0174.铜铟镓硒(CIGS)薄膜太阳能电池

合集下载

CIGS薄膜太阳能电池解读

CIGS薄膜太阳能电池解读

CIGS薄膜太阳能电池的结构
金属栅电极 减反射膜(MgF2) 窗口层ZnO 过渡层CdS 光吸收层CIGS 金属背电极Mo 玻璃衬底 高阻ZnO
低阻AZO
CIGS薄膜太阳能电池的结构
结构原理


减反射膜:增加入射率 AZO: 低阻,高透,欧姆接触 i-ZnO:高阻,与CdS构成n区 CdS: 降低带隙的不连续性,缓 冲晶格不匹配问题 CIGS: 吸收区,弱p型,其空间电 荷区为主要工作区 Mo: CIS的晶格失配较小且热膨 胀系数与CIS比较接近
测试设备主要有:台阶仪,SEM,XRD, RAMAN、分度光透射仪、I-V 分析系统等
铜铟镓硒(CIGS)太阳电池制造工艺路 线
清洁—基膜—单元或多元磁控溅射—沉积—硒化—防护膜—随机检 测—印刷—切割—检测—组装—检测—包装。
CIGS薄膜太阳能电池的制备
• CIGS薄膜太阳能电池的底电极Mo和上电极n-ZnO一般采用磁控溅射的 方法,工艺路线比较成熟 • 最关键的吸收层的制备有许多不同的方法,这些沉积制备方法包括:蒸发 法、溅射后硒法、电化学沉积法、喷涂热解法和丝网印刷法



CIGS的性能不是Ga越多性能越好的,因为短路电流是随 着Ga的增加对长波的吸收减小而减小的。 当x=Ga/(Ga+In)<0.3时,随着的增加,Eg增加, Voc也增 加; x=0.3时带隙为1.2eV;当x>0.3时,随着x的增加,Eg减小, Voc也减小。 G.Hanna等也认为x=0.28时材料缺陷最少,电池性能最好。
CIGS薄膜太阳能电池介绍
二、铜铟硒(CIS)薄膜太阳能电池介绍 三、铜铟镓硒(CIGS)薄膜太阳能电池介绍
一、第三代太阳能电池

CIGS薄膜太阳能电池简要介绍和发展现状

CIGS薄膜太阳能电池简要介绍和发展现状
CIGS薄膜太阳能电池简要介绍和 发展现状
汇报人:XX
目 录
• CIGS薄膜太阳能电池概述 • CIGS薄膜太阳能电池发展历程 • CIGS薄膜太阳能电池制备技术 • CIGS薄膜太阳能电池性能评价 • CIGS薄膜太阳能电池应用领域拓展 • CIGS薄膜太阳能电池产业发展现状及挑战 • 总结与展望
01
CIGS薄膜太阳能电池概述
定义与基本原理
CIGS薄膜太阳能电池定义
CIGS是铜铟镓硒(CuInGaSe2)的缩写,是一种基于多元化合物半导体的薄 膜太阳能电池。
工作原理
CIGS薄膜太阳能电池利用光电效应,将光能转换为电能。当太阳光照射到电池 表面时,光子被吸收并激发出电子-空穴对,在内建电场作用下分离并收集到电 极上,从而产生电流。
优点
工艺简单,成本低,适用于大面积生产。
缺点
薄膜质量受喷涂工艺和热处理条件等因素影响, 难以控制。
不同制备方法比较
真空蒸发法与电化学沉积法比较
真空蒸发法制备的薄膜质量较高,但设备成本高;电化学沉积法设备简单,成本 低,但沉积速率较慢。
喷涂热解法与前两者比较
喷涂热解法工艺简单,成本低,适用于大面积生产,但薄膜质量相对较难控制。 在实际应用中,可根据具体需求和条件选择合适的制备方法。
器件结构
初步构建CIGS薄膜太阳能电池的 器件结构,研究各层之间的相互 影响。
实验室规模制备
在实验室规模下,制备出小面积 的CIGS薄膜太阳能电池,并对其 性能进行评估。
技术突破与产业化进程
01
02
03
大面积制备技术
突破大面积均匀制备CIGS 薄膜的技术难题,为产业 化奠定基础。
转换效率提升
通过优化材料组成、改进 制备工艺等方式,不断提 高CIGS薄膜太阳能电池的 转换效率。

