直流电动机调速课程设计

合集下载

课程设计--直流电机调速控制系统设计

课程设计--直流电机调速控制系统设计

课程设计--直流电机调速控制系统设计指导教师评定成绩:审定成绩:**********课程设计报告设计题目:直流电机调速控制系统设计学校:********************学生姓名:**********专业:********************班级:***********学号:**************指导教师:*****************8设计时间:2013 年12 月目录引言 (3)一、直流电动机的工作原理 (4)二、直流电动机的结构 (5)三、直流电动机的分类 (6)四、电动机的机械特性 (7)五、他励直流电动机起动 (10)六、他励直流电动机的调速方法 (11)七、PWM调制电路 (14)八、H桥驱动电路 (14)九、直流电动机调速控制系统设计 (15)十、心得体会 (22)附录参考文献 (23)课程设计任务书 (23)引言现代工业生产中,电动机是主要的驱动设备,目前在直流电动机拖动系统中已大量采用晶闸管(即可控硅)装置向电动机供电的KZ—D拖动系统,取代了笨重的发电动一电动机的F—D系统,又伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。

直流电机调速基本原理是比较简单的(相对于交流电机),只要改变电机的电压就可以改变转速了。

改变电压的方法很多,最常见的一种PWM脉宽调制,调节电机的输入占空比就可以控制电机的平均电压,控制转速。

PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。

直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。

随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展,到目前为止,已经出现了多种PWM控制技术。

基于单片机的直流电机调速系统的课程设计

基于单片机的直流电机调速系统的课程设计

一、总体设计概述本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。

二、直流电机调速原理根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。

但是对于直流电动机的转速,总满足下式:式中U——电压;Ra——励磁绕组本身的内阻;——每极磁通(wb );Ce——电势常数;Ct——转矩常数。

由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。

磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。

电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。

传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。

随着电力电子的发展,出现了许多新的电枢电压控制法。

如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。

调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。

脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电.压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。

如果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。

平均转速Vd与占空比的函数曲线近似为直线。

单闭环直流电机调速系统课程设计

单闭环直流电机调速系统课程设计

《计算机控制技术》课程设计(单闭环直流电机调速系统)摘要运动控制系统中应用最普遍的是自动调速系统。

在工程实践中,有许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求有良好的静、动态性能。

由于直流电动机具有极好的运行性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是长期以来,直流调速系统一直占据垄断地位。

当然,近年来,随着计算机技术、电力电子技术和控制技术的发展,交流调速系统发展很快,并有望在不太长的时间内取代直流调速系统,但是就目前来讲,直流调速系统仍然是自动调速系统的主要方式。

在我国许多工业部门,如轧钢、矿山采掘、海洋钻探、金属加工、纺织、造纸以及高层建筑等需要高性能可控电力拖动的场合,仍然广泛采用直流调速系统。

而且,直流调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。

随着电子技术和计算机技术的高速发展,直流电动机调速逐步从模拟化走向数字化,特别是单片机技术的应用,使直流电动机调速技术进入一个新的发展阶段。

因此,本次课程设计就是针对直流电动机的起动和调速性能好,过载能力强等特点设计由单片机控制单闭环直流电动机的调速系统。

本设计利用AT89C52单片机设计了单片机最小系统构成直流电动机反馈控制的上位机。

该上位机具有对外部脉冲信号技术和定时功能,能够将脉冲计数用软件转换成转速,同时单片机最小系统中设计了键盘接口和液晶显示接口。

利用AT89C52单片机实现直流电机控制电路,即直流电动机反馈控制系统的下位机,该下位机具有直流电机的反馈控制功能,上位机和下位机之间采用并行总线的方式连接,使控制变得十分方便。

