数据拟合与函数逼近
常用函数的逼近和曲线拟合
常用函数的逼近和曲线拟合在数学中,函数逼近和曲线拟合都是常见的问题。
函数逼近是指找到一个已知函数,尽可能地接近另一个函数。
而曲线拟合则是给定一组数据点,找到一条曲线来描述这些数据点的分布。
本文将讨论常用的函数逼近和曲线拟合方法。
一、函数逼近1. 插值法插值法是最简单的函数逼近方法之一。
它的基本思想是:给定一组已知点,通过构造一个多项式,使得该多项式在这些点处的函数值与已知函数值相等。
插值法的优点是精度高,缺点是易产生龙格现象。
常用的插值多项式有拉格朗日插值多项式和牛顿插值多项式。
拉格朗日插值多项式的形式为:$f(x)=\sum_{i=0}^{n}y_{i}\prod_{j=i,j\neq i}^{n}\frac{x-x_{j}}{x_{i}-x_{j}}$其中,$x_{i}$是已知点的横坐标,$y_{i}$是已知点的纵坐标,$n$是已知点的数量。
牛顿插值多项式的形式为:$f(x)=\sum_{i=0}^{n}f[x_{0},x_{1},...,x_{i}]\prod_{j=0}^{i-1}(x-x_{j})$其中,$f[x_{0},x_{1},...,x_{i}]$是已知点$(x_{0},y_{0}),(x_{1},y_{1}),...,(x_{i},y_{i})$的差商。
2. 最小二乘法最小二乘法是一种常用的函数逼近方法。
它的基本思想是:给定一组数据点,找到一个函数,在这些数据点上的误差平方和最小。
通常采用线性模型,例如多项式模型、指数模型等。
最小二乘法的优点是适用性广泛,缺点是对于非线性模型要求比较高。
最小二乘法的一般形式为:$F(x)=\sum_{i=0}^{n}a_{i}\varphi_{i}(x)$其中,$a_{i}$是待求的系数,$\varphi_{i}(x)$是一组已知的基函数,$n$是基函数的数量。
最小二乘法的目标是使得$\sum_{i=1}^{m}[f(x_{i})-F(x_{i})]^{2}$最小,其中$m$是数据点的数量。
什么是函数逼近及其应用
函数逼近是数学中一个重要的概念,它在各个领域的应用非常广泛。
在数学中,函数逼近是指用一个已知函数来近似描述另一个未知函数的过程。
这个过程的目的是找到一个函数来尽可能地接近给定的函数,以便进行各种计算和分析。
函数逼近的应用非常广泛,下面我将以几个典型的应用来阐述函数逼近的重要性。
首先,函数逼近在数学分析和数值计算中起着重要的作用。
在复杂的数学问题中,我们往往无法直接求得解析解,这时就需要使用函数逼近的方法来得到近似解。
例如在微积分中,我们常常需要使用泰勒级数对一个函数进行逼近,以便在不同点上进行计算。
这种逼近方法在数值计算中广泛应用,可以大大简化计算的复杂性。
其次,函数逼近在机器学习和数据分析中也起着关键作用。
在数据分析中,我们经常需要对一组离散的数据进行拟合,以便得到一个可以用来预测未知数据的模型。
函数逼近提供了一种有效的方法来构建这样的模型。
通常情况下,我们会选择一个适当的函数形式,并通过优化算法来确定函数的参数,使得函数与数据的拟合误差最小。
这种方法可以帮助我们从数据中提取有用的信息,进行各种预测和分析。
另外,函数逼近广泛应用于图像处理和信号处理中。
在这些领域中,我们通常需要对图像或信号进行压缩和去噪处理。
函数逼近提供了一种有效的方法来近似和表示这些复杂的图像和信号。
例如,在图像压缩中,我们可以使用小波变换来将图像分解成具有不同频率和分辨率的小波系数,然后根据一定的阈值选择保留哪些系数,从而实现图像的压缩。
在语音信号处理中,我们可以使用线性预测编码来对信号进行压缩和重构,从而提高通信的效率。
最后,函数逼近在工程领域中也有重要的应用。
例如,在控制系统设计中,我们需要建立一个数学模型来描述控制对象的动态特性。
函数逼近提供了一种有效的方法来近似这个系统的传递函数,以便进行系统的分析和控制设计。
同时,在电路设计中,我们也经常需要使用函数逼近来近似和建模电路的特性,以便对电路进行分析和仿真。
总结起来,函数逼近是数学中一个重要的概念,它在各个领域的应用非常广泛。
函数逼近的几种算法及其应用汇总
函数逼近的几种算法及其应用汇总函数逼近是数值计算中非常重要的技术之一,它主要用于用已知函数逼近未知函数,从而得到未知函数的一些近似值。
在实际应用中,函数逼近广泛用于数据拟合、插值、信号处理、图像处理等领域。
下面将介绍几种常用的函数逼近算法及其应用。
1. 最小二乘法(Least Square Method)最小二乘法将函数逼近问题转化为最小化离散数据与拟合函数之间的残差平方和的问题。
它在数据拟合和插值中应用广泛。
例如,最小二乘法可以用于拟合数据点,找出最佳拟合曲线;也可以用于信号处理中的滤波器设计。
2. 插值法(Interpolation)插值法旨在通过已知数据点之间的连线或曲线,来逼近未知函数在这些数据点上的取值。
常见的插值方法有拉格朗日插值、牛顿插值和分段线性插值等。
插值法在图像处理中广泛应用,例如可以通过已知的像素点来重构图像,提高图像的质量和分辨率。
3. 最小二乘曲线拟合(Least Square Curve Fitting)最小二乘曲线拟合是一种将渐近函数与离散数据拟合的方法,常见的函数包括多项式、指数函数、对数函数等。
最小二乘曲线拟合可以在一定程度上逼近原始数据,从而得到曲线的一些参数。
这种方法在数据分析和统计学中经常使用,在实际应用中可以拟合出模型参数,从而做出预测。
4. 正交多项式逼近(Orthogonal Polynomial Approximation)正交多项式逼近是一种通过正交多项式来逼近未知函数的方法。
正交多项式具有良好的性质,例如正交性和递推关系,因此可以用于高效地逼近函数。
常见的正交多项式包括勒让德多项式、拉盖尔多项式和切比雪夫多项式等。
正交多项式逼近广泛应用于数值计算和信号处理中,例如用于图像压缩和数据压缩。
5. 插值样条曲线(Interpolating Spline)插值样条曲线是将多个局部的多项式插值片段拼接在一起,从而逼近未知函数的方法。
插值样条曲线在实现光滑拟合的同时,还能逼近离散数据点。
最小二乘法的原理及在建模中的应用分析
最小二乘法的原理及在建模中的应用分析最小二乘法(least squares method)是一种数学优化方法,用于解决线性回归和非线性回归问题,通过求取使得误差平方和最小化的参数估计值。
它的原理是寻找一条最佳拟合曲线或平面,使得观测值与拟合值之间的误差最小。
在线性回归问题中,最小二乘法可以用来估计回归模型的参数。
假设我们有n个样本点{(x1, y1), (x2, y2), ..., (xn, yn)},其中yi是对应的观测值,我们想要找到一个线性模型y = ax + b,使得拟合值与观测值之间的误差最小。
这个问题可以通过最小化误差平方和来求解。