薄膜太阳能电池种类

薄膜太阳能电池种类

薄膜太阳能电池种类薄膜太阳能电池是一种新型的太阳能电池技术,相比传统的硅基太阳能电池,薄膜太阳能电池具有更轻薄、柔性、低成本等优点。

随着科技的不断进步,薄膜太阳能电池也在不断发展和演进。

本文将介绍几种常见的薄膜太阳能电池种类。

1. 铜铟镓硒薄膜太阳能电池(CIGS)铜铟镓硒薄膜太阳能电池是目前应用最广泛的薄膜太阳能电池之一。

它是由铜(Copper)、铟(Indium)、镓(Gallium)和硒(Selenium)等元素组成的薄膜材料。

CIGS薄膜太阳能电池具有高光电转换效率、良好的低光照性能和较高的稳定性。

此外,CIGS 薄膜太阳能电池制造工艺简单,可采用卷绕式生产,适用于大规模生产。

2. 钙钛矿薄膜太阳能电池钙钛矿薄膜太阳能电池是近年来兴起的一种新型薄膜太阳能电池。

钙钛矿材料具有优异的光电转换效率,可以达到甚至超过传统硅基太阳能电池的效率。

钙钛矿薄膜太阳能电池制作工艺相对简单,可以采用喷涂、印刷等低成本制备技术。

然而,钙钛矿薄膜太阳能电池的稳定性仍然是一个挑战,需要进一步的研究和改进。

3. 有机薄膜太阳能电池有机薄膜太阳能电池是一种利用有机半导体材料制作的薄膜太阳能电池。

有机薄膜太阳能电池具有柔性、轻薄、透明等特点,可以应用于更广泛的场景,如可穿戴设备、建筑外墙等。

有机薄膜太阳能电池的制备工艺相对简单,可以采用印刷、喷涂等低成本的大面积制备技术。

然而,有机薄膜太阳能电池的光电转换效率相对较低,稳定性也有待提高。

4. 硒化镉薄膜太阳能电池硒化镉薄膜太阳能电池是一种利用硒化镉材料制作的薄膜太阳能电池。

硒化镉薄膜太阳能电池具有高光电转换效率和较好的稳定性。

硒化镉薄膜太阳能电池的制备工艺相对简单,可以采用蒸镉、蒸硒等方法制备。

然而,硒化镉薄膜太阳能电池的环境友好性存在争议,因为镉元素对环境有一定的污染风险。

总结一下,薄膜太阳能电池是太阳能电池技术的重要分支,具有轻薄、柔性、低成本等优点。

铜铟镓硒薄膜太阳能电池、钙钛矿薄膜太阳能电池、有机薄膜太阳能电池和硒化镉薄膜太阳能电池是其中的几种常见类型。

铜铟镓硫多元化合物太阳能电池

铜铟镓硫多元化合物太阳能电池

铜铟镓硫多元化合物太阳能电池
铜铟镓硫多元化合物太阳能电池,也称为CIGS太阳能电池,
是一种新型薄膜太阳能电池技术。

它采用由铜(Copper)、铟(Indium)、镓(Gallium)和硫(Sulfur)组成的多元化合物
薄膜作为光电转换层,将光能转化为电能。

CIGS太阳能电池具有以下优点:
1. 高效率:CIGS太阳能电池的转换效率较高,可达到20%以上,与传统的硅太阳能电池相比更具竞争力。

2. 灵活性:CIGS太阳能电池可以制备成柔性薄膜,适用于各
种形状和曲面的应用,具有更广泛的应用领域。

3. 薄膜制备简单:CIGS太阳能电池的薄膜制备工艺相对简单,可以通过卷帘描绘、溅射等方法制备,成本较低。

4. 光伏效应强:CIGS太阳能电池在低光照条件下的工作效率
较高,适用于多种环境条件下的应用。

然而,CIGS太阳能电池也存在一些挑战和限制:
1. 铟资源稀缺:铟是CIGS太阳能电池中的关键材料,但铟资
源非常稀缺,导致其价格较高,限制了CIGS太阳能电池的大
规模应用。

2. 氧化问题:CIGS太阳能电池在长期暴露于空气中容易氧化,降低了电池的稳定性和寿命。

3. 制造成本:尽管CIGS太阳能电池制造成本相对较低,但与
传统硅太阳能电池相比仍然较高,制约了其商业化应用的速度。

尽管存在一些挑战,CIGS太阳能电池作为一种新型的太阳能
电池技术,具有很大的潜力和应用前景,可以在建筑一体化、
充电设备、电动车等领域发挥重要作用。

随着相关技术的进一步发展和研究,相信CIGS太阳能电池在未来能够得到更广泛的应用。

铜铟镓硒

铜铟镓硒

铜铟镓硒(CIGS)薄膜太阳能电池技术综述一、薄膜太阳电池概术铜铟镓硒(CIGS)薄膜太阳能电池由于效率高、无衰退、抗辐射、寿命长、成本低廉等特点,是备受人们关注的一种新型光伏电池产品,经过近30年的研究和发展,其光电转化效率为所有已知薄膜太阳能电池中最高的。

