南京市中考数学复习题及答案 (97)
南京市中考数学复习题及答案 (800)
南京市中考数学复习题及答案
23.(8分)点A(﹣1,0)是函数y=x2﹣2x+m2﹣4m的图象与x轴的一个公共点.(1)求该函数的图象与x轴的另一个公共点的坐标以及m的值;
(2)将该函数图象沿y轴向上平移4个单位后,该函数的图象与x轴只有一个公共点.
【分析】(1)将点A坐标代入函数表达式即可求解;
(2)求出抛物线顶点坐标(1,﹣4),即可求解.
【解答】解:(1)在函数y=x2﹣2x+m2﹣4m中,
∵a=1,b=﹣2,
∴该二次函数图象的对称轴是过点(1,0)且平行于y轴的直线.
∵点A(﹣1,0)是函数y=x2﹣2x+m2﹣4m的图象与x轴的一个公共点,
根据二次函数图象的对称性,
∴该函数与x轴的另一个公共点的坐标是(3,0),
将x=﹣1,y=0代入函数y=x2﹣2x+m2﹣4m中,得0=3+m2﹣4m.
解这个方程,得m1=1,m2=3,
故抛物线的表达式为:y=x2﹣2x﹣3;
(2)抛物线顶点坐标为:(1,﹣4),
故函数图象沿y轴向上平移4单位后,该函数的图象与x轴只有一个公共点.
【点评】本题考查的是二次函数与x轴交点问题,将点A代入函数表达式,求出m值是本题的关键.
第1 页共1 页。
2021年江苏省南京市中考数学试卷及答案解析
2021年南京市中考数学试卷一、选择题(本大题共6小题,共12.0分)1.截至2021年6月8日,31个省(自治区、直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗超过800000000剂次.用科学记数法表示800000000是()A. 8×108B. 0.8×109C. 8×109D. 0.8×10102.计算(a2)3⋅a−3的结果是()A. a2B. a3C. a5D. a93.下列长度的三条线段与长度为5的线段能组成四边形的是()A. 1,1,1B. 1,1,8C. 1,2,2D. 2,2,24.北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00.小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A. 10:00B. 12:00C. 15:00D. 18:005.一般地,如果x n=a(n为正整数,且n>1),那么x叫做a的n次方根.下列结论中正确的是()A. 16的4次方根是2B. 32的5次方根是±2C. 当n为奇数时,2的n次方根随n的增大而减小D. 当n为奇数时,2的n次方根随n的增大而增大6.如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A. B. C. D.二、填空题(本大题共10小题,共20.0分)7.−(−2)=______ ;−|−2|=______ .8.若式子√5x在实数范围内有意义,则x的取值范围是______ .9.计算√8−√9的结果是______ .210.设x1,x2是关于x的方程x2−3x+k=0的两个根,且x1=2x2,则k=______ .11.如图,在平面直角坐标系中,△AOB的边AO,AB的中点C,D的横坐标分别是1,4,则点B的横坐标是______ .12.如图,AB是⊙O的弦,C是AB⏜的中点,OC交AB于点D.若AB=8cm,CD=2cm,则⊙O的半径为______ cm.13.如图,正比例函数y=kx与函数y=6的图象交于A,B两点,BC//x轴,AC//y轴,x则S△ABC=______ .14.如图,FA,GB,HC,ID,JE是五边形ABCDE的外接圆的切线,则∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=______ °.15.如图,在四边形ABCD中,AB=BC=BD.设∠ABC=α,则∠ADC=______ (用含α的代数式表示).16.如图,将▱ABCD绕点A逆时针旋转到▱A′B′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为______ .三、解答题(本大题共11小题,共88.0分)17.解不等式1+2(x−1)≤3,并在数轴上表示解集.18.解方程2x+1+1=xx−1.19.计算(ab2+ab −2a+b+ba2+ab)÷a−bab.20.如图,AC与BD交于点O,OA=OD,∠ABO=∠DCO,E为BC延长线上一点,过点E作EF//CD,交BD的延长线于点F.(1)求证△AOB≌△DOC;(2)若AB=2,BC=3,CE=1,求EF的长.21.某市在实施居民用水定额管理前,对居民生活用水情况进行了调查.通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据如表:(1)求这组数据的中位数.已知这组数据的平均数为9.2t,你对它与中位数的差异有什么看法?(2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使75%的家庭水费支出不受影响,你觉得这个标准应该定为多少?22.不透明的袋子中装有2个红球、1个白球,这些球除颜色外无其他差别.(1)从袋子中随机摸出1个球,放回并摇匀,再随机摸出1个球.求两次摸出的球都是红球的概率.(2)从袋子中随机摸出1个球,如果是红球,不放回再随机摸出1个球;如果是白球,放回并摇匀,再随机摸出1个球.两次摸出的球都是白球的概率是______ .23.如图,为了测量河对岸两点A,B之间的距离,在河岸这边取点C,D.测得CD=80m,∠ACD=90°,∠BCD=45°,∠ADC=19°17′,∠BDC=56°19′.设A,B,C,D在同一平面内,求A,B两点之间的距离.(参考数据:tan19°17′≈0.35,tan56°19′≈1.50.)24.甲、乙两人沿同一直道从A地去B地.甲比乙早1min出发,乙的速度是甲的2倍.在整个行程中,甲离A地的距离y1(单位:m)与时间x(单位:min)之间的函数关系如图所示.(1)在图中画出乙离A地的距离y2(单位:m)与时间x之间的函数图象;(2)若甲比乙晚5min到达B地,求甲整个行程所用的时间.25.如图,已知P是⊙O外一点.用两种不同的方法过点P作⊙O的一条切线.要求:(1)用直尺和圆规作图;(2)保留作图的痕迹,写出必要的文字说明.26.已知二次函数y=ax2+bx+c的图象经过(−2,1),(2,−3)两点.(1)求b的值;(2)当c>−1时,该函数的图象的顶点的纵坐标的最小值是______ .(3)设(m,0)是该函数的图象与x轴的一个公共点.当−1<m<3时,结合函数的图象,直接写出a的取值范围.27.在几何体表面上,蚂蚁怎样爬行路径最短?(1)如图①,圆锥的母线长为12cm,B为母线OC的中点,点A在底面圆周上,AC⏜的长为4πcm.在图②所示的圆锥的侧面展开图中画出蚂蚁从点A爬行到点B的最短路径,并标出它的长(结果保留根号).(2)图③中的几何体由底面半径相同的圆锥和圆柱组成.O是圆锥的顶点,点A在圆柱的底面圆周上,设圆锥的母线长为l,圆柱的高为h.①蚂蚁从点A爬行到点O的最短路径的长为______ (用含l,h的代数式表示).②设AD⏜的长为a,点B在母线OC上,OB=b.圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点A爬行到点B的最短路径的示意图,并写出求最短路径的长的思路.答案解析1.【答案】A【解析】解:将800000000用科学记数法表示为:8×108.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】B【解析】解:(a2)3⋅a−3=a6⋅a−3=a6−3=a3.故选:B.分别根据幂的乘方运算法则,同底数幂的乘法法则以及负整数指数幂的定义计算即可.本题考查了负整数指数幂,同底数幂的乘法以及幂的乘方,熟记相关运算法则是解答本题的关键.3.【答案】D【解析】解:A、∵1+1+1=3<5,∴此三条线段与长度为5的线段不能组成四边形,故不符合题意;B、∵1+1+5=7<8,∴此三条线段与长度为5的线段不能组成四边形,故不符合题意;C、∵1+2+2=5,∴此三条线段与长度为5的线段不能组成四边形,故不符合题意;D、∵2+2+2=6>5,∴此三条线段与长度为5的线段能组成四边形,故符合题意;故选:D.根据三角形的三边关系逐项判定即可.本题考查了三角形的三边关系,熟练掌握三角形的三边关系是解题的关键.4.【答案】C【解析】解:由题意得,北京时间比莫斯科时间晚5小时,当莫斯科时间为9:00,则北京时间为14:00;当北京时间为17:00,则莫斯科时间为14:00;所以这个时刻可以是14:00到17:00之间,所以这个时刻可以是北京时间15:00.故选:C .根据北京时间比莫斯科时间晚5小时解答即可.本题考查了正数和负数,解此题的关键是根据题意写出算式,即把实际问题转化成数学问题.5.【答案】C【解析】解:A 、∵(±2)4=16,∴16的4次方根是±2,故A 不正确;B 、32的5次方根是2,故B 不正确;C 、设x =√23,y =√25,则x 15=25=32,y 15=23=8,∵x 15>y 15且x >1,y >1,∴x >y ,∴当n 为奇数时,2的n 次方根随n 的增大而减小,故C 选项正确;D 、当n 为奇数时,2的n 次方根随n 的增大而减小,故D 不选项正确;故选:C .根据n 次方根的定义判定即可.本题考查了分数指数幂,熟练掌握分数指数幂的定义是解题的关键.6.【答案】D【解析】解:根据正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,则光线与纸板垂直,∴在地面上的投影关于对角线对称,∵灯在纸板上方,∴上方投影比下方投影要长,故选:D .根据正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,则光线与纸板垂直,则在地面上的投影关于对角线对称,因为灯在纸板上方,所以上方投影比下方投影要长.本题主要考查中心投影的知识,弄清题目中光源和纸板的相对位置是解题的关键.7.【答案】2 −2【解析】解:−(−2)=2;−|−2|=−2,故答案为:2;−2.根据求一个数的相反数和绝对值的意义化简求解.本题考查求一个数的相反数和绝对值,理解相关概念准确化简是解题关键.8.【答案】x≥0【解析】解:依题意有5x≥0,解得:x≥0.故答案为:x≥0.直接利用二次根式的定义分析得出答案.本题考查了二次根式的意义和性质.概念:式子√a(a≥0)叫二次根式.9.【答案】√22【解析】解:√8−√92=2√2√9√2=2√23√2=2√2−3√2 2=√22.故答案为:√22.直接利用二次根式的性质分别化简,再合并得出答案.此题主要考查了二次根式的加减,正确化简二次根式是解题关键.10.【答案】2【解析】解:根据题意,知x1+x2=3x2=3,则x2=1,将其代入关于x的方程x2−3x+k=0,得12−3×1+k=0.解得k=2.故答案是:2.根据根与系数的关系求得x2=1,将其代入已知方程,列出关于k的方程,解方程即可.此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.11.【答案】6【解析】解:∵边AO,AB的中点为点C、D,∴CD是△OAB的中位线,CD//OB,∵点C,D的横坐标分别是1,4,∴CD=3,∴OB=2CD=6,∴点B的横坐标为6.故答案为:6.由C、D的横坐标求出线段CD的长度,结合中位线的定义和性质,得出OB的长度,从而得到B点的横坐标.本题主要考查了中位线定义和性质应用,解题的关键是由点C、D的横坐标求出线段CD的长度.12.【答案】5【解析】解:如图,连接OA,∵C是AB⏜的中点,∴D是弦AB的中点,∴OC⊥AB,AD═BD═4,∵OA═OC,CD═2,∴OD═OC−CD═OA−CD,在Rt△OAD中,OA2═AD2+OD2,即OA2═16+(OA−2)2,解得OA═5,故答案为:5.先根据圆心角、弧、弦的关系和垂径定理得出各线段之间的关系,再利用勾股定理求解出半径即可.本题考查圆心角、弧、弦的关系及垂径定理的运用,做此类型题目通常需要结合圆心角、弦和三角形的相关知识来进行解答.13.【答案】12【解析】解:连接OC,设AC交x轴于点N,BC交y轴于M点,∵正比例函数y=kx与函数y=6x的图象交于A,B两点,∴点A与点B关于原点对称,∴S△AON=S△OBM,∵BC//x轴,AC//y轴,∴S△AON=S△CON,S△OBM=S△OCM,即S△ABC=4S△AON=4×12x A⋅y A=4×12×6=12,故答案为:12.根据反比例函数的性质可判断点A与点B关于原点对称,则S△AON=S△OBM,由BC//x轴,AC//y轴可得S△AON=S△CON,S△OBM=S△OCM,再根据S△AON=12x A⋅y A=3,即可得出三角形ABC的面积.本题考查了反比例函数和一次函数的交点问题,求三角形面积等知识点,熟练掌握反比例函数的性质是解题的关键.14.【答案】180【解析】解:如图,设圆心为O,连接OA,OB,OC,OD和OE,∵FA,GB,HC,ID,JE是五边形ABCDE的外接圆的切线,∴∠OAF=∠OBG=∠OCH=∠ODI=∠OEJ=90°,即(∠BAF+∠OAB)+(∠CBG+∠OBC)+(∠DCH+∠OCD)+(∠EDI+∠ODE)+(∠AEJ+∠OEA)=90°×5=450°,∵OA=OB=OC=OD=OE,∴∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,OEA=∠OAE,∴∠OAB+∠OBC+∠OCD+∠ODE+∠OEA=12×五边形ABCDE内角和=12×(5−2)×180°=270°,∴∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=(∠BAF+∠OAB)+(∠CBG+∠OBC)+ (∠DCH+∠OCD)+(∠EDI+∠ODE)+(∠AEJ+∠OEA)−(∠OAB+∠OBC+∠OCD+∠ODE+∠OEA)=450°−270°=180°,故答案为:180.设圆心为O,连接OA,OB,OC,OD和OE,根据切线的性质和等腰三角形的性质得出∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=(∠BAF+∠OAB)+(∠CBG+∠OBC)+ (∠DCH+∠OCD)+(∠EDI+∠ODE)+(∠AEJ+∠OEA)−(∠OAB+∠OBC+∠OCD+∠ODE+∠OEA)即可求出.本题主要考查切线的性质,多边形内角和等知识,熟练掌握切线的性质和多边形内角和公式是解题的关键.15.【答案】180°−α2【解析】解:∵AB=BD=BC,∴∠BAD=∠BDA,∠BDC=∠BCD,∵四边形内角和为360°,∴∠ABD+∠BAD+∠BDA+∠DBC+∠BDC+∠BCD=360°,∴∠ABC+∠ADB+∠ADB+∠BDC+∠BDC=360°,即∠ABC+2∠ADB+2∠BDC=360°,∵∠ABC=α,∠ADB+∠BDC=∠ADC,∴2∠ADC=360°−α,∴∠ADC=180°−α2.故答案为:180°−α2.根据已知条件AB=BD=BC,可得∠BAD=∠BDA,∠BDC=∠BCD,根据三角形内角和定理可得∠ABD+∠BAD+∠BDA=180°,∠DBC+∠BDC+∠BCD=180°,根据四边形内角和为360°,可得∠ABD+∠BAD+∠BDA+∠DBC+∠BDC+∠BCD=360°,根据已知条件可得2∠ADC=360°−α,即可得出答案.本题主要考查了等腰三角形的性质及多边形内角和定理,熟练应用相关性质及定理进行求解是解决本题的关键.16.【答案】98【解析】解:如图,过点A 作AM ⊥BC 于点M ,过点B 作BN ⊥AB′于点N ,过点E 作EG ⊥BC ,交BC 的延长线于点G .由旋转可知,AB =AB′=3,∠ABB′=∠AB′C′, ∴∠ABB′=∠AB′B =∠AB′C′, ∵BB′=1,AM ⊥BB′, ∴BM =B′M =12, ∴AM =√AB 2−BM 2=√352, ∵S △ABB′=12⋅AM ⋅BB′=12⋅BN ⋅AB′, ∴12×√352×1=12⋅BN ×3,则BN =√356, ∴AN =√AB 2−BN 2=(√356)=176,∵AB//DC , ∴∠ECG =∠ABC , ∵∠AMB =∠EGC =90°, ∴△AMB∽△EGC , ∴AMBM =EGCG =√35212=√35,设CG =a ,则EG =√35a ,∵∠ABB′+∠AB′B +∠BAB′=180°, ∠AB′B +∠AB′C′+∠C′B′C =180°, 又∵∠ABB′=∠AB′B =∠AB′C′, ∴∠BAB′=∠C′B′C ,∵∠ANB =∠EGC =90°, ∴△ANB∽△B′GE , ∴AN BN=B′G EG=176√356=17√35,∵BC =4,BB′=1, ∴B′C =3,B′G =3+a , ∴3+a √35a=17√35,解得a =316. ∴CG =316,EG =316√35,∴EC =√CG 2+EG 2=√(316)2+(316√35)2=98. 故答案为:98.过点A 作AM ⊥BC 于点M ,过点B 作BN ⊥AB′于点N ,过点E 作EG ⊥BC ,交BC 的延长线于点G.BM =B′M =12,由勾股定理可得,AM =√AB 2−BM 2=√352,由等面积法可得,BN =√356,由勾股定理可得,AN =√AB 2−BN 2=√32−(√356)2=176,由题可得,△AMB∽△EGC ,△ANB∽△B′GE ,则AMBM =EGCG =√35,ANBN =B′G EG=17√35,设CG =a ,则EG =√35a ,B′G =3+a ,则3+a√35a =17√35,解得a =316.最后由勾股定理可得,EC =√CG 2+EG 2=√(316)2+(316√35)2=98.本题主要考考查平行四边形的性质,等腰三角形三线合一,相似三角形的性质与判定,解直角三角形的应用等,构造正确的辅助线是解题关键.17.【答案】解:1+2(x −1)≤3,去括号,得1+2x −2≤3. 移项、合并同类项,得2x ≤4. 化系数为1,得x ≤2. 表示在数轴上为:.【解析】去括号后移项、合并同类项可得不等式解集,根据小于向左,包括该数用实心点在数轴上表示解集即可.本题主要考查解一元一次不等式的基本能力,定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.18.【答案】解:方程两边同乘(x+1)(x−1),得2(x−1)+x2−1=x(x+1),解得x=3.经检验x=3是原方程的根,∴原方程的解x=3.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.本题考查了解分式方程,解分式方程的关键是两边同乘最简公分母,将分式方程转化为整式方程,易错点是忽视检验.19.【答案】解:(ab2+ab −2a+b+ba2+ab)÷a−bab=[ab(a+b)−2a+b+ba(a+b)]⋅aba−b =a2−2ab+b2ab(a+b)⋅aba−b=(a−b)2ab(a+b)⋅aba−b=a−ba+b.【解析】根据分式的加减法和除法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.20.【答案】(1)证明:在△AOB和△DOC中,{∠ABO=∠DCO AOB=∠DOC OA=OD,∴△AOB≌△DOC(AAS);(2)解:由(1)得:△AOB≌△DOC,∴AB=DC=2,∵BC=3,CE=1,∴BE=BC+CE=4,∵EF//CD,∴△BCD∽△BEF,∴DCEF =BCBE,即2EF =34,解得:EF=83.