概率与数理统计复习题及答案

合集下载

概率论与数理统计复习题带答案

概率论与数理统计复习题带答案
解:
6.设随机变量 的概率分布率如下表
1
2
3
求X的分布函数和 。
解:
7.设随机变量 的概率密度函数为 ,求 (1)常数c; (2) 。
解:(1)
(2)
第三章
一、填空题
1.设连续型随机变量 的概率密度分别为 ,且 与 相互独立,则 的概率密度 ( )。
2.已知 ,且 与 相互独立,则 ( )
二、计算题
A. B. 41 C. 21 D. 20
8. 是互相独立的随机变量, ,则 =( D )。
A. 9 B. 15 C. 21 D. 27
三、计算题
1.设二维随机变量的联合概率分布为
XY
0
1
1
0
2
0
求:(1)X与Y的边缘分布,(2)E(X),D(Y)。
X
-1 1 2
Y
-2 0 1
2.已知 ,求Z的期望与方差,求X与Z的相关系数。
9.甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为,乙击中敌机的概率为.求敌机被击中的概率为( );
10.若事件A与事件B互不相容,且P(A)=, P(B) = ,则P( )=( )
11.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为,,,则这三台机器中最多有一台发生故障的概率为( )。
3.设(X,Y)服从分布
X Y
0
1
2
0
3/28
9/28
3/28
1
3/14
3/14
0
2
1/28
0
0
,试求cov(X,Y)及 。
4.设随机变量(X,Y)具有密度函数 ,其中区域G由曲线 围成,求cov(X,Y)及 。

中国石油大学090107概率论与数理统计期末复习题及参考答案

中国石油大学090107概率论与数理统计期末复习题及参考答案

《概率论与数理统计》课程综合复习资料一、单选题1.设某人进行射击,每次击中的概率为1/3,今独立重复射击10次,则恰好击中3次的概率为()。

a∙ Φ3Φ7B. ⅛φ3×(∣)7C∙ c ioψ7×(∣)3d∙ ⅛3答案:B2.设X∣, X2, . X〃为来自总体X的一个样本,区为样本均值,EX未知,则总体方差OX的无偏估计量为()。

A.--∑(X∕-X)2“Ti=I1n _ o8. 1 X(X z-X)2 n i=∖1 «0C∙ -∑(X,•一EX)1 〃oD∙ --∑(X i-EX)2〃-答案:A3.设X” X2,…,X〃为来自总体N(〃,/)的一个样本,区为样本均值,已知,记S12=-∑(X z-X)2, 5^=1 X(X z-X)2,则服从自由度为〃-1的f分布统计量是()。

〃一IT n i=∖MT=Sl/3S2 / 4nS) ∕√n答案:D4.设总体X〜/HO),O为未知参数,X1, X2,. -, X“为*的一个样本,0(X1, X2,--,.X n), 0(X1, X2,∙∙∙, X ZJ)为两个统计量,包力为。

的置信度为的置信区间, 则应有()。

A.P{Θ <Θ} = aB.P{Θ<Θ} = ∖-aC.P[Θ<Θ<Θ] = aD.P[Θ<Θ<Θ} = ∖-a答案:D5.某人射击中靶的概率为3/5,如果射击直到中靶为止,则射击次数为3的概率()。

A. ⅛36,设X和Y均服从正态分布X〜N(μ工),Y ~ N(μ32),记P] = P{X <μ-2], p2=P{Y≥μ + 3}f则OoA.对任何实数〃都有p∣ >〃2B.对任何实数〃都有p∣ <〃2C.仅对〃的个别值有Pl =p2D.对任何实数〃都有p∣二〃2答案:D7.设A和B为任意两个事件,且Au3, P(B)>0,则必有()。

A.P(A)<P(A∖B)B.P(A)NP(AIB)C.P(A)>P(A∖B)D.P(A)≤P(A∖B)答案:D8.已知事件48相互独立,P(B) >0,则下列说法不正确的是()。