而且其光谱响应范围宽,在阴雨天条件下输出功率高于其他任何种类太阳电池,因而成为最有前途的光伏器件之一。

铜铟镓硒CuInSe2(简称CIS)薄膜材料是属于Ⅰ-Ⅲ-Ⅵ2族化合物直接带隙半导体,光吸收系数达到105量级,薄膜厚度约为1-2μm就能吸收太阳光,其禁带宽度为1.02eV。

通过掺入适量的Ga元素以代替部分的In,成为CuInSe2与CuGaSe2(简称CGS)的固溶半导体CuIn1-xGaxSe2(简称CIGS)。

CIGS电池在制作过程中,通过控制不同的Ga掺入量,其禁带宽度可在1.02-1.67eV范围内调整,这就为太阳能电池的带隙优化提供了很好的途径。

二、国内外研究现状(一)国外研究进展CIGS薄膜太阳电池材料与器件的实验室技术在发达国家趋于成熟,大面积电池组件和量产化开发是CIGS电池目前发展的总体趋势,而柔性电池和无镉电池是近几年的研究热点。

美国国家可再生能源实验室(NREL)在玻璃衬底上利用共蒸发三步工艺制备出最高效率达19.9%的电池。

这种柔性衬底CIGS太阳电池在军事上很有应用前景。

近期,CIGS小面积电池效率又创造了新的记录,达到了20.1%,与主流产品多晶硅电池效率相差无几。

美国NREL和日本松下电器公司在不锈钢衬底上制备的CIGS电池效率均超过17.5%;瑞士联邦材料科学与技术实验室(Empa)的科学家AyodhyaN.Tiwari领导的小组经过多年努力,完善了之前开发的柔性不锈钢衬底太阳能电池,实现了18.7%的效率。

由美国能源部国家光伏中心与日本“新能源和工业技术开发机构(NEDO)”联合研制的无镉CIGS电池效率达到18.6%。

铜铟镓硒(CIGS)薄膜太阳能电池效率经研究达到20%以上

铜铟镓硒(CIGS)薄膜太阳能电池效率经研究达到20%以上

6 6
浙 江 电 力
21 0 0年 第 1 0期
同产 煤 区 选 择 若 干 家 具 有 典 型 代 表 性 的 火 电企
业 ,开 展 试 点 。二 是 要 开 展 除 汞 技 术 示 范 ,尽 快 制 定 和论 证 试 点 方 案 ,力 争 明年 开 展 试 点 工 程 .
铜铟镓硒 ( I ) C GS 薄膜 太 阳 能 电池 效 率 经 研 究 达 到 2 % 以 上 0
协 会 太 阳能 系 统 研 究 所 ( ru h fr S 对 该 新 成 Fa n oe E) I
威 胁 人 类 健 康 。在 过 去 的 十 几 年 间 , 界 范 围 内 世
环境 中汞 的 浓 度持 续 上 升 , 已经 引 起 各 国政 府 和 环 保 组 织 的 极 大关 注 成 为 继 气候 变 化 问 题 后 的 又 一 个 全 球 环 境 问题 据 估 算 , 球 人 为 汞排 放 全 的 4 %来 自燃 煤 火 电 行业 已经 成 为 汞 污 染 控 制 5
1 发 电 量
2 供 电 量
( )0 0年 9月 浙 江 电 网 用 电 量 2 1 0 2 3 3 12 1 5 7 .5万 k Wh, 比 上 年 同 期 增 长 l .3 ,年 度 累 计 24 %
1 5 1 .3万 k 最 高 E 用 电 量 8 9 .4万 k 7 9 35 46 wh t 3 362 wh,平 均 日用 电 量 7 6 5 7 l 7 .8万 k 。 Wh ( )0 0年 9月 浙 江 电 网最 高 负荷 为 39 6万 k ,出现 在 8 日 1 :5时 ,比上 年 同期 增 长 1 .6 22 1 9 W 02 79 %,
该 电池 面 积 为 05mm 。C G . I S半 导 体 层 与 接 触 层 总 厚 度 仅 为 4I z . m,是 标 准 硅 电池 的 1 0 / 。 5 Z W 董 事 兼 光 伏 发 电 部 门 主 管 Mi alP w l S c e o al h a 博 士 表 示 ,C GS实 验 室 研 究 人 员 采 用 经 改 良 的 I 共 蒸 镀 技 术 进 行 电池 制造 ,原 则 上 可 实 现 放 大 并 应 用 于 商 业 生 产 。德 国位 于弗 莱 堡 的弗 劳 恩 霍 夫

