE AB ⊥,∴DE 是AB 的垂直平分线,∴3AE BE BC CE x ==+=+,∴在Rt ACE 中,222AE AC CE =+,即()22234x x +=+,解得76x =.故答案为:76. 【点睛】 本题考查了线段垂直平分线的性质、勾股定理的应用,熟练掌握线段垂直平分线的性质并利用勾股定理求解线段的长度是解题的关键.16.150°【分析】由可知:PA =P′A ∠P′AB =∠PACBP′=CP 然后依据等式的性质可得到∠P′AP =∠BAC =60°从而可得到△APP′为等边三角形可求得PP′由△APP′为等边三角形得∠APP解析:150°【分析】由P AB PAC '≌△△可知:PA =P′A ,∠P′AB =∠PAC ,BP′=CP ,然后依据等式的性质可得到∠P′AP =∠BAC =60°,从而可得到△APP′为等边三角形,可求得PP′,由△APP′为等边三角形,得∠APP′=60°,在△PP′B 中,用勾股定理逆定理证出直角三角形,得出∠P′PB =90°,进而可求∠APB 的度数.【详解】连接PP′,∵P AB PAC '≌△△,∴PA =P′A=6,∠P′AB =∠PAC ,BP′=CP=10,∴∠P′AP =∠BAC =60°,∴△APP′为等边三角形,∴PP′=AP =AP′=6,又∵8PB =,∴PP′2+BP 2=BP′2,∴△BPP′为直角三角形,且∠BPP′=90°∴∠APB =90°+60°=150°,故答案是:150°【点睛】本题主要考查的是全等三角形的性质、等边三角形的判定、勾股定理的逆定理的应用,证得△APP′为等边三角形、△BPP′为直角三角形是解题的关键.17.①②③④【分析】设BE=x 则=8-x 利用勾股定理列出方程即可判断①;利用SAS 证出△AEP ≌△CPE 即可证出∠AEP=∠CPE 从而判断②;过点E 作EH ⊥AD 于H 利用勾股定理求出PE 从而得出PA=PE解析:①②③④【分析】设BE=x,则AE EC==8-x,利用勾股定理列出方程即可判断①;利用SAS证出△AEP≌△CPE,即可证出∠AEP=∠CPE,从而判断②;过点E作EH⊥AD于H,利用勾股定理求出PE,从而得出PA=PE,利用等边对等角可得∠PAE=∠PEA,再根据平行线的性质可得∠AEB=∠PAE,从而判断③;根据三角形的内角和定理即可判断④.【详解】解:设BE=x,则AE EC==8-x,在Rt△ABE中,AB2+BE2=AE2∴42+x2=(8-x)2解得:x=3即BE=3,故①正确;∴BE=EC=5若5AP=∴AP=CE,∵四边形ABCD为长方形∴AD∥BC∴∠APE=∠CEP∵PE=EP∴△AEP≌△CPE∴∠AEP=∠CPE∴//AE CP,故②正确;当256AP=时,过点E作EH⊥AD于H,∴AH=BE=3,HE=AB=4∴PH=AP-AH=76∴22PH HE+25 6∴PA=PE∴∠PAE=∠PEA ∵AD∥BC∴∠AEB=∠PAE,∴∠AEB=∠PEA∴EA 平分BEP ∠,故③正确;∵∠BPC=180°-∠PCB -∠PBE∠PEC=180°-∠PCB -∠EPC∵PBE EPC ∠=∠∴BPC PEC ∠=∠,故④正确;综上:正确的有①②③④故答案为:①②③④.【点睛】此题考查的是勾股定理、全等三角形的判定及性质、等腰三角形的性质、平行线的判定及性质和三角形内角和定理的应用,掌握勾股定理、全等三角形的判定及性质、平行线的判定及性质和三角形内角和定理是解题关键.18.或或【分析】设点C 的坐标为先根据两点之间的距离公式可得的值再根据全等三角形的性质建立方程组解方程组即可得【详解】设点C 的坐标为由题意分以下两种情况:(1)当时则即解得或则此时点C 的坐标为或(与点B 重 解析:(2,1)-或(3,1)-或(3,1)【分析】设点C 的坐标为(,)C a b ,先根据两点之间的距离公式可得2222,,,AC OC AB OB 的值,再根据全等三角形的性质建立方程组,解方程组即可得.【详解】设点C 的坐标为(,)C a b , (5,0),(0,0),(2,1)A O B ,222(5)AC a b ∴=-+,222OC a b =+,222(25)(10)10AB =-+-=,222(20)(10)5OB =-+-=,由题意,分以下两种情况:(1)当AOC AOB ≅时,则,AC AB OC OB ==,2222,AC AB OC OB ∴==,即2222(5)105a b a b ⎧-+=⎨+=⎩, 解得21a b =⎧⎨=-⎩或21a b =⎧⎨=⎩, 则此时点C 的坐标为(2,1)C -或(2,1)C (与点B 重合,不符题意,舍去);(2)当OAC AOB ≅时,则,AC OB OC AB ==,2222,AC OB OC AB ∴==,即2222(5)510a b a b ⎧-+=⎨+=⎩, 解得31a b =⎧⎨=-⎩或31a b =⎧⎨=⎩, 则此时点C 的坐标为(3,1)C -或(3,1)C ;综上,点C 的坐标为(2,1)-或(3,1)-或(3,1),故答案为:(2,1)-或(3,1)-或(3,1).【点睛】本题考查了两点之间的距离公式、全等三角形的性质、利用平方根解方程等知识点,熟练掌握全等三角形的性质,并正确分两种情况讨论是解题关键.19.【分析】先证得出再证与是等腰直角三角形在直角中利用勾股定理求出BE 的长进一步求出GE 的长可通过解直角三角形分别求出GDDEEFDF 的长即可求出四边形DFEG 的周长【详解】∵于点D ∴∴是等腰直角三角形解析:2【分析】先证BDG DE ∆≅∆,得出1AE BG ==,再证DGE ∆与EDF ∆是等腰直角三角形,在直角AEB ∆中利用勾股定理求出BE 的长,进一步求出GE 的长,可通过解直角三角形分别求出GD ,DE ,EF ,DF 的长,即可求出四边形DFEG 的周长.【详解】∵45ABC ︒∠=,AD BC ⊥于点D ,∴9045BAD ABC ︒︒∠=-∠=,∴ABD ∆是等腰直角三角形,∴AD BD =,∵BE AC ⊥,∴90GBD C ︒∠+∠=,∵90EAD C ︒∠+∠=,∴GBD EAD ∠=∠,∵90ADB EDG ︒∠=∠=,∴ADB ADG EDG ADG ∠-∠=∠-∠,即BDG ADE ∠=∠,∴()BDG ADE ASA ∆≅∆,∴1BG AE ==,DG DE =,∵90EDG ︒∠=,∴EDG ∆为等腰直角三角形,∴9045135AED AEB DEG ︒︒︒∠=∠+∠=+=,∵AED ∆沿直线AE 翻折得AEF ∆,∴AED AEF ∆≅∆,∴135AED AEF ︒∠=∠=,ED EF =,∴36090DEF AED AEF ︒︒∠=-∠-∠=,∴DEF ∆为等腰直角三角形,∴EF DE DG ==,在Rt AEB ∆中,BE === ∴1GE BE BG =-=,在Rt DGE ∆中,222DG ==-,∴22EF DE ==-, 在Rt DEF ∆中,1DF ==,∴四边形DFEG 的周长为:GD EF GE DF +++221)2⎛⎫=-+- ⎪ ⎪⎝⎭2=+,故答案为:2+.【点睛】本题考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够灵活运用等腰直角三角形的判定与性质.20.【分析】先根据线段垂直平分线的性质得出CD=AD 故AB=BD+AD=BD+CD 设CD=x 则BD=4-x 在Rt △BCD 中根据勾股定理求出x 的值即可【详解】∵是的垂直平分线∴∴设则在中即解得∴故答案为: 解析:258【分析】先根据线段垂直平分线的性质得出CD=AD ,故AB=BD+AD=BD+CD ,设CD=x ,则BD=4-x ,在Rt △BCD 中根据勾股定理求出x 的值即可.【详解】∵DE 是AC 的垂直平分线,∴CD AD =,∴AB BD AD BD CD =+=+,设CD x =,则4BD x =-,在Rt BCD 中,222CD BC BD =+,即()22234x x =+-, 解得258x =, ∴258CD =. 故答案为: 258. 【点睛】本题考查的是勾股定理、线段垂直平分线的性质.由勾股定理得出方程是解决问题的关键.三、解答题21.(1)①见解析;②78CE =;(2)2.5 【分析】(1)①作出AB 的垂直平分线交BC 于点E ,则可得结论;②由勾股定理求得BC=4,设CE =x ,则BE =AE =4-x ,依据勾股定理列出方程求解即可; (2)求得BD=CD=AD=2.5即可.【详解】解:(1)①如图,作∠BAE =∠B ,②可求得BC =4∵∠AEC=∠B +∠BAE ,又∵∠AEC =2∠B ,∴∠BAE =∠B ,∴BE =AE ,.设CE =x ,则BE =AE =4-x ,在Rt △AEC 中,222CE AC AE +=,∴2223(4)x x +=-,∴78x=,∴78CE=(2)AC为底时,如图2所示,此时AD=CD,∴∠A=∠DCA∵∠A+∠B=90°,∠DCA+∠BCD=90°,∴∠B=∠BCD,∴BD=CD,即AD=BD=2.5.【点睛】本题考查了线段垂直平分线的性质、勾股定理以及等腰三角形的性质等知识,熟练掌握相关知识是解答此题的关键.22.(1)证明见解析;(2)23【分析】(1)根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.(2)根据完全平方公式的变形解答即可.【详解】解:(1)∵大正方形面积为c2,直角三角形面积为12ab,小正方形面积为(b﹣a)2,∴c2=4×12ab+(a﹣b)2=2ab+a2﹣2ab+b2即c2=a2+b2;(2)由图可知:(b﹣a)2=3,4×12ab=13﹣3=10,∴2ab=10,∴(a+b)2=(b﹣a)2+4ab=3+2×10=23.【点睛】本题考查了对勾股定理的证明和以及非负数的性质,掌握三角形和正方形面积计算公式是解决问题的关键.23.(1)见解析;(23【分析】(1)根据题意补全图形即可;(2)连接EF 交BC 于点P ,根据两点之间线段最短结合等边三角形的性质求解即可.【详解】解:(1)补全图形如下:(2)连接EF 交BC 于点P ,此时AP FP +的值最小.DE AD AD BC =⊥,,BC ∴为AE 的垂直平分线.2,CA CE AP EP ∴===.AP FP EP PF ∴+=+.,120AB AC AD BC BAC ︒=⊥∠=,,60BAD CAD ∴∠=∠=︒.ACE ∴为等边三角形.∵点F 是AC 的中点,1EF AC AF CF ∴⊥==,.在Rt CEF △中,90,1,2CFE CF EC ∠=︒==,3EF ∴=. AP FP ∴+3【点睛】此题主要考查了等边三角形的判定与性质以及勾股定理等知识,熟练掌握相关性质和定理是解答此题的关键.24.5cm【分析】先根据折叠求出AF =10,进而用勾股定理求出BF ,即可求出CF ,最后用勾股定理即可得出结论.【详解】解:∵四边形ABCD 是矩形,∴AD =BC =10cm ,CD =AB =8cm ,由折叠可知:Rt △ADE ≌Rt △AFE ,∴∠AFE =90°,AF =10cm ,EF =DE ,设EF =xcm ,则DE =EF =xcm ,CE =CD ﹣CE =(8﹣x )cm ,在Rt △ABF 中,由勾股定理得:AB 2+BF 2=AF 2,即82+BF 2=102,∴BF =6cm ,∴CF =BC ﹣BF =10﹣6=4(cm ),在Rt △ECF 中,由勾股定理可得:EF 2=CE 2+CF 2,即x 2=(8﹣x )2+42, ∴x =5即:EF 的长为5cm .【点睛】本题考查勾股定理、图形的翻折变换、全等三角形,方程思想等知识点,关键是熟练掌握勾股定理,运用方程求解.25.(1)见详解;(2)见详解;(3)见详解;(4)见详解【分析】(1)根据等腰直角三角形的定义以及面积公式,即可求解;(213(3)根据勾股定理画出长为5的线段,即可;(42,210的三角形,即可.【详解】(1)∵2121ABC S=⨯÷=,∴ABC 即为所求;(2)∵222313+=∴正方形DEFG 的面积为13;(3)22345+=;(4)∵22112+=222222+=,221310+= 且2222)2)10)+=∴JKL 是直角三角形,且周长为3210.【点睛】本题主要考查网格中的勾股定理,熟练掌握勾股定理是解题的关键.26.△ABC是直角三角形;理由见解析.【分析】先求出a、b、c的值,再通过计算得到a2+c2=b2,根据勾股定理逆定理即可判断△ABC是直角三角形.【详解】解:△ABC是直角三角形.理由是:据题意得:a﹣40=0,a﹣b +1=0,c﹣9=0,解得:a=40,c=9,b=41,∵a2+c2=402+92=1681, b2=412=1681,∴a2+c2=b2,∴△ABC是直角三角形.【点睛】本题考查了勾股定理逆定理,算术平方根、绝对值、偶次方的非负性,根据题意求出a、b、c的值是解题关键.。
八年级数学下册第二单元《勾股定理》检测题(包含答案解析)
一、选择题1.以下列各组数为三边的三角形中不是直角三角形的是 ( ) A .1,2,5B .3,5,4C .5,12,13D .1,3,72.下列条件中不能确定ABC 为直角三角形的是( ). A .ABC 中,三边长的平方之比为1:2:3 B .ABC 中,222AB BC AC += C .ABC 中,::3:4:5A B C ∠∠∠= D .ABC 中,1,2,3AB BC AC ===3.如图,在Rt △ABC 中,∠C =90°,AC =2,BC =1,在BA 上截取BD =BC ,再在AC 上截取AE =AD ,则AEAC的值为( )A .352B .51- C .5﹣1D .51+ 4.如图,在△ABC 中,AB =6,AC =9,AD ⊥BC 于D ,M 为AD 上任一点,则MC 2-MB 2等于( )A .29B .32C .36D .455.如图,△ABC 中,∠BAC=90°,AB=8,将△ABC 沿直线BC 向右平移,得到△EDF ,连接AD ,若四边形ACFD 为菱形,EC=4,则平移的距离为( )A .4B .5C .6D .86.如图①,直角三角形纸片的两直角边长分别为6、8,按如图②方式折叠,使点A 与点CB 重合,折痕为DE ,则BCE 与ADE 的面积之比为( )A .2:3B .4:9C .9:25D .14:257.如图,在等腰ABC ∆中,,AB AC =点E 为AC 的中点,且CD CE =.若60,4A EF cm ∠=︒=,则DF 的长为( )A .12cmB .10cmC .8cmD .6cm8.《九章算术》是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多6尺,门的对角线长10尺,那么门的高和宽各是多少?如果设门的宽为x 尺,根据题意可列方程( ) A .222(6)10x x ++= B .222(6)10x x -+= C .222(6)10x x +-=D .222610x +=9.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为123S S S 、、;如图2,分别以直角三角形三边长为半径向外作半圆,面积分别为456S S S 、、.其中125616,45,11,14S S S S ====,则34S S +=( )A .86B .64C .54D .4810.有一圆柱高为12cm ,底面半径为5πcm ,在圆柱下底面点A 处有一只蚂蚁,它想吃到上底面上与点A 相对的点B 处的食物,则沿侧面爬行的最短路程是( )A .12cmB .13cmC .10cmD .16cm11.若ABC 的三边a 、b 、c 满足2(3)450a b c -+-+-=,则ABC 的面积是( ) A .3 B .6 C .12 D .10 12.等腰三角形腰长10cm ,底边长16cm ,则等腰三角形面积是( )A .296cmB .248cmC .224cmD .232cm二、填空题13.清代数学家梅文鼎在《勾股举隅》一书中,用四个全等的直角三角形拼出正方形ABCD 的方法证明了勾股定理(如图),若Rt ABC △的斜边10AB =,=6BC ,则图中线段CE 的长为______.14.在Rt ABC 中,90C ∠=︒,9cm BC =,12cm AC =,15cm AB =;在DEF 中,90E ∠=︒,4cm DE =,5cm DF =,A D ∠=∠.现有两个动点P 和Q .同时从点A 出发,P 沿着三角形的边AC CB BA →→运动,回到点A 停止,速度为3cm/s ;Q 沿着边AB BC CA →→运动,回到点A 停止.在两点运动过程中的某一时刻,恰好APQ 与DEF 全等,则点Q 的运动速度为__________.15.如图,在Rt ABC △中,90C ∠=︒,10cm AB =,8cm BC =,BD 平分ABC ∠,DE AB ⊥,垂足为E ,则DE =__________cm .16.如图,在三角形纸片ABC 中,∠ACB =90°,BC =6,AB =10,如果在AC 边上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,那么CE 的长为________.17.有一个三角形的两边长是8和10,要使这个三角形成为直角三角形,则第三边长为_______.18.如图,教室的墙面ADEF 与地面ABCD 垂直,点P 在墙面上.若5PA AB ==米,点P 到AD 的距离是3米,有一只蚂蚁要从点P 爬到点B ,它的最短行程是______米.19.《九章算术》是我国传统数学中重要的著作之一,奠定了我国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》“勾股”一章记载:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”大意:有一扇形状是矩形的门,它的高比宽多6尺8寸,它的对角线长1丈,那么门的高为_____尺.(1丈=10尺,1尺=10寸)20.如图AD=4,CD=3,∠ADC=90°,AB=13,BC=12,则图形ABCD 的面积=______________.三、解答题21.如图,小区有一块三角形空地ABC ,为响应沙区创文创卫,美化小区的号召,小区计划将这块三角形空地进行新的规划,过点D 作垂直于AB 的小路DE .经测量,15AB =米,13AC =米,12AD =米,5DC =米.(1)求BD 的长; (2)求小路DE 的长. 22.已知,等腰,,在直角边的左侧直线,点关于直线的对称点为,连接,,其中交直线于点.(1)依题意,在图1中补全示意图:当时,求的度数;(2)当且时,求的度数;(3)如图2,若,用等式表示线段,,之间的数量关系,并证明.23.亲爱的同学们,在全等三角形中,我们见识了很多线段关系的论证题,下面请你用本阶段所学知识,分别完成下列题目.(1)如图1,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2)如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE .容易证明△ACD≌△BCE,则①∠AEB的度数为;②直接写出AE、BE、CM之间的数量关系:(3)如图3,△ABC中,若∠A=90°,D为BC的中点,DE⊥DF交AB、AC于E、F,求证:BE2+CF2=EF2.24.如图,每个小正方形的边长均为1可以得到每个小正方形的面积为1.⨯的方格内作出边长为13的正方形;(1)请在图中的55-+.(2)请在数轴上表示出11325.如图,长方体的长AB=5cm,宽BC=4cm,高AE=6cm,三只蚂蚁沿长方体的表面同时以相同的速度从点A出发到点G处.蚂蚁甲的行走路径S甲为:翻过棱EH后到达G处(即A→P→G),蚂蚁乙的行走路径S乙为:翻过棱EF后到达G处(即A→M→G),蚂蚁丙的行走路径S丙为:翻过棱BF后到达G处(即A→N→G).(1)求三只蚂蚁的行走路径S甲,S乙,S丙的最小值分别是多少?(2)三只蚂蚁都走自己的最短路径,请判断哪只最先到达?哪只最后到达?26.在△ABC中,AB=AC,∠BAC=90°,点D是线段BC上的动点(BD>CD),作射线AD,点B关于射线AD的对称点为E,作直线CE,交射线AD于点F.连接AE,BF.(1)依题意补全图形,直接写出∠AFE的度数;(2)用等式表示线段AF,CF,BF之间的数量关系,并证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】直接利用勾股定理的逆定理验证即可.【详解】A、∵2221255+==,∴以1、25为三边的三角形是直角三角形,A不符合题意;B、∵22234255+==,∴以3、5、4为三边的三角形是直角三角形,B不符合题意;C、∵22251216913+==,∴以5、12、13为三边的三角形是直角三角形,C不符合题意;D、∵22213107+=≠,∴以1、37为三边的三角形不是直角三角形,D符合题意;故选:D.【点睛】本题考查了勾股定理的逆定理的应用,熟练掌握勾股定理的逆定理是解题的关键.2.C解析:C【分析】根据三角形内角和定理和勾股定理进行判断即可.【详解】解:A选项:ABC中,三边长的平方之比为1:2:3,ABC∴是直角三角形.B选项:∵在ABC中,222AB BC AC+=,ABC∴是直角三角形.C 选项:ABC 中,::3:4:5A B C ∠∠∠=,∴设3,4,5A x B x C x ∠=∠=∠=,又180A B C ︒∠+∠+∠=,12180x ︒∴=, 345x ︒=,460x ︒=, 575x ︒=,ABC ∴不是直角三角形.D 选项:在ABC 中,1,AB BC AC ===222AB BC AC ∴+=,ABC ∴是直角三角形. 故选C . 【点睛】本题考查了三角形内角和定理以及勾股定理,熟练掌握三角形内角和定理和勾股定理是本题的关键.3.B解析:B 【分析】先由勾股定理求出BD=BC=1,得1,即可得出结论. 【详解】解:∵∠C=90°,AC=2,BC=1,∴==∵BD=BC=1,∴1-,∴AE AC =, 故选B . 【点睛】本题考查了黄金分割以及勾股定理,熟练掌握黄金分割和勾股定理是解题的关键.4.D解析:D 【分析】在Rt △ABD 及Rt △ADC 中可分别表示出BD 2及CD 2,在Rt △BDM 及Rt △CDM 中分别将BD 2及CD 2的表示形式代入表示出BM 2和MC 2,然后作差即可得出结果. 【详解】解:在Rt △ABD 和Rt △ADC 中,BD 2=AB 2−AD 2,CD 2=AC 2−AD 2, 在Rt △BDM 和Rt △CDM 中,BM 2=BD 2+MD 2=AB 2−AD 2+MD 2,MC 2=CD 2+MD 2=AC 2−AD 2+MD 2, ∴MC 2−MB 2=(AC 2−AD 2+MD 2)−(AB 2−AD 2+MD 2) =AC 2−AB 2 =45. 故选:D . 【点睛】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC 2和MB 2是本题的难点,重点还是在于勾股定理的熟练掌握.5.C解析:C 【分析】根据平移的性质可得8,,AB DE AC DF BC EF ====,设AC DF CF AD x ====,求得BC=4x +,再由勾股定理理出方程求解即可. 【详解】解:由平移的性质可得:8,,AB DE AC DF BC EF ==== 又∵四边形ACFD 是菱形 ∴设AC DF CF AD x ==== 又∵4EC =∴4BC EF CF CE x ==+=+ 又∵∠90BAC ︒= ∴222AB AC BC += ∴2228(4)x x +=+ 解得,6x =即6AD DF CF AC ==== 故平移的距离为:6AD = 故选:C . 【点睛】本题主要考查了平移的性质,熟练掌握平移的基本性质是解答此题的关键.6.D解析:D 【分析】由折叠可得5AD BD ==,AE BE =,根据勾股定理可得CE ,AE ,DE 的长度,即可求面积比. 【详解】 解:6BC =,8AC =,10AB ∴=, 折叠,5AD BD ∴==,AE BE =, 22BC CE BE +=2,2236(8)CE CE ∴+=-, 74CE ∴=, 725844AE ∴=-=,154DE ∴=, 11::14:2522BCE ADE S S BC CE AD DE ∆∆∴=⨯⨯⨯=, 故选:D . 【点睛】本题考查了折叠问题,勾股定理,关键是熟练运用勾股定理求线段的长度.7.A解析:A 【分析】由已知可得DF ⊥AB ,∠D=∠AEF=30°,所以根据含30°角的直角三角形性质可以算得DF 的值. 【详解】解:∵AB=AC,∠A=60°, ∴ΔABC 为等边三角形, ∴∠ACB=60°, ∵CD=CE ,∴∠CED=∠D=12∠ACB=30°, ∴∠AEF=30°,∴∠AFE=180°-∠A-∠AEF=90°, ∵EF=4cm ,∴设AF=x ,则AE=2x ,∴由勾股定理得:22244x x +=, ∴∴AF AE == ∴2BF AB AF AE AF =-=-=∵∠D=30°, ∴2BD BF ==, ∴22223DF BD BF BF =-=,∴DF=16412BF ==-=, 故选A .【点睛】本题考查等边三角形与直角三角形的综合运用,熟练掌握等边三角形与直角三角形的判定与性质、勾股定理的应用是解题关键. 8.A解析:A【分析】设门的宽为x 尺,则高为(x+6)尺,根据勾股定理解答.【详解】设门的宽为x 尺,则高为(x+6)尺,根据题意可列方程222(6)10x x ++=,故选:A .【点睛】此题考查勾股定理计算,正确理解题意掌握勾股定理计算公式是解题的关键. 9.C解析:C【分析】分别用AB 、BC 和AC 表示出 S 1、S 2、S 3,然后根据AB 2=AC 2+BC 2即可得出S 1、S 2、S 3的关系.同理,得出S 4、S 5、S 6的关系,即可得到结果.【详解】解:如图1,过点E 作AB 的垂线,垂足为D ,∵△ABE 是等边三角形,∴∠AED=∠BED=30°,设AB=x ,∴AD=BD=12AB=12x ,∴2x ,∴S 2=122x x ⨯⨯2AB ,同理:S 12AC ,S 32BC , ∵BC 2=AB 2-AC 2,∴S 3=S 2-S 1,如图2,S 4=21122AB π⎛⎫⨯ ⎪⎝⎭=28AB π, 同理S 5=28AC π,S 6=28BC π,则S 4=S 5+S 6, ∴S 3+S 4=45-16+11+14=54.【点睛】本题考查了勾股定理、等边三角形的性质.勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.10.B解析:B【分析】要想求得最短路程,首先要把A 和B 展开到一个平面内.根据两点之间,线段最短求出蚂蚁爬行的最短路程.【详解】解:展开圆柱的半个侧面是矩形,矩形的长是圆柱的底面周长的一半,即52ππ=5cm ,矩形的宽是圆柱的高12cm . 根据两点之间线段最短,知最短路程是矩形的对角线AB 的长,即222251213AC BC +=+=cm 故选:B .【点睛】此题考查最短路径问题,求两个不在同一平面内的两个点之间的最短距离时,一定要展开到一个平面内.根据两点之间,线段最短.确定要求的长,再运用勾股定理进行计算. 11.B解析:B【分析】根据绝对值,乘方和算术平方根的非负性求得a 、b 、c 的值,再结合勾股定理逆定理判断△ABC 为直角三角形,由此根据直角三角形面积等于两直角边乘积的一半可得面积.【详解】解:∵2(3)450a b c -+-+-=,∴30,40,50a b c -=-=-=,解得3,4,5a b c ===,又∵222223425a b c +=+==,∴△ABC 为直角三角形,∴13462ABC S =⨯⨯=△. 故选:B .【点睛】本题考查非负数的性质,勾股定理的逆定理.理解几个非负数(式)的和为0,那么这几个数(式)都为0是解题关键. 12.B解析:B【分析】如图:作AD ⊥BC 于D ,先根据等腰三角形的性质求得BD ,然后运用勾股定理求得AD ,最后运用三角形的面积公式解答即可 .【详解】解:如图:作AD ⊥BC 于D ,∵AB=AC=10,∴BD=DC=12BC=8cm , ∴AD=22221086AC CD -=-= ∴S △ABC =12BC·AD=48cm 2. 故答案为B .【点睛】本题主要考查了等腰三角形“三线合一”的性质以及勾股定理的应用,掌握等腰三角形“三线合一”的性质是解答本题的关键.二、填空题13.【分析】根据勾股定理求出AC 根据全等三角形的性质得到AF =BC =6EF =AC =8求出FC 根据勾股定理计算得到答案【详解】解:在Rt △ABC 中AC =∵Rt△ACB≌Rt△EFA∴AF=BC=6EF=A解析:217【分析】根据勾股定理求出AC,根据全等三角形的性质得到AF=BC=6,EF=AC=8,求出FC,根据勾股定理计算,得到答案.【详解】解:在Rt△ABC中,AC=22221068AB BC-=-=,∵Rt△ACB≌Rt△EFA,∴AF=BC=6,EF=AC=8,∴FC=AC﹣AF=2,∴CE=222282217EF FC+=+=,故答案为:217.【点睛】本题考查的是勾股定理、全等三角形的性质,掌握勾股定理、全等三角形的对应边相等是解题的关键.14.cm/s或cm/s或cm/s或cm/s【分析】当点P在边AC运动点Q在边AB运动有△APQ≌△DEF或△APQ≌△DFE;当点P在边BA运动点Q在边CA运动有△APQ≌△DEF或△APQ≌△DFE分解析:154cm/s或125cm/s或9332cm/s或9631cm/s【分析】当点P在边AC运动,点Q在边AB运动,有△APQ≌△DEF或△APQ≌△DFE;当点P在边BA运动,点Q在边CA运动,有△APQ≌△DEF或△APQ≌△DFE,分别利用路程=速度×时间计算.【详解】解:在△DEF中,DE=4,DF=5,∠E=90°,∴22DF DE-,当点P在边AC运动,点Q在边AB运动,△APQ≌△DEF时,AP=DE=4,AQ=DF=5,则点P 的运动时间为4÷3=43(s ), ∴点Q 的运动速度为5÷43=154cm/s ; △APQ ≌△DFE 时,AP=DF=5,AQ=DE=4,则点P 的运动时间为5÷3=53(s ), ∴点Q 的运动速度为4÷53=125cm/s ; 当点P 在边BA 运动,点Q 在边CA 运动,△APQ ≌△DEF 时,AP=DE=4,AQ=DF=5,则点P 的运动时间为(12+9+15-4)÷3=323(s ), ∴点Q 的运动速度为(12+9+15-5)÷323=9332cm/s ; △APQ ≌△DFE 时,AP=DF=5,AQ=DE=4,则点P 的运动时间为(12+9+15-5)÷3=313(s ), ∴点Q 的运动速度为(12+9+15-4)÷313=9631cm/s ; 故答案为:154cm/s 或125cm/s 或9332cm/s 或9631cm/s .【点睛】本题考查的是全等三角形的性质,掌握全等三角形的性质定理,灵活运用分情况讨论思想是解题的关键.15.【分析】先利用勾股定理可得再根据角平分线的性质可得然后根据直角三角形全等的判定定理与性质可得从而可得设从而可得最后在中利用勾股定理即可得【详解】在中平分在和中设则在中即解得即故答案为:【点睛】本题考解析:83【分析】先利用勾股定理可得6AC cm =,再根据角平分线的性质可得DE DC =,然后根据直角三角形全等的判定定理与性质可得8BE BC cm ==,从而可得2AE cm =,设DE DC xcm ==,从而可得(6)AD x cm =-,最后在Rt ADE △中,利用勾股定理即可得.【详解】在Rt ABC 中,90C ∠=︒,10AB cm =,8BC cm =,6AC cm ∴==, BD 平分ABC ∠,,DE AB AC BC ⊥⊥,DE DC ∴=,在Rt BDE 和Rt BDC 中,DE DC BD BD =⎧⎨=⎩, ()Rt BDE Rt BDC HL ∴≅,8BE BC cm ∴==,2AE AB BE cm ∴=-=,设DE DC xcm ==,则(6)AD AC DC x cm =-=-,在Rt ADE △中,222AE DE AD +=,即2222(6)x x +=-, 解得83x =, 即83DE cm =, 故答案为:83. 【点睛】本题考查了角平分线的性质、直角三角形全等的判定定理与性质、勾股定理等知识点,熟练掌握角平分线的性质是解题关键.16.3【分析】利用勾股定理可求出AC=8根据折叠的性质可得BD=ABDE=AE 根据线段的和差关系可得CD 的长设CE=x 则DE=8-x 利用勾股定理列方程求出x 的值即可得答案【详解】∵∠ACB =90°BC =解析:3【分析】利用勾股定理可求出AC=8,根据折叠的性质可得BD=AB ,DE=AE ,根据线段的和差关系可得CD 的长,设CE=x ,则DE=8-x ,利用勾股定理列方程求出x 的值即可得答案.【详解】∵∠ACB =90°,BC =6,AB =10,∴,∵BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,∴BD=AB=10,DE=AE ,∠DCE=90°,∴CD=BD-BC=10-6=4,设CE=x,则DE=AE=AC-CE=8-x,∴在Rt△DCE中,DE2=CE2+CD2,即(8-x)2=x2+42,解得:x=3,∴CE=3,故答案为:3【点睛】本题考查了翻折变换的性质及勾股定理的应用,根据翻折前后的两个图形能够重合得到相等的线段并转化到一个直角三角形中,利用勾股定理列出方程是解此类题目的关键.17.或6【分析】分第三边是直角边与斜边两种情况进行讨论利用勾股定理即可求解【详解】设第三边长为x当第三边是斜边时则x2=82+102=164;∴x=(负值舍去)当第三边是直角边时则斜边长为10∴x2+8解析:6【分析】分第三边是直角边与斜边两种情况进行讨论,利用勾股定理即可求解.【详解】设第三边长为x,当第三边是斜边时,则x2=82+102=164;∴x=当第三边是直角边时,则斜边长为10,∴x2+82=102,解得:x=6,(负值舍去)故答案是:6【点睛】本题考查了勾股定理,直角三角形中,两条直角边的平方和等于斜边的平方;熟练掌握勾股定理并运用分类讨论的思想是解题关键关键.18.【分析】可将教室的墙面ADEF与地面ABCD展开连接PB根据两点之间线段最短利用勾股定理求解即可【详解】解:如图过P作PG⊥BF于G连接PB∵AG=3AP=AB=5∴∴BG=8∴故这只蚂蚁的最短行程解析:【分析】可将教室的墙面ADEF与地面ABCD展开,连接PB,根据两点之间线段最短,利用勾股定理求解即可.【详解】解:如图,过P作PG⊥BF于G,连接PB,∵AG=3,AP=AB=5, ∴224PG AP AG ==-,∴BG=8, ∴2245P GB GP B +=故这只蚂蚁的最短行程应该是5故答案为:5【点睛】本题考查了平面展开-最短路径问题,立体图形中的最短距离,通常要转换为平面图形的两点间的线段长来进行解决. 19.6【分析】设长方形门的宽x 尺则高是(x+68)尺根据勾股定理即可列方程求解【详解】解:设长方形门的宽x 尺则高是(x+68)尺根据题意得x2+(x+68)2=102解得:x =28或﹣96(舍去)则宽是解析:6.【分析】设长方形门的宽x 尺,则高是(x+6.8)尺,根据勾股定理即可列方程求解.【详解】解:设长方形门的宽x 尺,则高是(x +6.8)尺,根据题意得x 2+(x +6.8)2=102,解得:x =2.8或﹣9.6(舍去).则宽是6.8+2.8=9.6(尺).答:门的高是9.6尺;故答案为:9.6.【点睛】本题考查了勾股定理的应用,根据勾股定理列方程是关键.20.24【分析】连接AC 在中根据勾股定理求得AC 的长度利用勾股定理逆定理可得为直角三角形根据即可求解【详解】解:连接AC 在中∴∵∴∴为直角三角形∴故答案为:24【点睛】本题考查勾股定理及其逆定理掌握勾股 解析:24【分析】连接AC ,在Rt ACD △中根据勾股定理求得AC 的长度,利用勾股定理逆定理可得ABC 为直角三角形,根据ABCD ABC ACD S S S =-即可求解.【详解】解:连接AC ,,在Rt ACD △中,90ADC ∠=︒,4=AD ,3CD =, ∴225AC AD CD =+=,∵13AB =,12BC =,∴222AC BC AB +=,∴ABC 为直角三角形,90ACB ∠=︒, ∴112422ABCD ABC ACD S S S AC BC AD CD =-=⋅-⋅=, 故答案为:24.【点睛】本题考查勾股定理及其逆定理,掌握勾股定理的内容是解题的关键.三、解答题21.(1)9米;(2)365米. 【分析】(1)先由13125AC AD CD ===,,,证明90,ADC ∠=︒ 可得90,ADB ∠=︒ 再由勾股定理可求BD 的长;(2)由,,DE AB AD BC ⊥⊥ 可得,AB DE AD BD =代入数据从而可得答案.【详解】解:(1)13125AC AD CD ===,,, 22222212516913,AD CD AC ∴+=+===90ADC ∴∠=︒,90ADB ∴∠=︒,15AB =,22221512273819.BD AB AD ∴=-=-⨯==BD ∴为9米.(2),,DE AB AD BC ⊥⊥11,22ABD S AB DE AD BD ∴==,AB DE AD BD ∴=15129DE ∴=⨯,36.5DE ∴= DE ∴为365米. 【点睛】本题考查的是勾股定理与勾股定理的逆定理的应用,利用等面积法求解直角三角形斜边上的高,掌握以上知识是解题的关键.22.(1);(2)或;(3),证明见解析 【分析】(1)由轴对称的性质和等腰三角形的性质得出,得出,证出AE=AC ,由等腰三角形的性质和三角形内角和定理即可得出结果 (2)分两种情况:当时,当时分别求解即可 (3)作CG ⊥AP 于G ,由AAS 证明,得出CG=AM ,证出点A 是的外接圆的圆心,,得出和是等腰直角三角形,由勾股定理即可得出结论【详解】解:(1)补全示意图如图所示连接AE ,设AP 与BE 交于点M ,如图:由轴对称的性质得AE=AB ,BM=EM ,AM ⊥BE ,∵是等腰直角三角形∴AB=AC∴AE=AC∴(2)当时,如图:由(1)得,,在中∴∴∴∵AE=AB,AF=AF,FE=FB∴∴当时,如图:∵AE=AB,AF=AF,FE=FB∴∴∵AE=AB=AC∴∴即在与中,∴∴由上可知,的度数为或(3),理由如下: 由(2)得:FE=FB ,∴∴∵在中 ∴【点睛】 本题考查了轴对称的性质,三角形全等的判定及性质,等腰直角三角形的性质,勾股定理等内容,熟练运用这些性质进行推理是解本题的关键23.(1)见解析;(2)①90°,②2AE BE CM =+;(3)见解析【分析】(1)利用AAS 证明△ABD ≌△CAE ,得到BD=AE ,AD=CE ,即可得到结论成立;(2)①由等腰直角三角形的性质,得∠CDE=∠CED=45°,则∠ADC=135°,由全等三角形的性质,∠BEC=135°,即可求出∠AEB 的度数;②由全等三角形的性质和等腰直角三角形的性质,得到AD=BE ,CM=DM=EM ,即可得到AE=BE+2CM ;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,证明△DBE ≌△DCG ,得到BE=CG ,根据勾股定理解答.【详解】解:(1)如图1,∵∠BAC =90°,BD ⊥直线m ,CE ⊥直线m ,∴∠ADB=∠AEC=90°,∴∠BAD+∠ABD=∠BAD+∠CAE=90°,∴∠ABD=∠CAE ,∵AB =AC ,∴△ABD ≌△CAE ,∴BD=AE ,AD=CE ,∵DE DA AE CE BD =+=+;(2)如图2,①∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,∴∠CDE=∠CED=45°,∴∠ADC=180°-45°=135°,∵△ACD ≌△BCE ,∴AD=BE ,∠ADC=∠BEC=135°,∴∠AEB=∠BEC -∠CED=135°-45°=90°;②∵△DCE 均为等腰直角三角形,CM 为△DCE 中DE 边上的高,∴CM=DM=EM ,∵AD=BE ,∴AE=AD+DM+EM=BE+2CM ;故答案为:①90°;②2AE BE CM =+;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,如图,∵ED ⊥DF ,DG=ED ,∴EF=GF ,∵D 是BC 的中点,∴BD=CD ,在△BDE 和△CDG 中,ED GD BDE GDC BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△DCG (SAS ),∴BE=CG ,∵∠A=90°,∴∠B+∠ACB=90°,∵△DBE ≌△DCG ,EF=GF ,∴BE=CG ,∠B=∠GCD ,∴∠GCD+∠ACB=90°,即∠GCF=90°,∴Rt△CFG中,CF2+GC2=GF2,∴BE2+CF2=EF2.【点睛】本题考查的是全等三角形的判定和性质、等腰直角三角形的性质,以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.24.(1)见解析;(2)见解析.【分析】(1)根据勾股定理可知,作13的长的线段时,可以作一个直角边分别为2和3的直角三角形,它的斜边长即所求;(2)先作出边长是13的线段,再以原点为圆心,13为半径画弧,与数轴的正半轴相交于点A,再以A为圆心,1为半径画弧,与OA相交于点B,则OB为所求.【详解】解:(1)如图所示,ABCD为所求作正方形.-+为所求.(2)如图所示,OB=113.【点睛】本题考查了勾股定理,利用勾股定理作图时找出相应线段是解题的关键.25.(1)三只蚂蚁的行走路径S甲,S乙,S丙137cm,5,117cm;(2)蚂蚁丙最先到达,蚂蚁甲最后到达【分析】(1)将长方体侧面展开,由行走路径最小值确定:路线为线段,根据勾股定理分别求出S,S乙,S丙的值即可;甲(2)比较S 甲,S 乙,S 丙的值即可得到答案.【详解】解:(1)将长方体侧面展开,由行走路径最小值确定:路线为线段,∵长AB =5cm ,宽BC =4cm ,高AE =6cm ,∴EF =AB =5cm ,GF =BC =EH =4cm ,AE =BF =CG =6cm ,∴图1:S 甲=2222()114137AE EF G F '''++=+=(cm )图2:S 乙=2222()10555AE EH G H '''++=+=(cm ),图3:S 丙=2222()96117AB BC C G '''++=+=(cm ),答:三只蚂蚁的行走路径S 甲,S 乙,S 丙的最小值分别是137cm ,55cm ,117cm ;(2)由(1)知,S 甲137cm ),S 乙5125cm ),S 丙117cm ). ∵137125117∴蚂蚁丙最先到达,蚂蚁甲最后到达.【点睛】此题考查勾股定理的实际应用,立方体的平面展开图,正确理解题意,确定每只蚂蚁所走的路径构建直角三角形是解题的关键.26.(1)作图见解析;45°;(2)2AF ,证明见解析【分析】(1)根据轴对称即可补全图形,延长FB 至点M 使MB=CF ,通过ABM ACF △≌△,进而证得△MAF 是等腰直角三角形,问题即可解决;(2)由(1)知△MAF 是等腰直角三角形及CF=BF ,再根据勾股定理问题即可解决;【详解】(1)补全图形,如图所示:∠AFE=45°理由如下:延长FB 至点M 使MB=CF ,∵点B 、E 关于AF 对称,∴AB=AE ,∠ABF=∠AEC ,∠AFB=∠AFE∵AB=AC ,∴AC=AE ,∴∠ACE=∠AEC‘∴180180ACE ABF ︒-∠=︒-∠ ∠ACE=∠ABF ,即:ABM ACF ∠=∠,()ABM ACF SAS ∴△≌△,,CAF AM AF MAB ∴=∠=∠,AMF=AFM MAF=BAC=90∴∠∠∠∠︒,,AFM=45∴∠︒,AFE=45∴∠︒(2)2AF理由如下:由(1)知AM=AF ,CF=MB ,MAF=90∠︒2222AF +AM =MF =2AF ∴∴2AFMF=MB BF +即AF∴,【点睛】本题考查了轴对称的性质,全等三角形的判定和性质,直角三角形的判定和性质,等腰三角形的判定和性质,构造全等三角形是解决本题的关键.。