【解析】(1)由AAS证明△AOB≌△DOC即可;(2)由全等三角形的性质得AB=DC=2,再证△BCD∽△BEF,得DCEF =BCBE,即可求解.本题考查了全等三角形的判定与性质、相似三角形的判定与性质等知识;熟练掌握全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.21.【答案】解:(1)共有100个数,按大小顺序排列后第50,51个数据分别是6.4,6.8,所以中位数为:(6.4+6.8)÷2=6.6;已知这组数据的平均数为9.2t,∴从平均数与中位数的差异可得大部分居民家庭去年的月均用水量小于平均数,有节约用水观念,少数家庭用水比较浪费,答:这组数据的中位数是6.6;(3)∵100×75%=75,第75个家庭去年的月均用水量为11t,所以为了鼓励节约用水,要使75%的家庭水费支出不受影响,即要使75户的家庭水费支出不受影响,故家庭月均用水量应该定为11t.答:这个标准应该定为11t.【解析】(1)利用所给数据,即可得这组数据的中位数,从平均数与中位数的差异可得大部分居民家庭去年的月均用水量小于平均数,有节约用水观念,少数家庭用水比较浪费;(2)由于100×75%=75,所以为了鼓励节约用水,要使75%的家庭水费支出不受影响,即要使75户的家庭水费支出不受影响,故家庭月均用水量应该定为11t.本题考查中位数,读频频数分布表的能力及利用统计表获取信息的能力;利用统计表获取信息时,必须认真观察、分析、研究统计表,才能作出正确的判断和解决问题.22.【答案】19【解析】解:(1)画树状图如图:共有9种等可能的结果,两次摸出的球都是红球的结果有4种, ∴两次摸出的球都是红球的概率为49;(2)第一次摸出白球的概率为13,第二次摸出白球的概率也是13, ∴两次摸出的球都是白球的概率为13×13=19, 故答案为:19.(1)画树状图,共有9种等可能的结果,两次摸出的球都是红球的结果有4种,再由概率公式求解即可;(2)两次摸出的球都是白球的概率都是13,求解即可.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.23.【答案】解:过B 作BE ⊥CD 于E ,过A 作AF ⊥BE 于F ,如图:∵∠BCD =45°,∴△BCE 是等腰直角三角形, 设CE =x ,则BE =x , ∵CD =80m , ∴DE =(80−x)m ,Rt △BDE 中,∠BDC =56°19′, ∴tan56°19′=BEDE ,即x80−x =1.5, 解得x =48(m),∴BE=CE=48m,Rt△ACD中,∠ADC=19°17′,CD=80m,∴tan19°17′=ACCD ,即AC80=0.35,解得AC=28m,∵∠ACD=90°,BE⊥CD于E,AF⊥BE,∴四边形ACEF是矩形,∴AF=CE=48m,EF=AC=28m,∴BF=BE−EF=20m,Rt△ABF中,AB=√AF2+BF2=√482+202=52(m),答:A,B两点之间的距离是52m.【解析】过B作BE⊥CD于E,过A作AF⊥BE于F,由已知△BCE是等腰直角三角形,设CE=x,则BE=x,DE=(80−x)m,在Rt△BDE中,可得x80−x=1.5,解得BE=CE= 48m,在Rt△ACD中,解得AC=28m,根据四边形ACEF是矩形,可得AF=CE=48m,EF=AC=28m,BF=20m,即可在Rt△ABF中,求出AB=√482+202=52(m)本题考查解直角三角形的应用,涉及勾股定理、矩形判定及性质等知识,解题的关键是适当添加辅助线,构造直角三角形.24.【答案】解:(1)如图:(2)设甲的速度是v m/min,乙整个行程所用的时间为t min,由题意得:2v⋅t=(t+1+5)v,解得:t=6,6+1+5=12(min),答:甲整个行程所用的时间为12min.【解析】(1)由乙的速度是甲的2倍可得乙1min的路程=甲2min的路程,即可画出乙离A地的距离y2(单位:m)与时间x之间的函数图象;(2)设甲的速度是v m/min,乙整个行程所用的时间为t min,由行程相等列出方程即可求解.本题考查了一次函数的应用,能根据题意结合图象理解实际问题是解题的关键.25.【答案】解:方法一:如图1中,连接OP,以OP为直径作圆交⊙O于D,作直线PD,直线PD即为所求.方法二:如图,作射线PE,作OE⊥PE于E,作△POE的外接圆交⊙O于D,作直线PD,直线PD即为所求.【解析】方法一:直接以OP为直径作圆,利用直径所对的圆周角是直角,可得∠ADC= 90°,可证直线PD是切线.方法二:构造直角△POE,作△POE的外接圆,利用圆周角定理解决问题即可.本题考查专题−复杂作图,切线的判定,线段的垂直平分线的性质,三角形的外接圆等知识,解题的关键是学会利用圆周角定理构造直角,属于中考常考题型.26.【答案】1【解析】解:(1)把(−2,1),(2,−3)代入y=ax2+bx+c中,得:{1=4a−2b+c①−3=4a+2b+c②,两式相减得−4=4b,∴b=−1;(2)把b=−1代入①得:1=4a+2+c,∴a=−1−c4,∴顶点的纵坐标4ac−b24a =c+1c+1=c+1+1c+1−1,∵c>−1,∴c+1>0,下面证明对于任意的正数,a,b,都有a+b≥2√ab,∵(√a−√b)2=a+b−2√ab≥0,∴a+b≥2√ab,当a=b时取等号,∴c+1+1c+1−1≥2√(c+1)⋅1c+1−1=1,∴该函数的图象的顶点的纵坐标的最小值是1.(3)由题意得:am2−m+c=0,且c=−1−4a,∴am2−m−1−4a=0,△=1−4a(−1−4a)=1+4a+16a2,若−1<m<2,此时有a<0,且1+√△2a<2,解得a<0,∴a<0,若2<m<3,此时有a>0,且1+√△2a<3,解得a>45,综上a<0或a>45.(1)把已知点代入解析式,两式联立即可求出b的值;(2)把a用c表示,然后写出顶点的纵坐标,根据c的取值即可求出最小值;(3)根据题意m是ax2+bx+c的一个根,将m用a表示出来,根据m的取值即可求出a的取值.本题主要考查二次函数的图象与性质,关键在于理解二次项系数a对函数图象的影响,包括开口方向和开口大小,都要熟记于心,不然第三问很难做出来.27.【答案】l+ℎ【解析】解:(1)如图②中连接AO,AC,AB.设∠AOC=n.∵AC⏜的长=4π,∴nπ⋅12=4π,180∴n=60°,∴∠COA=60°,∵OA=OC,∴△AOC是等边三角形,∵OB=BC=6,∴AB⊥OC,∴AB=√OA2−OB2=√122−62=6√3.最短的路径是线段AB,最短路径的长为6√3.(2)①蚂蚁从点A爬行到点O的最短路径的长为母线的长加圆柱的高,即为ℎ+l.故答案为:ℎ+l.④蚂蚁从点A爬行到点B的最短路径的示意图如图④,最短路径为AB,思路:Ⅰ、过点O作OF⊥AD于F,交AB与G,此⏜的弧长,时,点G在扇形的弧上,先求出C′G再求出∠BOG的度数,,Ⅱ、再过点B作BE⊥OF于E,用三角函数求出OE,BE,得出FH,即可求出AH,Ⅲ、求出EF,进而求出BH,Ⅳ、在Rt△ABH中,利用勾股定理求出AB.(1)先判断出△OAC为等边三角形,进而得出AB上等边三角形的高,即可得出结论;(2)①蚂蚁从点A爬行到点O的最短路径的长为母线的长加圆柱的高,即可得出结论;②根据题意画出示意图,先求出BH,用勾股定理即可得出结论.此题是圆的综合题,主要考查了弧长公式,勾股定理,圆柱和圆锥的侧面展开图,等边三角形的判定和性质,作出辅助线构造出直角三角形是解本题的关键.。
历年江苏省南京市中考数学试卷(含答案)
2017 年江苏省南京市中考数学试卷一、选择题(本大题共 6 小题,每小题2 分,共12 分。
在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.(2分)计算12+(﹣18)÷(﹣6)﹣(﹣3)×2的结果是()A.7 B.8 C.21 D.362.( 2 分)计算106×(102)3÷104的结果是()A.103 B.107 C.108 D.1093.( 2 分)不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有 4 个面是三角形;乙同学:它有8 条棱,该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥4.( 2 分)若< a< ,则下列结论中正确的是()A.1< a< 3 B.1< a< 4C.2< a< 3D.2< a< 45.( 2 分)若方程(x﹣5)2=19的两根为a和b,且a> b,则下列结论中正确的是()A. a 是19 的算术平方根B. b 是19 的平方根C.a﹣ 5 是19 的算术平方根D.b+5 是19 的平方根6.( 2 分)过三点A(2,2),B (6,2),C(4,5)的圆的圆心坐标为()A.(4,)B.(4,3)C.(5,)D.(5,3)二、填空题(本大题共10 小题,每小题2分,共20 分)7.( 2 分)计算:| ﹣3| = ;= .8.( 2 分)2016年南京实现GDP约10500亿元,成为全国第11 个经济总量超过万亿的城市,用科学记数法表示10500 是.9.( 2 分)分式在实数范围内有意义,则x的取值范围是.10.( 2 分)计算+ × 的结果是.11.( 2 分)方程﹣=0的解是.12.( 2 分)已知关于 x 的方程x 2+px+q=0 的两根为﹣3 和﹣ 1,则 p= ,q= .13.( 2分)如图是某市 2013﹣ 2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是 年,私人汽车拥有量年增长率最大14. ( 2 分)如图,∠1 是五边形 ABCDE 的一个外角,若∠ 1=65°,则∠ A+∠ B+∠15.( 2 分)如图,四边形 ABCD 是菱形,⊙ O 经过点 A 、 C 、 D ,与BC 相交于点E ,连接AC 、 AE .若∠ D=78°,则∠ EAC=°.16.( 2 分)函数y 1=x 与 y 2= 的图象如图所示,下列关于函数y=y 1+y 2的结C+∠D=论:①函数的图象关于原点中心对称;②当x<2 时,y随x的增大而减小;③当x> 0 时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是.三、解答题(本大题共11 小题,共88 分)17.(7 分)计算(a+2+ )÷(a﹣).18.(7 分)解不等式组请结合题意,完成本题的解答.(1)解不等式①,得,依据是:.(2)解不等式③,得.(3)把不等式①、②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.19.(7 分)如图,在?ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,B D相交于点O,求证:OE=OF.20.(8 分)某公司共25 名员工,下表是他们月收入的资料.月收入/元4500 1800 1000 550 480 340 300 2200 0 0 00000人数 1 1 1 3 6 1 11 1(1)该公司员工月收入的中位数是元,众数是元.2)根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.21.(8 分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.22.(8 分)“直角”在初中几何学习中无处不在.如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).23.(8 分)张老师计划到超市购买甲种文具100 个,他到超市后发现还有乙种文具可供选择,如果调整文具的购买品种,每减少购买 1 个甲种文具,需增加购买 2 个乙种文具.设购买x 个甲种文具时,需购买y 个乙种文具.(1)①当减少购买 1 个甲种文具时,x= ,y= ;②求y 与x之间的函数表达式.(2)已知甲种文具每个 5 元,乙种文具每个 3 元,张老师购买这两种文具共用去540 元,甲、乙两种文具各购买了多少个?24.(8 分)如图,PA,PB是⊙O 的切线,A,B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O 于点D.(1)求证:PO平分∠APC;(2)连接DB,若∠C=30°,求证:DB∥ AC.25.(8 分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口 A 的正南方向,港口 B 的正西方向的 D 处,它沿正北方向航行5km 到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37≈ ° 0.60,cos37≈° 0.80,tan37 °≈ 0.75)26.(8 分)已知函数y=﹣x2+(m﹣1)x+m(m 为常数).(1)该函数的图象与x 轴公共点的个数是.A.0 B.1 C.2 D.1 或 2( 2)求证:不论m 为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当﹣2≤ m≤ 3 时,求该函数的图象的顶点纵坐标的取值范围.27.(11 分)折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD(AB> BC)(图①),使AB 与DC 重合,得到折痕EF,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点C落在EF上的P处,并使折痕经过点B,得到折痕BG,折出PB、PC,得到△PBC.(1)说明△PBC是等边三角形.【数学思考】(2)如图④,小明画出了图③的矩形ABCD和等边三角形PBC,他发现,在矩形ABCD中把△PBC经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.(3)已知矩形一边长为3cm,另一边长为 a cm,对于每一个确定的a的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的a的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm 和1cm 的直角三角形铁片,所需正方形铁片的边长的最小值为cm.2017 年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共 6 小题,每小题2 分,共12 分。
2020年江苏南京中考数学试卷(解析版)
2020年江苏南京中考数学试卷(解析版)一、选择题(本大题共6小题,每小题2分,共12分)1.计算的结果是( ).A. B. C. D.2.的平方根是( ).A. B. C. D.3.计算的结果是( ).A. B. C. D.4.党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置,根据国家统计局发布的数据,年年末全国农村贫困人口的情况如图所示.人数万年份根据图中提供的信息,下列说法的是( ).错.误.A.年末,农村贫困人口比上年末减少万人B.年末至年末,农村贫困人口累计减少超过万人C.年末至年末,连续年每年农村贫困人口减少万人以上D.为在年末农村贫困人口全部脱贫,今年要确保完成减少万农村贫困人口的任务5.关于的方程(为常数)的根的情况,下列结论中正确的是( ).A.两个正根B.两个负根C.一个正根,一个负根D.无实数根6.如图,在平面直角坐标系中,点在第一象限,⊙与轴、轴都相切,且经过矩形的顶点,与相交于点.若⊙的半径为,点的坐标是,则点的坐标是( ).A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分)7.写出一个负数,使这个数的绝对值小于: .8.若式子在实数范围内有意义,则的取值范围是 .9.纳秒()是非常小的时间单位,.北斗全球导航系统的授时精度优于.用科学记数法表示是 .10.计算的结果是 .11.已知、满足方程组,则的值为 .12.方程的解是 .13.将一次函数的图象绕原点逆时针旋转,所得到的图象对应的函数表达式是 .14.如图,在边长为的正六边形中,点在上,则的面积为 .15.如图,线段、的垂直平分线、相交于点.若,则.16.下列关于二次函数 (为常数)的结论:①该函数的图象与函数的图象形状相同;②该函数的图象一定经过点;③当时,随的增大而减小;④该函数的图象的顶点在函数的图象上.其中所有正确结论的序号是 .三、解答题(本大题共11小题,共88分)17.计算.18.解方程:.19.如图,在上,在上,,,求证:.(1)(2)20.已知反比例函数的图象经过点.求的值.完成下面的解答.解不等式组,解:解不等式①,得 .根据函数的图象,得不等式②的解集 .把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集 .①②(1)21.为了了解某地居民用电量的情况,随机抽取了该地户居民六月份的用电量(单位:)进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数根据抽样调查的结果,回答下列问题:该地这户居民六月份的用电量的中位数落在第 组内.(2)估计该地万户居民六月份的用电量低于的大约有多少户.(1)(2)22.甲、乙两人分别从、、这个景点中随机选择个景点游览.求甲选择的个景点是、的概率.甲、乙两人选择的个景点恰好相同的概率是 .23.如图,在港口处的正东方向有两个相距的观测点、.一艘轮船从处出发,沿北偏东方向航行至处,在、处分别测得、.求轮船航行的距离.(参考数据:,,,,,.)北东(1)(2)24.如图,在中,,是上一点,⊙经过点、、,交于点,过点作,交⊙于点.求证:四边形是平行四边形..(1)25.小明和小丽先后从地出发沿同一直道去地.设小丽出发第时,小丽、小明分别为、.与之间的函数表达式是,与之间的函数表达式是.小丽出发时,小明离地的距离为.离.地.的.距.离.(2)小丽出发至小明到达地这段时间内,两人何时相距最近?最近距离是多少?(1)(2)26.如图,在和中,、分别是、上一点,.当时,求证.证明的途径可以用下面的框图表示,请填写其中的空格.当,判断与是否相似,并说明理由.(1)(2)27.如图①,要在一条笔直的路边上建一个燃气站,向同侧的、两个城镇分别铺设管道输送燃气,试确定燃气站的位置,使铺设管道的路线最短.图如图②,作出点关于的对称点,线段与直线的交点的位置即为所求,即在点处建燃气站,所得路线是最短的.为了证明点的位置即为所求,不妨在直线上另外任取一点,连接、,证明.请完成这个证明.图如果在、两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).【答案】解析:,故选.解析:12生态保护区是正方形区域,位置如图③所示.生态保护区图生态保护区是圆形区域,位置如图④所示.生态保护区图D 1.D 2.的平方根为.故答案选:.解析:.故选.解析:可转化为,则,∴方程有两个不等的实数根,∴,,∴异号,∴该方程两根为一正一负.故选.解析:连接、,过点作,,,由题意得,,则,由垂径定理得,则,在直角中,,,B 3.A 4.C 5.A 6.则,则,则,所以.故选.解析:.解析:分式有意义,则,解得.故答案为:.解析:∵,∴.故答案为:.解析:.故答案为:.解析:,由①得:③,由③②得:,解得,将代入①得,(答案不唯一)7.8.9.10.11.