八年级数学下册考试题

合集下载

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。

()2. 平行四边形的对角线互相平分。

()3. 正方形的对角线相等且互相垂直。

()4. 圆的半径是圆心到圆上任意一点的距离。

()5. 圆的直径是圆上任意两点之间的距离。

()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。

2. 平行四边形的对角线互相平分,所以它的对角线长度是______。

3. 正方形的四个角都是______度。

4. 圆的半径是圆心到圆上______的距离。

5. 圆的直径是圆上______点之间的距离。

四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述平行四边形的性质。

3. 简述正方形的性质。

4. 简述圆的性质。

5. 简述圆的直径和半径之间的关系。

五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。

2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当78.a 9.当101112131415.x 16(A )17.若x<y<0………………………()(A)2x(B)2y(C)-2x(D)-2y18.若0<x<1………………………()(A)2x(B)-2x(C)-2x(D)2x19(a<0)得………………………………………………………………()(A(B(C(D20.当a<0,b<0时,-a+b可变形为………………………………………()(A)2(B)-2(C)2(D)2四、计算题:(每小题6分,共24分)21.;2223)÷)(a≠b).24五、求值:25.已知x26.当x=六、解答题:(共20分)+…).27.(8分)计算(+1)28参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、7、89、x -410、11、12、13、(7-14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.18、19、20、21、【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.25、26、∴ x 2=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)28、(14分)又∵∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。

人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。

八年级数学下册期末考试卷(附带有答案)

八年级数学下册期末考试卷(附带有答案)

八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。

13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。

八年级下册数学因式分解题

八年级下册数学因式分解题

八年级下册数学因式分解题一、提取公因式法。

1. 分解因式:6ab + 3ac- 解析:公因式为3a,提取公因式后得到3a(2b + c)。

2. 分解因式:5x^2y-10xy^2- 解析:公因式为5xy,分解结果为5xy(x - 2y)。

3. 分解因式:9m^3n - 3m^2n^2- 解析:公因式为3m^2n,因式分解得3m^2n(3m - n)。

4. 分解因式:4a^3b - 6a^2b^2+2ab^3- 解析:公因式为2ab,分解后为2ab(2a^2-3ab + b^2)。

5. 分解因式:x(a - b)+y(b - a)- 解析:首先将y(b - a)变形为-y(a - b),公因式为(a - b),结果为(a - b)(x - y)。

6. 分解因式:3(x - y)^2-2(y - x)- 解析:将(y - x)变形为-(x - y),公因式为(x - y),得到(x - y)[3(x - y)+2]=(x - y)(3x - 3y + 2)。

7. 分解因式:2m(m - n)^2-8m^2(n - m)- 解析:将(n - m)变形为-(m - n),公因式为2m(m - n),分解结果为2m(m - n)[(m - n)+4m]=2m(m - n)(5m - n)。

二、公式法(平方差公式a^2-b^2=(a + b)(a - b))8. 分解因式:x^2-9- 解析:x^2-9=x^2-3^2,根据平方差公式,分解为(x + 3)(x - 3)。

9. 分解因式:16y^2-25- 解析:16y^2-25=(4y)^2-5^2,因式分解得(4y + 5)(4y - 5)。

10. 分解因式:49 - m^2- 解析:49 - m^2=7^2-m^2,根据平方差公式分解为(7 + m)(7 - m)。

11. 分解因式:(x + 2)^2-y^2- 解析:根据平方差公式a=(x + 2),b = y,分解为(x+2 + y)(x + 2-y)。

华师大版八年级下册数学期中考试试题含答案

华师大版八年级下册数学期中考试试题含答案

华师大版八年级下册数学期中考试试卷一、单选题1.分式方程111x mx x -=++有增根,则m 的值为()A .1B .2C .-2D .02.函数11y x =-的自变量x 的取值范围为()A .1x =B .1x =-C .1x ≠D .1x ≠-3.已知点()1,2P m m --在y 轴上,则m 的值是()A .1B .2C .-1D .-24.已知点()1,3A --在反比例函数ky x=的图象上,则k 的值为()A .3B .13C .-3D .13-5.下列变形从左到右错误的是()A .22y y x x x--=B .222b b a a ⎛⎫= ⎪⎝⎭C .am abm b=D .1y xx y y x+=--6.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为().A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣7.学校计划购买篮球和足球.若每个足球的价格比篮球的价格贵25元,且用800元购买篮球的数量与用1000元购买足球的数量相同.设每个足球的价格为x 元,则可列方程为()A .100080025x x=-B .100080025x x=+C .100080025x x =-D .100080025x x =+8.一次函数2y x m =-+与2y x =+图象的交点位于第二象限,则m 的值可能是()A .-4B .1C .2D .39.在平面直角坐标系xOy 中,点()4,0A ,点()0,3B -,点C 在坐标轴上,若ABC 的面积为12,则符合题意的点C 有()A .1个B .2个C .3个D .4个10.如图所示,一次函数3y kx =-(k 是常数,0k ≠)与一次函数y x b =-+(b 是常数)的图象相交于点()2,1A ,下列判断错误的是()A .关于x 的方程3kx x b -=-+的解是2x =B .关于x 的不等式3x b kx -+>-的解集是2x >C .当0x <时,函数3y kx =-的值比函数y x b =-+的值小D .关于x ,y 的方程组3kx y x y b -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩二、填空题11.计算:()02-=______________.12.已知点A(2,a)与点B(b ,4)关于x 轴对称,则a+b =_____.13.若22x -的值为正数,则x 的取值范围为______________.14.将直线2y x =的图象沿y 轴向上平移1个单位后得到的一次函数的解析式为_______________.15.若正比例函数()1y m x =--的函数值y 随x 的增大而减小,且函数图像上的点到两坐标轴距离相等,则m 的值为______________.16.如图,过x 轴上的点P 作y 轴的平行线,与反比例函数m y x =、ny x=分别交于点A 、B ,若AOB 的面积为3,则m n -=______________.三、解答题17.解方程:1212 x x=-+.18.先化简,再求值:221224x x xx x x-⎛⎫-÷⎪---⎝⎭,其中1x=-.19.一水果经营户从水果批发市场批发了草莓和葡萄共60千克(每种水果不少于10千克),到市场去卖,草莓和葡萄当天的批发价和零售价如下表表示:品名草莓葡萄批发价/(元/千克)1610零售价/(元/千克)2214设全部售出60千克水果的总利润为y(元),草莓的批发量x(千克),请写出y与x的函数关系式,并求最大利润为多少?20.漳武高速公路南靖至永定段正在加速建设,高速全长40千米,预计2022年竣工.届时,如果汽车行驶高速公路上的平均速度比在普通公路上的平均速度提高60%,那么行驶40千米的高速公路比行驶同等长度的普通公路所用时间将会缩短14小时,求该汽车在高速公路上的平均速度.21.观察以下等式:第1个等式:131 1223⎛⎫-÷=⎪⎝⎭;第2个等式:241 1362⎛⎫-÷=⎪⎝⎭;第3个等式:353 14125⎛⎫-÷=⎪⎝⎭;第4个等式:462 15203⎛⎫-÷=⎪⎝⎭;第5个等式:575 16307⎛⎫-÷=⎪⎝⎭;……按照以上规律,解决下列问题:(1)写出第7个等式:_____________;(2)写出你猜想的第n个等式(n为正整数),并证明.22.如图,在平面直角坐标系xOy中,直线AB与反比例函数myx=交于()2,3A-,()4,B n两点.(1)求直线AB 和反比例函数的表达式;(2)连接AO ,求AOB 的面积.23.如图,在平面直角坐标系中,()1,4A ,()3,3B ,()2,1C .(1)作ABC 关于原点对称的111A B C △.(2)在y 轴上找一点P ,使得PB PC +最小,试求点P 的坐标.24.小琳根据学习函数的经验,对函数12y x =+-的图象与性质进行了探究,下面是小琳的探究过程,请你补充完整.x…-4-3-2-1012…y …1-1-2-1m…(1)列表:①m =_____________;②若()6,3A -,(),3B n 为该函数图象上不同的两点,则n =_________;(2)描点并画出该函数的图象;(3)①根据函数图象可得:该函数的最小值为______________;②观察函数12y x =+-的图象,写出该图象的两条性质__________;__________;③已知直线1112y x =--与函数12y x =+-的图象相交,则当1y y <时,x 的取值范围为是_____________.25.如图,直线l :y =﹣12x+2与x 轴,y 轴分别交于A ,B 两点,在y 轴上有一点C (0,4),动点M 从点A 出发以每秒1个单位的速度沿x 轴向左移动.(1)求A ,B 两点的坐标;(2)求△COM 的面积S 与点M 的移动时间t 之间的函数关系式;(3)当t =6时,①直接写出直线CM 所对应的函数表达式;②问直线CM 与直线l 有怎样的位置关系?请说明理由.参考答案1.C 【解析】将原式化为整式方程,根据分式方程111x mx x -=++有增根得出x 的值,将x 的值代入整式方程即可求得m 的值.【详解】解:方程两边都乘(1)x +,得:1x m -=,根据分式方程111x mx x -=++有增根,∴10x +=,∴1x =-,∴112m =--=-,故选:C .【点睛】本题考查了分式方程无解的情况,增根问题可按如下步骤进行:1、让最简公分母为0确定增根;2、化分式方程为整式方程;3、把增根代入整式方程即可求得相关参数的值.2.C 【解析】根据分式的分母不等于零列式解答.【详解】解:由题意得10x -≠,解得1x ≠,故选:C .3.A 【解析】根据在y 轴上的点的横坐标为0,求出m 的值即可.【详解】解:∵点()1,2P m m --在y 轴上,∴10m -=,∴1m =,故选A .【点睛】本题主要考查了在y 轴上点的坐标特征,解题的关键在于能够熟记y 轴上的点的横坐标为0.4.A 【解析】将点A 的坐标代入解析式计算即可;【详解】解:将点()1,3A --代入反比例函数解析式ky x=中,得:31k-=-,解得:3k =,故选择:A .【点睛】本题主要考查求反比例函数解析式,利用待定系数法求函数解析式时常用的方法.5.D 【解析】【分析】根据分式的基本性质对各选项进行判断.【详解】解:A 、22y y x x x--=,此选项正确,不符合题意;B 、222b b a a ⎛⎫= ⎪⎝⎭,此选项正确,不符合题意;C 、am abm b =,此选项正确,不符合题意;D 、1y x x y y x+=---,此选项错误,符合题意;故选:D .【点睛】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的数或整式,分式的值不变.6.D 【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.7.C 【解析】【分析】根据用800元购买篮球的数量与用1000元购买足球的数量相同列分式方程.【详解】解:设每个足球的价格为x 元,则每个篮球(x-25)元,根据题意得100080025x x =-,故选:C .【点睛】此题考查分式方程的实际应用,正确理解题意,找到等量关系列出方程是解题的关键.8.B 【解析】【分析】根据题意将两个函数联立方程组,再根据交点在第二象限列不等式组,即可求出m 的取值范围.【详解】解:∵一次函数y =-2x+m 和y =x+2图象相交,∴22y x m y x =-+⎧⎨=+⎩,解得2343m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∵交点位于第二象限,∴203403m m -⎧<⎪⎪⎨+⎪>⎪⎩①②,解不等式①得2m <,解不等式②得4m >-,∴不等式的解集为42m -<<,∴m 的值可能为1,故选B .【点睛】本题考查了解不等式及两直线相交:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.9.D 【解析】【分析】分类讨论:当C 点在y 轴上,设C (0,t ),根据三角形面积公式得到12|t+3|•4=12,当C 点在x 轴上,设C (m ,0),根据三角形面积公式得到12|m-4|•3=12,然后分别解绝对值方程求出t 和m 即可得到C 点坐标.【详解】解:分两种情况:①当C 点在y 轴上,设C (0,t ),∵三角形ABC 的面积为12,∴12•|t+3|•4=12,解得t =3或−9.∴C 点坐标为(0,3),(0,−9),②当C 点在x 轴上,设C (m ,0),∵三角形ABC 的面积为12,∴12•|m-4|•3=12,解得m =12或−4.∴C 点坐标为(12,0),(−4,0),综上所述,C 点有4个,故选:D .【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长,也考查了三角形面积公式.10.B 【解析】【分析】根据条件结合图象对各选项进行判断即可.【详解】解:∵一次函数3y kx =-(k 是常数,0k ≠)与一次函数y x b =-+(b 是常数)的图象相交于点()2,1A ,∴关于x 的方程3kx x b -=-+的解是2x =,选项A 判断正确,不符合题意;∵由图可知,直线y x b =-+在直线3y kx =-上方时,都在点()2,1A 的左侧,∴关于x 的不等式3x b kx -+>-的解集是2x <,选项B 判断错误,符合题意;∵当x <0时,直线y x b =-+在直线3y kx =-上方,∴当x <0时,函数3y kx =-的值比函数y x b =-+的值小,选项C 判断正确,不符合题意;∵一次函数3y kx =-(k 是常数,0k ≠)与一次函数y x b =-+(b 是常数)的图象相交于点()2,1A ,∴关于x ,y 的方程组3kx y x y b -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,选项D 判断正确,不符合题意;故选:B .【点睛】本题考查了一次函数与二元一次方程(组),一次函数与一元一次不等式,一次函数的性质.方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.11.1【解析】【分析】由于01(0)a a =≠,即任何不为0的0次幂为1,根据零指数幂的意义完成即可.【详解】()02-=1故答案为:1【点睛】本题考查了零指数幂的意义,这里要注意的是,底数不能为0.12.-2【解析】【分析】直接利用关于x 轴对称点的性质得出a ,b 的值,进而得出答案.【详解】∵点A (2,a )与点B (b ,4)关于x 轴对称,∴b =2,a =−4,则a +b =−4+2=−2,故答案为:−2.【点睛】此题主要考查了关于x 轴对称点的性质,正确把握横纵坐标的关系是解题关键.13.x>2【解析】【分析】根据除法运算的符号法则:同号得正,异号得负,由分子为正,则分母也为正,可得关于x 得不等式,解不等式即可.【详解】∵202x >-,且2>0∴20x ->∴2x >故答案为:2x >【点睛】本题考查了解一元一次不等式,分式的值,除法的符号法则等知识,根据除法的符号法则得到关于x 的不等式是解题的关键.14.21y x =+【解析】【分析】根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,将函数2y x =的图象沿y 轴向上平移1个单位后得到的一次函数的解析式为:21y x =+,故答案为:21y x =+.【点睛】本题考查的是一次函数图像与几何变换,熟知“上加下减”的原则是解题的关键.15.2【解析】【分析】根据函数值y 随x 的增大而减小,可得出k 的正负,根据函数图像上的点到两坐标轴距离相等可得出m 的值.【详解】解:∵正比例函数()1y m x =--的函数值y 随x 的增大而减小,∴(1)0m --<,解得:1m >,∵函数图像上的点到两坐标轴距离相等,∴11m -=,解得:2m =,故答案为:2.【点睛】本题考查了一次函数的性质,熟知一次函数的性质是解题的关键.16.6【解析】【分析】设P 点的坐标为(t ,0),则A (t ,m t ),B (t ,n t ),即可得到111==222AOP m S OP AP t m t =g g △,111==222BOP n S OP BP t n t -=g g △,再根据3AOB AOP BOP S S S =+=△△△求解即可.【详解】解:设P 点的坐标为(t ,0),则A (t ,m t ),B (t ,n t),∴111==222AOP m S OP AP t m t =g g △,111==222BOP n S OP BP t n t -=g g △,∵3AOB AOP BOP S S S =+=△△△,∴11322m n ⎛⎫+-= ⎪⎝⎭,∴6m n -=,故答案为:6.【点睛】本题主要考查了反比例函数比例系数的几何意义,解题的关键在于能够熟练掌握相关知识进行求解.17.x=4【解析】【分析】方程两边都乘最简公分母(1)(2)x x -+,化成一元一次方程,解一元一次方程即可.【详解】方程两边都乘最简公分母(1)(2)x x -+,得:22(1)x x +=-解方程得:x=4当x=4时,(1)(2)x x -+=18≠0所以原方程的解为x=4【点睛】本题考查了分式方程的解法,解分式方程时一定要检验.18.2x x+,-1【解析】【分析】先计算括号内的同分母分式减法,将除法化为乘法,再计算除法,最后将1x =-代入求值即可.【详解】解:原式=1(2)(2)2(1)x x x x x x -+-⋅--=2x x +,当1x =-时,原式=-1.【点睛】此题考查分式的化简求值,正确掌握分式的混合运算法则是解题的关键.19.2240y x =+;340【解析】【分析】根据题意可以求得y 与x 的关系式,进而可以求得y 的最大值.【详解】由题意可得,()()()22161410602240y x x x =-+-⨯-=+,1050x ≤≤ ,∴当50x =时,2240y x =+取得最大值,此时340y =,即y 与x 的函数关系式是2240y x =+,最大利润为340元.【点睛】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.20.96千米/小时【解析】【分析】设汽车在普通公路上的平均速度为x 千米/小时,然后根据题意列出方程求解即可.【详解】解:设汽车在普通公路上的平均速度为x 千米/小时,由题意得:()40401160%4x x -=+,解得60x =,经检验,60x =是原方程的解集,∴汽车在高速公路上的平均速度=60×(1+60%)=96千米/小时,答:汽车在高速公路上的平均速度为96千米/小时.【点睛】本题主要考查了分式方程的应用,解题的关键在于准确找到等量关系列方程求解.21.(1)17978569⎛⎫-÷= ⎪⎝⎭;(2)121(1)2n n n n n n n ++⎛⎫-÷= ⎪⎝⎭++,证明见解析;【解析】【分析】(1)根据题目中的等式的规律,可以写出第7个等式;(2)根据题目中的等式的规律,猜想出第n 个等式,然后将等号左边的式子化简,即可证明猜想成立;【详解】解:(1)由第1个等式:1311223⎛⎫-÷= ⎪⎝⎭;第2个等式:24121=3624⎛⎫-÷= ⎪⎝⎭;第3个等式:35314125⎛⎫-÷= ⎪⎝⎭;第4个等式:4624152036⎛⎫-÷= ⎪⎝⎭;第5个等式:57516307⎛⎫-÷= ⎪⎝⎭;依次可得:第6个式子为:16867428⎛⎫-÷= ⎪⎝⎭;第7个式子为:17978569⎛⎫-÷= ⎪⎝⎭;故答案为:17978569⎛⎫-÷= ⎪⎝⎭;(2)根据每个式子结构相同,每一项的分子分母随项数的变化规律可猜想:第n 个等式为:121(1)2n n n n n n n ++⎛⎫-÷= ⎪⎝⎭++;证明如下:∵左边=21(11)n n n n n ⎛⎫-÷ ⎪+⎭+⎝+,=1(1)12n n n n +⨯++,=2n n +,=右边,∴121(1)2n n n n n n n ++⎛⎫-÷= ⎪⎝⎭++成立,【点睛】本题主要考查规律型:数字的变化类,解答本题的关键是明确题意,发现式子的变化特点,写出相应的式子.22.(1)直线AB :3342y x =-+;反比例函数:6y x -=(2)92【解析】【分析】(1)将点A 的坐标代入反比例函数解析式即可求得m 的值,即可得反比例函数解析式,将点B 的坐标代入反比例函数解析式求得n 的值,然后运用待定系数法求一次函数解析式即可;(2)设一次函数与x 轴的交点为D ,则AOB 的面积=AOD △的面积+BOD 的面积,计算即可.【详解】解:(1)∵直线AB 与反比例函数m y x =交于()2,3A -,()4,B n 两点,将()2,3A -代入m y x =中得:32m =-,解得:6m =-,∴反比例函数解析式为:6y x -=,将()4,B n 代入6y x-=中得:32n =-,∴34,2B ⎛⎫- ⎪⎝⎭,设一次函数解析式为:y kx b =+,则32342k b k b =-+⎧⎪⎨-=+⎪⎩,解得3432k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴一次函数的解析式为:3342y x =-+;(2)设一次函数与x 轴的交点为D,∵一次函数的解析式为:3342y x =-+,令0y =得:33042x =-+,解得:2x =,∴点D 的坐标为:(2,0),∴2OD =,∴113932222AOB AOD BOD S S S OD OD =+=+-= .【点睛】本题考查了反比例函数与一次函数的交点问题,解决此类问题中,三角形面积的问题时,尽可能选择与坐标轴平行的边为底边,有利于问题的解决.23.(1)见解析;(2)见解析,点P 的坐标为(90,5)【解析】【分析】(1)根据轴对称的性质分别找到三点的对应点1A ,1B ,1C ,连线即可解答;(2)根据轴对称的性质作点B 关于y 轴的对称点B 2,连接B 2C 交y 轴于一点,即为点P ,连接PB 、PC ,此时PB+PC 最小,再利用待定系数法求函数解析式.【详解】解:(1)如图:111A B C △即为所求;(2)如图,作点B 关于y 轴的对称点B 2,连接B 2C 交y 轴于一点,即为点P ,连接PB 、PC ,此时PB+PC 最小.则B 2(-3,3),设直线B 2C 的解析式为y=kx+b ,∴3321k b k b -+=⎧⎨+=⎩,解得2595k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线B 2C 的解析式为2955y x =-+,当x=0时,95y =,∴点P 的坐标为(90,5).【点睛】此题考查轴对称的性质,最短路径问题作图,作关于某点对称的图形,利用待定系数法求一次函数的解析式,熟记轴对称的性质确定特殊点的对称点是解题的关键.24.(1)①1;②4;(2)见解析;(3)①-2;②当31x -<<时,20y -≤<;当1x ≤-时,y 随x 的增大而减小;③0x >或4x <-【解析】【分析】(1)①把2x =代入12y x =+-即可得到答案;②把3y =代入12y x =+-即可得到答案;(2)根据表格中的点坐标,描点,连线,画出函数图像即可;(3)①根据(2)中所画的函数图像求解即可;②根据(2)中所画的函数图像写出相应的性质即可;③画出函数1112y x =--的图像,然后利用图像法求解即可.【详解】解:(1)①把2x =代入12y x =+-得2121y =+-=,∴1m =,故答案为:1;②把3y =代入12y x =+-得312x =+-,即15x +=,∴6x =-或4x =,∵()6,3A -,(),3B n 为该函数图象上不同的两点∴4n =,故答案为:4;(2)如图所示,即为所求:(3)①如图所示,由函数图像可知,该函数的最小值为-2,故答案为:-2;②由函数图像可知,当31x -<<时,20y -≤<;当1x ≤-时,y 随x 的增大而减小;③如图所示,画出函数1112y x =--,由图像可知,两直线的交点分别为(-4,1),(0-,1),∴当0x >或4x <-时1y y <.【点睛】本题主要考查了画函数图像,求函数的自变量和函数值,函数图像的性质,根据函数图像的交点解不等式等等,解题的关键在于能够熟练掌握相关知识进行求解.25.(1)A(4,0),B (0,2);(2)82,042t-8,t 4t t S -≤≤⎧⎪=⎨⎪⎩>;(3)①直线CM 的函数表达式为y=2x+4;②直线CM 与直线l 垂直,见解析.【解析】【分析】(1)令x=0和y=0,分别计算即可;(2)当0≤t≤4时,OM=4-t ;当t >4时,OM=t-4,按照三角形的面积公式分别计算即可;(3)当t =6时,确定M 的坐标为(-2,0);①利用待定系数法确定解析式;②利用三角形全等,垂直的定义判断即可.【详解】(1)∵y =﹣12x+2,∴当x=0时,y=2,∴点B 的坐标(0,2);∴当y=0时,﹣12x+2=0,∴x=4,∴点A 的坐标为(4,0);(2)当0≤t≤4时,AM=t ,∵OM+AM=OA ,∴OM+t=4,∴OM=4-t ,∵点C (0,4),∴OC=4,∴S=12OM OC ⨯⨯=1(4)42t ⨯-⨯=8-2t ;当t >4时,AM=t ,∵OA+AM=OM ,∴OM+4=t ,∴OM=t-4,∵点C (0,4),∴OC=4,∴S=12OM OC ⨯⨯=1(4)42t ⨯-⨯=2t-8;∴△COM 的面积S 与点M 的移动时间t 之间的函数关系式为:82,042t-8,t 4t t S -≤≤⎧⎪=⎨⎪⎩>;(3)①当t =6时,OM=t-4=2,∵M 在x 轴的负半轴,∴点M 的坐标为(-2,0),设直线CM 的解析式为y=kx+b ,把(-2,0)和(0,4)分别代入解析式,得204k b b -+=⎧⎨=⎩;解得24k b =⎧⎨=⎩,∴直线CM 的解析式为y=2x+4;②设直线CM 1与直线l 交于点D ,∵OB=O 1M =2,OA=OC=4,∠CO 1M =∠AOB=90°,∴△CO 1M ≌△AOB ,∴∠1M CO=∠BAO ,∵∠C 1M O+∠1M CO =90°,∴∠C 1M O+∠BAO =90°,∴∠1M DA =90°,∴AD ⊥C 1M .【点睛】本题考查了一次函数解析式的确定,坐标与线段的转换,三角形的全等,直线之间的位置关系,熟练运用待定系数法,坐标与线段的关系,三角形的全等是解题的关键.。