2020沪教版八年级数学下册:勾股定理习题(附答案)
DCBA 【文库独家】勾股定理评估试卷(1)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm(B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题) 15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米. 16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D若BC =8,AD =5,则AC 等于______________. 17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.EABCDABDCE ABCD第18题图7cm三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。
上海市光学校八年级数学下册第二单元《勾股定理》检测(含答案解析)
一、选择题1.下列线段不能组成直角三角形的是( )A .6,8,10B .1,2,3C .43,1,53D .2,4,6 2.如图所示,在Rt ABC 中,90,3,5C AC BC ∠=︒==,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则线段CD 的长是( )A .85B .165C .175D .2453.有一圆柱高为12cm ,底面半径为5πcm ,在圆柱下底面点A 处有一只蚂蚁,它想吃到上底面上与点A 相对的点B 处的食物,则沿侧面爬行的最短路程是( )A .12cmB .13cmC .10cmD .16cm4.如图,在Rt ABC 中,AB AC =,BAC 90∠=︒,点D ,E 为BC 上两点.DAE 45∠=︒,F 为ABC 外一点,且FB BC ⊥,FA AE ⊥,则下列结论:①CE BF =;②222BD CE DE +=;③ADE 1S AD EF 4=⋅△;④222CE BE 2AE +=,其中正确的是( )A .①②③④B .①②④C .①③④D .②③5.如图,在长为10的线段AB 上,作如下操作:经过点B 作BC AB ⊥,使得12BC AB =;连接AC ,在CA 上截取CE CB =;在AB 上截取AD AE =,则AD 的长为( )A .555-B .1055-C .10510-D .555+6.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为25,小正方形面积为1,若用x 、y 表示直角三角形的两直角边(x y >),下列四个说法:①2225x y +=,②1x y -=,③2125xy +=,④7x y +=.其中说法正确的是( )A .①②B .①②③C .①②④D .①②③④ 7.以下列各数作为长度的线段,能构成直角三角形的是( )A .1,2,3B .3,4,6C .2,3D .7,15,17 8.下图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边()x y >,下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( ).A .①③B .①②③C .②④D .①②③④9.如图,在Rt ABC 中,90ACB ∠=︒,3AC =,4BC =,AD 平分CAB ∠交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE EF +的最小值为( )A .152B .152C .3D .12510.给出下列说法:①在直角三角形ABC 中,已知两边长为3和4,则第三边长为5;②三角形的三边a b c 、、满足222+=a b c ,则90︒∠=C ;③ABC ∆中,若::1:5:6A B C ∠∠∠=,则ABC ∆是直角三角形;④ABC ∆中,若::1:2:3a b c =,则这个三角形是直角三角形.其中,错误的说法的个数为( )A .1B .2C .3D .411.如图,M N 、是线段AB 上的两点,4,2AM MN NB ===.以点A 为圆心,AN长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连结AC BC 、,则ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形12.在Rt △ABC 中,∠C=90°,CA=CB=4,D 、E 分别为边AC 、BC 上的两点,且AD=CE , 当线段DE 取得最小值时,试在直线AC 或直线BC 上找到一点P ,使得△PDE 是等腰三角形,则满足条件的点P 的个数是( )A .6B .7个C .8个D .以上都不对二、填空题13.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积1258S π=,22S π=,则3S 是________.14.如图,等腰直角ABC 中,90,4ACB AC BC ∠=︒==,D 为BC 的中点,25AD =,若P 为AB 上一个动点,则PC PD +的最小值为_________.15.已知一个直角三角形的两边长分别是a ,b ,且a ,b 满足340a b -+-=.则斜边长是____________16.如图,在53⨯的正方形网格中,ABC 的顶点均在格点上,则ABC ACB ∠+∠=_________.17.如图所示的网格是正方形网格,点A 、B 、C 、D 均在格点上,则∠CAB +∠CBA =____°.∠+∠=______°(点A,B,C,D是18.如图所示的网格是正方形网格,则CBD ABC网格线交点)△,则P点19.如图,A点坐标为(3,0),C点坐标为(0,1),将OAC沿AC翻折得ACP坐标为_________.20.如图ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB,交BC于点E,若CE=2,则BE=______________.三、解答题21.如图,方格纸中的每个小正方形的边长均为1,小正方形的顶点称为格点.已知A、B、C都是格点.(1)小明发现ABC ∠是直角,请补全他的思路; 小明的思路 先利用勾股定理求出ABC 的三条边长,可得10AB ,BC =_______,AC =_______.从而可得AB 、BC 、AC 之间的数量关系是_____________________,根据____________________________,可得ABC ∠是直角.22.如图1,在ABC 中,17AB =,25AC =,AD 是ABC 的高,且1BD =.(1)求BC 的长;(2)E 是边AC 上的一点,作射线BE ,分别过点A ,C 作AF BE ⊥于点F ,CG BE ⊥于点G ,如图2,若22BE =,求AF 与CG 的和.23.已知ABC 的三边长分别为a 、b 、c ,且18a =,32b =50c =.(1)判断ABC 的形状,并说明理由;(2)如果一个正方形的面积与ABC 的面积相等时,求这个正方形的边长.24.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?25.如图,ABC ∆三个顶点的坐标分别是(1,1)A ,(4,2)B ,(3,4)C .(1)画出ABC ∆关于y 轴对称的111A B C ∆.(2)ABC ∆的面积是___________.(3)在x 轴上求作一点P ,使PAB ∆的周长最小,并求出PAB ∆周长的最小值. 26.如图,星期天小明去钓鱼,鱼钩A 在离水面的BD 的1.3米处,在距离鱼线1.2米处D 点的水下0.8米处有一条鱼发现了鱼饵,于是以0.2米/秒的速度向鱼饵游去,那么这条鱼至少几秒后才能到达鱼饵处?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】直接利用勾股定理的逆定理带入判断即可;【详解】A 、2226810+=,能组成直角三角形;B 、2221+= 能组成直角三角形; C 、22245()1()33+= ,能组成直角三角形;D 、22224+≠ ,不能组成直角三角形.故选:D .【点睛】本题考查了勾股定理逆定理的运算,正确掌握勾股定理的逆运算是解题的关键; 2.A解析:A【分析】连接AD ,由三角形全等以及三线合一可知PQ 垂直平分线段AB ,推出AD DB =,设AD DB x ==,在Rt ACD △中,90C ∠=︒ ,根据222AD AC CD =+构建方程即可解决问题.【详解】如图,连接AD ,由已知条件可知PQ 垂直平分线段AB ,∴AD DB =,设AD DB x ==,5CD x =-,在Rt ACD △中,90C ∠=︒ ,∴222AD AC CD =+,∴2223(5)x x =+-, 解得:751x =, ∴178555CD BC DB =-=-=, 故选:A .【点睛】本题考查了基本作图,圆的性质,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.3.B解析:B【分析】要想求得最短路程,首先要把A 和B 展开到一个平面内.根据两点之间,线段最短求出蚂蚁爬行的最短路程.【详解】解:展开圆柱的半个侧面是矩形, 矩形的长是圆柱的底面周长的一半,即52ππ=5cm ,矩形的宽是圆柱的高12cm . 根据两点之间线段最短,知最短路程是矩形的对角线AB 的长,即222251213AC BC +=+=cm 故选:B .【点睛】此题考查最短路径问题,求两个不在同一平面内的两个点之间的最短距离时,一定要展开到一个平面内.根据两点之间,线段最短.确定要求的长,再运用勾股定理进行计算. 4.A解析:A【分析】①利用全等三角形的判定得AFB ≌AEC ,再利用全等三角形的性质得结论;②利用全等三角形的判定和全等三角形的性质得FD DE =,再利用勾股定理得结论;③利用等腰三角形的性质得AD EF EF 2EG ⊥=,,再利用三角形的面积计算 结论;④利用勾股定理和等腰直角三角形的性质计算得结论.【详解】解:如图:对于①,因为BAC 90FA AE DAE 45∠∠=︒⊥=︒,,, 所以CAE 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-, FAB 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-, 因此CAE FAB ∠∠=.又因为BAC 90AB AC ∠=︒=,,所以ABC ACB 45∠∠==︒.又因为FB BC ⊥,所以FBA ACB 45∠∠==︒. 因此AFB ≌()AEC ASA △,所以CE BF =. 故①正确.对于②,由①知AFB ≌AEC ,所以AF AE =.又因为DAE 45FA AE ∠=︒⊥,,所以FAD DAE 45∠∠==︒,连接FD , 因此AFD ≌()AED SAS △.所以FD DE =.在Rt FBD △中,因为CE BF =,所以222222BD CE BD BF FD DE +=+==. 故②正确.对于③,设EF 与AD 交于G .因为FAD DAE 45AF AE ∠∠==︒=,,所以AD EF EF 2EG ⊥=,. 因此ΔADE 11S AD EG AD EF 24=⨯⨯=⨯⨯. 故③正确.对于④,因为CE BF =, 又在Rt FBE △中,22222CE BE BF BE FE +=+= 又AEF △是以EF 为斜边的等腰直角三角形, 所以22EF 2AE =因此,222CE BE 2AE +=.故④正确.故选A .【点睛】本题考查了全等三角形的判定,全等三角形的性质,勾股定理,等腰三角形的性质和三角形的面积.5.A解析:A【分析】由勾股定理求出AC=AD=AE=AC-CE=-5即可.【详解】解:∵BC ⊥AB ,AB=10,CE =BC=1110522AB =⨯=,∴==∴AD=AE=AC-CE=5,故选:A【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.6.D解析:D【分析】根据正方形的性质、直角三角形的性质、直角三角形的面积的计算公式以及勾股定理按顺序判断即可.【详解】①∵ABC 为直角三角形,∴22225x y AB +==,故①正确;②由图可知:1x y CE -===,故②正确;③由图可知:四个直角三角形与小正方形面积之和等于大正方形面积, 由此可得:141252xy ⨯+=,即:2125xy +=, 故③正确;④由①③相加可得:222150xy x y +++=,即()249x y +=,故7x y +=,故④正确;故选:D .【点睛】本题考查了勾股定理及正方形和三角形的边的关系,此图被称为弦图,熟悉勾股定理并认清图中的关系是解答本题的关键.7.C解析:C【分析】根据勾股定理的逆定理对四个选项进行逐一分析即可.【详解】解:A 、222123+≠,∴不能构成直角三角形,故A 错误;B 、222346+≠,∴不能构成直角三角形,故B 错误;C 、()()222123+=,∴能构成直角三角形,故C 正确;D 、22271517+≠,∴不能构成直角三角形,故D 错误.故选:C .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.8.B解析:B【分析】根据直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.【详解】解:如图所示,∵△ABC 是直角三角形,∴根据勾股定理:22249x y AB +==,故①正确;由图可知2x y CE -===,故②正确;由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积, 列出等式为144492xy ⨯+=, 即2449xy +=,故③正确; 由2449xy +=可得245xy =,又∵2249x y +=,两式相加得:2224945x xy y ++=+,整理得:()294x y +=,9x y +=≠,故④错误; 故正确的是①②③.故选:B .【点睛】 本题主要考查了勾股定理的应用,掌握勾股定理、直角三角形的面积公式和完全平方公式是解题的关键.9.D解析:D【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF 的最小值即为点C 到AB 的垂线段长度.【详解】在AB 上取一点G ,使AG =AF∵在Rt △ABC 中,∠ACB =90°,AC =3,BC =4∴AB=5,∵∠CAD =∠BAD ,AE =AE ,∴△AEF ≌△AEG (SAS )∴FE =GE ,∴要求CE+EF 的最小值即为求CE+EG 的最小值,故当C 、E 、G 三点共线时,符合要求,此时,作CH ⊥AB 于H 点,则CH 的长即为CE+EG 的最小值,此时,AC BC AB CH =,∴CH=·AC AB BC =125, 即:CE+EF 的最小值为125,故选:D .【点睛】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键. 10.A解析:A【分析】分4为直角三角形的直角边和斜边两种情况,根据勾股定理即可判断①;根据勾股定理的逆定理即可判断②④;根据三角形的内角和定理即可求出三角形的三个内角,进而可判断③;从而可得答案.【详解】解:若4为直角三角形ABC 22345+=,若4为直角三角形ABC 22437-=,故①错误;三角形的三边a b c 、、满足222+=a b c ,则90C ∠=︒,故②正确;△ABC 中,若::1:5:6A B C ∠∠∠=,所以11801512A ∠=︒⨯=︒,51807512B ∠=︒⨯=︒,61809012C ∠=︒⨯=︒,所以ABC 是直角三角形,故③正确; △ABC 中,若::1:23a b c =,2,3a k b k c k ===, 因为)()2222222342a c k k k k b +=+===,所以这个三角形是直角三角形,故④正确.综上,错误的说法是①,有1个.故选:A .【点睛】 本题考查了三角形的内角和、勾股定理及其逆定理等知识,属于基础题型,熟练掌握上述知识是解题的关键.11.B解析:B【分析】先根据题意确定AC 、BC 、AB 的长,然后运用勾股定理逆定理判定即可.【详解】解:由题意得:AC=AN=2AM=8,BC=MB=MN+NB=4+2=6,AB=AM+MN+NB=10∴AC 2=64, BC 2=36, AB 2=100,∴AC 2+BC 2=AB 2∴ABC 一定是直角三角形.故选:B .【点睛】 本题主要考查了勾股定理逆定理的应用,根据题意确定AC 、BC 、AB 的长是解答本题的关键.12.B解析:B【分析】先找出DE 最短时的位置,然后根据等腰三角形的性质,进行分类讨论,即可求出点P 的个数.【详解】解:在Rt △ABC 中,∠C=90°,设AD=CE=x ,则4CD x =-,由勾股定理,得:2222222(4)28162(2)8DE CD CE x x x x x =+=-+=-+=-+, ∴当2x =时,2DE 最小,即DE 最小,∴此时2AD CD CE BE ====,822DE ==;∵在直线AC 或直线BC 上找到一点P ,使得△PDE 是等腰三角形,则可分为三种情况进行分析:PD=PE ;PD=DE ,PE=DE ;如下图所示:点P 共有7个点;故选:B .【点睛】本题考查了等腰三角形的性质,完全平方公式的应用,勾股定理,最短路径问题,解题的关键是熟练掌握所学的知识,正确的确定点P 的位置,注意运用数形结合的思想进行解题.二、填空题13.【分析】由勾股定理得推出由此得到将数据代入计算得出答案【详解】解:在直角三角形中利用勾股定理得:∴变形为:即又∴故答案为:【点睛】此题考查勾股定理的应用圆的面积计算公式正确理解各部分图形之间的面积关 解析:98π. 【分析】 由勾股定理得222+=a b c ,推出222111()()()222222a b c πππ+=,由此得到231S S S +=,将数据代入计算得出答案.【详解】解:在直角三角形中,利用勾股定理得:222+=a b c ,∴222888a b c πππ+=,变形为:222111()()()222222a b c πππ+=,即231S S S +=. 又1258S π=,22S π=, ∴312259288S S S πππ=-=-=, 故答案为:98π. 【点睛】 此题考查勾股定理的应用,圆的面积计算公式,正确理解各部分图形之间的面积关系及勾股定理的计算公式是解题的关键.14.【分析】根据中点的含义先求解作点C 关于AB 对称点则连接交AB 于P 连接此时的值最小由对称性可知于是得到再证明然后根据勾股定理即可得到结论【详解】解:为的中点作点C 关于AB 对称点交于则连接交AB 于P 连接 解析:5【分析】根据中点的含义先求解,BD 作点C 关于AB 对称点C ',则OC OC '=,连接DC ',交AB 于P ,连接BC ',此时PD PC PD PC DC ''+=+=的值最小,由对称性可知45C BA CBA '∠=∠=︒,,AB CC '⊥于是得到90C BC '∠=︒,再证明4BC BC '==,然后根据勾股定理即可得到结论.【详解】解:4AC BC D ==,为BC 的中点,90ACB ∠=︒,2CD BD ∴==, 45CBA ∠=︒,作点C 关于AB 对称点C ',CC '交AB 于O ,则OC OC '=,连接DC ',交AB 于P ,连接BC '.此时PD PC PD PC DC ''+=+=的值最小.由对称性可知45C BA CBA '∠=∠=︒,,AB CC '⊥ ∴90C BC '∠=︒,∴BC BC '⊥,点C 关于AB 对称点C ',∴AB 垂直平分CC ',∴4BC BC '==,根据勾股定理可得22422 5.DC '+= 故答案为:5【点睛】此题考查了轴对称-线路最短的问题,等腰直角三角形的性质与判定,勾股定理的应用,确定动点P 何位置时,使PC+PD 的值最小是解题的关键.15.5或4【分析】根据绝对值和算术平方根具有非负性可得ab 的值然后再利用勾股定理分类求出该直角三角形的斜边长即可【详解】∵满足∴a−3=0b−4=0解得:a =3b =4当ab 为直角边该直角三角形的斜边长为解析:5或4.【分析】根据绝对值和算术平方根具有非负性可得a 、b 的值,然后再利用勾股定理,分类求出该直角三角形的斜边长即可.【详解】∵a ,b 340a b --=,∴a−3=0,b−4=0,解得:a =3,b =4,当a ,b 为直角边, 该直角三角形的斜边长为:22345+=;4也可能为斜边长.综上所述:直角三角形的斜边长为:5或4.故答案为:5或4.【点睛】此题主要考查了勾股定理和绝对值和算术平方根的非负性,关键是掌握绝对值和算术平方根具有非负性,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.16.45°【分析】延长BA 到格点D 得到根据勾股定理求出ADCDAC 长度再进一步证明△ADC 为等腰直角三角形问题得解【详解】解:如图延长BA 到格点D 则根据勾股定理得∴AD=CD ∴∠ADC=90°∴∠DAC解析:45°【分析】延长BA 到格点D ,得到ABC ACB DAC ∠+∠=∠,根据勾股定理求出AD 、CD 、AC 长度,再进一步证明△ADC 为等腰直角三角形,问题得解.【详解】解:如图,延长BA 到格点D ,则ABC ACB DAC ∠+∠=∠,根据勾股定理得,22=12=5AD +,22=12=5CD +22=13=10AC +,∴AD=CD ,222=AD CD AC +,∴∠ADC=90°,∴∠DAC=∠DCA=45°,∴45ABC ACB ∠+∠=︒.故答案为:45°.【点睛】本题考查了勾股定理与逆定理,理解两个定理是解题关键.17.45【分析】设每个小格边长为1可以算得ADCDAC 的边长并求得∠ACD 的度数根据三角形外角性质即可得到∠CAB+∠CBA 的值【详解】解:设每个小格边长为1则由图可知:∴∴△ADC 是等腰直角三角形∴∠解析:45【分析】设每个小格边长为1,可以算得AD 、CD 、AC 的边长并求得∠ACD 的度数,根据三角形外角性质即可得到∠CAB+∠CBA 的值.【详解】解:设每个小格边长为1,则由图可知:AD CD AC =====∴222AD CD AC +=,∴△ADC 是等腰直角三角形,∴∠ACD=45°,又∠ACD=∠CAB+∠CBA ,∴∠CAB+∠CBA=45°,故答案为45.【点睛】本题考查勾股定理逆定理的应用,熟练掌握勾股定理的逆定理及三角形的外角性质是解题关键.18.45【分析】做线段BA 关于BC 的对称线段BE 连接DE 先证明再证明△BDE 为等腰直角三角形得到∠DBE=45°问题得证【详解】解:如图做线段BA 关于BC 的对称线段BE 连接DE 则∠ABC=∠EBC ∴根据解析:45【分析】做线段BA 关于BC 的对称线段BE ,连接DE ,先证明CBD ABC DBE ∠+∠=∠,再证明△BDE 为等腰直角三角形,得到∠DBE=45°,问题得证.【详解】解:如图,做线段BA 关于BC 的对称线段BE ,连接DE ,则∠ABC=∠EBC ,∴CBD ABC CBD EBC DBE ∠+∠=∠+∠=∠,根据勾股定理得BD ==BE ==,DE ,∴BE=DE ,222=26=BE DE BD +∴∠BED=90°,∴△BDE 为等腰直角三角形,∴∠DBE=45°,∴45CBD ABC ∠+∠=︒.故答案为:45【点睛】本题考查了勾股定理及其逆定理在网格中应用,根据题意作出线段BA 关于BC 的对称线段BE 是解题关键.19.【分析】在Rt △COA 中根据OA=和OC=1根据勾股定理可得AC=2得到根据翻折性质可得继而可得在Rt △PAG 中根据所对直角边等于斜边的一半可以求出AG 的长利用勾股定理可求出PG 的长从而得到P 点坐标 解析:33,2⎛⎫ ⎪ ⎪⎝⎭【分析】在Rt △COA 中,根据OA=3和OC=1,根据勾股定理可得AC=2,得到30CAO ∠=︒,根据翻折性质可得CAO PAC ∠=∠,继而可得60PAO ∠=︒,30GPA ∠=︒,在Rt △PAG 中,根据30所对直角边等于斜边的一半可以求出AG 的长,利用勾股定理可求出PG 的长,从而得到P 点坐标.【详解】如下图,过点P 作PG x ⊥轴于点G ,∵3,OC=1,∴22+2OA OC =,∴12OC AC =, ∴30CAO ∠=︒, ∵△AOC 沿AC 翻折得到△APC ,∴CAO PAC ∠=∠,∴=60PAO ∠︒,=30GPA ∠︒,3,∴122AG AP ==,32PG ==,∴-2=2,∴点P 的坐标为32⎫⎪⎪⎝⎭,,故答案为:322⎛⎫ ⎪⎪⎝⎭,. 【点睛】本题考查折叠的性质、含30︒角的直角三角形及勾股定理,熟练掌握含30︒角的直角三角形及勾股定理是解题的关键. 20.2【分析】根据线段垂直平分线的性质和等腰直角三角形的性质即可得到结论【详解】∵DE 垂直平分AB ∴AE =BE ∴∠EAB =∠B =225°∴∠AEC =∠EAB +∠B =45°∵∠C =90°∴AC =CE =2A解析:【分析】根据线段垂直平分线的性质和等腰直角三角形的性质即可得到结论.【详解】∵DE 垂直平分AB ,∴AE =BE ,∴∠EAB =∠B =22.5°,∴∠AEC =∠EAB +∠B =45°,∵∠C =90°,∴AC =CE =2,AE 2=AC 2+CE 2,∴AECE =,∴BE =AE =.故答案为:【点睛】此题考查了线段垂直平分线的性质以及等腰直角三角形性质.此题难度不大,注意数形结合思想的应用.三、解答题21.(1,222AB BC AC +=,勾股定理逆定理;(2)见解析.【分析】(1)利用勾股定理和勾股定理逆定理即可填空.(2)作如图所示的图,根据图易证()ADB BEC SAS ≅,推出ABD BCE ∠=∠.继而推出90ABD EBC ∠+∠=︒,即可得出结论90ABC ∠=︒.【详解】(1)先利用勾股定理求出ABC 的三条边长,可得10AB ,10BC =,25AC =.从而可得AB 、BC 、AC 之间的数量关系是222AB BC AC +=,根据勾股定理逆定理,可得ABC ∠是直角.(2)作图如图,由图可得:AD BE =,BD CE =,90ADB BEC ∠=∠=°.在ADB △和BEC △中,AD BE ADB BEC BD CE =⎧⎪∠=∠⎨⎪=⎩,()ADB BEC SAS ∴≅,ABD BCE ∴∠=∠.在BEC △中,18090BCE EBC BEC ∠+∠=︒-∠=︒,90ABD EBC ∠∴+=∠︒.∵D 、B 、E 三点共线,180ABD EBC ABC ∴∠+∠+∠=︒,180()90ABC ABD EBC ∴∠=︒-∠+∠=︒.【点睛】本题考查直角三角形的判定.熟练利用勾股定理和勾股定理逆定理,三角形全等的判定和性质等知识是解答本题的关键.22.(1)3;(2)32【分析】(1)根据勾股定理可求AD ,再根据勾股定理可求CD ,根据BC=BD+CD 即可求解; (2)根据三角形面积公式可求AF 与CG 的和.【详解】(1)在Rt △ABD 中,∠ADB=90︒,由勾股定理得:()22221174AB BD --,在Rt △ACD 中,∠ADC=90︒,由勾股定理得:()22222542AC AD -=-=,∴BC=BD+CD=1+2=3,∴BC 的长为3;(2)∵AF ⊥BE ,CG ⊥BE ,BE=22, ∴1122∆∆∆=+=⋅+⋅ABC ABE BCE S S S BE AF BE CG , =1()2⋅+BE AF CG , =2()AF CG +, 而12∆=⋅ABC S BC AD =134=62⨯⨯, ∴AF CG +==322, 即AF 与 CG 的和为32.【点睛】本题考查了勾股定理、三角形面积法的应用,正确运用勾股定理是解题的关键. 23.(1)ABC 是直角三角形,理由见解析;(2)3【分析】(1)先比较根式的大小,再计算较小的两个边的平方和,与最大的平方比较,得出结论即可;(2)设这个正方形的边长为x ,由一个正方形的面积与ABC 的面积相等,构造方程2118322x =⨯⨯,解之即可. 【详解】 解:(1)在ABC 中,1850<,3250<,2222(18)(32)50a b +=+=,22(50)50c ==,222a b c ∴+=,ABC ∴是直角三角形;(2)设这个正方形的边长为x ,∵一个正方形的面积与ABC 的面积相等,∴2118322x =⨯⨯, 解得:23x =±,0x ,23x ∴=.答:这个正方形的边长为23x =.【点睛】本题考查勾股定理的逆定理,以及利用面积列方程解应用题,掌握勾股定理逆定理的应用条件与方法,会利用正方形的面积与ABC 的面积相等构造方程解决问题是关键. 24.(1)7米;(2)不是【分析】(1)利用勾股定理直接求出边长即可;(2)梯子的顶端下滑了4米,则20a =米,利用勾股定理求出b 的值,判断是否梯子的底部在水平方向也滑动了4米.【详解】(1)如图,由题意得此时a =24米,c =25米,由勾股定理得222+=a b c ,∴2225247b =-=(米);(2)不是,如果梯子的顶端下滑了4米,此时20a =米,25c =米,由勾股定理,22252015b =-=(米),1578-=(米),即梯子的底部在水平方向滑动了8米.【点睛】本题考查勾股定理的应用,解题的关键是掌握用勾股定理解直角三角形的方法. 25.(1)△A 1B 1C 1见详解 ;(2)72;(3)点P 见详解, 10+32. 【分析】(1)先在坐标系中分别画出点A ,B ,C 关于y 轴的对称点,再连线,得到111A B C ∆即可 ;(2)利用割补法,将三角形ABC 补成正方形ADEF ,减去△AFC 、△BEC 、△ADB 三个三角形的面积计算即可(3)先画出点B 关于x 轴的对称点B′,再连接B′A 交x 轴于点P ,即为所求.求出B′点坐标,利用勾股定理求两点距离AB 与AB′,再求和即可【详解】(1)如图所示:△A 1B 1C 1即为所求;(2)将图形补成如图所示四边形ADEF 是正方形∵ABC ∆的面积=正方形ADEF 的面积-△AFC 的面积-△BEC 的面积-△ADB 的面积 ∴S △ABC =2111373-32-12-31=9-3-1-=22222(3)如图所示,画出点B 关于x 轴的对称点B′,连接B′A 交x 轴于点P ,∴PB=PB′,∴AB ′=AP+PB′=PA PB +,两点之间线段最短,此时PA PB +的值最小,即△PAB 的周长最小,AB=()()224-1+2-1=10, B′(4,-2), AB′=()()224-1+1+2=9+9=32,∴PAB ∆的周长=AB+AP+BP=AB+AB′=10+32∴PAB ∆周长的最小值为10+32.【点睛】本题主要考查平面直角坐标系中,图形的轴对称变换,割补法求三角形面积,通过点的轴对称,利用勾股定理求两线段和的最小值是解题的关键.26.5【分析】过点C 作CE ⊥AB 于点E ,连接AC ,根据题意直接得出AE ,EC 的长,再利用勾股定理得出AC 的长,进而求出答案.【详解】如图所示:过点C 作CE ⊥AB 于点E ,连接AC ,由题意可得:EC =BD =1.2m ,AE =AB−BE =AB−DC =1.3−0.8=0.5m ,∴AC=22221.20.5 1.3CE AE +=+=m ,∴1.3÷0.2=6.5s ,答:这条鱼至少6.5秒后才能到这鱼饵处.【点睛】本题主要考查勾股定理,添加合适的辅助线,构造直角三角形,是解题的关键.。
初二下学期勾股定理练习题(含答案)
勾股定理练习题一、基础达标:1. 下列说法正确的是()A.若 a、b、c是△ABC的三边,则a2+b2=c2;B.若 a、b、c是Rt△ABC的三边,则a2+b2=c2;C.若 a、b、c是Rt△ABC的三边, 90∠A,则a2+b2=c2;=D.若 a、b、c是Rt△ABC的三边, 90=∠C,则a2+b2=c2.2. Rt△ABC的三条边长分别是a、b、c,则下列各式成立的是()A.cba<+ D. 2+ C. cba>a=+ B. cb2c2+a=b3.如果Rt△的两直角边长分别为k2-1,2k(k >1),那么它的斜边长是()A、2kB、k+1C、k2-1D、k2+14. 已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121 B.120 C.90 D.不能确定6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42 或 32 D.37 或 337.※直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为()(A2d(B d(C)2d(D)d8、在平面直角坐标系中,已知点P的坐标是(3,4),则OP的长为()A:3B:4 C:5 D:79.若△ABC中,AB=25cm,AC=26cm高AD=24,则BC的长为()A.17 B.3 C.17或3 D.以上都不对10.已知a、b、c是三角形的三边长,如果满足2--=则三角(6)100a c形的形状是()A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__.13. 一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是 三角形.15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .18.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .二、综合发展:1.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.A C B2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?3.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?4.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?A E C D B15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?观测点答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3.解析:设另一条直角边为x,则斜边为(x+1)利用勾股定理可得方程,可以求出x.然后再求它的周长.答案:C.4.解析:解决本题关键是要画出图形来,作图时应注意高AD是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15, 所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5.二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm 13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解.答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h .答案:这辆小汽车超速了.。
上海民办师大实验中学八年级数学下册第二单元《勾股定理》测试卷(含答案解析)