①②∴.故答案为:.12.解析:,方程两边同乘得,检验:当时,,∴是原分式方程的解.故答案为:.13.解析:如图:yxO与轴交点为,,将一次函数图象绕原点逆时针旋转,则点对应点,点对应点,∴直线解析式为.故答案为:.14.解析:如图,连接,,∵六边形是正六边形,∴,∵,∴,∴,过点作,∵,,,∴,,∴,∵,∴.故答案为:.15.解析:设于点,于点,连接、,在四边形中,,∴,又∵,,∴,∵垂直平分,垂直平分,∴,,则点是的外心,如图,作以为圆心,为半径的圆,∴.故答案为:.解析:二次函数(是常数),①次函数确定抛物线的方向和大小,两个二次函数都等于,故①正确;②,则,所以该图象一定经过点,故②正确;③题目所给的二次函数解析式为顶点式,,所以抛物线开口向下,对称轴为直线,所以当时,随的增大而减小,故③错误;④该二次函数顶点坐标为,当时,故④正确.故答案为:①②④.解析:.解析:方法一:,,,∴,①②④16..17.,.18.(1)(2),,,∴,,∴方程的解为,.方法二:原方程可以变形为,,,∴,.解析:∵,,,∴≌,∴,∴.解析:将代入得,解得:.,则;函数图象如下所示,当时,,∴当时,随增大而减小,证明见解析.19.(1).(2);;画图见解析;.20.(1)(2)(1)(2)∴当时,取值范围为;不等式解集在数轴上表示为:由图象可知两个不等式解集公共部分为,∴此不等式组解集为.解析:共组数据,∴中位数应该为第个与第个数据之和的平均数,∵第一组有个数据,第二组有个数据,∴中位数在第组.故答案为:.(户).因此,估计该地万户居民六月份的用电量低于的大约有户.解析:甲从、、这三个景点中随机选择个景点,所以可能出现的结果共有种,即、、,这些结果出现的可能性相等.所有结果中,满足甲选择的个景点是、(记为事件)的结果有种,即,所以.由第()问知选择个景点的情况有种:、、则可使用列表法描述甲、乙两人的景点选择乙结果甲(1)(2)户.21.(1).(2)22.由表格可知甲、乙两人景点选择共有种结果,且这些结果出现的可能性相等,满足甲、乙两人在同一个景点(记为事件)的共有种情况,即、、,所以.故答案为:.解析:如图,过点作于点.北东在中,,∴,则,在中,,∴,则,∵,∴,∴,在中,,∴,∵,∴,因此,轮船航行的距离约为..23.(1)证明见解析.24.(1)(2)解析:∵,∴.∵,∴.又,∴.∴.又,∴四边形是平行四边形.如图,连接.∵,,∴.∵四边形是⊙的内接四边形,∴.∵,∴.∴.∴.∴.解析:(2)证明见解析.(1)(2)小丽出发第时,两人相距最近,最近距离是.25.(1)(2)(1)(2)当时,,,∴小丽出发时,小明离地:米.小丽小明米米令,即,解得,(舍),即小明分钟到达地,设小丽出发第时,两人相距,那么,即,其中,恒成立,∴时,有最小值为,也就是说,当小丽出发第时,两人相距最近,最近距离是.解析:;.方法一:如图所示,过点、分别作,,交于点,交于点.图∵,∴,∴,同理,(1);.(2),证明见解析.26.又,∴,∴,同理,∴,即,∴,又,∴,∴,∴,∵,∴,同理,∴,又,∴.方法二:如图所示,过点、分别作,,交延长线于点,交于点.图不妨设,∵,即,∴,即,∵,∴,∴,同理,,∵,∴,∴,,∴,∴,∴,∴,,又∵,,∴,,∴,∴,又∵,∴.(1)证明见解析.12(2)如图②所示,图线即为所求.生态保护区图在点处建燃气站,铺设管道的最短路线是(如图②,其中是正方形的顶点).如图③显示即为所求.27.(1)1(2)解析:如图①,连接,图∵点,关于对称,点在上,∴,∴.同理:.∵,∴.引理,在如图的“飞镖”多边形中,满足:.如图,延长交于点,生态保护区图在点处建燃气站,铺设管道的最短路线是(如图③,其中、都与圆相切).2在中,,即,在中,,∴,即,∴.到的最短路线是,理由同()中的将军饮马;在上所在直线左边任意位置时,到的最短距离都是,如图,生态保护区若经过点再到,则最短距离应该是,根据引理中的形状,,故是到的最短距离.若不与圆相切,例如到图中位置再到,则根据两点之间线段最短,.同理,若不与圆相切,则,故、与圆相切时,到,到距离最短;若路线不经过弧,而是经过圆外的一点,则经过到的最小值为,延长、交于点,连接、、,设圆半径为,则,,显然,所以,,根据引理中的飞镖型,,所以经过时路线最短.生态保护区扇形扇形。
2019年江苏省南京市中考数学试卷(后附答案)
2019年江苏省南京市中考数学试卷题号一二三四总分得分一、选择题(本大题共6小题,共12.0分)1.2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A. 0.13×105B. 1.3×104C. 13×103D. 130×1022.计算(a2b)3的结果是()A. a2b3B. a5b3C. a6bD. a6b33.面积为4的正方形的边长是()A. 4的平方根B. 4的算术平方根C. 4开平方的结果D. 4的立方根4.实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A. B.C. D.5.下列整数中,与10-√13最接近的是()A. 4B. 5C. 6D. 76.如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A. ①④B. ②③C. ②④D. ③④二、填空题(本大题共10小题,共20.0分)7.-2的相反数是______;1的倒数是______.28.计算14-√28的结果是______.√79.分解因式(a-b)2+4ab的结果是______.10.已知2+√3是关于x的方程x2-4x+m=0的一个根,则m=______.11.结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵______,∴a∥b.12.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有______cm.13. 为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力 4.7以下 4.7 4.8 4.9 4.9以上 人数102988093127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是______. 14. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,点C 、D 在⊙O上.若∠P =102°,则∠A +∠C =______.15. 如图,在△ABC 中,BC 的垂直平分线MN 交AB 于点D ,CD 平分∠ACB .若AD =2,BD =3,则AC 的长______.16. 在△ABC 中,AB =4,∠C =60°,∠A >∠B ,则BC 的长的取值范围是______. 三、计算题(本大题共2小题,共14.0分) 17. 计算(x +y )(x 2-xy +y 2)18. 解方程:xx−1-1=3x 2−1.四、解答题(本大题共9小题,共74.0分)19. 如图,D 是△ABC 的边AB 的中点,DE ∥BC ,CE ∥AB ,AC 与DE 相交于点F .求证:△ADF ≌△CEF .20.如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.21.某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是______.22.如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:PA=PC.23.已知一次函数y1=kx+2(k为常数,k≠0)和y2=x-3.(1)当k=-2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.24.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)25.某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?26.如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.27.【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1-x2|+|y1-y2|.【数学理解】(1)①已知点A(-2,1),则d(O,A)=______.②函数y=-2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是______.(2)函数y=4(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使xd(O,C)=3.(3)函数y=x2-5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)答案和解析1.【答案】B【解析】解:13000=1.3×104故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】D【解析】解:(a2b)3=(a2)3b3=a6b3.故选:D.根据积的乘方法则解答即可.本题主要考查了幂的运算,熟练掌握法则是解答本题的关键.积的乘方,等于每个因式乘方的积.3.【答案】B【解析】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.已知正方形面积求边长就是求面积的算术平方根;本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键.4.【答案】A【解析】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选:A.根据不等式的性质,先判断c的正负.再确定符合条件的对应点的大致位置.本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.5.【答案】C【解析】解:∵9<13<16,∴3<<4,∴与最接近的是4,∴与10-最接近的是6.故选:C.由于9<13<16,可判断与4最接近,从而可判断与10-最接近的整数为6.此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.6.【答案】D【解析】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.依据旋转变换以及轴对称变换,即可使△ABC与△A'B'C'重合.本题主要考查了几何变换的类型,在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.7.【答案】2 2【解析】解:-2的相反数是2;的倒数是2,故答案为:2,2.根据只有符号不同的两个数互为相反数,乘积为的两个数互为倒数,可得答案.本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.【答案】0【解析】解:原式=2-2=0.故答案为0.先分母有理化,然后把二次根式化为最简二次根式后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9.【答案】(a+b)2【解析】解:(a-b)2+4ab=a2-2ab+b2+4ab=a2+2ab+9b2=(a+b)2.故答案为:(a+b)2.直接利用多项式乘法去括号,进而合并同类项,再利用公式法分解因式得出答案.此题主要考查了运用公式法分解因式,正确应用公式是解题关键.10.【答案】1【解析】解:把x=2+代入方程得(2+)2-4(2+)+m=0,解得m=1.故答案为1.把x=2+代入方程得到关于m的方程,然后解关于m的方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11.【答案】∠1+∠3=180°【解析】解:∵∠1+∠3=180°,∴a∥b(同旁内角互补,两直线平).故答案为:∠1+∠3=180°.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.本题主要考查了平行的判定,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.12.【答案】5【解析】解:由题意可得:杯子内的筷子长度为:=15,则筷子露在杯子外面的筷子长度为:20-15=5(cm).故答案为:5.根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.此题主要考查了勾股定理的应用,正确得出杯子内筷子的长是解决问题的关键.13.【答案】7200【解析】解:估计该区12000名初中学生视力不低于4.8的人数是12000×=7200(人),故答案为:7200.用总人数乘以样本中视力不低于4.8的人数占被调查人数的比例即可得.本题主要考查用样本估计总体,用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差).一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.14.【答案】219°【解析】解:连接AB,∵PA、PB是⊙O的切线,∴PA=PB,∵∠P=102°,∴∠PAB=∠PBA=(180°-102°)=39°,∵∠DAB+∠C=180°,∴∠PAD+∠C=∠PAB+∠DAB+∠C=180°+39°=219°,故答案为:219°.连接AB,根据切线的性质得到PA=PB,根据等腰三角形的性质得到∠PAB=∠PBA=(180°-102°)=39°,由圆内接四边形的性质得到∠DAB+∠C=180°,于是得到结论.本题考查了切线的性质,圆内接四边形的性质,等腰三角形的性质,正确的作出辅助线是解题的关键.15.【答案】√10【解析】解:作AM⊥BC于E,如图所示:∵CD平分∠ACB,∴==,设AC=2x,则BC=3x,∵MN是BC的垂直平分线,∴MN⊥BC,BN=CN=x,∴MN∥AE,∴==,∴NE=x,∴BE=BN+EN=x,CE=CN-EN=x,由勾股定理得:AE2=AB2-BE2=AC2-CE2,即52-(x)2=(2x)2-(x)2,解得:x=,∴AC=2x=;故答案为:.作AM⊥BC于E,由角平分线的性质得出==,设AC=2x,则BC=3x,由线段垂直平分线得出MN⊥BC,BN=CN=x,得出MN∥AE,得出==,NE=x,BE=BN+EN=x,CE=CN-EN=x,再由勾股定理得出方程,解方程即可得出结果.本题考查了线段垂直平分线的性质、角平分线的性质、平行线分线段成比例定理、勾股定理等知识;熟练掌握线段垂直平分线的性质和角平分线的性质,由勾股定理得出方程是解题的关键.16.【答案】4<BC≤8√33【解析】解:作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB=AC=4,∴AC=,∴BC=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC≤;故答案为:4<BC≤.作△ABC的外接圆,求出当∠BAC=90°时,BC是直径最长=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,而∠BAC>∠ABC,即可得出答案.本题考查了三角形的三边关系、直角三角形的性质、等边三角形的性质;作出△ABC的外接圆进行推理计算是解题的关键.17.【答案】解:(x+y)(x2-xy+y2),=x3-x2y+xy2+x2y-xy2+y3,=x3+y3.故答案为:x3+y3.【解析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.18.【答案】解:方程两边都乘以(x+1)(x-1)去分母得,x(x+1)-(x2-1)=3,即x2+x-x2+1=3,解得x=2检验:当x=2时,(x+1)(x-1)=(2+1)(2-1)=3≠0,∴x=2是原方程的解,故原分式方程的解是x=2.【解析】方程两边都乘以最简公分母(x+1)(x-1)化为整式方程,然后解方程即可,最后进行检验.本题考查了分式方程的求解,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.【答案】证明:∵DE∥BC,CE∥AB,∴四边形DBCE是平行四边形,∴BD=CE,∵D是AB的中点,∴AD=BD,∴AD=EC,∵CE∥AD,∴∠A =∠ECF ,∠ADF =∠E ,∴△ADF ≌△CEF (ASA ).【解析】依据四边形DBCE 是平行四边形,即可得出BD=CE ,依据CE ∥AD ,即可得出∠A=∠ECF ,∠ADF=∠E ,即可判定△ADF ≌△CEF .本题主要考查了平行四边形的判定与性质以及全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.20.【答案】解:(1)这5天的日最高气温和日最低气温的平均数分别是x −高=23+25+23+25+245=24,x −低=21+22+15+15+175=18, 方差分别是S 高2=(23−24)2+(25−24)2+(23−24)2+(25−24)2+(24−24)25=0.8,S 低2=(21−18)2+(22−18)2+(15−18)2+(15−18)2+(17−18)25=8.8, ∴S 高2<S 低2,∴该市这5天的日最低气温波动大;(2)25日、26日、27日的天气依次为大雨、中雨、晴,空气质量依次良、优、优,说明下雨后空气质量改善了.【解析】(1)方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s 2来表示,计算公式是:s 2=[(x 1-)2+(x 2-)2+…+(x n -)2](可简单记忆为“方差等于差方的平均数”).本题考查了方差,正确理解方差的意义是解题的关键.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.21.【答案】23【解析】 解:(1)画树状图如图所示:共有12个等可能的结果,其中有一天是星期二的结果有6个,∴甲同学随机选择两天,其中有一天是星期二的概率为=;(2)乙同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,即(星期一,星期二),(星期二,星期三),∴乙同学随机选择连续的两天,其中有一天是星期二的概率是;故答案为:.(1)由树状图得出共有12个等可能的结果,其中有一天是星期二的结果有6个,由概率公式即可得出结果;(2)乙同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,由概率公式即可得出结果.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.【答案】证明:连接AC,∵AB=CD,∴AB⏜=CD⏜,∴AB⏜+BD⏜=BD⏜+CD⏜,即AD⏜=CB⏜,∴∠C=∠A,∴PA=PC.【解析】连接AC,由圆心角、弧、弦的关系得出=,进而得出=,根据等弧所对的圆周角相等得出∠C=∠A,根据等角对等边证得结论.本题考查了圆心角、弧、弦的关系,圆周角定理,等腰三角形的判定等,熟练掌握性质定理是解题的关键.23.【答案】解:(1)k=-2时,y1=-2x+2,根据题意得-2x+2>x-3,解得x<3;5(2)当x=1时,y=x-3=-2,把(1,-2)代入y1=kx+2得k+2=-2,解得k=-4,当-4≤k<0时,y1>y2;当0<k≤1时,y1>y2.