CIGS薄膜太阳能电池解析

CIGS薄膜太阳能电池解析

现在CIGS组件处于产业化初级阶段,主要是美国、德国和日本等发达国 家公司。其工艺各具特色,主要采用的都是真空溅射技术,区别主要是制备 CIGS吸收层的部分工艺差别。下表给出了主要公司生产工艺比较。可以看出, 最主流形式是溅射金属预制层后硒化工艺。该工艺对溅射设备防腐要求低,维 护简单,生产过程更容易控制。也有采用四元化合物靶直接溅射CIGS的研究, 由于设备防腐要求高,吸收层存在缺陷,溅射后仍需要热退火处理,这种方法 现阶段没有表现出产业化优势。

CuInSe2黄铜矿晶格结构
非晶硅薄膜太阳能电池的优点
• • • • • • 低成本 能量返回期短 大面积自动化生产 高温性好 弱光响应好(充电效率高) 其他
• 低成本
• 单结晶硅太阳电池的厚度<0.5um。 • 主要原材料是生产高纯多晶硅过程中使用的硅烷,这种气体, 化学工业可大量供应,且十分便宜,制造一瓦非晶硅太阳能 电池的原材料本约RMB3.5-4(效率高于6%) • 且晶体硅太阳电池的基本厚度为240-270um,相差200多倍, 大规模生产需极大量的半导体级,仅硅片的成本就占整个太 阳电池成本的65-70%,在中国1瓦晶体硅太阳电池的硅材料 成本已上升到RMB22以上。
非晶硅太阳电池的市场
• 大规模地成本发电站
• 1996年美国APS公司在美国加州建了一个400千瓦的非晶硅电 站,引起光伏产业振动。 • Mass公司(欧洲第三大太阳能系统公司)去年从中国进口约 5MWp的非晶硅太阳能电池。 • 日本CANECA公司年产25MWp的非晶硅太阳能电池大部分输往 欧洲建大型发电站(约每座500KWp-1000KWp)。 • 德国RWESCHOOTT公司也具有30MWp年产量,全部用于建大规模 太阳能电站。

铜铟镓硒薄膜太阳能电池CIGS吸收层的研究与制备的开题报告

铜铟镓硒薄膜太阳能电池CIGS吸收层的研究与制备的开题报告

铜铟镓硒薄膜太阳能电池CIGS吸收层的研究与制备的开题报告一、选题背景太阳能是一种清洁、可再生的能源,被认为是替代传统化石能源的一个重要选择。

太阳能电池作为最主要的太阳能转换器,成为了当前太阳能领域的研究热点。

铜铟镓硒(CIGS)薄膜太阳能电池具有优异的光电性能,因此备受关注。

CIGS吸收层具有高吸收系数、高转换效率、可以在较低光照强度下工作等特点,但由于其制备工艺较为复杂,目前在工业化生产上还存在一定的难度。

因此,对CIGS吸收层的研究和制备具有重要的意义。

二、研究目的本研究的目的是通过系统的文献综述和实验研究,探究不同制备方法对CIGS吸收层性能的影响,为制备高效率的CIGS薄膜太阳能电池提供理论和实验基础。

三、研究内容1. CIGS吸收层的物理化学性质研究;2. CIGS吸收层的制备方法综述与分析;3. 探究不同制备方法对CIGS吸收层性能的影响;4. 通过实验研究验证不同制备方法的效果;5. 建立CIGS薄膜太阳能电池的理论模型,研究其性能。

四、研究方法1. 文献综述:对CIGS吸收层的物理化学性质、制备方法以及相关文献进行综述和分析;2. 制备CIGS薄膜样品:采用真空沉积法、喷涂法、溶液法等方法制备CIGS薄膜样品;3. 性能测试:对制备的CIGS薄膜样品进行结构、光学、电学性能测试;4. 数据分析:对性能测试数据进行统计和分析,得出结论。

五、预期成果1. 掌握CIGS薄膜太阳能电池的制备方法和性能;2. 研究不同制备方法对CIGS吸收层性能的影响,为制备高效率的CIGS薄膜太阳能电池提供理论和实验基础;3. 建立CIGS薄膜太阳能电池的理论模型,研究其性能。

六、研究时间安排1. 第1-2周:撰写开题报告,确定研究方案;2. 第3-5周:文献综述,深入分析目前已取得的相关研究进展;3. 第6-10周:样品制备及性能测试;4. 第11-12周:数据分析;5. 第13-14周:完善论文及答辩准备。