本系统能够用键盘实现对直流电机的起/停、正/反转控制,速度调节既可用键盘数字量设定也可用电位器连续调节并且有速度显示电路。

本系统操作简单、造价低、安全可靠性高、控制灵活方便,具有较高的实用性和再开发性。

关键词:直流电动机AT89C52 L298N 模数转换1课题来源1.1设计目的计算机控制技术课程是集微机原理、计算机技术、控制理论、电子电路、自动控制系统、工业控制过程等课程基础知识一体的应用性课程,具有很强的实践性,为了使学生进一步加深对计算机控制技术课程的理解,掌握计算机控制系统硬件和软件的设计思路,以及对相关课程理论知识的理解和融会贯通,提高学生运用已有的专业理论知识分析实际应用问题的能力和解决实际问题的技能,培养学生独立自主、综合分析与创新性应用的能力,特设立《计算机控制技术》课程设计教学环节。

直流电动机双闭环调速系统设计

直流电动机双闭环调速系统设计

1 设计方案论证电流环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。

方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。

转速环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。

方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。

2双闭环调速控制系统电路设计及其原理综述随着现代工业的开展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。

相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。

双闭环控制那么很好的弥补了他的这一缺陷。

双闭环控制可实现转速和电流两种负反应的分别作用,从而获得良好的静,动态性能。

其良好的动态性能主要表达在其抗负载扰动以及抗电网电压扰动之上。

正由于双闭环调速的众多优点,所以在此有必要对其最优化设计进展深入的探讨和研究。

本次课程设计目的就是旨在对双闭环进展最优化的设计。

整流电路本次课程设计的整流主电路采用的是三相桥式全控整流电路,它可看成是由一组共阴接法和另一组共阳接法的三相半波可控整流电路串联而成。

共阴极组VT1、VT3和VT5在正半周导电,流经变压器的电流为正向电流;共阳极组VT2、VT4和VT6在负半周导电,流经变压器的电流为反向电流。

变压器每相绕组在正负半周都有电流流过,因此,变压器绕组中没有直流磁通势,同时也提高了变压器绕组的利用率。

三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。

为使负载电流连续平滑,有利于直流电动机换向及减小火花,以改善电动机的机械特性,一般要串入电感量足够大的平波电抗器,这就等同于含有反电动势的大电感负载。

三相桥式全控整流电路的工作原理是当a=0°时的工作情况。

直流电动机课程设计

直流电动机课程设计

直流电动机课程设计一、课程目标知识目标:1. 理解直流电动机的基本原理,掌握其构造和分类;2. 掌握直流电动机的启动、调速和制动方法;3. 了解直流电动机在实际应用中的优缺点及改进措施。

技能目标:1. 能够正确组装和拆卸直流电动机,并进行简单的故障排查;2. 能够运用所学知识,完成对直流电动机启动、调速和制动的实际操作;3. 能够分析直流电动机在实际应用中的问题,并提出合理的解决方案。

情感态度价值观目标:1. 培养学生对物理学科的兴趣,激发学习热情;2. 培养学生的团队合作意识,学会与他人共同解决问题;3. 培养学生的创新思维,敢于提出不同的观点和看法;4. 增强学生对我国电动机产业的了解,树立民族自豪感。

本课程针对八年级学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果。

在教学过程中,注重理论与实践相结合,提高学生的实践操作能力。

同时,关注学生情感态度的培养,使他们在掌握知识技能的同时,形成正确的价值观。

为后续的教学设计和评估提供明确依据。

二、教学内容1. 直流电动机的基本原理与构造- 课本章节:第三章第三节- 内容:磁场对电流的作用、直流电动机的构造与分类2. 直流电动机的工作原理与启动方法- 课本章节:第三章第四节- 内容:直流电动机的工作原理、启动方法(直接启动、降压启动)3. 直流电动机的调速与制动- 课本章节:第三章第五节- 内容:调速方法(变电阻调速、变电压调速、变频调速)、制动方法(能耗制动、反接制动)4. 直流电动机在实际应用中的优缺点及改进措施- 课本章节:第三章第六节- 内容:直流电动机在实际应用中的优点与局限、改进措施(如采用无刷直流电动机)5. 直流电动机的组装与故障排查- 课本章节:第三章实验- 内容:组装与拆卸直流电动机、观察电动机运行状态,进行简单故障排查教学内容按照以上大纲进行安排,共计5个部分,每部分的教学时间为2课时。