【解析】(1)解不等式-2x+2>x-3即可;(2)先计算出x=1对应的y2的函数值,然后根据x<1时,一次函数y1=kx+2(k 为常数,k≠0)的图象在直线y2=x-3的上方确定k的范围.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.24.【答案】解:延长AB交CD于H,则AH⊥CD,在Rt△AHD中,∠D=45°,∴AH=DH,在Rt△AHC中,tan∠ACH=AH,CH∴AH=CH•tan∠ACH≈0.51CH,,在Rt△BHC中,tan∠BCH=BHCH∴BH=CH•tan∠BCH≈0.4CH,由题意得,0.51CH-0.4CH=33,解得,CH=300,∴EH=CH-CE=220,BH=120,∴AH=AB+BH=153,∴DH=AH=153,∴HF=DH-DF=103,∴EF=EH+FH=323,答:隧道EF的长度为323m.【解析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出CH,计算即可.本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.25.【答案】解:设扩充后广场的长为3xm,宽为2xm,依题意得:3x•2x•100+30(3x•2x-50×40)=642000解得x1=30,x2=-30(舍去).所以3x =90,2x =60,答:扩充后广场的长为90m ,宽为60m .【解析】设扩充后广场的长为3xm ,宽为2xm ,根据矩形的面积公式和总价=单价×数量列出方程并解答.题考查了列二元一次方程解实际问题的运用,总价=单价×数量的运用,解答时找准题目中的数量关系是关键.26.【答案】(1)证明:∵DE =DG ,EF =DE ,∴DG =EF ,∵DG ∥EF ,∴四边形DEFG 是平行四边形,∵DG =DE ,∴四边形DEFG 是菱形.(2)如图1中,当四边形DEFG 是正方形时,设正方形的边长为x .在Rt △ABC 中,∵∠C =90°,AC =3,BC =4,∴AB =√32+42=5,则CD =35x ,AD =54x ,∵AD +CD =AC ,∴35x +54x =3,∴x =6037,∴CD =35x =3637,观察图象可知:0≤CD <3637时,菱形的个数为0.如图2中,当四边形DAEG 是菱形时,设菱形的边长为m .∵DG ∥AB , ∴CD CA =DG AB ,∴3−m 3=m 5, 解得m =158, ∴CD =3-158=98,如图3中,当四边形DEBG 是菱形时,设菱形的边长为n .∵DG ∥AB ,∴CG CB =DG AB ,∴4−n 4=n 5, ∴n =209,∴CG =4-209=169,∴CD =√(209)2−(169)2=43, 观察图象可知:当0≤CD <3637或43<CD ≤98时,菱形的个数为0,当CD =3637或98<CD ≤43时,菱形的个数为1,当3637<CD ≤98时,菱形的个数为2.【解析】(1)根据邻边相等的四边形是菱形证明即可.(2)求出几种特殊位置的CD 的值判断即可.本题考查相似三角形的判定和性质,菱形的判定和性质,作图-复杂作图等知识,解题的关键是学会寻找特殊位置解决问题,属于中考常考题型,题目有一定难度.27.【答案】3 (1,2)【解析】解:(1)①由题意得:d(O,A)=|0+2|+|0-1|=2+1=3;②设B(x,y),由定义两点间的距离可得:|0-x|+|0-y|=3,∵0≤x≤2,∴x+y=3,∴,解得:,∴B(1,2),故答案为:3,(1,2);(2)假设函数的图象上存在点C(x,y)使d(O,C)=3,根据题意,得,∵x>0,∴,,∴,∴x2+4=3x,∴x2-3x+4=0,∴△=b2-4ac=-7<0,∴方程x2-3x+4=0没有实数根,∴该函数的图象上不存在点C,使d(O,C)=3.(3)设D(x,y),根据题意得,d(O,D)=|x-0|+|x2-5x+7-0|=|x|+|x2-5x+7|,∵,又x≥0,∴d(O,D)=|x|+|x2-5x+7|=x+x2-5x+7=x2-4x+7=(x-2)2+3,∴当x=2时,d(O,D)有最小值3,此时点D的坐标是(2,1).(4)如图,以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=-x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处.理由:设过点E的直线l1与x轴相交于点F.在景观湖边界所在曲线上任取一点P,过点P作直线l2∥l1,l2与x轴相交于点G.∵∠EFH=45°,∴EH=HF,d(O,E)=OH+EH=OF,同理d(O,P)=OG,∵OG≥OF,∴d(O,P)≥d(O,E),∴上述方案修建的道路最短.(1)①根据定义可求出d(O,A)=|0+2|+|0-1|=2+1=3;②由两点间距离:d(A,B)=|x1-x2|+|y1-y2|及点B是函数y=-2x+4的图象上的一点,可得出方程组,解方程组即可求出点B的坐标;(2)由条件知x>0,根据题意得,整理得x2-3x+4=0,由△<0可证得该函数的图象上不存在点C,使d(O,C)=3.(3)根据条件可得|x|+|x2-5x+7|,去绝对值后由二次函数的性质可求出最小值;(4)以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=-x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处,可由d(O,P)≥d(O,E)证明结论即可.考查了二次函数的综合题,涉及的知识点有新定义,解方程(组),二次函数的性质等.第21页,共21页。
2021年江苏省南京市中考数学压轴题总复习(附答案解析)
2021年江苏省南京市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。
从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。
预计2021年中考数学压轴题依然主要考查这些知识点。
1.如图1,点B在直线l上,过点B构建等腰直角三角形ABC,使∠BAC=90°,且AB=AC,过点C作CD⊥直线l于点D,连接AD.
(1)小亮在研究这个图形时发现,∠BAC=∠BDC=90°,点A,D应该在以BC为直径的圆上,则∠ADB的度数为°,将射线AD顺时针旋转90°交直线l于点E,可求出线段AD,BD,CD的数量关系为;
(2)小亮将等腰直角三角形ABC绕点B在平面内旋转,当旋转到图2位置时,线段AD,BD,CD的数量关系是否变化,请说明理由;
(3)在旋转过程中,若CD长为1,当△ABD面积取得最大值时,请直接写AD的长.
2.在平面直角坐标系xOy中,过点N(6,﹣1)的两条直线l1,l2,与x轴正半轴分别交于M、B两点,与y轴分别交于点D、A两点,已知D点坐标为(0,1),A在y轴负半轴,以AN为直径画⊙P,与y轴的另一个交点为F.
(1)求M点坐标;
(2)如图1,若⊙P经过点M.
①判断⊙P与x轴的位置关系,并说明理由;②求弦AF的长;
(3)如图2,若⊙P与直线l1的另一个交点E在线段DM上,求√10NE+AF的值.。
今年中考数学试题及答案
今年中考数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是偶数?A. 3B. 5C. 7D. 2答案:D2. 一个数的绝对值等于它本身,这个数是?A. 负数B. 零C. 正数D. 任何数答案:B3. 直角三角形中,一个锐角的度数是30°,另一个锐角的度数是?A. 60°B. 90°C. 120°D. 150°答案:A4. 以下哪个表达式等于 \(x^2 - 4x + 4\)?A. \((x-2)^2\)B. \((x+2)^2\)C. \((x-2)(x+2)\)D. \(x^2 + 2x + 4\)答案:A5. 如果一个圆的直径是10厘米,那么它的半径是多少?A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A二、填空题(每题3分,共15分)6. 一个数的平方根是它本身的数是 _______ 。
答案:07. 一个等腰三角形的底边长为6厘米,腰长为8厘米,那么它的周长是 _______ 厘米。
答案:228. 如果一个数的立方是-8,那么这个数是 _______ 。
答案:-29. 一个数除以3余1,除以5余2,这个数最小是 _______ 。
答案:1110. 一个长方体的长、宽、高分别为2厘米、3厘米、4厘米,它的体积是 _______ 立方厘米。
答案:24三、解答题(每题5分,共20分)11. 解方程:\(2x - 3 = 7\)。
答案:\(x = 5\)12. 计算:\((-3)^2 - 4 \times (-2)\)。
答案:1713. 已知一个三角形的两边长分别为3和5,且这两边的夹角为60°,求第三边的长度。
答案:\(\sqrt{13}\)14. 一个长方体的长、宽、高分别为4厘米、3厘米、2厘米,求它的表面积。
答案:52平方厘米结束语:以上是今年中考数学试题及答案,希望同学们能够认真复习,取得优异的成绩。
江苏省南京市2021年中考数学试卷真题(word版,含答案解析)
江苏省南京市2021年中考数学试卷一、单选题(共6题;共12分)1.截至2021年6月8日,31个省(自治区,直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗超过800000000次,用科学记数法表示800000000是()A. 8×108B. 0.8×109C. 8×109D. 0.8×1010【答案】A【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:800000000= 8×108;故答案为:A.【分析】根据科学记数法的表示形式为:a×10n,其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1.2.计算(a2)3⋅a−3的结果是()A. a2B. a3C. a5D. a9【答案】B【考点】同底数幂的乘法,幂的乘方【解析】【解答】解:原式= a6·a−3=a3;故答案为:B.【分析】利用幂的乘方,底数不变,指数相乘,先算乘方运算,再利用同底数幂相乘的法则进行计算.3.下列长度的三条线段与长度为5的线段能组成四边形的是()A. 1,1,1B. 1,1,8C. 1,2,2D. 2,2,2【答案】 D【考点】三角形三边关系【解析】【解答】A、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误;B、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误;C、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误;D、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确;故答案为:D.【分析】利用较小的三条线段之和大于最长的线段,再对各选项逐一判断即可.4.北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00,小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A. 10:00B. 12:00C. 15:00D. 18:00【答案】C【考点】正数和负数的认识及应用【解析】【解答】解:由北京与莫斯科的时差为5小时,二人通话时间是9:00~17:00,所以A. 当北京时间是10:00时,莫斯科时间是5:00,不合题意;B. 当北京时间是12:00时,莫斯科时间是7:00,不合题意;C. 当北京时间是15:00时,莫斯科时间是10:00,符合题意;D. 当北京时间是18:00时,不合题意.故答案为:C【分析】抓住已知条件:北京与莫斯科的时差为5小时,二人通话时间是9:00~17:00,再对各选项逐一判断.5.一般地,如果 x n =a (n 为正整数,且 n >1 ),那么x 叫做a 的n 次方根,下列结论中正确的是( )A. 16的4次方根是2B. 32的5次方根是 ±2C. 当n 为奇数时,2的n 次方根随n 的增大而减小D. 当n 为奇数时,2的n 次方根随n 的增大而增大【答案】 C【考点】有理数的乘方【解析】【解答】A. ∵24=16 (−2)4=16 , ∴ 16的4次方根是 ±2 ,故不符合题意;B. ∵25=32 , (−2)5=−32 , ∴ 32的5次方根是2,故不符合题意;C.设 x =√23,y =√25,则 x 15=25=32,y 15=23=8,∴x 15>y 15, 且 x >1,y >1,∴x >y,∴ 当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由 C 的判断可得: D 错误,故不符合题意.故答案为:C.【分析】根据正数的偶次方根有两个,它们互为相反数,可对A 作出判断;利用正数的奇次方根是正数,可对B 作出判断;根据当n 为奇数时,2的n 次方根随n 的增大而减小,可对C ,D 作出判断. 6.如图,正方形纸板的一条对角线重直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,在灯光照射下,正方形纸板在地面上形成的影子的形状可以是( )A. B. C. D.【答案】C【考点】正方形的性质,中心投影【解析】【解答】A.因为正方形纸板重直于地面,故不能产生正方形的投影,不符合题意B.因为正方形的对角线互相垂直,中心投影后,影子的对角线仍然互相垂直,不符合题意C.影子的对角线仍然互相垂直,故形状可以是CD.中心投影物体的高和影长成比例,正方形对边相等,故D选项不符合题意故答案为:C.【分析】观察图形,根据正方形纸板放置的位置,可知不能产生正方形的投影,可对A作出判断;中心投影后,影子的对角线仍然互相垂直,可对B,C作出判断;中心投影物体的高和影长成比例,正方形对边相等,可对D作出判断.二、填空题(共10题;共11分)7.−(−2)=________;−|−2|=________.【答案】2;-2【考点】相反数及有理数的相反数,绝对值及有理数的绝对值【解析】【解答】解:−(−2)=2;−|−2|=-2.故答案为2,-2.【分析】利用相反数的意义和绝对值的性质,进行计算即可.8.若式子√5x在实数范围内有意义,则x的取值范围是________.【答案】x≥0【考点】二次根式有意义的条件【解析】【解答】解:由题意得5x≥0,解得x≥0.故答案为:x≥0【分析】利用二次根式有意义的条件:被开方数是非负数,可得到关于x的不等式,然后求出不等式的解集.9.计算√8−√92的结果是________.【答案】√22【考点】二次根式的加减法【解析】【解答】解:原式= 2√2−32√2=√22;故答案为:√22.【分析】先将各个二次根式化成最简二次根式,再合并同类二次根式即可.10.设x1,x2是关于x的方程x2−3x+k=0的两个根,且x1=2x2,则k=________.【答案】2【考点】一元二次方程的根与系数的关系【解析】【解答】解:由根与系数的关系可得:x1+x2=3,x1·x2=k,∵x1=2x2,∴3x2=3,∴x2=1,∴x1=2,∴k=1×2=2;故答案为:2.【分析】利用一元二次方程根与系数的关系求出x1+x2和x1·x2的值;再结合已知条件可求出k的值.11.如图,在平面直角坐标系中,△AOB的边AO,AB的中点C,D的横坐标分别是1,4,则点B的横坐标是________.【答案】6【考点】坐标与图形性质,三角形的中位线定理【解析】【解答】设点A的横坐标为a,点B的横坐标是b;∵O点的横坐标是0,C的横坐标是1 ,C,D是AO,AB的中点(a+0)=1得a=2∴12(2+b)=4得b=6∴12∴点B的横坐标是6.故答案为6.【分析】设点A的横坐标为a,点B的横坐标是b;利用线段的中点坐标,可求出点a,b的值;或利用已知条件可得到CD是△AOB的中位线,由此可证得OB=2CD;再利用点C,D的横坐标可得到CD的长,由此可求出OB的长,即可得到点B的横坐标.⌢的中点,OC交AB于点D.若AB=8cm,CD=2cm,则⊙O 12.如图,AB是⊙O的弦,C是AB的半径为________ cm.【答案】5【考点】勾股定理,垂径定理【解析】【解答】解:连接OA,∵C是AB⌢的中点,∴OC⊥AB∴AD=1AB=4cm2设⊙O的半径为R,∵CD=2cm∴OD=OC−CD=(R−2)cm在RtΔOAD中,OA2=AD2+OD2,即R2=42+(R−2)2,解得,R=5即⊙O的半径为5cm故答案为:5【分析】利用OA,利用垂径定理可证得OC⊥AB,同时可求出AD的长,设圆的半径为R,可表示出OD 的长;再利用勾股定理建立关于R的方程,解方程求出R的值.13.如图,正比例函数y=kx与函数y=6的图象交于A,B两点,BC//x轴,AC//y轴,则xS△ABC=________.【答案】12【考点】反比例函数与一次函数的交点问题,三角形的面积【解析】【解答】解:设A(t,6t),∵正比例函数y=kx与函数y=6x的图象交于A,B两点,∴B(-t,- 6t),∵BC//x轴,AC//y轴,∴C(t,- 6t),∴S△ABC=12BC⋅AC=12[t−(−t)][6t−(−6t)]=t⋅12t=12;故答案为:12.【分析】利用函数解析式设A(t,6t),再根据两函数图象交于点A,B,利用反比例函数的对称性,可表示出点B的坐标,从而可得到点C的坐标;然后利用三角形的面积公式,可求出△ABC的面积. 14.如图,FA,GB,HC,ID,JE是五边形ABCDE的外接圆的切线,则∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=________ °.【答案】180【考点】三角形内角和定理,切线的性质【解析】【解答】如图:过圆心连接五边形ABCDE的各顶点,则∠OAB+∠OBC+∠OCD+∠ODE+∠OEA=∠OBA+∠OCB+∠ODC+∠OED+∠OAE=12(5−2)×180°=270°∴∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=5×90°−(∠OAB+∠OBC+∠OCD+∠ODE+∠OEA)=450°−270°=180°.故答案为:180°.【分析】过圆心连接五边形ABCDE的各顶点,利用三角形的内角和定理,可求出∠OAB+∠OBC+∠OCD+∠ODE+∠OEA;再利用切线的性质可求出∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ的值.15.如图,在四边形ABCD中,AB=BC=BD.设∠ABC=α,则∠ADC=________(用含α的代数式表示).【答案】180°−12α【考点】三角形内角和定理,等腰三角形的性质【解析】【解答】解:在△ABD中,AB=BD∴∠A=∠ADB= 12(180°−∠ABD)=90°−12∠ABD在△BCD中,BC=BD∴∠C=∠BDC= 12(180°−∠CBD)=90°−12∠CBD∵∠ABC=∠ABD+∠CBD=α∴∠ADC=∠ADB+∠CBD= 90°−12∠ABD+90°−12∠CBD= 180°−12(∠ABD+∠CBD)= 180°−12∠ABC= 180°−12α故答案为:180°−12α.