八年级数学下册期末试卷(附含答案)精选全文完整版

八年级数学下册期末试卷(附含答案)精选全文完整版

可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。

人教版八年级数学下册精品习题(含答案)

人教版八年级数学下册精品习题(含答案)

第十八章平行四边形单元测试题第一卷选择题一、选择题(每小题3分,共24分)1.在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是( C )A.∠D=60° B.∠A=120° C.∠C+∠D=180°D.∠C+∠A=180°2.矩形,菱形,正方形都具有的性质是( B )A.对角线相等 B.对角线互相平分 C.对角线平分一组对角 D.对角线互相垂直3.如图,▱ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为( B )A. 6cm B. 12cm C. 4cm D. 8cm第3题第4题第5题第7题4.如图所示,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC=12,BD=10,AB=m,则m的取值范围是()A.10<m<12 B.2<m<22 C. 1<m<11 D.5<m<65.如图,如果平行四边形ABCD的对角线AC和BD相交于点O,那么图中的全等三角形共有()A. 1对B. 2对C. 3对D. 4对6.已知菱形的边长为6cm,一个内角为60°,则菱形较短的对角线长是()A. 6cm B.cm C. 3cm D.cm7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°8.菱形的周长为20cm,两邻角的比为.1:2,则较长的对角线长为()A. 4.5cm B. 4cm C. 5cm D. 4cm9.矩形的四个内角平分线围成的四边形()A.一定是正方形 B.是矩形 C.菱形 D.只能是平行四边形10.在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为()A. 9.5 B.10.5 C. 11 D. 15.5第二卷非选择题二、填空题(每小题3分,共24分)11.已知正方形的一条对角线长为4cm,则它的面积是cm2.12.菱形的两条对角线分别是6cm,8cm,则菱形的边长为cm,面积为cm2.13.如图,菱形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AB和CD于点E、F,BD=6,AC=4,则图中阴影部分的面积和为.14.如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.bnnnn第13题第14题第15题第16题15.如图,在△ABC中,点D、E、F分别是AB、AC、BC的中点,若△ABC的周长为12cm,则△DEF的周长是cm.16.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1S2;(填“>”或“<”或“=”)17.已知Rt△ABC的周长是4+4,斜边上的中线长是2,则S△ABC= .18.将七个边长都为1的正方形如图所示摆放,点A1、A2、A3、A4、A5、A6分别是六个正方形的中心,则这七个正方形重叠形成的重叠部分的面积是.第19题图第20题图三、解答题(共7小题,共66分)19.如图,在△ABC中,D、E、F分别为边AB、BC、CA的中点.证明:四边形DECF是平行四边形.(6分)20.已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.(8分)21.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM 的平分线,CE⊥AN,垂足为点E,(8分)(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.22.如图所示,已知AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,(10分)求证:AD⊥EF.23.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(10分)(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.24.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(12分)(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.25.如图,△ABC中,MN∥BD交AC于P,∠ACB、∠ACD的平分线分别交MN于E、F.(12分)(1)求证:PE=PF;(2)当MN与AC的交点P在什么位置时,四边形AECF是矩形,说明理由;(3)当△ABC满足什么条件时,四边形AECF是正方形.(不需要证明)第十六章二次根式一、选择题(每小题3分,共24分)1.在下列各式中,不是二次根式的有( B )①-10;②10a(a≥0);③mn(m,n同号且n≠0);④x2+1;⑤38.A .3个B .2个C .1个D .0个2.若代数式x +1(x -3)2有意义,则实数x 的取值范围是( B )A .x ≥-1B .x ≥-1且x ≠3C .x >-1D .x >-1且x ≠33.下列计算:(1)( 2)2=2;(2) (-2)2=2;(3)(-2 3)2=12;(4)(2+3)(2- 3)=-1.其中结果正确的个数为( D ) A .1 B .2 C .3 D .44.下列式子中为最简二次根式的是( A ) A. 3 B. 4 C.8 D.125.若75n 是整数,则正整数n 的最小值是( B ) A .2 B .3 C .4 D .56.一个直角三角形的两条直角边长分别为2 3 cm ,3 6 cm ,那么这个直角三角形的面积是( C )A .8 2 cm 2B .7 2 cm 2C .9 2 cm 2 D. 2 cm 27.如果a -b =2 3,那么代数式(a 2+b 22a -b )·aa -b的值为( A )A. 3 B .2 3 C .3 3 D .4 3 8.甲、乙两人计算a +1-2a +a 2的值,当a =5的时候得到不同的答案,甲的解答是a +1-2a +a 2=a +(1-a )2=a +1-a =1;乙的解答是a +1-2a +a 2=a +(a -1)2=a +a -1=2a -1=9.下列判断正确的是( D )A .甲、乙都对B .甲、乙都错C .甲对,乙错D .甲错,乙对 二、填空题(每小题3分,共24分)9.已知a <2,则(a -2)2=____2-a____. 10.计算:27-613=___根号三_____. 11.在实数范围内分解因式:x 2-5=_____(x-根号五)(x+根号五)_______. 12.计算:18÷3×13=____根号二____. 13.化简:(1)13 2=____六分之根号二____;(2)112=___十二分之二倍的根号三_____;(3)102 5=____十分之五倍的根号二____;(4)23-1=____根号三加一____. 14.一个三角形的三边长分别为8 cm ,12 cm ,18 cm ,则它的周长是____五倍的根号二加二倍的根号三____ cm.15.已知a 是13的整数部分,b 是13的小数部分,则ab =____三倍的根号十三减九____.16.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式.即:如果一个三角形的三边长分别为a ,b ,c ,那么该三角形的面积为S =14[a 2b 2-(a 2+b 2-c 22)2].已知△ABC 的三边长分别为5,2,1,则△ABC 的面积为____1____.三、解答题(共52分) 17.(10分)计算:解(1)2(12+20)-3(3-5); =根号三加七倍的根号五(2)(3-2 5)(15+5)-(10-2)2. =负的五倍的根号三减三倍的根号五减十二18.(10分)已知a =7+2,b =7-2,求下列代数式的值:(1)a 2b +b 2a ;(2)a 2-b 2. (1)=六倍的根号七 (2)=八倍的根号七19.(10分)先化简,再求值:1x 2+2x +1·(1+3x -1)÷x +2x 2-1,其中x =2 5-1.十分之根号五20.(10分)王师傅有一根长45米的钢材,他想将它锯断后焊成三个面积分别为2平方米、18平方米、32平方米的正方形铁框,王师傅的钢材够用吗?请通过计算说明理由.四倍的根号二加四倍的根号十八加四倍的根号三十二等于四倍的根号二加十二倍的根号二加十六倍的根号二等于三十倍的根号二三十二倍的根号二大于四十五所以王师傅的钢材不够用21.(12分)阅读材料:小明在学习了二次根式后,发现一些含根号的式子可以写成另一个式子的平方的形式,如3+2 2=(1+2)2,善于思考的小明进行了以下探索:设a+b2=(m+n2)2(其中a,b,m,n均为正整数),则有a+b2=m2+2n2+2mn2,所以a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a,b,m,n均为正整数时,若a+b3=(m+n3)2,用含m,n的式子分别表示a,b,得a=___m的平方加三倍的n方_____,b=___2mn_____;(2)利用所探索的结论,找一组正整数a,b,m,n填空:___13___+___4___3=(____1__+__2____3)2;(3)若a+4 3=(m+n3)2,且a,m,n均为正整数,求a的值.A=13or勾股定理单元复习测试题一.选择题二.01.以下列各组数为边长,不能构成直角三角形的是()A.3,4,5 B.1,1,C.8,12,13 D.2.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A.B.C.D.3.如图,字母B所代表的正方形的面积是()A.12 B.144 C.13 D.1944.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了()米.A.0.5 B.1 C.1.5 D.25.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.169 B.25 C.19 D.136.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4.5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1.5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米7.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC,那么这四个三角形中,不是直角三角形的是()A.B.C.D.8.下列说法中,正确的个数有()①已知直角三角形的面积为2,两直角边的比为1:2,则斜边长为;②直角三角形的最大边长为,最短边长为1,则另一边长为;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC为直角三角形;④等腰三角形面积为12,底边上的高为4,则腰长为5.A.1个B.2个C.3个D.4个9.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.15 C.6 D.以上答案都不对10.如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE ⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,则PE+PF的长是()A.B.6 C.D.二.填空题11.如图,在Rt△ABC中,∠C=90°,DE垂直平分AB,连结AD,若AC=6,BC=8,则CD的长为.12.已知:如图,四边形ABDC,AB=4,AC=3,CD=12,BD=13,∠BAC=90°.则四边形ABDC的面积是.13.如图,在四边形ABCD中,∠ADC=∠ABC=45°,CD=,BC=,连接AC、BD,若AC⊥AB,则BD的长度为.14.如图,一架15m长的梯子AB斜靠在一竖直的墙OA上,这时梯子的顶端A离地面距离OA为12m,如果梯子顶端A沿墙下滑3m至C点,那么梯子底端B向外移至D点,则BD的长为m.15.如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有种.三.解答题16.已知:如下图,Rt△ABC中,CD⊥AB于D,AC=4,BC=3,DB=.(1)求DC的长;(2)求AD的长;(3)求AB的长.17.《勾股圆方图》是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图(1)).设每个直角三角形中较短直角边为a,较长直角边为b,斜边为c(1)利用图(1)面积的不同表示方法验证勾股定理.(2)实际上还有很多代数恒等式也可用这种方法说明其正确性.试写出图(2)所表示的代数恒等式:;(3)如果图(1)大正方形的面积是13,小正方形的面积是1,求(a+b)2的值.18.如图的一块地(图中阴影部分),∠ADC=90°,AD=12,CD=9,AB=25,BC=20.(1)求∠ACB的度数;(2)求阴影部分的面积.19.如图所示,永定路一侧有A、B两个送奶站,C为永定路上一供奶站,CA和CB为供奶路线,现已测得AC=8km,BC=15km,AC⊥BC,∠1=30°.(1)连接AB,求两个送奶站之间的距离;(2)有一人从点C处出发沿永定路边向右行走,速度为2.5km/h,多长时间后这个人距B 送奶站最近?并求出最近距离.20.如图,平面直角坐标系中的每个小正方形边长为1,△ABC的顶点在网格的格点上.(1)画线段AD∥BC,且使AD=BC,连接BD;此时D点的坐标是.(2)直接写出线段AC的长为,AD的长为,BD的长为.(3)直接写出△ABD为三角形,四边形ADBC面积是.21.如图,有一公路AB和一铁路CD在点A处交汇,且∠BAD=30°,在公路的点P处有一所学校(学校看作点P,点P与公路AB的距离忽略不计),AP=320米,火车行驶时,火车周围200米以内会受到噪音的影响,现有一列动车在铁路CD上沿AD方向行驶,该动车车身长200米,动车的速度为180千米/时,那么在该动车行驶过程中.