在教学过程中,注重理论与实践相结合,让学生在掌握理论知识的基础上,提高实践操作能力。

交直流调速系统课程设计

交直流调速系统课程设计

目录交直流调速课程设计任务书 (2)前言 (4)关键词 (4)交直流调速课程设计说明书 (5)一、总体方案确实定 (5)1.1 现行方案的讨论与比拟 (5)1.2 选择PWM控制系统的优越性 (6)1.3采用转速电流双闭环的理由 (6)1.4起动过程电流和转速波形 (9)1.5 H桥双极式逆变器的工作原理 (9)1.6 PWM调速系统静特性 (11)二、双闭环直流调速系统的硬件结构 (12)2.1主电路 (13)2.2 电流调节器 (14)2.3转速调节器 (14)2.4控制电路设计 (15)2.5、控制环节电源设计 (16)2.6、限幅电路 (16)2.7转速检测电路 (17)2.8、电流检测电路 (17)2.9、泵升电压限制 (18)三、电机参数及设计要求 (19)3.1电路根本信息如下: (19)3.2计算反响关键参数 (19)四、课程设计心得体会 (23)五、系统主要硬件结构图 (24)参考文献: (25)交直流调速课程设计任务书一、题目:双闭环可逆直流PWM调速系统设计二、设计目的1、对先修课程〔电力电子学、自动控制原理等〕的进一步理解与运用2、运用?电力拖动控制系统?的理论知识设计出可行的直流调速系统,通过建模、仿真验证理论分析的正确性。

也可以制作硬件电路。

3、同时能够加强同学们对一些常用单元电路的设计、常用集成芯片的使用以及对电阻、电容等元件的选择等的工程训练。

到达综合提高学生工程设计与动手能力的目的。

三、系统方案确实定自动控制系统的设计一般要经历从“机械负载的调速性能〔动、静〕→电机参数→主电路→控制方案〞〔系统方案确实定〕→“系统设计→仿真研究→参数整定→直至理论实现要求→硬件设计→制板、焊接、调试〞等过程,其中系统方案确实定至关重要。

为了发挥同学们的主观能动作用,且防止方案及结果雷同,在选定系统方案时,规定外的其他参数由同学自已选定。

1、主电路采用二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器;2、速度调节器和电流调节器采用PI调节器;U*nm=U*i m =U cm=10V3、机械负载为对抗性恒转矩负载,系统飞轮矩〔含电机及传动机构〕GD2 =1.5Nm2;4、主电源:可以选择三相交流380V供电,变压器二次相电压为52V;5、他励直流电动机的参数:见习题集【4-19】〔p96〕n N=1000r/min,电枢回路总电阻R=2Ω,电流过载倍数λ=2;6、PWM装置的放大系数K s=11;PWM装置的延迟时间T s=0.4ms。

直流电机的PWM电流速度双闭环调速系统课程设计

直流电机的PWM电流速度双闭环调速系统课程设计

电力拖动课程设计题目:直流电机的PWM电流速度双闭环调速系统姓名:学号:班级:指导老师:课程评分:日期目录一、设计目标与技术参数二、设计基本原理(一)调速系统的总体设计(二)桥式可逆PWM变换器的工作原理(三)双闭环调速系统的静特性分析(四)双闭环调速系统的稳态框图(五)双闭环调速系统的硬件电路(六)泵升电压限制(七)主电路参数计算和元件选择(八)调节器参数计算三、仿真(一)仿真原理(含建模及参数)(二)重要仿真结果(目的为验证设计参数的正确性)四、结论参考文献附录1:调速系统总图附录2:调速系统仿真图一、设计目标与技术参数直流电机的PWM电流速度双闭环调速系统的设计目标如下:额定电压:U N=220V;额定电流:I N=136A;额定转速:n N:=1460r/min;电枢回路总电阻:R=0.45Ω;电磁时间常数:T l=0.076s;机电时间常数:T m=0.161s;电动势系数:C e=0.132V*min/r;转速过滤时间常数:T on=0.01s;转速反馈系数α=0.01V*min/r;允许电流过载倍数:λ=1.5;电流反馈系数:β=0.07V/A;电流超调量:σi≤5%;转速超调量:σi≤10%;运算放大器:R0=4KΩ;晶体管PWM功率放大器:工作频率:2KHz;工作方式:H型双极性。