误差平方和定义为E(a, b) = Σ(yi - (axi + b))^2,我们需要找到使得E(a, b)最小的a和b。
∂E/∂a = -2Σ(xi(yi - (axi + b))) = 0∂E/∂b = -2Σ(yi - (axi + b)) = 0将上述方程进行化简,可以得到如下的正规方程组:Σ(xi^2)a + Σ(xi)b = Σ(xi yi)Σ(xi)a + nb = Σ(yi)解这个方程组,可以得到最小二乘估计的参数值。
1.线性回归分析:最小二乘法可以用于估计线性回归模型的参数。
通过最小二乘估计,可以得到最佳拟合直线,并用这条直线来预测因变量。
2.时间序列分析:最小二乘法可以用于拟合时间序列模型。
通过寻找最佳拟合函数,可以识别出序列中的趋势和周期性变化。
3.统计数据处理:最小二乘法可以用于数据平滑和滤波处理。
通过拟合一个平滑曲线,可以去除数据中的噪声和不规则波动,从而提取出数据中的趋势信息。
4.多项式拟合:最小二乘法可以用于多项式拟合。
通过最小二乘估计,可以拟合出多项式函数,将其用于数据拟合和函数逼近。
5.曲线拟合:最小二乘法可以用于非线性曲线拟合。
通过选择合适的函数形式,并通过最小二乘估计求解参数,可以拟合出复杂的非线性曲线。
总之,最小二乘法是一种常用的参数估计方法,可以用于线性回归、非线性拟合、时间序列分析等多种建模问题。
函数逼近理论
函数逼近理论函数逼近是数学中研究近似计算方法的重要分支,它通过寻找一个接近所需函数的近似函数来简化复杂的计算问题。
函数逼近理论涵盖了多项式逼近、三角函数逼近、最小二乘逼近等各种方法。
本文将从数学背景、函数逼近的原理和应用领域三个方面进行讨论。
一、数学背景在了解函数逼近理论之前,我们需要回顾一些数学背景知识。
首先,我们要了解函数及其性质的概念。
函数是一种将一个集合中的元素映射到另一个集合中元素的规则,常用来描述数学、物理和工程问题。
其次,我们要熟悉多项式的性质。
多项式是由常数和变量的乘积相加而成的表达式,其具有高度的可控性和计算性能。
最后,我们需要了解一些数学分析工具,如泰勒级数展开和傅里叶级数展开等。
二、函数逼近的原理函数逼近的核心思想是通过构造一个近似函数,在一定范围内保持与所需函数的接近程度。
常用的函数逼近方法包括最小二乘逼近、插值逼近和曲线拟合等。
最小二乘逼近是一种基于最小化残差平方和的方法。
其基本思想是通过寻找一个多项式函数,使得所需函数与多项式函数的差异最小化。
这种逼近方法在实际问题中应用广泛,如信号处理、数据拟合等领域。
插值逼近是一种通过在给定数据点上构造插值多项式来逼近函数的方法。
插值多项式与原函数在数据点处相等,通过连接这些数据点构造出一个逼近函数。
插值逼近在图像处理、数值计算和计算机图形学等领域具有重要应用。
曲线拟合是一种寻找一条曲线与给定数据集最匹配的方法。
常用的曲线拟合方法包括多项式拟合、指数拟合和对数拟合等。
曲线拟合方法在统计学、经济学和物理学等领域具有广泛应用。
三、函数逼近的应用领域函数逼近理论在数学和工程领域中有着广泛的应用。
在数学领域,函数逼近可用于求解复杂的数学问题,如微积分、方程求解等。
在工程领域,函数逼近可用于优化算法、信号处理、图像处理等领域。
在优化算法中,函数逼近可用于近似解决无法求得精确解的优化问题。
通过构造一个逼近函数,可以减少计算量和提高计算效率,从而更好地解决实际问题。
牛顿迭代法的函数逼近和拟合
牛顿迭代法的函数逼近和拟合在数学和计算机科学中,函数逼近(function approximation)和拟合(function fitting)是重要的问题之一,它们涉及到如何用已知数据或函数来找出与之近似的函数形式。
而牛顿迭代法是一种常用的数值计算方法,可以被广泛地应用在函数逼近和拟合中。
一、牛顿迭代法简介牛顿迭代法是一种求解方程的方法,其本质是一种迭代算法,可以通过给出一个函数在某点的值以及该点的导数,迭代地求出函数的零点或者极值点。
其基本公式为:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$其中,$f(x_n)$表示函数在点$x_n$处的函数值,$f'(x_n)$表示函数在点$x_n$处的导数,$x_{n+1}$是通过迭代算法得到的新的近似解。
在使用牛顿迭代法时,需要注意函数的光滑性和局部收敛性,如果函数不光滑或者在某些点处导数为零,那么迭代可能会导致发散或者收敛速度极慢。
二、牛顿迭代法在函数逼近中的应用在函数逼近中,如果我们已知一些数据点$(x_i, y_i)$,并且想要找到一个函数$f(x)$,可以用这些数据点来拟合函数,那么可以使用牛顿迭代法来实现。
具体的方法如下:1.首先定义一个函数$g(x)$,它满足$g(x_i)=y_i$;2.然后利用牛顿迭代公式,给出$f(x)$的递归式:$$f(x_{n+1})=f(x_n)+\frac{g(x_n)-f(x_n)}{g'(x_n)}$$其中,$g(x)$是一个在点$(x_i, y_i)$处值为$y_i$,在其他点处为零的光滑函数。
3.重复进行上述迭代,直到得到一个满足精度要求的近似解。
通过牛顿迭代法的函数逼近方法,我们可以得到在数据点上的逼近函数,这个函数可以用来进行插值和外推等操作,同时也可以作为一个简单的近似模型来使用。
三、牛顿迭代法在函数拟合中的应用除了函数逼近,牛顿迭代法还可以用于函数拟合,这里的函数拟合指的是通过一些给定的函数基,将一个在某些点处已知函数值的函数表示为基函数线性组合的形式。
数据拟合与函数逼近
第十三章 数据拟合与函数逼近数据拟合与函数逼近涉及到许多内容与方法,从不同角度出发,也有多种叫法。
这一章,我们主要通地线性拟合而引出最小乘法这一根本方法。
13.1 数据拟合概念与直线拟合插值法是一种用简单函数近似代替较复杂函数的方法,它的近似标准是在插值点处的误差为零。
但有时,我们不要求具体某些点的误差为零,而是要求考虑整体的误差限制。
对了达到这一目的,就需要引入拟合的方法,所以数据拟合与插值相比:数据拟合--不要求近似 函数过所有的数据点,而要求它反映原函数整体的变化趋势。
插值法--在节点处取函数值。
实际给出的数据,总有观测误差的,而所求的插值函数要通过所有的节点,这样就会保留全部观测误差的影响,如果不是要求近似函数过所有的数据点,而是要求它反映原函数整的变化趋势,那么就可以用数据拟合的方法得到更简单活用的近似函数。
13.1.1 直线拟合由给定的一组测定的离散数据(,)i i x y (1,2,,i N = ),求自变量x 和因变量y 的近似表达式()y x ϕ=的方法。
影响因变量y 只有一个自变量x 的数据拟合方法就是直线拟合。
直线拟合最常用的近似标准是最小二乘原理,它也是流行的数据处理方法之一。
直线拟合步骤如下:(1) 做出给定数据的散点图(近似一条直线)。
(2) 设拟合函数为:i bx a y +=*(13.1.1)然后,这里得到的*i y 和i y 可能不相同,记它们的差为:i i i i i bx a y y y --=-=*δ (13.1.2)称之为误差。