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题 1. 已知P(AB)?P(A),则A与B的关系是独立。

2.已知A,B互相对立,则A与B的关系是互相对立。

,B为随机事件,则P(AB)?。

P(A)?,P(B)?,P(A?B)?,4. 已知P(A)?,P(B)?,P(A?B)?,则P(A?B)?。

,B为随机事件,P(A)?,P(B)?,P(AB)?,则P(BA)?____。

36.已知P(BA)? ,P(A?B)?,则P(A)?2 / 7。

7.将一枚硬币重复抛掷3次,则正、反面都至少出现一次的概率为。

8. 设某教研室共有教师11人,其中男教师7人,现该教研室中要任选3名为优秀教师,则3名优秀教师中至少有1名女教师的概率为___26____。

339. 设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。

611110. 3人独立破译一密码,他们能单独译出的概率为,,,则此密码被译出的5343概率为______。

5后不放回,则第2次抽出的是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235Cp(1?p)7次成功的概率为______。

12. 已知3次独立重复试验中事件A至少成功一次的概率为1事件A成功的概率p?______。

319,则一次试验中27c35813.随机变量X能取?1,0,1,取这些值的概率为,c,c,则常数c?__。

24815k14.随机变量X 分布律为P(X?k)?,k?1,2,3,4,5,则P(X?3X?5 )?__。

15x??2,?0?X?(x)???2?x?0,是X的分布函数,则X分布律为__??pi?1x?0?0? ?__。

??2?0,x?0??16.随机变量X的分布函数为F(x)??sinx,0?x??,则2?1,x???2?P(X??3)?__3__。

217. 随机变量X~N(,1),P(X?3)?,P(X??)?__ 。

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。

若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。

8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。

9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。

但当增⼤置信⽔平时,则相应的置信区间长度总是。

⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。

设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。

三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

《概率论与数理统计》复习答案

《概率论与数理统计》复习答案

概率论复习一、单项选择题1.袋中有50个乒乓球,其中20个黄球,30个白球,现在两个人不放回地依次从袋中随机各取一球,则第二人取到黄球的概率是(B).A.51 B.52 C.53 D.54 2.设B A ,为随机事件,且5.0)(=A P ,6.0)(=B P ,=)(A B P 8.0.则=)(B A P U (C).A.0.5B.0.6C.0.7D.0.83.设随机变量X 的分布函数为)(x F X ,则35-=X Y 的分布函数)(y F Y 为(C).A.)35(-y F XB.3)(5-y F XC.⎪⎭⎫⎝⎛+53y F X D.3)(51+y F X4.设二维随机变量),(Y X 的分布律为则==}{Y X P ( A ).A.3.0B.5.0C.7.0D.8.05.设随机变量X 与Y 相互独立,且2)(=X D ,1)(=Y D ,则=+-)32(Y X D (D).A.0B.1C.4D.66.设),(~2σμN X ,2,σμ未知,取样本n X X X ,,,21 ,记2,n S X 分别为样本均值和样本方差.检验:2:,2:10<≥σσH H ,应取检验统计量=2χ(C).A.8)1(2S n -B.2)1(2S n -C.4)1(2S n -D.6)1(2S n -7.在10个乒乓球中,有8个白球,2个黄球,从中任意抽取3个的必然事件是(B).A.三个都是白球B.至少有一个白球C.至少有一个黄球D.三个都是黄球8.设B A ,为随机事件,且B A ⊂,则下列式子正确的是(A).A.)()(A P B A P =UB.)()(A P AB P =C.)()(B P A B P =D.)()()(A P B P A B P -=-9.