【分析】在△ABD中,利用等腰三角形的性质及三角形的内角和定理可表示出∠ADB,在△BCD中,利用等腰三角形的性质及三角形的内角和定理可表示出∠BDC;再根据∠ADC=∠ADB+∠CBD,将其代入可表示出∠ADC.16.如图,将▱ABCD绕点A逆时针旋转到▱AB′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E,若AB=3,BC=4,BB′=1,则CE的长为________.【答案】98【考点】平行四边形的性质,相似三角形的判定与性质,旋转的性质,三角形全等的判定(AAS)【解析】【解答】解:过点C作CM// C′D′交B′C′于点M,∵平行四边形ABCD绕点A逆时针旋转得到平行四边形AB′C′D′∴AB=AB′,AD=AD′,∠B=∠AB′C′=∠D=∠D′,∠BAD=∠B′AD′∴∠BAB′=∠DAD′,∠B=∠D′∴ΔABB′∽ΔADD′∴BB′DD′=ABAD=ABBC=34,∵BB′=1∴DD′=43∴C′D=C′D′−DD′=CD−DD′=AB−DD′=3−4 3=5 3∵∠AB ′C =∠AB ′C ′+∠CB ′M =∠ABC +∠BAB ′∴∠ CB ′M =∠BAB ′∵ B ′C =BC −BB ′=4−1=3∴ B ′C =AB∵ AB =AB ′∴∠ ABB ′=∠AB ′B =∠AB ′C ′∵ AB ′//C ′D ′ , C ′D ′//CM∴ AB ′//CM∴∠ AB ′C ′=∠B ′MC∴∠ AB ′B =∠B ′MC在 ΔABB ′ 和 ΔB ′MC 中,{∠BAB ′=∠CB ′M∠AB ′B =∠B ′MC AB =B ′C∴ ΔABB ′≅ΔB ′CM∴ BB ′=CM =1∵ CM//C ′D∴△ CME ∽ΔDC ′E∴ CM DC ′=CE DE =153=35 ∴ CE CD =38∴ CE =38CD =38AB =38×3=98故答案为: 98 .【分析】过点C 作CM// C ′D ′ 交 B ′C ′ 于点M ,利用旋转的性质可得AB=AB ',AD=AD ',同时可证得两平行四边形的对角相等,由此可推出∠BAB '=∠DAD ',∠B=∠D ',可推出△ABB '∽△ADD ',利用相似三角形的对应边成比例,可得出对应边的比;从而可求出DD '的值,即可求出CD ',B 'C ;再证明△CME ∽△DC 'E ,利用相似三角形的性质可求出CE 的长. 三、解答题(共11题;共87分)17.解不等式 1+2(x −1)≤3 ,并在数轴上表示解集.【答案】 解: 1+2(x −1)≤3去括号: 1+2x −2≤3移项: 2x ≤3−1+2合并同类项:2x≤4化系数为1:x≤2解集表示在数轴上:【考点】解一元一次不等式,在数轴上表示不等式的解集【解析】【分析】利用去括号的法则,先去括号,在移项,合并同类项,然后将x的系数化为1,将其解集在数轴上表示出来.18.解方程2x+1+1=xx−1.【答案】解:2x+1+1=xx−1,2(x−1)+(x+1)(x−1)=x(x+1),2x−2+x2−1=x2+x,x=3,检验:将x=3代入(x+1)(x−1)中得,(x+1)(x−1)≠0,∴x=3是该分式方程的解【考点】解分式方程【解析】【分析】方程两边同时乘以(x+1)(x-1),将分式方程转化为整式方程,再求出整式方程的解;然后检验可得方程的根.19.计算(ab2+ab −2a+b+ba2+ab)÷a−bab.【答案】解:原式= (ab(a+b)−2a+b+ba(a+b))⋅aba−b= (a2ab(a+b)−2abab(a+b)+b2ab(a+b))⋅aba−b= a2−2ab+b2ab(a+b)⋅ab a−b= (a−b)2ab(a+b)⋅ab a−b= a−ba+b【考点】分式的混合运算【解析】【分析】将括号里的分式通分计算,再将分式除法转化为乘法运算,然后约分化简.20.如图,AC与BD交于点O,OA=OD,∠ABO=∠DCO,E为BC延长线上一点,过点E作EF//CD,交BD的延长线于点F.(1)求证△AOB≌△DOC;(2)若AB=2,BC=3,CE=1,求EF的长.【答案】(1)证明:∵OA=OD,∠ABO=∠DCO,又∵∠AOB=∠DOC,∴△AOB≌△DOC(AAS)(2)解:∵△AOB≌△DOC(AAS),AB=2,BC=3,CE=1∴AB=DC=2,BE=BC+CE=3+1=4,∵EF//CD,∴△BEF∽△BCD,∴EFCD =BEBC,∴EF2=43,∴EF=83,∴EF的长为83【考点】相似三角形的判定与性质,三角形全等的判定(AAS)【解析】【分析】(1)图形中隐含对顶角相等,因此利用AAS可证得结论.(2)利用全等三角形的对应边相等,可求出DC,BE的长;再由EF∥CD可证得△BEF∽△BCD,利用相似三角形的对应边成比例,可得比列式,代入计算求出EF的长.21.某市在实施居民用水定额管理前,对居民生活用水情况进行了调查,通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据如下表:(1)求这组数据的中位数.已知这组数据的平均数为9.2t,你对它与中位数的差异有什么看法?(2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使75%的家庭水费支出不受影响,你觉得这个标准应该定为多少?【答案】(1)解:由表格数据可知,位于最中间的两个数分别是6.4和6.8,∴中位数为: 6.4+6.8=6.6(t),2而这组数据的平均数为9.2t,它们之间差异较大,主要是因为它们各自的特点决定的,主要原因如下:①因为平均数与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动;主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。
2017年南京市中考数学试题及答案解析
第Ⅰ卷(共60分)一、选择题: 本大题共12个小题, 每小题5分, 共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.计算12+(-18)÷(-6)-(-3)×2的结果是. )A. 7B. 8C. 21D. 36【答案】C考点: 有理数的混合运算2.计算/的结果是. )A. /B. /C. /D. /【答案】C【解析】试题分析: 根据乘方的意义及幂的乘方, 可知/=/.故选:C考点: 同底数幂相乘除3.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学: 它有4个面是三角形;乙间学: 它有8条棱.该模型的形状对应的立体图形可能.. )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥【答案】D【解析】试题分析: 根据有四个三角形的面, 且有8条棱, 可知是四棱锥.而三棱柱有两个三角形的面, 四棱柱没有三角形的面, 三棱锥有四个三角形的面, 但是只有6故选:D考点: 几何体的形状4.若/, 则下列结论中正确的.. )A......B.....C..... D./【答案】B【解析】试题分析: 根据二次根式的近似值可知/, 而/, 可得1<a<4.故选:B考点: 二次根式的近似值5.若方程/的两根为/和/,且/,则下列结论中正确的.. )A. /是19的算术平方根B. /是19的平方根C./是19的算术平方根D. /是19的平方根【答案】C/考点: 平方根6.过三点/(2,2),/(6,2),/(4,5)的圆的圆心坐标为. )A.(4, /) B.(4, 3) C.(5, /) D.(5, 3)【答案】A【解析】试题分析: 根据题意, 可知线段AB的线段垂直平分线为x=4, 然后由C点的坐标可求得圆心的横坐标为x=4, 然后设圆的半径为r, 则根据勾股定理可知/, 解得r=/, 因此圆心的纵坐标为/, 因此圆心的坐标为(4, /).考点: 1.线段垂直平分线, 2.三角形的外接圆, 3.勾股定理第Ⅱ卷(共90分)二、填空题(每题5分, 满分20分, 将答案填在答题纸上)7.计算: ..... ;..... .【答案】3, 3【解析】试题分析: 根据绝对值的性质/, 可知|-3|=3, 根据二次根式的性质/, 可知/. 故答案为: 3, 3.考点: 1、绝对值, 2、二次根式的性质8.2019年南京实现/约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500..... .【答案】1.05×104/考点: 科学记数法的表示较大的数9.若式子/在实数范围内有意义,则/的取值范围..... .【答案】x≠1【解析】试题分析: 根据分式有意义的条件, 分母不为0, 可知x-1≠0, 解得x≠1.故答案为: x≠1.考点: 分式有意义的条件10.计算/的结果..... .【答案】试题分析: 根据二次根式的性质化简后合并同类二次根式可得/=/=/.故答案为: /.考点: 合并同类二次根式11.方程/的解..... .【答案】x=2/考点: 解分式方程12.已知关于/的方程/的两根为-3和-1,则..... ;..... .【答案】4, 3【解析】试题分析: 根据一元二次方程的根及系数的关系, 可知p=-(-3-1)=4, q=(-3)×(-1)=3.故答案为:4, 3.考点: 一元二次方程的根及系数的关系13.下面是某市2019~2019年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的..... 年,私人汽车拥有量年增长率最大的..... 年. 【答案】2019, 2019【解析】试题分析: 根据条形统计图可知私家车拥有最多的年份为2019年, 由折线统计图可知2019年的私家车的拥有量增长率最高.故答案为: 2019, 2019.考点: 1、条形统计图, 2、折线统计图14.如图,/是五边形/的一个外角,若/,则..... .【答案】425/考点: 1.多边形的内角和, 2.多边形的外角15.如图,四边形/是菱形,⊙/经过点/,及/相交于点/,连接/,若/,则..... .【答案】27【解析】试题分析: 根据菱形的性质可知AD=DC, AD ∥BC, 因此可知∠DAC=∠DCA, /, 然后根据三角形的内角和为180°, 可知∠DAC=51°, 即∠ACE=51°, 然后根据等弧所对的圆周角可知∠DAE=∠D=78°, 因此可求得∠EAC=78°-51°=27°. 故答案为: 27.考点: 1.菱形的性质, 2.圆周角的性质, 3.三角形的内角和16.函数/及/的图像如图所示,下列关于函数/的结论:①函数的图像关于原点中心对称;②当/时,y 随x 的增大而减小;③当/时,函数的图像最低点的坐标是(2,4),其中所有正确结论的序号..... .【答案】①③/考点: 一次函数及反比例函数三、解答题 (本大题共6小题, 共70分.解答应写出文字说明, 证明过程或演算步骤.)17.计算/.【答案】 【解析】试题分析: 根据分式的混合运算的法则, 可先算括号里面的(通分后相加减), 然后把除法转化为乘法, 再约分化简即可.11a a +-试题解析: /考点: 分式的混合运算18. 解不等式组/请结合题意, 完成本题的解答.(1)解不等式①, 得 , 依据是______.(2)解不等式③, 得 .(3)把不等式①, ②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分, 得不等式组的解集 .【答案】【解析】试题分析: 分别求解两个不等式, 系数化为1时可用性质2或性质3, 然后画数轴, 确定其公共部分, 得到不等式组的解集.考点: 解不等式19.如图,在/中,点/分别在/上,且/相交于点/.求证/.【答案】证明见解析/试题解析: ∵四边形/是平行四边形,∴/, 即/.22x -<<(1)该公司员工月收入的中位数是元, 众数是元. (2)根据上表, 可以算得该公司员工月收入的平均数为6276元.你认为用平均数, 中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.【答案】(1)3400,3000.(2)利用中位数可以更好地反映这组数据的集中趋势【解析】试题分析: (1)根据大小排列确定中间一个或两个的平均数, 得到中位数, 然后找到出现最多的为众数;(2)根据表格信息, 结合中位数、平均数、众数说明即可.试题解析: (1)3400, 3000.(2)本题答案不惟一, 下列解法供参考, 例如,用中位数反映该公司全体员工月收入水平较为合适, 在这组数据中有差异较大的数据, 这会导致平均数较大.该公司员工月收入的中位数是3400元, 这说明除去收入为3400元的员工, 一半员工收入高于3400元, 另一半员工收入低于3400元.因此, 利用中位数可以更好地反映这组数据的集中趋势.考点: 1.中位数, 2.众数21.全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩, 准备再生一个孩子, 则第二个孩子是女孩的概率是 ;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.【答案】(1) (2)/考点: 概率 22.“直角”在初中几何学习中无处不在. 如图, 已知/, 请仿照小丽的方式, 再用两种不同的方法判断/是否为直角(仅限用直尺和圆规).小丽的方法如图, 在/上分别取点/, 以/为圆心, /长为半径画弧, 交/的反向延长线于点/, 若/, 则/.如图,在上分别取点,以为圆心,长为半径画弧,交的反向延长线于点,若,则.1234,OA OB ,C D C CD OB E OE OD =90AOB ∠=︒【答案】作图见解析【解析】试题分析: 方法一是根据勾股定理作图, 方法二是根据直径所对的圆周角为直角画图.方法2: 如图②, 在/上分别取点/, 以/为直径画圆.若点/在圆上, 则/.考点: 基本作图——作直角23.张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择.如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买/个甲种文具时,需购买/个乙种文具.(1)①当减少购买一个甲种文具时, / , / ;②求及之间的函数表达式.y x(2)已知甲种文具每个5元, 乙种文具每个3元, 张老师购买这两种文具共用去540元.甲, 乙两种文具各购买了多少个?【答案】(1)①99, 2②/(2)甲、乙两种文具各购买了60个和80个【解析】试题分析: (1)①根据“每减少购买1个甲种文具, 需增加购买2个乙种文具”可直接求解;②根据①的结论直接列式即可求出函数的解析式;(2)根据题意列出二元一次方程组求解即可.考点: 1.一次函数, 2.二元一次方程组24.如图,/是⊙/的切线,/为切点.连接/并延长,交/的延长线于点/,连接/,交⊙/于点/.(1)求证: /平分/.(2)连结/, 若/, 求证/.【答案】(1)证明见解析(2)证明见解析【解析】试题分析: (1)连接OB, 根据切线的性质和角平分线的概念可证明;(2)根据角平分线的性质可证明△ODB 是等边三角形, 然后根据平行线的判定得证.试题解析: (1)如图, 连接/.∵/是⊙/的切线,又,∴平分.又,∴是等边三角形.考点: 1.圆的切线, 2.角平分线的性质及判定, 3.平行线的判定25.如图,港口/位于港口/的南偏东/方向,灯塔/恰好在/的中点处,一艘海轮位于港口/的正南方向,港口/的正西方向的/处,它沿正北方向航行5/,到达/处,测得灯塔/在北偏东/方向上.这时,/处距离港口/有多远?(参考数据: /)【答案】35km【解析】试题分析: 过点/作/, 垂足为/.构造直角三角形的模型, 然后解直角三角形和OA OB =PO APC ∠OD OB =ODB ∆平行线分线段成比例的定理列方程求解即可.又/为/的中点,因此, /处距离港口/大约为35/.考点: 解直角三角形26.已知函数/(/为常数)(1)该函数的图像及轴公共点的个数是( )A.0B.1C.2D.1或2(2)求证: 不论/为何值, 该函数的图像的顶点都在函数/的图像上.(3)当/时, 求该函数的图像的顶点纵坐标的取值范围.【答案】(1)D (2)证明见解析(3)试题解析: (1)/.(2)/,所以该函数的图像的顶点坐标为. 把//代入/, 得/.因此, 不论/为何值, 该函数的图像的顶点都在函数/的图像上.(3)设函数. 当/时, /有最小值0.当/时, /随/的增大而减小;当/时, /随/的增大而增大.又当/时, /;当/时, /.因此, 当/时, 该函数的的图像的顶点纵坐标的取值范围是/.考点: 二次函数的图像及性质x 04z ≤≤()211,24m m ⎛⎫ ⎝+ -⎪⎪⎭z =()214m +27.折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步, 对折矩形纸片/(图①), 使/及/重合, 得到折痕/, 把纸片展平(图②). 第二步, 如图③, 再一次折叠纸片, 使点/落在/上的/处, 并使折痕经过点/, 得到折痕/, 折出/, 得到/.(1)说明是等边三角形.【数学思考】(2)如图④.小明画出了图③的矩形/和等边三角形/.他发现, 在矩形/中把/经过图形变化, 可以得到图⑤中的更大的等边三角形.请描述图形变化的过程.(3)已知矩形一边长为3/, 另一边长为/.对于每一个确定的/的值, 在矩形中都能画出最大的等边三角形.请画出不同情形的示意图, 并写出对应的/的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4/和1/的直角三角形铁片, 所需正方形铁片的边长的最小值为 /.【答案】(1)/是等边三角形(2)答案见解析(3)/, /, /;(4) 试题解析: (1)由折叠, / ,因此, /是等边三角形.(2)本题答案不惟一, 下列解法供参考.例如,如图, 以点/为中心, 在矩形/中把/逆时针方向旋转适当的角度, 得到/;PBC 165再以点/为位似中心, 将/放大, 使点/的对应点/落在/上, 得到/.(3)本题答案不惟一, 下列解法供参考, 例如,(4). 考点:1、规律探索, 2、矩形的性质, 3、正方形的性质, 4、等边三角形165。
2019年江苏省13市包括南京扬州宿迁淮安苏州无锡等十三市中考数学试卷及答案WORD解析版
2019年江苏省13市包括南京扬州宿迁淮安苏州无锡等十三市中考数学试卷及答案WORD解析版2019年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×1022.(2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b33.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.5.(2分)下列整数中,与10﹣最接近的是()A.4B.5C.6D.76.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④二、填空题(本大题共10小题,每小题2分,共20分。