在原始数据给定以后,误差只依赖于b a ,的选取,因此,可以把误差的大小作为衡量b a ,的选取是否优良的主要标志。
最小二乘法便是确定“最佳” 参数的方法,也就是要误差的平方和达到最小。
(3) 写出误差和表达式:),()(1212b a bx a yQ Ni i iNi iϕδ=--==∑∑== (13.1.3)要选择b a ,而使得函数),(b a ϕ最小,可以用数学分析中求极值的方法,即先分别对b a ,求偏导,再使偏导等于零。
数值分析06函数逼近
函数逼近的历史与发展
早期发展
早在古希腊时期,数学家就开始研究用简单的几何图形来近 似表示复杂的曲线。随着数学的发展,函数逼近的理论和方 法不断完善和丰富。
现代进展
随着计算机科学和数值分析的兴起,函数逼近在数值计算、 信号处理、图像处理等领域的应用越来越广泛。现代的逼近 方法不仅追求形式简单,还注重逼近的精度和计算效率。
数据拟合
在数据分析和机器学习中,利用数值逼近方法对数据进行拟合, 以提高预测精度。
图像处理
在图像处理中,利用数值逼近方法对图像进行平滑、去噪等处理, 以提高图像质量。
工程计算
在工程计算中,利用数值逼近方法对复杂函数进行近似计算,以简 化计算过程和提高计算效率。
05
结论与展望
总结与评价
总结
数值分析06函数逼近课程是一门重要的数学课程,它涉及到许多实际问题的求解,如插值、拟合、最小二乘法等。 通过学习这门课程,学生可以掌握如何使用数学工具来近似描述和分析函数,从而更好地理解和解决实际问题。
数。
稳定性分析
稳定性定义
稳定性是指在逼近过程中,对于小的扰动或误差,逼近结果的变 化程度。
不稳定性影响
不稳定的逼近可能导致结果出现较大的偏差,影响数值计算的精 度和可靠性。
稳定性判据
根据稳定性判据,判断逼近函数的稳定性以及如何提高稳定性。
04
数值实例与应用
一元函数逼近实例
01
线性逼近
通过多项式逼近方法,将一元函 数在某点附近展开成线性形式, 如泰勒级数展开。
评价
这门课程的内容非常实用,对于数学专业的学生来说是一门必修课程。它不仅有助于提高学生的数学素养,还可 以为学生提供解决实际问题的能力。然而,该课程难度较大,需要学生具备较高的数学基础和思维能力。
函数逼近的几种算法及其应用
函数逼近的几种算法及其应用函数逼近是数值计算中的一种重要技术,用于在给定的函数空间中找到与目标函数最相近的函数。
函数逼近算法可以在不知道目标函数解析表达式的情况下,通过对给定数据进行处理来逼近目标函数的结果。
这篇文章将介绍几种常见的函数逼近算法及其应用。
1.多项式逼近:多项式逼近是一种利用多项式函数逼近目标函数的方法。
多项式逼近算法有很多种,常见的有最小二乘法、拉格朗日插值法和牛顿插值法等。
多项式逼近广泛应用于数据拟合、信号处理和图像处理等领域。
最小二乘法是一种通过最小化实际观测值与多项式模型之间的差异来确定多项式系数的方法。
最小二乘法可以用于拟合非线性和线性函数。
拉格朗日插值法和牛顿插值法是通过插值多项式来逼近目标函数的方法,可以用于填充缺失数据或者生成曲线过程中的中间点。
2.三角函数逼近:三角函数逼近是一种利用三角函数来逼近目标函数的方法。
三角函数逼近算法有傅里叶级数逼近和小波变换等。
傅里叶级数逼近是一种利用三角函数的线性组合来逼近目标函数的方法。
这种方法广泛应用于信号处理、图像处理和数学建模等领域。
小波变换是一种通过特定的基函数来逼近目标函数的方法。
小波变换可以用于信号去噪、图像压缩和模式识别等应用。
3.插值逼近:插值逼近是一种通过已知数据点在给定区间内的函数值来确定目标函数的方法。
常见的插值逼近方法有拉格朗日插值法、牛顿插值法和差值多项式法等。
插值逼近广泛应用于任何需要通过已知数据点来逼近目标函数的领域。
在实际应用中,函数逼近常用于数据分析和模型构建。
例如,在金融领域,函数逼近可以用于确定股票价格走势的模型和预测。
在工程领域,函数逼近可以用于建立复杂系统的模型和优化控制。
在计算机图形学领域,函数逼近可以用于生成真实感图像和动画。
总结起来,函数逼近是一种重要的数值计算技术,有多种算法可供选择。
多项式逼近、三角函数逼近和插值逼近是常见的函数逼近算法。
函数逼近广泛应用于数据分析、模型构建和优化控制等领域,对于解决实际问题具有重要作用。
牛顿插值法matlab程序例题
牛顿插值法是一种常用的数值分析方法,用于构造一个多项式函数,以便在给定的数据点上进行插值。
这个主题在数学和工程领域中有着广泛的应用,特别是在数据拟合和函数逼近方面。
牛顿插值法的核心思想是通过不断地添加新的数据点来构造一个多项式,并利用已知数据点来确定多项式的系数,从而实现对未知数据点的插值预测。
在Matlab中,实现牛顿插值法并不困难,我们可以利用已有的函数和工具来简化计算过程。
下面,我们将通过一个具体的例题来讲解如何使用Matlab编写牛顿插值法的程序,并分析其结果。
我们需要明确牛顿插值法的数学原理。
给定n个互不相同的节点\(x_0, x_1, ... , x_n\),以及在这些节点上的函数值\(f(x_0), f(x_1), ... , f(x_n)\),我们希望构造一个n次插值多项式p(x),满足p(x_i) = f(x_i),i=0,1,...,n。
牛顿插值多项式的一般形式为:\[p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + ... + a_n(x -x_0)(x - x_1)...(x - x_{n-1})\]其中,\[a_i\]表示插值多项式的系数。
通过牛顿插值法的迭代过程,可以逐步求解出这些系数,进而得到插值多项式的表达式。
接下来,我们将以一个具体的例题来演示如何在Matlab中实现牛顿插值法。
假设我们有如下的数据点和函数值:\(x = [1, 2, 3, 4]\)\(f(x) = [1, 4, 9, 16]\)我们希望利用这些数据点来构造一个插值多项式,并在给定的区间上进行插值计算。
在Matlab中,可以通过interp1函数来进行插值计算,该函数支持多种插值方法,包括牛顿插值法。
下面是一个简单的Matlab程序示例:```matlabx = [1, 2, 3, 4];y = [1, 4, 9, 16];xi = 2.5;yi = interp1(x, y, xi, 'spline');disp(['在x=',num2str(xi),'处的插值结果为:',num2str(yi)]);```在这段代码中,我们首先定义了给定的数据点x和对应的函数值y,然后利用interp1函数对x=2.5处的插值结果进行计算。
数学分析中的逼近理论及基本应用
数学分析中的逼近理论及基本应用数学分析是数学中的一个重要分支,研究的主要对象是函数和序列的性质、极限、连续等。