PWM变换器的放大系数:K S=20。

二、设计基本原理(一)调速系统的总体设计在电力拖动控制系统的理论课学习中已经知道,采用PI调节的单个转速闭环直流调速系统可以保证系统稳定的前提下实现转速无静差。

但是,如果对系统的动态性能要求较高,例如要求快速起制动,突加负载动态速降小等等,单闭环调速系统就难以满足需要。

这主要是因为在单闭环调速系统中不能随心所欲的控制电流和转矩的动态过程。

如图2-1所示。

图2-1 直流调速系统启动过程的电流和转速波形用双闭环转速电流调节方法,虽然相对成本较高,但保证了系统的可靠性能,保证了对生产工艺的要求的满足,既保证了稳态后速度的稳定,同时也兼顾了启动时启动电流的动态过程。

双闭环直流调速系统课程设计

双闭环直流调速系统课程设计

UPE。

从闭环结构上看,电流环在里面称为内环,转速环在外面,称作外环。

这就形成了转速,电流反馈控制直流调速系统。

图1 转速、电流反馈控制直流调速系统原理图2.双闭环的稳态结构图和静特性图2 双闭环直流调速系统的稳态结构图转速调节器ASR的输出限幅电压决定了电流给定的最大值,电流调节器ACR的输出限幅电压限制了电力电子变换器的最大输出电压,当调节器饱和时,输出达到限幅值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和;当调节器不饱和时,PI调节器工作在线性调节状态,其作用是使输入偏差电压在稳态时为零。

对于静特性来说,只有转速调节器饱和与不饱和两种情况,电流调节器不进入饱和状态 。

3.双闭环直流调速系统的动态数学模型双闭环直流调速系统的动态结构图如图3所示,图中分别表示转速调节器和电流调节器的传递函数。

为了引出电流反馈,在电动机的动态结构图中必须把电枢电流Id 显露出来。

图3 双闭环直流调速系统的动态结构图4.双闭环直流调速系统的调速方法调节转速可以有三种方法: (1)调节电枢供电电压U ; (2) 减弱励磁磁通Φ; (3) 改变电枢回路电阻R 。

对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式最好。

改变电阻只能实现有级调速;减弱励磁磁通虽然能够平滑调速,但调速的范围不大,往往只是配合调压方案,在基速(额定转速)以上做小范围的弱磁升速。

因此,自动控制的直流调速系统往往以改变电压调速为主。

5.电流环、速度环的设计初始条件某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电机参数为:额定电压220V U =,额定电流136I A =;额定转速n 1460rpm =,0.132min/e V r C =⋅,允许过载倍数 1.5λ=;晶闸管装置放大系数40s K =;电枢回路总电阻0.5R =Ω;时间常数0.03,0.18l m s s T T ==;电流反馈系数0.05/V A β=;转速反馈系数0.007min/V r α=⋅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电力拖动技术课程设计》报告书直流电动机调速设计专业:电气自动化学生姓名:班级: 09电气自动化大专指导老师:提交日期: 2012 年 3 月前言在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。

早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。

随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。

采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。

直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。

从控制的角度来看,直流调速还是交流拖动系统的基础。

早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。

随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。

采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工效率。

摘要在电气时代的今天,电动机在工农业生产与人们日常生活中都起着十分重要的作用。

直流电机作为最常见的一种电机,具有非常优秀的线性机械特性、较宽的调速范围、制动性能,宜于在大范围内平滑调速,良好的起动性以及简单的控制电路等优点,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。