(1)学校P是否会受到噪声的影响?说明理由;(2)如果受噪声影响,那么学校P受影响的时间为多少秒?,勾股定理参考答案一.选择题1.解:A、32+42=52,故是直角三角形,故此选项不符合题意;B、12+12=()2,故是直角三角形,故此选项不符合题意;C、82+122≠132,故不是直角三角形,故此选项符合题意;D、()2+()2=()2,故是直角三角形,故此选项不符合题意.故选:C.2.解:△ABC的面积=×BC×AE=2,由勾股定理得,AC==,则××BD=2,解得BD=,故选:A.3.解:如图,根据勾股定理我们可以得出:a2+b2=c2a2=25,c2=169,b2=169﹣25=144,因此B的面积是144.故选:B.4.解:在Rt△ABC中,AB=2.5米,BC=1.5米,故AC===2米,在Rt△ECD中,AB=DE=2.5米,CD=(1.5+0.5)米,故EC===1.5米,故AE=AC﹣CE=2﹣1.5=0.5米.故选:A.5.解:∵大正方形的面积13,小正方形的面积是1,∴四个直角三角形的面积和是13﹣1=12,即4×ab=12,即2ab=12,a2+b2=13,∴(a+b)2=13+12=25.故选:B.6.解:由题意可知.BE=CD=1.5m,AE=AB﹣BE=4.5﹣1.5=3m,AC=5m 由勾股定理得CE==4m故离门4米远的地方,灯刚好打开,故选:A.7.解:A、∵AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,故本选项错误;B、∵AC2=22+32=13,BC2=12+12=2,AB2=22+32=13,∴△ABC不是直角三角形,故本选项正确;C、∵AB2=12+32=10,AC2=22+22=8,BC2=12+12=2,∴△ABC是直角三角形,故本选项错误;D、∵AC2=22+42=20,BC2=22=4,AB2=42=16,∴△ABC是直角三角形,故本选项错误.故选:B.8.解:①、设较短的一个直角边为M,则另一个直角边为2M,所以M×2M=2,解得M =,2M=2.根据勾股定理解得斜边为.所以此项正确;②、根据勾股定理解得,另一边==,所以此项正确;③、设∠A=x,则∠B=5x,∠C=6x.因为x+5x+6x=180°解得x=15°,从而得到三个角分别为15°、75°、90°.即△ABC为直角三角形,所以此项正确;④、已知面积和高则可以得到底边为6,又因为是等腰三角形,则底边上的高也是底边上的中线,则可以得到底边的一半为3.此时再利用勾股定理求得腰长为=5.所以此项正确.所以正确的有四个.故选:D.9.解:在直角三角形ABD中,根据勾股定理,得BD=15;在直角三角形ACD中,根据勾股定理,得CD=6.当AD在三角形的内部时,BC=15+6=21;当AD在三角形的外部时,BC=15﹣6=9.则BC的长是21或9.故选:D.10.【解答】解:(1)作PM⊥AC于点M,可得矩形AEPM∴PE=AM,利用DB=DC得到∠B=∠DCB∵PM∥AB.∴∠B=∠MPC∴∠DCB=∠MPC又∵PC=PC.∠PFC=∠PMC=90°∴△PFC≌△CMP∴PF=CM∴PE+PF=AC∵AD:DB=1:3∴可设AD=x,DB=3x,那么CD=3x,AC=2x,BC=2x∵BC=∴x=2∴PE+PF=AC=2×2=4.(2)连接PD,PD把△BCD分成两个三角形△PBD,△PCD,S=BD•PE,△PBDS=DC•PF,△PCDS=BD•AC,△BCD所以PE+PF=AC=2×2=4.故选:C.二.填空题(共5小题)11.解:∵DE是AB的中垂线,∴DA=DB,设AD=x,则DB=x,CD=BC﹣BD=8﹣x,在Rt△ACD中,∵AC2+CD2=AD2,∴62+(8﹣x)2=x2,解得x=,∴CD=8﹣x=,故答案为:.12.解:连接BC,∵∠A=90°,AB=4,AC=3∴BC=5,∵BC=5,BD=13,CD=12∴BC2+CD2=BD2∴△BCD是直角三角形∴S四边形ABCD=S△BCD+S△ABC=×4×3+×5×12=36,故答案为:3613.解:过A作AE⊥AD,使AE=AD,连接CE,DE,过C作CF⊥AD于F,则△ADE是等腰直角三角形,∵∠ADC=45°,∴△CDF是等腰直角三角形,∴CF=DF=CD=1,∵AC⊥AB,∠ABC=45°,∴△ABC是等腰直角三角形,∴AC=BC=,∴AF==2,∴AD=3,∴DE=AD=3,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE,(SAS),∴CE=BD,∵∠ADE=∠ADC=45°,∴∠CDE=90°,∴CE==2,∴BD=CE=2.故答案为:2.14.解:在Rt△ABO中,∵AB=15m,AO=12m,∴OB===9m.同理,在Rt△COD中,DO===12m,∴BD=OD﹣OB=12﹣9=3(m).故答案是:3.15.解:如图所示:故答案是:3.三.解答题(共6小题)16.解:(1)在Rt△DCB中,DC2+DB2=BC2,∴DC2=9﹣,∴DC=;(2)在Rt△ACD中,AD2+CD2=AC2,∴AD2=16﹣,∴AD=;(3)AB=AD+DB=+=5.17.解:(1)图(1)中的大正方形的面积可以表示为c2,也可表示为(b﹣a)2+4×ab ∴(b﹣a)2+4×ab=c2化简得b2﹣2ab+b2+2ab=c2∴当∠C=90°时,a2+b2=c2;(2)(x+y)(x+2y)=x2+3xy+2y2故填:(x+y)(x+2y)=x2+3xy+2y2(3)依题意得则2ab=12∴(a+b)2=a2+b2+2ab=13+12=25,即(a+b)2=25.18.解:在Rt△ADC中,∵AD=12,CD=9,∴AC2=AD2+CD2=122+92=225,∴AC=15(取正值).在△ABC中,∵AC2+BC2=152+202=625,AB2=252=625.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠A CB=90°.(2)S阴影=AC×BC﹣AD×CD=×15×20﹣×12×9=96.答:阴影部分的面积为96.19.解:(1)∵AC=8km,BC=15km,AC⊥BC,∴A C2+BC2=AB2,AB=km,(2)过B作BD⊥永定路于D,∵△ABC是直角三角形,且∠ACB=90°,∵∠1=30°,∴∠BCD=180°﹣90°﹣30°=60°,在Rt△BCD中,∵∠BCD=60°,∴∠CBD=30°,∴CD=BC==7.5(km),∵7.5÷2.5=3(h),∴3小时后这人距离B送奶站最近.最近距离为km.20.解:(1)如图所示:D点的坐标是(0,﹣4);(2)线段AC的长为=,AD的长为=2,BD的长为=.(3)∵AB==5,AD=2,BD=,(2)2+()2=(5)2,∴△ABD为直角三角形,四边形ADBC面积是2×=20.故答案为:(0,﹣4);,2,;直角,20.21.解:(1)如图作PH⊥CD于H.在Rt△APH中,∵∠PAH=30°,PA=320m,∴PH=PA=160m,∵160<200,∴学校P会受到噪声的影响.(2)当PE=PF=200时,动车在线段EF上时,受噪声影响,∵EF=2FH==240m,180千米/时=50米/秒∵=8.8秒,答:学校P受影响的时间为8.8秒.二次根式详解详析1.B [解析] ①的被开方数是负数,不是二次根式.②符合二次根式的定义,是二次根式.③m,n同号,且n≠0,则被开方数是非负数,是二次根式.④因为x2≥0,所以x2+1>0,被开方数是正数,是二次根式.⑤的根指数不是2,所以不是二次根式.2.B [解析] 由题意得⎩⎪⎨⎪⎧x +1≥0,(x -3)2≠0, 解得x ≥-1且x ≠3.3.D [解析] (1)根据“( a )2=a (a ≥0)”可知( 2)2=2成立;(2)根据“ a 2=||a ”可知 (-2)2=2成立;(3)根据“(ab )2=a 2b 2”可知,计算(-2 3)2,可将-2和 3分别平方后,再相乘,所以这个结论正确;(4)根据“(a +b )(a -b )=a 2-b 2”,( 2+3)( 2- 3)=( 2)2-( 3)2=2-3=-1.4.A5.B [解析] ∵75=25×3,∴使75n 是整数的正整数n 的最小值是3.故选B. 6.C7.A [解析] 原式=(a -b )22a ·a a -b =a -b 2,把a -b =2 3代入,原式=2 32=3,故选A.8.D [解析] ∵a =5,∴(1-a )2=|1-a |=a -1.9.2-a 10. 311.(x +5)(x -5) 12. 2 13.(1)26 (2)36 (3)22(4)3+1 14.(5 2+2 3) [解析] 8+12+18=2 2+2 3+3 2=(5 2+23)cm.15.3 13-9 [解析] 根据题意,得a =3,b =13-3,所以ab =3()13-3= 3 13-9.16.1 [解析] 把5,2,1代入三角形的面积公式得S =14[5×4-(5+4-12)2]=14(20-16)=1,故填1. 17.解:(1)原式=2(2 3+2 5)-3 3+3 5 =4 3+4 5-3 3+3 5 =3+7 5. (2)原式=3×15+ 5 3- 25×15-10 `5-[](10)2-2×10×2+(2)2=3 5+5 3-10 3-10 5-10+4 5-2=-3 5-5 3-12.18.解:(1)原式=ab (a +b ).当a =7+2,b =7-2时,原式=6 7. (2)原式=(a +b )(a -b ).当a =7+2,b =7-2时,原式=8 7.19.解:原式=1(x +1)2·x +2x -1·(x +1)(x -1)x +2=1x +1. 当x =2 5-1时, 原式=12 5-1+1=510.20.解:不够用.理由如下: 焊成三个面积分别为2平方米、18平方米、32平方米的正方形铁框所需的钢材的总长是4(2+18+32)=4(2+3 2+4 2)=32 2(米),(32 2)2=2048,452=2025. ∵2048>2025,∴王师傅的钢材不够用.21.解:(1)m 2+3n 22mn(2)答案不唯一,如:4 2 1 1(3)根据题意,得⎩⎪⎨⎪⎧a =m 2+3n 2,4=2mn .∵2mn =4,且m ,n 为正整数,∴m =2,n =1或m =1,n =2, ∴a =7或a =13.平行四边形答案:所以D 是错误的.故选D .2、解:菱形对角线不相等,矩形对角线不垂直,也不平分一组对角,故答案应为对角线互相平分,故选B .3、解:∵▱ABCD 的周长是28cm ,∴AB+BC=14cm,∵AB+BC+AC=22cm,∴AC=22﹣14=8 cm.故选D.4、解:∵平行四边形ABCD∴OA=OC=6,OB=OD=5∵在△OAB中:OA﹣OB<AB<OA+OB∴1<m<11.故选C.5、解:∵ABCD是平行四边形∴AD=BC,AB=CD,AO=CO,BO=DO∵∠AOB=∠COD,∠AOD=∠COB∴△ABO≌△CDO,△ADO≌△CBO(ASA)∵BD=BD,AC=AC∴△ABD≌△CDB,△ACD≌△CAB(SAS)∴共有四对.故选D.6、解:根据菱形的性质可得较短的对角线与菱形的两边组成一个等边三故选D.8、解:由已知可得,菱形的边长为5cm,两邻角分别为60°,120°.又菱形的对角线互相垂直平分,且每一条对角线平分一组对角,可得30°的角,所对边为2.5cm,则此条对角线长5cm.根据勾股定理可得,另一对角线长的一半为cm,则较长的对角线长为5cm.故本题选C.9、解:矩形的四个角平分线将矩形的四个角分成8个45°的角,因此形成的四边形每个角是90°.又知两条角平分线与矩形的一边构成等腰直角三角形,所以这个四边形邻边相等,根据有一组邻边相等的矩形是正方形,得到该四边形是正方形,故选A.∴△DEF的周长为△EAF的周长,即AE+EF+AF=(AB+BC+AC)=(12+10+9)=15.5.故选D.第二卷非选择题二、填空题(每小题3分,共24分)11、解:设这个正方形的边长为xcm,则根据正方形的性质可知:x2+x2=42=16,解可得x=2cm;则它的面积是x2=8cm2,故答案为8cm2.12、解:菱形的两条对角线分别是6cm,8cm,得到两条对角线相交所构成的直角三角形的两直角边是×6=3cm和×8=4cm,那么它的斜边即菱形的边长=5cm,面积为6×8×=24cm2.故答案为5,24.∴∠CAB=30°∴PA=2EP∵AB=2,E是AB的中点∴AE=1在Rt△APE中,PA2﹣PE2=1∴PE=,PA=∴PE+PB=PE+PA=.故答案为.所以S1=S2.故答案为S1=S2.17、解:∵Rt△ABC的周长是4+4,斜边上的中线长是2,∴斜边长为4,设两个直角边的长为x,y,则x+y=4,x2+y2=16,解得:xy=8,∴S△ABC=xy=4.18、解:连接BD和AA2,∵四边形ABA2D和四边形A1EFC都是正方形,∴DA1=A1A2,∠A1DN=∠A1A2M=45°,∠DA1A2=∠NA1M=90°,∴∠DA1N=∠A2A1M,∵在△DA1N和△A2A1M中∠A1DN=∠A1A2M,DA1=A1A2,∠DA1N=∠A2A1M,∴△DA1N≌△A2A1M,即四边形MA1NA2的面积等于△DA1A2的面积,也等于正方形ABA2D的面积的,同理得出,其余的阴影部分的面积都等于正方形面积的,则这七个正方形重叠形成的重叠部分的面积是6××12=,故答案为:.三、解答题(共7小题,共66分)∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.22、证明:∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形.又∵∠1=∠2,而∠2=∠3,∴∠1=∠3,∴AE=DE.∴▱AEDF为菱形.∴AD⊥EF.23、(1)证明:∵E是AD的中点,∴AE=DE.∵AF∥BC,∴∠FAE=∠BDE,∠AFE=∠DBE.∴△AFE≌△DBE.∴AF=BD.∵AF=DC,∴BD=DC.即:D是BC的中点.(4分)(2)解:四边形ADCF是矩形;∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∠ADB=∠CDB,∴∠PMD=∠PND=90°,PM=PN,∵∠ADC=90°,∴四边形MPND是矩形,∵PM=PN,∴四边形MPND是正方形.25、证明:(1)∵CE平分∠ACB,∴∠ACE=∠BCE.∵MN∥BC,∴∠PEC=∠BCE.∴∠ACE=∠PEC,PE=PC.同理:PF=PC.∴PE=PF.。