函数逼近是数学分析的一个重要内容,它在数学中有着广泛的应用,是解决实际问题的一个重要工具。
本文将介绍数学分析中的逼近理论及其基本应用。
一、逼近理论1. 函数逼近函数逼近是指用简单的函数来近似复杂的函数。
在函数逼近中,我们首先需要定义一个逼近函数的集合,然后根据一定的逼近准则,选择逼近函数中的一个函数作为被逼近函数的近似函数。
通常选择的逼近函数具有一定的优良性质,例如在逼近函数中具有比较好的平滑性、可微性和可积性等。
2. 三角逼近三角逼近是指用三角函数来逼近周期函数。
三角函数的基本周期为 $2\pi$,所以可以用它来逼近周期函数。
三角逼近的目的是将周期函数分解为特定频率的正弦和余弦波的叠加,从而得到周期函数的频率分布和频率分量。
3. 插值逼近插值逼近是指用一个低次多项式来逼近一个离散的数据集。
在插值逼近中,我们首先需要确定逼近函数的次数,然后根据给定的数据点,构造一个逼近函数,使它在这些数据点处的函数值等于数据点的值。
通常采用的插值方法有拉格朗日插值和牛顿插值。
4. 误差估计误差估计是指在进行逼近时,如何判断逼近函数的精度和可靠性。
误差估计方法通常有两种:点误差估计和区间误差估计。
点误差估计是指在给定的一个点上,用被逼近函数和逼近函数的差来估计误差。
区间误差估计是指在给定的一个区间上,用被逼近函数和逼近函数的差的最大值来估计误差。
二、逼近的应用1. 信号处理信号处理是指对信号进行分析、处理和提取有用信息的过程。
在信号处理中,逼近理论广泛地应用到信号分解和滤波中。
信号分解是将信号分解为一组组正弦和余弦波的叠加,以便分析其频率分布和频率分量;滤波是指通过选择合适的逼近函数,去除信号中的噪声和干扰成分,提取有用的信息。
2. 图像处理图像处理是指对数字图像进行处理和分析的过程。
逼近理论在图像处理中发挥了重要作用,例如,在图像压缩和去噪中,可以用逼近函数将图像分解为一组组正弦和余弦波的叠加,以便实现图像的压缩和去噪。
函数逼近的几种算法及其应用汇总
函数逼近的几种算法及其应用汇总
一、函数逼近的几种算法
1、最小二乘法
最小二乘法是一种基于线性模型的函数逼近算法,它的基本假设是拟合函数的形状可以用线性模型表示,且被拟合数据存在一定的噪声存在,最小二乘法的核心思想就是最小化残差(拟合数据与模型之间的偏差)的平方和来寻找最佳拟合参数。
2、Kriging
Kriging(克里金插值)是一种基于空间相关数据的空间插值算法,它会根据空间相关性分析,通过构建模型,拟合、估计和预测空间数据之间的关系,从而实现函数逼近。
3、K近邻算法
K近邻(K Nearest Neighbors Algorithm)是一种基于实例学习的分类算法,它通过计算测试实例与训练实例之间的距离,来决定其所属的类别。
K近邻算法也可以用于函数逼近,这种方法无需训练阶段,可以快速的拟合不同的函数,而且拟合函数的过程中也不需要优化参数。
4、神经网络
神经网络是一类用于函数逼近的算法,它通过模拟人脑神经网络的连接模式,在一系列训练数据的基础上,得到一些函数的参数,从而实现函数的拟合和预测。
二、函数逼近算法的应用
1、多元线性回归
多元线性回归利用最小二乘法,可以对多元关系进行拟合。
函数逼近方法
函数逼近方法函数逼近方法是一种数学工具,其作用是逼近出一个较为接近于真实情况的函数。
本文将探讨函数逼近方法的定义、原理、应用及优缺点等相关内容。
一、定义函数逼近方法是指用一组建立在确定的样本点上的函数,去逼近一个函数,使得从逼近函数到被逼近函数的误差最小,以达到精确求解的目的。
二、原理函数逼近方法的原理是通过选取一组基函数,利用线性组合的方式来逼近目标函数或函数离散点数据。
其中,基函数的选择对于逼近结果至关重要。
在实际应用中,可以根据问题的性质、数据的分布等因素来选择基函数。
三、应用函数逼近方法在科学研究和工程实践中有着广泛的应用,如图像处理、信号处理、数值计算等领域。
其中,最常见的方法是多项式逼近方法和小波函数逼近方法。
多项式逼近方法是指用高次多项式去近似目标函数的方法,其优点是简单易用、计算速度快,但是缺点是容易产生过拟合现象,且对于一些非线性的函数逼近效果不佳。
小波函数逼近方法是目前应用最广泛的函数逼近方法,其优点是适用于不规则数据、能够有效地处理噪声数据等,并且容易实现。
但是,小波函数逼近方法对于数据的选取和基函数的选择要求较高,且相关算法较为复杂,需要一定的数学基础和算法实现能力。
四、优缺点函数逼近方法的优点是能够处理各种类型的数据,如连续、离散、噪音等,适用性强。
同时,函数逼近方法对于数据分布的要求较低,可以处理不规则数据。
此外,函数逼近方法可以建立模型,进而进行模拟和预测。
函数逼近方法的缺点是容易产生过拟合现象,即模型过于复杂,对训练数据可以完美拟合,但是对测试数据的适应性不强。
此外,函数逼近方法的算法较为复杂,需要一定的数学基础和计算机实现能力。
总之,函数逼近方法在科学研究和工程实践中发挥着重要的作用,对于数据处理和模型建立具有不可或缺的作用。
在应用时,需要根据问题需要选择合适的函数逼近方法,以达到最佳的逼近效果。
小波分析之函数逼近与曲线拟合
∞
=
max
f (x)
a≤ x≤b
绝对值与
n上范数的扩充关系 R
• 数a的绝对值(a离开原点0的距离):∣a∣ • 数a与b的差异(距离): ∣a-b∣ • 向量A=( 1, a2,…,an)的范数(A离开0向量 A=(a , 的范数 A=( 的距离) : n • x = ∑ x i
1 i = 1
x x
距离空间定义
• 设X是非空集合,对于X中的任意两元素x与y ,按某一法则都对应唯一的实数ρ(x, y),并满足 以下三条公理: • 1.非负性:ρ(x, y) ≥0,ρ(x, y) =0当且仅当x=y; • 2.对称性:ρ(x, y) =ρ(y, x); • 3.三角不等式;对任意的x, y, z ρ(x, y) ≤ρ(x, z) + ρ(z, y), 则称ρ(x, y)为x与y间的距离(或度量),并称X是 以ρ为距离的距离空间(或度量空间),记为(X, ρ).
2
2
2
即
内积空间的性质
定理 设 X 为内积空间,{u1 , u2 ,⋯ , un } ⊆ X , 格拉姆(Gram)矩阵
(u1 , u1 ) (u2 , u1 ) ⋯ (u n , u1 ) (u1 , u2 ) (u2 , u2 ) ⋯ (u n , u2 ) G= ⋮ ⋮ ⋮ (u , u ) (u , u ) ⋯ (u , u ) 2 n n n 1 n
内积空间
设X 是定义在实(或复)数域K上的线性空 间,若对于X中 任意一对有序元素x,y, 恒对应 数域K的值(x, y),且满足: • (x, x) ≥0,且(x, x)=0的充要条件是x=0; • (ax, y) = a(x, y); • (x+y, z) = (x, z) + (x, z). 则称X为内积空间,(x, y)称为x, y的内积. 正交: 正交 若(x, y)=0,称x与y正交.