铜铟镓硒薄膜太阳能电池的发展现状以及应用前景

铜铟镓硒薄膜太阳能电池的发展现状以及应用前景

铜铟镓硒薄膜太阳能电池的发展现状以及应用前景
铜铟镓硒(Copper indium gallium selenide,简称CIGS)是一
种多元化合物,具有很高的太阳能转化效率和较低的制造成本,因此在太阳能电池领域具有广阔的应用前景。

CIGS薄膜太阳能电池的发展现状:
1. 高效率:CIGS太阳能电池在太阳光转化效率方面有很大优势,实验室内已经达到了记录级的2
2.9%的转化效率。

2. 高稳定性:CIGS太阳能电池的稳定性得到了显著提高,可
以在长时间的使用中保持高效率。

3. 制造成本下降:CIGS太阳能电池的制造成本较低,尤其是
相对于传统的硅太阳能电池来说,具有更低的材料成本和制造工艺成本。

4. 柔性:CIGS太阳能电池可以制备成柔性薄膜,适用于各种
形状的曲面和可弯曲应用场景。

CIGS薄膜太阳能电池的应用前景:
1. 太阳能电池板:CIGS薄膜太阳能电池板可以应用于建筑物
表面、车顶、广告牌等空间有限的地方,充分利用阳光资源。

2. 移动设备:CIGS薄膜太阳能电池可以制成柔性薄膜,适用
于手机、平板电脑等移动设备的充电,提供便捷的电力来源。

3. 无人机和航天器:CIGS薄膜太阳能电池的高效率和轻量化
特性使其成为无人机和航天器的理想能源来源,延长了使用时间和行程。

4. 农业和农村电力供应:CIGS薄膜太阳能电池可以在农田上
布置,为农业用电提供清洁能源,同时可以解决农村地区的电力供应问题。

总的来说,CIGS薄膜太阳能电池具有高效率、低成本、柔性和广泛的应用领域,未来有望在太阳能电力领域取得更大的发展。

铜铟镓硒(CIGS)薄膜太阳能电池的研制的开题报告

铜铟镓硒(CIGS)薄膜太阳能电池的研制的开题报告

铜铟镓硒(CIGS)薄膜太阳能电池的研制的开题报告一、研究背景随着能源需求的不断增长以及对环境影响的关注,太阳能电池的使用已经成为了可持续能源的一个重要组成部分。

目前,硅基太阳能电池占据了市场的主导地位,但其生产过程中存在能耗高及环境污染等问题。

而铜铟镓硒(CIGS)薄膜太阳能电池由于具有高转换效率、稳定性及相对较低的生产能耗等特点,已经成为了可持续能源领域的研究重点之一。

二、研究目的本项目旨在利用化学溶液法制备CIGS薄膜太阳能电池,并优化其光电转换性能,最终达到高效率、稳定性的目标。

三、研究内容1. 基础研究:研究CIGS材料的物理性质及制备方法;2. 制备CIGS薄膜太阳能电池:采用化学溶液法制备CIGS薄膜太阳能电池,并优化其制备工艺;3. 性能评价:测试电池的光电转换效率、稳定性和耐久性等性能指标;4. 优化改进:基于测试结果,对电池结构和制备工艺进行优化改进,以提高电池的性能;5. 应用前景:分析CIGS薄膜太阳能电池在可持续能源领域的应用前景。

四、研究方法1. 通过材料学知识和热力学分析,探究CIGS材料的物理性质;2. 采用化学溶液法制备CIGS薄膜太阳能电池,并通过SEM、TEM 等手段分析其微观结构与晶体结构;3. 利用太阳模拟器、I-V测试仪等设备测试电池的光电转换效率、稳定性和电性能等;4. 分析测试结果,对电池的结构和制备工艺进行优化改进,提高电池的性能;5. 综合分析,探讨CIGS薄膜太阳能电池在可持续能源领域的应用前景。