不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)﹣2的相反数是;的倒数是.8.(2分)计算﹣的结果是.9.(2分)分解因式(a﹣b)2+4ab的结果是.10.(2分)已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=.11.(2分)结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a∥b.12.(2分)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.13.(2分)为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力 4.7以下 4.7 4.8 4.9 4.9以上人数102988093127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是.14.(2分)如图,P A、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=.15.(2分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.16.(2分)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(x+y)(x2﹣xy+y2)18.(7分)解方程:﹣1=.19.(7分)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.20.(8分)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.21.(8分)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是.22.(7分)如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:P A=PC.23.(8分)已知一次函数y1=kx+2(k为常数,k≠0)和y2=x﹣3.(1)当k=﹣2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.24.(8分)如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m 的D处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)25.(8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?26.(9分)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.27.(11分)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d (O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)2019年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:13000=1.3×104故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【分析】根据积的乘方法则解答即可.【解答】解:(a2b)3=(a2)3b3=a6b3.故选:D.【点评】本题主要考查了幂的运算,熟练掌握法则是解答本题的关键.积的乘方,等于每个因式乘方的积.3.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根【分析】已知正方形面积求边长就是求面积的算术平方根;【解答】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.【点评】本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键.4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.【分析】根据不等式的性质,先判断c的正负.再确定符合条件的对应点的大致位置.【解答】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选:A.【点评】本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.5.(2分)下列整数中,与10﹣最接近的是()A.4B.5C.6D.7【分析】由于9<13<16,可判断与4最接近,从而可判断与10﹣最接近的整数为6.【解答】解:∵9<13<16,∴3<<4,∴与最接近的是4,∴与10﹣最接近的是6.故选:C.【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.6.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④【分析】依据旋转变换以及轴对称变换,即可使△ABC与△A'B'C'重合.【解答】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.【点评】本题主要考查了几何变换的类型,在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.二、填空题(本大题共10小题,每小题2分,共20分。
2023年南京市中考数学试题及答案
2023年南京市中考数学试题及答案第一题某商品在打折后的价格是原价的80%,打折后售价为160元,请问原价是多少元?答案:200元第二题在一桶含有100个红球和150个蓝球的桶中,先取1个球,再取另一个球,取出2个红球的概率是多少?答案:0.148第三题若直线$y=2x+b$和$x=2y-2$交于点$P$,求直线$OP$的斜率,其中$O$为坐标原点。
答案:-0.5第四题已知$\log_a b=0.75$,求$\log_a (b^{-1})$的值。
答案:-0.75第五题已知$\sin\theta=-\frac{1}{2}$,$\theta$是第三象限的角,求$\cos\theta$的值。
答案:$-\frac{\sqrt{3}}{2}$第六题设$f(x)=-x^2-3x+10$,求$f(x)$的最大值。
答案:13第七题求下面方程组的解:$$\begin{cases}2x-3y=4 \\4x+5y=15\end{cases}$$答案:$x=3, y=0$第八题已知等边三角形ABC的边长为6,点M是边AB上的一点,且AM=2,求三角形ACM的面积。
答案:$3\sqrt{3}$第九题如图所示,正方形ABCD的边长为6,点E是边AD上的一点,且AE=3,连接BE,求$\triangle BDE$的面积。
答案:9第十题已知ABCD是一个平行四边形,如图所示,AE是周长为28的正方形所在的边,求$BD$的长度。
答案:$16\sqrt{2}$以上是2023年南京市中考数学试题及答案,请同学们认真阅读并思考,勤加练习,提高自己的数学能力。
祝大家考试顺利!。
2019年江苏省南京市中考数学试卷及答案(解析版)
江苏省南京市2019年初中学业水平考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共12分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13 000亿美元.用科学记数法表示13 000是( ) A .50.1310⨯B .41.310⨯C .31310⨯D .213010⨯ 2.计算()32a b 的结果是( )A .23a bB .53a bC .6a bD .63a b 3.面积为4的正方形的边长是( )A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根4.实数a 、b 、c 满足a >b 且ac <bc ,它们在数轴上的对应点的位置可以是( )ABC D5.下列整数中,与10( )A .4B .5C .6D .76.如图,'''A B C △是由ABC △经过平移得到的,'''A B C △还可以看作是ABC △经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是( )A .①④B .②③C .②④D .③④第Ⅱ卷(非选择题共108分)二、填空题(本大题共10小题,每小题2分,共20分.请把答案填在题中的横线上)7.2-的相反数是;1的倒数是.28.的结果是.9.分解因式()24-+的结果是.a b ab10.已知2是关于x的方程240+﹣=的一个根,则m=.x x m11.结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a b∥.12.无盖圆柱形杯子的展开图如图所示.将一根长为20 cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.13.为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.根据抽样调查结果,估计该区12 000名初中学生视力不低于4.8的人数是.14.如图,P A、PB是Oe上.若102e的切线,A、B为切点,点C、D在O=,则∠︒P ∠+∠=.A C15.如图,在ABC△中,BC的垂直平分线MN交AB于点D,CD平分ACB∠.若BD=,则AC的长.=2AD,316.在ABC △中,4AB =,60C ∠=,A B ∠>∠,则BC 的长的取值范围是 . 三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分7分) 计算()22()x y x xy y +-+18.(本小题满分7分) 解方程:23111x x x -=--.19.(本小题满分7分)如图,D 是ABC △的边AB 的中点,DE BC ∥,CE AB ∥,AC 与DE 相交于点F .求证:ADF CEF V V ≌.20.(本小题满分8分)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.21.(本小题满分8分)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是.22.(本小题满分8分)如图,O e 的弦AB 、CD 的延长线相交于点P ,且AB CD =.求证:PA PC =.23.(本小题满分8分)已知一次函数12y kx =+(k 为常数,0k ≠)和23y x =-. (1)当2k =-时,若12y y >,求x 的取值范围.(2)当1x <时,12y y >.结合图象,直接写出k 的取值范围.24.(本小题满分8分)如图,山顶有一塔AB ,塔高33 m .计划在塔的正下方沿直线CD 开通穿山隧道EF .从与E 点相距80m 的C 处测得A 、B 的仰角分别为27°、22°,从与F 点相距50m 的D 处测得A 的仰角为45°.求隧道EF 的长度. (参考数据:tan220.40︒≈,tan270.51︒≈.)25.(本小题满分8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m ,宽40m ,要求扩充后的矩形广场长与宽的比为32:.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642 000元,扩充后广场的长和宽应分别是多少米?26.(本小题满分9分)如图①,在Rt ABC △中,90C ∠=︒,3AC =,4BC =.求作菱形DEFG ,使点D 在边AC 上,点E 、F 在边AB 上,点G 在边BC 上.图1(1)证明小明所作的四边形DEFG 是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D 的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD 的长的取值范围.小明的作法1.如②,在边AC 上取一点D ,过点D 作DG AB ∥交BC 于点G .图22.以点D 为圆心,DG 长为半径画弧,交AB 于点E . 3.在EB 上截取EF ED =,连接FG ,则四边形DEFG 为所求作的菱形.27.(本小题满分11分)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点()11,A x y 和()22,B x y ,用以下方式定义两点间距离:()1212,d A B x x y y +--=.【数学理解】(1)①已知点()2,1A -,则(),d O A = .②函数()2402y x x =-+≤≤的图象如图①所示,B 是图象上一点,(),3d O B =,则点B 的坐标是 .图1图2图3(2)函数4(0)y x x=>的图象如图②所示.求证:该函数的图象上不存在点C ,使(),3d O C =.(3)函数()2570y x x x +-=≥的图象如图③所示,D 是图象上一点,求(),d O D 的最小值及对应的点D 的坐标. 【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M 为起点,先沿MN 方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)图2江苏省南京市2019年初中学业水平考试数学答案解析第Ⅰ卷(选择题)一、选择题1.【答案】B【解析】4=⨯,故选B.13000 1.310【考点】用科学记数法表示较大的数2.【答案】D【解析】原式()32363⋅=,故选D.=a b a b【考点】积的乘方,幂的乘方3.【答案】B【解析】面积为4,2是4的算术平方根,故选B.【考点】算术平方根的意义4.【答案】A【解析】由a bc<,根据此条件可以判断A图正确,故选A.<知0>,ac bc【考点】由数的大小及符号确定点在数轴上的位置5.【答案】C【解析】因为,所以3.54,所以 3.54-->,所以>,即6.5106>,所以最接近6,故选C.--10 3.510104用有理数估计无理数的大小,要借助完全平方数实现。
2024年中考数学总复习:多选题(附答案解析)
第1页(共29页)2024年中考数学总复习:多选题一.多选题(共25小题)(多选)1.某工厂生产工艺品,以每天生产35个为基本量,实际每天生产量与前一天相比有增减(上周最后一天生产量恰好是基本量,超产记为正,减产记为负).如表是本周一至周五的生产情况:星期 一 二 三 四 五 增减(单位:个)﹣1﹣4+2+7﹣3根据记录的数据,该厂本周每天生产量超过基本量35个的是( ) A .星期二B .星期三C .星期四D .星期五(多选)2.对于代数式3x 2﹣x +15,下列说法不正确的是( ) A .它按x 降幂排列 B .它是单项式 C .它的常数项是15D .它是二次二项式(多选)3.下列各式是分式的有( ) A .x3B .1aC .x 2xD .1y(15−πR 2)(多选)4.下列各式是分式的是( ) A .x3B .1aC .xxyD .1y(15﹣πR 2)(多选)5.下列各式变形正确的是( ) A .1−a a 2−2a+1=11−aB .xy−x 2(x−y)2=x x−yC .9ab 2+6abc3a 2b =3b+2c aD .a 2a−1−a −1=a 2−(a−1)2a−1(多选)6.在ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠C =90°,下列各式一定成立的是( ) A .a =c •cos BB .a =b •cos AC .c =asinAD .a =b •tan A(多选)7.下列各式中,计算结果正确的是( )。
江苏省南京市2021年中考数学试题(含答案解析)
ADE江苏省南京市中考数学试卷(满分 120 分,考试时间 120 分钟)一、选择题(本大题共 6 小题,每小题 2 分,满分 12 分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.计算5 3 的结果是A .-2B .2C .-8D .8【答案】B 【解析】5 3 2 22.计算(xy 3 )2 的结果是A . x 2 y 6【答案】 AB . x 2 y6C . x 2 y9D . x 2 y9【解析】由积的乘方公式可得3. 如图,在△ABC 中,DE∥BC, AD 1 ,则下列结论中正确的是 DB 2 A .AE 1B . DE1 AC 2BC 2ADE 的周长 1 ADE 的面积 1C .ABC 的周长=3【答案】C【解析】由周长比等于相似比D .ABC 的面积=3BC4.某市 2013 年底机动车的数量是2106 辆,2014 年新增3105 辆,用科学记数法表示该市 2014 年底机动车的数量是 A . 2.3105【答案】CB . 3.2 105C . 2.3106D . 3.2106【解析】210631052.31065.估计5 1 介于2A .0.4 与 0.5 之间B .0.5 与 0.6 之间C .0.6 与 0.7 之间D .0.7 与 0.8 之间【答案】C445 1535ONG M【解析】 2.236 ,则5 10.61826. 如图,在矩形 ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于 E 、F 、G 三点,过点 D 作⊙O的切线交 BC 于点 M ,则 DM 的长为A .133 C .4 133【答案】AB . 92D . 2 5AEDF【解析】由勾股定理得:设 GM=x , (3 x )242 (3 x )2BC解得, x 4 ,所以 DM =13 .33二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答过程,请把答案直接填在答.题.卡.相.应.位. 置.上) 7. 4 的平方根是 ▲ ;4 的算术平方根是 ▲ .【答案】2 ;2【解析】2 , 28. jsc 若式子 【答案】 x 1在实数范围内有意义,则 x 的取值范围是 ▲ .【解析】 x 1 0, x 19.jsc计算的结果是 ▲ .【答案】5【解析】5 510. 分解因式(a b )(a 4b ) ab 的结果是 ▲.【答案】(a 2b )2【解析】(a b )(a 4b )ab a 2 4ab ab 4b 2ab a 2 4ab 4b 2 (a 2b )22x 1 111. 不等式2x 1 3 的解集是 ▲.【答案】1x 15x 1 5153O C D【解析】2x 1 1, 2x 2, x 12x 1 3, 2x 2, x 11 x 112. 已知方程 x2mx 3 0 的一个根是 1,则它的另一个根是 ▲,m 的值是 ▲ .【答案】3;-4 【解析】1m 3 0, m 4x 2 4x 3 0 (x 1)(x 3) 0x 1, x 313. 在平面直角坐标系中,点 A 的坐标是(2,-3),作点 A 关于 x 轴的对称点得到点 A ’,再作点 A ’关于 y 轴的对称点,得到点 A ’ ,则点 A ’ 的坐标是( ▲ , ▲ ).【答案】-2;3【解析】(2,-3)关于 x 轴对称(2,3),关于 y 轴对称(-2,3) 14.某工程队有 14 名员工,他们的工种及相应每人每月工资如下表所示.工种 人数 每人每月工资/元电工 5 7000 木工 4 6000 瓦工56000现该工程队进行了人员调整:减少木工 2 名,增加电工,瓦工各 1 名.与调整前相比,该工程队员工月工资的方差▲(填“变小”,“不变”或“变大”).【答案】变大【解析】电工的工资高于瓦工工资。
初中数学中考计算题复习(最全)-含答案
by by
4, 2
的解为
x
y
2, 1,
,则
2a-3b
的值为多少?
参考答案与试题解析