八年级下册期末数学试题附答案

八年级下册期末数学试题附答案

八年级下册期末数学试题附答案数学如何不经常的练习以及活动大脑思维的话,那学习起来会非常的困难,下面是小编给大家带来的八年级下册期末数学试题,希望能够帮助到大家!八年级下册期末数学试题(附答案)(满分:150分,时间:120分钟)一、选择题(每小题3分,共24分)每题有且只有一个答案正确,请把你认为正确的答案前面的字母填入答题卡相应的空格内.1.不等式的解集是( )A B C D2.如果把分式中的x和y都扩大2倍,那么分式的值( )A 扩大2倍B 不变C 缩小2倍D 扩大4倍3. 若反比例函数图像经过点,则此函数图像也经过的点是( )A B C D4.在和中,,如果的周长是16,面积是12,那么的周长、面积依次为( )A 8,3B 8,6C 4,3D 4,65. 下列命题中的假命题是( )A 互余两角的和是90°B 全等三角形的面积相等C 相等的角是对顶角D 两直线平行,同旁内角互补6. 有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是( )A B C D7.为抢修一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车,问原计划每天修多少米?若设原计划每天修x 米,则所列方程正确的是 ( )A B C D8.如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为 ( )A 1B 2C 2.5D 3二、填空题(每小题3分,共30分)将答案填写在答题卡相应的横线上.9、函数y= 中,自变量的取值范围是 .10.在比例尺为1∶500000的中国地图上,量得江都市与扬州市相距4厘米,那么江都市与扬州市两地的实际相距千米.11.如图1,,,垂足为 .若,则度.12.如图2,是的边上一点,请你添加一个条件:,使 .13.写出命题“平行四边形的对角线互相平分”的逆命题:_________________________________________________________________________.14.已知、、三条线段,其中,若线段是线段、的比例中项,则 = .15. 若不等式组的解集是,则 .16. 如果分式方程无解,则m= .17. 在函数 ( 为常数)的图象上有三个点(-2, ),(-1, ),( , ),函数值,,的大小为 .18.如图,已知梯形ABCO的底边AO在轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且,若△OBC的面积等于3,则k的值为 .三、解答题(本大题10小题,共96分)解答应写出文字说明、证明过程或演算步骤.19.(8分)解不等式组,并把解集在数轴上表示出来.20.(8分)解方程:21.(8分)先化简,再求值:,其中 .22.(8分) 如图,在正方形网格中,△OBC的顶点分别为O(0,0), B(3,-1)、C(2,1).(1)以点O(0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC放大为△OB′C′ ,放大后点B、C两点的对应点分别为B′、C′ ,画出△OB′C′,并写出点B′、C′的坐标:B′( , ),C′( , );(2)在(1)中,若点M(x,y)为线段BC上任一点,写出变化后点M 的对应点M′的坐标( , ).23.(10分)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.供选择的三个条件(请从其中选择一个):①AB=ED;②BC=EF;③∠ACB=∠DFE.24.(10分)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字,和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y= 上的概率.25.(10分)如图,已知反比例函数和一次函数的图象相交于第一象限内的点A,且点A的横坐标为1. 过点A作AB⊥x轴于点B,△AOB的面积为1.(1)求反比例函数和一次函数的解析式;(2)若一次函数的图象与x轴相交于点C,求∠ACO的度数;(3)结合图象直接写出:当 > >0 时,x的取值范围.26.(10分)小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD= ,CE= ,CA= (点A、E、C在同一直线上).已知小明的身高EF是,请你帮小明求出楼高AB.27.(12分)某公司为了开发新产品,用A、B两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:A(单位:千克) B(单位:千克)甲 9 3乙 4 10(1)设生产甲种产品x件,根据题意列出不等式组,求出x的取值范围;(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y元,求出成本总额y(元) 与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.28.(12分)如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n(1)请在图1中找出两对相似而不全等的三角形,并选取其中一对证明它们相似 ;(2)根据图1,求m与n的函数关系式,直接写出自变量n的取值范围;(3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2). 旋转∆AFG,使得BD=CE,求出D点的坐标,并通过计算验证 ;(4)在旋转过程中,(3)中的等量关系是否始终成立,若成立,请证明,若不成立,请说明理由.八年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8答案 D B D A C C A D二、填空题(本大题共10小题,每题3分,共30分)9、x≠1 10、20 11、40 12、或或13、对角线互相平分的四边形是平行四边形。

人教版八年级下册数学期中考试试题含答案

人教版八年级下册数学期中考试试题含答案

人教版八年级下册数学期中考试试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣22.下列二次根式中,最简二次根式是()A.B.C.D.3.下列二次根式中,与之积为无理数的是()A.B.C.D.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.25.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,256.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm29.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.810.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.12.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4D.8二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=.14.相邻两边长分别是2+与2﹣的平行四边形的周长是.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是,面积是.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.【解答】解:由题意得:2+x≥0,解得:x≥﹣2,故选D.【点评】本题考查了二次根式有意义的条件,难度不大,解答本题的关键是掌握二次根式的被开方数为非负数.2.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念进行判断即可.【解答】解:=a,A错误;=,B错误;=3,C错误;是最简二次根式,D正确,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.下列二次根式中,与之积为无理数的是()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘法进行计算逐一判断即可.【解答】解:A、,不是无理数,错误;B、,是无理数,正确;C、,不是无理数,错误;D、,不是无理数,错误;故选B.【点评】此题考查二次根式的乘法,关键是根据法则进行计算,再利用无理数的定义判断.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,25【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、52+122=132,故是直角三角形,故正确;B、42+52≠62,故不是直角三角形,故错误;C、12+()2=()2,故是直角三角形,故正确;D、72+242=252,故是直角三角形,故正确.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【考点】平行四边形的性质.【分析】根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.【解答】解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选:D.【点评】此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°【考点】三角形内角和定理;正方形的性质.【分析】根据三角形内角和为180°,得到∠BAC+∠BCA+∠ABC=180°,又∠4=∠5=∠6=90°,根据平角为180°,即可解答.【解答】解:如图,∵图中是三个正方形,∴∠4=∠5=∠6=90°,∵△ABC的内角和为180°,∴∠BAC+∠BCA+∠ABC=180°,∵∠1+∠4+∠BAC=180°,∠2+∠6+∠ABC=180°,∠3+∠5+∠ACB=180°,∴∠1+∠4+∠BAC+∠2+∠6+∠ABC+∠3+∠5+∠ACB=540°,∴∠1+∠2+∠3=540°﹣(∠4+∠5+∠6+∠BAC+∠ABC+∠ACB)=540°﹣90°﹣90°﹣90°﹣180°=90°,故选:B.【点评】本题考查了三角形内角和定理,解决本题的关键是运用三角形内角和为180°,正方形的内角为90°以及平角为180°,即可解答.8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm2【考点】勾股定理;矩形的性质.【专题】计算题.【分析】在直角三角形ABC中,由AB与AC的长,利用勾股定理求出BC的长,再由BE的长,求出矩形CBEF的面积即可.【解答】解:在Rt△ABC中,AB=17cm,AC=8cm,根据勾股定理得:BC==15cm,则矩形CBEF面积S=BC•BE=45cm2.故选C【点评】此题考查了勾股定理,以及矩形的性质,熟练掌握勾股定理是解本题的关键.9.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8【考点】估算无理数的大小.【分析】首先得出<<,进而求出的取值范围,即可得出n的值.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.【点评】此题主要考查了估算无理数,得出<<是解题关键.10.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【考点】勾股定理的逆定理.【分析】对原式进行化简,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.【点评】解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()【考点】矩形的性质.【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.12.如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为()【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE 平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=6.【考点】二次根式的混合运算.【专题】计算题.【分析】先把化简,然后把括号内合并后进行二次根式的乘法运算即可.【解答】解:原式=(+2)×=3×=6.故答案为6.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.14.相邻两边长分别是2+与2﹣的平行四边形的周长是8.【考点】二次根式的应用.【分析】根据平行四边形的周长等于相邻两边的和的2倍进行计算即可.【解答】解:平行四边形的周长为:(2++2﹣)×2=8.故答案为:8.【点评】本题考查的是平行四边形的周长的计算和二次根式的加减,掌握平行四边形的周长公式和二次根式的加减运算法则是解题的关键.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为60cm2.【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,过点A作AD⊥BC于点D,根据BC=10cm可知BD=5cm.由勾股定理求出AD的长,再由三角形的面积公式即可得出结论.【解答】解:如图所示,过点A作AD⊥BC于点D,∵AB=AC=13cm,BC=10cm,∴BD=5cm,∴AD===12cm,∴S△ABC=BC•AD=×10×12=60(cm2).故答案为:60cm2.【点评】本题考查的是勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是60°.【考点】平行四边形的性质.【分析】由平行四边形的性质得出∠A=∠C,∠A+∠B=180°,再由已知条件求出∠A,即可得出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=240°,∴∠A=120°,∴∠B=60°;故答案为:60°.【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是20,面积是24.【考点】菱形的性质.【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故答案为:20,24.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于对角线积的一半.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为(9,4).【考点】平行四边形的性质;坐标与图形性质.【分析】由平行四边形的性质得出CD=AB=9,由勾股定理求出OD,即可得出点C的坐标.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=9,∵点A的坐标为(﹣3,0),∴OA=3,∴OD===4,∴点C的坐标为(9,4).故答案为:(9,4).【点评】本题考查了平行四边形的性质、坐标与图形性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出OD是解决问题的关键.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是24.【考点】平行四边形的性质.【分析】由在平行四边形ABCD中,DE平分∠ADC,易证得△CDE是等腰三角形,继而求得CD的长,则可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=8,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴CD=CE=BC﹣BE=8﹣4=4,∴AB=CD=4,∴平行四边形ABCD的周长是:AD+BC+CD+AB=24.故答案为:24.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△CDE是等腰三角形是关键.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为24m2.【考点】勾股定理的应用.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:如图,连接AC由勾股定理可知AC===5,又AC2+BC2=52+122=132=AB2故三角形ABC是直角三角形故所求面积=△ABC的面积﹣△ACD的面积==24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=4×12÷(5+﹣4)=48÷(2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.【考点】图形的剪拼;实数与数轴;分式的化简求值;勾股定理.【分析】(1)首先将括号里面通分,进而利用分式的除法运算法则化简,进而将已知代入求出答案;(2)直接利用勾股定理结合数轴得出的位置;(3)直接利用勾股定理得出大正方形的边长即可.【解答】解:(1)原式=÷=×=,当x=+,y=﹣时,原式==;(2)因为30=25+5,则首先作出以5和为直角边的直角三角形,则其斜边的长即是.如图所示:;(3)如图所示:∵左边是由两个边长为2的小正方形组成,∴大正方形的边长为:=2.【点评】此题主要考查了分式的混合运算以及无理数的确定方法以及勾股定理、图形的剪拼,正确应用勾股定理是解题关键.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可.【解答】证明:四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=BE,∴AF=CE,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;(2)原式=+++…+=(﹣1).【点评】本题考查了分母有理化,分子分母都乘以分母两个数的差是分母有理化的关键.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【考点】正方形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【专题】压轴题.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.。