五、研究意义本项目的研究成果将为CIGS薄膜太阳能电池的制备及其应用领域的进一步研究提供基础性支持,同时还将为可持续能源应用的发展提供新思路。

铜铟镓硒_CIGS_薄膜太阳能电池的研究进展

铜铟镓硒_CIGS_薄膜太阳能电池的研究进展
· 54 ·
材料导报 A:综述篇
2011 年 10 月 (上 )第 25 卷 第 10 期
铜铟镓硒(CIGS)薄膜太阳能电池的研究进展*
王 波1,刘 平2,李 伟2,马 凤 仓2,刘 新 宽2,陈 小 红2
(1 上 海 理 工 大 学 机 械 工 程 学 院 ,上 海 200093;2 上 海 理 工 大 学 材 料 科 学 与 工 程 学 院 ,上 海 200093)
铜 铟 镓 硒 (CIGS)薄 膜 太 阳 能 电 池 的 研 究 进 展/王 波 等
· 55 ·
构的2倍 。 [6] 根据 Cu2Se2-In2Se3 相图可知,CuInSe2 具 有 较 大的化学组成区间,大约可以容许5%(摩 尔 分 数)的 变 异 , [7] 这就意 味 着 薄 膜 成 分 即 使 偏 离 化 学 计 量 比 (Cu∶In∶Se= 1∶1∶2),该薄膜材料依然保持黄铜 矿 结 构 并 且 具 有 相 同 的 物理和化学性质;并 且,通 过 调 节 薄 膜 的 化 学 计 量 比 就 可 以 得到p型(富 Cu)或者是n型(富In)的半导体材料,这是在不 必借助外加掺杂的情况下办到的[8];还 有 CIS中 点 缺 陷 VCu、 InCu可构成电中性复合缺 陷 对 (VCu- ,InCu2+ ),这 种 缺 陷 的 形 成能低,可以大量稳定存在,使 Cu迁移效应成为动态 可 逆过 程,这种 Cu迁移和点缺 陷 反 应 的 动 态 协 同 作 用 导 致 受 辐 射 损伤的 CIS电 池 具 有 自 愈 合 能 力 。 [9] 由 于 具 有 上 述 的 结 构 特性,CuInSe2 具 有 优 良 的 抗 干 扰、抗 辐 射 能 力、没 有 光 致 衰 退 效 应 、使 用 寿 命 长 等 优 点 。

铜铟镓硒薄膜光伏电池

铜铟镓硒薄膜光伏电池

铜铟镓硒薄膜光伏电池
铜铟镓硒(Copper Indium Gallium Selenide,缩写为CIGS)薄膜光伏电池是一种薄膜太阳能电池技术,它使用CIGS化合物作为光吸收层,具有较高的光电转换效率和适应性。

以下是铜铟镓硒薄膜光伏电池的主要特点和工作原理:
1.化合物半导体层:CIGS电池的关键部分是其光吸收层,
即铜铟镓硒薄膜。

这个复合材料的特性使得它在光谱范围内都
能有效吸收光线,从紫外线到可见光和红外线。

2.光电转换:光被吸收后,CIGS层中的电子被激发并跃
迁到导带中,形成电子-空穴对。

这些载流子会在电池中形成电
流,从而实现光能到电能的转换。

3.适应性:CIGS薄膜光伏电池相比其他太阳能技术,如
硅基太阳能电池,具有更高的光吸收系数,这使得它对于光照
弱或光照不稳定的环境更为适应,包括阴天和部分阴影的情况。

4.薄膜结构:CIGS电池采用薄膜结构,因此相对于厚硅
太阳能电池而言,具有较低的材料成本和更轻便的重量。

这种
薄膜结构还有助于在弯曲表面或柔性基材上制造可弯曲的太阳
能电池。

5.高效率:CIGS薄膜光伏电池的转换效率通常较高,可
以达到硅太阳能电池的水平,甚至更高。

这使得其成为一种具
有竞争力的太阳能技术。

尽管CIGS薄膜光伏电池在一些方面具有优势,但也需要克服一些挑战,如生产成本和稳定性。

然而,这一技术在不断发展和改进中,被广泛研究用于提高太阳能电池的性能和降低成本。

南开大学科技成果——铜铟镓硒(CIGS)薄膜太阳电池及产业化

南开大学科技成果——铜铟镓硒(CIGS)薄膜太阳电池及产业化

南开大学科技成果——铜铟镓硒(CIGS)薄膜太阳电池及产业化一、成果简介:铜铟镓硒(CIGS)薄膜太阳电池,是在玻璃衬底,或者是在不锈钢箔、塑料等柔性衬底上沉积5层薄膜的太阳电池。

相比于其它类型的太阳电池,具有极为突出的优点,包括:1、转换效率是薄膜电池之首(η=20.8%),超过多晶硅太阳电池;2、性能稳定不衰退;3、成本低廉:在廉价衬底上以低衬底温度下沉积厚度3~4微米薄膜,全部生产可在一个车间内完成,低的材料成本与制造成本;4、可制备成柔性太阳电池,不怕摔碰,功率重量比达1800瓦/公斤以上,是其它太阳电池无法比拟的。

玻璃衬底CIGS薄膜太阳电池CIGS电池是一种低成本、高性价比的太阳电池。

若生产设备与工艺技术开发成功,其产品的性价比具有很强的竞争力,最有希望撬动晶体硅太阳电池的市场垄断,打破其独霸市场的格局的薄膜电池,有人称作薄膜太阳电池的制高点。