设随机变量)4 ,1(~N X ,已知标准正态分布函数值8413.0)1(=Φ,为使8413.0}{<<a X P ,则常数<a (C).A.0B.1C.2D.310.设随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F (B).A.0B.)(x F XC.)(y F YD.111.二维随机变量),(Y X 的分布律为设)1,0,(},{====j i j Y i X P P ij,则下列各式中错误..的是( D ). A.0100P P < B.1110P P < C.1100P P < D.0110P P< 12.设)5(~P X ,)5.0,16(~B Y ,则=--)22(Y X E (A).A.0B.0.1C.2.0 D.113.在假设检验问题中,犯第一类错误的概率α的意义是(C).A.在0H 不成立的条件下,经检验0H 被拒绝的概率B.在0H 不成立的条件下,经检验0H 被接受的概率C.在0H 成立的条件下,经检验0H 被拒绝的概率D.在0H 成立的条件下,经检验0H 被接受的概率14.设X 和Y 是方差存在的随机变量,若E (XY )=E (X )E (Y ),则(B) A 、D (XY )=D (X )D (Y )B 、D (X+Y )=D (X )+D (Y ) C 、X 和Y 相互独立D 、X 和Y 相互不独立 15.若X ~()t n 那么21X ~(B ) A 、(1,)F n ;B 、(,1)F n ;C 、2()n χ;D 、()t n16.设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,2σ的无偏估计量是(B )A 、()211n i i X X n =-∑;B 、()2111n i i X X n =--∑;C 、211n i i X n =∑;D 、2X 17、设随机变量X 的概率密度为2(1)2()x f x --=,则(B ) A 、X 服从指数分布B 、1EX =C 、0=DX D 、(0)0.5P X ≤=18、设X 服从()2N σ0,,则服从自由度为()1n -的t 分布的随机变量是(B ) A 、nX S B、2nX S D 19、设总体()2,~σμN X,其中μ已知,2σ未知,123,,X X X 取自总体X 的一个样本,则下列选项中不是统计量的是(B ) A 、31(123X X X ++)B 、)(12322212X X X ++σC 、12X μ+D 、123max{,,}X X X20、设随机变量()1,0~N ξ分布,则(0)P ξ≤等于(C )A 、0B 、0.8413C 、0.5D 、无法判断 21、已知随机变量()p n B ,~ξ,且3,2E D ξξ==,则,n p 的值分别为(D )A 、112,4n p ==B 、312,4n p ==C 、29,3n p ==D 、19,3n p == 22.设321,,X X X 是来自总体X 的样本,EX=μ,则(D )是参数μ的最有效估计。

概率论与数理统计复习题 带答案

概率论与数理统计复习题  带答案

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则AB =( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =( 0.2 )17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

《概率论与数理统计》复习题(含答案)

《概率论与数理统计》复习题(含答案)

概率论与数理统计复习题一、选择题(1)设0)(,0)(>>B P A P ,且A 与B 为对立事件,则不成立的是 。

(a)A 与B 互不相容;(b)A 与B 相互独立; (c)A 与B 互不独立;(d)A 与B 互不相容(2)10个球中有3个红球,7个白球,随机地分给10个人,每人一球,则最后三个分到球的人中恰有一个得到红球的概率为 。

(a))103(13C ;(b)2)107)(103(;(c)213)107)(103(C ;(d)3102713C C C (3)设X ~)1,1(N ,概率密度为)(x f ,则有 。

(a)5.0)0()0(=≥=≤X P X p ;(b)),(),()(∞-∞∈-=x x f x f ; (c)5.0)1()1(=≥=≤X P X P ;(d)),(),(1)(∞-∞∈--=x x F x F (4)若随机变量X ,Y 的)(),(Y D X D 均存在,且0)(,0)(≠≠Y D X D ,)()()(Y E X E XY E =,则有 。

(a)X ,Y 一定独立;(b)X ,Y 一定不相关;(c))()()(Y D X D XY D =;(d))()()(Y D X D Y X D -=-(5)样本4321,,,X X X X 取自正态分布总体X ,已知μ=)(X E ,但)(X D 未知,则下列随机变量中不能作为统计量的是 。