一、选择题1.如图,在ABC 中,90C ∠=︒,点E 是AB 的中点,点D 是AC 边上一点,且DE AB ⊥,连接DB .若6AC =,3BC =,则CD 的长( )A .112B .32C .94D .32.如图,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是()A .CD 、EF 、GHB .AB 、EF 、GHC .AB 、CD 、GH D .AB 、CD 、EF 3.如图,一圆柱高8cm ,底面周长为12cm ,一只蚂蚁从A 点爬到点B ,要爬行的最短路程是( )A .6cmB .8cmC .10cmD .12cm 4.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( )A .514B .8C .16D .645.有一圆柱高为12cm ,底面半径为5πcm ,在圆柱下底面点A处有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物,则沿侧面爬行的最短路程是()A.12cm B.13cm C.10cm D.16cm6.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离AB长度为1尺.将它往前水平推送10尺时,即A C'=10尺,则此时秋千的踏板离地距离A D'就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,则绳索OA长为()A.13.5尺B.14尺C.14.5尺D.15尺7.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧,分别交AB、AC于点M、N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,下列结论:①AD是BAC∠的平分线;②∠ADB=120°;③DB=2CD;④若CD=4,83AB=,则△DAB的面积为20.其中正确的结论共有()A.1个B.2个C.3个D.4个8.为准备一次大型实景演出,某旅游区划定了边长为12m的正方形演出区域,并在该区域画出4×4的网格以便演员定位(如图所示),其中O为中心,A,B,C,D是某节目中演员的四个定位点.为增强演出效果,总策划决定在该节目演出过程中增开人工喷泉.喷头位于演出区域东侧,且在中轴线l上与点O相距14m处.该喷泉喷出的水流落地半径最大为10m,为避免演员被喷泉淋湿,需要调整的定位点的个数是()A .1个B .2个C .3个D .4个 9.若ABC 的三边a 、b 、c 满足2(3)450a b c -+-+-=,则ABC 的面积是( )A .3B .6C .12D .1010.如图,设每个小方格的边长都为1,则图中以小方格顶点为端点且长度为13的线段有( )A .1条B .2条C .3条D .4条11.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把△ABD 沿着AD 翻折,得到△AED ,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG =GE ,AF =3,FD =1,△ADG 的面积为2,则点D 到AB 的距离为( )A 41313B 81313C .2D .412.如图,在△ABC 中,∠C =90°,点D 是线段AB 的垂直平分线与BC 的交点,连结AD .若CD =2,BD =4,则AC 的长为( )A .4B .3C .23D .3二、填空题13.如图,ABC 中,AB 5=,BC 6=,BC 边上的中线AD 4=,则ADC ∠=________.14.长方形零件图ABCD 中,2BC AB =,两孔中心M ,N 到边AD 上点P 的距离相等,且MP NP ⊥,相关尺寸如图所示,则两孔中心M ,N 之间的距离为__________mm .15.如图,ABC 中,17AB =,10BC =,21CA =,AM 平分BAC ∠,点D .E 分别为AM 、AB 上的动点,则BD DE +的最小值是__________.16.如图,在Rt ABC 中,∠ACB =90°,AC =BC ,边AC 落在数轴上,点A 表示的数是1,点C 表示的数是3.以点A 为圆心、AB 长为半径画弧交数轴负半轴于点B 1,则点B 1所表示的数是_____.17.如图,在Rt ABC △中,90C ∠=︒,10cm AB =,8cm BC =,BD 平分ABC ∠,DE AB ⊥,垂足为E ,则DE =__________cm .18.如图所示的网格是正方形网格,点A 、B 、C 、D 均在格点上,则∠CAB +∠CBA =____°.19.如图,在ABC 中,AB AC =,120A ∠=︒,AB 的垂直平分线分别交AB ,BC 于D ,E ,3BE =,则EC 的长为_____.20.已知一个直角三角形的两边长分别为3和4,则斜边上的高是_________.三、解答题21.在锐角ABC ∆中,∠BAC =45°.(1)如图1,BD⊥AC于D,在BD上取点E,使DE=CD,连结AE,F为AC的中点,连结EF并延长至点M,使FM=EF,连结CM、BM.①求证:△AEF≌△CMF;②若BC=2,求线段BM 的长.AB=),AC=3,求2PA+PB+PC (2)如图2,P是△ABC内的一点,22AB=(即28的最小值,并求此时∠APC的度数.22.如图,在△ABC中,∠C=90°,AB的垂直平分线DE交AC于点E,垂足是D,F是BC 上一点,EF平分∠AFC,EG⊥AF于点G.(1)试判断EC与EG,CF与GF是否相等;(直接写出结果,不要求证明)(2)求证:AG=BC;(3)若AB=10,AF+BF=12,求EG的长.23.拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,拖拉机周围130m以内为受噪声影响区域.(1)学校C会受噪声影响吗?为什么?(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?24.如图,已知△ABC 是等腰直角三角形,动点P 在斜边AB 所在的直线上,以PC 为直角边作等腰直角△PCQ ,其中∠PCQ =90°,探究并解决下列问题:(1)如图 1,若点 P 为线段 AB 上一动点时,①求证:△ACP ≌△BCQ ;②试求线段 PA ,PB ,PQ 三者之间的数量关系;(2)如图 2,若点 P 在 AB 的延长线上,求证:BQ ⊥AP ;(3)若动点 P 满足13PA PB =,请直接写出PC AC的值. 25.如图,ABC ∆三个顶点的坐标分别是(1,1)A ,(4,2)B ,(3,4)C .(1)画出ABC ∆关于y 轴对称的111A B C ∆.(2)ABC ∆的面积是___________.(3)在x 轴上求作一点P ,使PAB ∆的周长最小,并求出PAB ∆周长的最小值. 26.如图,星期天小明去钓鱼,鱼钩A 在离水面的BD 的1.3米处,在距离鱼线1.2米处D 点的水下0.8米处有一条鱼发现了鱼饵,于是以0.2米/秒的速度向鱼饵游去,那么这条鱼至少几秒后才能到达鱼饵处?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据线段垂直平分线的性质得到AD=BD ,继而在Rt △BCD 中利用勾股定理列式进行计算即可.【详解】∵E 是AB 中点,DE AB ⊥,∴DE 是AB 的垂直平分线,∴DA DB =,则6DA DB AC CD CD ==-=-,在Rt CDB 中,∠C=90°,BC=3,∴222CD CB DB +=,即()22236CD CD +=-, ∴94CD =. 故选:C .【点睛】 本题考查了勾股定理,线段垂直平分线的性质,准确识图,熟练掌握和灵活运用相关知识是解题的关键.2.B解析:B【分析】设出正方形的边长,利用勾股定理,解出AB 、CD 、EF 、GH 各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【详解】解:设小正方形的边长为1,则AB 2=22+22=8,CD 2=22+42=20,EF 2=12+22=5,GH 2=22+32=13.因为AB 2+EF 2=GH 2,所以能构成一个直角三角形三边的线段是AB 、EF 、GH .故选:B .【点睛】本题考查了勾股定理逆定理的应用;解题的关键是解出AB 、CD 、EF 、GH 各自的长度. 3.C解析:C【分析】此题最直接的解法,就是将圆柱展开,然后利用两点之间线段最短解答.【详解】沿着过点A 的高将圆柱侧面展开,再过点B 作高线BC ,如图:则,∠ACB=90°,AC=12⨯12=6(cm ),BC=8cm , 由“两点之间,线段最短”可知:线段AB 的长为蚂蚁爬行的最短路程,在Rt ABC ∆中,()22226810AB AC BC cm =+=+=,故选C .【点睛】本题考查了平面展开图最短路径问题,解题的关键是根据题意画出展开图,表示各线段的长度.4.D解析:D【分析】设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,代入得到2225289a +=,计算求出答案即可.【详解】如图,设直角三角形的三边长分别为a、b、c,由题意得222+=a b c,∴2225289a+=,∴字母A所代表的正方形的面积264a=,故选:D..【点睛】此题考查以弦图为背景的证明,熟记勾股定理的计算公式、理解三个正方形的面积关系是解题的关键.5.B解析:B【分析】要想求得最短路程,首先要把A和B展开到一个平面内.根据两点之间,线段最短求出蚂蚁爬行的最短路程.【详解】解:展开圆柱的半个侧面是矩形,矩形的长是圆柱的底面周长的一半,即52ππ=5cm,矩形的宽是圆柱的高12cm.根据两点之间线段最短,知最短路程是矩形的对角线AB的长,即222251213AC BC+=+=cm故选:B.【点睛】此题考查最短路径问题,求两个不在同一平面内的两个点之间的最短距离时,一定要展开到一个平面内.根据两点之间,线段最短.确定要求的长,再运用勾股定理进行计算.6.C解析:C【分析】设绳索有x尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理可求解.【详解】解:设绳索有x尺长,则102+(x+1-5)2=x2,解得:x=14.5.故绳索长14.5尺.故选:C.本题考查勾股定理的应用,理解题意能力,关键是能构造出直角三角形,用勾股定理来解.7.C解析:C【分析】连接PN 、PM .根据题意易证明APM APN ≅,即可证明①正确;根据三角形外角的性质即可求出=120ADB ∠︒,故②正确;由30BAD B ∠=∠=︒,可说明AD=BD ,再由AD=2CD ,即可证明BD=2CD ,故③正确;由④所给条件可求出AC 和DB 的长,即可求出=163DAB S ,故④错误. 【详解】如图,连接PN 、PM .由题意可知AM=AN ,PM=PN ,AP=AP ,903060BAC ∠=︒-︒=︒.∴APM APN ≅,∴1302CAD BAD BAC ∠=∠=∠=︒,即AD 是BAC ∠的平分线,故①正确; ∵=ADB C CAD ∠∠+∠,∴=9030=120ADB ∠︒+︒︒,故②正确;在Rt ACD △中,30CAD ∠=︒,∴AD=2CD ,又∵30BAD B ∠=∠=︒,∴AD=BD ,∴BD=2CD .故③正确;在Rt ABC 中,30B ∠=︒, ∴312BC AB ==, ∴=1248BD BC CD -=-=,又在Rt ACD △中,30CAD ∠=︒,∴343AC CD ==,∴11==843=16322DAB S BD AC ⨯⨯,故④错误.【点睛】本题考查三角形全等的判定和性质,三角形外角的性质,等腰三角形的判定和性质,角平分线的判定以及勾股定理.熟练掌握各个知识点是解答本题的关键.8.B解析:B【分析】把此题转化成一个直角坐标系的问题,然后求各点坐标,最后利用勾股定理即可判断.【详解】设喷头在点P ,则A(6,0),B (3,0);C (3,3);D (4.5;1.5);P (14,0) 则AP=14-6=8m<10m ,故A 需调整;BP=14-3=11m>10m ,故B 不需调整;=,不需调整;=<10m ,故D 需调整;故选:B【点睛】此题考查了勾股定理的应用,根据坐标系找到相应点的坐标,根据勾股定理计算长度是解答此题的关键.9.B解析:B【分析】根据绝对值,乘方和算术平方根的非负性求得a 、b 、c 的值,再结合勾股定理逆定理判断△ABC 为直角三角形,由此根据直角三角形面积等于两直角边乘积的一半可得面积.【详解】解:∵2(3)50a c --=,∴30,40,50a b c -=-=-=,解得3,4,5a b c ===,又∵222223425a b c +=+==,∴△ABC 为直角三角形,∴13462ABC S =⨯⨯=△. 故选:B .【点睛】本题考查非负数的性质,勾股定理的逆定理.理解几个非负数(式)的和为0,那么这几个数(式)都为0是解题关键. 10.D【分析】 13是直角边长为2,3的直角三角形的斜边,据此画两条以格点为端点且长度为13的线段.【详解】解:∵2232+=13, ∴13是直角边长为2,3的直角三角形的斜边,如图所示,AB ,CD ,BE ,DF 的长都等于13;故选:D .【点睛】本题考查的知识点是勾股定理,找到无理数是直角边长为哪两个有理数的直角三角形的斜边长是解决本题的关键.11.B解析:B【分析】根据中线的性质,得S ∆ADG = S ∆AEG ,从而求出S ∆ADE =4,结合折叠的性质,得S ∆ABD = S ∆ADE =4,BE ⊥AD ,根据勾股定理以及等积法,即可得到答案.【详解】 ∵DG =GE ,∴S ∆ADG = S ∆AEG =2,∴S ∆ADE =4,由折叠的性质可知:∆ABD ≅∆ADE ,BE ⊥AD , ∴S ∆ABD = S ∆ADE =4,∠AFB=90°, ∴1()=42AF DF BF +⋅, ∴BF=2, ∴22223213AF BF +=+=设点D 到AB 的距离为h ,则142AB h ⋅=, ∴1381313故选B .【点睛】本题主要考查折叠的性质以及勾股定理,熟练掌握“等积法”求三角形的高,是解题的关键.12.C解析:C【分析】根据线段垂直平分线性质得出AD=BD ,再用勾股定理即可求出AC .【详解】解:∵点D 是线段AB 的垂直平分线与BC 的交点,BD=4,∴AD=BD=4, ∴22224223ACAD CD ; 故选:C .【点睛】本题考查了线段垂直平分线的性质,勾股定理的应用,掌握线段垂直平分线的性质是解题关键. 二、填空题13.【分析】根据中线的性质及勾股定理的逆定理即可求出的度数【详解】∵边上的中线∴∵∴【点睛】本题考查中线的性质勾股定理的逆定理的应用掌握相应的性质定理是解答此题的关键解析:90【分析】根据中线的性质及勾股定理的逆定理即可求出ADC ∠的度数.【详解】∵AB 5=,BC 6=,BC 边上的中线4AD =,∴BD 3=,∵222345+=,∴ADC ADB 90∠∠==.【点睛】本题考查中线的性质勾股定理的逆定理的应用,掌握相应的性质定理是解答此题的关键. 14.【分析】作MQ ⊥BCNF ⊥AB 交于点O 作根据AAS 证明△得到由得出从而得出OMON 的长最后由勾股定理可求出MN 【详解】解:作MQ ⊥BCNF ⊥AB 交于点O 作MK ⊥AB 于点K 作∵四边形ABCD 是矩形∴M解析:【分析】作MQ ⊥BC ,NF ⊥AB 交于点O ,作MM AD '⊥,NN AD '⊥,根据AAS 证明△M PM N NP ''≅∆得到PN MM ''=,NN M P ''=,由2BC AB =得出24NN '=,从而得出OM ,ON 的长,最后由勾股定理可求出MN .解:作MQ ⊥BC ,NF ⊥AB 交于点O ,作MK ⊥AB 于点K ,作MM AD '⊥,NN AD '⊥,∵四边形ABCD 是矩形,∴MK//AD//BC∴∠90KMM KMQ '=∠=︒∴M '、M 、Q 三点共线,∵∠90MPN =︒,∴∠90M PM N PN ''+∠=︒,∠90N PN PNN ''+∠=︒∴∠M PM PNN ''=∠又∠90PM M PN N ''=∠=︒,MP PN =∴△M PM N NP ''≅∆∴10PN MM ''==,NN M P ''=又∵10ON M P N P N M N M N N ''''+='=+=+则11AB NN '=+,5054104(10)BC ON NN '=+-=-+又∵2BC AB =,即104(10)2(11)NN NN ''-+=+∴24NN '=∴1014OM NN '=-=,1034ON NN '=+=在Rt OMN ∆中,222214341352262()MN ON OM mm =+=+== 故答案为:2【点睛】此题主要考查了运用勾股定理示线段的长,作辅助线构造直角三角形是解答此题的关键. 15.8【分析】过B 点作于点与交于点根据三角形两边之和小于第三边可知的最小值是线段的长根据勾股定理列出方程组即可求解【详解】过B 点作于点与交于点作点E 关于AM 的对称点G 连结GD 则ED=GD 当点BDG 三点在解析:8【分析】过B 点作BF AC ⊥于点 F , BF 与AM 交于D 点,根据三角形两边之和小于第三边,可知 BD DE +的最小值是线段BF 的长,根据勾股定理列出方程组即可求解.【详解】过B 点作BF AC ⊥于点 F , BF 与AM 交于D 点,作点E 关于AM 的对称点G ,连结GD ,当点B 、D 、G 三点在一直线上时较短,BG BF >,当线段BG 与BF 重合时最短,BD+BE=BD+DG=BF ,设AF=x ,CF-21-x ,根据题意列方程组:()222222172110BF x BF x ⎧+=⎪⎨+-=⎪⎩, 解得:158x BF =⎧⎨=⎩,158x BF =⎧⎨=-⎩(负值舍去). 故BD +DE 的值是8,故答案为8,【点睛】本题考查轴对称的应用,角平分线的性质,点到直线的距离,勾股定理的应用,掌握轴对称的性质,角平分线的性质,点到直线的距离,勾股定理的应用,会利用轴对称找出最短路径,再利用勾股定理构造方程是解题关键.16.1﹣2【分析】先求出AC 的长度再根据勾股定理求出AB 的长度然后根据数轴的特点从点A 向左AB 个单位即可得到点B1【详解】解:根据题意AC =3﹣1=2∵∠ACB =90°AC =BC ∴AB =∴点B1表示的数解析:1﹣2【分析】先求出AC 的长度,再根据勾股定理求出AB 的长度,然后根据数轴的特点,从点A 向左AB 个单位即可得到点B 1.【详解】解:根据题意,AC =3﹣1=2,∵∠ACB =90°,AC =BC ,∴AB 22222222AC BC +=+=∴点B 1表示的数是1﹣22故答案为:1﹣2.【点睛】本题考查勾股定理、实数与数轴,解题的关键是利用勾股定理求出AB .17.【分析】先利用勾股定理可得再根据角平分线的性质可得然后根据直角三角形全等的判定定理与性质可得从而可得设从而可得最后在中利用勾股定理即可得【详解】在中平分在和中设则在中即解得即故答案为:【点睛】本题考 解析:83【分析】先利用勾股定理可得6AC cm =,再根据角平分线的性质可得DE DC =,然后根据直角三角形全等的判定定理与性质可得8BE BC cm ==,从而可得2AE cm =,设DE DC xcm ==,从而可得(6)AD x cm =-,最后在Rt ADE △中,利用勾股定理即可得.【详解】在Rt ABC 中,90C ∠=︒,10AB cm =,8BC cm =,6AC cm ∴==, BD 平分ABC ∠,,DE AB AC BC ⊥⊥,DE DC ∴=,在Rt BDE 和Rt BDC 中,DE DC BD BD =⎧⎨=⎩, ()Rt BDE Rt BDC HL ∴≅,8BE BC cm ∴==,2AE AB BE cm ∴=-=,设DE DC xcm ==,则(6)AD AC DC x cm =-=-,在Rt ADE △中,222AE DE AD +=,即2222(6)x x +=-, 解得83x =, 即83DE cm =, 故答案为:83. 【点睛】本题考查了角平分线的性质、直角三角形全等的判定定理与性质、勾股定理等知识点,熟练掌握角平分线的性质是解题关键.18.45【分析】设每个小格边长为1可以算得ADCDAC 的边长并求得∠ACD 的度数根据三角形外角性质即可得到∠CAB+∠CBA 的值【详解】解:设每个小格边长为1则由图可知:∴∴△ADC 是等腰直角三角形∴∠解析:45【分析】设每个小格边长为1,可以算得AD 、CD 、AC 的边长并求得∠ACD 的度数,根据三角形外角性质即可得到∠CAB+∠CBA 的值.【详解】解:设每个小格边长为1,则由图可知: 2222125,1310,AD CD AC ==+==+=∴222AD CD AC +=,∴△ADC 是等腰直角三角形,∴∠ACD=45°,又∠ACD=∠CAB+∠CBA ,∴∠CAB+∠CBA=45°,故答案为45.【点睛】本题考查勾股定理逆定理的应用,熟练掌握勾股定理的逆定理及三角形的外角性质是解题关键.19.6【分析】根据等腰三角形的性质可求出两底角的度数连接AE 可得出AE=BE ∠EAD=推出∠EAC=利用勾股定理解直角三角形即可得出答案【详解】解:连接AE ∵AB=AC ∠A=∴∠B=∠C=∵ED 垂直平分解析:6【分析】根据等腰三角形的性质可求出两底角的度数,连接AE ,可得出AE=BE , ∠EAD=30︒,推出 ∠EAC=90︒,利用勾股定理解直角三角形即可得出答案.【详解】解:连接AE ,∵ AB=AC ,∠A=120︒ ,∴ ∠B=∠C=()1180120302︒-︒=︒, ∵ED 垂直平分AB , ∴AE=BE ,∠EAD=30︒ ,∵BE=3,∴DE=1322BE = ∴2233BD BE DE =-=∴AB=AC=2BD=,∵ ∠A=120︒ ,∴ ∠EAC=90︒ ,∴6CE ===,故答案为:6.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质、勾股定理、直角三角形30︒角所对的直角边等于斜边的一半的性质,熟记性质并作辅助线构造出直角三角形是解题的关键.20.或【分析】分为两种情况:①3和4都是直角边;②斜边是4有一条直角边是3利用勾股定理求得第三边再利用等面积法即可得出斜边上的高【详解】解:分为两种情况:①3和4都是直角边由勾股定理得:第三边长∴斜边上解析:125 【分析】分为两种情况:①3和4都是直角边;②斜边是4有一条直角边是3.利用勾股定理求得第三边,再利用等面积法即可得出斜边上的高.【详解】解:分为两种情况:①3和4都是直角边,由勾股定理得:第三边长5==∴斜边上的高为341255⨯=; ②斜边是4有一条直角边是3,由勾股定理得:第三边长=,∴斜边上的高为344=;故答案为:125或4. 【点睛】本题考查勾股定理解直角三角形.注意分类讨论和等面积法(在本题中主要用到直角三角形的面积等于两直角边乘积的一半也等于斜边与斜边高的乘积的一半)的运用. 三、解答题21.(1)①见解析;②2,此时∠APC =90°【分析】(1)①根据SAS 证明△AEF ≌△CMF 即可;②证明△BCM 是等腰直角三角形,由勾股定理求解即可;(2)将△APB 绕点A 逆时针旋转 90°得到△AFE ,连接FP 、CE ,推荐2FP AP =,∠EAC=135°,作 EH ⊥CA 交 CA 的延长线于H ,求得EH =AH =2,CH =5,在Rt △EHC 中,可得29CE =,由点C 、P 、F 、E 四点共线时,2PA +PB +PC 的最小值为CE ,故可得结论.【详解】(1)①∵F 为AC 的中点,∴AF =CF在△AEF 和△CMF 中EF FM AFE CFM AF CF =⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△CMF②由(1)得△AEF ≌△CMF ,∴AE =CM ,∠DAE =∠FCM ,∵BD ⊥AC ,∠BAC =45°,∴AD =BD在△AED 和△BCD 中90DE DC ADE BDC AD BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△AED ≌△BCD ,.∴AE =BC ,∠DAE =∠DBC ,∴BC =CM ,∠FCM =∠DBC ,∵∠BCF +∠DBC =90°,∴∠BCF +∠FCM =90°,∴△BCM 是等腰直角三角形,由勾股定理得,22448(22)BM BC CM =+=+=或(2)将△APB 绕点A 逆时针旋转 90°得到△AFE ,连接FP 、CE ,易知△AFP 是等腰直角三角形,∴2FP AP ,∠EAC =135°,作 EH ⊥CA 交 CA 的延长线于 H .在Rt △ EAH 中,228AE AB == ,∵∠H =90° , ∠EAH =45°,∵222EH AH AE +==8,∴EH =AH =2,∴CH =5,在 Rt △EHC 中,CE ==∵+PC =FP +EF +PC ≥CE ,∴点C 、P 、F 、EPA +PB +PC 的最小值为CE ,此时,∠AFP+∠AFE=90°,∠BPC +∠APF=180°,∵∠AFP=∠APF=45°,∴∠AFE=∠BPC=135°,∴∠APB=∠BPC=135°∴∠APC =360°-135°-135°=90° ∴+PB +PC ,此时∠APC =90°【点睛】此题是三角形综合题,主要考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,中点的性质,勾股定理,判断出两对三角形全等是解本题的关键.22.(1),EC EG CF GF ==;(2)证明见解析;(3)EG 的长是134. 【分析】(1)根据角平分线性质得出EC =EG ,再根据勾股定理推出CF =GF 即可.(2)连接BE ,推出AE =BE ,根据HL 证出Rt △AGE ≌Rt △BCE 即可.(3)求出BC ,根据勾股定理求出AC ,设EG =EC =x ,则AE =8﹣x ,在Rt △AGE 中,由勾股定理得出方程62+x 2=(8﹣x )2,求出方程的解即可.【详解】(1)解:EC =EG ,CF =GF ,理由是:∵∠C =90°,EG ⊥AF ,EF 平分∠AFC ,∴CE =EG ,∵EF =EF ,∴由勾股定理得:CF GF ==∴ CF =GF .(2)证明:连接BE ,∵AB 的垂直平分线DE ,∴AE =BE ,在Rt △AGE 和Rt △BCE 中,AE BE EG EC =⎧⎨=⎩, ∴Rt △AGE ≌Rt △BCE (HL ),∴AG =BC .(3)解:,,AG BC FG FC ==∴ AG =BC =BF +GF ,212,AF BF AG GF BF AG +=++==∴AG =BC =12×12=6, 在Rt △ABC 中,由勾股定理得:22221068,AC AB BC =-=-=设EG =EC =x ,则AE =8﹣x ,在Rt △AGE 中,由勾股定理得:62+x 2=(8﹣x )2,22366416,x x x ∴+=-+1628,x ∴= 解得:31,4x =∴EG 的长是31.4【点睛】本题考查的是角平分线的性质定理,勾股定理的应用,线段的垂直平分线的性质定理,直角三角形全等的判定与性质,掌握以上知识是解题的关键.23.(1)会受噪声影响,理由见解析;(2)有2分钟;【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,进而得出学校C 是否会受噪声影响;(2)利用勾股定理得出ED 以及EF 的长,进而得出拖拉机噪声影响该学校持续的时间.【详解】解:(1)学校C 会受噪声影响.理由:如图,过点C 作CD ⊥AB 于D ,∵AC =150m ,BC =200m ,AB =250m ,∴AC 2+BC 2=AB 2.∴△ABC 是直角三角形.∴AC ×BC =CD ×AB ,∴150×200=250×CD ,∴CD =150200250⨯=120(m ), ∵拖拉机周围130m 以内为受噪声影响区域,∴学校C 会受噪声影响.(2)当EC =130m ,FC =130m 时,正好影响C 学校,∵ED 2222130120EC CD -=-(m ),∴EF =50×2=100(m ),∵拖拉机的行驶速度为每分钟50米,∴100÷50=2(分钟),即拖拉机噪声影响该学校持续的时间有2分钟.【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.24.(1)①见解析;②PA 2+PB 2=PQ 2;(2)见解析;(31010 【分析】(1)①在Rt △ABC 和Rt △PCQ 中,可证得∠ACP =∠BCQ ,从而证明全等;②把PA 2和PB 2都用PC 和CD 表示出来,结合Rt △PCD 中,可找到PC 和PD 和CD 的关系,从而可找到PA 2,PB 2,PQ 2三者之间的数量关系;(2)连接BQ ,由(1)中①的方法,可证得结论;(3)分点P 在线段AB 上和线段BA 的延长线上,分别利用PA PB =13,可找到PA 和CD 的关系,从而可找到PD 和CD 的关系,在Rt △CPD 和Rt △ACD 中,利用勾股定理可分别找到PC、AC和CD的关系,从而可求得PCAC的值.【详解】解:(1)①∵△ABC和△PCQ是等腰直角三角形,∠ACB=∠PCQ=90°,∴AC=BC,CP=CQ,∠A=∠ABC=45°,∠ACB-∠PCB=∠PCQ-∠PCB,∴∠ACP=∠BCQ,∴△ACP≌△BCQ;②连接BQ,∵△ACP≌△BCQ,∴AP=BQ,∠CBE=∠A=45°,∴∠PBQ=90°,∴PB2+BQ2=PQ2,即PA2+PB2=PQ2;(2)证明:连接BQ,∵△ABC和△PCQ是等腰直角三角形,∠ACB=∠PCQ=90°,∴AC=BC,CP=CQ,∠A=∠ABC=45°,∵∠ACP=∠ACB+∠BCP,∠BCQ=∠PCQ+∠BCP,∴∠ACP=∠BCQ,∴△ACP≌△BCQ,∴∠CBQ=∠A=45°,∵∠ABQ=∠ABC+∠CBQ=90°,∴BQ⊥AP;(3)过点C 作CD ⊥AB 于点D ,∵PA PB =13, ∴点P 只能在线段AB 上或在线段BA 的延长线上,①如图3,当点P 在线段AB 上时,∵ PA PB =13, ∴PA =14AB =12CD =PD , 在Rt △CPD 中,由勾股定理可得CP =22CD DP += 2212CD CD ⎛⎫+ ⎪⎝⎭=5CD , 在Rt △ACD 中,由勾股定理可得AC = 22AD CD +=22CD =2CD ,∴PC AC =522CD CD=10; ②如图4,当点P 在线段BA 的延长上时,∵ PA PB =13, ∴PA =12AB =CD , 在Rt △CPD 中,由勾股定理可得CP 22CD DP +()222CD CD +5,在Rt △ACD 中,由勾股定理可得AC 22AD CD +22CD 2CD ,∴PC AC =52CD CD=10; 综上可知PC AC 的值为104或102. 【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,勾股定理的应用,注意分类思想的理解与运用.25.(1)△A 1B 1C 1见详解 ;(2)72;(3)点P 见详解, 10+32. 【分析】(1)先在坐标系中分别画出点A ,B ,C 关于y 轴的对称点,再连线,得到111A B C ∆即可 ;(2)利用割补法,将三角形ABC 补成正方形ADEF ,减去△AFC 、△BEC 、△ADB 三个三角形的面积计算即可(3)先画出点B 关于x 轴的对称点B′,再连接B′A 交x 轴于点P ,即为所求.求出B′点坐标,利用勾股定理求两点距离AB 与AB′,再求和即可【详解】(1)如图所示:△A 1B 1C 1即为所求;(2)将图形补成如图所示四边形ADEF 是正方形∵ABC ∆的面积=正方形ADEF 的面积-△AFC 的面积-△BEC 的面积-△ADB 的面积 ∴S △ABC =2111373-32-12-31=9-3-1-=22222(3)如图所示,画出点B 关于x 轴的对称点B′,连接B′A 交x 轴于点P ,∴PB=PB′,∴AB′=AP+PB′=PA PB +,两点之间线段最短,此时PA PB +的值最小,即△PAB 的周长最小, AB=()()224-1+2-1=10, B′(4,-2), AB′=()()224-1+1+2=9+9=32,∴PAB ∆的周长=AB+AP+BP=AB+AB′=10+32∴PAB ∆周长的最小值为10+32.【点睛】本题主要考查平面直角坐标系中,图形的轴对称变换,割补法求三角形面积,通过点的轴对称,利用勾股定理求两线段和的最小值是解题的关键.26.5【分析】过点C 作CE ⊥AB 于点E ,连接AC ,根据题意直接得出AE ,EC 的长,再利用勾股定理得出AC 的长,进而求出答案.【详解】如图所示:过点C 作CE ⊥AB 于点E ,连接AC ,由题意可得:EC =BD =1.2m ,AE =AB−BE =AB−DC =1.3−0.8=0.5m ,∴AC=22221.20.5 1.3CE AE +=+=m ,∴1.3÷0.2=6.5s ,答:这条鱼至少6.5秒后才能到这鱼饵处.【点睛】本题主要考查勾股定理,添加合适的辅助线,构造直角三角形,是解题的关键.。
上海奉贤区实验中学八年级数学下册第二单元《勾股定理》测试题(包含答案解析)
一、选择题1.如图,在ABC 中,90C ∠=︒,点E 是AB 的中点,点D 是AC 边上一点,且DE AB ⊥,连接DB .若6AC =,3BC =,则CD 的长( )A .112B .32C .94D .32.如图,在ABC ∆中,5,60AC C =∠=︒,点D E 、分别在BC AC 、上,且2,CD CE ==将CDE ∆沿DE 所在的直线折叠得到FDE ∆(点F 在四边形ABDE 内),连接,AF 则2AF =( )A .7B .8C .9D .103.如图,等腰直角三角形纸片ABC 中,∠C =90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,点CE =1,AC =4,则下列结论一定正确的个数是( )①BC =2CD ;②BD >CE ;③∠CED +∠DFB =2∠EDF ;④△DCE 与△BDF 的周长相等.A .1个B .2个C .3个D .4个4.如图,在数轴上,点A ,B 对应的实数分别为1,3,BC AB ⊥,1BC =,以点A 为圆心,AC 为半径画弧交数轴正半轴于点P ,则P 点对应的实数为( )A 51B 5C 53D .455.下列各组数中,以a ,b ,c 为边的三角形不是直角三角形的是( ) A .a =7,b =25,c =24 B .a =11,b =41,c =40 C .a =12,b =13,c =5D .a =8,b =17,c =156.如图,平面直角坐标系中,点A 在第一象限,点B 、C 的坐标分别为3,02⎛⎫⎪⎝⎭、1,02⎛⎫- ⎪⎝⎭.若ABC ∆是等边三角形,则点A 的坐标为( )A .1,32⎛⎫⎪⎝⎭B .1,22⎛⎫⎪⎝⎭C .13,2⎛⎫ ⎪⎝⎭D .()1,37.如图甲,直角三角形ABC 的三边a ,b ,c ,满足222+=a b c 的关系.利用这个关系,探究下面的问题:如图乙,OAB 是腰长为1的等腰直角三角形,90OAB ∠=︒,延长OA 至1B ,使1AB OA =,以1OB 为底,在OAB 外侧作等腰直角三角形11OA B ,再延长1OA 至2B ,使121A B OA =,以2OB 为底,在11OA B 外侧作等腰直角三角形22OA B ,……,按此规律作等腰直角三角形n n OA B (1n ≥,n 为正整数),则22A B 的长及20212021OA B 的面积分别是( )A .2,20202B .4,20212C .2220202D .2,201928.在Rt △ABC 中,∠ACB =90°,AC =BC =1.点Q 在直线BC 上,且AQ =2,则线段BQ 的长为( ) A 3B 5C 3131- D 51519.如图,是一种饮料的包装盒,长、宽、高分别为4cm 、3cm 、12cm ,现有一长为16cm 的吸管插入到盒的底部,则吸管漏在盒外面的部分()h cm 的取值范围为( )A .34h <<B .34h ≤≤C .24h ≤≤D .4h =10.2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,则2()a b +的值为( )A .25B .19C .13D .16911.若ABC 的三边a 、b 、c 满足2(3)450a b c -+-+-=,则ABC 的面积是( ) A .3B .6C .12D .1012.如图,M N 、是线段AB 上的两点,4,2AM MN NB ===.以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连结AC BC 、,则ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形二、填空题13.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积1258S π=,22S π=,则3S 是________.14.如图,已知在Rt ABC △中,90ACB ∠=,3AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则12S S +的值等于________.15.如图,已知OA OB =,若点A 对应的数是a ,则a 与52-的大小关系是a ____52-.16.如图,在等腰直角ABC 中,90ACB ∠=︒,AC BC =,D 为BC 的中点,8AB =,点P 为AB 上一动点,则PC PD +的最小值为__________.17.“东方之门”座落于美丽的金鸡湖畔,高度约为301.8米,是苏州的地标建筑,被评为“中国最高的空中苏式园林”.现以现代大道所在的直线为x 轴,星海街所在的直线为y 轴,建立如图所示的平面直角坐标系(1个单位长度表示的实际距离为100米),东方之门的坐标为4(6,)A -,小明所在位置的坐标为(2,2)B -,则小明与东方之门的实际距离为___________米.18.如图,△ABC 是等边三角形,边长为2,AD 是BC 边上的高.E 是AC 边中点,点P 是AD 上的一个动点,则PC +PE 的最小值是_______ ,此时∠CPE 的度数是_______.19.如图,已知ABC ,AB 的垂直平分线交AB 于D ,交BC 于E ,AC 的垂直平分线交AC 于F ,交BC 于G ,若3BE =,4EG =,12BC =,则ABC 的面积为______.20.如图,教室的墙面ADEF 与地面ABCD 垂直,点P 在墙面上.若5PA AB ==米,点P 到AD 的距离是3米,有一只蚂蚁要从点P 爬到点B ,它的最短行程是______米.三、解答题21.Rt △ABC 中,∠ACB =90°,AC =3,AB =5.(1)如图1,点E 在边BC 上,且∠AEC =2∠B .①在图1中用尺规作图作出点E ,并连结AE (保留作图痕迹,不写作法与证明过程); ②求CE 的长.(2)如图2,点D 为斜边上的动点,连接CD ,当△ACD 是以AC 为底的等腰三角形时,求AD 的长.22.定义:如果经过三角形一个顶点的线段把这个三角形分成两个小三角形,其中一个三角形是等腰三角形,另外一个三角形和三角形的三个内角分别相等,那么这条线段称为原三角形的“和谐分割线”,例如:如图1,等腰直角三角形斜边上的中线就是一条“和谐分割线”(1)判断下列两个命题是真命题还是假命器(填“真”或“假”) ①等边三角形必存在“和谐分割线”②如果三角形中有一个角是另一个角的两倍,则这个三角形必存在“和谐分割线”. 命题①是_______命题,命题②是______命题; (2)如图2, Rt ABC .90︒∠=C ,30B,3AC =,试探索Rt ABC 是否存在“和谐分割线”?若存在,求出“和谐分割线”的长度:若不存在,请说明理由. 23.如图,已知AB=CD ,∠B=∠C ,AC 和BD 交于点O ,OE ⊥AD 于点E .(1)△AOB 与△DOC 全等吗?请说明理由; (2)若OA=3,AD=4,求△AOD 的面积.24.如图,已知Rt △ABC 中,∠C =90°,点D 是AC 上一点,点E 、点F 是BC 上的点,且∠CDF =∠CEA ,CF =CA .(1)如图1,若AE 平分∠BAC ,∠DFC =25°,求∠B 的度数;(2)如图2,若过点F 作FG ⊥AB 于点G ,连结GC ,求证:AG +GF 2GC . 25.三角形ABC 在平面直角坐标系中的位置如图所示,点O 为坐标原点,()1,4A -,()B--,()4,1C.将三角形ABC向右平移3个单位长度,再向下平移2个单位长度1,1A B C.得到三角形111(1)画出平移后的三角形;(2)直接写出点1A,1B,1C的坐标:1A(______,______),1B(______,______),1C(______,______);(3)请直接写出三角形ABC的面积为_________.26.