函数逼近与曲线拟合
函数逼近与曲线拟合3.1函数逼近的基本概念3.1.1 函数逼近与函数空间在数值计算中常要计算函数值,如计算机中计算基本初等函数及其他特殊函数;当函数只在有限点集上给定函数值,要在包含该点集的区间上用公式给出函数的简单表达式,这些都涉及到在区间上用简单函数逼近已知复杂函数的问题,这就是函数逼近问题.上章讨论的插值法就是函数逼近问题的一种.本章讨论的函数逼近,是指“对函数类A中给定的函数,记作,要求在另一类简单的便于计算的函数类B中求函数,使与的误差在某种度量意义下最小”.函数类A通常是区间上的连续函数,记作,称为连续函数空间,而函数类B通常为n次多项式,有理函数或分段低次多项式等.函数逼近是数值分析的基础,为了在数学上描述更精确,先要介绍代数和分析中一些基本概念及预备知识.数学上常把在各种集合中引入某些不同的确定关系称为赋予集合以某种空间结构,并将为样的集合称为空间.例如将所有实n维向量组成集合,按向量加法及向量与数的乘法构成实数域上的线性空间,记作,称为n维向量空间.类似地,对次数不超过n(n为正整数)的实系数多项式全体,按通常多项式与多项式加法及数与多项式乘法也构成数域上的一个线性空间,用表示,称为多项式空间.所有定义在上的连续函数集合,按函数加法和数与函数乘法构成数域上的线性空间,记作.类似地,记为具有p阶的连续导数的函数空间.定义1设集合S是数域P上的线性空间,元素,如果存在不全为零的数,使得, (3.1.1)则称线性相关.否则,若等式(3.1.1)只对成立,则称线性无关.若线性空间S是由n个线性无关元素生成的,即对都有则称为空间S的一组基,记为,并称空间S为n维空间,系数称为x在基下的坐标,记作,如果S中有无限个线性无关元素,…,则称S为无限维线性空间.下面考察次数不超过n次的多项式集合,其元素表示为, (3.1.2)它由个系数唯一确定.线性无关,它是的一组基,故,且是的坐标向量,是维的.对连续函数,它不能用有限个线性无关的函数表示,故是无限维的,但它的任一元素均可用有限维的逼近,使误差(为任给的小正数),这就是著名的Weierstrass定理.定理1(Weierstrass)设,则对任何,总存在一个代数多项式,使在上一致成立.这个定理已在“数学分析”中证明过.这里需要说明的是在许多证明方法中,伯恩斯坦1912年给出的证明是一种构造性证明.他根据函数整体逼近的特性构造出伯恩斯坦多项式, (3.1.3)其中,其中,并证明了在上一致成立;若在上阶导数连续,则.这不但证明了定理1,而且由(3.1.3)给出了的一个逼近多项式.它与拉格朗日插值多项式很相似,对,当=1时也有关系式. (3.1.4)这只要在恒等式中令就可得到.但这里当时还有,于是是有界的,因而只要对任意成立,则有界,故是稳定的.至于拉格朗日多项式,由于无界,因而不能保证高阶插值的稳定性与收敛性.相比之下,多项式有良好的逼近性质,但它收敛太慢,比三次样条插值效果差得多,实际中很少被使用.更一般地,可用一组在上线性无关的函数集合来逼近,元素,表示为. (3.1.5) 函数逼近问题就是对任何,在子空间中找一个元素,使在某种意义下最小.3.1.2 范数与赋范线性空间为了对线性空间中元素大小进行衡量,需要引进范数定义,它是空间中向量长度概念的直接推广.定义2.1.2 设为线性空间,,若存在唯一实数,满足条件:(1)正定性:,(2)当且仅当时,(3);(4)齐次性:,(5);(6)三角不(7)等式:,(8).则称为线性空间上的范数,与一起称为赋范线性空间,记为.例如,在上的向量,三种常用范数为类似地对连续函数空间,若可定义三种常用范数如下:可以验证这样定义的范数均满足定义3.1.2中的三个条件.3.1.3 内积与内积空间在线性代数中,中两个向量及的内积定义为.若将它推广到一般的线性空间,则有下面的定义.定义3.1.3设是数域上的线性空间,对,有中一个数与之对应,记为,它满足以下条件:(1);(2);(3);(4),当且仅当时,.则称为上与的内积.定义了内积的线性空间称为内积空间.定义中(1)的右端称为的共轭,当为实数域时.如果=0,则称与正交,这是向量相互垂直的概念的推广.关于内积空间性质有以下重要定理.定理3.1.2设为一个内积空间,对,有(3.1.6) 称为Cauchy-Schwarz不等式.[证明]当时(3.1.6)式显然成立.现设,则,且对任何数有.取,代入上式右端,得,即得时.定理证毕定理3.1.2设为一个内积空间,,矩阵(3.1.7)称为Gram矩阵,则G非奇异的充分必要条件是线性无关.[证明]G非奇异等价于,其充分必要条件是齐次方程组(3.1.8) 只有零解.而(3.1.9) 从以上的等价关系可知,等价于从(3.1.8)推出.而后者等价于从(3.1.9)推出,即线性无关.定理证毕在内积空间上可以由内积导出一种范数,即对于,记(3.1.10) 容易验证它满足范数定义的三条性质,其中三角不等式(3.1.11)可由定理3.1.2直接得出,即两端开方即得(3.1.11).例1与的内积.设,,,则其内积定义为(3.1.12)由此导出的向量2-范数为.若给定实数,称为权系数,则在上可定义加权内积为(3.1.13)相应的范数为.不难验证(3.1.13)给出的满足内积定义的4条性质,当时,(3.1.13)就是(3.1.12).如果,带权内积定义为(3.1.14) 这里仍为正实数序列,为的共轭.在上也可以类似定义带权内积,为此先给出权函数的定义.定义3.1.4 设是有限或无限区间,在上的非负函数满足条件:(1)存在且为有限值;(2)对上的非负连续函数,如果,则.则称为上的一个权函数.例2上的内积.设,是上给定的权函数,则可定义内积. (3.1.15)容易验证它满足内积定义的4条性质,由此内积导出的范数为. (3.1.16)称(3.1.15)和(3.1.16)为带权的内积和范数.特别常用的是的情形,即若是中的线性无关函数族,记,它的Gram矩阵为(3.1.17)根据定理3.1.3可知线性无关的充分必要条件是.3.2 正交多项式正交多项式是函数逼近的重要工具,在数值积分中也有着重要的应用.3.2.1 正交函数族与正交多项式定义3.2.1 若,为上的权函数且满足, (3.2.1)则称与在上带权正交.若函数族满足关系(3.2.2)则称是上带权的正交函数族;若,则称之为标准正交函数族.例如,三角函数族就是在区间上的正交函数族.因为对有,而对,当时有定义3.2.2 设是上首项系数的次多项式,为上权函数,如果多项式序列满足关系式(3.2.2),则称多项式序列为在上带权正交,称为上带权的次正交多项式.只要给定区间及权函数,均可由一族线性无关的幂函数,利用逐个正交化手续构造出正交多项式序列;,(3.2.3) 这样得到的正交多项式序列有以下性质:(1)是具有最高次项系数为1的次多项式.(2)任何次多项式均可表示为的线性组合.(3)当时,,且与任一次数小于的多项式正交.(4)成立递推关系.其中这里.(5)设是在上带权的正交多项式序列,则的个根都是在区间内的单重实根.3.2.2 勒让德多项式当区间为[-1,1],权函数时,由正交化得到的多项式就称为勒让德(Legendre)多项式,并用表示.这是勒让德于1785年引进的,1814年罗德利克(Rodrigul)给出了简单的表达式由于是2次的多项式,求阶导数后得,于是得首项系数为,显然最高项系数为1的勒让德多项式为.(3.2.6) 勒让德多项式有下述几个性质:性质1正交性(3.2.7) [证明]令,则.