(a)∑==4141i i X X ;(b)μ241-+X X ;(c)∑=-=4122)(1i i X X K σ;(d)∑=-=4122)(31i i X X S(6)假设随机变量X 的密度函数为)(x f 即X ~)(x f ,且)(X E ,)(X D 均存在。

另设n X X ,,1 取自X 的一个样本以及X 是样本均值,则有 。

(a)X ~)(x f ;(b)X ni ≤≤1min ~)(x f ;(c)X ni ≤≤1max ~)(x f ;(d)(n X X ,,1 )~∏=ni x f 1)((7)每次试验成功率为)10(<<p p ,进行重复独立试验,直到第10次试验才取得4次成功的概率为 。

概率论与数理统计自考题型

概率论与数理统计自考题型

概率论与数理统计自考题型一、选择题(每题3分,共30分)1. 设随机变量X服从正态分布N(μ,σ²),则P(X ≤ μ)等于()A. 0B. 0.5C. 1D. 取决于μ和σ的值。

答案:B。

解析:正态分布的图像关于x = μ对称,所以P(X ≤ μ) = 0.5。

2. 若事件A与B相互独立,P(A) = 0.4,P(B) = 0.5,则P(A∪B)等于()A. 0.7B. 0.8C. 0.6D. 0.9。

答案:A。

解析:因为A与B相互独立,所以P(A∪B)=P(A)+P(B)-P(A)P(B)=0.4 + 0.5 - 0.4×0.5 = 0.7。

3. 设离散型随机变量X的分布律为P(X = k)=ck,k = 1,2,3,则c的值为()A. 1/6B. 1/3C. 1/2D. 2/3。

答案:A。

解析:根据离散型随机变量分布律的性质,所有概率之和为1,即c+2c+3c = 1,解得c = 1/6。

4. 对于二维随机变量(X,Y),如果X与Y相互独立,则()A. Cov(X,Y) = 0B. D(X + Y)=D(X)+D(Y)C. 以上两者都对D. 以上两者都不对。

答案:C。

解析:当X与Y相互独立时,Cov(X,Y) = 0,且D(X + Y)=D(X)+D(Y)。

5. 设总体X服从参数为λ的泊松分布,X₁,X₂,…,Xₙ是来自总体X的样本,则λ的矩估计量为()A. XB. 1/XC. X²D. 1/X²。

答案:A。

解析:根据泊松分布的期望为λ,由矩估计法,用样本均值X估计总体的期望λ。

6. 样本方差S²是总体方差σ²的()A. 无偏估计B. 有偏估计C. 极大似然估计D. 矩估计。

答案:A。

解析:样本方差S²是总体方差σ²的无偏估计。

7. 设总体X~N(μ,σ²),其中μ未知,σ²已知,X₁,X₂,…,Xₙ是来自总体X的样本,则μ的置信区间为()A. (X - zα/2(σ/√n),X + zα/2(σ/√n))B. (X - tα/2(s/√n),X + tα/2(s/√n))C. (X - zα/2(s/√n),X + zα/2(s/√n))D. (X - tα/2(σ/√n),X + tα/2(σ/√n))。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Word 资料.复习题一一、选择题1.设随机变量X 的概率密度21()01x x f x x θ-⎧>=⎨≤⎩,则θ=( )。

A .1 B.12 C. -1 D. 322.掷一枚质地均匀的骰子,则在出现偶数点的条件下出现4点的概率为( )。

A .12 B. 23 C. 16 D. 133.设)(~),(~22221221n n χχχχ,2221,χχ独立,则~2221χχ+( )。

A .)(~22221n χχχ+ B. ~2221χχ+)1(2-n χ C. 2212~()t n χχ+ D. ~2221χχ+)(212n n +χ4.若随机变量12Y X X =+,且12,X X 相互独立。

~(0,1)i X N (1,2i =),则( )。

A .~(0,1)Y N B. ~(0,2)Y N C. Y 不服从正态分布 D. ~(1,1)Y N5.设)4,1(~N X ,则{0 1.6}P X <<=( )。