定义:在边长为1的小正方形方格纸中,把顶点落在方格交点上的线段、三角形、四边形分别称为格点线段、格点三角形、格点四边形,请按要求画图:(1)在图1中画出一个面积为1的格点等腰直角三角形ABC;(2)在图2中画出一个面积为13的格点正方形DEFG;H;(3)在图3中画出一条长为5,且不与正方形方格纸的边平行的格点线段1(4)在图4中画出一个周长为3210的格点直角三角形JKL.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据线段垂直平分线的性质得到AD=BD ,继而在Rt △BCD 中利用勾股定理列式进行计算即可. 【详解】∵E 是AB 中点,DE AB ⊥, ∴DE 是AB 的垂直平分线, ∴DA DB =,则6DA DB AC CD CD ==-=-, 在Rt CDB 中,∠C=90°,BC=3, ∴222CD CB DB +=, 即()22236CD CD +=-,∴94CD =. 故选:C . 【点睛】本题考查了勾股定理,线段垂直平分线的性质,准确识图,熟练掌握和灵活运用相关知识是解题的关键.2.A解析:A 【分析】根据折叠的性质和勾股定理可以得到解答. 【详解】解:如图,过F 作FG ⊥AC 于G ,则在RT △EGF 中,∠GEF=180°-2∠CED=60°,∴∠GFE=90°-∠GEF=30°,∴GE=112EF =,33GE = ∴AG=AC-CE-GE=5-2-1=2,∴在RT △AGF 中,22222237AF AG FG =+=+=,故选A . 【点睛】本题考查三角形的折叠,熟练掌握折叠和直角三角形的性质及勾股定理的应用是解题关键.3.D解析:D 【分析】利用等腰直角三角形的相关性质结合勾股定理以及对角度关系的推导证明对应选项的结论. 【详解】解:∵4AC =,1CE =, ∴413AE AC CE =-=-=, ∵折叠, ∴3DE AE ==,根据勾股定理,CD ===∴BC =,故①正确;4BD CB CD =-=-∵41->,∴BD CE >,故②正确; ∵45A EDF ∠=∠=︒, ∴290EDF ∠=︒, ∵()()9090451351354590CED CDE CDF CDF DFB DFB∠=︒-∠=︒-∠-︒=︒-∠=︒-∠+︒=︒-∠,∴902CED DFB EDF ∠+∠=︒=∠,故③正确;∵4DCECCD CE DE =++=,44BDFCBD DF BF BD AB =++=+=-=,∴DCEBDFCC=,故④正确.故选:D . 【点睛】本题考查等腰直角三角形的性质和勾股定理的运用,解题的关键是掌握这些性质定理进行证明求解.4.A解析:A 【分析】根据题意求出AB ,根据勾股定理求出AC ,根据实数与数轴的关系解答即可. 【详解】∵点A ,B 对应的实数分别为1,3, ∴AB =2,∵BC ⊥AB , ∴∠ABC =90°, ∴AC =22AB BC +=22225=+,则AP =5,∴P 点对应的实数为5+1, 故选:A . 【点睛】本题考查的是勾股定理、实数与数轴,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.5.B解析:B 【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形. 【详解】解:A 、72+242=52,能构成直角三角形,不符合题意; B 、112+402≠412,不能构成直角三角形,符合题意; C 、52+122=132,能构成直角三角形,不符合题意; D 、82+152=172,能构成直角三角形,不符合题意. 故选:B . 【点睛】本题主要考查了勾股定理的逆定理,准确分析计算是解题的关键.6.A解析:A 【分析】先过点A 作AD ⊥OB ,根据△ABC 是等边三角形,求出AC=BC ,CD=BD ,∠ACB=60°,再根据点B 、C 的坐标,求出CB 的长,再根据勾股定理求出AD 的值,从而得出点A 的坐标. 【详解】过点A 作AD ⊥OB ,∵△ABC 是等边三角形,∴AC=BC ,CD=BD ,∠ACB=60°,∵点B 的坐标为3,02⎛⎫⎪⎝⎭,点C 的坐标为1,02⎛⎫- ⎪⎝⎭ ∴BC=2,OC=12 ∴CA=2,∴CD=1,∴∵OD=CD-CO∴OD=1-12=12∴点A 的坐标是12⎛⎝. 故选A .【点睛】 此题考查了等边三角形的性质,用到的知识点是勾股定理,关键是作出辅助线,求出点A 的坐标.7.A解析:A【分析】根据题意结合等腰直角三角形的性质,即可判断出22A B 的长,再进一步推出一般规律,利用规律求解20212021OA B 的面积即可.【详解】由题意可得:11OA AB AB ===,12OB =,∵11OA B 为等腰直角三角形,且“直角三角形ABC 的三边a ,b ,c ,满足222+=a b c 的关系”,∴根据题意可得:111OA A B ==∴212OB OA ==∴22222OA A B ===, ,∴总结出n n OA =,∵111122△OAB S =⨯⨯=,11112△OA B S ==,2212222△OA B S =⨯⨯=,∴归纳得出一般规律:1122n n n n n OA B S -=⨯⨯=,∴2021202120202OA B S =,故选:A .【点睛】本题考查等腰直角三角形的性质,图形变化类的规律探究问题,立即题意并灵活运用等腰直角三角形的性质归纳一般规律是解题关键.8.C解析:C【分析】分Q 在CB 延长线上和Q 在BC 延长线上两种情况分类讨论,求出CQ 长,根据线段的和差关系即可求解.【详解】解:如图1,当Q 在CB 延长线上时,在Rt △ACQ 中,2222213CQ AQ AC =-=-=, ∴BQ=CQ-BC=31-;如图2,当Q 在BC 延长线上时,在Rt △ACQ 中,2222213CQ AQ AC =-=-=,∴BQ=CQ+BC=31+;∴BQ 3131.故选:C【点睛】本题考查了勾股定理,根据题意画出图形,分类讨论是解题关键.9.B解析:B【分析】根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的最长长度;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答,进而求出露在杯口外的最短长度.【详解】①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16−12=4(cm ); ②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线长,高为12cm ,由勾股定理可得:杯里面管长=13cm ,则露在杯口外的长度最短为16−13=3(cm ),∴34h ≤≤故选:B .【点睛】本题考查了矩形中勾股定理的运用,解答此题的关键是要找出露在杯外面吸管最长和最短时,吸管在杯中所处的位置.10.A解析:A【分析】根据正方形的面积及直角边的关系,列出方程组,然后求解.【详解】 解:由条件可得:22131131240a b ab a b ⎧+=⎪-⎪=⎨⎪>>⎪⎩, 解之得:32a b =⎧⎨=⎩. 所以2()25a b +=,故选A【点睛】本题考查了正方形、直角三角形的性质及分析问题的推理能力和运算能力. 11.B解析:B【分析】根据绝对值,乘方和算术平方根的非负性求得a 、b 、c 的值,再结合勾股定理逆定理判断△ABC 为直角三角形,由此根据直角三角形面积等于两直角边乘积的一半可得面积.【详解】解:∵2(3)50a c --=,∴30,40,50a b c -=-=-=,解得3,4,5a b c ===,又∵222223425a b c +=+==,∴△ABC 为直角三角形, ∴13462ABC S =⨯⨯=△. 故选:B .【点睛】本题考查非负数的性质,勾股定理的逆定理.理解几个非负数(式)的和为0,那么这几个数(式)都为0是解题关键. 12.B解析:B【分析】先根据题意确定AC 、BC 、AB 的长,然后运用勾股定理逆定理判定即可.【详解】解:由题意得:AC=AN=2AM=8,BC=MB=MN+NB=4+2=6,AB=AM+MN+NB=10∴AC 2=64, BC 2=36, AB 2=100,∴AC 2+BC 2=AB 2∴ABC 一定是直角三角形.故选:B .【点睛】 本题主要考查了勾股定理逆定理的应用,根据题意确定AC 、BC 、AB 的长是解答本题的关键.二、填空题13.【分析】由勾股定理得推出由此得到将数据代入计算得出答案【详解】解:在直角三角形中利用勾股定理得:∴变形为:即又∴故答案为:【点睛】此题考查勾股定理的应用圆的面积计算公式正确理解各部分图形之间的面积关 解析:98π. 【分析】 由勾股定理得222+=a b c ,推出222111()()()222222a b c πππ+=,由此得到231S S S +=,将数据代入计算得出答案.【详解】解:在直角三角形中,利用勾股定理得:222+=a b c , ∴222888a b c πππ+=, 变形为:222111()()()222222a b c πππ+=,即231S S S +=. 又1258S π=,22S π=, ∴312259288S S S πππ=-=-=, 故答案为:98π. 【点睛】 此题考查勾股定理的应用,圆的面积计算公式,正确理解各部分图形之间的面积关系及勾股定理的计算公式是解题的关键.14.【分析】根据图形得到根据勾股定理推出【详解】解:由题意得所以故答案为:【点睛】此题考查勾股定理的应用观察图形理解各部分图形的面积的关系利用勾股定理解决问题是解题的关键 解析:98π.【分析】 根据图形得到22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭,根据勾股定理推出()22121188S S AC BC π+=+=298AB ππ=. 【详解】 解:由题意,得22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭, 所以()22121188S S AC BC π+=+=298AB ππ=, 故答案为:98π.【点睛】此题考查勾股定理的应用,观察图形理解各部分图形的面积的关系,利用勾股定理解决问题是解题的关键.15.>【分析】根据勾股定理求出OB 长确定点A 表示的数再用估算法比较大小即可【详解】解:由图可知∴则点A 表示的数为∵∴∴故答案为:>【点睛】本题考查了勾股定理实数在数轴上的表示和实数大小的比较熟练的运用勾 解析:>【分析】根据勾股定理求出OB 长,确定点A 表示的数,再用估算法比较大小即可.【详解】解:由图可知,OB = ∴OA OB ==A 表示的数为∵225()2<,∴52<,∴52>-, 故答案为:>.【点睛】 本题考查了勾股定理、实数在数轴上的表示和实数大小的比较,熟练的运用勾股定理求出OB 长,确定A 点表示的数,能够利用算术平方根与被开方数大小之间的关系是解题关键.16.【分析】根据勾股定理得到BC 由中点的定义求出BD 作点C 关于AB 对称点C′则PC′=PC 连接DC′交AB 于P 连接BC′此时DP+CP=DP+PC′=DC′的值最小由对称性可知∠C′BA=∠CBA=45解析:【分析】根据勾股定理得到BC ,由中点的定义求出BD ,作点C 关于AB 对称点C′,则PC′=PC ,连接DC′,交AB 于P ,连接BC′,此时DP+CP=DP+PC′=DC′的值最小.由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【详解】解:在等腰直角ABC 中,90ACB ∠=︒,AC BC =, 8AB =,∵AC 2+BC 2=AB 2,∴AC=BC=2AB = ∵D 为BC 的中点,∴BD=22.作点C 关于AB 对称点C′,交AB 于点O ,则PC′=PC ,连接DC′,交AB 于P ,连接BC′.此时DP+CP=DP+PC′=DC′的值最小.∵点C 关于AB 对称点C′,∴∠C′BA=∠CBA=45°,'42BC BC ==∴∠'90CBC =, ∴()()2222''2242210DC BD BC =+=+=,故答案为:10【点睛】此题考查了轴对称-线路最短的问题,等腰直角三角形的性质,以及勾股定理等知识,确定动点P 何位置时,使PC+PD 的值最小是解题的关键.17.【分析】运用勾股定理可求出平面直角坐标系中AB 的长度再根据个单位长度表示的实际距离为米求出结果即可【详解】解:如图AC=6-(-2)=8BC=2-(-4)=6∴∴小明与东方之门的实际距离为10×10解析:1000【分析】运用勾股定理可求出平面直角坐标系中AB 的长度,再根据1个单位长度表示的实际距离为100米求出结果即可.【详解】解:如图,AC=6-(-2)=8,BC=2-(-4)=6∴2222AB BC AC=+=6+8=10∴小明与东方之门的实际距离为10×100=1000(米)故答案为:1000.【点睛】此题主要考查了勾股定理的应用,构造直角三角形运用勾股定理是解答此题的关键.18.60°【分析】作点E关于AD的对称点F然后连接CF交AD于点H连接HE 由轴对称的性质及两点之间线段最短可得CF即为PC+PE的最小值进而由等边三角形的性质可求解【详解】解:作点E关于AD的对称点F然解析:3 60°【分析】作点E关于AD的对称点F,然后连接CF,交AD于点H,连接HE,由轴对称的性质及两点之间线段最短可得CF即为PC+PE的最小值,进而由等边三角形的性质可求解.【详解】解:作点E关于AD的对称点F,然后连接CF,交AD于点H,连接HE,如图所示:∵△ABC是等边三角形,∴AB=AC=BC,∠B=∠ACB=∠BAC=60°,∵AD⊥BC,∴AD平分∠BAC,BD=DC,∵点E 是AC 的中点,AD 垂直平分EF ,∴点F 是AB 的中点,∴CF ⊥AB ,CF 平分∠ACB ,∴∠BCF=30°,∴当点P 与点H 重合时,根据轴对称的性质及两点之间线段最短可得此时PC+PE 为最小值,即为CF 的长,∵BC=2,∴BF=1,在Rt △CBF 中,223C BC F BF ==-, ∴PC+PE 的最小值为3;∴∠DHC=∠FHP=60°,∵AD 垂直平分EF ,∴FH=HE ,∴∠FHP=∠PHE=60°,∴∠CHE=60°,即为∠CPE=60°;故答案为3;60°.【点睛】本题主要考查勾股定理、等边三角形的性质及轴对称的性质,熟练掌握勾股定理、等边三角形的性质及轴对称的性质是解题的关键. 19.18【分析】连接AEAG 根据中垂线的性质求出AEAG 的长结合勾股定理的逆定理推出进而即可求解【详解】连接AEAG ∵DE 垂直平分AB ∴∵FG 垂直平分AC ∴∵∴在中∴为直角三角形∴∴故答案是:18【点睛解析:18【分析】连接AE 、AG ,根据中垂线的性质,求出AE ,AG 的长,结合勾股定理的逆定理,推出AE BC ⊥,进而即可求解.【详解】连接AE 、AG∵DE 垂直平分AB ,∴3AE BE ==,∵FG 垂直平分AC ,∴AG CG =,∵3BE =,4EG =,12BC =,∴5CG AG ==,在AEG ∠中,29AE =,216EG =,225AG =,∴AEG △为直角三角形,∴AE BC ⊥, ∴111231822ABC S BC AE =⋅=⨯⨯=△. 故答案是:18【点睛】 本题主要考查垂直平分线的性质定理以及勾股定理的逆定理,掌握中垂线的性质定理,添加合适的辅助线,是解题的关键.20.【分析】可将教室的墙面ADEF 与地面ABCD 展开连接PB 根据两点之间线段最短利用勾股定理求解即可【详解】解:如图过P 作PG ⊥BF 于G 连接PB ∵AG=3AP=AB=5∴∴BG=8∴故这只蚂蚁的最短行程 解析:45【分析】可将教室的墙面ADEF 与地面ABCD 展开,连接PB ,根据两点之间线段最短,利用勾股定理求解即可.【详解】解:如图,过P 作PG ⊥BF 于G ,连接PB ,∵AG=3,AP=AB=5,∴224PG AP AG ==-,∴BG=8,∴2245P GB GP B +=故这只蚂蚁的最短行程应该是5故答案为:5【点睛】本题考查了平面展开-最短路径问题,立体图形中的最短距离,通常要转换为平面图形的两点间的线段长来进行解决. 三、解答题21.(1)①见解析;②78CE=;(2)2.5【分析】(1)①作出AB的垂直平分线交BC于点E,则可得结论;②由勾股定理求得BC=4,设CE=x,则BE=AE=4-x,依据勾股定理列出方程求解即可;(2)求得BD=CD=AD=2.5即可.【详解】解:(1)①如图,作∠BAE=∠B,②可求得BC=4∵∠AEC=∠B+∠BAE,又∵∠AEC=2∠B,∴∠BAE=∠B ,∴BE=AE,.设CE=x,则BE=AE=4-x,在Rt△AEC中,222CE AC AE+=,∴2223(4)x x+=-,∴78x=,∴78CE=(2)AC为底时,如图2所示,此时AD=CD,∴∠A=∠DCA∵∠A+∠B=90°,∠DCA+∠BCD=90°,∴∠B=∠BCD,∴BD=CD,即AD=BD=2.5.【点睛】本题考查了线段垂直平分线的性质、勾股定理以及等腰三角形的性质等知识,熟练掌握相关知识是解答此题的关键.22.(1)假,真;(2)2【分析】(1)根据“和谐分割线”的定义即可判断;(2)如图作∠CAB的平分线,只要证明线段AD是“和谐分割线”即可,并求AD的长;【详解】解:(1)①从等边三角形一个顶点出发,所分成的两个三角形必定不是等边三角形,不与原三角形的三个内角分别相等,故等边三角形不存在“和谐分割线”,是假命题;②如图,△ABC中,∠ACB=2∠ABC,CD平分∠ACB,则∠B=∠BCD=∠ACD,即△BCD是等腰三角形,在△ACD和△ABC中,∠A=∠A,∠ACD=∠B,∠ADC=∠ACB=2∠B,故△ABC必存在“和谐分割线”,正确,是真命题,故答案为:假,真;(2)Rt△ABC存在“和谐分割线”,理由是:如图作∠CAB的平分线,∵∠C=90°,∠B=30°,∴∠DAB=∠B=30°,∴DA=DB,∴∠DAB=∠B=∠CAD=30°,又∠C=∠C,∠ADC=∠CAB=60°,∴△ADB是等腰三角形,且△ACD和△ABC三个内角相等,∴线段AD是△ABC的“和谐分割线”,∴3=2.【点睛】本题考查三角形综合题、等腰三角形的判定和性质、三角形内角和、“和谐分割线”的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.23.(1)△AOB ≌△DOC ,理由见解析;(2)△AOD 的面积为【分析】(1)根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AO=DO ,根据等腰三角形的性质得到AE=12AD=2,由勾股定理得到OE ==【详解】(1)证明:在△AOB 和△DOC 中, AOB COD B CAB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, 所以△AOB ≌△DOC (AAS );(2)因为△AOB ≌△DOC ,所以AO =DO ,因为OE ⊥AD 于点E .所以AE 12=AD =2, 所以OE ==所以S △AOD 142=⨯=【点睛】本题考查了全等三角形的判定和性质,勾股定理,三角形的面积的计算,熟练掌握全等三角形的判定和性质是解题的关键.24.(1)∠B=40°;(2)见解析.【分析】(1)先利用SAS 证明△AEC ≌△FDC ,得出∠EAC=∠DFC=25°,从而得出∠BAC=50°,再根据直角三角形的两个锐角互余即可得出结论(2)过点C 作GC 的垂线交GF 的延长线于点P ,根据同角的余角得出∠PCF =∠GCA ,再根据ASA 得出△AGC ≌△FPC ,从而得出△GCP 是等腰直角三角形,即可得出答案【详解】(1)在△AEC 和△FDC 中,∵∠CDF=∠CEA CE=CD ∠C=∠C ,∴△AEC ≌△FDC ,∴∠EAC=∠DFC=25°∵AE 平分∠BAC ,∴∠BAC=2∠EAC=50°∵∠C=90°,∴在Rt △ABC 中,∠B=90°-∠BAC=40°.(2)如答图,过点C 作GC 的垂线交GF 的延长线于点P∴∠GCP = 90°∴∠GCF +∠PCF = 90°,∵∠ACB = 90°∴∠GCF +∠GCA = 90°,∴∠PCF =∠GCA .∵∠ACB=90°,GF ⊥AB∴∠B +∠BAC=∠B +∠BFG= 90°,∴∠BAC=∠BFG .又∵∠PFC=∠BFG∴∠GAC=∠PFC .由(1)知,△AEC ≌△FDC ,∴CA=CF ,∴△AGC ≌△FPC ,∴GC=PC ,AG=FP .又∵PC ⊥GC ,∴△GCP 是等腰直角三角形,∴GF +2GC ,∴AG +2GC【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质、勾股定理等知识,正确作出辅助线构造全等三角形是解题的关键.25.(1)见解析;(2)()12,2A ,()11,3B --,()14,1C -;(3)192【分析】(1)作出A 、B 、C 的对应点111,,A B C 并两两相连即可;(2)根据图形得出坐标即可;(3)根据割补法得出面积即可.【详解】解:(1)如图所示,111A B C 即为所求.(2)根据图形可得:()12,2A ,()11,3B --,()14,1C -(3)△ABC 的面积=5×5−12×3×5−12×2×3−12×2×5=192. 【点睛】本题考查作图-平移变换,熟练掌握由平移方式确定坐标的方法及由直角三角形的边所围成的图形面积的算法是解题关键.26.(1)见详解;(2)见详解;(3)见详解;(4)见详解【分析】(1)根据等腰直角三角形的定义以及面积公式,即可求解;(213(3)根据勾股定理画出长为5的线段,即可;(42,210的三角形,即可.【详解】(1)∵2121ABC S=⨯÷=,∴ABC 即为所求;(2)∵222313+=∴正方形DEFG 的面积为13;(3)22345+=;(4)∵22112+=222222+=,221310+= 且2222)2)10)+=∴JKL 是直角三角形,且周长为3210.【点睛】本题主要考查网格中的勾股定理,熟练掌握勾股定理是解题的关键.。
上海 上海市实验学校附属光明学校八年级数学下册第二单元《勾股定理》测试卷(含答案解析)
一、选择题1.如图,在ABC 中,2,30,105AC ABC BAC =∠=︒∠=︒,D 为AB 边上一点,连接CD ,15ACD =︒∠,把ACD △沿直线AC 翻折,得到ACD '△,CD '与BA 延长线交于点E ,则D E '的长为( )A .33+B .33-C .33+D .33- 2.已知直角三角形纸片的两条直角边长分别为m 和3(m <3),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则( )A .m 2+6m +9=0B .m 2﹣6m +9=0C .m 2+6m ﹣9=0D .m 2﹣6m ﹣9=0 3.如图,在Rt ABC ∆中,90,45,2B BCA AC ︒︒∠=∠==,点D 在BC 边上,将ABD ∆沿直线AD 翻折,点B 恰好落在AC 边上的点E 处,若点P 是直线AD 上的动点,连接,PE PC ,则PEC ∆的周长的最小值为( )A .22B 2C 21D .14.如图,分别以直角三角形ABC 的三边为斜边向外作直角三角形,且AD CD =,CE BE =,AF BF =,这三个直角三角形的面积分别为1S ,2S ,3S ,且19S =,216S =,则S 3S =( )A .25B .32C .7D .185.有一圆柱高为12cm ,底面半径为5πcm ,在圆柱下底面点A 处有一只蚂蚁,它想吃到上底面上与点A 相对的点B 处的食物,则沿侧面爬行的最短路程是( )A .12cmB .13cmC .10cmD .16cm 6.如图,在Rt ABC 中,AB AC =,BAC 90∠=︒,点D ,E 为BC 上两点.DAE 45∠=︒,F 为ABC 外一点,且FB BC ⊥,FA AE ⊥,则下列结论: ①CE BF =;②222BD CE DE +=;③ADE 1S AD EF 4=⋅△;④222CE BE 2AE +=,其中正确的是( )A .①②③④B .①②④C .①③④D .②③ 7.有四个三角形,分别满足下列条件,其中不是直角三角形的是( )A .一个内角等于另外两个内角之和B .三个内角之比为3:4:5C .三边之比为5:12:13D .三边长分别为7、24、258.如图,是一种饮料的包装盒,长、宽、高分别为4cm 、3cm 、12cm ,现有一长为16cm 的吸管插入到盒的底部,则吸管漏在盒外面的部分()h cm 的取值范围为( )A .34h <<B .34h ≤≤C .24h ≤≤D .4h = 9.若实数m 、n 满足|m ﹣3|+4n -=0,且m 、n 恰好是Rt ABC 的两条边长,则ABC 的周长是( )A .5B .5或7C .12D .12或7+7 10.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为3cm 和5cm ,则小正方形的面积为( ).A .21cmB .22cmC .42cmD .23cm 11.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为25,小正方形面积为1,若用x 、y 表示直角三角形的两直角边(x y >),下列四个说法:①2225x y +=,②1x y -=,③2125xy +=,④7x y +=.其中说法正确的是( )A .①②B .①②③C .①②④D .①②③④ 12.如图,四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,8AB =,13BD =,12BC =,则四边形ABCD 的面积为( )A .50B .56C .60D .72二、填空题13.如图所示,在ABC 中,90C DE ∠=︒,垂直平分AB ,交BC 于点E ,垂足为点D ,8,15BE B =∠=︒,则EC 的长为________________________.14.如图,在等腰直角ABC 中,90ACB ∠=︒,AC BC =,D 为BC 的中点,8AB =,点P 为AB 上一动点,则PC PD +的最小值为__________.15.已知ABC 中,90C ∠=︒,2cm,6cm AB AC BC =+=,则ABC 的面积为_______. 16.如图,点P 是等边ABC 内的一点,6PA =,8PB =,10PC =.若点P '是ABC 外的一点,且P AB PAC '≌△△,则APB ∠的度数为_____.17.已知一个直角三角形的两边长分别为3和4,则斜边上的高是_________. 18.如图,教室的墙面ADEF 与地面ABCD 垂直,点P 在墙面上.若5PA AB ==米,点P 到AD 的距离是3米,有一只蚂蚁要从点P 爬到点B ,它的最短行程是______米.19.直角三角形两边长分别为3和4,则它的周长为__________.20.已知:直角三角形两直角边a ,b 满足a+b=17,ab=60,则此直角三角形斜边上的高为__________;三、解答题21.如图,在四边形ABCD 中,AB=20cm ,BC=15cm ,CD=7cm ,AD=24cm ,∠ABC=90°. (1)求∠ADC 的度数;(2)求出四边形ABCD 的面积.22.如图,ABC ∆中,,AB AC AD >是BC 边上的高,将ADC 沿AD 所在的直线翻折,使点C 落在BC 边上的点E 处.()1若20,13,5AB AC CD ===,求ABC ∆的面积;()2求证:22AB AC BE BC -=⋅.23.已知△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°(1)若D 为△ACB 内部一点,如图,AE =BD 吗?说明理由(2)若D 为AB 边上一点,AD =5,BD =12,求DE 的长24.如图,为了测量湖泊两侧点A 和点B 间的距离,数学活动小组的同学过点A 作了一条AB 的垂线,并在这条垂线的点C 处设立了一根标杆(即AC AB ⊥).量得160m AC =,200m BC =,求点A 和点B 间的距离.25.细心观察图形,认真分析各式,然后回答问题:OA12=1;222(1)OA =+1=2;223(2)OA =+1=3224(3)OA =+1=4;… S 1=12;S 2=22;S 3=32;… 1010(2)直接用含n (n 为正整数)的式子表示OA n 的长和S n 的值;(3)求S 12+S 22+S 32+…+S 102的值.26.如图,在△ABC 中,∠C=90°,若CD=1.5,BD=2.5;(1)∠2=∠B ,求AC 的长;(2)12∠=∠,求AC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先根据三角形的内角和定理60CDE ∠=︒,再根据翻折的性质可得,60,15AD AD D CDE ACD ACD '''=∠=∠=︒∠=∠=︒,从而可得90,30CED D AE '∠=︒∠=︒,设D E x '=,然后利用直角三角形的性质、勾股定理可得(3,323AE x CE x ==+,最后在Rt ACE △中,利用勾股定理即可得.【详解】 3150,105,ABC B D A AC C ∠=︒∠=∠=︒︒,30018BCD ABC BAC ACD ∴∠=︒-∠-∠-∠=︒,60ABC BC CDE D ∴∠=∠+∠=︒,由翻折的性质得:,60,15AD AD D CDE ACD ACD '''=∠=∠=︒∠=∠=︒, 30DCE ACD ACD '∴∠=∠+∠=︒,90,9030CED D AE D ''∴∠=︒∠=︒-∠=︒,设D E x '=,则2,3AD AD x AE x '===,()23DE AD AE x ∴=+=+,在Rt CDE △中,()()222223,323CD DE x CE CD DE x ==+=-=+, 在Rt ACE △中,222AE CE AC +=,即()()()22233232x x ⎡⎤++=⎣⎦, 解得33x -=或330x -+=<(不符题意,舍去), 即33D E '=-, 故选:D .【点睛】本题考查了翻折的性质、直角三角形的性质、勾股定理等知识点,熟练掌握翻折的性质是解题关键.2.C解析:C【分析】如图,根据等腰三角形的性质和勾股定理可得m 2+m 2=(3﹣m )2,整理即可解答.【详解】解:如图,m 2+m 2=(3﹣m )2,2m 2=32﹣6m +m 2,m 2+6m ﹣9=0.故选:C .【点睛】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.3.B解析:B【分析】连接BP ,根据已知条件求出AB=BC=1,由翻折得:BD=DE ,∠BDA=∠EDA ,AE=AB=1,CE=21-,证明△BDP ≌△EDP ,推出BP=EP ,当点P 与点D 重合时,即可求出PEC ∆的周长的最小值.【详解】连接BP ,在Rt ABC ∆中,90,45B BCA ︒∠=∠=︒,∴∠BAC=45BCA ∠=︒,AB=BC ,∴2222(2)2AB AC ===,∴AB=BC=1,由翻折得:BD=DE ,∠BDA=∠EDA ,AE=AB=1,∴CE=21-,在△BDP 和△EDP 中,BD ED BDP EDP DP DP =⎧⎪∠=∠⎨⎪=⎩,∴△BDP ≌△EDP ,∴BP=EP ,∴当点P 与点D 重合时,PE+PC=PB+PC=BC 的值最小,此时PEC ∆的周长最小, PEC ∆的周长的最小值为BC+CE=1+21-=2,故选:B ..【点睛】此题考查翻折的性质,勾股定理,全等三角形的判定及性质,解题的关键是根据翻折的性质证得△BDP ≌△EDP ,由此推出当点P 与点D 重合时PEC ∆的周长最小,合情推理科学论证.4.A解析:A【分析】根据△ADC 为直角三角形且AD=CD ,可得到22211111=2224S AD AC AC =⨯=,同理可得到221=4S BC 及231=4S AB ,在△ACB 中,由勾股定理得出:222AB AC BC =+,继而可得312S S S =+,代入计算即可.【详解】解:∵△ADC 为直角三角形,且AD=CD ,∴在△ADC 中,有222AC AD CD =+,∴222AC AD =,即AC =, ∴22211111=2224S AD AC AC =⨯=, 同理可得:221=4S BC ,231=4S AB , ∵∠ACB=90︒, ∴222AB AC BC =+,即312111444S S S =+, ∴312S S S =+,∵19S =,216S =,∴3129+16=25S S S =+=,故答案为:A .【点睛】本题考查勾股定理,由勾股定理得出三角形的面积关系是解题的关键.5.B解析:B【分析】要想求得最短路程,首先要把A 和B 展开到一个平面内.根据两点之间,线段最短求出蚂蚁爬行的最短路程.【详解】解:展开圆柱的半个侧面是矩形, 矩形的长是圆柱的底面周长的一半,即52ππ=5cm ,矩形的宽是圆柱的高12cm . 根据两点之间线段最短,知最短路程是矩形的对角线AB 的长,即13==cm 故选:B .【点睛】此题考查最短路径问题,求两个不在同一平面内的两个点之间的最短距离时,一定要展开到一个平面内.根据两点之间,线段最短.确定要求的长,再运用勾股定理进行计算. 6.A解析:A【分析】①利用全等三角形的判定得AFB ≌AEC ,再利用全等三角形的性质得结论;②利用全等三角形的判定和全等三角形的性质得FD DE =,再利用勾股定理得结论;③利用等腰三角形的性质得AD EF EF 2EG ⊥=,,再利用三角形的面积计算 结论;④利用勾股定理和等腰直角三角形的性质计算得结论.【详解】解:如图:对于①,因为BAC 90FA AE DAE 45∠∠=︒⊥=︒,,,所以CAE 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-,FAB 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-,因此CAE FAB ∠∠=.又因为BAC 90AB AC ∠=︒=,,所以ABC ACB 45∠∠==︒.又因为FB BC ⊥,所以FBA ACB 45∠∠==︒.因此AFB ≌()AEC ASA △,所以CE BF =.故①正确.对于②,由①知AFB ≌AEC ,所以AF AE =.又因为DAE 45FA AE ∠=︒⊥,,所以FAD DAE 45∠∠==︒,连接FD , 因此AFD ≌()AED SAS △.所以FD DE =.在Rt FBD △中,因为CE BF =,所以222222BD CE BD BF FD DE +=+==.故②正确.对于③,设EF 与AD 交于G .因为FAD DAE 45AF AE ∠∠==︒=,,所以AD EF EF 2EG ⊥=,. 因此ΔADE 11S AD EG AD EF 24=⨯⨯=⨯⨯. 故③正确.对于④,因为CE BF =,又在Rt FBE △中,22222CE BE BF BE FE +=+=又AEF △是以EF 为斜边的等腰直角三角形,所以22EF 2AE =因此,222CE BE 2AE +=.故④正确.故选A .【点睛】本题考查了全等三角形的判定,全等三角形的性质,勾股定理,等腰三角形的性质和三角形的面积. 7.B解析:B【分析】根据三角形的内角和定理或勾股定理的逆定理即可进行判断,从而得到答案.【详解】解:A 、设一个内角为x ,则另外两个内角之和为x ,则x +x =180°,解得x=90°,故是直角三角形;B 、设较小的角为3x ,则其于两角为4x ,5x ,则3x +4x+5x =180°,解得x=15°,则三个角分别为45°,60°,75°,故不是直角三角形;C 、因为52+122=132符合勾股定理的逆定理,故是直角三角形;D 、因为72+242=252符合勾股定理的逆定理,故是直角三角形.故选:B .【点睛】本题考查三角形内角和定理,勾股定理的逆定理,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.8.B解析:B【分析】根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的最长长度;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答,进而求出露在杯口外的最短长度.【详解】①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16−12=4(cm ); ②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线长,高为12cm ,由勾股定理可得:杯里面管长=13cm ,则露在杯口外的长度最短为16−13=3(cm ),∴34h ≤≤故选:B.【点睛】本题考查了矩形中勾股定理的运用,解答此题的关键是要找出露在杯外面吸管最长和最短时,吸管在杯中所处的位置.9.D解析:D【分析】根据非负数的性质分别求出m、n,分4是直角边、4是斜边两种情况,根据勾股定理、三角形的周长公式计算,得到答案.【详解】∵|m﹣0,∴|m﹣3|=00,∴m﹣3=0,n﹣4=0,解得,m=3,n=4,当45,则△ABC的周长=3+4+5=12,当4,则△ABC的周长==,故选:D.【点睛】本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.10.C解析:C【分析】结合题意,得小正方形的边长=直角三角形较长的直角边长-直角三角形较短的直角边长;结合直角三角形的两直角边长分别为3cm和5cm,即可得到小正方形的边长及其面积.【详解】结合题意,可知:小正方形的边长=直角三角形较长的直角边长-直角三角形较短的直角边长∵直角三角形的两直角边长分别为3cm和5cm∴小正方形的边长=5cm-3cm=2cm∴小正方形的面积=2⨯22=4cm故选:C.【点睛】本题考查了正方形、直角三角形、全等三角形的知识;解题的关键是熟练掌握正方形、全等三角形的性质,从而完成求解.11.D解析:D【分析】根据正方形的性质、直角三角形的性质、直角三角形的面积的计算公式以及勾股定理按顺序判断即可.【详解】①∵ABC 为直角三角形,∴22225x y AB +==,故①正确;②由图可知:11x y CE -===,故②正确;③由图可知:四个直角三角形与小正方形面积之和等于大正方形面积,由此可得:141252xy ⨯+=,即:2125xy +=, 故③正确;④由①③相加可得:222150xy x y +++=,即()249x y +=,故7x y +=,故④正确;故选:D .【点睛】本题考查了勾股定理及正方形和三角形的边的关系,此图被称为弦图,熟悉勾股定理并认清图中的关系是解答本题的关键.12.A解析:A【分析】据勾股定理求出DC ,根据角平分线的性质得出DE=DC=5,根据勾股定理求出BE ,求出AE ,再根据三角形的面积公式求出即可.【详解】过D 作DE AB ⊥,交BA 的延长线于E ,则90∠=∠=︒E C ,90BCD ∠=︒,BD 平分ABC ∠,DE DC ∴=,在Rt BCD ∆中,由勾股定理得:222213125CD BD BC --=,5DE ∴=,在Rt BED ∆中,由勾股定理得:222213512BE BD DE =--,8AB =,1284AE BE AB ∴=-=-=,∴四边形ABCD 的面积BCD BED AED S S S S ∆∆∆=+-111222BC CD BE DE AE DE =⨯⨯+⨯⨯-⨯⨯ 11112512545222=⨯⨯+⨯⨯-⨯⨯ 50=,故选:A .【点睛】本题考查了勾股定理,三角形面积,角平分线的性质等知识点,能求出DE=DC 是解题的关键.二、填空题13.【分析】根据三角形内角和定理求出∠BAC 根据线段垂直平分线性质求出求出然后求出∠EAC 根据含30°角的直角三角形的性质求解即可【详解】解:∵在△ABC 中∴∵垂直平分∴∴∴∵∴∴∴在Rt △ECA 中故答 解析:3【分析】根据三角形内角和定理求出∠BAC ,根据线段垂直平分线性质求出8BE AE ==,求出15EAB B ∠=∠=︒,然后求出∠EAC ,根据含30°角的直角三角形的性质求解即可.