设是在区间[-1,1]上的阶连续可微的函数,由分部积分知下面分两种情况讨论:(1)若是次数小于的多项式,则,故得(2)若,则,于是由于,故,于是(3.2.7)得证.性质2奇偶性(3.2.8)[证明]由于是偶次多项式,经过偶次求导仍为偶次多项式,经过奇次求导则为奇次多项式,故为偶数时为偶函数,为奇数时为奇函数,于是(3.2.8)成立.性质3递推关系(3.2.9) [证明]考虑+1次多项式,它可表示为两边乘以,并从-1到1积分,得.当时,的次数小于-1,上式左端积分为0,故得.当时.为奇函数,左端积分仍为0,故.于是.其中,代入上式整理可得(3.2.9).例1由利用性质3可得性质4在区间[-1,1]内有个不同的实零点.3.2.3 切比雪夫多项式当权函数,区间为[-1,1]时,由序列正交化得到的多项式就称为切比雪夫(Chebyshev)多项式,它可表示为(3.2.10)若令,则.切比雪夫多项式有很多重要性质:性质1递推关系(3.2.11) 这只要由三角不等式.令即得.由(3.2.11)就可推出由递推关系(3.2.11)还可得到的最高次项系数是.性质6切比雪夫多项式在区间[-1,1]上带权正交,且(3.2.12) 事实上,令,则,于是性质7只含的偶次幂,只含有的奇次幂.这性质由递推关系直接得到.性质8在区间[-1,1]上的个零点此外,实际计算中时常要求用的线性组合,其公式为. (3.2.13) 例如:结果如下:3.2.4 其他常用的正交多项式一般说,如果区间及权函数不同,则得到的正交多项式也不同.除上述两种最重要的正交多项式外,下面再给出三种较常用的正交多项式.第二类切比雪夫多项式在区间[-1,1]上带权的正交多项式称为第二类切比雪夫多项式,其表达式为. (3.2.14)令,可得即是[-1,1]上带权的正交多项式族.还可得到递推关系式.拉盖尔多项式在区间上带权的正交多项式称为拉盖尔(Laguerre)多项式,其表达式为. (3.2.15)其正交性为和递推关系.3. 埃尔米特多项式在区间上带权的正交多项式称为埃尔米特多项式.其表达式为, (3.2.16)其正交性为递推关系为.3.3 最佳一致逼近多项式3.3.1 基本概念及其理论本节讨论,在中求多项式,使其误差.这就是通常所谓最佳一致逼近或切比雪夫逼近问题.为了说明这一概念,先给出以下定义.定义3.3.1 设,,称. (3.3.1) 为与在上的偏差.显然,的全体组成一个集合,记为{},它有下界0.若记集合的下确界为(3.3.2)则称之为在上的最小偏差.定义3.3.2 假定,若存在,使得, (3.3.3)则称是在上的最佳一致逼近多项式或最小偏差逼近多项式,简称最佳逼近多项式.注意,定义并未说明最佳逼近多项式是否存在,但可证明下面的存在定理.定理4若,则总存在,使.为了研究最佳逼近多项式的特性,先引进偏差点的定义.定义3.3.3设,,若在上有,就称是的偏差点.若,称为“正”偏差点.若,称为“负”偏差点.由于函数在上连续,因此,至少存在一个点,使,也就是说的偏差点总是存在的.下面给出反映最佳逼近多项式特征的切比雪夫定理.定理3.3.2是的最佳逼近多项式的充分必要条件是在上至少有个轮流为“正”、“负”的偏差点,即有个点,使. (3.3.4) 这样的点组称为切比雪夫交错点组.[证明]只证充分性.假定在上有个点使(3.3.4)成立,要证明是在上的最佳逼近多项式.用反证法,若存在,使.由于在点上的符号与一致,故也在个点上轮流取“+”、“-”号.由连续性质,它在内有个零点,但因是不超过次的多项式,它的零点不超过.这矛盾说明假设不对,故就是所求最佳逼近多项式.充分性得证,必要性证明略,可参看[5].定理5说明用逼近的误差曲线是均匀分布的.由这定理还可得以下重要推论.推论1若,则在中存在唯一的最佳逼近多项式.证明略.利用定理5可直接得到切比雪夫多项式的一个重要性质,即定理3.3.3 在区间[-1,1]上所有最高次项系数为1的次多项式中与零的偏差最小,其偏差为.[证明]由于,且点是的切比雪夫交错点组,由定理5可知,区间[-1,1]上在中最佳逼近多项式为,即是与零的偏差最小的多项式.定理证毕例3求在[-1,1]上的最佳2次逼近多项式.解由题意,所求最佳逼近多项式应满足由定理3.3.3可知,当时,多项式与零偏差最小,故就是在[-1,1]上的最佳2次逼近多项式.3.3.2 最佳一次逼近多项式定理3.3.2给出了最佳逼近多项式的特性,但要求出却相当困难.下面讨论的情形.假定,且在内不变号,我们要求最佳一次逼近多项式.根据定理3.3.2可知至少有3个点,使由于在内不变号,故单调,在内只有一个零点,记为,于是,即.另外两个偏差点必是区间端点,即,且满足由此得到(3.3.5) 解出, (3.3.6) 代入(3.3.5)得. (3.3.7)这就得到了最佳一次逼近多项式,其几何意义如图3-3所示.直线与弦MN平行,且通过MQ的中点D,其方程为.图3-3一次最佳一致逼近多项式几何意义例4 求在上的最佳一次逼近多项式。
数值分析—第3章函数逼近与数据拟合法
称为广义多项式。
数值分析
三、函数的最佳平方逼近 对于给定的函数 f ( x) C[a, b] 如果存在 使
* ( x) Span 0 , 1 , , n } {
b
a
( x) f ( x) ( x) dx min
* 2
( x ) a
mn mn0 mn0
(2) 递推关系
相邻的三个切比雪夫多项式具有三项递推关系式: T0 ( x ) 1, T1 ( x ) x (n 1, 2, ) Tn1 ( x ) 2 x Tn ( x ) Tn1 ( x ) Tn (x) 的最高次项系数为 2n-1 (n = 1, 2, …)。
连续函数在[a, b]上线性无关的充分必要条件是它们 的Gramer行列式Gn 0,其中
( 0 , 0 ) ( 0 , 1 ) ( 0 , n ) G n G n ( 0 , 1 , , n ) (1 , 0 ) (1 , 1 ) (1 , n ) ( n , 0 ) ( n , 1 ) ( n , n )
(n 1, 2, )
(3) 奇偶性: 当n为偶数时,Pn (x)为偶函数; 当n为奇数时,Pn (x)为奇函数。 (4) Pn (x)的n个零点都是实的、相异的,且全
部在区间[-1, 1]内部。
数值分析
2.切比雪夫(Tchebyshev)多项式 称多项式
Tn ( x) cos(narc cos x)
Span{ 0 , 1 , , n }
并称 0 ( x), 1 ( x), , n ( x) 是生成集合的一个基底。 设函数系{
0 ( x), 1 ( x), , n ( x) ,…}线性无关,
第三章函数逼近和曲线拟合
S=span{ x1,..., xn}
并称该空间为n维空间。1,2 ,...,n P
称为x在这组基下的坐标。 例:n次多项式
p(x) Hn , p(x)=a0 + a1x ... an xn Hn span{1, x, x2 ,..., xn}
4
11
4.5
12
4.6
强 度 yi 编 号 拉伸倍数 xi
1.4
13
5
1.3
14
5.2
1.8
15
6
2.5
16
6.3
2.8
17
6.5
2.5
18
7.1
3
19
8
2.7
20
8
4
21
8.9
3.5
22
9
4.2
23
9.5
3.5
24
10
强 度 yi
5.5 5
5.5
6.4 6
5.3 6.5
7 8.5
8 8.1 8.1
6
内积与内积空间 定义3:设X为数域K(R或C)上的线性空
间,满足条件:
u, v X , k (u, v) K, st.