A .0.3094 B. 0.1457 C. 0.3541 D. 0.2543 二、填空题1.设有5个元件,其中有2件次品,今从中任取出1件为次品的概率为 2.设,A B 为互不相容的随机事件,()0.1,()0.7,P A P B ==则()P A B = 3.设()D X =5, ()D Y =8,,X Y 相互独立。

则()D X Y +=4.设随机变量X 的概率密度⎩⎨⎧≤≤=其它,010,1)(x x f 则{}0.2P X >=三、计算题1.设某种灯泡的寿命是随机变量X ,其概率密度函数为 5,0()0,0x Be x f x x -⎧>=⎨≤⎩(1)确定常数B (2)求{0.2}P X > (3)求分布函数()F x 。

Word 资料.2.甲、乙、丙三个工厂生产同一种产品,每个厂的产量分别占总产量的40%,35%,25%,这三个厂的次品率分别为0.02, 0.04,0.05。

现从三个厂生产的一批产品中任取一件,求恰好取到次品的概率是多少?3.设连续型随机变量X 的概率密度110()1010x x f x x x +-≤<⎧⎪=-≤≤⎨⎪⎩其它,求(),()E X D X 。

4.设二维随机变量(,)X Y 的联合分布密度26,01(,)0x y x x f x y ⎧<<<<=⎨⎩其它分别求随机变量X 和随机变量Y 的边缘密度函数。

四.证明题设12345,,,,X X X X X 是来自正态总体的一个样本,总体均值为μ(μ为未知参数)。

证明:1234532()()1313T X X X X X =++++是μ的无偏估计量。

一、选择题(1)A (2)D (3)D (4)B (5)A 二、填空题(1)0.4 (2)0.8 (3)13 (4)0.8三、计算题(本大题共6小题,每小题10分,总计60分) 1、(1)0501()0B B 15x x dx dx e dx ϕ+∞+∞--∞-∞=+==⎰⎰⎰故B=5 。

(2)510.2(0.2)50.3679.x P X e dx e +∞-->==≈⎰(3)当x<0时,F(x)=0;当0≥x 时,xxxx e dx e dx dx x x F 500515)()(-∞-∞---=+==⎰⎰⎰ϕ故⎩⎨⎧<≥-=-00,,01)(5x x ex F x. 2、全概率公式Word 资料.31255354402()()()100100100100100100i i i P A P B P A B ===⨯+⨯+⨯∑0.0345=3、⎰⎰--++=110)1()1(dx x x dx x x EX =0⎰⎰--++=10110222)1()1(dx x x dx x x EX =6161)(22=-=EX EX DX 4、 ()(,)x f x f x y dy +∞-∞=⎰2266(),010xx dy x x x ⎧=-≤≤⎪=⎨⎪⎩⎰其它 ()(,)y f y f x y dx +∞-∞=⎰),010y dx y y ⎧=≤≤⎪=⎨⎪⎩其它 四.证明题证明:因为(),1,2,3,4,5i E X i μ==所以1234532()[()()]1313E T E X X X X X =++++ 1234532[()()()][()()]1313E X E X E X E X E X =++++ (5分)μ=复习题二 一、选择题1.如( )成立,则事件A 与B 互为逆事件。

(其中Ω为样本空间)A .AB φ= B. AB =Ω C. AB A B φ==Ω且 D. A 与B 互为对立事件2.袋中有5个黑球,3个白球,一次随机地摸出4个球,其中恰有3个白球的概率为( )Word 资料.A .38 B. 331()()88 C. 435831()()88C D. 485C3.设随机变量X 的分布律为{},1,2,3,4,515k P X k k ===,则15{}22P X <<=( )A .3/5 B. 1/5 C. 2/5 D. 4/54.设随机变量(,)X Y 只取下列数组中的值:(0,0)、(-1,1)、(-1,1/3)、(2,0),且相应的概率依次为1115,,,244c c c c.则c 的值为( ) A .2 B. 3 C. 4 D. 55.设,X Y 相互独立,(2,5),(3,1)X N Y N ,则()E XY =( )A .6 B. 2 C. 5 D. 15二、填空题1.从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为 2.设()X πλ,(泊松分布且0λ>),{1}{2}P X P X ===.则{4}P X == 3.2(,)XN μσ,则X μσ- (填分布)三、计算题1.甲、乙、丙三人向同一架飞机射击,设甲、乙、丙射中的概率分别为0.4,0.5,0.7。