2024-2025学年人教版(2024)八年级数学下册阶段测试试卷813

2024-2025学年人教版(2024)八年级数学下册阶段测试试卷813

2024-2025学年人教版(2024)八年级数学下册阶段测试试卷813考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共8题,共16分)1、若分式的值为零,则x的值为()A. ±2B. -2C. 2D. 不存在2、如图,在下列条件中,不能判断△ABD≌△BAC的条件是( )(A)∠BAD=∠ABC,∠ABD=∠BAC (B)AD=BC,BD=AC(C)BD=AC,∠BAD=∠ABC (D)∠D=∠C,∠BAD=∠ABC3、20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是().A.B.C.D.4、如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A.B.C.D.5、三角形的一个外角为36°,则这个三角形是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形6、下列运算正确的是()A. (a2b2)2=a2b2B. a5b2÷b2=a5C. (3xy2)2=6x2y4D. a3•a2=a67、若a为方程x2+x-5=0的解,则a2+a+1的值为()A. 16B. 12C. 9D. 68、如图,在正方形网格的格点(即最小正方形的顶点)中找一点C,使得△ABC是等腰三角形,且AB为其中一腰.这样的C点有()个.A. 7个B. 8个C. 9个D. 10个评卷人得分二、填空题(共5题,共10分)9、如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E.若△CDE的周长为8cm,则平行四边形ABCD的周长为.10、函数[y=kx−b <]的图象如图所示,则关于[x <]的不等式[k(x−3)−b <][>0> 0<]的解集是.11、▱[ABCD <]中,[∠A=50∘ <],则[∠D= <] ______ .12、分解因式:3x2-12= .13、据统计,近几年全世界森林面积以每年约1700万公顷的速度消失,为了预测未来20年世界森林面积的变化趋势,可选用统计图表示收集到的数据.评卷人得分三、判断题(共6题,共12分)14、数轴上任何一点,不表示有理数就表示无理数.(判断对错)15、3m2-6m=m(3m-6).(判断对错)16、-0.01是0.1的平方根.( )17、判断对错:关于中心对称的两个图形全等。

八年级下册数学计算题大全及答案

八年级下册数学计算题大全及答案

八年级下册数学计算题大全及答案第一章:整数运算知识点1:加法和减法1.计算:73 + 48 = 1212.计算:312 - 145 = 1673.计算:-86 + 64 = -224.计算:-126 - 83 = -209知识点2:乘法和除法1.计算:25 × 8 = 2002.计算:84 ÷ 6 = 143.计算:-32 × 5 = -1604.计算:-72 ÷ -9 = 8第二章:分数运算知识点1:分数的加法和减法1.计算:1/3 + 1/4 = 7/122.计算:2/5 - 1/3 = 1/153.计算:3/8 + 5/6 = 49/244.计算:4/9 - 3/7 = 13/63知识点2:分数的乘法和除法1.计算:2/5 × 3/4 = 6/202.计算:3/8 ÷ 1/4 = 12/83.计算:-1/3 × 5/6 = -5/184.计算:-2/7 ÷ -1/5 = 10/7第三章:代数式和代数方程知识点1:代数式运算1.计算:2x + 3y - x + 5y = x + 8y2.计算:4a - 2b + 3a + b = 7a - b3.计算:3m + 2n - 4m + 3n = -m + 5n4.计算:-5x + 2y + 3x - y = -2x + y知识点2:代数方程求解1.解方程:5x - 12 = 8–解:x = 42.解方程:3y + 7 = 4y - 9–解:y = 163.解方程:2z - 5 = -3z + 4–解:z = 14.解方程:4a + 3 = 2a + 9–解:a = 3第四章:几何运算知识点1:图形的周长和面积1.求矩形的周长:长为10cm,宽为4cm–解:周长 = 2(长 + 宽) = 2(10 + 4) = 28cm2.求正方形的面积:边长为6cm–解:面积 = 边长 × 边长 = 6 × 6 = 36cm²3.求三角形的周长:边长分别为5cm、7cm、8cm–解:周长 = 边1 + 边2 + 边3 = 5 + 7 + 8 = 20cm4.求圆的面积:半径为3cm–解:面积= π × 半径² = 3.14 × 3² = 28.26cm²知识点2:相似图形和全等图形1.判断下列图形是否相似:–三角形ABC与三角形DEF,∠ABC = ∠DEF,∠ACB = ∠DFE,∠BAC = ∠EDF–解:相似2.判断下列图形是否全等:–三角形ABC与三角形DEF,∠ABC = ∠DEF,∠BAC = ∠EDF–解:不全等以上是八年级下册数学计算题的大全及答案,包括整数运算、分数运算、代数式和代数方程、几何运算等多个知识点。