(1) (u, v) (v, u)
(2) (u, v) (u, v), for K
(3) (u v, w) (u, w) (v, w), for w X
(4) (u, u) 0, u 0 iff (u, u) 0
存在唯一实数 g ,满足条件:
(1) x 0; x 0 iff x 0
(2) x x , R
(3) x y x y , x, y R
函数的逼近—拟合
函数的逼近—拟合函数的逼近是数学中一个重要的概念,它是指通过一组已知的数据点来近似描述一个未知函数的过程。
拟合则是指通过选择合适的函数形式和参数,使得拟合函数尽可能地接近已知数据点。
在实际应用中,函数的逼近和拟合在数据分析、信号处理、机器学习等领域中起着重要的作用。
1. 函数的逼近函数的逼近通常包括两个步骤:选择逼近函数的形式和确定逼近函数的参数。
通常,我们将已知数据点表示为(x x,x x)的形式,其中x x是自变量的取值,x x是因变量的取值。
我们的目标是找到一个逼近函数x(x)来近似表示这些已知数据点的关系。
选择逼近函数的形式是一个关键的步骤。
常见的逼近函数包括多项式函数、指数函数、对数函数等。
选择逼近函数的形式通常需要考虑已知数据点和逼近函数的特点。
例如,如果已知数据点呈现线性关系,可以选择线性函数作为逼近函数。
如果已知数据点呈现指数增长或衰减的趋势,可以选择指数函数作为逼近函数。
确定逼近函数的参数是通过最小化逼近函数与已知数据点之间的差距来实现的。
常用的方法有最小二乘法和最大似然法。
最小二乘法是通过最小化逼近函数与已知数据点之间的残差平方和来确定逼近函数的参数。
最大似然法则是选择使得逼近函数生成已知数据点的概率最大的参数。
2. 拟合拟合是函数的逼近的一种具体应用,它通过选择合适的函数形式和参数,使得拟合函数能够在整个自变量的取值范围内都能够较好地逼近已知数据点。
拟合函数的目标是通过适当的调整函数的参数,使得拟合函数能够尽可能地与已知数据点吻合。
在实际应用中,拟合函数的选择通常需要根据已知数据点的特点来进行。
例如,如果已知数据点呈现多项式关系,可以选择多项式拟合。
多项式拟合可以使用最小二乘法来确定多项式的系数。
如果已知数据点呈现指数增长或衰减的趋势,可以选择指数拟合。
指数拟合可以通过对数变换来转化为线性拟合的问题。
拟合函数的参数可以通过优化算法来确定。
常见的优化算法包括梯度下降法、牛顿法等。
Matlab中的曲线拟合与函数逼近
Matlab中的曲线拟合与函数逼近Matlab是一种功能强大的数学工具,广泛应用于科学计算、工程分析和数据处理等领域。
在Matlab中,曲线拟合和函数逼近是常见的数学问题,它们可以帮助我们从一组离散数据中找到合适的函数形式,从而更好地理解数据的规律和趋势。
本文将介绍Matlab中的曲线拟合和函数逼近的常见方法和技巧,并通过实例来说明其应用。
一、简单线性回归拟合简单线性回归是最基本的曲线拟合方法之一,在Matlab中使用polyfit函数可以实现。
假设我们有一组离散的数据点,分别表示自变量x和因变量y的取值,我们可以通过简单线性回归来寻找一条直线,使得该直线与这些数据点的拟合误差最小。
```matlabx = [1, 2, 3, 4, 5];y = [2.1, 3.9, 6.2, 8.2, 9.8];coefficients = polyfit(x, y, 1);```在上述代码中,x和y分别是自变量和因变量的数据点。
polyfit函数的第三个参数表示我们希望拟合的曲线的阶数,这里是1表示直线拟合。
函数返回的coefficients是拟合曲线的系数,其中第一个元素表示直线的斜率,第二个元素表示直线的截距。
我们可以利用polyval函数来计算拟合直线上的点的函数值,从而与原始数据进行比较。
```matlaby_fit = polyval(coefficients, x);```通过绘制拟合直线和原始数据,我们可以直观地看到拟合效果。
```matlabplot(x, y, 'o', x, y_fit, '-')legend('原始数据', '拟合直线')```二、多项式拟合除了简单线性回归,Matlab还提供了多项式拟合的方法,可以通过增加拟合曲线的阶数来逼近更复杂的数据。
```matlabx = [1, 2, 3, 4, 5];y = [2.1, 3.9, 6.2, 8.2, 9.8];coefficients = polyfit(x, y, 2);```在上述代码中,polyfit函数的第三个参数是2,表示进行二次多项式拟合。
三角函数解决实际问题的优点和不足
三角函数解决实际问题的优点和不足
三角函数可以解决很多实际问题,主要有以下几个优点:
1. 可以描述周期性变化:三角函数具有周期性,可以用来描述一些周期性变化的现象,如天体运动、音乐波形、电路震荡等。
2. 可以进行信号分析:三角函数在信号处理中有广泛应用,可以分析和处理各种类型的信号,如音频信号、图像处理、通信系统等。
3. 可以描述边长比例关系:三角函数在几何学中有重要应用,可以描述角度和边长之间的比例关系,如勾股定理、三角形的面积和周长等。
4. 可以进行数据拟合:三角函数可以用来进行数据拟合和函数逼近,通过最小二乘法来找到最佳拟合曲线,从而预测未知数据点。
然而,三角函数也有一些不足之处:
1. 对异常值敏感:三角函数在数据拟合过程中对异常值非常敏感,一个异常值就可能导致整个模型的不准确,需要进行异常值的处理。
2. 结果可能不唯一:由于三角函数具有周期性,其解可能不唯一,对于某些问题可能存在多解的情况,需要考虑合适的边界条件。
3. 需要较高的数学背景:三角函数涉及到复杂的数学知识,对于一些不具备较高数学背景的人来说,可能较难理解和应用。
4. 局限于特定领域:尽管三角函数在很多领域有广泛应用,但并非所有问题都适合使用三角函数进行求解,有些问题可能需要采用其他方法来处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章 数据拟合与函数逼近数据拟合与函数逼近涉及到许多内容与方法,从不同角度出发,也有多种叫法。
这一章,我们主要通地线性拟合而引出最小乘法这一根本方法。
13.1 数据拟合概念与直线拟合插值法是一种用简单函数近似代替较复杂函数的方法,它的近似标准是在插值点处的误差为零。
但有时,我们不要求具体某些点的误差为零,而是要求考虑整体的误差限制。
对了达到这一目的,就需要引入拟合的方法,所以数据拟合与插值相比:数据拟合--不要求近似 函数过所有的数据点,而要求它反映原函数整体的变化趋势。
插值法--在节点处取函数值。
实际给出的数据,总有观测误差的,而所求的插值函数要通过所有的节点,这样就会保留全部观测误差的影响,如果不是要求近似函数过所有的数据点,而是要求它反映原函数整的变化趋势,那么就可以用数据拟合的方法得到更简单活用的近似函数。
13.1.1 直线拟合由给定的一组测定的离散数据(,)i i x y (1,2,,i N = ),求自变量x 和因变量y 的近似表达式()y x ϕ=的方法。
影响因变量y 只有一个自变量x 的数据拟合方法就是直线拟合。
直线拟合最常用的近似标准是最小二乘原理,它也是流行的数据处理方法之一。
直线拟合步骤如下:(1) 做出给定数据的散点图(近似一条直线)。
(2) 设拟合函数为:i bx a y +=*(13.1.1)然后,这里得到的*i y 和i y 可能不相同,记它们的差为:i i i i i bx a y y y --=-=*δ (13.1.2)称之为误差。
在原始数据给定以后,误差只依赖于b a ,的选取,因此,可以把误差的大小作为衡量b a ,的选取是否优良的主要标志。
最小二乘法便是确定“最佳” 参数的方法,也就是要误差的平方和达到最小。
(3) 写出误差和表达式:),()(1212b a bx a yQ Ni i iNi iϕδ=--==∑∑== (13.1.3)要选择b a ,而使得函数),(b a ϕ最小,可以用数学分析中求极值的方法,即先分别对b a ,求偏导,再使偏导等于零。
就可得到所谓的正规方程组。
(4) 正规方程组:∑==---=∂∂Ni i i bx a y a 10)(2ϕ(13.1.4)∑==---=∂∂Ni i i i x bx a y b1)(2ϕ (13.1.5)(5) 求解正规方程组,得b a ,。