若只有一个人射中,飞机坠毁的概率为0.2,若两人射中,飞机坠毁的概率为0.6,若三人射中,飞机必坠毁。

求飞机坠毁的概率。

2.设随机变量X 在区间[0,1]上服从均匀分布,求:(1)X Y e =的概率密度函数;(2)2ln Z X =-的概率密度函数3.一袋中装有12只球。

其中2只红球,10只白球。

从中取球两次,每次任取一只,Word 资料.考虑两种取球方式:(1)放回抽样 (2)不放回抽样 。

X 表示第一次取出的白球数,Y 表示第二次取出的白球数.试分别就(1)、(2)两种情况,写出(,)X Y 的联合分布律。

4.把数字1,2,,n 任意排成一排,如果数字k 恰好出现在第k 个位置上,则称为一个匹配。

求匹配数的期望值。

四.证明题设随机变量,X Y 相互独立,方差(),()D X D Y 存在 证明:)()()()()()()(22X D Y E Y D X E Y D X D XY D ++=,并由此证明)()()(Y D X D XY D ≥一、选择题(1)C (2) D (3)B (4)B (5)A 二、填空题 (1)0.4 (2)223e - (3)(0,1)N 三、计算题(本大题共计62分)(1)解:设i A 表示有i 个人射中,1,2,3i =1()0.40.50.30.60.50.30.60.50.70.36P A =⨯⨯+⨯⨯+⨯⨯= 2()0.40.50.30.40.50.70.60.50.70.41P A =⨯⨯+⨯⨯+⨯⨯= 3()0.40.50.70.14P A =⨯⨯= ()0.360.20.410.60.1410.458P B =⨯+⨯+⨯= (2)解:(){}{ln }(ln )Y X F y P Y y P X y F y =≤=≤= 11()(ln )Y X f y f y y y== 1y e ≤≤ 22(){}{}1()z z Z X F z P Z z P X e F e --=≤=≥=-Word 资料.22211()()22z z z Z X f z f e e e ---== 0z ≤(3)(4)设X 表示n 个数字的匹配数,i X 表示第i 个数字的匹配数。

即:1()i E X n =,1()()()1ni i i E X E X nE X ====∑四.证明题222))()(()()()(Y E X E Y E X E XY D -=,2222222))()(())()(())()(()()()()(Y E X E X E Y E Y E X E Y E X E Y D X D +--=(2分))())(())()(()))(()(())(())()())(()(()()()(22222222≥+=-+-=-Y D X E Y E X D Y E Y E X E Y E X E X E Y D X D XY D故)()()(Y D X D XY D ≥。

Word 资料.复习题三一、选择题1.设A B ⊂,且()0P A ≠,则( )成立A .()()()P AB P A P B =+ B. ()()()P AB P A P B =C. ()1P B A = D. ()()()P A B P A P B -=-2.设(0,1)X N ,若常数c 满足{}{}P X c P X c ≥=<。

则c = ( )A .3 B. 2 C. 1 D. 以上都不对3.设X 服从泊松分布33{},0,1,2,!k e P X k k k -===()()D XE X =( ) A .4 B. 3 C. 2 D. 1 二、填空题1.有甲、乙、丙三人,每个人都可能的被分配到四个房间中的任一间去,则三个人被分配到同一间中的概率为2.设事件,A B 互不相容,且()0P B ≠,则()P A B = 3.若随机变量X 的分布律为{}m P X m p ==, 1,2,m =,则p =4.设,X Y 为随机变量,且0.5XY ρ=, ()2D X =, ()8D Y =,则()D X Y +=三、计算题1.两批相同产品中各有12件和10件,在每批产品中都有一个废品,今从第一批产品12件中任意的抽取两件放入第二批中,再从第二批中任取一件,求从第二批中取出的是废品的概率。