本文设计了直流电机控制系统的基本方案,阐述了该系统的基本结构、工作原理、运行特性及其设计方法。

本系统采用霍尔元器件测量电动机的转速,本设计主要研究直流电机的控制和测量方法,从而对电机的控制精度、响应速度以及节约能源等都具有重要意义。

经过驱动放大电路对直流电机进行调速控制。

并将转速显示出来。

从而实现快速的调节电机转速关键字:直流调速SummaryIn the electrical era, the motor plays an important role in industrial and agricultural production and daily life. DC motor as the most common type of motor, with a very good linear mechanical properties of a wide speed range, the braking performance, it is appropriate to smooth speed in a wide range, good start, and a simple control circuit advantages, has been widely used in many of the governor or the fast forward and reverse the field of electric drive.Designed the basic scheme of the DC motor control system, described the basic structure of the system, working principles, operating characteristics and its design method. The system uses the Hall components to measure the motor speed, the design of DC motor control and measurement methods, which the motor control accuracy, faster response and energy conservation are all of great significance. After the driver amplifier for DC motor speed control. And speed is displayed. Enabling rapid adjustment of motor speedKeywords: DC speed control目录第一章直流电动机 (1)第二章直流电动机的结构与工作原理2.1直流电动机的结构 (2)2.2直流电动机的工作原理 (3)第三章他励直流电动机的调速3.1调速指标 (5)3.2电枢串电阻调速 (8)3.3改变电枢电源电压调速 (8)3.4弱磁调速 (10)第四章课程设计内容 (11)参考文献 (13)第一章直流电动机直流电动机是将直流电能转换为机械能的旋转机械。

它与交流电动机(如三相异步电动机)相比,虽然因结构比较复杂、生产成本较高、故障较多等,目前已不如交流电动机应用普遍,但由于它具有优良的调速性能和较大的启动转矩,得到广泛应用。

本节仅就直流电动机的结构与工作原理、直流电动机的分类及在印刷设备中的应用、直流电动机的启动与调速做一简单介绍。

下图为直流电动机的结构原理图,图中的N和S是一对固定不动的磁极,用以产生所需要的磁场。

容量较大一些的电机,磁场都是由直流励磁电流通过绕在磁极铁心上的励磁绕组产生。

为了清晰,图中只画出了磁极的铁心,没有画出励磁绕组。

在N极和S极之间有一个可以绕轴旋转的绕组。

直流电机这部分称为电枢,而实际电机的电枢绕组嵌在铁心槽内,电枢绕组的电流称为电枢电流。

线圈两端分别与两个彼此绝缘而且与线圈同轴旋转的铜片连接,铜片上有各压着一个固定不动的电刷。

在直流电动机中,为了产生方向始终如一的电磁转矩,外部电路中的直流电流必须改变成电机内部的交流电流,这一过程称为电流的换向。

换向的铜片称为换向片。

互相绝缘的换向片组合的总体称为换向器。

SNFABEabcd线框 A.B. 电刷 E.F.换向器第二章直流电动机的结构与工作原理2.1 直流电动机的结构直流电动机主要由磁极、电枢、换向器三部分组成。

(1)磁极。

磁极是电动机中产生磁场的装置,如图1所示。

它分成极心1和极掌2两部分。

极心上放置励磁绕组3,极掌的作用是使电动机空气隙中磁感应强度的分布最为合适,并用来挡住励磁绕组;磁极是用钢片叠成的,固定在机座4(即电机外壳)上,机座也是磁路的一部分。