【详解】解:∵在△ABC 中,90ACB ∠=︒,15B ∠=︒,∴901575BAC ∠=︒-︒=︒,∵DE 垂直平分AB ,8BE =,∴8BE AE ==,∴15EAB B ∠=∠=︒,∴751560EAC ∠=︒-︒=︒,∵90C ∠=︒,∴30AEC ∠=︒, ∴184221AC AE =⋅=⨯=, ∴在Rt △ECA 中, 2264164843EC AB AC =-=-==,故答案为:43.【点睛】本题考查了三角形的边长问题,掌握三角形内角和定理、线段垂直平分线的性质、含30°角的直角三角形的性质是解题的关键.14.【分析】根据勾股定理得到BC 由中点的定义求出BD 作点C 关于AB 对称点C′则PC′=PC 连接DC′交AB 于P 连接BC′此时DP+CP=DP+PC′=DC′的值最小由对称性可知∠C′BA=∠CBA=45解析:210【分析】根据勾股定理得到BC ,由中点的定义求出BD ,作点C 关于AB 对称点C′,则PC′=PC ,连接DC′,交AB 于P ,连接BC′,此时DP+CP=DP+PC′=DC′的值最小.由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【详解】解:在等腰直角ABC 中,90ACB ∠=︒,AC BC =, 8AB =,∵AC 2+BC 2=AB 2,∴AC=BC=242AB =. ∵D 为BC 的中点,∴BD=22.作点C 关于AB 对称点C′,交AB 于点O ,则PC′=PC ,连接DC′,交AB 于P ,连接BC′.此时DP+CP=DP+PC′=DC′的值最小.∵点C 关于AB 对称点C′,∴∠C′BA=∠CBA=45°,'42BC BC ==∴∠'90CBC =,∴'DC ===,故答案为:【点睛】此题考查了轴对称-线路最短的问题,等腰直角三角形的性质,以及勾股定理等知识,确定动点P 何位置时,使PC+PD 的值最小是解题的关键.15.cm2【分析】设BC=acmAC=bcm 则a+b=即可得到根据勾股定理得到进而得到根据三角形面积公式即可求解【详解】解:设BC=acmAC=bcm 则a+b=∴即∵∠C=90°∴∴∴cm2故答案为:c解析:12cm 2 【分析】设BC=acm ,AC=bcm ,则,即可得到()26a b +=,根据勾股定理得到22=4a b +,进而得到22ab =,根据三角形面积公式即可求解.【详解】解:设BC=acm ,AC=bcm ,则,∴()26a b +=, 即2226a b ab ++=,∵∠C=90°,∴222=4a b AB +=,∴22ab =,∴11=22ABC S ab =△cm 2. 故答案为:12cm 2 【点睛】本题考查了完全平方公式,勾股定理等知识,准确掌握两个知识点并建立联系是解题关键.16.150°【分析】由可知:PA =P′A ∠P′AB =∠PACBP′=CP 然后依据等式的性质可得到∠P′AP =∠BAC =60°从而可得到△APP′为等边三角形可求得PP′由△APP′为等边三角形得∠APP解析:150°【分析】由P AB PAC '≌△△可知:PA =P′A ,∠P′AB =∠PAC ,BP′=CP ,然后依据等式的性质可得到∠P′AP =∠BAC =60°,从而可得到△APP′为等边三角形,可求得PP′,由△APP′为等边三角形,得∠APP′=60°,在△PP′B 中,用勾股定理逆定理证出直角三角形,得出∠P′PB =90°,进而可求∠APB 的度数.【详解】连接PP′,∵P AB PAC '≌△△,∴PA =P′A=6,∠P′AB =∠PAC ,BP′=CP=10,∴∠P′AP =∠BAC =60°,∴△APP′为等边三角形,∴PP′=AP =AP′=6,又∵8PB =,∴PP′2+BP 2=BP′2,∴△BPP′为直角三角形,且∠BPP′=90°∴∠APB =90°+60°=150°,故答案是:150°【点睛】本题主要考查的是全等三角形的性质、等边三角形的判定、勾股定理的逆定理的应用,证得△APP′为等边三角形、△BPP′为直角三角形是解题的关键.17.或【分析】分为两种情况:①3和4都是直角边;②斜边是4有一条直角边是3利用勾股定理求得第三边再利用等面积法即可得出斜边上的高【详解】解:分为两种情况:①3和4都是直角边由勾股定理得:第三边长∴斜边上 解析:125或374【分析】分为两种情况:①3和4都是直角边;②斜边是4有一条直角边是3.利用勾股定理求得第三边,再利用等面积法即可得出斜边上的高.【详解】解:分为两种情况:①3和4都是直角边, 由勾股定理得:第三边长22435=+=∴斜边上的高为341255⨯=; ②斜边是4有一条直角边是3, 由勾股定理得:第三边长22437=-,∴斜边上的高为373744⨯=; 故答案为:125或37. 【点睛】 本题考查勾股定理解直角三角形.注意分类讨论和等面积法(在本题中主要用到直角三角形的面积等于两直角边乘积的一半也等于斜边与斜边高的乘积的一半)的运用.18.【分析】可将教室的墙面ADEF 与地面ABCD 展开连接PB 根据两点之间线段最短利用勾股定理求解即可【详解】解:如图过P 作PG ⊥BF 于G 连接PB ∵AG=3AP=AB=5∴∴BG=8∴故这只蚂蚁的最短行程 解析:45【分析】 可将教室的墙面ADEF 与地面ABCD 展开,连接PB ,根据两点之间线段最短,利用勾股定理求解即可.【详解】解:如图,过P 作PG ⊥BF 于G ,连接PB ,∵AG=3,AP=AB=5, ∴224PG AP AG ==-,∴BG=8,∴2245P GB GP B +=故这只蚂蚁的最短行程应该是5故答案为:5【点睛】本题考查了平面展开-最短路径问题,立体图形中的最短距离,通常要转换为平面图形的两点间的线段长来进行解决. 19.12或7+【分析】分两种情况求出第三边即可求出周长【详解】分两种情况:①当3和4都是直角边时第三边长==5故三角形的周长=3+4+5=12;②当3是直角边4是斜边时第三边长故三角形的周长=3+4+=解析:12或7【分析】分两种情况求出第三边,即可求出周长.【详解】分两种情况:①当3和4都是直角边时,第三边长,故三角形的周长=3+4+5=12;②当3是直角边,4是斜边时,第三边长==,故三角形的周长,故答案为:12或.【点睛】此题考查勾股定理的应用,题中不明确所给边长为直角三角形的直角边或是斜边时,应分情况讨论求解.20.【分析】设此直角三角形的斜边为c斜边上的高为h先根据勾股定理和完全平方公式的变形求出c再利用三角形的面积求解即可【详解】解:设此直角三角形的斜边为c斜边上的高为h则因为此直角三角形的面积=所以故答案解析:60 13【分析】设此直角三角形的斜边为c,斜边上的高为h,先根据勾股定理和完全平方公式的变形求出c,再利用三角形的面积求解即可.【详解】解:设此直角三角形的斜边为c,斜边上的高为h,则13c=====,因为此直角三角形的面积=1122ab ch=,所以6013abhc==.故答案为:60 13.【点睛】本题考查了勾股定理和完全平方公式等知识,正确变形、掌握解答的方法是关键.三、解答题21.(1)∠ADC=90°;(2)四边形ABCD的面积为2234cm【分析】(1)连接AC,利用勾股定理求得AC的长,再利用勾股定理的逆定理解答即可;(2)根据三角形的面积公式解答即可.【详解】解:(1)连接AC,在Rt △ABC 中,∠ABC=90°,∵AB=20,BC=15,∴由勾股定理可得:AC=2222201525AB BC +=+=; ∵在△ADC 中,CD=7,AD=24, ∴CD 2+AD 2=AC 2,∴∠ADC=90°;(2)由(2)知,∠ADC=90°,∴四边形ABCD 的面积=11201572422ABC ACD S S ∆∆+=⨯⨯+⨯⨯ 2234()cm =.答:四边形ABCD 的面积为2234cm .【点睛】本题主要考查了勾股定理的逆定理,综合运用勾股定理及其逆定理是解决问题的关键. 22.(1)126;(2)见解析【分析】(1)利用勾股定理容易求出AD 长;进而求出BD ,从而得到BC 长,再由三角形面积公式即可求解;(2)利用勾股定理易得2222AB AC BD DE -=-,再利用平方差公式分解因式可得()()22AB AC BD DE BD DE -=-+,根据折叠性质和线段和差关系即可得出结论.【详解】(1)解:AD 是BC 边上的高,90ADB ADC ∴∠=∠=在Rt ADC 中,13,5,AC CD ==12AD ∴==在Rt ADB 中,20,12,AB AD ==16BD ∴===16521,BC BD CD ∴=+=+=11211212622ABC S BC AD ∴=⨯⨯=⨯⨯=(平方单位). (2)证明:ADC 沿AD 所在的直线翻折得到,ADE,,AC AE DC DE ∴==在Rt ADC 中,由勾股定理,得222,AC AD DC =+在Rt ADB 中,由勾股定理,得222BD AB AD =-, ()22222AB AC AB AD DC ∴-=-+222AB AD DC =-- 22BD DE =-()(),BD DE BD DE =-+,,BE BD DE BC BD DC BD DE =-=+=+22AB AC BE BC ∴-=⋅.【点睛】本题主要考查了勾股定理;熟练掌握翻折变换的性质,利用由勾股定理求解是解决问题的关键.23.(1)AE =BD ,见解析;(2)13【分析】(1)由“SAS”可证△ACE ≌△BCD ,可得AE=BD ;(2)由全等三角形的性质可得BD=AE=12,∠CAE=∠CBD=45°,由勾股定理可求DE 的长.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形,∴CD =CE ,AC =BC ,∠ECD =∠ACB =90°,∴∠ACE =∠BCD在△ACE 和△BCD 中∵EC =CD ,∠ACE =∠BCD ,AC =BC ,∴△ACE ≌△BCD (SAS )∴AE =BD ;(2)如图,由(1)可知:△ACE ≌△BCD ,∴BD =AE =12,∠CAE =∠CBD =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,即52+122=ED 2∴DE =13;【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,证明△ACE ≌△BCD 是本题的关键.24.点A 和点B 间的距离为120m【分析】在Rt △ABC 中利用勾股定理计算出AB 长即可.【详解】解:∵AC AB ⊥.∴90BAC ︒∠=,∴在Rt ABC △中,222AB AC BC +=.∵160AC =,200BC =, ∴2222200160120(m)AB BC AC -=-=.答:点A 和点B 间的距离为120m .【点睛】本题考查了勾股定理的应用,关键是熟练掌握勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方.25.(1)OA 101010102S =;(2)n OA n =2n n S =;(3)554 【分析】(1)根据前面几个线段的值平方得出规律2211n OA n n =-+=,即可求出10OA 的长,根据前面几个三角形的面积得到规律2n n S =10S 的值; (2)根据规律发现2211n OA n n =-+=,2n n S =(3)根据(2)中的规律得原式的值为()1123104⨯++++,即可求出结果. 【详解】 (1)∵()222112OA =+=,()223213OA =+=,()224314OA =+=…,∴()22109110OA =+=, ∴1010OA =, ∵112S =,222S =,332S =…, ∴2n n S =,则1010S =; (2)由(1)可知,()2211n OA n n =-+=,即n OA n =, 2n n S =; (3)222212310123104444S S S S ++++=++++()1551231044=⨯++++=. 【点睛】 本题考查找规律,解题的关键是总结出题目中式子之间的规律进行计算求解. 26.(1)2;(2)3.【分析】(1)根据∠2=∠B 可得AD=BD=2.5,再根据勾股定理即可求出AC 的长;(2)过D 作DE ⊥AB ,垂足为E ,由角平分线的性质可知CD=DE ,根据勾股定理可得出BE 的长,再判断出Rt △ACD ≌Rt △AED ,进而可得出AC=AE ,根据勾股定理即可解答.【详解】解:(1)∵∠2=∠B ,BD=2.5,∴AD=BD=2.5,在RtACD 中,222AC CD AD +=,∵CD=1.5,∴22222.5 1.52AC AD CD =-=-=;(2)过D 作DE ⊥AB ,垂足为E ,∵∠1=∠2,∴CD=DE=1.5,在Rt△BDE中,,∵CD=DE,AD=AD,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∴AB=AE+BE=AC+2,∴AB2=AC2+BC2,即(AC+2)2=AC2+(1.5+2.5)2,解得AC=3.【点睛】本题主要考查的是角平分线的性质及勾股定理、直角三角形全等的判定定理与性质,熟知角平分线的性质是解答此题的关键,难度适中.。
上海民办金盟学校八年级数学下册第二单元《勾股定理》检测卷(答案解析)
一、选择题1.如图,在△ABC 中,AB =6,AC =9,AD ⊥BC 于D ,M 为AD 上任一点,则MC 2-MB 2等于( )A .29B .32C .36D .452.如图,90MON ∠=︒,已知ABC ∆中,10AC BC ==,12AB =,ABC ∆的顶点A 、B 分别在边OM 、ON 上,当点B 在边ON 上运动时,点A 随之在边OM 上运动,ABC ∆的形状保持不变,在运动过程中,点C 到点O 的最大距离为( )A .12.5B .13C .14D .153.如图,在ABC 中,13,17,AB AC AD BC ==⊥,垂足为D ,M 为AD 上任一点,则22MC MB -等于( )A .93B .30C .120D .无法确定 4.如图所示,在Rt ABC 中,90,3,5C AC BC ∠=︒==,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则线段CD 的长是( )A .85B .165C .175D .2455.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“匀称三角形”.若Rt ABC 是“匀称三角形”,且90C ∠=︒,AC BC >,则::AC BC AB 为( ) A .3:1:2 B .2:3:7 C .2:1:5 D .无法确定 6.如图,将一根长为20cm 的筷子置于底面直径为5cm ,高为12cm 的圆柱形水杯中,筷子露在杯子外面的长度为( )A .13cmB .8cmC .7cmD .15cm7.在ABC 中,A ∠、B 、C ∠的对应边分别是a 、b 、c ,下列条件中不能说明ABC 是直角三角形的是( )A .222b a c =-B .C A B ∠=∠+∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c = 8.若ABC 的三边a 、b 、c 满足2(3)450a b c -+-+-=,则ABC 的面积是( )A .3B .6C .12D .109.如图,设每个小方格的边长都为1,则图中以小方格顶点为端点且长度为13的线段有( )A .1条B .2条C .3条D .4条10.如图,在平面直角坐标系中,点P 为x 轴上一点,且到A (0,2)和点B (5,5)的距离相等,则线段OP 的长度为( )A .3B .4C .4.6D .25 11.如图,在Rt ABC 中,90ACB ∠=︒,3AC =,4BC =,AD 平分CAB ∠交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE EF +的最小值为( )A .152B .152C .3D .12512.如图,M N 、是线段AB 上的两点,4,2AM MN NB ===.以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连结AC BC 、,则ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形二、填空题13.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积1258S π=,22S π=,则3S 是________.14.在Rt ABC 中,90C ∠=︒,9cm BC =,12cm AC =,15cm AB =;在DEF 中,90E ∠=︒,4cm DE =,5cm DF =,A D ∠=∠.现有两个动点P 和Q .同时从点A 出发,P 沿着三角形的边AC CB BA →→运动,回到点A 停止,速度为3cm/s ;Q 沿着边AB BC CA →→运动,回到点A 停止.在两点运动过程中的某一时刻,恰好APQ 与DEF 全等,则点Q 的运动速度为__________.15.如图,在Rt ABC △中,90ACB ︒∠=,10AB =,8AC =,D 是AB 的中点,M 是边AC 上一点,连接DM ,以DM 为直角边作等腰直角三角形DME ,斜边DE 交线段CM 于点F ,若2MDF MEF S S =,则CF 的长为________.16.如图,已知ABC ,AB 的垂直平分线交AB 于D ,交BC 于E ,AC 的垂直平分线交AC 于F ,交BC 于G ,若3BE =,4EG =,12BC =,则ABC 的面积为______.17.如图,l 1∥l 2∥l 3,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3.若点A ,B ,C 分别在直线l 1,l 2,l 3上,且AC ⊥BC ,AC =BC ,则AB 的长是_____.18.《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B '(示意图如图,则水深为__尺.∠+∠=______°(点A,B,C,D是19.如图所示的网格是正方形网格,则CBD ABC网格线交点)20.已知一个直角三角形的两边长分别为3和4,则斜边上的高是_________.三、解答题21.在△ABC中,D是BC上一点,AB=10,BD=6,AD=8,AC=17,求△ABC的面积.22.如图,在中,,是上的中线,的垂直平分线交于点O,连接并延长交于点E,,垂足为H.(1)求证:.(2)若,,求的长;(3)如图,在中,,,D是上的一点,且,若,请你直接写出的长.23.如图,△ABC 中,AC =15,AB =25,CD ⊥AB 于点D ,CD =12.(1)求线段AD 的长度;(2)判断△ABC 的形状并说明理由.24.三角形ABC 在平面直角坐标系中的位置如图所示,点O 为坐标原点,()1,4A -,()4,1B --,()1,1C .将三角形ABC 向右平移3个单位长度,再向下平移2个单位长度得到三角形111A B C .(1)画出平移后的三角形;(2)直接写出点1A ,1B ,1C 的坐标:1A (______,______),1B (______,______),1C (______,______);(3)请直接写出三角形ABC 的面积为_________.25.如图,长方体的长AB =5cm ,宽BC =4cm ,高AE =6cm ,三只蚂蚁沿长方体的表面同时以相同的速度从点A 出发到点G 处.蚂蚁甲的行走路径S 甲为:翻过棱EH 后到达G 处(即A →P →G ),蚂蚁乙的行走路径S 乙为:翻过棱EF 后到达G 处(即A →M →G ),蚂蚁丙的行走路径S 丙为:翻过棱BF 后到达G 处(即A →N →G ).(1)求三只蚂蚁的行走路径S 甲,S 乙,S 丙的最小值分别是多少?(2)三只蚂蚁都走自己的最短路径,请判断哪只最先到达?哪只最后到达?26.如图:AB=AC,AD⊥BC于D,AE=DE.求证:(1)DE∥AB;(2)若∠B=60°,DE=2,求AD的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】在Rt△ABD及Rt△ADC中可分别表示出BD2及CD2,在Rt△BDM及Rt△CDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果.【详解】解:在Rt△ABD和Rt△ADC中,BD2=AB2−AD2,CD2=AC2−AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2−AD2+MD2,MC2=CD2+MD2=AC2−AD2+MD2,∴MC2−MB2=(AC2−AD2+MD2)−(AB2−AD2+MD2)=AC2−AB2=45.故选:D.【点睛】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握.2.C解析:C【分析】取AB的中点D,连接CD,根据三角形的边角关系得到OC≤OD+DC,只有当O、D及C共线时,OC取得最大值,最大值为OD+CD,根据D为AB中点,得到BD=3,根据三线合一得到CD垂直于AB,在Rt△BCD中,根据勾股定理求出CD的长,在Rt△AOB中,OD为斜边AB上的中线,根据直角三角形斜边上的中线等于斜边的一半可得OD的值,进而求出DC+OD,即为OC的最大值.【详解】解:如图,取AB的中点D,连接CD,∵AC=BC=10,AB=12,∵点D是AB边中点,∴BD=1AB=6,CD⊥AB,2∴2222-=-=,1068BC BD连接OD,OC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值=OD+CD,∵△AOB为直角三角形,D为斜边AB的中点,∴OD=1AB=62∴OD+CD=6+8=14,即OC的最大值=14,故选:C.【点睛】本题主要考查等腰三角形的性质,直角三角形的性质以及三角形三边之间的关系,掌握三角形任意两边之和大于第三边,是解题的关键.3.C解析:C【分析】由,AD BC ⊥结合勾股定理可得:2222,AC AB DC BD -=-2222MC MB DC BD -=-,再把已知线段的长度代入计算即可得到答案.【详解】解:,AD BC ⊥222222,,AB AD BD AC AD DC ∴=+=+22222222,AC AB AD DC AD BD DC BD ∴-=+--=-1713AC AB ==,,22221713304120DC BD ∴-=-=⨯=,,AD BC ⊥222222,,MC MD DC BM BD DM ∴=+=+22222222120.MC MB MD DC DM BD DC BD ∴-=+--=-=故选:.C【点睛】本题考查的是勾股定理的应用,掌握利用勾股定理解决问题是解题的关键.4.A解析:A【分析】连接AD ,由三角形全等以及三线合一可知PQ 垂直平分线段AB ,推出AD DB =,设AD DB x ==,在Rt ACD △中,90C ∠=︒ ,根据222AD AC CD =+构建方程即可解决问题.【详解】如图,连接AD ,由已知条件可知PQ 垂直平分线段AB ,∴AD DB =,设AD DB x ==,5CD x =-,在Rt ACD △中,90C ∠=︒ ,∴222AD AC CD =+,∴2223(5)x x =+-, 解得:751x =, ∴178555CD BC DB =-=-=, 故选:A .【点睛】本题考查了基本作图,圆的性质,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.5.B解析:B【分析】作Rt △ABC 的三条中线AD 、BE 、CF ,由“匀称三角形”的定义可判断满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则CE=a ,BE=2a ,在Rt △BCE 中∠BCE=90°,根据勾股定理可求出BC 、AB ,则AC :BC :AB 的值可求出.【详解】解:如图①,作Rt △ABC 的三条中线AD 、BE 、CF ,∵∠ACB=90°, ∴12CF AB AB =≠, 又在Rt △ABC 中,AD >AC >BC ,,AD BC ∴≠ ∴满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则,2,CE AE a BE a ===在Rt △BCE 中∠BCE=90°, ∴223,BC BE CE a =-在Rt △ABC 中,()()2222237,AB BC AC a a a =+=+=∴AC :BC :AB=237237.a a a =故选:B .【点睛】考查了新定义、勾股定理的应用,算术平方根的含义,解题的关键是理解“匀称三角形”的定义,灵活运用所学知识解决问题.6.C解析:C【分析】根据勾股定理求出杯子内的筷子长度,即可得到答案.【详解】解:由题意可得:,则筷子露在杯子外面的筷子长度为:20﹣13=7(cm ).故选:C .【点睛】此题考查勾股定理的实际应用,熟记勾股定理的计算公式是解题的关键.7.C解析:C【分析】根据直角三角形的定义和勾股定理逆定理逐项判断即可.【详解】A .222b a c =-,即222b c a +=,根据勾股定理逆定理可知ABC 是直角三角形,故A 不符合题意.B .根据三角形内角和180A BC ∠+∠+∠=︒与C A B ∠=∠+∠,得出2180C ∠=︒,即90C ∠=︒,所以ABC 是直角三角形,故B 不符合题意.C .设3A x ∠=,则4B x ∠=,5C x ∠=,根据三角形内角和180A B C ∠+∠+∠=︒,即345180x x x ++=︒,解得15x =︒,即45A ∠=︒、60B ∠=︒、75C ∠=︒.所以ABC 不是直角三角形,故C 符合题意.D .设5a x =,则12b x =,13c x =,由222(5)(12)(13)x x x +=可知222+=a b c ,根据勾股定理逆定理可知ABC 是直角三角形,故D 不符合题意.故选:C .【点睛】本题考查直角三角形的判定,利用勾股定理逆定理判断是否为直角三角形是解题的关键. 8.B解析:B【分析】根据绝对值,乘方和算术平方根的非负性求得a 、b 、c 的值,再结合勾股定理逆定理判断△ABC 为直角三角形,由此根据直角三角形面积等于两直角边乘积的一半可得面积.【详解】解:∵2(3)50a c --=,∴30,40,50a b c -=-=-=,解得3,4,5a b c ===,又∵222223425a b c +=+==,∴△ABC 为直角三角形, ∴13462ABC S =⨯⨯=△. 故选:B .【点睛】本题考查非负数的性质,勾股定理的逆定理.理解几个非负数(式)的和为0,那么这几个数(式)都为0是解题关键. 9.D解析:D【分析】13是直角边长为2,3的直角三角形的斜边,据此画两条以格点为端点且长度为13的线段.【详解】解:∵2232+=13, ∴13是直角边长为2,3的直角三角形的斜边,如图所示,AB ,CD ,BE ,DF 的长都等于13;故选:D .【点睛】本题考查的知识点是勾股定理,找到无理数是直角边长为哪两个有理数的直角三角形的斜边长是解决本题的关键.10.C解析:C【分析】设点P (x ,0),根据两点间的距离公式列方程,即可得到结论.【详解】解:设点P (x ,0),根据题意得,x 2+22=(5﹣x )2+52,解得:x =4.6,∴OP =4.6,故选:C .【点睛】本题考查了利用勾股定理求两点间的距离,熟练掌握两点间的距离公式是解题的关键. 11.D解析:D【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF 的最小值即为点C 到AB 的垂线段长度.【详解】在AB 上取一点G ,使AG =AF∵在Rt △ABC 中,∠ACB =90°,AC =3,BC =4∴AB=5,∵∠CAD =∠BAD ,AE =AE ,∴△AEF ≌△AEG (SAS )∴FE =GE ,∴要求CE+EF 的最小值即为求CE+EG 的最小值,故当C 、E 、G 三点共线时,符合要求,此时,作CH ⊥AB 于H 点,则CH 的长即为CE+EG 的最小值,此时,AC BC AB CH ,∴CH=·AC AB BC=125, 即:CE+EF 的最小值为125,故选:D .【点睛】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键. 12.B解析:B【分析】先根据题意确定AC 、BC 、AB 的长,然后运用勾股定理逆定理判定即可.【详解】解:由题意得:AC=AN=2AM=8,BC=MB=MN+NB=4+2=6,AB=AM+MN+NB=10∴AC 2=64, BC 2=36, AB 2=100,∴AC 2+BC 2=AB 2∴ABC 一定是直角三角形.故选:B .【点睛】 本题主要考查了勾股定理逆定理的应用,根据题意确定AC 、BC 、AB 的长是解答本题的关键.二、填空题13.【分析】由勾股定理得推出由此得到将数据代入计算得出答案【详解】解:在直角三角形中利用勾股定理得:∴变形为:即又∴故答案为:【点睛】此题考查勾股定理的应用圆的面积计算公式正确理解各部分图形之间的面积关 解析:98π. 【分析】 由勾股定理得222+=a b c ,推出222111()()()222222a b c πππ+=,由此得到231S S S +=,将数据代入计算得出答案.【详解】解:在直角三角形中,利用勾股定理得:222+=a b c ,∴222888a b c πππ+=,变形为:222111()()()222222a b c πππ+=,即231S S S +=. 又1258S π=,22S π=, ∴312259288S S S πππ=-=-=, 故答案为:98π. 【点睛】此题考查勾股定理的应用,圆的面积计算公式,正确理解各部分图形之间的面积关系及勾股定理的计算公式是解题的关键.14.cm/s或cm/s或cm/s或cm/s【分析】当点P在边AC运动点Q在边AB运动有△APQ≌△DEF或△APQ≌△DFE;当点P在边BA运动点Q在边CA运动有△APQ≌△DEF或△APQ≌△DFE分解析:154cm/s或125cm/s或9332cm/s或9631cm/s【分析】当点P在边AC运动,点Q在边AB运动,有△APQ≌△DEF或△APQ≌△DFE;当点P在边BA运动,点Q在边CA运动,有△APQ≌△DEF或△APQ≌△DFE,分别利用路程=速度×时间计算.【详解】解:在△DEF中,DE=4,DF=5,∠E=90°,∴,当点P在边AC运动,点Q在边AB运动,△APQ≌△DEF时,AP=DE=4,AQ=DF=5,则点P的运动时间为4÷3=43(s),∴点Q的运动速度为5÷43=154cm/s;△APQ≌△DFE时,AP=DF=5,AQ=DE=4,则点P的运动时间为5÷3=53(s),∴点Q的运动速度为4÷53=125cm/s;当点P在边BA运动,点Q在边CA运动,△APQ≌△DEF时,AP=DE=4,AQ=DF=5,则点P的运动时间为(12+9+15-4)÷3=323(s),∴点Q的运动速度为(12+9+15-5)÷323=9332cm/s;△APQ≌△DFE时,AP=DF=5,AQ=DE=4,则点P的运动时间为(12+9+15-5)÷3=313(s),∴点Q的运动速度为(12+9+15-4)÷313=9631cm/s;故答案为:154cm/s或125cm/s或9332cm/s或9631cm/s.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的性质定理,灵活运用分情况讨论思想是解题的关键.15.3【分析】作DG ⊥AC 于GEH ⊥AC 于H 则∠DGM =∠MHE =90°DG ∥BC 由勾股定理得出BC =6证出DG 是△ABC 的中位线得出DG =BC =3AG =CG =AC =4证明△MDG ≌△EMH (ASA )得解析:3【分析】作DG ⊥AC 于G ,EH ⊥AC 于H ,则∠DGM =∠MHE =90°,DG ∥BC ,由勾股定理得出BC =6,证出DG 是△ABC 的中位线,得出DG =12BC =3,AG =CG =12AC =4,证明△MDG ≌△EMH (ASA ),得出MG =EH ,由三角形面积关系得出DG =2EH =3,得出MG=EH =32,再证明∆DGF~∆EHF ,从而求出GF ,进而即可得出答案. 【详解】作DG ⊥AC 于G ,EH ⊥AC 于H ,如图所示:则∠DGM =∠MHE =90°,DG ∥BC ,∵∠ACB =90°,AB =10,AC =8, ∴BC 221086-=,∵DG ∥BC ,D 是AB 的中点,∴DG 是△ABC 的中位线,∴DG =12BC =3,AG =CG =12AC =4, ∵△DME 是等腰直角三角形,∴∠DME =90°,DM =ME ,∵∠DMG +∠GDM =∠DMG +∠EMH =90°,∴∠GDM =∠EMH ,在△MDG 和△EMH 中,DGM MHE DM MEGDM EMH ∠∠⎧⎪⎨⎪∠∠⎩===∴△MDG ≌△EMH (ASA ),∴MG =EH ,∵S △MDF =2S △MEF ,∴DG =2EH =3,∴MG =EH =32, ∵DG ∥EH ,∴∆DGF~∆EHF ,∴21DG GF EH HF ==, ∵GH=MH-MG=DG-MG=3-32=32, ∴GF=32×221+=1, ∴CF=AC-AG-GF=8-4-1=3,故答案是:3..【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、相似三角形的判定和性质;添加辅助线,构造三角形全等是解题的关键.16.18【分析】连接AEAG 根据中垂线的性质求出AEAG 的长结合勾股定理的逆定理推出进而即可求解【详解】连接AEAG ∵DE 垂直平分AB ∴∵FG 垂直平分AC ∴∵∴在中∴为直角三角形∴∴故答案是:18【点睛解析:18【分析】连接AE 、AG ,根据中垂线的性质,求出AE ,AG 的长,结合勾股定理的逆定理,推出AE BC ⊥,进而即可求解.【详解】连接AE 、AG∵DE 垂直平分AB ,∴3AE BE ==,∵FG 垂直平分AC ,∴AG CG =,∵3BE =,4EG =,12BC =,∴5CG AG ==,在AEG ∠中,29AE =,216EG =,225AG =,∴AEG △为直角三角形,∴AE BC ⊥, ∴111231822ABC S BC AE =⋅=⨯⨯=△. 故答案是:18【点睛】 本题主要考查垂直平分线的性质定理以及勾股定理的逆定理,掌握中垂线的性质定理,添加合适的辅助线,是解题的关键.17.【分析】过点A 作AD ⊥l3于D 过点B 作BE ⊥l3于E 易证明∠BCE =∠CAD 再由题意可证明△ACD ≌△CBE (AAS )得出结论BE =CD 由l1l2之间的距离为2l2l3之间的距离为3即得出CD 和AD 17【分析】过点A 作AD ⊥l 3于D ,过点B 作BE ⊥l 3于E ,易证明∠BCE =∠CAD ,再由题意可证明△ACD ≌△CBE (AAS ),得出结论BE =CD ,由l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,即得出CD 和AD 的长,利用勾股定理即可求出AC 的长,从而得到AB 的长.【详解】如图,过点A 作AD ⊥l 3于D ,过点B 作BE ⊥l 3于E ,则∠CAD+∠ACD =90°,∵AC ⊥BC ,∴∠BCE+∠ACD =180°﹣90°=90°,∴∠BCE =∠CAD ,∵在△ACD 和△CBE 中,BCE CAD ADC CEB 90AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ACD≌△CBE(AAS),∴BE=CD,∵l1,l2之间的距离为2,l2,l3之间的距离为3,∴CD=3,AD=2+3=5,在Rt△ACD中,AC2222=+=+=,AD CD5334∵AC⊥BC,AC=BC,∴△ABC是等腰直角三角形,∴AB2=⨯=217.=AC234故答案为:217.【点睛】本题考查三角形全等的判定和性质、平行线的性质、直角三角形的性质以及勾股定理.作出辅助线并证明BE=CD是解答本题的关键.18.12【分析】依题意画出图形设芦苇长AB=AB=x尺则水深AC=(x﹣1)尺因为BE=10尺所以BC=5尺利用勾股定理求出x的值即可得到答案【详解】解:依题意画出图形设芦苇长AB=AB=x尺则水深AC解析:12【分析】依题意画出图形,设芦苇长AB=AB'=x尺,则水深AC=(x﹣1)尺,因为B'E=10尺,所以B'C=5尺,利用勾股定理求出x的值即可得到答案.【详解】解:依题意画出图形,设芦苇长AB=AB'=x尺,则水深AC=(x﹣1)尺,因为B'E=10尺,所以B'C=5尺,在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即水深12尺,芦苇长13尺.故答案为:12..【点睛】此题考查勾股定理的实际应用,正确理解题意,构建直角三角形利用勾股定理解决问题是解题的关键.19.45【分析】做线段BA 关于BC 的对称线段BE 连接DE 先证明再证明△BDE 为等腰直角三角形得到∠DBE=45°问题得证【详解】解:如图做线段BA 关于BC 的对称线段BE 连接DE 则∠ABC=∠EBC ∴根据解析:45【分析】做线段BA 关于BC 的对称线段BE ,连接DE ,先证明CBD ABC DBE ∠+∠=∠,再证明△BDE 为等腰直角三角形,得到∠DBE=45°,问题得证.【详解】解:如图,做线段BA 关于BC 的对称线段BE ,连接DE ,则∠ABC=∠EBC ,∴CBD ABC CBD EBC DBE ∠+∠=∠+∠=∠, 根据勾股定理得221526BD =+=,222313BE =+=,222313DE =+= ,∴BE=DE ,222=26=BE DE BD +∴∠BED=90°,∴△BDE 为等腰直角三角形,∴∠DBE=45°,∴45CBD ABC ∠+∠=︒.故答案为:45【点睛】本题考查了勾股定理及其逆定理在网格中应用,根据题意作出线段BA 关于BC 的对称线段BE 是解题关键.20.或【分析】分为两种情况:①3和4都是直角边;②斜边是4有一条直角边是3利用勾股定理求得第三边再利用等面积法即可得出斜边上的高【详解】解:分为两种情况:①3和4都是直角边由勾股定理得:第三边长∴斜边上解析:125 【分析】分为两种情况:①3和4都是直角边;②斜边是4有一条直角边是3.利用勾股定理求得第三边,再利用等面积法即可得出斜边上的高.【详解】解:分为两种情况:①3和4都是直角边,由勾股定理得:第三边长5==∴斜边上的高为341255⨯=; ②斜边是4有一条直角边是3,由勾股定理得:第三边长=,∴=故答案为:125或4. 【点睛】本题考查勾股定理解直角三角形.注意分类讨论和等面积法(在本题中主要用到直角三角形的面积等于两直角边乘积的一半也等于斜边与斜边高的乘积的一半)的运用. 三、解答题21.△ABC 的面积为84.【分析】先根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD 是直角三角形,再利用勾股定理求出CD 的长,然后利用三角形面积公式即可得出答案.【详解】∵BD 2+AD 2=62+82=102=AB 2,∴△ABD 是直角三角形,∴AD ⊥BC ,在Rt △ACD 中,,∴BC=BD+CD=6+15=21,∴S△ABC=12BC•AD=12×21×8=84.∴△ABC的面积为84.【点睛】此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证△ABD是直角三角形.22.(1)证明见解析;(2);(3)【分析】(1)根据题意利用中线的性质和垂直平分线的性质,即可解答(2)根据题意和由(1)得到AH=EH,再利用勾股定理得到AH=,最后利用全等三角形的性质,即可解答(3)作AE⊥BC于E,AH⊥BD于H,可得,设DH=x,则AD=2x,利用勾股定理即可解答【详解】(1)证明:∵AB=AC,AD是BC上的中线∴AD⊥BC又∵AH⊥BE∴∠ADB=∠H=90°∵MN是AB的垂直平分线∴AO=BO∴∠OAB=∠ABO又∵AB=BA∴在与中∴(2)解:∵AB=AC, AD是BC上的中线,∠BAC=30°∴∠BAD=15°由(1)知,∠ABO=15°∴∠AEH=∠ABO+∠BAC=45°∵AH⊥BE∴∠EAH=45°∴AH=EH由AE=4可得AH=∵∴BD=AH∴BC=2BD=2AH=(3)如图,作AE⊥BC于E,AH⊥BD于H仿(1)可得且∠ADH=60°∴AH=BE=设DH=x,则AD=2x在RtΔAHD中得(负值舍去)∴AD=【点睛】此题考查垂直平分线的性质,全等三角形的判定与性质,勾股定理,解题关键在于作辅助线23.(1)9;(2)△ABC是直角三角形,理由见详解.【分析】(1)根据勾股定理即可求解;(2)根据勾股定理的逆定理即可得到结论.【详解】(1)∵CD⊥AB,∴∠ADC=∠BDC=90°,在Rt△ADC中,∵∠ADC=90°,AC=15,CD=12,∴AD2=AC2−CD2=152−122=81,∵AD>0,∴AD=9;(2)△ABC是直角三角形,理由如下:∵AB=25,AD=9,∴BD=AB−AD=25−9=16,在Rt△CDB中,∵∠BDC=90°,∴BC2=CD2+BD2=122+162=400,∵BC>0,∴BC =20,∵AC 2+BC 2=152+202=252=AB 2,∴∠ACB =90°,∴△ABC 为直角三角形.【点睛】本题考查的是勾股定理、勾股定理的逆定理;熟练掌握勾股定理和勾股定理的逆定理是解决问题的关键.24.(1)见解析;(2)()12,2A ,()11,3B --,()14,1C -;(3)192【分析】(1)作出A 、B 、C 的对应点111,,A B C 并两两相连即可;(2)根据图形得出坐标即可;(3)根据割补法得出面积即可.【详解】解:(1)如图所示,111A B C 即为所求.(2)根据图形可得:()12,2A ,()11,3B --,()14,1C -(3)△ABC 的面积=5×5−12×3×5−12×2×3−12×2×5=192. 【点睛】本题考查作图-平移变换,熟练掌握由平移方式确定坐标的方法及由直角三角形的边所围成的图形面积的算法是解题关键.25.(1)三只蚂蚁的行走路径S 甲,S 乙,S 丙137cm ,5,117cm ;(2)蚂蚁丙最先到达,蚂蚁甲最后到达【分析】(1)将长方体侧面展开,由行走路径最小值确定:路线为线段,根据勾股定理分别求出S 甲,S 乙,S 丙的值即可;(2)比较S 甲,S 乙,S 丙的值即可得到答案.【详解】解:(1)将长方体侧面展开,由行走路径最小值确定:路线为线段,∵长AB =5cm ,宽BC =4cm ,高AE =6cm ,∴EF =AB =5cm ,GF =BC =EH =4cm ,AE =BF =CG =6cm ,∴图1:S 甲=2222()114137AE EF G F '''++=+=(cm )图2:S 乙=2222()10555AE EH G H '''++=+=(cm ),图3:S 丙=2222()96117AB BC C G '''++=+=(cm ),答:三只蚂蚁的行走路径S 甲,S 乙,S 丙的最小值分别是137cm ,55cm ,117cm ;(2)由(1)知,S 甲137cm ),S 乙5125cm ),S 丙117cm ). ∵137125117∴蚂蚁丙最先到达,蚂蚁甲最后到达.【点睛】此题考查勾股定理的实际应用,立方体的平面展开图,正确理解题意,确定每只蚂蚁所走的路径构建直角三角形是解题的关键.26.(1)证明见解析;(2)3【分析】(1)根据三线合一得BAD =∠CAD ,由AE =DE ,得∠CAD =∠EDA ,从而∠BAD =∠EDA ,所以DE ∥AB ;(2)由AB =AC ,∠B =60°,DE ∥AB ,得∠C =60°,∠EDC =∠B =60°,从而△DEC 为等边三角形, DE =DC =EC =AE =2,最后在Rt △ADC 中,由勾股定理求AD .【详解】解:(1)∵AB =AC ,AD ⊥BC ,∴∠BAD =∠CAD ,∵AE =DE ,∴∠CAD =∠EDA ,∴∠BAD=∠EDA,∴DE∥AB(2)∵AB=AC,∠B=60°,∴∠C=60°∵DE∥AB,∴∠EDC=∠B=60°,∴△DEC为等边三角形,∴DE=DC=EC=AE=2在Rt△ADC中,AD【点睛】本题考查了等腰三角形三线合一、等边对等角、平行线的判定和性质、等边三角形的判定和性质、勾股定理等内容,灵活运用是解题的关键.。