CIGS电池是一种非常理想的光伏器件CIGS拥有最佳的材料性质与转换效率,是薄膜太阳能电池的最佳选项,随着转换效率、生产规模与技术成熟度的提升,电池成本低于每瓦0.3美元是完全可以实现的,是目前全球光伏电池产业发展的热点。

柔性衬底CIGS薄膜太阳电池南开大学通过实施国家“863”计划,建有世界水平的CIGS太阳电池试验平台,已完成CIGS电池方面的博士论文与博士后论文18篇,硕士生论文30篇,在国内外发表论文150余篇,对铜铟硒电池的材料合成机理与器件结构有了比较清晰的科学与技术体系,对电池技术与设备开发起到指导作用。

二、完备的CIGS电池制备、测试系统CIGS薄膜电池组件工艺技术(1)铜铟镓硒薄膜太阳电池制备工艺平台四室溅射与硒化热处理系统硒化热处理系统大面积平面靶直流磁控溅射对向靶磁控直流溅射系统旧设备改造的多元共蒸发沉积系统PVD与快速热处理系统高真空多元束源炉化学处理与电化学实验室化学水浴法制备纳米薄膜装置激光-机械划线一体机电子束沉积薄膜系统(2)CIGS薄膜太阳电池测试分析平台测试薄膜成分配比的X射线荧光光谱仪(XRF)(左)测试薄膜结构的X射线衍射仪(XRD)(右)测试微纳米厚度的台阶仪材料电学特性的霍尔系数测试仪紫外-可见-近红外分光光度计高倍数高精密光学显微镜量子效率测试仪(左)AAA太阳光模拟器及I-V测试系统(156×156mm2)(右)三、电池产品及性能指标小面积玻璃衬底铜铟硒电池/转换效率15.3%玻璃衬底10×10cm2集成电池/转换效率达到8.9%不锈钢衬底CIGS电池/转换效率达到12.1%聚酰亚胺衬底CIGS电池/转换效率达到10.6%四、产业化基地溅射金属Mo电极激光划线太阳光模拟机械划线超声波焊接层压封装封装后的CIGS电池组件2008年自主开发的30×35cm2铜铟镓硒薄膜共蒸发沉积设备研制成功,薄膜材料沉积速率、材料的晶相结构,大面积均匀性和元素配比的可控性等多方面物理参数基本达到工艺要求,突破了多元素线性蒸发源制造大面积化合物半导体薄膜的技术瓶颈,成为世界上少数能够用这一技术沉积大面积CIGS薄膜的研发机构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