人教版八年级下册数学期中考试试卷含答案

人教版八年级下册数学期中考试试卷含答案

人教版八年级下册数学期中考试试题一、单选题1.下列二次根式中,属于最简二次根式的是()AB C D 2)A .x>3B .x>-3C .x≥3D .x≥-33.下列二次根式中,与)A BC D4.如图所示,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F .若AE =3cm ,AF =4cm ,AD =8cm ,则CD 的长.()A .6cmB .4cmC .5cmD .8cm5.如图,正方形ABCD 的对角线AC 、BD 交于点O ,AO =3,则AB 的长为()A .2B .3CD .6.下列等式成立的是()A .3+=B =C=D 3=7.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于()A .1cmB .2cmC .3cmD .4cm8.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD 的周长是()A .12B .16C .20D .249.如图,在矩形ABCD 中,AB =8,4BC =,将矩形沿AC 折叠,点D 落在点D '处,则重叠部分AFC △的面积为()A .6B .8C .10D .1210.如图所示,一只蚂蚁在正方体的一个顶点A 处,它能爬到顶点B 处寻找食物,若这个正方体的边长为1,则这只蚂蚁所爬行的最短路程为()A .8B 21C 5D 3二、填空题11.已知ABCD 中一条对角线分A ∠为35°和45°,则B ∠=________度.12.矩形的两条对角线的夹角为60︒,较短的边长为12m ,则对角线长为___cm .13.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为__________m.14.已知菱形的两条对角线长为8cm和6cm,那么这个菱形的面积是_______.15.在平面直角坐标系中,点A(﹣1,0)与点B(0,3)的距离是_____.16.计算3⨯的结果是________.17.已知a、b、c是△ABC的三边长且c=5,a、b2130(),则△ABCb-=的形状为_____三角形.三、解答题18.计算(2(119.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?=.20.如图,在▱ABCD中,AE CF()1求证:ADE;≌CBF()2求证:四边形BFDE为平行四边形.21.已知,如图所示,实数a、b、c a b b c--+.22.如图,在菱形ABCD中,∠B=60°,AB=3,延长AD到点E,使DE=AD,延长CD到点F,使DF=CD,连接AC、CE、EF、AF.(1)求证:四边形ACEF是矩形;(2)求四边形ACEF的周长.23.已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是菱形;(3)你学过的哪种特殊四边形的中点四边形是菱形?24.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个三角形,使三角形三边长分别为2(2)如图2,点A、B、C是小正方形的顶点,求∠ABC的度数.25.如图,正方形ABCD中,G是BC边上任意一点(不与B,C重合),DE⊥AG于点E,BF//DE,且交AG于点F.(1)求证:AE=BF;(2)四边形BFDE可能是平行四边形吗?如果可能,请指出此时点G的位置;如果不可能,请说明理由.26.如图,在四边形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=cm;(2)当t=秒时,四边形PQBA成为矩形.(3)当t为多少时,PQ=CD?(4)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.参考答案1.D【解析】【分析】根据最简二次根式的概念判断即可.【详解】解:A 22=,被开方数含分母,不是最简二次根式,不符合题意;B =C 2=,被开方数中含能开得尽方的因数,不是最简二次根式,不符合题意;D,是最简二次根式,符合题意;故选:D .【点睛】本题考查的是最简二次根式的判断,掌握被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式是解题的关键.2.D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0+30≥x 解得:-3≥x 故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.3.C【解析】【分析】先将各二次根式化简为最简二次根式,然后根据同类二次根式的定义判断即可.【详解】解:A 的被开方数是6、不符合题意;B ,不符合题意;C,符合题意;D 2故选C .【点睛】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.4.A【解析】【分析】根据等面积法即可求得CD .【详解】四边形ABCD 是平行四边形,∴//,//AD BC AB CDAD AE CD AF∴⨯=⨯ AE =3cm ,AF =4cm ,AD =8cm ,8364CD ⨯∴==cm故选A【点睛】本题考查了平行四边形的性质,掌握平行四边形的性质是解题的关键.5.D【解析】【分析】利用正方形的性质,在Rt AOB △中利用勾股定理计算即可.【详解】解: 四边形ABCD 是正方形,AC BD ∴⊥,AC BD =,OA OC =,OB OD =,3OA OB ∴==,△中,在Rt AOBAB=∴AB=.故选:D.【点睛】本题考查正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.D【解析】【分析】根据二次根式的运算法则即可逐一判断.【详解】解:A、3和A错误;B=B错误;C==,故C错误;D3,正确;故选:D.【点睛】本题考查了二次根式的运算,解题的关键是掌握基本的运算法则.7.B【解析】【详解】解:如图,∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC-BE=5-3=2.故选B.8.D【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.【详解】解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=24.故选:D.【点睛】本题考查了三角形的中位线,菱形的性质,掌握以上知识是解题的关键.9.C【解析】【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF =D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB−BF,即可得到结果.【详解】解:在△AFD′和△CFB中,D B AFD CFB AD CB ∠=∠⎧⎪∠=∠⎪⎨⎪=''⎩'⎪,∴△AFD ′≌△CFB ,∴D ′F =BF ,设D ′F =x ,则AF =8−x ,在Rt △AFD ′中,(8−x )2=x 2+42,解得:x =3,∴AF =AB −FB =8−3=5,∴S △AFC =12•AF •BC =10.故选:C .【点睛】本题考查了翻折变换−折叠问题,勾股定理的正确运用,本题中设D ′F =x ,根据直角三角形AFD ′中运用勾股定理求x 是解题的关键.10.C【解析】【详解】试题解析:将正方体展开,如图所示:在直角△ABC 中,∵∠ACB=90°,AC=2,BC=1,∴=故选C .考点:平面展开-最短路径问题.11.100【解析】【详解】分析:首先求出∠A的度数,然后根据平行四边形的性质得出答案.详解:∵∠A=35°+45°=80°,∠A+∠B=180°,∴∠B=100°.点睛:本题主要考查的就是平行四边形的性质,属于基础题型.平行四边形的对角相等,邻角互补,本题只要明确这个就非常好解答了.12.24【解析】【分析】由矩形的对角线相等且平分可求得较短边与对角线的一半所构成的三角形为等边三角形,则可求得答案.【详解】解:如图,在矩形ABCD中,AC、BD相交于点O,∠AOB=60°,∴OA=OB=OC=OD,∵∠AOB=60°,∴△AOB为等边三角形,∴OB=12cm,∴DB=24cm,故答案为:24.【点睛】本题主要考查矩形的性质,证得△AOB为等边三角形是解题的关键.13.12【解析】【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+1)m,再利用勾股定理即可求得AB的长,即旗杆的高.【详解】解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m.在Rt△ABC中,AB2+BC2=AC2,∴x2+52=(x+1)2,解得x=12,∴AB=12.∴旗杆的高12m.故答案是:12.【点睛】此题考查了学生利用勾股定理解决实际问题的能力,难度不大.14.24cm2【解析】【分析】根据菱形的面积等于其对角线积的一半,计算即可.【详解】解:∵菱形的对角线8cm和6cm,∴菱形的面积为:1862⨯⨯=24cm2.故答案为:24cm2.【点睛】此题考查了菱形的性质.解此题的关键是掌握菱形的面积等于其对角线积的一半定理的应用.15【解析】【分析】根据勾股定理计算即可.【详解】解:∵点A(﹣1,0)与点B(0,3).∴2210AB OA OB =+=.故答案为:10【点睛】本题考查了坐标与图形和勾股定理,解题关键是熟练运用勾股定理进行计算.16.2【解析】【分析】利用二次根式的乘除法则运算.【详解】解:原式=228233=282233⨯⨯+=4233+=2.故答案是:2.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.17.直角【解析】【分析】根据算术平方根和平方式的非负性求得a和b值,再根据勾股定理的逆定理判断即可.【详解】2130b-=()得:120a-=,130b-=,解得:=12a,=13b,∵5c=,∴222a c b+=,∴△ABC的形状为直角三角形,且∠B=90°,故答案为:直角.【点睛】本题考查勾股定理的逆定理、算术平方根和平方式的非负性,熟练掌握勾股定理的逆定理,正确求出a和b值是解答的关键.18.(1)(2).【解析】【详解】试题分析:(1)根据二次根式的性质和乘法分配律,可直接化简,然后合并同类二次根式即可;(2)(1)根据二次根式的性质和乘法分配律,可直接化简,然后合并同类二次根式即可.试题解析:(1)原式(2)原式=19.7米,420元.【解析】【详解】试题分析:先求出AC的长,利用平移的知识可得出地毯的长度,然后求出所需地毯的面积,继而可得出答案.试题解析:在Rt ABC△中,4AC==米,故可得地毯长度=AC +BC =7米,∵楼梯宽2米,∴地毯的面积=14平方米,故这块地毯需花14×30=420元.答:地毯的长度需要7米,需要花费420元.20.(1)证明见解析(2)证明见解析【解析】【分析】()1由四边形ABCD 是平行四边形,推出AD BC =,A C ∠∠=,再根据SAS 即可证明;()2只要证明DF BE =,DF //BE 即可;【详解】()1 四边形ABCD 是平行四边形,AD BC ∴=,A C ∠∠=,在ADE 和CBF 中,AD BC A C AE CF =⎧⎪∠=∠⎨⎪=⎩,ADE ∴ ≌()CBF SAS .()2 四边形ABCD 是平行四边形,AB CD ∴=,AB //CD ,AE CF = ,DF EB ∴=,DF //EB ,∴四边形BFDE 是平行四边形.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定等知识,解题的关键是正确寻找全等三角形的全等条件,灵活运用所学知识解决问题.21.2a c-【分析】a =进行化简,再根据绝对值的代数意义,00,0,0a a a a a a >⎧⎪==⎨⎪-<⎩,结合数轴上点的特征判断正负,依次去绝对值符号后进行合并即可.【详解】解:由数轴可知:a >0,a -b >0,c ﹣a <0,b ﹣c <0,∴原式=a a b c a b c--+-++=()()()a abc a b c -----+=a a b c a b c-+-+--=a a a b b c c-++---=2a c -.故答案为:2a c-【点睛】本题考查二次根式的性质和绝对值的性质,熟练应用绝对值的性质进行化简并合并同类项为解题关键.22.(1)见解析;(2)6+【解析】【分析】(1)由菱形的性质可得AD CD =,根据题意可得,AD DE CD DF ==,则AE CF =,即可判断四边形ACEF 是矩形;(2)根据含30度角的直角三角形的性质,求得AC ,在Rt ACE △中,勾股定理求得CE ,进而即可求得四边形ACEF 的周长.【详解】(1) 四边形ABCD 是菱形AD CD∴= ,AD DE CD DF==∴四边形ACEF 是平行四边形;∴四边形ACEF 是矩形;(2) 四边形ABCD 是菱形3AB CD AD BC ∴==== 四边形ACEF 是矩形;90ACE ∴∠=︒,,AC EF AF CE==603B AB ∠=︒= ,60ADC ∴∠=︒AD CD = ,AB BC=ACD ∴是等边三角形60CAD ∴∠=︒,3AC =30AEC ∴∠=︒12AC AE ∴=6AE ∴=在Rt ACE △中,CE ==∴四边形ACEF 的周长=()(2236AC CE +=+=+【点睛】本题考查了菱形的性质,矩形的判定定理,含30度角的直角三角形的性质,等边三角形的性质,勾股定理,掌握以上知识是解题的关键.23.(1)平行四边形,证明见解析;(2)AC =BD ;(3)矩形【解析】【分析】(1)连接BD 、AC ,利用三角形的中位线性质和平行四边形的判定定理即可解答;(2)根据菱形的判定定理即可解答;(3)根据矩形的性质和菱形的判定解答即可.【详解】解:(1)四边形EFGH 的形状是平行四边形,证明:连接BD 、AC ,∵四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,∴12EH FG BD ==,12EF HG AC ==,∴四边形EFGH 是平行四边形,故答案为:平行四边形;(2)当四边形ABCD 的对角线满足AC =BD 条件时,四边形EFGH 是菱形,理由:∵BD=AC ,12EH FG BD ==,12EF HG AC ==,∴=EH FG EF HG ==,∴四边形EFGH 是菱形,故答案为:AC=BD ;(3)由于矩形的对角线相等,且由(1)(2)结论知,矩形的中点四边形是菱形.【点睛】本题考查平行四边形的判定、菱形的判定、矩形的性质、三角形的中位线性质,熟练掌握相关知识的联系与运用是解答的关键.24.(1)见解析;(2)45°【解析】【分析】(1)以12、2和32为边,即可求解;(2)连接AC ,根据勾股定理求得AC AB BC 、、的长,再根据勾股定理的逆定理求解即可.【详解】解:(1)以12、2和32为边,作图如下:(2)连接AC ,如下图:由勾股定理可得:221310AC +221310BC =+=22245AB =+∵222(10)(10)(25)+=∴222AC BC AB +=∴ABC 为直角三角形,90ACB ∠=︒又∵AC BC=∴ABC 为直角直角三角形∴45ABC ∠=︒【点睛】此题考查了勾股定理以及逆定理的应用,熟练掌握勾股定理和勾股定理的逆定理是解题的关键.25.(1)见解析;(2)不可能,理由见解析【解析】【分析】(1)△ABF ≌△DAE 即可;(2)根据(1)DE =AF ,根据四边形BFDE 是平行四边形,得到FB =DE ,从而BF =AF ,得到∠BAF =45°,得到矛盾即可.【详解】(1)∵四边形ABCD 是正方形,∴AB =DA ,∠BAD =90°,∴∠BAF +∠DAE =90°,∵DE ⊥AG ,BF //DE ,∴∠ADE +∠DAE =90°,∠BFA =∠DEA =90°,∴∠BAF =∠ADE ,∴△ABF ≌△DAE ,∴BF =AE ;(2)四边形BFDE 不可能是平行四边形,理由如下:∵△ABF ≌△DAE ,∴DE =AF ,∵四边形BFDE 是平行四边形,∴FB =DE ,∴BF =AF ,∴∠BAF =45°,∴点G 与点C 重合,与G 是BC 边上任意一点(不与B ,C 重合)矛盾,∴四边形BFDE 不可能是平行四边形.【点睛】本题考查了正方形的性质,三角形全等的判定和性质,平行四边形的判定和性质,熟练掌握正方形的性质,邻国运用三角形全等的判定和性质是解题的关键.26.(1)18;(2)185;(3)125或245;(4)存在t ,使得△DQC 是等腰三角形,此时t 的值为103秒或4秒或259秒.【解析】【分析】(1)作DE BC ⊥于E ,则四边形ABED 为矩形.在直角△CDE 中,已知DC 、DE 的长,根据勾股定理可以计算EC 的长度,根据BC =BE +EC 即可求出BC 的长度;(2)当PA =BQ 时,四边形PQBA 为矩形,根据PA =QB 列出关于t 的方程,解方程即可;(3)分两种情况:当//P Q CD ''时,四边形CDP Q ''是平行四边形;梯形PDCQ 是等腰梯形时,PQ =CD ,可建立方程求解即可得出结论;(4)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.【详解】解:(1)根据题意得:PA =2tcm ,CQ =3tcm ,则PD =AD -PA =(12-2t )cm ,06t ≤≤,如图,过D 点作DE BC ⊥于E ,∵AD ∥BC ,∠B =90°,∴90A ︒∠=,∴四边形ABED 为矩形,∴DE =AB =8cm ,AD =BE =12cm ,在Rt △CDE 中,∵∠CED =90°,DC =10cm ,DE =8cm ,∴EC =cm ,∴BC =BE +EC =18cm ;(2)∵//AD BC ,∠B =90°∴当PA =BQ 时,四边形PQBA 为矩形,即2t =18-3t ,解得t =185秒,故当t =185秒时,四边形PQBA 为矩形;(3)①当//P Q CD ''时,如图,∵//AD BC ,∴四边形CDP Q ''是平行四边形,∴P Q CD ''=,DP CQ ''=,∴12-2t =3t ,∴t =125秒;②如图,梯形PDCQ 是等腰梯形时,PQ =CD ,过点P 作PF BC ⊥于点F ,则90PFE DEF PDE ︒∠=∠=∠=,∴四边形PDEF 是矩形,∴PF DE =,EF =DP =12-2t ,∴CDE QPF ≅ ,∴FQ =CE =6cm ,∴CQ =FQ +EF +CE =6+12-2t +6=3t ,∴t =245;∴当t 为125或245时,PQ =CD ;(4)△DQC 是等腰三角形时,分三种情况讨论:①当QC =DC 时,即3t =10,∴t =103;②当DQ =DC 时,2CQ CE =,即362=⨯t ,∴t =4;③如图,当QD =QC 时,则3QD tcm =,(36)QE QC CE t cm =-=-,在Rt QDE 中,222QD QE DE =+,即()()2223368t t =-+,解得:t =259.故存在t ,使得△DQC 是等腰三角形,此时t 的值为103秒或4秒或259秒.【点睛】此题是四边形综合题,主要考查了直角梯形的性质、矩形的判定、等腰三角形的判定与性质、勾股定理等知识,此题难度适中,注意掌握数形结合思想与方程思想的应用.。