2.箱中有8个编号分别为1,2,……,8的同样的球,从中任取3球,以X 表示取出的3球中的最小,求X 的分布律。

3.设随机变量(0,1)XN ,求:(1)令112Y X =+,求(21)E Y -, (21)D Y -(2)求112Y X=+的密度函数4.某地区夏天刮台风的概率为0.3,不刮台风的概率为0.7,一家工厂若开工生产,不遇台风,可获利240万元,若开工后遇到台风,则亏损120万元,若不开工,则必定损失60万元,问这个夏季该厂是否应该开工?Word资料.Word 资料.5.箱中装有12只开关,其中10只正品,2只次品,从中不放回的抽取两次,每次抽一只,用X 表示第一次取出的次品数, Y 表示第二次取出的次品数,求: (1)(,)X Y 的联合分布律 (2)分别关于,X Y的边缘分布律一、选择题(1)C (2)D (3)D 二、填空题 (1)116 (2)0 (3)12(4)14 三、计算题(1)2正:211212C C ;1正1次:111212C C211111122121121212121772C C C p C C C C =⨯+⨯=(2)(3)11()(1)1()122E Y E X E X =+=+= 111()(1)()244D Y D X D X =+==(21)2()11E Y E Y -=-= ( (21)4()1D Y D Y -==1(1,)4Y N ∴⇒22(1)()y f y --= (4)()13260E X =>,开工(5)Word 资料.复习题四一、选择题1. 设B A ,满足1)(=B A P ,且()0,()0P A P B >>,则有( )A .A 是必然事件 B.B 是必然事件 C. AB D. )()(A P B P ≤2.设2~(2,)X N ,且6.0}40{=<<X P ,则{0}P X ( )A .0.3 B.0.4 C. 0.2 D. 0.53.设(),10~,N X (),21~,N Y Y X ,相互独立,令X Y Z 2-=,则~Z ( )A .)5,2(-N B. )5,1(N C. )6,1(N D. )9,2(N4.设随机变量)1.0,100(~B X ,则方差()D X ( ).A .10 B. 100.1 C. 9 D. 3二、填空题1.从1,2,…,10共十个数字中任取一个,然后放回 ,先后取出5个数字 ,则 所得5个数字全不相同的事件的概率等于 ___________2.设随机变量X 服从参数λ=3的泊松分布,则{2}P X ≥=___________ 3.独立地掷一枚均匀的骰子100次,则点数之和的数学期望为________,方差为________三、计算题1.设某地区成年居民中肥胖者占10% ,不胖不瘦者占82% ,瘦者占8% ,又知肥胖Word 资料.者患高血压的概率为 20%,不胖不瘦者患高血压病的概率为 10% ,瘦者患高血压病的概率为5%, 试求 : ( 1 ) 该地区居民患高血压病的概率;( 2 ) 若知某人患高血压, 则他属于肥胖者的概率有多大? 2.设随机变量X 的概率密度函数为:+∞<<∞-=-x e x f x,21)( 求:(1)X 的分布函数,(2){510}P X -<<3.设12,X X 相互独立,同在区间[0,1]上服从均匀分布,求12min(,)Z X X = 的概率密度函数4.设随机变量),(Y X 的概率密度为,01,0(,)0Ax x y x f x y ,其他<<<<⎧=⎨⎩求:(1) A ;(2)11{,}22P X Y ><;(3)()E X Y +四.证明题设随机变量X 和Y 相互独立,且方差)(),(),(XY D Y D X D 均存在。

相关文档
最新文档