上海尚文中学八年级数学下册第二单元《勾股定理》测试题(包含答案解析)
一、选择题1.如图,在ABC 中,D 是BC 边上的中点,连结AD ,把ABD △沿AD 翻折,得到AB D ',连接CB ',若2BD CB '==,3AD =,则AB C '的面积为( )A .332B .23C .3D .22.如图,2×2的方格中,小正方形的边长是1,点A 、B 、C 都在格点上,则ABC 中AB 边上的高长为( )A .355B .25C .3510D .3223.如图,△ABC 和△ECD 都是等腰直角三角形,△ABC 的顶点A 在△ECD 的斜边DE 上.下列结论:其中正确的有( )①△ACE ≌△BCD ;②∠DAB =∠ACE ;③AE +AC =AD ;④AE 2+AD 2=2AC 2A .1个B .2个C .3个D .4个4.《九章算术》是我国古代最重要的数学著作之一,它的出现标志着中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》﹔“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长.则AC 的长为( )A .4.2尺B .4.3尺C .4.4尺D .4.5尺 5.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为123S S S 、、;如图2,分别以直角三角形三边长为半径向外作半圆,面积分别为456S S S 、、.其中125616,45,11,14S S S S ====,则34S S +=( )A .86B .64C .54D .48 6.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( )A .514B .8C .16D .647.有四个三角形,分别满足下列条件,其中不是直角三角形的是( )A .一个内角等于另外两个内角之和B .三个内角之比为3:4:5C .三边之比为5:12:13D .三边长分别为7、24、258.在ABC 中,A ∠、B 、C ∠的对应边分别是a 、b 、c ,下列条件中不能说明ABC 是直角三角形的是( )A .222b a c =-B .C A B ∠=∠+∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c = 9.在△ABC 中,BC=a ,AB=c ,AC=b ,则不能作为判定△ABC 是直角三角形的条件是( ).A .∠A=∠B-∠CB .∠A :∠B :∠C=2:5:3C .a :b :c =7:24:25 D .a :b :c =4:5:6 10.如图,是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是12,小正方形的面积是2,直角三角形的短直角边为a ,较长的直角边为b ,那么(a+b)2的值为( )A .144B .22C .16D .13 11.等腰三角形腰长10cm ,底边长16cm ,则等腰三角形面积是( ) A .296cm B .248cm C .224cm D .232cm 12.如图,M N 、是线段AB 上的两点,4,2AM MN NB ===.以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连结AC BC 、,则ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形二、填空题13.如图,已知在Rt ABC △中,90ACB ∠=,3AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则12S S +的值等于________.14.如图,点P 是等边ABC 内的一点,6PA =,8PB =,10PC =.若点P '是ABC 外的一点,且P AB PAC '≌△△,则APB ∠的度数为_____.15.已知一个直角三角形的两边长分别是a ,b ,且a ,b 满足340a b -+-=.则斜边长是____________16.如图,l 1∥l 2∥l 3,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3.若点A ,B ,C 分别在直线l 1,l 2,l 3上,且AC ⊥BC ,AC =BC ,则AB 的长是_____.17.如图,在ABC 中,45ABC ︒∠=,3AB =,AD BC ⊥于点D ,BE AC ⊥于点F .1AE =,连接DE ,将AED 沿直线AE 翻折至ABC 所在的平面,得AEF ,连接DF .过点D 作DG DE ⊥交BE 于点G ,则四边形DFEG 的周长为________.18.如图,在边长为23的等边三角形ABC 中,过点C 作垂直于BC 的直线交∠ABC 的平分线于点P ,则点P 到边AB 所在直线的距离为_________.19.直角三角形两边长分别为3和4,则它的周长为__________.20.如图,在Rt ABC 中,90B ∠=︒,AC 的垂直平分线DE 分别交AB ,AC 于,D E 两点,若4AB =,3BC =,则CD 的长为______________.三、解答题21.如图,在四边形ABCD 中,AB=20cm ,BC=15cm ,CD=7cm ,AD=24cm ,∠ABC=90°. (1)求∠ADC 的度数;(2)求出四边形ABCD 的面积.22.如图,ABC ∆中,,AB AC AD >是BC 边上的高,将ADC 沿AD 所在的直线翻折,使点C 落在BC 边上的点E 处.()1若20,13,5AB AC CD ===,求ABC ∆的面积;()2求证:22AB AC BE BC -=⋅.23.如图,△ABC 中,AC =15,AB =25,CD ⊥AB 于点D ,CD =12.(1)求线段AD 的长度;(2)判断△ABC 的形状并说明理由.24.如图,某人为了测量小山顶上的塔顶离地面的高度CD ,他在山下的点A 处测得塔尖点D 的仰角为45︒,再沿AC 方向前进60m 到达山脚点B ,测得塔尖点D 的仰角为60︒,求CD 的高度(结果保留根号)25.在如图方格纸中,每个小方格的边长为1.请按要求解答下列问题:(1)以格点为顶点,画一个三角形ABC,使∠ACB=90°,三边中有两边边长都是无理数;(2)在图中建立正确的平面直角坐标系,并写出ABC各顶点的坐标;'''.(不要求写作法).(3)作ABC关于y轴的轴对称图形A B C26.如图:AB=AC,AD⊥BC于D,AE=DE.求证:(1)DE∥AB;(2)若∠B=60°,DE=2,求AD的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】证明AD ∥CB′,推出S △ACB′=S △CDB′即可解决问题.【详解】∵D 是BC 的中点,∴BD DC =,由翻折的性质可知ADB ADB '∠=∠,DB DB '=,∴2BD CB '==,∴2CD DB CB ''===,∴CDB '是等边三角形, ∴60CDB DCB ''∠=∠=︒,120BDB '∠=︒, ∴120ADB ADB '∠=∠=︒, ∴60ADC CDB '∠=∠=︒, ∴ADC DCB '∠=∠, ∴//AD CB ', ∴2323ACB CDB S S ''==⨯=△△. 故选:C .【点睛】本题考查了折叠的性质,等边三角形的判定和性质,三角形的面积等知识,解题的关键是学会用转化的思想思考问题.2.A解析:A【分析】首先利用大正方形的面积减去周围三个三角形的面积计算出△ABC 的面积和AB 的长,利用三角形面积公式可得答案.【详解】过C 作CD ⊥AB 于D ,如图:∵2111321211122222ABC S =-⨯⨯-⨯⨯-⨯⨯=△, 且12ABC S AB CD =⋅△, ∵22125AB =+=∴1322AB CD ⋅=,则5CD ==, 故选:A .【点睛】本题主要考查了勾股定理与网格问题,关键是正确求出三角形面积.3.C解析:C【分析】由等腰直角三角形的性质和三角形的外角性质得出②正确;由SAS 证出△ACE ≌△BCD ,①正确;证出△ADB 是直角三角形,由勾股定理得出④正确;由全等三角形的性质和等边三角形性质得出③不正确;即可得出答案.【详解】解:∵△ABC 和△ECD 都是等腰直角三角形,∴CA =CB ,CE =CD ,∠ACB =∠ECD =90°,∠E =∠CDE =45°,∠CAB =∠CBA =45°, ∵∠DAB +∠CAB =∠ACE +∠E ,∴∠DAB =∠ACE ,故②正确;∴∠ACE +∠ACD =∠ACD +∠DCB =90°,∴∠ACE =∠DCB ,在△ACE 和△BCD 中,CA CB ECA DCB CE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),故①正确;∴AE =BD ,∠CEA =∠CDB =45°,∴∠ADB =∠CDB +∠EDC =90°,∴△ADB 是直角三角形,∴AD 2+BD 2=AB 2,∴AD 2+AE 2=AB 2,∵△ABC 是等腰直角三角形,∴ABAC ,∴AE 2+AD 2=2AC 2,故④正确;在AD 上截取DF =AE ,连接CF ,如图所示:在△ACE 和△FCD 中,45AE FD E CDF CE CD ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ACE ≌△FCD (SAS),∴AC =FC ,当∠CAF =60°时,△ACF 是等边三角形,则AC =AF ,此时AE +AC =DF +AF =AD ,故③不正确;故选:C .【点睛】本题是考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,直角三角形的判定与性质等知识;熟练掌握全等三角形的判定与性质和等腰直角三角形的性质是解题的关键. 4.A解析:A【分析】设AC=x 尺,则AB=(10-x )尺,利用勾股定理解答.【详解】设AC=x 尺,则AB=(10-x )尺, ABC 中,90ACB ∠=︒,222AC BC AB +=,∴2224(10)x x +=-,解得:x=4.2,故选:A .【点睛】此题考查勾股定理,根据题意正确设未知数,利用勾股定理解答是解题的关键. 5.C解析:C【分析】分别用AB 、BC 和AC 表示出 S 1、S 2、S 3,然后根据AB 2=AC 2+BC 2即可得出S 1、S 2、S 3的关系.同理,得出S 4、S 5、S 6的关系,即可得到结果.【详解】解:如图1,过点E 作AB 的垂线,垂足为D ,∵△ABE 是等边三角形,∴∠AED=∠BED=30°,设AB=x ,∴AD=BD=12AB=12x , ∴DE=22AE AD -=32x , ∴S 2=1322x x ⨯⨯=23AB , 同理:S 1=23AC ,S 3=23BC , ∵BC 2=AB 2-AC 2,∴S 3=S 2-S 1, 如图2,S 4=21122AB π⎛⎫⨯ ⎪⎝⎭=28AB π, 同理S 5=28AC π,S 6=28BC π,则S 4=S 5+S 6,∴S 3+S 4=45-16+11+14=54.【点睛】本题考查了勾股定理、等边三角形的性质.勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.6.D解析:D【分析】设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,代入得到2225289a +=,计算求出答案即可.【详解】如图,设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,∴2225289a +=,∴字母A 所代表的正方形的面积264a =,故选:D ..【点睛】此题考查以弦图为背景的证明,熟记勾股定理的计算公式、理解三个正方形的面积关系是解题的关键.7.B解析:B【分析】根据三角形的内角和定理或勾股定理的逆定理即可进行判断,从而得到答案.【详解】解:A 、设一个内角为x ,则另外两个内角之和为x ,则x +x =180°,解得x=90°,故是直角三角形;B 、设较小的角为3x ,则其于两角为4x ,5x ,则3x +4x+5x =180°,解得x=15°,则三个角分别为45°,60°,75°,故不是直角三角形;C 、因为52+122=132符合勾股定理的逆定理,故是直角三角形;D 、因为72+242=252符合勾股定理的逆定理,故是直角三角形.故选:B .【点睛】本题考查三角形内角和定理,勾股定理的逆定理,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.8.C解析:C【分析】根据直角三角形的定义和勾股定理逆定理逐项判断即可.【详解】A .222b a c =-,即222b c a +=,根据勾股定理逆定理可知ABC 是直角三角形,故A 不符合题意.B .根据三角形内角和180A BC ∠+∠+∠=︒与C A B ∠=∠+∠,得出2180C ∠=︒,即90C ∠=︒,所以ABC 是直角三角形,故B 不符合题意.C .设3A x ∠=,则4B x ∠=,5C x ∠=,根据三角形内角和180A B C ∠+∠+∠=︒,即345180x x x ++=︒,解得15x =︒,即45A ∠=︒、60B ∠=︒、75C ∠=︒.所以ABC 不是直角三角形,故C 符合题意.D .设5a x =,则12b x =,13c x =,由222(5)(12)(13)x x x +=可知222+=a b c ,根据勾股定理逆定理可知ABC 是直角三角形,故D 不符合题意.故选:C .【点睛】本题考查直角三角形的判定,利用勾股定理逆定理判断是否为直角三角形是解题的关键. 9.D解析:D【分析】根据三角形的内角和定理,勾股定理的逆定理依次判断.【详解】A 、∵∠A=∠B-∠C ,∴∠A+∠C =∠B ,得到∠B=90︒,即△ABC 是直角三角形; B 、设∠A=2x ,∠B=5x ,∠C=3x ,故235180x x x ++=︒,解得x=18︒,∴∠B=5x=90︒,即△ABC 是直角三角形;C 、设a=7x ,则b=24x ,c=25x ,∵222(7)(24)(25)x x x +=,∴222+=a b c ,∴△ABC 是直角三角形;D 、设a=4x ,b=5x ,c=6x ,∵222(4)(5)(6)x x x +≠,∴222a b c +≠,∴△ABC 不是直角三角形;故选:D .【点睛】此题考查三角形的内角和定理,勾股定理的逆定理,掌握直角三角形根据边或角判定的方法是解题的关键.10.B解析:B【分析】先求出四个直角三角形的面积,再求出直角三角形的斜边的长即可求解.【详解】解:∵大正方形的面积12,小正方形的面积是2,∴四个直角三角形的面积和是12-2=10,即4×12ab =10 ∴2ab=10,∵直角三角形的短直角边为a ,较长的直角边为b∴a 2+b 2=12∴(a+b)2= a 2+b 2+2ab=22.故答案为B .【点睛】本题主要考查了勾股定理、三角形的面积、完全平方公式等知识点,完全平方公式和勾股定理的灵活变形是解答本题的关键.11.B解析:B【分析】如图:作AD⊥BC于D,先根据等腰三角形的性质求得BD,然后运用勾股定理求得AD,最后运用三角形的面积公式解答即可.【详解】解:如图:作AD⊥BC于D,∵AB=AC=10,∴BD=DC=1BC=8cm,2∴AD=2222-=-=AC CD1086∴S△ABC=1BC·AD=48cm2.2故答案为B.【点睛】本题主要考查了等腰三角形“三线合一”的性质以及勾股定理的应用,掌握等腰三角形“三线合一”的性质是解答本题的关键.12.B解析:B【分析】先根据题意确定AC、BC、AB的长,然后运用勾股定理逆定理判定即可.【详解】解:由题意得:AC=AN=2AM=8,BC=MB=MN+NB=4+2=6,AB=AM+MN+NB=10∴AC2=64, BC2=36, AB2=100,∴AC2+BC2=AB2∴ABC一定是直角三角形.故选:B.【点睛】本题主要考查了勾股定理逆定理的应用,根据题意确定AC、BC、AB的长是解答本题的关键.二、填空题13.【分析】根据图形得到根据勾股定理推出【详解】解:由题意得所以故答案为:【点睛】此题考查勾股定理的应用观察图形理解各部分图形的面积的关系利用勾股定理解决问题是解题的关键 解析:98π. 【分析】 根据图形得到22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭,根据勾股定理推出()22121188S S AC BC π+=+=298AB ππ=. 【详解】 解:由题意,得22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭, 所以()22121188S S AC BC π+=+=298AB ππ=, 故答案为:98π.【点睛】此题考查勾股定理的应用,观察图形理解各部分图形的面积的关系,利用勾股定理解决问题是解题的关键. 14.150°【分析】由可知:PA =P′A ∠P′AB =∠PACBP′=CP 然后依据等式的性质可得到∠P′AP =∠BAC =60°从而可得到△APP′为等边三角形可求得PP′由△APP′为等边三角形得∠APP解析:150°【分析】由P AB PAC '≌△△可知:PA =P′A ,∠P′AB =∠PAC ,BP′=CP ,然后依据等式的性质可得到∠P′AP =∠BAC =60°,从而可得到△APP′为等边三角形,可求得PP′,由△APP′为等边三角形,得∠APP′=60°,在△PP′B 中,用勾股定理逆定理证出直角三角形,得出∠P′PB =90°,进而可求∠APB 的度数.【详解】连接PP′,∵P AB PAC '≌△△,∴PA=P′A=6,∠P′AB=∠PAC,BP′=CP=10,∴∠P′AP=∠BAC=60°,∴△APP′为等边三角形,∴PP′=AP=AP′=6,PB=,又∵8∴PP′2+BP2=BP′2,∴△BPP′为直角三角形,且∠BPP′=90°∴∠APB=90°+60°=150°,故答案是:150°【点睛】本题主要考查的是全等三角形的性质、等边三角形的判定、勾股定理的逆定理的应用,证得△APP′为等边三角形、△BPP′为直角三角形是解题的关键.15.5或4【分析】根据绝对值和算术平方根具有非负性可得ab的值然后再利用勾股定理分类求出该直角三角形的斜边长即可【详解】∵满足∴a−3=0b−4=0解得:a=3b=4当ab为直角边该直角三角形的斜边长为解析:5或4.【分析】根据绝对值和算术平方根具有非负性可得a、b的值,然后再利用勾股定理,分类求出该直角三角形的斜边长即可.【详解】∵a,b40b-=,∴a−3=0,b−4=0,解得:a=3,b=4,当a,b为直角边,=;54也可能为斜边长.综上所述:直角三角形的斜边长为:5或4.故答案为:5或4.【点睛】此题主要考查了勾股定理和绝对值和算术平方根的非负性,关键是掌握绝对值和算术平方根具有非负性,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.16.【分析】过点A作AD⊥l3于D过点B作BE⊥l3于E易证明∠BCE=∠CAD 再由题意可证明△ACD≌△CBE(AAS)得出结论BE=CD由l1l2之间的距离为2l2l3之间的距离为3即得出CD和AD【分析】过点A 作AD ⊥l 3于D ,过点B 作BE ⊥l 3于E ,易证明∠BCE =∠CAD ,再由题意可证明△ACD ≌△CBE (AAS ),得出结论BE =CD ,由l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,即得出CD 和AD 的长,利用勾股定理即可求出AC 的长,从而得到AB 的长.【详解】如图,过点A 作AD ⊥l 3于D ,过点B 作BE ⊥l 3于E ,则∠CAD+∠ACD =90°,∵AC ⊥BC ,∴∠BCE+∠ACD =180°﹣90°=90°,∴∠BCE =∠CAD ,∵在△ACD 和△CBE 中,BCE CAD ADC CEB 90AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴BE =CD ,∵l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,∴CD =3,AD =2+3=5,在Rt △ACD 中,AC 2222AD CD5334=+=+=,∵AC ⊥BC ,AC =BC ,∴△ABC 是等腰直角三角形,∴AB 2=AC 234=⨯=217.故答案为:17【点睛】本题考查三角形全等的判定和性质、平行线的性质、直角三角形的性质以及勾股定理.作出辅助线并证明BE =CD 是解答本题的关键.17.【分析】先证得出再证与是等腰直角三角形在直角中利用勾股定理求出BE 的长进一步求出GE 的长可通过解直角三角形分别求出GDDEEFDF 的长即可求出四边形DFEG 的周长【详解】∵于点D ∴∴是等腰直角三角形解析:322【分析】先证BDG DE ∆≅∆,得出1AE BG ==,再证DGE ∆与EDF ∆是等腰直角三角形,在直角AEB ∆中利用勾股定理求出BE 的长,进一步求出GE 的长,可通过解直角三角形分别求出GD ,DE ,EF ,DF 的长,即可求出四边形DFEG 的周长.【详解】∵45ABC ︒∠=,AD BC ⊥于点D ,∴9045BAD ABC ︒︒∠=-∠=,∴ABD ∆是等腰直角三角形,∴AD BD =,∵BE AC ⊥,∴90GBD C ︒∠+∠=,∵90EAD C ︒∠+∠=,∴GBD EAD ∠=∠,∵90ADB EDG ︒∠=∠=,∴ADB ADG EDG ADG ∠-∠=∠-∠,即BDG ADE ∠=∠,∴()BDG ADE ASA ∆≅∆,∴1BG AE ==,DG DE =,∵90EDG ︒∠=,∴EDG ∆为等腰直角三角形,∴9045135AED AEB DEG ︒︒︒∠=∠+∠=+=,∵AED ∆沿直线AE 翻折得AEF ∆,∴AED AEF ∆≅∆,∴135AED AEF ︒∠=∠=,ED EF =,∴36090DEF AED AEF ︒︒∠=-∠-∠=,∴DEF ∆为等腰直角三角形,∴EF DE DG ==,在Rt AEB ∆中,BE === ∴1GE BE BG =-=,在Rt DGE ∆中,222DG ==-,∴22EF DE ==-, 在Rt DEF ∆中,1DF ==,∴四边形DFEG 的周长为:GD EF GE DF +++221)2⎛⎫=-+- ⎪ ⎪⎝⎭2=+,故答案为:2+.【点睛】本题考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够灵活运用等腰直角三角形的判定与性质.18.2【分析】根据△ABC 为等边三角形BP 平分∠ABC 得到∠PBC=30°利用PC ⊥BC 所以∠PCB=90°根据含30°直角三角形边的特殊关系和勾股定理即可解答【详解】解:∵△ABC 为等边三角形BP 平分解析:2【分析】根据△ABC 为等边三角形,BP 平分∠ABC ,得到∠PBC=30°,利用PC ⊥BC ,所以∠PCB=90°,根据含30°直角三角形边的特殊关系和勾股定理即可解答.【详解】解:∵△ABC 为等边三角形,BP 平分∠ABC , ∴1302PBC ABC ∠=∠=︒ , ∵PC ⊥BC ,∴∠PCB=90°,在Rt △PCB 中,设PC x =,则 2PB x =,根据勾股定理可得:(()2222x x +=,且0x >, 解得:2x =,∵∠ABC 的平分线是PB ,∴点P 到边AB 所在直线的距离与点P 到边BC 所在直线的距离相等.故答案为:2.【点睛】本题考查了等边三角形的性质、角平分线的性质、利用勾股定理求值,解决本题的关键是等边三角形的性质. 19.12或7+【分析】分两种情况求出第三边即可求出周长【详解】分两种情况:①当3和4都是直角边时第三边长==5故三角形的周长=3+4+5=12;②当3是直角边4是斜边时第三边长故三角形的周长=3+4+=解析:12或【分析】分两种情况求出第三边,即可求出周长.【详解】分两种情况:①当3和4都是直角边时,第三边长,故三角形的周长=3+4+5=12;②当3是直角边,4是斜边时,第三边长==,故三角形的周长,故答案为:12或.【点睛】此题考查勾股定理的应用,题中不明确所给边长为直角三角形的直角边或是斜边时,应分情况讨论求解.20.【分析】先根据线段垂直平分线的性质得出CD=AD 故AB=BD+AD=BD+CD 设CD=x 则BD=4-x 在Rt △BCD 中根据勾股定理求出x 的值即可【详解】∵是的垂直平分线∴∴设则在中即解得∴故答案为: 解析:258【分析】先根据线段垂直平分线的性质得出CD=AD ,故AB=BD+AD=BD+CD ,设CD=x ,则BD=4-x ,在Rt △BCD 中根据勾股定理求出x 的值即可.【详解】∵DE 是AC 的垂直平分线,∴CD AD =,∴AB BD AD BD CD =+=+,设CD x =,则4BD x =-,在Rt BCD 中,222CD BC BD =+,即()22234x x =+-, 解得258x =, ∴258CD =. 故答案为: 258. 【点睛】本题考查的是勾股定理、线段垂直平分线的性质.由勾股定理得出方程是解决问题的关键.三、解答题21.(1)∠ADC=90°;(2)四边形ABCD 的面积为2234cm【分析】(1)连接AC ,利用勾股定理求得AC 的长,再利用勾股定理的逆定理解答即可; (2)根据三角形的面积公式解答即可.【详解】解:(1)连接AC ,在Rt △ABC 中,∠ABC=90°,∵AB=20,BC=15,∴由勾股定理可得:AC=2222201525AB BC +=+=; ∵在△ADC 中,CD=7,AD=24, ∴CD 2+AD 2=AC 2,∴∠ADC=90°;(2)由(2)知,∠ADC=90°,∴四边形ABCD 的面积=11201572422ABC ACD S S ∆∆+=⨯⨯+⨯⨯ 2234()cm =.答:四边形ABCD 的面积为2234cm .【点睛】本题主要考查了勾股定理的逆定理,综合运用勾股定理及其逆定理是解决问题的关键. 22.(1)126;(2)见解析【分析】(1)利用勾股定理容易求出AD 长;进而求出BD ,从而得到BC 长,再由三角形面积公式即可求解;(2)利用勾股定理易得2222AB AC BD DE -=-,再利用平方差公式分解因式可得()()22AB AC BD DE BD DE -=-+,根据折叠性质和线段和差关系即可得出结论.【详解】(1)解:AD 是BC 边上的高,90ADB ADC ∴∠=∠=在Rt ADC 中,13,5,AC CD ==12AD ∴==在Rt ADB 中,20,12,AB AD ==16BD ∴===16521,BC BD CD ∴=+=+=11211212622ABC S BC AD ∴=⨯⨯=⨯⨯=(平方单位). (2)证明:ADC 沿AD 所在的直线翻折得到,ADE,,AC AE DC DE ∴==在Rt ADC 中,由勾股定理,得222,AC AD DC =+在Rt ADB 中,由勾股定理,得222BD AB AD =-, ()22222AB AC AB AD DC ∴-=-+222AB AD DC =-- 22BD DE =-()(),BD DE BD DE =-+,,BE BD DE BC BD DC BD DE =-=+=+22AB AC BE BC ∴-=⋅.【点睛】本题主要考查了勾股定理;熟练掌握翻折变换的性质,利用由勾股定理求解是解决问题的关键.23.(1)9;(2)△ABC 是直角三角形,理由见详解.【分析】(1)根据勾股定理即可求解;(2)根据勾股定理的逆定理即可得到结论.【详解】(1)∵CD ⊥AB ,∴∠ADC =∠BDC =90°,在Rt △ADC 中,∵∠ADC =90°,AC =15,CD =12,∴AD 2=AC 2−CD 2=152−122=81,∵AD >0,∴AD =9;(2)△ABC 是直角三角形,理由如下:∵AB=25,AD=9,∴BD=AB−AD=25−9=16,在Rt△CDB中,∵∠BDC=90°,∴BC2=CD2+BD2=122+162=400,∵BC>0,∴BC=20,∵AC2+BC2=152+202=252=AB2,∴∠ACB=90°,∴△ABC为直角三角形.【点睛】本题考查的是勾股定理、勾股定理的逆定理;熟练掌握勾股定理和勾股定理的逆定理是解决问题的关键.24.(90303)m+【分析】由题意得出∠DAC=45°,∠DBC=60°,∠DCA=90°,设BC=x,表示出BD,CD和AC的长,利用AB=60得到方程,求出x,最后根据DC=3x得到结果.【详解】解:由题知,∠DAC=45°,∠DBC=60°,∠DCA=90°,∴∠BDC=30°,△ACD是等腰直角三角形,设BC=x,∴BD=2x,∴CD=22BD BC-=3x=AC,∴AB=AC-BC=3x-x=(3-1)x=60,解得:x=31-=() 3031+,∴DC=3x=90303+,答:塔高约为(90303)m+.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形,利用勾股定理的知识求解,难度一般.25.(1)见解析;(2)见解析,A(0,0),B(﹣5,0),C(﹣4,2);(3)见解析【分析】(1)每个小正方形的边长为1,对角线就是无理数,根据要求画出图形(答案不唯一).(2)构建平面直角坐标系,写出坐标即可;(3)分别作出 A ,B ,C 的对应点 A ',B ',C'即可.【详解】解:(1)如图,△ABC即为所求(答案不唯一).(2)平面直角坐标系如图所示,A(0,0),B(﹣5,0),C(﹣4,2).(3)如图,△A′B′C′即为所求.【点睛】本题考查作图-轴对称变换,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.26.(1)证明见解析;(2)3【分析】(1)根据三线合一得BAD=∠CAD,由AE=DE,得∠CAD=∠EDA,从而∠BAD=∠EDA,所以DE∥AB;(2)由AB=AC,∠B=60°,DE∥AB,得∠C=60°,∠EDC=∠B=60°,从而△DEC为等边三角形, DE=DC=EC=AE=2,最后在Rt△ADC中,由勾股定理求AD.【详解】解:(1)∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AE=DE,∴∠CAD=∠EDA,∴∠BAD=∠EDA,∴DE∥AB(2)∵AB=AC,∠B=60°,∴∠C=60°∵DE∥AB,∴∠EDC=∠B=60°,∴△DEC为等边三角形,∴DE=DC=EC=AE=2在Rt△ADC中,AD【点睛】本题考查了等腰三角形三线合一、等边对等角、平行线的判定和性质、等边三角形的判定和性质、勾股定理等内容,灵活运用是解题的关键.。
上海民办沪东外国语学校八年级数学下册第二单元《勾股定理》检测(有答案解析)