(6) 确定i bx a y +=*的具体表达式。
13.2 最小二乘原理应用上面我们简单地提到最小二乘法的原理就是使误差的平方各达到最小。
下面由线性无关的定义来给出最小二乘法的一般叙述。
若在区间[,]a b 上,对于n 个函数011(),(),,()n x x x ϕϕϕ-001111()()()0n n c x c x c x ϕϕϕ--+++≡(13.2.1)成立的充要条件是0110n c c c -==== ,则称这n 个函数011(),(),,()n x x x ϕϕϕ- 在[,]a b 上线性无关。
否则,若存在不全为零的021,,,n c c c - 使该式成立,则称011(),(),,()n x x x ϕϕϕ- 在[,]a b 线性相关。
设011(),(),,()n x x x ϕϕϕ- 是定义在[,]a b 上的n 个线性无关的连续函数,函数()f x 是在[,]a b 上的n 个节点12n a x x x b =<<<= 上给定的离散函数。
最小二乘法实质是用011(),(),,()n x x x ϕϕϕ- 的线性组合:001111()()()()n n Q x c x c x c x ϕϕϕ--=+++ (13.2.2)逼近()f x ,使()f x 和()Q x 在各节点上的差的加权平方和2110()()ωϕ-==⎛⎫- ⎪⎝⎭∑∑mn i i k k i i k f x c x (13.2.3) 在由011(),(),,()n x x x ϕϕϕ- 的一切线性组合所组成的函数类中最小。
其中权数0i ω>的不同,是由于所测得的数据不一定等精度造成的。
下面的讨论设1i ω=(1i m ≤≤)。
13.2.1 多变量拟合影响变量y 的因素是多个,设为12,,,k x x x ,由给定的离散数据确定近似函数:*011k ky c c x c x =+++ (13.2.4)在1011()n n Q x c c x c x --=+++ 中,记i i x x =(1,2,,1i n =- ),则该式化为多变量拟合*01111n n y c c x c x --=+++(13.2.5)可见,多变量拟合是可以互相转化的。
最小二乘原理原理就要确定近似函数(13.2.4)中的系数,使得其误差平方和达到最小。
误差平方和为:201011221(,,,)()Kk i i i k ki i c c c y c c x c x c x ϕ==-----∑ (13.2.6)与直线拟合类似,上式两边分别对各系数求偏导,然后令其为零,便得到正规方程组:011221011221110112212()02()02()0K i i i k ki i Ki i i k ki i i Ki i i k ki ki i ky c c x c x c x c y c c x c x c x x c y c c x c x c x x cϕϕϕ===∂⎧=------=⎪∂⎪∂⎪=------=⎪∂⎨⎪⎪∂⎪=------=⎪∂⎩∑∑∑ (13.2.7)因K k >,且12,,,k x x x 线性无关,故方程组总有惟一解。
通过求解方程组(13.2.7)可以得到系数,然后将得的系数01,,,k c c c 代入(13.2.4), 即,*011k ky c c x c x =+++ ,便得到了多变量线性拟后函数。
13.2.2 非线性曲线拟合除了线性曲线外,我们也常常会遇非线性曲线,对于某些非线性问题,可以转化为线性问题,然后便可利用前面的方法来求解。
下面讨论常出现的两类非线性方程。
(1) 对于如下形式的指数方程:1c xo y c e= (13.2.8)上式两边取对数,得:01ln ln y c c x =+(13.2.9)令:ln z y =,0ln s c =,则上式实际上有线性形式:1z s c x =+ (13.2.10)其误差平方和为:2111(,)[()]Ki i i s c z s c x ϕ==-+∑ (13.2.11)求得正规方程组为:1111()0()0Ki i i Ki i ii z s c x z s c x x ==⎧--=⎪⎪⎨⎪--=⎪⎩∑∑ (13.2.12)由上述方程给,便可解出s ,1c ,再由0s c e =求出拟合函数:1*c x o y c e =。
(2) 对于如下形式的双曲线:0111c c yx =+ (13.2.13)令:1z y =,1t x=,得:01z c c t=+ (13.2.14)上式的误差平方和:201011(,)[()]K i i i c c z c c t ϕ==-+∑ (13.2.15) 求得正规方程组为:011011(()0(()0Ki i i Ki i ii z c c t z c c t t ==⎧-+=⎪⎪⎨⎪-+=⎪⎩∑∑ (13.2.16)解上述方程给,可解出0c ,1c ,得拟合函数*0111y c c x=+。
13.2.3 超定方程组的最小二乘解对于给定方程组:A X Y = (13.2.17)其中:111212122212n nm m m n a a a a a a A a a a ⎛⎫⎪ ⎪=⎪⎪ ⎪⎝⎭,12n x xX x ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,12ny yY y ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭若m n >,其中m 为方程的个数,n 为未知数的个数,则方程组不一定有解,这时称方程组为超定方程组。
要寻求方程组(13.2.17)的解,即要寻求nXR∈,使得:21211(,,,)[()]mnn i ij j i j x x x y a x ϕ===-∑∑ (13.2.18)最小。
如果方程组(13.2.17)有解,则此解也是方程组的最小二乘解。
转化形式:TTA AX A Y = (13.2.19)求解方程组(13.2.17)。
13.2.4 用正交函数作最小二乘拟合在前面的讨论中,多项式拟合总是化为多变量拟合来计算。
现在介绍一种特殊的运用正交多项式的拟合数据的方法。
如果多项式族{}0()k k P x ∞=满足下面条件:121()()0,(())0,,0,1,,K i j i k i i K i j i i P x P x j k P x j k m ωω==⎧=≠∑⎪⎨⎪>=∑⎩ (13.2.20)则称其为对某组i x 值和与之对应的权数i ω值的正交多项式族。
设拟合函数为:*()mi i i y c P x ==∑ (13.2.21)如果{}0()k k P x ∞=为正交多项式族,则正规方程组:12(())()0Kmi i i i j i i y c P x P x ω==-=∑∑,(0,1,,j m = ) (13.2.22)有解:121()(())Ki j j i i j Ki j i i y P x c P x ωω==∑=∑,(0,1,,j m = )(13.2.23) 由此,就可写出拟合函数*y 的表达式。
如果一个多项式族{}0()k k P x ∞=满足:()()()0b i j ax P x P x dx ω=⎰,(, ,0,1,i i j ≠=) (13.2.24)则称{}0()k k P x ∞=为在区间[,]a b 上关于权函数()x ω的正交多项式系。
若{}0()k k P x ∞=还满足:2()()0b i ax P x dx ω=⎰,(0,1,i = ) (13.2.25)则称{}0()k k P x ∞=为在区间[,]a b 上关于权函数()x ω的规格化正交多项式系。
区间[,]a b 上关于非负权函数()x ω的正交多项式系总存在。
若给定区间是[0,1],对权函数()1x ω=的一种正交多项式为:0()(1)mkkkkm m k m i P x C C x+==-∑,(0,1,m = )(13.2.26) 若给定点区间是[0,]n ,且给定数据中的节点i x (0,1,,i n = )等距,其中00x =,n x n =,步长为1,令权函数()1i x ω=,则有正交多项式:,0(1)(1)(1)(1)()(1)mkkkm n m k mk x x x k n n n k P x C C +=--+--+=-∑ , (0,1,m = ) (13.2.27)其中m 表示,m n P 的次数,n 表示给定的节点个数。