一.解答题(共 30 小题)
第 11 题 图
米的扇花台,那
a2 b2
.
2x y 5
3、已知 x 2 y 6 那么 x-y 的值是(
)
A. 1
B. ―1
C. 0
D. 2
4、若不等式组
x b
a2 2x 0
的解集是
1
x
1
,求
a
b
2010
的值
(1)23((xy12))5xy18
(5)
y 1 4
x
3
2
2x 3y 1
÷
+ ,其中 x=2 +1.
26.(1)计算:
;
(2)解方程:
.
27.计算:
.
28.计算:
.
29.计算:(1+ )2013﹣2(1+ )2012﹣4(1+ )2011.
30.计算:
.
1.化简求值:
,选择一个你喜欢且有意义的数代入求值.
2.先化简,再求值
,然后选取一个使原式有意义的 x 值代入求值.
一.解答题(共 30 小题)
1.计算题:
①
;
②解方程:
.
2.计算:
+(π﹣2013)0.
3.计算:|1﹣ |﹣2cos30°+(﹣ )0×(﹣1)2013.
4.计算:﹣
.
5.计算:
.
6.
.
7.计算:
.
8.计算: 9.计算:
2019江苏省南京市中考数学真题及答案
2019江苏省南京市中考数学真题及答案一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×1022.(2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b33.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.5.(2分)下列整数中,与10﹣最接近的是()A.4 B.5 C.6 D.76.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④二、填空题(本大题共10小题,每小题2分,共20分。
不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)﹣2的相反数是;的倒数是.8.(2分)计算﹣的结果是.9.(2分)分解因式(a﹣b)2+4ab的结果是.10.(2分)已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=.11.(2分)结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a∥b.12.(2分)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.13.(2分)为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力 4.7以下 4.7 4.8 4.9 4.9以上人数102 98 80 93 127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是.14.(2分)如图,PA、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=.15.(2分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.16.(2分)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(x+y)(x2﹣xy+y2)18.(7分)解方程:﹣1=.19.(7分)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.20.(8分)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.21.(8分)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是.22.(7分)如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:PA=PC.23.(8分)已知一次函数y1=kx+2(k为常数,k≠0)和y2=x﹣3.(1)当k=﹣2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.24.(8分)如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)25.(8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?26.(9分)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D 在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.27.(11分)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d (O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)2019年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:13000=1.3×104故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【分析】根据积的乘方法则解答即可.【解答】解:(a2b)3=(a2)3b3=a6b3.故选:D.【点评】本题主要考查了幂的运算,熟练掌握法则是解答本题的关键.积的乘方,等于每个因式乘方的积.3.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根【分析】已知正方形面积求边长就是求面积的算术平方根;【解答】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.【点评】本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键.4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.【分析】根据不等式的性质,先判断c的正负.再确定符合条件的对应点的大致位置.【解答】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选:A.【点评】本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.5.(2分)下列整数中,与10﹣最接近的是()A.4 B.5 C.6 D.7【分析】由于9<13<16,可判断与4最接近,从而可判断与10﹣最接近的整数为6.【解答】解:∵9<13<16,∴3<<4,∴与最接近的是4,∴与10﹣最接近的是6.故选:C.【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.6.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④【分析】依据旋转变换以及轴对称变换,即可使△ABC与△A'B'C'重合.【解答】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.【点评】本题主要考查了几何变换的类型,在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.二、填空题(本大题共10小题,每小题2分,共20分。
2022年南京市中考数学试题及答案
2022年南京市中考数学试题及答案南京市2022年中考数学试题一、选择题 [2分×12=24分]1.如果a与-2互为倒数,那么a是 [ ] A、-2 B、-1 C、1 D、22.比-1大1的数是 [ ] A、-2 B、-1 C、0 D、13.计算:x^3·x^2的结果是 [ ] A、x^9 B、x^8 C、x^6 D、x^54.9的算术平方根是 [ ] A、-3 B、3 C、±3 D、无解5.反比例函数y=-2的图象位于 [ ] A、第一、二象限 B、第一、三象限 C、第二、三象限 D、第二、四象限6.二次函数y=(x-1)^2+2的最小值是 [ ] A、-2 B、2 C、-1D、17.在比例尺为1:的工程示意图上,将于2022年9月1日正式通车的南京地铁一号线[奥体中央至迈皋桥段]的长度约为54.3cm,它的实际长度约为 [ ] A、0.2172km B、2.172km C、21.72km D、217.2km8.以下四个几何体中,主视图、左视图与俯视图是全等图形的几何体是 [ ] A、球 B、圆柱 C、三棱柱 D、圆锥9.如图,在△ABC中,AC=3,BC=4,AB=5,那么tanB 的值是 [ ] A、3/4 B、4/3 C、3/5 D、4/510.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是 [ ] A、1/4 B、1/2 C、3/4 D、111.如图,身高为1.6m的某学生想测量一棵大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,那么树的高度为 [ ] A、4.8m B、6.4m C、8m D、10m12.右图是甲、乙两户居民家庭全年支出费用的扇形统计图。
根据统计图,下面对全年食品支出费用判断正确的选项是[ ] A、甲户比乙户多 B、乙户比甲户多 C、甲、乙两户一样多D、无法确定哪一户多二、填空题 [3分×4=12分]13.10在两个连续整数a和b之间,a<10<b,那么a,b的值分别是_____。
2016年江苏省南京市中考数学试卷附详细答案(原版+解析版)
2016年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)为了方便市民出行,提倡低碳交通,近几年南京市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达70000辆,用科学记数法表示70000是()A.0.7×105B.7×104C.7×105D.70×1032.(2分)数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5 B.﹣3﹣5 C.|﹣3+5| D.|﹣3﹣5|3.(2分)下列计算中,结果是a6的是()A.a2+a4B.a2•a3C.a12÷a2D.(a2)34.(2分)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,75.(2分)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.26.(2分)若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或6二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)化简:=;=.8.(2分)若式子在实数范围内有意义,则x的取值范围是.9.(2分)分解因式:2a(b+c)﹣3(b+c)=.10.(2分)比较大小:﹣3.11.(2分)分式方程的解是.12.(2分)设x1、x2是方程x2﹣4x+m=0的两个根,且x1+x2﹣x1x2=1,则x1+x2=,m=.13.(2分)如图,扇形OAB的圆心角为122°,C是上一点,则∠ACB=°.14.(2分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.15.(2分)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.16.(2分)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)解不等式组,并写出它的整数解.18.(7分)计算﹣.19.(7分)某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是()A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数20.(8分)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.21.(8分)用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.22.(8分)某景区7月1日﹣7月7日一周天气预报如图,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.23.(8分)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为L/km、L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?24.(7分)如图,在▱ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.(1)求证:∠D=∠F;(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).25.(9分)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?26.(8分)如图,O是△ABC内一点,⊙O与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC,连接DF、EG.(1)求证:AB=AC.(2)已知AB=10,BC=12,求四边形DFGE是矩形时⊙O的半径.27.(11分)如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.类似地,我们可以认识其他函数.(1)把函数y=的图象上各点的纵坐标变为原来的倍,横坐标不变,得到函数y=的图象;也可以把函数y=的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=的图象.(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.(Ⅰ)函数y=x2的图象上所有的点经过④→②→①,得到函数的图象;(Ⅱ)为了得到函数y=﹣(x﹣1)2﹣2的图象,可以把函数y=﹣x2的图象上所有的点.A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥(3)函数y=的图象可以经过怎样的变化得到函数y=﹣的图象?(写出一种即可)2016年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)为了方便市民出行,提倡低碳交通,近几年南京市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达70000辆,用科学记数法表示70000是()A.0.7×105B.7×104C.7×105D.70×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:70000=7×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2分)数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5 B.﹣3﹣5 C.|﹣3+5| D.|﹣3﹣5|【分析】由距离的定义和绝对值的关系容易得出结果.【解答】解:∵点A、B表示的数分别是5、﹣3,∴它们之间的距离=|﹣3﹣5|=8,故选:D.【点评】本题考查绝对值的意义、数轴上两点间的距离;理解数轴上两点间的距离与绝对值的关系是解决问题的关键.3.(2分)下列计算中,结果是a6的是()A.a2+a4B.a2•a3C.a12÷a2D.(a2)3【分析】A:根据合并同类项的方法判断即可.B:根据同底数幂的乘法法则计算即可.C:根据同底数幂的除法法则计算即可.D:幂的乘方的计算法则:(a m)n=a mn(m,n是正整数),据此判断即可.【解答】解:∵a2+a4≠a6,∴选项A的结果不是a6;∵a2•a3=a5,∴选项B的结果不是a6;∵a12÷a2=a10,∴选项C的结果不是a6;∵(a2)3=a6,∴选项D的结果是a6.故选:D.【点评】(1)此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(4)此题还考查了合并同类项的方法,要熟练掌握.4.(2分)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,7【分析】在能够组成三角形的条件下,如果满足较小两边平方的和等于最大边的平方是直角三角形;满足较小两边平方的和大于最大边的平方是锐角三角形;满足较小两边平方的和小于最大边的平方是钝角三角形,依此求解即可.【解答】解:A、因为32+42>42,所以三条线段能组锐角三角形,不符合题意;B、因为32+42=52,所以三条线段能组成直角三角形,不符合题意;C、因为3+4>6,且32+42<62,所以三条线段能组成钝角三角形,符合题意;D、因为3+4=7,所以三条线段不能组成三角形,不符合题意.故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.掌握组成钝角三角形的条件是解题的关键.5.(2分)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.2【分析】根据题意画出图形,利用正六边形中的等边三角形的性质求解即可.【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴OA=AB=2,∴OG=OA•sin60°=2×=,∴边长为2的正六边形的内切圆的半径为.故选B.【点评】本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算,记住基本概念是解题的关键,属于中考常考题型.6.(2分)若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或6【分析】根据数据x1,x2,…x n与数据x1+a,x2+a,…,x n+a的方差相同这个结论即可解决问题.【解答】解:∵一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.【点评】本题考查方差、平均数等知识,解题的关键利用结论:数据x1,x2,…x n 与数据x1+a,x2+a,…,x n+a的方差相同解决问题,属于中考常考题型.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)化简:=2;=2.【分析】根据二次根式的性质和立方根的定义化简即可.【解答】解:==2;=2.故答案为:2;2.【点评】本题考查了二次根式的性质与化简,立方根的定义,是基础题,熟记概念是解题的关键.8.(2分)若式子在实数范围内有意义,则x的取值范围是x≥1.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.9.(2分)分解因式:2a(b+c)﹣3(b+c)=(b+c)(2a﹣3).【分析】直接提取公因式b+c即可.【解答】解:原式=(b+c)(2a﹣3),故答案为:(b+c)(2a﹣3).【点评】此题主要考查了提公因式法分解因式,关键是正确找出公因式.10.(2分)比较大小:﹣3<.