一、选择题1.下列条件中不能确定ABC 为直角三角形的是( ).A .ABC 中,三边长的平方之比为1:2:3B .ABC 中,222AB BC AC +=C .ABC 中,::3:4:5A B C ∠∠∠=D .ABC 中,1,2,3AB BC AC ===2.ABC 中,A ∠,B ,C ∠的对边分别记为a ,b ,c ,由下列条件不能判定ABC 为直角三角形的是( )A .ABC =+∠∠∠B .::1:1:2A BC ∠∠∠= C .222b a c =+D .::1:1:2a b c =3.如图,在长方形ACD 中,3AB cm =,9AD cm =,将此长方形折叠,便点D 与点B重合,折痕为EF ,则ABE △的面积为( )2cm .A .12B .10C .6D .154.如图,△ABC 和△ECD 都是等腰直角三角形,△ABC 的顶点A 在△ECD 的斜边DE上.下列结论:其中正确的有( )①△ACE ≌△BCD ;②∠DAB =∠ACE ;③AE +AC =AD ;④AE 2+AD 2=2AC 2A .1个B .2个C .3个D .4个5.《九章算术》是我国古代最重要的数学著作之一,它的出现标志着中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》﹔“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长.则AC 的长为( )A.4.2尺B.4.3尺C.4.4尺D.4.5尺6.如图,分别以直角三角形ABC的三边为斜边向外作直角三角形,且AD CD=,CE BE=,AF BF=,这三个直角三角形的面积分别为1S,2S,3S,且19S=,216S=,则S3S=()A.25 B.32 C.7 D.187.已知实数a,b为ABC的两边,且满足2a1b4b40-+-+=,第三边c5=,则第三边c上的高的值是()A .554B.455C.55D.2558.如图,在△ABC中,∠C=90°,点D在边BC上,AD=BD,DE平分∠ADB交AB于点E.若AC=12,BC=16,则AE的长为()A.6 B.8 C.10 D.129.如图,设每个小方格的边长都为113()A .1条B .2条C .3条D .4条 10.在△ABC 中,BC=a ,AB=c ,AC=b ,则不能作为判定△ABC 是直角三角形的条件是( ).A .∠A=∠B-∠CB .∠A :∠B :∠C=2:5:3C .a :b :c =7:24:25 D .a :b :c =4:5:6 11.如图,在平面直角坐标系中,点P 为x 轴上一点,且到A (0,2)和点B (5,5)的距离相等,则线段OP 的长度为( )A .3B .4C .4.6D .2512.1876年,美国总统伽菲尔德利用如图所示的方法验证了勾股定理,其中两个全等的直角三角形的边AE ,EB 在一条直线上,证明中用到的面积相等关系是( )A .EDA CEB S S =△△B .EDA CDE CEB ABCD S S S S ++=△△△四边形C .EDA CEB CDE S S S +=△△△D .AECD DEBC S S =四边形四边形二、填空题13.如图,已知圆柱体底面圆的半径为a π,高为2,AB CD 、分别是两底面的直径,,AD BC 是母线.若一只蚂蚁从A 点出发,从侧面爬行到C 点,则蚂蚁爬行的最短路线的长度是_____.(结果保留根式)14.如图所示,在ABC 中,90C DE ∠=︒,垂直平分AB ,交BC 于点E ,垂足为点D ,8,15BE B =∠=︒,则EC 的长为________________________.15.在平面直角坐标系中,点A(0,-3),B(4a +4,-3a),则线段AB 的最小值为___________.16.公园3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图” .如图,设49a =,小正方形ABCD 的面积是9,则弦c 长为_______.17.如图,△ABC 是等边三角形,边长为2,AD 是BC 边上的高.E 是AC 边中点,点P 是AD 上的一个动点,则PC +PE 的最小值是_______ ,此时∠CPE 的度数是_______.18.如图,在Rt ABC △中,90C ∠=︒,10cm AB =,8cm BC =,BD 平分ABC ∠,DE AB ⊥,垂足为E ,则DE =__________cm .19.如图,在ABC 中,5AB AC ==,8BC =,D 是线段BC 上的动点(不含端点B 、C ),若线段AD 的长是正整数,则点D 的个数共有______个.20.在直角三角形中,其中两边分别为3,4,则第三边是______.三、解答题21.Rt △ABC 中,∠ACB =90°,AC =3,AB =5.(1)如图1,点E 在边BC 上,且∠AEC =2∠B .①在图1中用尺规作图作出点E ,并连结AE (保留作图痕迹,不写作法与证明过程);②求CE 的长.(2)如图2,点D 为斜边上的动点,连接CD ,当△ACD 是以AC 为底的等腰三角形时,求AD 的长.22.如图,方格纸中的每个小正方形的边长均为1,小正方形的顶点称为格点.已知A 、B 、C 都是格点.(1)小明发现ABC ∠是直角,请补全他的思路;小明的思路 先利用勾股定理求出ABC 的三条边长,可得10AB ,BC =_______,AC =_______.从而可得AB 、BC 、AC 之间的数量关系是_____________________,根据____________________________,可得ABC ∠是直角.(2)请用一种不同于小明的方法说明ABC ∠是直角.23.定义:如果经过三角形一个顶点的线段把这个三角形分成两个小三角形,其中一个三角形是等腰三角形,另外一个三角形和三角形的三个内角分别相等,那么这条线段称为原三角形的“和谐分割线”,例如:如图1,等腰直角三角形斜边上的中线就是一条“和谐分割线”(1)判断下列两个命题是真命题还是假命器(填“真”或“假”)①等边三角形必存在“和谐分割线”②如果三角形中有一个角是另一个角的两倍,则这个三角形必存在“和谐分割线”.命题①是_______命题,命题②是______命题;(2)如图2, Rt ABC .90︒∠=C ,30B ,3AC =,试探索Rt ABC 是否存在“和谐分割线”?若存在,求出“和谐分割线”的长度:若不存在,请说明理由.24.如图,ABC 中,90︒∠=C ,边AB 的垂直平分线交AB 、AC 分别于点D ,点E ,连结BE .(1)若40A ︒∠=,求CBE ∠的度数;(2)若10AB =,6BC =,求BCE 的周长.25.在△ABC 中,AB =AC ,D ,E 分别是边BC 上的两点,AD =AE ,点E 关于直线AC 的对称点是点M ,连接AM ,DM ;(1)如图1,当∠BAC =60°时;①依题意补全图形;②若∠BAD =α,则∠AEB = ;(用含α的式子表示);③求证:DA =DM ;(2)如图2,当∠BAC =90°时,依题意补全图形,用等式表示线段DC ,EC ,AM 之间的数量关系,并证明.26.已知长方形纸片ABCD ,将长方形纸片按如图所示的方式折叠,使点D 与点B 重合,折痕为EF .(1)△BEF 是等腰三角形吗?若是,请说明理由;(2)若AB =4,AD =8,求BE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形内角和定理和勾股定理进行判断即可.【详解】解:A 选项:ABC 中,三边长的平方之比为1:2:3,ABC ∴是直角三角形. B 选项:∵在ABC 中,222AB BC AC +=,ABC ∴是直角三角形.C 选项:ABC 中,::3:4:5A B C ∠∠∠=,∴设3,4,5A x B x C x ∠=∠=∠=,又180A B C ︒∠+∠+∠=,12180x ︒∴=,345x ︒=,460x ︒=,575x ︒=,ABC ∴不是直角三角形.D 选项:在ABC 中,1,AB BC AC ===222AB BC AC ∴+=,ABC ∴是直角三角形.故选C .【点睛】本题考查了三角形内角和定理以及勾股定理,熟练掌握三角形内角和定理和勾股定理是本题的关键.2.D解析:D【分析】根据三角形内角和定理可判断A 和B ,根据勾股定理可判断C 和D .【详解】A.A B C ∠=∠+∠,180A B C ∠+∠+∠=︒,2180A ∴∠=︒,∴90A ∠=︒,ABC ∴为直角三角形,不符合题意,故A 错误;B.::1:1:2A B C ∠∠∠=,A B ∴∠=∠,2C A ∠=∠,又∵180A B C ∠+∠+∠=︒,2180A A A ∴∠+∠+∠=︒,45A ∠=︒,290C A ∴∠=∠=︒,ABC ∴为直角三角形,不符合题意,故B 错误;C.222b a c =+,ABC ∴是直角三角形,不符合题意,故C 错误;D.::1:1:2a b c =,b a ∴=,2c a =,222a b c ∴+≠,ABC ∴不是直角三角形,符合题意,故D 正确.故选D .【点睛】本题考查了三角形内角和定理,以及勾股定理的逆定理,熟练掌握各知识点是解答本题的关键.如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中.3.C解析:C【分析】设AE=x ,由折叠BE=ED=9-x ,再在Rt △ABE 中使用勾股定理即可求出x ,进而求出△ABE 的面积.【详解】解:设AE=x ,由折叠可知:BE=ED=9-x ,在Rt △ABE 中,由勾股定理有:AB²+AE²=BE²,代入数据:3²+x²=(9-x)²,解得x=4,故AE=4,此时11=43622∆⨯=⨯⨯=ABE S AE AB , 故选:C .【点睛】本题考查了折叠问题中的勾股定理,利用折叠后对应边相等,设要求的边为x ,在一个直角三角形中,其余边用x 的代数式表示,利用勾股定理建立方程求解x . 4.C解析:C【分析】由等腰直角三角形的性质和三角形的外角性质得出②正确;由SAS 证出△ACE ≌△BCD ,①正确;证出△ADB 是直角三角形,由勾股定理得出④正确;由全等三角形的性质和等边三角形性质得出③不正确;即可得出答案.【详解】解:∵△ABC 和△ECD 都是等腰直角三角形,∴CA =CB ,CE =CD ,∠ACB =∠ECD =90°,∠E =∠CDE =45°,∠CAB =∠CBA =45°, ∵∠DAB +∠CAB =∠ACE +∠E ,∴∠DAB =∠ACE ,故②正确;∴∠ACE +∠ACD =∠ACD +∠DCB =90°,∴∠ACE =∠DCB ,在△ACE 和△BCD 中,CA CB ECA DCB CE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),故①正确;∴AE =BD ,∠CEA =∠CDB =45°,∴∠ADB =∠CDB +∠EDC =90°,∴△ADB 是直角三角形,∴AD 2+BD 2=AB 2,∴AD 2+AE 2=AB 2,∵△ABC 是等腰直角三角形,∴AB =2AC ,∴AE 2+AD 2=2AC 2,故④正确;在AD 上截取DF =AE ,连接CF ,如图所示:在△ACE 和△FCD 中, 45AE FD E CDF CE CD ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ACE ≌△FCD (SAS),∴AC =FC ,当∠CAF =60°时,△ACF 是等边三角形,则AC =AF ,此时AE +AC =DF +AF =AD ,故③不正确;故选:C .【点睛】本题是考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,直角三角形的判定与性质等知识;熟练掌握全等三角形的判定与性质和等腰直角三角形的性质是解题的关键. 5.A解析:A【分析】设AC=x 尺,则AB=(10-x )尺,利用勾股定理解答.【详解】设AC=x 尺,则AB=(10-x )尺,ABC 中,90ACB ∠=︒,222AC BC AB +=,∴2224(10)x x +=-,解得:x=4.2,故选:A .【点睛】此题考查勾股定理,根据题意正确设未知数,利用勾股定理解答是解题的关键. 6.A解析:A【分析】根据△ADC 为直角三角形且AD=CD ,可得到22211111=2224S AD AC AC =⨯=,同理可得到221=4S BC 及231=4S AB ,在△ACB 中,由勾股定理得出:222AB AC BC =+,继而可得312S S S =+,代入计算即可.【详解】解:∵△ADC 为直角三角形,且AD=CD ,∴在△ADC 中,有222AC AD CD =+,∴222AC AD =,即AC =, ∴22211111=2224S AD AC AC =⨯=, 同理可得:221=4S BC ,231=4S AB , ∵∠ACB=90︒, ∴222AB AC BC =+,即312111444S S S =+, ∴312S S S =+,∵19S =,216S =,∴3129+16=25S S S =+=,故答案为:A .【点睛】本题考查勾股定理,由勾股定理得出三角形的面积关系是解题的关键.7.D解析:D【分析】本题主要考查了算术平方根的非负性及偶次方的非负性,勾股定理的逆定理及三角形面积的运算,首先根据非负性的性质得出a 、b 的值是解题的关键,再根据勾股定理的逆定理判定三角形为直角三角形,再根据三角形的面积得出c 边上高即可.【详解】()2b 20-=,所以a 10b 20-=-=,,解得a 1b 2==,;因为2222a b 125+=+=,22c 5==,所以222a b c +=,所以ABC 是直角三角形,C 90∠=︒,设第三边c 上的高的值是h ,则ABC 的面积115h 1222=⨯=⨯⨯, 所以25h =. 故选:D .【点睛】本题考查了非负数的性质、勾股定理的逆定理,解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.8.C解析:C【分析】首先根据勾股定理求得斜边AB 的长度,然后结合等腰三角形的性质来求AE 的长度.【详解】解:如图,在△ABC 中,∠C=90°,AC=12,BC=16,由勾股定理知:2222121620AB AC BC =+=+=,∵AD=BD ,DE 平分∠ADB 交AB 于点E .∴1102AE BE AB ===, 故选:C .【点睛】本题主要考查了勾股定理和等腰三角形三线合一.在直角三角形中,两条直角边长的平方之和一定等于斜边长的平方. 9.D解析:D【分析】13是直角边长为2,3的直角三角形的斜边,据此画两条以格点为端点且长度为13的线段.【详解】解:∵2232+=13, ∴13是直角边长为2,3的直角三角形的斜边,如图所示,AB ,CD ,BE ,DF 的长都等于13;故选:D .【点睛】本题考查的知识点是勾股定理,找到无理数是直角边长为哪两个有理数的直角三角形的斜边长是解决本题的关键.10.D解析:D【分析】根据三角形的内角和定理,勾股定理的逆定理依次判断.【详解】A 、∵∠A=∠B-∠C ,∴∠A+∠C =∠B ,得到∠B=90︒,即△ABC 是直角三角形; B 、设∠A=2x ,∠B=5x ,∠C=3x ,故235180x x x ++=︒,解得x=18︒,∴∠B=5x=90︒,即△ABC 是直角三角形;C 、设a=7x ,则b=24x ,c=25x ,∵222(7)(24)(25)x x x +=,∴222+=a b c ,∴△ABC 是直角三角形;D 、设a=4x ,b=5x ,c=6x ,∵222(4)(5)(6)x x x +≠,∴222a b c +≠,∴△ABC 不是直角三角形;故选:D .【点睛】此题考查三角形的内角和定理,勾股定理的逆定理,掌握直角三角形根据边或角判定的方法是解题的关键.11.C解析:C【分析】设点P (x ,0),根据两点间的距离公式列方程,即可得到结论.【详解】解:设点P (x ,0),根据题意得,x 2+22=(5﹣x )2+52,解得:x =4.6,∴OP =4.6,故选:C .【点睛】本题考查了利用勾股定理求两点间的距离,熟练掌握两点间的距离公式是解题的关键. 12.B解析:B【分析】直接根据梯形ABCD 的面积的两种算法进行解答即可.解:由图形可得:EDA CDE CEB ABCD S S S S ++=△△△四边形故答案为B .【点睛】本题主要考查了勾股定理的证明方法,将图形的面积用两种方式表示出来成为解答本题的关键.二、填空题13.【分析】要求一只蚂蚁从A 点出发从侧面爬行到C 点蚂蚁爬行的最短路线利用在圆柱侧面展开图中线段AC 的长度即为所求【详解】解:圆柱的展开图如下在圆柱侧面展开图中线段AC 的长度即为所求在Rt △ABC 中AB= 解析:2+4a【分析】要求一只蚂蚁从A 点出发,从侧面爬行到C 点,蚂蚁爬行的最短路线,利用在圆柱侧面展开图中,线段AC 的长度即为所求.【详解】解:圆柱的展开图如下,在圆柱侧面展开图中,线段AC 的长度即为所求,在Rt △ABC 中,AB=π•a π=a ,BC=2,则:2222=+=4AC AB BC a +,所以2+4a 2+4a2+4a .【点睛】本题以圆柱为载体,考查旋转表面上的最短距离,解题的关键是利用圆柱侧面展开图. 14.【分析】根据三角形内角和定理求出∠BAC 根据线段垂直平分线性质求出求出然后求出∠EAC 根据含30°角的直角三角形的性质求解即可【详解】解:∵在△ABC 中∴∵垂直平分∴∴∴∵∴∴∴在Rt △ECA 中故答解析:3【分析】根据三角形内角和定理求出∠BAC ,根据线段垂直平分线性质求出8BE AE ==,求出15EAB B ∠=∠=︒,然后求出∠EAC ,根据含30°角的直角三角形的性质求解即可.解:∵在△ABC 中,90ACB ∠=︒,15B ∠=︒,∴901575BAC ∠=︒-︒=︒,∵DE 垂直平分AB ,8BE =,∴8BE AE ==,∴15EAB B ∠=∠=︒,∴751560EAC ∠=︒-︒=︒,∵90C ∠=︒,∴30AEC ∠=︒, ∴184221AC AE =⋅=⨯=, ∴在Rt △ECA 中,EC ==故答案为:【点睛】本题考查了三角形的边长问题,掌握三角形内角和定理、线段垂直平分线的性质、含30°角的直角三角形的性质是解题的关键.15.【分析】根据勾股定理可得整理配方即可求解【详解】解:根据勾股定理可得:∵∴线段AB 的最小值为故答案为:【点睛】本题考查勾股定理的应用完全平方公式的应用根据勾股定理表示出是解题的关键 解析:245【分析】 根据勾股定理可得()()2224433AB a a =++-,整理配方即可求解.【详解】解:根据勾股定理可得:()()22222757644332514255525AB a a a a a ⎛⎫=++-=++=++ ⎪⎝⎭, ∵27576576552525a ⎛⎫++≥ ⎪⎝⎭, ∴线段AB 的最小值为245, 故答案为:245. 【点睛】 本题考查勾股定理的应用、完全平方公式的应用,根据勾股定理表示出2AB 是解题的关键.16.【分析】应用勾股定理和正方形的面积公式可求解【详解】解:∵小正方形的面积是9∴AD=CD=3∴a=b-3∵4∴∴∵∴∴故答案为:【点睛】本题运用了勾股定理和正方形的面积公式关键是运用了数形结合的数学解析:4【分析】应用勾股定理和正方形的面积公式可求解.【详解】解:∵小正方形ABCD的面积是9,∴AD=CD=3,∴a=b-3,∵49a=,∴94a=,∴214b=,∵222+=a b c,∴222 921+=44c⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,∴4c=,故答案为:4.【点睛】本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想.17.60°【分析】作点E关于AD的对称点F然后连接CF交AD于点H连接HE 由轴对称的性质及两点之间线段最短可得CF即为PC+PE的最小值进而由等边三角形的性质可求解【详解】解:作点E关于AD的对称点F然【分析】作点E关于AD的对称点F,然后连接CF,交AD于点H,连接HE,由轴对称的性质及两点之间线段最短可得CF即为PC+PE的最小值,进而由等边三角形的性质可求解.【详解】解:作点E关于AD的对称点F,然后连接CF,交AD于点H,连接HE,如图所示:∵△ABC 是等边三角形,∴AB=AC=BC ,∠B=∠ACB=∠BAC=60°,∵AD ⊥BC ,∴AD 平分∠BAC ,BD=DC ,∵点E 是AC 的中点,AD 垂直平分EF ,∴点F 是AB 的中点,∴CF ⊥AB ,CF 平分∠ACB ,∴∠BCF=30°,∴当点P 与点H 重合时,根据轴对称的性质及两点之间线段最短可得此时PC+PE 为最小值,即为CF 的长,∵BC=2,∴BF=1,在Rt △CBF 中,223C BC F BF =- ∴PC+PE 3∴∠DHC=∠FHP=60°,∵AD 垂直平分EF ,∴FH=HE ,∴∠FHP=∠PHE=60°,∴∠CHE=60°,即为∠CPE=60°; 3;60°.【点睛】本题主要考查勾股定理、等边三角形的性质及轴对称的性质,熟练掌握勾股定理、等边三角形的性质及轴对称的性质是解题的关键. 18.【分析】先利用勾股定理可得再根据角平分线的性质可得然后根据直角三角形全等的判定定理与性质可得从而可得设从而可得最后在中利用勾股定理即可得【详解】在中平分在和中设则在中即解得即故答案为:【点睛】本题考 解析:83【分析】先利用勾股定理可得6AC cm =,再根据角平分线的性质可得DE DC =,然后根据直角三角形全等的判定定理与性质可得8BE BC cm ==,从而可得2AE cm =,设DE DC xcm ==,从而可得(6)AD x cm =-,最后在Rt ADE △中,利用勾股定理即可得.【详解】在Rt ABC 中,90C ∠=︒,10AB cm =,8BC cm =, 226AC AB BC cm ∴=-=,BD 平分ABC ∠,,DE AB AC BC ⊥⊥,DE DC ∴=,在Rt BDE 和Rt BDC 中,DE DC BD BD=⎧⎨=⎩, ()Rt BDE Rt BDC HL ∴≅,8BE BC cm ∴==,2AE AB BE cm ∴=-=,设DE DC xcm ==,则(6)AD AC DC x cm =-=-,在Rt ADE △中,222AE DE AD +=,即2222(6)x x +=-,解得83x =, 即83DE cm =, 故答案为:83. 【点睛】 本题考查了角平分线的性质、直角三角形全等的判定定理与性质、勾股定理等知识点,熟练掌握角平分线的性质是解题关键.19.3【分析】首先过A 作AE ⊥BC 当D 与E 重合时AD 最短首先利用等腰三角形的性质可得BE=EC 进而可得BE 的长利用勾股定理计算出AE 长然后可得AD 的取值范围进而可得答案【详解】解:过A 作AE ⊥BC ∵AB解析:3【分析】首先过A 作AE ⊥BC ,当D 与E 重合时,AD 最短,首先利用等腰三角形的性质可得BE=EC ,进而可得BE 的长,利用勾股定理计算出AE 长,然后可得AD 的取值范围,进而可得答案.【详解】解:过A 作AE ⊥BC ,∵AB=AC ,∴EC=BE=12BC=4,∴,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴AD的可以有三条,长为4,3,4,∴点D的个数共有3个,故答案为:3.【点睛】此题主要考查了等腰三角形的性质和勾股定理,关键是正确利用勾股定理计算出AD的最小值,然后求出AD的取值范围.20.5或【分析】从当此直角三角形的两直角边分别是3和4时当此直角三角形的一个直角边为3斜边为4时这两种情况分析再利用勾股定理即可求出第三边【详解】解:当此直角三角形的两直角边分别是3和4时则第三边为=5解析:5【分析】从当此直角三角形的两直角边分别是3和4时,当此直角三角形的一个直角边为3,斜边为4时这两种情况分析,再利用勾股定理即可求出第三边.【详解】解:当此直角三角形的两直角边分别是3和4时,,当此直角三角形的一个直角边为3,斜边为4时,故答案为:5.【点睛】此题考查了勾股定理的知识,注意掌握勾股定理的表达式,分类讨论是关键,难点在于容易漏解.三、解答题21.(1)①见解析;②78CE=;(2)2.5【分析】(1)①作出AB的垂直平分线交BC于点E,则可得结论;②由勾股定理求得BC=4,设CE=x,则BE=AE=4-x,依据勾股定理列出方程求解即可;(2)求得BD=CD=AD=2.5即可.【详解】解:(1)①如图,作∠BAE =∠B ,②可求得BC =4∵∠AEC=∠B +∠BAE ,又∵∠AEC =2∠B ,∴∠BAE =∠B ,∴BE =AE ,.设CE =x ,则BE =AE =4-x ,在Rt △AEC 中,222CE AC AE +=,∴2223(4)x x +=-, ∴78x =, ∴78CE =(2)AC 为底时,如图2所示,此时AD =CD ,∴∠A =∠DCA∵∠A +∠B =90°,∠DCA +∠BCD =90°,∴∠B =∠BCD ,∴BD =CD ,即AD =BD =2.5.【点睛】本题考查了线段垂直平分线的性质、勾股定理以及等腰三角形的性质等知识,熟练掌握相关知识是解答此题的关键.22.(110,5222AB BC AC +=,勾股定理逆定理;(2)见解析.【分析】(1)利用勾股定理和勾股定理逆定理即可填空.(2)作如图所示的图,根据图易证()ADB BEC SAS ≅,推出ABD BCE ∠=∠.继而推出90ABD EBC ∠+∠=︒,即可得出结论90ABC ∠=︒.【详解】(1)先利用勾股定理求出ABC 的三条边长,可得10AB ,10BC =,25AC =.从而可得AB 、BC 、AC 之间的数量关系是222AB BC AC +=,根据勾股定理逆定理,可得ABC ∠是直角.(2)作图如图,由图可得:AD BE =,BD CE =,90ADB BEC ∠=∠=°.在ADB △和BEC △中,AD BE ADB BEC BD CE =⎧⎪∠=∠⎨⎪=⎩,()ADB BEC SAS ∴≅,ABD BCE ∴∠=∠.在BEC △中,18090BCE EBC BEC ∠+∠=︒-∠=︒,90ABD EBC ∠∴+=∠︒.∵D 、B 、E 三点共线,180ABD EBC ABC ∴∠+∠+∠=︒,180()90ABC ABD EBC ∴∠=︒-∠+∠=︒.【点睛】本题考查直角三角形的判定.熟练利用勾股定理和勾股定理逆定理,三角形全等的判定和性质等知识是解答本题的关键.23.(1)假,真;(2)2【分析】(1)根据“和谐分割线”的定义即可判断;(2)如图作∠CAB 的平分线,只要证明线段AD 是“和谐分割线”即可,并求AD 的长;【详解】解:(1)①从等边三角形一个顶点出发,所分成的两个三角形必定不是等边三角形,不与原三角形的三个内角分别相等,故等边三角形不存在“和谐分割线”,是假命题; ②如图,△ABC 中,∠ACB=2∠ABC ,CD 平分∠ACB ,则∠B=∠BCD=∠ACD ,即△BCD 是等腰三角形,在△ACD 和△ABC 中,∠A=∠A ,∠ACD=∠B ,∠ADC=∠ACB=2∠B ,故△ABC 必存在“和谐分割线”,正确,是真命题,故答案为:假,真;(2)Rt△ABC存在“和谐分割线”,理由是:如图作∠CAB的平分线,∵∠C=90°,∠B=30°,∴∠DAB=∠B=30°,∴DA=DB,∴∠DAB=∠B=∠CAD=30°,又∠C=∠C,∠ADC=∠CAB=60°,∴△ADB是等腰三角形,且△ACD和△ABC三个内角相等,∴线段AD是△ABC的“和谐分割线”,∴3=2.【点睛】本题考查三角形综合题、等腰三角形的判定和性质、三角形内角和、“和谐分割线”的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.24.(1)10°;(2)14【分析】(1)由AB的垂直平分线DE交AC于点E,可得AE=BE,继而求得∠ABE的度数,然后由Rt△ABC中,∠C=90°,求得∠ABC的度数,继而求得答案;(2)根据勾股定理得到AC=8,根据线段的垂直平分线的性质得到AE=BE,即可得到结论.【详解】解:(1)∵DE是AB的垂直平分线,∴AE=BE,∴∠A=∠ABE=40°,∵Rt△ABC中,∠C=90°,∠A=40°,∴∠ABC=50°,∴∠CBE=∠ABC-∠ABE=10°;(2)∵∠C=90°,AB=10,BC=6,∴AC=8,∵DE 是AB 的垂直平分线,∴AE=BE ,∴BE+CE=AC=8,∴△BCE 的周长=BE+CE+BC=AC+BC=14.【点睛】本题主要考查了线段垂直平分线的性质及其应用问题;勾股定理,应牢固掌握等腰三角形、线段垂直平分线等几何知识点的内容,并能灵活运用.25.(1)①见解析;② 60°+α;③见解析;(2)2222DC EC AM +=;见解析【分析】(1)①根据题意可直接进行作图;②由题意易得△ABC 是等边三角形,则有∠B=∠C=60°,由AD=AE ,则有∠ADE=∠AED ,然后问题可求解;③由②易得∠DAM=60°,由轴对称的性质可得AD=AE=AM ,进而可得△ADM 是等边三角形,然后问题可求证;(2)由题意易证△DMC 是直角三角形,则有222DC CM DM +=,进而可证△ADM 是等腰直角三角形,则有2DM AM =,从而等量代换即可求解.【详解】(1)解:①由题意可得如图所示:②解:∵∠BAC=60°,AB=AC ,∴△ABC 是等边三角形,∴∠B=∠C=60°,∵AD=AE ,∠BAD =α,∴∠ADE=∠AEB=60°+α故答案为60°+α;③证明:由②可得∠BAD=∠EAC ,∵∠BAC=60°,∴∠BAD+∠DAC=60°,∵点E 关于直线AC 的对称点是点M ,∴AC 垂直平分EM ,∴AE=AM ,∠EAC=∠MAC ,∴∠MAC=∠BAD ,DA =MA ,∴∠MAC+∠DAC=60°,∠DAM =60°,∴△ADM 是等边三角形,∴DA =DM ;(2)由题意可得如图所示:线段DC ,EC ,AM 之间的数量关系:2222DC EC AM +=证明:∵点E 关于直线AC 的对称点是点M ,∴AC 垂直平分EM ,∴AE=AM ,∠EAC=∠MAC ,∴∠MAC=∠BAD ,DA =MA ,∵∠BAC=90°,∴∠DAM=90°,∴△DAM 是等腰直角三角形, ∴2DM =,∵AC 垂直平分EM ,∴EC=CM ,∵∠ACB=45°,∴∠ACB=∠ACM=45°,∴∠MCD=90°,∴在Rt △DMC 中,222DC CM DM +=,∴2222DC EC AM +=.【点睛】本题主要考查勾股定理、等腰直角三角形的性质与判定及等边三角形的性质与判定、轴对称的性质,熟练掌握勾股定理、等腰直角三角形的性质与判定及等边三角形的性质与判定、轴对称的性质是解题的关键.26.(1)BEF 是等腰三角形,理由见解析;(2)5.【分析】(1)先根据长方形的性质可得//AD BC ,再根据平行线的性质可得DEF BFE ∠=∠,然后根据折叠的性质可得DEF BEF ∠=∠,从而可得BFE BEF ∠=∠,最后根据等腰三角形的判定即可得;(2)先根据长方形的性质可得90A ∠=︒,再根据折叠的性质可得BE DE =,然后设BE DE x ==,从而可得8AE x =-,最后在Rt ABE △中,利用勾股定理即可得.【详解】(1)BEF 是等腰三角形,理由如下:四边形ABCD 是长方形,//AD BC ∴,DEF BFE ∴∠=∠,由折叠的性质得:DEF BEF ∠=∠,BFE BEF ∴∠=∠,BEF ∴是等腰三角形;(2)四边形ABCD 是长方形,90A ∴∠=︒,由折叠的性质得:BE DE =,设BE DE x ==,则8AE AD DE x =-=-,在Rt ABE △中,222AB AE BE +=,即2224(8)x x +-=,解得5x =,即BE 的长为5.【点睛】本题考查了长方形与折叠问题、勾股定理、等腰三角形的判定等知识点,熟练掌握各判定定理与性质是解题关键.。
上海复兴实验中学八年级数学下册第二单元《勾股定理》检测(包含答案解析)
一、选择题1.如图,在ABC ∆中,5,60AC C =∠=︒,点D E 、分别在BC AC 、上,且2,CD CE ==将CDE ∆沿DE 所在的直线折叠得到FDE ∆(点F 在四边形ABDE 内),连接,AF 则2AF =( )A .7B .8C .9D .102.已知直角三角形纸片的两条直角边长分别为m 和3(m <3),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则( )A .m 2+6m +9=0B .m 2﹣6m +9=0C .m 2+6m ﹣9=0D .m 2﹣6m ﹣9=0 3.下列线段不能组成直角三角形的是( )A .6,8,10B .1,2,3C .43,1,53D .2,4,6 4.下列各组数中,以a ,b ,c 为边的三角形不是直角三角形的是( )A .a =7,b =25,c =24B .a =11,b =41,c =40C .a =12,b =13,c =5D .a =8,b =17,c =155.如图所示,有一块直角三角形纸片,90C ∠=︒,12AC cm =,9BC cm =,将斜边AB 翻折使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CD 的长为( )A .4cmB .5cmC 17cmD .94cm 6.如图,平面直角坐标系中,点A 在第一象限,点B 、C 的坐标分别为3,02⎛⎫ ⎪⎝⎭、1,02⎛⎫- ⎪⎝⎭.若ABC ∆是等边三角形,则点A 的坐标为( )A .1,32⎛⎫ ⎪⎝⎭B .1,22⎛⎫ ⎪⎝⎭C .13,2⎛⎫ ⎪⎝⎭D .()1,3 7.如图,在ABC 中,13,17,AB AC AD BC ==⊥,垂足为D ,M 为AD 上任一点,则22MC MB -等于( )A .93B .30C .120D .无法确定 8.如图,将一根长为20cm 的筷子置于底面直径为5cm ,高为12cm 的圆柱形水杯中,筷子露在杯子外面的长度为( )A .13cmB .8cmC .7cmD .15cm 9.为准备一次大型实景演出,某旅游区划定了边长为12m 的正方形演出区域,并在该区域画出4×4的网格以便演员定位(如图所示),其中O 为中心,A ,B ,C ,D 是某节目中演员的四个定位点.为增强演出效果,总策划决定在该节目演出过程中增开人工喷泉.喷头位于演出区域东侧,且在中轴线l 上与点O 相距14m 处.该喷泉喷出的水流落地半径最大为10m ,为避免演员被喷泉淋湿,需要调整的定位点的个数是( )A .1个B .2个C .3个D .4个10.如图,设每个小方格的边长都为1,则图中以小方格顶点为端点且长度为13的线段有( )A .1条B .2条C .3条D .4条11.1876年,美国总统伽菲尔德利用如图所示的方法验证了勾股定理,其中两个全等的直角三角形的边AE ,EB 在一条直线上,证明中用到的面积相等关系是( )A .EDA CEB S S =△△B .EDA CDE CEB ABCD S S S S ++=△△△四边形C .EDA CEB CDE S S S +=△△△D .AECD DEBC S S =四边形四边形12.如图,M N 、是线段AB 上的两点,4,2AM MN NB ===.以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连结AC BC 、,则ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形二、填空题13.如图,数轴上点C 表示的数的平方为______.14.平面直角坐标系中,点()()4,2,2,4A B -,点(),0Px 在x 轴上运动,则AP BP +的最小值是_________. 15.在ABC ∆中,AC =8,45C ∠=︒,AB =6,则BC =___________.16.如图,在△ABC 中,∠ACB =90°,AD 平分∠BAC ,AB =10,AD =5,AC =4,则△ABD 的面积为 ____________.17.如图,在长方形ABCD 中,4AB =,8BC =,点E 是BC 边上一点,且AE EC =,点P 是AD 边上一动点,连接PE 、PC .给出下列结论:①3BE =;②当5AP =时,//AE CP ;③当256AP =时,AE 平分BEP ∠; ④若PBE EPC ∠=∠,则BPC PEC ∠=∠.其中正确的是______.18.已知一个直角三角形的两边长分别是a ,b ,且a ,b 340a b --=.则斜边长是____________19.5,10,15,则这个三角形的面积是_________________.20.如图,∠AOD =90°,OA =OB =BC =CD ,若AC =3,则AD =_______.三、解答题21.三国时代东吴数学家赵爽(字君卿,约公元3世纪)在《勾股圆方图注》一书中用割补的方法构造了“弦图”(如图1,并给出了勾股定理的证明.已知,图2中涂色部分是直角边长为,a b ,斜边长为c 的4个直角三角形,请根据图2利用割补的方法验证勾股定理.22.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米. (1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?23.如图,在ABC 中,AB AC =,点D 是BC 的中点,连接AD ,CBE 45∠=︒,BE 分别交AC ,AD 于点E 、F ,若AB 13,BC 10==,求AF 的长度.24.如图,ABC 中,AC=2AB=6,BC=33.AC 的垂直平分线分别交AC ,BC 于点D ,E .(1)求BE 的长;(2)延长DE 交AB 的延长线于点F ,连接CF .若M 是DF 上一动点,N 是CF 上一动点,请直接写出CM+MN 的最小值为 .25.如图,在长度为1个单位长度的小正方形组成的正方形网格中,ABC 的三个顶点A 、B 、C 都在格点上.(1)在图中画出与ABC 关于直线l 成轴对称的111A B C △;(2)在直线l 上找出一点P ,使得1PA PC +的值最小,该最小值为________(保留两图痕迹并标上字母P )26.三角形ABC 在平面直角坐标系中的位置如图所示,点O 为坐标原点,()1,4A -,()4,1B --,()1,1C .将三角形ABC 向右平移3个单位长度,再向下平移2个单位长度得到三角形111A B C .(1)画出平移后的三角形;(2)直接写出点1A ,1B ,1C 的坐标:1A (______,______),1B (______,______),1C (______,______);(3)请直接写出三角形ABC 的面积为_________.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据折叠的性质和勾股定理可以得到解答.【详解】解:如图,过F 作FG ⊥AC 于G ,则在RT △EGF 中,∠GEF=180°-2∠CED=60°,∴∠GFE=90°-∠GEF=30°,∴GE=112EF =,FG=33GE =, ∴AG=AC-CE-GE=5-2-1=2, ∴在RT △AGF 中,()22222237AF AG FG =+=+=,故选A .【点睛】本题考查三角形的折叠,熟练掌握折叠和直角三角形的性质及勾股定理的应用是解题关键. 2.C解析:C【分析】如图,根据等腰三角形的性质和勾股定理可得m 2+m 2=(3﹣m )2,整理即可解答.【详解】解:如图,m 2+m 2=(3﹣m )2,2m 2=32﹣6m +m 2,m 2+6m ﹣9=0.故选:C .【点睛】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.3.D解析:D【分析】直接利用勾股定理的逆定理带入判断即可;【详解】A 、2226810+=,能组成直角三角形;B 、2221+= 能组成直角三角形; C 、22245()1()33+= ,能组成直角三角形;D 、22224+≠ ,不能组成直角三角形.故选:D .【点睛】本题考查了勾股定理逆定理的运算,正确掌握勾股定理的逆运算是解题的关键; 4.B解析:B【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【详解】解:A 、72+242=52,能构成直角三角形,不符合题意;B 、112+402≠412,不能构成直角三角形,符合题意;C 、52+122=132,能构成直角三角形,不符合题意;D 、82+152=172,能构成直角三角形,不符合题意.故选:B .【点睛】本题主要考查了勾股定理的逆定理,准确分析计算是解题的关键.5.A解析:A【分析】根据勾股定理可将斜边AB 的长求出,根据折叠的性质知,AE=AB ,已知AC 的长,可将CE 的长求出,再根据勾股定理列方程求解,即可得到CD 的长.【详解】解:在Rt △ABC 中,12AC cm =,9BC cm =, AB=22AC BC +=15cm ,根据折叠的性质可知:AE=AB=15cm ,∵AC=12cm ,∴CE=AE-AC=3cm , 设CD=xcm ,则BD=9-x=DE ,在Rt △CDE 中,根据勾股定理得CD 2+CE 2=DE 2,即x 2+32=(9-x )2,解得x=4,即CD 长为4cm .故选:A .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠前后的对应相等关系.解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.6.A解析:A【分析】先过点A 作AD ⊥OB ,根据△ABC 是等边三角形,求出AC=BC ,CD=BD ,∠ACB=60°,再根据点B 、C 的坐标,求出CB 的长,再根据勾股定理求出AD 的值,从而得出点A 的坐标.【详解】过点A 作AD ⊥OB ,∵△ABC 是等边三角形,∴AC=BC ,CD=BD ,∠ACB=60°,∵点B 的坐标为3,02⎛⎫⎪⎝⎭,点C 的坐标为1,02⎛⎫- ⎪⎝⎭ ∴BC=2,OC=12∴CA=2,∴CD=1,∴∵OD=CD-CO∴OD=1-12=12∴点A 的坐标是12⎛⎝. 故选A .【点睛】 此题考查了等边三角形的性质,用到的知识点是勾股定理,关键是作出辅助线,求出点A 的坐标.7.C解析:C【分析】由,AD BC ⊥结合勾股定理可得:2222,AC AB DC BD -=-2222MC MB DC BD -=-,再把已知线段的长度代入计算即可得到答案.【详解】解:,AD BC ⊥222222,,AB AD BD AC AD DC ∴=+=+22222222,AC AB AD DC AD BD DC BD ∴-=+--=-1713AC AB ==,,22221713304120DC BD ∴-=-=⨯=,,AD BC ⊥222222,,MC MD DC BM BD DM ∴=+=+22222222120.MC MB MD DC DM BD DC BD ∴-=+--=-=故选:.C【点睛】本题考查的是勾股定理的应用,掌握利用勾股定理解决问题是解题的关键. 8.C解析:C【分析】根据勾股定理求出杯子内的筷子长度,即可得到答案.【详解】解:由题意可得:杯子内的筷子长度为:22512+=13cm , 则筷子露在杯子外面的筷子长度为:20﹣13=7(cm ).故选:C .【点睛】此题考查勾股定理的实际应用,熟记勾股定理的计算公式是解题的关键.9.B解析:B【分析】把此题转化成一个直角坐标系的问题,然后求各点坐标,最后利用勾股定理即可判断.【详解】设喷头在点P ,则A(6,0),B (3,0);C (3,3);D (4.5;1.5);P (14,0) 则AP=14-6=8m<10m ,故A 需调整;BP=14-3=11m>10m ,故B 不需调整;CP=()221433130-+=>10m ,不需调整; DP=()2214 4.5 1.592.5-+=<10m ,故D 需调整;故选:B【点睛】此题考查了勾股定理的应用,根据坐标系找到相应点的坐标,根据勾股定理计算长度是解答此题的关键.10.D解析:D【分析】13是直角边长为2,3的直角三角形的斜边,据此画两条以格点为端点且长度为13的线段.【详解】解:∵2232+=13, ∴13是直角边长为2,3的直角三角形的斜边,如图所示,AB ,CD ,BE ,DF 的长都等于13;故选:D .【点睛】本题考查的知识点是勾股定理,找到无理数是直角边长为哪两个有理数的直角三角形的斜边长是解决本题的关键.11.B解析:B【分析】直接根据梯形ABCD 的面积的两种算法进行解答即可.【详解】解:由图形可得:EDA CDE CEB ABCD S S S S ++=△△△四边形故答案为B .【点睛】本题主要考查了勾股定理的证明方法,将图形的面积用两种方式表示出来成为解答本题的关键.12.B解析:B【分析】先根据题意确定AC 、BC 、AB 的长,然后运用勾股定理逆定理判定即可.【详解】解:由题意得:AC=AN=2AM=8,BC=MB=MN+NB=4+2=6,AB=AM+MN+NB=10∴AC 2=64, BC 2=36, AB 2=100,∴AC 2+BC 2=AB 2∴ABC 一定是直角三角形.故选:B .【点睛】 本题主要考查了勾股定理逆定理的应用,根据题意确定AC 、BC 、AB 的长是解答本题的关键.