讨论:对负的△Ec而言,由于窗口 层和吸收层界面之间的复合,将降 低开路电压; △Ec>0的能带结构对 提高电池的转换效率有利。当 △Ec>O.5eV以后,开路电压明显 下降,同时短路电流也急剧下降.高 效电池△Ec的理想范围在0-0.4eV 之间,一般以0.2-0.3ev为宜
现状
• • • • • • • 70年代Bell实验室Shaly等人系统研究了三元黄铜矿半导体材料CIS的生长机理、电学 性质及在光电探测方面的应用 1974年,Wagner利用单晶ClS研制出高效太阳能电池,制备困难制约了单晶ClS电池发 展 1976年,Kazmerski等制备出了世界上第一个ClS多晶薄膜太阳能电池 80年代初,Boeing公司研发出转换效率高达9.4%的高效CIS薄膜电池 80年代期间,ARCO公司开发出两步(金属预置层后硒化)工艺,方法是先溅射沉积Cu、 In层,然后再在H2Se中退火反应生成CIS薄膜,转换效率也超过10% 1994年,瑞典皇家工学院报道了面积为0.4cm2效率高达17.6%的ClS太阳能电池 90年代后期,美国可再生能源实验室(NREL)一直保持着CIS电池的最高效率记录,并 1999年,将Ga代替部分In的CIGS太阳能电池的效率达到了18.8%,2008年更提高到 19.9%
铜铟镓硒(CIGS)薄膜太阳 能电池
CIGS 薄膜太阳能电池
这种以铜铟镓硒为吸收层的高效薄膜太阳能电池,简称 为铜铟镓硒电池CIGS电池。其典型结构是: Glass/Mo/CIGS/ZnS/ZnO/ZAO/MgF2。(多层膜典型结 构:金属栅/减反膜/透明电极/窗口层/过渡层/光吸收层/背 电极/玻璃) CIGS薄膜电池组成可表示成Cu(In1xGax)Se2的形式,具有黄铜矿相结构,是CuInSe2和 CuGaSe2的混晶半导体。
CIGS 薄膜太阳 能电池发 展的历程
太阳能电池的分类
按 制 备 材 料 的 不 同
硅基太阳能电池 多元化合物薄膜 太阳能电池
主要:GaAs CdS CIGS
有机聚合物太阳 能电池
纳米晶太阳能电池
目前,综合性能最好 的薄膜太阳能电池
CIGS的晶体结构
CuInSe2复式晶 格:a=0.577,c=1.154 直接带隙半导体,其光吸收系数高 达105量级 禁带宽度在室温时是1.04eV,电子 迁移率和空穴迁移率分 3.2X102(cm2/V· s)和 1X10(cm2/V· s) 通过掺入适量的Ga以替代部分In, 形成CulnSe2和CuGaSe2的固熔晶 体 Ga的掺入会改变晶体的晶格常数, 改变了原子之间的作用力,最终实现 了材料禁带宽度的改变,在1.04一 1.7eV范围内可以根据设计调整, 以达到最高的转化效率 自室温至810℃保持稳定相,使制膜 工艺简单, 可操作性强.
• 材料吸收率高,吸收系数高达105量级,直接带隙,适合薄膜 化,电池厚度可做到2~3微米,降低昂贵的材料成本 • 光学带隙可调.调制Ga/In比,可使带隙在1.0~1.7eV间变化, 可使吸收层带隙与太阳光谱获得最佳匹配 • 抗辐射能力强.通过电子与质子辐照、温度交变、振动、 加速度冲击等试验,光电转换效率几乎不变.在空间电源方 面有很强的竞争力 • 稳定性好,不存在很多电池都有的光致衰退效应 • 电池效率高.小面积可达19.9%,大面积组件可达14.2% • 弱光特性好.对光照不理想的地区犹显其优异性能.
CIGS太阳能电池研究现状
• 在20世纪90年代, CIGS薄膜太阳能电池得到长足 的发展, 日本NEDO(新能源产业技术开发机构) 的太阳能发电首席科学家东京工业大学的小长井 诚教授认为: 铜铟镓硒薄膜太阳能电池是第三代 太阳能电池的首选, 并且是单位重量输出功率最高 的太阳能电池。 • 所谓第三代太阳能电池就是高效、低成本、可大 规模工业化生产的铜铟镓硒(CIGS)等化合物薄膜 太阳能电池(注:第一代为单晶硅太阳能电池, 第二代为多晶硅、非晶硅等低成本太阳能电池), • 考虑太阳能为绿色的能源和环境驱动因素,发展前 景将会十分广阔。
CIGS薄膜电池的异质结机理
• CIGS电池的实质:窗口-吸收体结构的异质p-n结 太阳能电池
N区
ZnO (n) (3.2eV) CdS (n) (2.4eV) CIGS(弱p) (1.0~1.7eV)

内建电场
光生电流(电压)
CIGS能带的失调值对电池的影 响


电子亲合能不同,产生导带底失调值 △Ec和价带失调值△Ev 禁带宽度可调: △Ec>0或<0
• CIS材料是直接带隙材料,Cu(In,Ga,Al)Se2,其带隙在 1.02eV-2.7eV范围变化,覆盖了可见太阳光谱

In/Ga比的调整可使CIGS材料的带隙范围覆盖 1.0一l.7eV,CIGS其带隙值随Ga含量x变化满 足下列公式其中,b值的大小为0.15一0.24eV



CIGS的性能不是Ga越多性能越好的,因为短路电流是随 着Ga的增加对长波的吸收减小而减小的。 当x=Ga/(Ga+In)<0.3时,随着的增加,Eg增加, Voc也 增加; x=0.3时带隙为1.2eV;当x>0.3时,随着x的增加,Eg减小, Voc也减小。 G.Hanna等也认为x=0.28时材料缺陷最少,电池性能最 好。
CuInSe2黄铜矿晶格结构
富Cu薄膜始终是p型,而富In薄膜则既可能 为p型,也可能为n型。n型材料在较高Se蒸 气压下退火变为p型传导;相反,p型材料在较 低Se蒸气压下退火则变为n型
CIGS的电学性质及主要缺陷
CIS中存在上述的本征缺陷, 影响薄膜的电学性质 .Ga的 掺入影响很小.
CIGS的光学性质及带隙
CIGS薄膜太阳能电池的结构
金属栅电极
减反射膜(MgF2)
窗口层ZnO 过渡层CdS 光吸收层CIGS 金属背电极Mo 玻璃衬底
低阻AZO
高阻ZnO
结构原理

减反射膜:增加入射率 AZO: 低阻,高透,欧姆接触 i-ZnO:高阻,与CdS构成n区 CdS: 降低带隙的不连续性,缓 冲晶格不匹配问题 CIGS: 吸收区,弱p型,其空间电 荷区为主要工作区 Mo: CIS的晶格失配较小且热膨 胀系数与CIS比较接近
相关文档
最新文档