机座常用铸钢制成。

4图1直流电动机的磁极及磁路1-极心 2-极掌 3-励磁绕组 4-机座(2)电枢。

电枢是电动机中产生感应电动势的部分。

直流电动机的电枢是旋转的,电枢铁心呈圆柱状,由硅钢片组成,表面冲有槽,槽中放有电枢绕组。

(3)换向器(整流子)。

换向器是直流电动机的一种特殊装置,其外形如图2所示,主要由许多换向片组成,每两个相邻的换向片中间是绝缘片。

在换向器的表面用弹簧压着固定的电刷,使转动的电枢绕组得以同外电路联结。

换向器是直流电动机的结构特征,易于识别。

图2换向器1—换向片2—连接部分图3 钩型换向器图4 槽型换向器。

图3 直流电机装配结构图图4 直流电机纵向剖视图1—换向器 2—电刷装置 3—机座 4—主磁极 5—换向极6—端盖 7—风扇 8—电枢绕组 9—电枢铁心2.2 直流电动机的工作原理图2-2 直流电动机原理图图2-2是直流电动机的示意图。

若在A、B之间外加一个直流电压,A接电源正极,B接负极,则线圈中有电流流过。

当线圈处于图5所示位置时,有效边ab在N极下,cd在s极上,两边中的电流方向为a→b,c→d。

由安培定律可知,ab边和cd边所受的电磁力为:F=BIL式中,I为导线中的电流,单位为安(A)。

根据左手定则知,两个F的方向相反,如图5所示,形成电磁转矩,驱使线圈逆时针方向旋转。

当线圈转过180°时,cd边处于N极下,ab边处于S极上。

由于换向器的作用,使两有效边中电流的方向与原来相反,变为d→c、b→a,这就使得两极面下的有效边中电流的方向保持不变,因而其受力方向、电磁转矩方向都不变。

由此可见,正是由于直流电动机采用了换向器结构,使电枢线圈中受到的电磁转矩保持不变,在这个电磁转矩作用下使电枢按逆时针方向旋转。

这时电动机可作为原动机带动生产机械旋转,即由电动机向机械负载输出机械功率。

在直流电动机中,除了必须给电枢绕组外接直流电源外,还要给励磁绕组通以直流电流用以建立磁场。

电枢绕组和励磁绕组可以用两个电源单独供电,也可以由一个公共电源供电。

按励磁方式的不同,直流电动机可以分为他励、并励、串励和复励等形式。

由于励磁方式不同,它们的特性也不用。

他励电动机的励磁绕组和电枢绕组分别由两个电源供电,如图2-3所示。

他励电动机由于采用单独的励磁电源,设备较复杂。

但这种电动机调速范围很宽,多用于主机拖动中。

图2-3 他励电动机第三章 他励直流电动机的调速为了提高劳动生产率和保证产品质量,要求生产机械在不同情况下有不同的工作速度,如扎钢机在扎制不同的品种和不同厚度的钢材时,就必须有不同的工作速度以保证生产的需要,这种人为改变速度的方法称为调速。

可以用机械的方法或电气的方法实现调速。

这里只分析电气调速方法及其性能特点。

电气调速是人为的改变电气参数,有意识地使电动机工作点由一条机械特性曲线转换到另一条机械特性曲线上,为了生产需要而对电动机转速进行的一种控制,它与电机在负载或电压随机波动时而引起的转速扰动变化是两个不同的概念。

根据直流电动机调速公式n=ψ+-Ce Rpa Ra Ia U )(可见,当电枢电流不变时(即负载不变),只要在电枢电压U 、电枢电路附加电阻和每极磁通ф三个参数中,任意改变一个,都能引起转速的变化。

因此,他励直流电动机可以有三种调速方法。

为了评价各种调速方法的优缺点,对对调速方法提出了一定的技术经济指标,通常称为调速指标。

下面下面对调速指标做一简要说明。

3.1调速指标 (1)调速范围调速范围是只指电动机在额定负载下调素时,其最高转速与最低转速之比,用D 表示,即D=m inm ax n n不同的生产机械对对调速范围的要求不同,如车床D=20~100,龙门刨床D=10~40,扎钢机D=1.20~3等。

相关文档
最新文档