二、填空题13.5【分析】由作图痕迹得到图中各线段的长度后根据勾股定理即可得到解答【详解】解:由作图痕迹及题意可知:OB=2AB=1AB ⊥OBOC=OA ∴由勾股定理可知:故答案为5【点睛】本题考查尺规作图与勾股定理解析:5【分析】由作图痕迹得到图中各线段的长度后根据勾股定理即可得到解答 .【详解】解:由作图痕迹及题意可知:OB=2,AB=1,AB ⊥OB ,OC=OA ,∴由勾股定理可知:222222215OC OA OB AB ==+=+=,故答案为5.【点睛】本题考查尺规作图与勾股定理的综合运用,熟练掌握常见图形的作图方法及勾股定理的应用是解题关键.14.【分析】根据题意先做点A 关于x 轴的对称点求出坐标连结A′B 交x 轴于C 用勾股定理求出A′B 即可【详解】解:如图根据题意做A 点关于x 轴的对称点A '连结A′B 交x 轴于C=A′P+BP≥A′B 得到A '(-4 解析:62.【分析】根据题意先做点A 关于x 轴的对称点'A ,求出'A 坐标,连结A′B ,交x 轴于C ,用勾股定理求出A′B 即可.【详解】解:如图根据题意做A 点关于x 轴的对称点A ',连结A′B ,交x 轴于C ,AP BP +=A′P+BP≥A′B ,得到A '(-4,-2),当点P 与C 点重合时,PA+PB 最短,点B (2,4)由勾股定理()()222+4+4+2=62AP BP +的最小值为:62故答案为: 2【点睛】 本题主要考查了点关于直线的对称,两点之间线段最短,勾股定理的应用,正确转化AP BP +的值最小是解题的关键.15.【分析】有两种情况可能是锐角三角形可能是钝角三角形过A 点作AD 垂直于BC 当为锐角三角时BC=CD+BD 当为钝角三角形时BC=CD-BD 利用勾股定理求出各边即可得到答案【详解】如图过点A 作垂足为D 当为解析:422【分析】ABC ∆有两种情况,可能是锐角三角形,可能是钝角三角形,过A 点作AD 垂直于BC ,当为ABC ∆锐角三角时,BC=CD+BD ,当ABC ∆为钝角三角形时,BC=CD-BD 利用勾股定理求出各边即可得到答案.【详解】如图,过点A 作AD BC ⊥ 垂足为D当为ABC ∆锐角三角时,AC =8,45C ∠=︒,90ADC ∠=︒∴ AD=CD=42在Rt ABD ∆中 22226(42)3632AB AD -=-=-∴ BC=CD+BD=422当为ABC ∆钝角三角时,同理可得 CD=2 ,BD=2∴ BC=CD-BD=422 故答案为:422【点睛】本题考查了三角形的分类,勾股定理的应用,准确的画出图形是解决本题的关键. 16.15【分析】过D 作DE ⊥AB 垂足为E 根据角平分线定理可得DE=CD=3然后根据三角形的面积公式计算即可【详解】解:如图:过D 作DE ⊥AB 垂足为E ∵∠C=90°∴在Rt △ACD 中∵∠C=90°DE ⊥A解析:15【分析】过D 作DE ⊥AB 垂足为E ,根据角平分线定理可得DE=CD=3,然后根据三角形的面积公式计算即可.【详解】解:如图:过D 作DE ⊥AB 垂足为E ,∵∠C=90°,∴在Rt △ACD 中,2222543CD AD AC =-=-=,∵∠C=90°,DE ⊥AB ,AD 平分∠BAC ,∴DE=CD=3,∴△ABD 的面积为111031522AB DE ⨯⨯=⨯⨯=.故答案为:15.【点睛】本题主要考查了角平分线的性质定理,勾股定理,正确作出辅助线是解答本题的关键. 17.①②③④【分析】设BE=x 则=8-x 利用勾股定理列出方程即可判断①;利用SAS 证出△AEP ≌△CPE 即可证出∠AEP=∠CPE 从而判断②;过点E 作EH ⊥AD 于H 利用勾股定理求出PE 从而得出PA=PE解析:①②③④【分析】设BE=x ,则AE EC ==8-x ,利用勾股定理列出方程即可判断①;利用SAS 证出△AEP ≌△CPE ,即可证出∠AEP=∠CPE ,从而判断②;过点E 作EH ⊥AD 于H ,利用勾股定理求出PE ,从而得出PA=PE ,利用等边对等角可得∠PAE=∠PEA ,再根据平行线的性质可得∠AEB=∠PAE ,从而判断③;根据三角形的内角和定理即可判断④.【详解】解:设BE=x ,则AE EC ==8-x ,在Rt △ABE 中,AB 2+BE 2=AE 2∴42+x 2=(8-x )2解得:x=3即BE=3,故①正确;∴BE=EC=5若5AP =∴AP=CE ,∵四边形ABCD 为长方形∴AD ∥BC∴∠APE=∠CEP∵PE=EP∴△AEP ≌△CPE∴∠AEP=∠CPE∴//AE CP ,故②正确;当256AP =时,过点E 作EH ⊥AD 于H ,∴AH=BE=3,HE=AB=4∴PH=AP-AH=76∴22PH HE+25 6∴PA=PE∴∠PAE=∠PEA∵AD∥BC∴∠AEB=∠PAE,∴∠AEB=∠PEA∴EA平分BEP∠,故③正确;∵∠BPC=180°-∠PCB-∠PBE∠PEC=180°-∠PCB-∠EPC∵PBE EPC∠=∠∴BPC PEC∠=∠,故④正确;综上:正确的有①②③④故答案为:①②③④.【点睛】此题考查的是勾股定理、全等三角形的判定及性质、等腰三角形的性质、平行线的判定及性质和三角形内角和定理的应用,掌握勾股定理、全等三角形的判定及性质、平行线的判定及性质和三角形内角和定理是解题关键.18.5或4【分析】根据绝对值和算术平方根具有非负性可得ab的值然后再利用勾股定理分类求出该直角三角形的斜边长即可【详解】∵满足∴a−3=0b−4=0解得:a=3b=4当ab为直角边该直角三角形的斜边长为解析:5或4.【分析】根据绝对值和算术平方根具有非负性可得a、b的值,然后再利用勾股定理,分类求出该直角三角形的斜边长即可.【详解】∵a,b340a b--=,∴a−3=0,b−4=0,解得:a=3,b=4,当a,b为直角边,5=;4也可能为斜边长.综上所述:直角三角形的斜边长为:5或4.故答案为:5或4.【点睛】此题主要考查了勾股定理和绝对值和算术平方根的非负性,关键是掌握绝对值和算术平方根具有非负性,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.19.【分析】根据勾股定理的逆定理判断这是一个直角三角形再结合面积公式求解【详解】解:∵∴∴该三角形为直角三角形∴其面积为故答案为:【点睛】本题考查了勾股定理的逆定理以及二次根式的乘法法则熟练掌握勾股定理【分析】根据勾股定理的逆定理,判断这是一个直角三角形,再结合面积公式求解.【详解】解:∵2215+=,215=, ∴222+=,∴该三角形为直角三角形,∴其面积为12=【点睛】本题考查了勾股定理的逆定理以及二次根式的乘法法则,熟练掌握勾股定理的逆定理是解决本题的关键. 20.【分析】设OA=OB=BC=CD=a 可知AB=AC=AD=由题意知AC=3即可求出AD 的长;【详解】∵OA=OB=BC=CD ∴设OA=OB=BC=CD=a ∵∠AOD=90°∴AC===∴∵AC==3解析:【分析】设OA=OB=BC=CD=a ,可知 , , ,由题意知AC=3,即可求出AD 的长;【详解】∵ OA=OB=BC=CD ,∴ 设OA=OB=BC=CD=a ,∵∠AOD=90°,∴,∴AD ===,∵=3,∴∴=故答案为:【点睛】本意考查了等腰直角三角形的性质,勾股定理,正确掌握等腰直角三角形的性质和勾股定理是解题的关键;三、解答题21.见解析【分析】根据总面积=以c 为边的正方形的面积+2个直角边长为,a b 的三角形的面积=以b 为上底、(a+b)为下底、高为b 的梯形的面积+以a 为上底、(a+b)为下底、高为a 的梯形的面积,据此列式求解. 【详解】证明:总面积()()21112222S c ab a b b b a a b a =+⨯=++⋅+++⋅ 222c a b ∴=+【点睛】此题考查的是勾股定理的证明,用两种方法表示同一图形的面积是解题关键. 22.(1)7米;(2)不是【分析】(1)利用勾股定理直接求出边长即可;(2)梯子的顶端下滑了4米,则20a =米,利用勾股定理求出b 的值,判断是否梯子的底部在水平方向也滑动了4米.【详解】(1)如图,由题意得此时a =24米,c =25米,由勾股定理得222+=a b c , ∴2225247b =-=(米);(2)不是,如果梯子的顶端下滑了4米,此时20a =米,25c =米, 由勾股定理,22252015b =-=(米),1578-=(米),即梯子的底部在水平方向滑动了8米.【点睛】本题考查勾股定理的应用,解题的关键是掌握用勾股定理解直角三角形的方法. 23.7AF =【分析】根据点D 是BC 的中点得到BD=5 ,由勾股定理计算可得AD 的长,由等腰直角三角形性质得DF=5,最后由线段的差可得结论.【详解】解:AB AC AD BC =⊥,,BD CD ∴=,10BC =,5BD ∴=,Rt ABD 中,13AB =, 222213512AD AB BD ∴=-=-=,Rt BDF 中,45CBE ∠=,BDF ∴是等腰直角三角形,5DF BD ∴==,1257AF AD DF ∴=-=-=.【点睛】本题主要考查的是等腰三角形的性质,勾股定理,等腰直角三角形,结合题干中条件找出对应量是关键.24.(1)3BE =2)33【分析】(1)利用勾股定理逆定理可得ABC 是直角三角形,90B ∠=︒,连接AE ,根据线段垂直平分线的性质可得AE CE =,在Rt ABE △中利用勾股定理列出方程即可求解;(2)根据题意画出图形,若使CM MN +的值最小,则A ,M ,N 共线,且AN CF ⊥,利用全等三角形的判定与性质即可求解.【详解】解:(1)连接AE ,,∵26AC AB ==,33BC =,∴222AC AB BC =+,∴ABC 是直角三角形,90B ∠=︒,∵DE 垂直平分AC ,∴AE CE =,在Rt ABE △中,222AE AB BE =+,即222CE AB BE =+,∴()222333BE BE -=+,解得3BE =;(2)∵DE 垂直平分AC ,M 是DF 上一动点,∴AM CM =,∴CM MN AM MN +=+,若使CM MN +的值最小,则A ,M ,N 共线,且AN CF ⊥,如图,,在ABC 和CNA 中,B ANC ACB CAN AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ABC ≌CNA ,∴33AN BC ==【点睛】本题考查勾股定理逆定理、全等三角形的判定与性质、线段垂直平分线的性质,灵活运用以上基本性质定理是解题的关键.25.(1)见解析;(2)点P 见解析,最小值为41 【分析】(1)分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;(2)点P 为A 1C 1与直线l 的交点,再利用勾股定理求出最小值即可.【详解】解:(1)如图,111A B C △即为所作;(2)如图,点P 为A 1C 1与直线l 的交点,此时1PA PC +最小,最小值为:2254+=41.【点睛】本题考查作图-轴对称变换,轴对称最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(1)见解析;(2)()12,2A ,()11,3B --,()14,1C -;(3)192【分析】(1)作出A 、B 、C 的对应点111,,A B C 并两两相连即可;(2)根据图形得出坐标即可;(3)根据割补法得出面积即可.【详解】解:(1)如图所示,111A B C 即为所求.(2)根据图形可得:()12,2A ,()11,3B --,()14,1C -(3)△ABC 的面积=5×5−12×3×5−12×2×3−12×2×5=192. 【点睛】本题考查作图-平移变换,熟练掌握由平移方式确定坐标的方法及由直角三角形的边所围成的图形面积的算法是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.如图,在ABC 中,90C ∠=︒,点E 是AB 的中点,点D 是AC 边上一点,且DE AB ⊥,连接DB .若6AC =,3BC =,则CD 的长( )A .112B .32C .94D .32.下列条件不能判定一个三角形为直角三角形的是( )A .三个内角之比为1︰2︰3B .一边上的中线等于该边的一半C .三边为111,,12135D .三边长为()222220m n m n mn m n +->>、、3.如图,在ABC 中,AB AC =,8BC cm =,AE 平分BAC ∠,交BC 于点E ,D 为AE 上一点,且ACD CAD ∠=∠,3DE cm =,连接CD .过点作DF AB ⊥,垂足为点F .则下列结论正确的有( )①5CD cm =;②10AC cm =;③3DF cm =;④ACD △的面积为210cmA .1B .2C .3D .44.下列四组线段中,能构成直角三角形的是( )A .2cm 、4cm 、5cmB .15cm 、20cm 、25cmC .0.2cm 、0.3cm 、0.4cmD .1cm 、2cm 、2.5cm5.如图,在数轴上,点A ,B 对应的实数分别为1,3,BC AB ⊥,1BC =,以点A 为圆心,AC 为半径画弧交数轴正半轴于点P ,则P 点对应的实数为( )A .51+B .5C .53+D .45- 6.如图1,分别以直角三角形三边为边向外作正方形,面积分别为1S ,2S ,3S ;如图2,分别以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6S .其中11S =,23S =,52S =,64S =,则34S S +=( )A .10B .9C .8D .77.如图,90MON ∠=︒,已知ABC ∆中,10AC BC ==,12AB =,ABC ∆的顶点A 、B 分别在边OM 、ON 上,当点B 在边ON 上运动时,点A 随之在边OM 上运动,ABC ∆的形状保持不变,在运动过程中,点C 到点O 的最大距离为( )A .12.5B .13C .14D .158.如图,小彬到雁江区高洞产业示范村参观,看到一个贴有大红“年”字的圆柱状粮仓非常漂亮,回家后小彬制作了一个底面周长为10cm ,高为5cm 的圆柱粮仓模型.如图BC 是底面直径,AB 是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A ,C 两点(接头不计),则装饰带的长度最短为( )A .10πcmB .20πcmC .2cmD .2cm9.下列各组线段中,不能构成直角三角形的是( )A .3,4,5B .5,12,13C .8,16,17D .7,24,25 10.《九章算术》是我国古代最重要的数学著作之一,它的出现标志着中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》﹔“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长.则AC 的长为( )A .4.2尺B .4.3尺C .4.4尺D .4.5尺11.为准备一次大型实景演出,某旅游区划定了边长为12m 的正方形演出区域,并在该区域画出4×4的网格以便演员定位(如图所示),其中O 为中心,A ,B ,C ,D 是某节目中演员的四个定位点.为增强演出效果,总策划决定在该节目演出过程中增开人工喷泉.喷头位于演出区域东侧,且在中轴线l 上与点O 相距14m 处.该喷泉喷出的水流落地半径最大为10m ,为避免演员被喷泉淋湿,需要调整的定位点的个数是( )A .1个B .2个C .3个D .4个12.如图,四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,8AB =,13BD =,12BC =,则四边形ABCD 的面积为( )A .50B .56C .60D .72二、填空题13.在ABC ∆中,AC =8,45C ∠=︒,AB =6,则BC =___________.14.如图,在53⨯的正方形网格中,ABC 的顶点均在格点上,则ABC ACB ∠+∠=_________.15.已知O 为平面直角坐标系的坐标原点,等腰三角形AOB 中,A(2,4),点B 是x 轴上的点,则AOB 的面积为_____.16.《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B '(示意图如图,则水深为__尺.17.如图,在Rt ABC △中,90C ∠=︒,点D 在BC 上,且12AC DC AB ==,若2AD =,则BD =___________.18.直角三角形两边长分别为3和4,则它的周长为__________.19.如图,在一棵树的10米高B 处有两只猴子,其中一只爬下树走向离树20米的池塘C ,而另一只爬到树顶D 后直扑池塘C ,结果两只猴子经过的距离相等,这棵树有的高是______________ .20.如图,正方形OABC 的边OC 落在数轴上,点C 表示的数为1,点P 表示的数为﹣1,以P 点为圆心,PB 长为半径作圆弧与数轴交于点D ,则点D 表示的数为___________.三、解答题21.如图,在Rt △ABC 中,∠C =90°,AC =8,AB =10,AB 的垂直平分线分别交AB 、AC 于点D 、E .求AE 的长.22.已知ABC 的三边长分别为a 、b 、c ,且18a =,32b =,50c =. (1)判断ABC 的形状,并说明理由;(2)如果一个正方形的面积与ABC 的面积相等时,求这个正方形的边长.23.亲爱的同学们,在全等三角形中,我们见识了很多线段关系的论证题,下面请你用本阶段所学知识,分别完成下列题目.(1)如图1,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2)如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE .容易证明△ACD ≌△BCE ,则①∠AEB 的度数为 ;②直接写出AE 、BE 、CM 之间的数量关系:(3)如图3,△ABC 中,若∠A =90°,D 为BC 的中点,DE ⊥DF 交AB 、AC 于E 、F ,求证:BE 2+CF 2=EF 2.24.如图,已知等腰△ABC 的腰AB =13cm ,D 是腰AB 上一点,且CD =12cm ,AD =5cm . (1)求证:△BDC 是直角三角形;(2)求△BDC 的面积.25.如图,△ABC中,AB=42,∠ABC=45°,D是BC边上一点,且AD=AC,若BD﹣DC=1.求DC的长.26.如图:AB=AC,AD⊥BC于D,AE=DE.求证:(1)DE∥AB;(2)若∠B=60°,DE=2,求AD的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据线段垂直平分线的性质得到AD=BD,继而在Rt△BCD中利用勾股定理列式进行计算即可.【详解】∵E是AB中点,DE AB⊥,∴DE是AB的垂直平分线,=,∴DA DB则6DA DB AC CD CD ==-=-,在Rt CDB 中,∠C=90°,BC=3,∴222CD CB DB +=,即()22236CD CD +=-, ∴94CD =. 故选:C .【点睛】 本题考查了勾股定理,线段垂直平分线的性质,准确识图,熟练掌握和灵活运用相关知识是解题的关键.2.C解析:C【分析】根据直角三角形的判定条件分别判断即可;【详解】三个内角之比为1︰2︰3,三角形有一个内角为90︒,故A 不符合题意;直角三角形中,斜边上的中线等于斜边的一半,故B 不符合题意;22211112135⎛⎫⎛⎫⎛⎫=≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 符合题意; 三边长的关系为()()()()222222220mn m n mn m n +=-+>>,故D 不符合题意;故选:C .【点睛】本题主要考查了勾股定理逆定理和三角形内角和定理,准确分析判断是解题的关键. 3.B解析:B【分析】根据AB AC =,AE 平分BAC ∠,得AE BC ⊥,12BE EC BC ==,从而得CD ,结合ACD CAD ∠=∠,得AD CD =,从而计算得AE ;连接BD ,通过证明BED CED △≌△,得BD CD AD ==,通过勾股定理得DF ,即可完成求解.【详解】∵AB AC =,AE 平分BAC ∠∴AE BC ⊥,142BE EC BC === ∴5CD ===∵ACD CAD ∠=∠∴5AD CD ==cm ,故①正确;∴8AE AD DE =+= ∴22224845AC EC AE =+=+=cm ,故②错误;∴45AB AC ==如图,连接BD∵90DE DE DEB DEF BE EC =⎧⎪∠=∠=⎨⎪=⎩∴BED CED △≌△∴BD CD = ∴5BD CD AD ===∵DF AB ⊥ ∴1252AF BF AB === ∴()22225255DF AD AF =-=-=cm ,故③错误; ∴11541022ACD S AD EC =⨯=⨯⨯=△cm ,故④正确; 故选:B .【点睛】本题考查了等腰三角形、勾股定理、全等三角形的知识;解题的关键是熟练掌握等腰三角形三线合一、勾股定理、全等三角形的性质,从而完成求解. 4.B解析:B【分析】根据勾股定理逆定理逐项分析即可.【详解】A :2222+45≠ ,不符合题意;B:22215+20=25,符合题意;C:222≠,不符合题意;0.2+0.30.4D:222≠,不符合题意;1+23故选B【点睛】本题考查勾股定理逆定理,利用逆定理判定直角三角形是重要考点.5.A解析:A【分析】根据题意求出AB,根据勾股定理求出AC,根据实数与数轴的关系解答即可.【详解】∵点A,B对应的实数分别为1,3,∴AB=2,∵BC⊥AB,∴∠ABC=90°,∴AC=则AP∴P1,故选:A.【点睛】本题考查的是勾股定理、实数与数轴,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.6.A解析:A【分析】由题意可得S1+S2=S3, S5+S6=S4,然后根据S1=1,S2=3,S5=2,S6=4,然后求出S3+S4的值即可.【详解】解:如图:∵S1=a2,S2=b2,S3=c2,∴a2+b2=c2,即S1+S2=S3,同理可得:S5+S6=S4,∵S1=1,S2=3,S5=2,S6=4∴S3+S4=(1+3)+(2+4)=4+6=10.故答案为A.【点睛】本题主要考查勾股定理的应用以及正方形的面积、圆的面积的解法,审清题意、灵活运用数形结合的思想成为解答本题的关键.7.C解析:C【分析】取AB的中点D,连接CD,根据三角形的边角关系得到OC≤OD+DC,只有当O、D及C共线时,OC取得最大值,最大值为OD+CD,根据D为AB中点,得到BD=3,根据三线合一得到CD垂直于AB,在Rt△BCD中,根据勾股定理求出CD的长,在Rt△AOB中,OD为斜边AB上的中线,根据直角三角形斜边上的中线等于斜边的一半可得OD的值,进而求出DC+OD,即为OC的最大值.【详解】解:如图,取AB的中点D,连接CD,∵AC=BC=10,AB=12,∵点D是AB边中点,∴BD=1AB=6,CD⊥AB,2∴2222-=-=,BC BD1068连接OD,OC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值=OD+CD,∵△AOB为直角三角形,D为斜边AB的中点,∴OD=1AB=62∴OD+CD=6+8=14,即OC的最大值=14,故选:C.【点睛】本题主要考查等腰三角形的性质,直角三角形的性质以及三角形三边之间的关系,掌握三角形任意两边之和大于第三边,是解题的关键.8.C解析:C【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:如图,圆柱的侧面展开图为长方形,AC=A'C,且点C为BB'的中点,∵AB =5cm ,BC =12×10=5cm , ∴装饰带的长度=2AC =22222255102AB BC +=+=cm ,故选:C .【点睛】本题考查平面展开-最短距离问题,正确画出展开图是解题的关键.9.C解析:C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A 、32+42=52,故是直角三角形,故本选项不符合题意;B 、52+122=132,故是直角三角形,故本选项不符合题意;C 、82+162≠172,故不是直角三角形,故本选项符合题意;D 、72+242=252,故是直角三角形,故本选项不符合题意;故选:C .【点睛】本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.10.A解析:A【分析】设AC=x 尺,则AB=(10-x )尺,利用勾股定理解答.【详解】设AC=x 尺,则AB=(10-x )尺, ABC 中,90ACB ∠=︒,222AC BC AB +=,∴2224(10)x x +=-,解得:x=4.2,故选:A .【点睛】此题考查勾股定理,根据题意正确设未知数,利用勾股定理解答是解题的关键. 11.B解析:B【分析】把此题转化成一个直角坐标系的问题,然后求各点坐标,最后利用勾股定理即可判断.设喷头在点P ,则A(6,0),B (3,0);C (3,3);D (4.5;1.5);P (14,0) 则AP=14-6=8m<10m ,故A 需调整;BP=14-3=11m>10m ,故B 不需调整; CP=()221433130-+=>10m ,不需调整; DP=()2214 4.5 1.592.5-+=<10m ,故D 需调整;故选:B【点睛】此题考查了勾股定理的应用,根据坐标系找到相应点的坐标,根据勾股定理计算长度是解答此题的关键.12.A解析:A【分析】据勾股定理求出DC ,根据角平分线的性质得出DE=DC=5,根据勾股定理求出BE ,求出AE ,再根据三角形的面积公式求出即可.【详解】过D 作DE AB ⊥,交BA 的延长线于E ,则90∠=∠=︒E C ,90BCD ∠=︒,BD 平分ABC ∠,DE DC ∴=,在Rt BCD ∆中,由勾股定理得:222213125CD BD BC --=, 5DE ∴=,在Rt BED ∆中,由勾股定理得:222213512BE BD DE =--,8AB =,1284AE BE AB ∴=-=-=,∴四边形ABCD 的面积BCD BED AED S S S S ∆∆∆=+-111222BC CD BE DE AE DE =⨯⨯+⨯⨯-⨯⨯ 11112512545222=⨯⨯+⨯⨯-⨯⨯ 50=,【点睛】本题考查了勾股定理,三角形面积,角平分线的性质等知识点,能求出DE=DC 是解题的关键.二、填空题13.【分析】有两种情况可能是锐角三角形可能是钝角三角形过A 点作AD 垂直于BC 当为锐角三角时BC=CD+BD 当为钝角三角形时BC=CD-BD 利用勾股定理求出各边即可得到答案【详解】如图过点A 作垂足为D 当为 解析:422±【分析】ABC ∆有两种情况,可能是锐角三角形,可能是钝角三角形,过A 点作AD 垂直于BC ,当为ABC ∆锐角三角时,BC=CD+BD ,当ABC ∆为钝角三角形时,BC=CD-BD 利用勾股定理求出各边即可得到答案.【详解】 如图,过点A 作AD BC ⊥ 垂足为D当为ABC ∆锐角三角时,AC =8,45C ∠=︒,90ADC ∠=︒∴ AD=CD=42在Rt ABD ∆中 22226(42)3632AB AD -=-=-∴ BC=CD+BD=422当为ABC ∆钝角三角时,同理可得 CD=2 ,BD=2∴ BC=CD-BD=422故答案为:422【点睛】本题考查了三角形的分类,勾股定理的应用,准确的画出图形是解决本题的关键. 14.45°【分析】延长BA 到格点D 得到根据勾股定理求出ADCDAC 长度再进一步证明△ADC 为等腰直角三角形问题得解【详解】解:如图延长BA 到格点D 则根据勾股定理得∴AD=CD ∴∠ADC=90°∴∠DAC解析:45°【分析】延长BA 到格点D ,得到ABC ACB DAC ∠+∠=∠,根据勾股定理求出AD 、CD 、AC 长度,再进一步证明△ADC 为等腰直角三角形,问题得解.【详解】解:如图,延长BA 到格点D ,则ABC ACB DAC ∠+∠=∠,根据勾股定理得, 22=12=5AD +,22=12=5CD +22=13=10AC +,∴AD=CD ,222=AD CD AC +,∴∠ADC=90°, ∴∠DAC=∠DCA=45°,∴45ABC ACB ∠+∠=︒.故答案为:45°.【点睛】本题考查了勾股定理与逆定理,理解两个定理是解题关键.15.8或4或10【分析】根据已知画出坐标系进而得出AE 的长以及BO 的长即可得出△AOB 的面积【详解】解:如图所示:过点A 作AE ⊥x 轴于点E ∵点O (00)A (24)∴AE =4OE =2OA =当OA =AB 时∴解析:8或510【分析】根据已知画出坐标系,进而得出AE 的长以及BO 的长,即可得出△AOB 的面积.【详解】解:如图所示:过点A 作AE ⊥x 轴于点E ,∵点O (0,0),A (2,4),∴AE =4,OE =2,OA 222425+=当OA =AB 时,∴AE 是△AOB 边OB 的垂直平分线,∴BE=OE=2,∴OB=4,∴B 的坐标为(4,0),此时S △AOB =12OB AE •=1442⨯⨯=8; 当OA =OB 时, ∴25OB OA ==,∴B 的坐标为(5±0),此时S △AOB =12OB AE •=12542⨯=45 当OB =AB 时, 设AB OB x ==,则2BE x =-,∴2224(2)x x =+-,解得:5x =,∴5OB =,∴B 的坐标为(5,0),此时S △AOB =12OB AE •=1542⨯⨯=10; ∴△AOB 的面积为:8或510.故答案为:8或510.【点睛】此题主要考查了三角形面积以及坐标与图形的性质,利用等腰三角形的性质求得OB 的长是解题关键.16.12【分析】依题意画出图形设芦苇长AB=AB=x 尺则水深AC=(x ﹣1)尺因为BE=10尺所以BC=5尺利用勾股定理求出x 的值即可得到答案【详解】解:依题意画出图形设芦苇长AB=AB=x 尺则水深AC解析:12【分析】依题意画出图形,设芦苇长AB =AB '=x 尺,则水深AC =(x ﹣1)尺,因为B 'E =10尺,所以B 'C =5尺,利用勾股定理求出x 的值即可得到答案.【详解】解:依题意画出图形,设芦苇长AB =AB '=x 尺,则水深AC =(x ﹣1)尺,因为B 'E =10尺,所以B 'C =5尺,在Rt △AB 'C 中,52+(x ﹣1)2=x 2,解之得x =13,即水深12尺,芦苇长13尺.故答案为:12. .【点睛】此题考查勾股定理的实际应用,正确理解题意,构建直角三角形利用勾股定理解决问题是解题的关键.17.【分析】设在中利用勾股定理求出x 值即可得到AC 和CD 的长再求出AB 的长再用勾股定理求出BC 的长即可得到结果【详解】解:设∵∴即解得或(舍去)∴∵∴∴∴故答案是:【点睛】本题考查勾股定理解题的关键是掌 31【分析】设AC DC x ==,在Rt ACD △中,利用勾股定理求出x 值,即可得到AC 和CD 的长,再求出AB 的长,再用勾股定理求出BC 的长,即可得到结果.【详解】解:设AC DC x ==,∵90C ∠=︒,∴222AC CD AD +=,即2222x x +=,解得1x =或1-(舍去), ∴1AC DC ==, ∵12AC AB =,∴2AB =,∴BC ===, ∴1BD BC CD =-=.1.【点睛】本题考查勾股定理,解题的关键是掌握利用勾股定理解直角三角形的方法.18.12或7+【分析】分两种情况求出第三边即可求出周长【详解】分两种情况:①当3和4都是直角边时第三边长==5故三角形的周长=3+4+5=12;②当3是直角边4是斜边时第三边长故三角形的周长=3+4+=解析:12或【分析】分两种情况求出第三边,即可求出周长.【详解】分两种情况:①当3和4都是直角边时,第三边长,故三角形的周长=3+4+5=12;②当3是直角边,4是斜边时,第三边长==,故三角形的周长,故答案为:12或.【点睛】此题考查勾股定理的应用,题中不明确所给边长为直角三角形的直角边或是斜边时,应分情况讨论求解.19.15米【分析】根据题意确定已知线段的长再根据勾股定理列方程进行计算【详解】设BD=米则AD=()米CD=()米∵∴解得即树的高度是10+5=15米故答案为:15米【点睛】本题主要考查了勾股定理的应用解析:15米【分析】根据题意确定已知线段的长,再根据勾股定理列方程进行计算.【详解】设BD=x 米,则AD=(10x +)米,CD=(30x -)米,∵222CD AD AC -=,∴()()222301020x x --+=, 解得5x =.即树的高度是10+5=15米.故答案为:15米.【点睛】本题主要考查了勾股定理的应用,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.20.【分析】根据勾股定理求出PB的长即PD的长再根据两点间的距离公式求出点D对应的数【详解】由勾股定理知:PB===∴PD=∴点D表示的数为﹣1故答案是:﹣1【点睛】此题考查勾股定理及圆的半径数轴等知识解析:51-【分析】根据勾股定理求出PB的长,即PD的长,再根据两点间的距离公式求出点D对应的数.【详解】由勾股定理知:PB=22PC BC+=2221+=5,∴PD=5,∴点D表示的数为5﹣1.故答案是:5﹣1.【点睛】此题考查勾股定理及圆的半径、数轴等知识,结合各知识点熟练运用是解题关键.三、解答题21.25 4【分析】连接BE,先利用勾股定理求出BC的长,根据线段垂直平分线的性质可得AE=BE,然后设AE=BE=x,再由勾股定理可得方程(8−x)2+62=x2,求解后即可得出答案.【详解】解:连接BE,在Rt△ABC中,∵∠C=90°,AC=8,AB=10,∴AC2+BC2=AB2.即82+BC2=102,解得:BC=6.∵DE是AB的垂直平分线,∴AE =BE .设AE =BE =x ,则EC =8−x ,∵Rt △BCE 中,EC 2+BC 2=BE 2,∴(8−x )2+62=x 2,解得:x =254, ∴AE =254. 【点睛】此题考查了线段垂直平分线的性质以及勾股定理,掌握线段垂直平分线的性质并结合勾股定理求解线段的长度是解题的关键,且要注意数形结合思想应用.22.(1)ABC 是直角三角形,理由见解析;(2)【分析】(1)先比较根式的大小,再计算较小的两个边的平方和,与最大的平方比较,得出结论即可;(2)设这个正方形的边长为x ,由一个正方形的面积与ABC 的面积相等,构造方程212x =,解之即可. 【详解】解:(1)在ABC <<222250a b +=+=,2250c ==,222a b c ∴+=,ABC ∴是直角三角形;(2)设这个正方形的边长为x ,∵一个正方形的面积与ABC 的面积相等,∴212x =,解得:x =±0x ,x ∴=答:这个正方形的边长为x =【点睛】本题考查勾股定理的逆定理,以及利用面积列方程解应用题,掌握勾股定理逆定理的应用条件与方法,会利用正方形的面积与ABC 的面积相等构造方程解决问题是关键. 23.(1)见解析;(2)①90°,②2AE BE CM =+;(3)见解析【分析】(1)利用AAS 证明△ABD ≌△CAE ,得到BD=AE ,AD=CE ,即可得到结论成立;(2)①由等腰直角三角形的性质,得∠CDE=∠CED=45°,则∠ADC=135°,由全等三角形的性质,∠BEC=135°,即可求出∠AEB 的度数;②由全等三角形的性质和等腰直角三角形的性质,得到AD=BE ,CM=DM=EM ,即可得到AE=BE+2CM ;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,证明△DBE ≌△DCG ,得到BE=CG ,根据勾股定理解答.【详解】解:(1)如图1,∵∠BAC =90°,BD ⊥直线m ,CE ⊥直线m ,∴∠ADB=∠AEC=90°,∴∠BAD+∠ABD=∠BAD+∠CAE=90°,∴∠ABD=∠CAE ,∵AB =AC ,∴△ABD ≌△CAE ,∴BD=AE ,AD=CE ,∵DE DA AE CE BD =+=+;(2)如图2,①∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,∴∠CDE=∠CED=45°,∴∠ADC=180°-45°=135°,∵△ACD ≌△BCE ,∴AD=BE ,∠ADC=∠BEC=135°,∴∠AEB=∠BEC -∠CED=135°-45°=90°;②∵△DCE 均为等腰直角三角形,CM 为△DCE 中DE 边上的高,∴CM=DM=EM ,∵AD=BE ,∴AE=AD+DM+EM=BE+2CM ;故答案为:①90°;②2AE BE CM =+;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,如图,∵ED ⊥DF ,DG=ED ,∴EF=GF ,∵D 是BC 的中点,∴BD=CD ,在△BDE 和△CDG 中,ED GD BDE GDC BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△DCG (SAS ),∴BE=CG ,∵∠A=90°,∴∠B+∠ACB=90°,∵△DBE ≌△DCG ,EF=GF ,∴BE=CG ,∠B=∠GCD ,∴∠GCD+∠ACB=90°,即∠GCF=90°,∴Rt △CFG 中,CF 2+GC 2=GF 2,∴BE 2+CF 2=EF 2.【点睛】本题考查的是全等三角形的判定和性质、等腰直角三角形的性质,以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.24.(1)证明见解析;(2)48cm 2.【分析】(1)由AB=AC=13cm ,CD=12cm ,AD=5cm ,知道AC 2=AD 2+CD 2,所以△BDC 为直角三角形,(2)根据三角形面积公式解答.【详解】证明:(1)∵AB =AC =13cm ,CD =12cm ,AD =5cm ,∴AC 2=AD 2+CD 2,∴∠ADC =90°,∴∠BDC =90°,∴△BDC 为直角三角形;(2)∵AB =13cm ,AD =5cm ,∴BD =13﹣5=8cm .∵CD =12cm , ∴281248()2BDC S cm ∆⨯==. 【点睛】本题考查勾股定理逆定理的应用.理解如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形是解题关键.25.DC =2.【分析】过点A 作AE ⊥BC 于点E ,则∠AEB=90°,DE=CE ,结合∠ABC=45°可得出∠BAE=45°,进而可得出AE=BE ,在Rt △ABE 中,利用勾股定理可求出BE 的长,即BD+12DC=4,结合BD-DC=1可求出DC 的长.【详解】解:过点A 作AE ⊥BC 于点E ,如图所示.∵AD =AC ,AE ⊥BC ,∴∠AEB =90°,DE =CE .∵∠ABC =45°,∴∠BAE =45°,∴AE =BE .在Rt △ABE 中,AB =2∴AE 2+BE 2=AB 2,即BE 2+BE 2=(2)2,∴BE =4,∴BD +12DC =4. 又∵BD ﹣DC =1, ∴DC +1+12DC =4, ∴DC =2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形内角和定理,在Rt △ABE 中,利用勾股定理求出BE 的长是解题的关键.26.(1)证明见解析;(2)3【分析】(1)根据三线合一得BAD=∠CAD,由AE=DE,得∠CAD=∠EDA,从而∠BAD=∠EDA,所以DE∥AB;(2)由AB=AC,∠B=60°,DE∥AB,得∠C=60°,∠EDC=∠B=60°,从而△DEC为等边三角形, DE=DC=EC=AE=2,最后在Rt△ADC中,由勾股定理求AD.【详解】解:(1)∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AE=DE,∴∠CAD=∠EDA,∴∠BAD=∠EDA,∴DE∥AB(2)∵AB=AC,∠B=60°,∴∠C=60°∵DE∥AB,∴∠EDC=∠B=60°,∴△DEC为等边三角形,∴DE=DC=EC=AE=2在Rt△ADC中,AD【点睛】本题考查了等腰三角形三线合一、等边对等角、平行线的判定和性质、等边三角形的判定和性质、勾股定理等内容,灵活运用是解题的关键.。