人教版八年级下册数学期末考试试题及答案

人教版八年级下册数学期末考试试题及答案

人教版八年级下册数学期末考试试卷一、单选题1.下列选项中,属于最简二次根式的是()A B C D2x的取值范围是()A .4x >B .4x <C .4x ≥D .4x ≤3.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的众数是()A .6B .7C .8D .94.在ABC 中,D ,E 分别是AB ,AC 的中点,若10BC =,12AB =,则DE 的长为()A .4B .5C .6D .75.如图,每个小正方形的边长都是1,A ,B ,C 分别在格点上,则ABC ∠的度数为()A .30°B .45︒C .50︒D .60︒6.甲、乙、丙三人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是20.55s =甲,20.65s =乙,20.50s =丙,则成绩最稳定的是()A .甲B .乙C .丙D .无法确定7.小明向东走80m 后,沿方向A 又走了60m ,再沿方向B 走了100m 回到原地,则方向A 是A .南向或北向B .东向或西向C .南向D .北向8.若函数3y x m =-+的图象如图所示,则函数1y mx =+的大致图象是()A .B .C .D .9.如图,将边长分别是4,8的矩形纸片ABCD 折叠,使点C 与点A 重合,则BF 的长是()A .2B .3CD .410.已知矩形的对角线为1,面积为m ,则矩形的周长为()A .212m -B .212m +C .D .二、填空题11.在ABCD 中,50A ∠=︒,则C ∠=______.12.若0a >,0b >,则0ab >.的逆命题为______(填“真”或“假”)命题.13.如图,在ABC 中,90ABC ∠=︒,AD DC =,4BD =,则AC =______.14.如图,已知直线111y k x b =+与直线222y k x b =+相交于点()1,2A ,若12y y <,则x 的取值范围为______.15.一组数据4,2,x ,6,3的平均数是4,则这组数据的中位数是______.16.观察311111122=+-=11111236=+-=,111113412=+-==_____;依此类推,按照每个等式反映的规律,第n 个二次根式的计算结果是______.17.计算:三、解答题18.在Rt ABC 中,90C ∠=︒,30A ∠=︒,3AC =,求AB 的长.19.如图,在ABCD 中,点E ,F 分别在AB ,DC 上,且AE CF =.求证:四边形DEBF 是平行四边形.20.某公司有15名员工,他们所在部门及相应每人所创年利润如表所示.部门人数每人所创年利润/万元A53B28C17D44E39(1)这个公司平均每人所创年利润是多少?(2)公司规定,个人所创年利润由高到低前40%的人可以获奖.试判断D部门的员工能否获奖,并说明理由.21.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的中线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB为邻余线,E,F在格点上.22.A、B两家物流公司为了吸引顾客,推出不同的优惠方案,其中A公司原运费是5元/千克,现按8折计费.B公司原运费是6元/千克,优惠方案为:10千克以内不优惠,超过10千克部分按5折计费.(1)以x(单位:千克)表示商品重量,y(单位:元)表示运费,分别就两家公司的优惠方案写出y关于x的函数解析式;(2)在同一直角坐标系中画出(1)中两个函数的大致图象.23.如图,直线6y ax =+与直线2y x =相交于点(),4A m ,且与x 轴相交于点B .(1)求a 和m 值;(2)求AOB 的边AB 上的高.24.已知在平面直角坐标系中,直线28y x =-与x 轴交于点A ,与y 轴交于点B .(1)求A 、B 的坐标;(2)平移线段AB ,使得点A 、B 的对应点M ,N 分别落在直线1l :36y x =+和直线2l :4y x =+上,求M ,N 的坐标;(3)试证明直线()112y kx k =+-恒平分四边形ABNM 的面积,其中0k ≠.25.正方形ABCD 的CD 边长作等边△DCE,AC 和BE 相交于点F ,连接DF.求AFD 的度数.26.下图是交警在某个路口统计的某时段来往车辆的车速情况.(单位:千米/时)(1)车速的众数是多少?(2)计算这些车辆的平均数度;(3)车速的中位数是多少?参考答案1.A【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A,是最简二次根式,符合题意;B==C=能化简,不是最简二次根式,不符合题意;D=故选A.【点睛】本题考查了最简二次根式的定义,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.2.C【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】由题意得,40x-≥,解得,4x≥,故选:C.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.3.D【解析】【分析】根据众数的定义:一组数据中出现次数最多的数,进行求解即可.【详解】解:∵6,7,9,8,9这5个数中9出现了两次,出现的次数最多,∴这组数据的众数为9,故选D.【点睛】本题主要考查了众数的定义,解题的关键在于能够熟练掌握众数的定义.4.B【解析】【分析】由于DE分别是AB、AC的中点,根据中位线性质可知中位线是底边长度的一半.【详解】∵DE分别是AB、AC的中点∴DE为△ABC的中位线∴DE=12BC=1102⨯=5故选B【点睛】本题考查中位线的判定和性质,掌握这两点是解体的关键.5.B 【解析】【分析】利用勾股定理的逆定理证明△ACB 为等腰直角三角形即可得到∠ABC 的度数.【详解】解:连接AC ,由勾股定理得:AC =BC AB =∵AC 2+BC 2=AB 2=10,∴△ABC 为等腰直角三角形,∴∠ABC =45°,故选B .【点睛】本题考查了勾股定理的逆定理,解答本题的关键是根据正方形的性质求出边长,由勾股定理的逆定理判断出等腰直角三角形.6.C 【解析】【分析】根据方差是用来衡量一组数据波动大小的量,故由甲、乙、丙的方差可作出判断.【详解】解:由于222=0.50=0.55=0.65SS S <<甲乙丙,∴成绩较稳定的是丙.故选C .【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.A 【解析】【分析】设小明一开始的位置为O ,向东走到的位置为C ,沿A 方向走到的位置为D ,由题意得OC =80m ,CD =60m ,OD =100m ,然后利用勾股定理的逆定理得到∠OCD =90°即可求解.【详解】解:设小明一开始的位置为O ,向东走到的位置为C ,沿A 方向走到的位置为D ,∴由题意得OC =80m ,CD =60m ,OD =100m ,∴2222226080100OC CD OD +=+==,∴∠OCD =90°,∵OC 的方向为东,∴CD 的方向为南或北,即A 的方向为南或北,故选A .【点睛】本题主要考查了勾股定理的逆定理,解题的关键在于能够熟练掌握相关知识进行求解.8.D 【解析】【分析】根据一次函数的图象的性质确定m 的符号,进而解答即可.【详解】解:由函数3y x m =-+的图象可得:0m <,所以函数1y mx =+的大致图象经过第一、二、四象限,故选:D .【点睛】本题考查了一次函数的图象和性质,关键是根据一次函数的图象的性质确定m 的符号.9.B 【解析】【分析】由折叠的性质可得出AF =CF ,设BF =m ,则AF =8−m ,在Rt △ABF 中,利用勾股定理可得出关于m 的方程,解之即可得出结论.【详解】解:由折叠的性质可知:AF =CF .设BF =m ,则AF =CF =8−m ,在Rt △ABF 中,∠ABF =90°,AB =4,BF =m ,AF =8−m ,∴222AF AB BF =+,即()22284m m -=+,∴m =3.故选:B .【点睛】本题考查了翻转变换、矩形的性质以及勾股定理,在Rt △ABF 中,利用勾股定理找出m (AF 的长)的方程是解题的关键.10.C 【解析】【分析】设矩形的长、宽分别为a 、b ,根据矩形的性质和面积、周长公式计算即可.【详解】解:设矩形的长、宽分别为a 、b ,∵矩形的对角线为1,面积为m ,∴221a b +=,ab m =,∴a b +=∴矩形的周长为()2a b +=故选:C .【点睛】本题考查矩形的性质,关键是用22a b +和ab 表示出a b +.11.50°【解析】【分析】利用平行四边形的对角相等,进而求出即可.【详解】解:∵四边形ABCD 是平行四边形,∴∠A =∠C =50°.故答案为:50°.【点睛】考查平行四边形的性质,掌握平行四边形的对角相等是解题的关键.12.假【解析】【分析】根据逆命题的定义:把原命题的结论作为命题的条件,把原命题的条件作为命题的结论,所组成的命题叫做原命题的逆命题,进行求解即可.【详解】解:若0a >,0b >,则0ab >的逆命题为:若0ab >,则0a >,0b >,这是一个假命题,故答案为:假.【点睛】本题主要考查了判定命题的真假和命题的逆命题,解题的关键在于能够熟练掌握逆命题的定义.13.8【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半求解即可.【详解】解:∵∠ABC =90°,AD =DC ,BD =4,∴AC =2BD =8.故答案为:8.【点睛】本题主要考查了直角三角形斜边上的中线,解题的关键在于能够熟练掌握直角三角形斜边上的中线等于斜边的一半.14.1x <【解析】【分析】根据函数图像,写出直线111y k x b =+的图像在直线222y k x b =+的下方所对应的自变量的范围即可.【详解】由题意知,直线111y k x b =+与直线222y k x b =+相交于点()1,2A ,当12y y <时,1x <,故答案为:1x <.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.4【解析】【分析】根据平均数的定义可以先求出x 的值,再根据中位数的定义求出这组数的中位数即可.【详解】解:利用平均数的计算公式,得(4+2+x +6+3)=4×5,解得x =5,这组数据为2,3,4,5,6,中位数为4.故答案为:4.【点睛】本题考查了中位数、平均数,将数据从小到大依次排列是解题的关键.16.1120()211n nn n+++【解析】【分析】利用题中的等式可得第四个式子的结果为11145+-,第n个二次根式的结果为1111n n+-+,然后进行分式的加减运算即可.【详解】111111112122+-=+=⨯;111111123236+-=+=⨯;1111111343412+-=+=⨯;1111111454520=+-=+=⨯;第n()()()()2111111111n n n n n nn n n n n n+++-+++-==+++.故答案为1120;()211n nn n+++.【点睛】本题考查了二次根式的加减混合运算,列代数式.找出结果与序号之间的关系是解题的关键.17.【解析】【分析】根据实数的计算规则与顺序按步骤计算即可,注意结果能开出来的要开出来.【详解】解:原式===+故答案为4362+【点睛】本题考查实数的混合运算,掌握运算定律和顺序是解题关键.18.23【解析】【分析】由30°角的直角三角形的性质可得12BC AB =,再根据勾股定理可求解.【详解】解:∵90C ∠=︒,30A ∠=︒∴12BC AB =在Rt ABC 中,3AC =22222132AB BC AC AB ⎛⎫=+=+ ⎪⎝⎭解得23AB =【点睛】本题主要考查含30°角的直角三角形的性质,勾股定理,由含30度角的直角三角形的性质得12BC AB =是解题的关键.19.见解析【解析】【分析】根据一组对边平行且相等判断四边形DEBF 是平行四边形即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB CD =,//EB DF .又AE CF =,∴AB AE CD CF-=-.即EB DF=.∴四边形DEBF是平行四边形.【点睛】本题主要考查了矩形的性质,平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定定理进行求解.20.(1)5.4万元;(2)不能,理由见解析【解析】【分析】(1)利用加权平均数,即可求解;(2)算出能获奖的人数,然后个人所创年利润由高到低进行排列,进而即可求解.【详解】解:(1)公司平均每人所创年利润=532817443981 5.41515⨯+⨯+⨯+⨯+⨯==(万元)答:这个公司平均每人所创年利润是5.4万元;(2)D部门员工不能获奖,理由如下:获奖人数为:1540%6⨯=(人)个人所创年利润由高到低分别为E部门3人,B部门2人,C部门1人,共6人,所以D部门不能获奖.【点睛】本题主要考查加权平均数以及统计表,准确找出表格中的相关数据是解题的关键.21.(1)见解析;(2)见解析【解析】【分析】(1)由等腰三角形的“三线合一“性质可得AD⊥BC,则可得∠DAB与∠DBA互余,即∠FAB 与∠EBA互余,从而可得答案;(2)根据邻余四边形的概念画出图形即可.【详解】(1)证明:∵AB=AC AD是△ABC的中线∴AD⊥BC∴∠ADB=90°∴∠FAB+∠B =90°∴四边形ABEF 是邻余四边形(2)如图所示,即为所求.【点睛】本题考查了四边形的新定义,综合考查了等腰三角形的“三线合一“性质,读懂定义并明确相关性质及定理是解题的关键.22.(1)A 公司:4y x =(0x ≥),B 公司:()()601033010x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)见解析【解析】【分析】(1)根据两个公式的优惠政策进行求解即可得到答案;(2)根据(1)求得的结果,在坐标系中描点连线画出函数图像即可【详解】解:(1)A 公司:4y x =(0x ≥),B 公司:()()601033010y x x y x x ⎧=≤≤⎪⎨=+>⎪⎩(2)如图所示,即为所求.【点睛】本题主要考查了画一次函数图像,求函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.23.(1)1a =-,2m =;(2)32【解析】【分析】(1)先把A 点坐标代入直线2y x =求出A 点的坐标,然后代入到6y ax =+求解即可;(2)过点A 作AC OB ⊥于点C ,然后求出B 点的坐标,即可得到AB 的长,设AOB 的边AB上的高为h ,根据1122AOB S OB AC AB h =⋅=⋅△求解即可.【详解】解:(1)把点(),4A m 代入2y x =得:42m =,∴2m =把点()2,4A 代入6y ax =+得426a =+,∴1a =-;(2)把1a =-代入6y ax =+得6y x =-+令0y =,得6x =∴()6,0B ,6OB =.过点A 作AC OB ⊥于点C ,∵()2,4A ∴4AC =,2OC =,4CB =在Rt ACB 中,224442AB =+=设AOB 的边AB 上的高为h ,∴1116412222AOB S OB AC AB h =⋅=⋅=⨯⨯=△116422h ⨯=⨯⨯,解得h =∴△AOB 的边AB 上的高为【点睛】本题主要考查了求一次函数解析式,两直线的交点问题,三角形的高,一次函数与坐标轴的交点问题,解题的关键在于能够熟练掌握相关知识进行求解.24.(1)()4,0A ,()0,8B -;(2)()1,9M ,()3,1N -;(3)见解析【解析】【分析】(1)与x 相交时,y =0;与y 轴相交时,x =0;据此解出第一问;(2)设其中一个变化后的点的坐标为未知数,再根据平移的数量关系和一次函数等量关系建立等式,解出未知数从而求出M 、N 坐标.(3)根据直线的解析式,求出直线恒过的点的坐标,再证明这个坐标就是平行四边形对角线的交点,从而证明该直线横平分平行四边形面积.【详解】解:(1)在直线28y x =-中,令0y =得280x -=,4x =,∴()4,0A 令0x =,∴8y =-,∴()0,8B -(2)点N 在直线2l 上,可设(),4N t t +,又线段MN 是由线段AB 平移得到,由()0,8B -移动到点(),4N t t +,则()4,0A 相应移动到点()4,48M t t +++把()4,48M t t +++代入直线1l ,得()12346t t +=++解得3t =-∴()1,9M ,()3,1N -另解:设()4,0A 移动到点(),M m n ,则()0,8B -相应移动到点()4,8N m n --,分别代入直线解析式中,得方程组36448m n m n +=⎧⎨-+=-⎩解得19m n =⎧⎨=⎩,∴()1,9M ,()3,1N -(3)∵()11111122222y kx k kx k k x ⎛⎫=+-=+-=-+ ⎪⎝⎭当12x =时,12y =∴直线过定点11,22⎛⎫ ⎪⎝⎭∵线段AB 平移得到线段MN∴四边形ABNM 是平行四边形∵()4,0A ,()3,1N -ABNM 的对角线的交点为4301,22-+⎛⎫ ⎝⎭,即11,22⎛⎫ ⎪⎝⎭∴直线()112y kx k =+-恒平分四边形ABNM 的面积,其中0k ≠.【点睛】本题考查平面直角坐标系中的平移问题,一次函数的表达式,平行四边形的性质,掌握基础知识是解题关键.25.60°【解析】【详解】根据正方形及等边三角形的性质求得∠ABF ,∠BAF 的度数,再根据外角的性质即可求得答案解:∵∠CBA=90°,∠ABE=60°,∴∠CBE=150°,∵四边形ABCD为正方形,三角形ABE为等边三角形,∴BC=BE,∴∠BEC=∠BCF=15°,在△CBF和△ABF中,BF=BF,∠CBF=∠ABF,BC=BA,,∴△CBF≌△ABF(SAS),∴∠BAF=∠BCE=15°,又∠ABF=45°,且∠AFD为△AFB的外角,∴∠AFD=∠ABF+∠FAB=15°+45°=60°“点睛”本题考查了正方形的性质、等边三角形的性质、全等三角形的判定与性质、等腰三角形的判定与性质;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键. 26.(1)车速的众数是42千米/时;(2)这些车辆的平均数度是42.6千米/时;(3)车速的中位数是42.5千米/时.【解析】【详解】试题分析:(1)根据条形统计图所给出的数据求出出现的次数最多的数即可,(2)根据加权平均数的计算公式和条形统计图所给出的数据列出算式计算即可,(3)根据中位数的定义求出第10和11个数的平均数即可.解:(1)根据条形统计图所给出的数据得:42出现了6次,出现的次数最多,则车速的众数是42千米/时;(2)这些车辆的平均数度是:(40+41×3+42×6+43×5+44×3+45×2)÷20=42.6(千米/时),答:这些车辆的平均数度是42.6千米/时;(3)因为共有20辆车,中位数是第10和11个数的平均数,所以中位数是42和43的平均数,(42+43)÷2=42.5(千米/时),所以车速的中位数是42.5千米/时.考点:条形统计图;加权平均数;中位数;众数.21。