【分析】先判断出﹣3与﹣2的符号,进而可得出结论.【解答】解:∵4<5<9,∴2<<3,∴﹣3<0,﹣2>0,∴﹣3<.故答案为:<.【点评】本题考查的是实数的大小比较,熟知正数与负数比较大小的法则是解答此题的关键.11.(2分)分式方程的解是3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=3(x﹣2),去括号得:x=3x﹣6,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.(2分)设x1、x2是方程x2﹣4x+m=0的两个根,且x1+x2﹣x1x2=1,则x1+x2= 4,m=3.【分析】根据根与系数的关系找出x1+x2=﹣=4,x1x2==m,将其代入等式x1+x2﹣x1x2=1中得出关于m的一元一次方程,解方程即可得出m的值,从而此题得解.【解答】解:∵x1、x2是方程x2﹣4x+m=0的两个根,∴x1+x2=﹣=4,x1x2==m.∵x1+x2﹣x1x2=4﹣m=1,∴m=3.故答案为:4;3.【点评】本题考查了根与系数的关系,解题的关键是找出x1+x2=4,x1x2=m.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.13.(2分)如图,扇形OAB的圆心角为122°,C是上一点,则∠ACB=119°.【分析】在⊙O上取点D,连接AD,BD,根据圆周角定理求出∠D的度数,由圆内接四边形的性质即可得出结论.【解答】解:如图所示,在⊙O上取点D,连接AD,BD,∵∠AOB=122°,∴∠ADB=∠AOB=×122°=61°.∵四边形ADBC是圆内接四边形,∴∠ACB=180°﹣61°=119°.故答案为:119.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.14.(2分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是①②③.【分析】根据全等三角形的性质得出∠AOB=∠AOD=90°,OB=OD,再根据全等三角形的判定定理得出△ABC≌△ADC,进而得出其它结论.【解答】解:∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确∴BC=DC,故②正确;故答案为①②③.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法:SSS,SAS,ASA,AAS,以及HL,是解题的关键.15.(2分)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出DB,再根据相似三角形对应边成比例列式计算即可得解.【解答】解:∵EF是△ODB的中位线,∴DB=2EF=2×2=4,∵AC∥BD,∴△AOC∽△BOD,∴=,即=,解得AC=.故答案为:.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,相似三角形的判定与性质,熟记定理与性质是解题的关键.16.(2分)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【分析】根据正方形的面积可用对角线进行计算解答即可.【解答】解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.【点评】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)解不等式组,并写出它的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.【解答】解:解不等式3x+1≤2(x+1),得:x≤1,解不等式﹣x<5x+12,得:x>﹣2,则不等式组的解集为:﹣2<x≤1,则不等式组的整数解为﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.(7分)计算﹣.【分析】首先进行通分运算,进而合并分子,进而化简求出答案.【解答】解:﹣=﹣==.【点评】此题主要考查了分式的加减运算,正确进行通分运算是解题关键.19.(7分)某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是()A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数【分析】(1)用九年级学生的总分除以总人数即可得出答案;(2)根据条形统计图和扇形统计图不能求出众数和中位数,从而得出答案.【解答】解:(1)根据题意得:(80×1000×60%+82.5×1000×40%)÷1000=81(分),答:该校九年级学生本次数学测试成绩的平均数是81分;(2)A、根据统计图不能求出九年级学生成绩的众数,故本选项错误;B.根据统计图不能求出九年级学生成绩的中位数,故本选项错误;C.随机抽取一个班,该班学生成绩的平均数不一定等于九年级学生成绩的平均数,故本选项错误;D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数,故本选项正确;故选D.【点评】本题考查了众数、平均数和中位数的定义.一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.20.(8分)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.【分析】(1)根据平移的性质即可得到结论;(2)根据轴对称的性质即可得到结论;(3)同(2);(4)由旋转的性质即可得到结论.【解答】解:(1)平移的性质:平移前后的对应线段相等且平行.所以与对应线段有关的结论为:AB=A′B′,AB∥A′B′;(2)轴对称的性质:AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.(3)轴对称的性质:轴对称图形对称轴是任何一对对应点所连线段的垂直平分线.所以与对应点有关的结论为:l垂直平分AA′.(4)OA=OA′,∠AOA′=∠BOB′.故答案为:(1)AB=A′B′,AB∥A′B′;(2)AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.;(3)l垂直平分AA′;(4)OA=OA′,∠AOA′=∠BOB′.【点评】本题考查了旋转的性质,平移的性质,轴对称的性质,余角和补角的性质,熟练掌握各性质是解题的关键.21.(8分)用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.【分析】证法1:根据平角的定义得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根据三角形内角和定理和角的和差关系即可得到结论;证法2:要求证∠BAE+∠CBF+∠ACD=360°,根据三角形外角性质得到∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,则∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),然后根据三角形内角和定理即可得到结论.【解答】证明:证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.证法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.故答案为:平角等于180°,∠1+∠2+∠3=180°.【点评】本题考查了多边形的外角和:n边形的外角和为360°.也考查了三角形内角和定理和外角性质.22.(8分)某景区7月1日﹣7月7日一周天气预报如图,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.【分析】(1)由天气预报是晴的有4天,直接利用概率公式求解即可求得答案;(2)首先利用列举法可得:随机选择连续的两天等可能的结果有:晴晴,晴雨,雨阴,阴晴,晴晴,晴阴,然后直接利用概率公式求解即可求得答案.【解答】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为:;(2)∵随机选择连续的两天等可能的结果有:晴晴,晴雨,雨阴,阴晴,晴晴,晴阴,∴随机选择连续的两天,恰好天气预报都是晴的概率为:=.【点评】此题考查了列举法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为0.13L/km、0.14 L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?【分析】(1)和(2):先求线段AB的解析式,因为速度为50km/h的点在AB上,所以将x=50代入计算即可,速度是100km/h的点在线段BC上,可由已知中的“该汽车的速度每增加1km/h,耗油量增加0.002L/km”列式求得,也可以利用解析式求解;(3)观察图形发现,两线段的交点即为最低点,因此求两函数解析式组成的方程组的解即可.【解答】解:(1)设AB的解析式为:y=kx+b,把(30,0.15)和(60,0.12)代入y=kx+b中得:解得∴AB:y=﹣0.001x+0.18,当x=50时,y=﹣0.001×50+0.18=0.13,由线段BC上一点坐标(90,0.12)得:0.12+(100﹣90)×0.002=0.14,∴当x=100时,y=0.14,故答案为:0.13,0.14;(2)由(1)得:线段AB的解析式为:y=﹣0.001x+0.18;(3)设BC的解析式为:y=kx+b,把(90,0.12)和(100,0.14)代入y=kx+b中得:解得,∴BC:y=0.002x﹣0.06,根据题意得解得,答:速度是80km/h时,该汽车的耗油量最低,最低是0.1L/km.【点评】本题考查了一次函数的应用,正确求出两线段的解析式是解好本题的关键,因为系数为小数,计算要格外细心,容易出错;另外,此题中求最值的方法:两图象的交点,方程组的解;同时还有机地把函数和方程结合起来,是数学解题方法之一,应该熟练掌握.24.(7分)如图,在▱ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.(1)求证:∠D=∠F;(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).【分析】(1)BF交AD于G,先利用AD∥BC得到∠FBC=∠FGE,加上∠FBC=∠DCE,所以∠FGE=∠DCE,然后根据三角形内角和定理易得∠D=∠F;(2)分别作BC和BF的垂直平分线,它们相交于点O,然后以O为圆心,OC 为半径作△BCF的外接圆⊙O,⊙O交AD于P,连结BP、CP,则根据圆周角定理得到∠F=∠BPC,而∠F=∠D,所以∠D=∠BPC,接着可证明∠PCD=∠APB=∠PBC,于是可判断△BPC∽△CDP.【解答】(1)证明:BF交AD于G,如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠FBC=∠FGE,而∠FBC=∠DCE,∴∠FGE=∠DCE,∵∠GEF=∠DEC,∴∠D=∠F;(2)解:如图,点P为所作.【点评】本题考查了作图﹣相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.也考查了平行四边形的性质.解决(2)小题的关键是利用圆周角定理作∠BPC=∠F.25.(9分)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?【分析】(1)过点P作PH⊥OA于H,如图,设PH=3x,运用三角函数可得OH=6x,AH=2x,根据条件OA=4可求出x,即可得到点P的坐标;(2)若水面上升1m后到达BC位置,如图,运用待定系数法可求出抛物线的解析式,然后求出y=1时x的值,就可解决问题.【解答】解:(1)过点P作PH⊥OA于H,如图.设PH=3x,在Rt△OHP中,∵tanα==,∴OH=6x.在Rt△AHP中,∵tanβ==,∴AH=2x,∴OA=OH+AH=8x=4,∴x=,∴OH=3,PH=,∴点P的坐标为(3,);(2)若水面上升1m后到达BC位置,如图,过点O(0,0),A(4,0)的抛物线的解析式可设为y=ax(x﹣4),∵P(3,)在抛物线y=ax(x﹣4)上,∴3a(3﹣4)=,解得a=﹣,∴抛物线的解析式为y=﹣x(x﹣4).当y=1时,﹣x(x﹣4)=1,解得x1=2+,x2=2﹣,∴BC=(2+)﹣(2﹣)=2=2×1.41=2.82≈2.8.答:水面上升1m,水面宽约为2.8米.【点评】本题主要考查了三角函数、运用待定系数法求抛物线的解析式、解一元二次方程等知识,出现角的度数(30°、45°或60°)或角的三角函数值,通常放到直角三角形中通过解直角三角形来解决问题.26.(8分)如图,O是△ABC内一点,⊙O与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC,连接DF、EG.(1)求证:AB=AC.(2)已知AB=10,BC=12,求四边形DFGE是矩形时⊙O的半径.【分析】(1)由切线长定理可知AD=AE,易得∠ADE=∠AED,因为DE∥BC,由平行线的性质得∠ADE=∠B,∠AED=∠C,可得∠B=∠C,易得AB=AC;(2)如图,连接AO,交DE于点M,延长AO交BC于点N,连接OE、DG,设⊙O半径为r,由△AOD∽△ABN得=,得到AD=r,再由△GBD∽△ABN 得=,列出方程即可解决问题.【解答】(1)证明:∵AD、AE是⊙O的切线,∴AD=AE,∴∠ADE=∠AED,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠B=∠C,∴AB=AC;(2)解:如图,连接AO,交DE于点M,延长AO交BC于点N,连接OE、DG,设⊙O半径为r,∵四边形DFGE是矩形,∴∠DFG=90°,∴DG是⊙O直径,∵⊙O与AB、AC分别相切于点D、E,∴OD⊥AB,OE⊥AC,∵OD=OE,OE⊥AC,∵OD=OE.∴AN平分∠BAC,∵AB=AC,∴AN⊥BC,BN=BC=6,在RT△ABN中,AN===8,∵OD⊥AB,AN⊥BC,∴∠ADO=∠ANB=90°,∵∠OAD=∠BAN,∴△AOD∽△ABN,∴=,即=,∴AD=r,∴BD=AB﹣AD=10﹣r,∵OD⊥AB,∴∠GDB=∠ANB=90°,∵∠B=∠B,∴△GBD∽△ABN,∴=,即=,∴r=,∴四边形DFGE是矩形时⊙O的半径为.【点评】本题考查圆、切线的性质、矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是利用参数解决问题,学会用方程的思想思考问题,属于中考压轴题.27.(11分)如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.类似地,我们可以认识其他函数.(1)把函数y=的图象上各点的纵坐标变为原来的6倍,横坐标不变,得到函数y=的图象;也可以把函数y=的图象上各点的横坐标变为原来的6倍,纵坐标不变,得到函数y=的图象.(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.(Ⅰ)函数y=x2的图象上所有的点经过④→②→①,得到函数y=4(x﹣1)2﹣2的图象;(Ⅱ)为了得到函数y=﹣(x﹣1)2﹣2的图象,可以把函数y=﹣x2的图象上所有的点D.A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥(3)函数y=的图象可以经过怎样的变化得到函数y=﹣的图象?(写出一种即可)。
初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)
初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)1.32的倒数是(). A .32 B .23 C .32- D .23-2.据报道,2010年苏州市政府有关部门将在市区完成130万平⽅⽶⽼住宅⼩区综合整治⼯作.130万(即1 300 000)这个数⽤科学记数法可表⽰为().A .1.3×104B .1.3×105C .1.3×106D .1.3×1073.记n S =n a a a +++ 21,令12n n S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。
已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为(). A .2004 B .2006 C .2008 D .20104.某汽车维修公司的维修点环形分布如图。
公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。
在使⽤前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进⾏。
那么要完成上述调整,最少的调动件次(n 件配件从⼀个维修点调整到相邻维修点的调动件次为n )为().A .15B .16C .17D .185.在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………()A )1- B )0 C )1 D )26. 2010年⼀季度,全国城镇新增就业⼈数为289万⼈,⽤科学记数法表⽰289万正确的是()A )2.89×107.B )2.89×106 .C )2.89×105..7.下⾯两个多位数1248624……、6248624……,都是按照如下⽅法得到的:将第⼀位数字乘以2,若积为⼀位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进⾏如上操作得到第3位数字……,后⾯的每⼀位数字都是由前⼀位数字进⾏如上操作得到的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京市中考数学复习题及答案
21.(8分)人民商场销售某种冰箱,每台进价为2500元,市场调研表明:当每台销售价定为2900元时,平均每天能售出8台;每台售价每降低50元,平均每天能多售出4台.设该种冰箱每台的销售价降低了x元.
(1)填表:
每天售出的冰箱台数(台)每台冰箱的利润(元)降价前8400
降价后8+×4400﹣x (2)若商场要想使这种冰箱的销售利润平均每天达到5000元,则每台冰箱的售价应定为多少元?
【分析】(1)销售利润=一台冰箱的利润×销售冰箱数量,一台冰箱的利润=售价﹣进价,降低售价的同时,销售量就会提高,“一减一加”;
(2)根据每台的盈利×销售的件数=5000元,即可列方程求解.
【解答】解:(1)销售1台的利润:2900﹣2500=400;
降价后销售的数量:8+×4,
降价后销售的利润:400﹣x;
故答案是:400;8+×4,400﹣x.
(2)设销售价降低了x元,根据题意可得:
(400﹣x)•(8+×4)=5000,
整理得:x2﹣300x+22500=0,
(x﹣150)2=0,
解得:x1=x2=150,
2900﹣150=2750(元),
答:每台冰箱的售价应定为2750元.
【点评】此题主要考查了一元二次方程的应用,本题关键是会表示一台冰箱的利润,销售量增加的部分.找到关键描述语,找到等量关系:每台的盈利×销售的件数=5000元
是解决问题的关键.。