人教版八年级下册数学期中考试试题附答案

人教版八年级下册数学期中考试试题附答案

人教版八年级下册数学期中考试试卷一、单选题1在实数范围内有意义,则x的取值范围是()A.x≥12B.x≥-12C.x>12D.x≠122.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm3.下列计算错误的是()ABCD.=34.如图,点P是平面坐标系中一点,则点P到原点的距离是()A.3BC D5.若平行四边形中两个内角的度数比为1:2,则其中较小的内角是() A.90°B.60°C.120°D.45°6.-2的倒数是()A.-2B.12-C.12D.27.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1B.4:1C.5:1D.6:18.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°二、填空题9.已知2(23)0x y-+=,则x+y=_____.10.若代数式x-2有意义,则a的取值范围为_____.11.“两直线平行,内错角相等”的逆命题是__________.12.小强在操场上向东走80m后,又走了60m,再走100m回到原地.小强在操场上向东走了80m后,又走60m的方向是______________.13.在平行四边形ABCD中,∠C=∠B+∠D,则∠A=_______,∠D=_________. 14.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE AB⊥,则菱形ABCD 的面积为_________2cm.三、解答题15.计算:12+11315324834854+(3-3)(113).16.已知x 3-1.求代数式2232421x xx x --+-的值.17.在△ABC中,∠C=90°,AC=2.1cm,BC=2.8cm.(1)求△ABC的面积;(2)求斜边AB的长;(3)求高CD的长.18.如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=2求斜边AB的长.19.在三角形ABC中,AB=13,BC=10,BC边上的中线AD=12,求AC20.如图,在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.21.已知菱形的两条对角线的长分别是6和8,求菱形的周长和面积.22.已知:如图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E, BF 与AD交于点F,求证:AE=BF.参考答案1.A【解析】在实数范围内有意义,∴2x-1≥0,∴x≥1 2 .故选A.2.B【解析】解:如图,∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC-BE=5-3=2.故选B.3.D【解析】A.;正确;B.,正确;C.+=,正确;D.,原式错误.故选D.4.A【解析】分析:连接PO,在直角坐标系中,根据点P的坐标是,可知P的横坐标为,详解:连接PO.∵点P,∴点P到原点的距离=3.故选A.点睛:本题主要考查学生对勾股定理、坐标与图形性质的理解和掌握,解答此题的关键是明确点P.5.B【解析】如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B:∠C=1:2,∴∠B=13×180°=60°,故选B.6.B【解析】根据倒数的定义求解.【详解】-2的倒数是-12故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握7.C【解析】菱形的性质;含30度角的直角三角形的性质.【详解】如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1,故选C.8.B【解析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=12(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.9.3【解析】根据非负数的非负性质可得23020x yy-+=⎧⎨-=⎩,可解得12xy=⎧⎨=⎩,然后代入x y+即可求出.【详解】解:由题意可得:23020x y y -+=⎧⎨-=⎩,解得12x y =⎧⎨=⎩,所以123x y +=+=.【点睛】本题主要考查非负数的非负性质和解二元一次方程组的方法,解决本题的关键是要熟练掌握非负数的非负性和解二元一次方程组.10.x≤2【解析】根式有意义,被开放式要大于等于零.【详解】有意义,∴2-x ≥0,解得:x≤2,故填x≤2.【点睛】本题考查了根式有意义的条件,属于简单题,熟悉二次根式有意义的条件是解题关键.11.内错角相等,两直线平行【解析】解:“两直线平行,内错角相等”的条件是:两条平行线被第三条值线索截,结论是:内错角相等.将条件和结论互换得逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,可简说成“内错角相等,两直线平行”.12.向北或向南;【解析】【分析】根据题意作出图形,利用勾股定理的逆定理判定直角三角形即可确定答案.【详解】解:解:如图,AB=80米,BC=BD=60米,AC=AD=100米,根据602+802=1002得:∠ABC=∠ABD=90°,∴小强在操场上向东走了80m后,又走60m的方向是向北或向南,故答案为:向北或向南.【点睛】本题考查了勾股定理的应用,难度中等,解题的关键是根据题意作出图形. 13.120°,60°.【解析】根据平行四边形的性质:对角相等且邻角互补,通过计算即可得出答案.∵四边形ABCD是平行四边形,∴∠B=∠D,∠A=∠C,3∠B+∠C=180°∴3∠B=180°∠B=60°∴∠D=60°∴∠A =∠C =60°+60°=120°故答案为(1).120°(2).60°14.【解析】在直角三角形AED 中,AD =2,AE =1,根据勾股定理可得:DE 所以菱形ABCD 的面积=2AB DE ⨯=⨯=故答案为.15.(1)(2)22+【解析】【详解】分析:(1)根据二次根式的加减法可以解答本题;(2)根据二次根式的乘除法和加减法可以解答本题.详解:(1)原式=33--(2)原式=231++=312-++=3622-+.点睛:本题考查了二次根式的混合运算,解答本题的关键是明确二次根式的混合运算的计算方法.16.-1【解析】【分析】直接代入求值即可解题.【详解】解:把x -1代入代数式2232421x x x x --+-=-1【点睛】本题考查分式的化简求值,属于简单题,解题关键是熟悉掌握代入求值的方法.17.(1)S △ABC =2.942cm ;(2)AB =3.5cm ;(3)CD =1.68cm .【解析】【分析】(1)根据三角形的面积公式进行计算即可;(2)利用勾股定理可得出斜边AB 的长;(3)利用面积的两种表达式可得出CD .【详解】解:如图所示:(1)S △ABC =12AC ×BC =2.942cm ;(2)AB 3.5cm ;(3)12BC ×AC =12AB ×CD ,解得:CD =1.68cm .【点睛】本题考查了勾股定理及直角三角形的面积,注意掌握三角形面积的不同表示方法.18.433.【解析】分析:设BC=x,则AB=2x,再根据勾股定理求出x的值,进而得出结论.详解:∵在Rt△ABC中,∠C=90°,∠A=30°,AC=2,∴设BC=x,则AB=2x,∵AC2+BC2=AB2,即22+x2=(2x)2,解得x=23 3,∴AB=2x=43 3.点睛:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.19.AC=13cm;【解析】【分析】在△ABD中,根据勾股定理的逆定理即可判断AD⊥BC,然后根据线段的垂直平分线的性质,即可得到AC=AB,从而求解.【详解】解:∵AD是中线,AB=13,BC=10,∴BD=12BC=5∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC 又∵BD=CD,∴AC=AB=13..【点睛】本题主要考查了勾股定理的逆定理与线段的垂直平分线的性质,关键是利用勾股定理的逆定理证得AD ⊥BC.20.(1)12,(2)【解析】试题分析:(1)首先根据菱形的性质可得菱形的边长为48÷4=12cm ,然后再证明△ABC 是等边三角形,进而得到AC=AB=12cm ,然后再根据勾股定理得出BO 的长,进而可得BD 的长即可;(2)根据菱形的面积公式=对角线之积的一半可得答案.试题解析:(1)∵菱形ABCD 的周长是48cm ,∴AB=BC=CD=DA=12cm ,又∵∠ABC 与∠BAD 的度数比为1:2,∠ABC=60°,∴△ABC 是正三角形,AC=AB=12cm ,又∠ABO=30°,∴AO=6cm ,=cm ,BD=,(2)S 菱形ABCD=12AC·BD=cm 2.考点:菱形的性质21.周长20,面积24.【解析】【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【详解】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=12AC=4,OB=12BD=3,AC⊥BD∴AB=5(勾股定理)∴此菱形的周长是:5×4=20,面积是:12×6×8=24故菱形的周长是20,面积是24.【点睛】本题考查了菱形的周长和性质得求法,属于简单题,熟悉菱形的性质和菱形求面积的特殊方法是解题关键.22.见解析【解析】试题分析:先利用互余的关系证明∠AED=∠AFB,然后利用正方形的性质得出AD=AB,∠BAD=∠D,从而证明△AED≌△ABF即可.试题解析:证明:∵四边形ABCD是正方形,AE⊥BF,∴∠DAE+∠AED=90°,∠DAE+∠AFB=90°,∴∠AED=∠AFB,又∵AD=AB,∠BAD=∠D,∴△AED≌△ABF,∴AE=BF.考点:1.正方形的性质;2.互余;3.全等三角形的判定与性质.。

苏教版八年级数学下册《二次根式》专项测试题及参考答案(1)

苏教版八年级数学下册《二次根式》专项测试题及参考答案(1)

苏教版八年级数学下册《二次根式》专项测试题及参考答案(1)八年级下册二次根式专项测试卷姓名。

得分:一、选择题(每题2分,共20分)1.下列根式中,与32是同类二次根式的是______。

A。

12.B。

8.C。

6.D。

32改写:与32同类的二次根式是哪一个?答案:D2.下列根式:2xy、8、ab3xy1、x+y,中,最简二次根式的个数是______。

A。

2个。

B。

3个。

C。

4个。

D。

5个改写:这些根式中,最简二次根式有几个?答案:B3.实数a在数轴上的位置如图,则______。

图略)改写:根据图,a的值是多少?答案:-24.(a-4)²+(a-11)²化简后为______。

A。

7.B。

-17.C。

2a-15.D。

无法确定改写:简化(a-4)²+(a-11)²,得到什么结果?答案:B5.若16-a²=4-a⁴+a,则a的取值范围是______。

A。

-4≤a≤4.B。

a>-4.C。

a≤4.D。

-4<a<4改写:满足16-a²=4-a⁴+a的a的范围是什么?答案:D6.设2=a,3=b,用含a,b的式子表示0.54,则下列表示正确的是______。

A。

0.3ab。

B。

3ab。

C。

0.1ab。

D。

0.1ab改写:用a和b表示0.54的式子是什么?答案:C7.化简(a-1)²/(2a-2)的结果是______。

A。

a-1.B。

1-a。

C。

-1-a。

D。

-a-1改写:简化(a-1)²/(2a-2),得到什么结果?答案:A8.若代数式(2-a)+(a-4)的值为2,则a的取值范围是______。

A。

a≥4.B。

a≤2.C。

2≤a≤4.D。

a=2或a=4改写:满足(2-a)+(a-4)=2的a的范围是什么?答案:C9.已知4x-8+x-y-m=0,当y>0时,则m的取值范围是______。

A。

0<m<1.B。

初二数学下册考试试题

初二数学下册考试试题

初二数学下册考试试题初二数学下册考试试题完成了小学阶段的学习,进入紧张的初中阶段。

以下是初二数学下册考试试题,欢迎阅读。

一、选择题(每小题3分,共30分)1.当分式|x|-3x+3的值为零时,x的值为()A、0B、3C、-3D、±32.化简m2-3m9-m2的结果是()A、mm+3B、-mm+3C、mm-3D、m3-m3.下列各式正确的是()A、-x+y-x-y=x-yx+yB、-x+yx-y=-x-yx-yC、-x+y-x-y=x+yx-yD、-x+y-x-y=-x-yx+y4.如果把分式x+2yx中的x和y都扩大10倍,那么分式的值()A.扩大10倍B、缩小10倍C、扩大2倍D、不变5.计算(x-y)2等于()A、x2-yB、x2yC、-x2y2D、x2y26、化简a2a-1-a-1的结果为()A.2a-1a-1B、-1a-1C、1a-1D、27、把分式x2-25x2-10x+25约分得到的结果是()A、x+5x-5B、x-5x+5C、1D、110x8、分式1x2-1有意义的条件是()A、x≠1B、x≠-1C、x≠±1D、x≠09、已知1<x<2,则分式|x-2|x-2-|x-1|x-1+|x|x的值为()A、2B、1C、0D、-110、一项工程,甲单独做需要x天完成,乙单独做需要y天完成,则甲、乙合做需几天完成()A、x+yB、x+yxyC、xyx+yD、x+y2二、填空题(每小题3分,共15分)11.当x=_________时,分式x+1x-1无意义。

12.若代数式x-1x2+1的值等于0,则x=_____________。

13、分式34xy,12x-2y,23x2-3xy的最简公分母是_______________14、已知a-b=5,ab=-3,则1a-1b=______________15、约分3m2n3(x2-1)9mn2(1-x)=______________________。

三维斋八年级下册数学试卷

三维斋八年级下册数学试卷

考试时间:120分钟满分:100分一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √9B. πC. -√16D. 2/32. 如果 |a| = 5,那么 a 的值可能是()A. 5B. -5C. 0D. ±53. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 2 = 1C. 5x + 4 = 0D. 4x - 3 = 2x + 14. 一个等腰三角形的底边长为8,腰长为10,那么这个三角形的面积是()A. 32B. 40C. 48D. 565. 下列图形中,是轴对称图形的是()A. 等边三角形B. 等腰梯形C. 平行四边形D. 长方形6. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 2/xC. y = x² + 2D. y = √x7. 若 m 和 n 是方程x² - 5x + 6 = 0 的两个根,那么 m + n 的值是()A. 2B. 3C. 5D. 68. 下列各式中,正确的是()A. (-2)² = -4B. (-3)³ = -27C. (-5)⁴ = 625D. (-6)⁵ = -77769. 若 a > b > 0,那么下列不等式中正确的是()A. a² > b²B. a³ > b³C. a⁴ > b⁴D. a⁵ > b⁵10. 下列各式中,能表示圆的方程的是()A. x² + y²= 1B. x² + y² = 4C. x² + y² = 9D. x² + y² = 16二、填空题(每题5分,共50分)11. 如果 |x - 3| = 5,那么 x 的值可以是 ______ 或 ______。

12. 下列函数中,y = 3x - 2 是 ______ 函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册考试题内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)
八年级数学下册月考试题
一、选择题:(每小题3分,本题满分共36分,)下列每小题中有四个备选答案,其中只有一个是符合题意的,把正确答案前字母序号填在下面表格相应的题号下.
1.式子在实数范围内有意义,则x的取值范围是()
A.x<1 B.x≤1 C.x>1 D.x≥1
2.下列各组数是三角形的三边,能组成直角三角形的一组数是()
A.2,3,4 B.3,4,5 C.6,8,12 D.
3.下列条件中,能确定一个四边形是平行四边形的是()
A.一组对边相等B.一组对角相等
C.两条对角线相等D.两条对角线互相平分
4.下列计算错误的是()
A.B.C.D.
5.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()
A.195cm B.200cm C.205cm D.210cm
6.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()
A.4 B.6 C.8 D.10
7.如图,在?ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()
A.1 B.2 C.D.4
8.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC 上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形()
A. OE=OF
B. DE=BF
C. ∠ADE=∠CBF
D. ∠ABE=∠CDF
9.如图,□ABCD中,BD=CD,∠C=700,AE⊥BD于点E,则∠DAE=() A. 200 B. 250 C. 300 D. 350
10.化简(﹣2)2015?(+2)2016的结果为()
A.﹣1 B.﹣2 C. +2 D.﹣﹣2
11.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()
A.12 B.24 C.12D.16
12.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP 的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是
()
A.线段EF的长逐渐增大B.线段EF的长逐渐减小
C.线段EF的长不改变D.线段EF的长不能确定
二、填空题(本题有8小题,每小题4分,共32分)
13.若代数式有意义,则实数x的取值范围是.
14.计算的结果是.
15.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.
16..将两个全等的不等边三角形拼成平行四边形,可拼成的不同的平行四边形的个数为______.
17.如图,由四个直角边分别为5和4的全等直角三角形拼成“赵爽弦图”,其中阴影部分面积为.
18.平行四边形的周长等于56 cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长为_______.
19.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为
cm.
20.如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA4的长度为.
三、解答下列各题(满分52分)
21.(1)(+)(﹣)﹣(+3)2.
(2)÷(﹣)﹣×+.
22.如图,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.
23.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)
24.如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠ADC=150°,四边形ABCD
的周长为32.(1)求∠BDC的度数;(2)四边形ABCD的面
积.
25.在平行四边形ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC 于点H,求证:CH=EH.
26.如图,在平行四边形ABCD中,E、F为对角线AC上的两点,且AE=CF,连接DE、BF,
(1)写出图中所有的全等三角形;
(2)求证:DE∥BF.。

相关文档
最新文档