解决2016年高考数学四大捷径使文科数学高分

合集下载

2016高考数学提分和抢分的攻略

2016高考数学提分和抢分的攻略

2016年高考数学提分和抢分的攻略无论是参照《考试说明》,还是同学们实际做题与考试,都能发现数学这个学科单纯复习课本是远远不够的,往往考查学生多方面的因素。

这里高考专家谢云峰老师给大家归结一下高考数学考查学生三个方面:基础知识、逻辑推导能力、想象能力。

至于计算能力,由于高考新课标有趋于降低计算量、有意提升学生能力培养的趋势,计算能力要求有所降低,相信绝大多数学生都能够应对。

很多同学数学学不好,但是却无从下手,我们今天根据数学学科考试命题的特点,来阐述一下距离高考50余天,如何全面的攻破数学学科,从而获取高分。

数学学科非常严谨,但却要求学生具备一定的想象能力,但不能主观想象,而是要求学生根据数学试题的环境进行客观的思考,如图形想象、空间想象、函数式转化方向等,都需要具备针对性和客观性。

数学考不好的同学,一是基础知识不牢固,二是没有形成一定的数学思想,三是容易被自己的主观意识所左右,至于粗心、马虎之类的,基本上属于主观意识主导所致。

先说数学学科命题特点,与以往略有不同,现今数学考查更多灵活性和综合性。

考查的手段也翻新。

但是基本内涵是不会变的。

基础知识考查部分,基本上不纯考知识点,多是考查知识点的简单应用或图形图像意义,或同类型、近似知识点比较。

并且小题思维跳脱性较大,解法多样。

因此同学们备考时要注意以下一点:凡是有涉及到几何图形的,一定要掌握图形变化趋势,特殊点的几何意义以及立体几何中点、线、面之间的关系,有些地区还要注重向量坐标、极坐标的意义。

只要抓住这些,能解决大部分数学问题。

一、高考数学应避免的三大失误:无谓失误1:计算出错计算能力是高考数学考查的一项基本能力,但目前反映出来的问题是,很多考生计算能力非常不足。

“在评卷过程中,我们经常看到考生解题的方法和思路都正确,但就是计算出错。

很多解答题都是多步计算,中间步骤的计算出错会直接导致后续解答相应出错,造成严重丢分。

一句话:不是不会做,而是计算错!”在这些错误中,最常见的是“代数式的恒等变形(含纯数字运算)”出错,包括整式、分式和二次根式的运算,因式分解等内容;其次是求解方程(组)与不等式(组)计算出错,这是很容易预防的错误。

2016年云南省高考数学失分的原因分析及复习对策

2016年云南省高考数学失分的原因分析及复习对策

本题涉及的知识与方法没有超出初中数 学的难度, 但是考试结果却让人大跌眼镜, 平 时讲过、 练过、 考过的题比该题的绝对难度要 大得多, 只是因为教师和学生主观上认为高 考数学难, 所以不会直接考这么 “ 简单 ” 的问 题, 也就使该题成了当年考生的新题. 当前, 影响云南省高考数学新题分数较 为普遍的一种教学模式是: 解题方法 +例题+ 练习.这种教学模式重在介绍解题方法, 方法 与哪些知识点有关 . 学生通过这种模式获得 的数学, 几乎是靠多练、 苦练记住的孤零零的 问题与该问题有关的方法, 受这种教学模式 的影响, 学生解决数学问题的思维方式常为 “识题型+套解法” , 即遇到问题时, 思考问题 是头脑中的那种类型, 再套用这种类型的解 决方法.这是一种利用题海战术的教学方法, 对学生数学能力的培养很不利. 高考数学能力的研究成果早在1999年就
解: 由对称性, 设点 E 在 y 轴正半轴上, D 为 OE 的中点, 如图, 设椭圆 C 的半焦距为 c, OE =2m, 根据已知得 MF OE OE = ,即 MF = × AF = OA AF OA
(-1, 4 ) , 则a=_______. 考后统计结果为:
平均分 2.8 零分率 43.9% 满分率 56.1%
数学分数的最重要因素往往不是题目的绝对 难度, 而是试题的新颖程度 . 新题数量比例 大, 分数就低, 新题少, 分数就明显提高.为提 高云南省高考数学成绩, 应该对 “解题方法 + 例题+练习” 这种数学模式进行深刻的反省. 例2 已知 O 为 坐标原点, F 是椭圆 x2 y2 C: 2 + 2 =1 (a >b > a b 的左焦点, A、 B分 0 ) 别为C的左、 右顶点. P为C上一点, 且 PF ⊥x 轴 . 过点 A 的直线 l 与线 段PF交于点M, 与y轴交于点E.若直线BM经过 OE的中点, 则C的离心率为 A. 1 3 B. 1 2 C. 2 3 D. 3 4

盘点高考数学文科生提分的策略

盘点高考数学文科生提分的策略

盘点高考数学文科生提分的策略文科生的数学普遍不是专门好,为此查字典数学网整理了高考数学文科生提分的策略,请考生阅读学习。

1.做好诊断性练习:能够选择10套杰出的高考模拟题,将之分成选择题、填空题、中档题、压阵题四个部分,每半天做一部分。

当做了10套模拟题之后,就会发觉自己在哪些地点存在弱点。

假如你数学基础不错,可能有弱点的地点不多,这时候能够有意识地多训练这些地点,争取提早解决薄弱环节的问题。

可不能的题目,能够通过问同学和老师解决。

如此做,能够同时提高解题速度,达到见多识广的目的。

2.通过以上诊断性练习,再做老师提供的模拟题时,你会发觉,专门多题原先都做过或见过类似的,如此的题目做一个就好,其他的题目要举一反三。

还有要注意的是,关于自己印象里错过两次以上的题目,一定要记到错题本上,这些题在高考之前要拿出来看一看,防止显现类似的错误。

3.假如基础不是专门好的话,就要多做一些基础题和中等难度的题目,层层推进,如何说高考150分的题目里,难题只有30分左右,能把基础题做好,同时把中等题做好,同样会考出不错的成绩。

4.最差不多的定理、公式、概念、法则,一定要熟练把握,这些是基础。

运算的准确性和运算速度,这些也要有意识地培养。

建议先提高准确度,再提高速度。

到了最后时期,多做一做中等难度和简单难度的题目,找找自信和手感。

最后时期不必花太多时刻在题目上,每天做一套卷子就能够,要翻看往常的错题本。

事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。

不记住那些基础知识,如何会向高层次进军?专门是语文学科涉猎的范畴专门广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时刻让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。

如此,就会在有限的时刻、空间里给学生的脑海里注入无限的内容。

日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。

高考数学高分突破技巧

高考数学高分突破技巧

高考数学高分突破技巧高考数学高分突破技巧导语:无论文科生还是理科生,语数英三科,总有一科让不少高三生很头疼。

从高三开学以来,在数学科目上花费了很多时间,但效果不明显的同学看好了,今天来教大家一些高考数学复习实用技巧,如果仔细去执行了,突破120分不是问题哦!1.仔细讨论《高考考试说明》《高考考纲》《高考考试说明》和《高考考纲》是每位考生必须熟悉的最权威最准确的高考信息,通过讨论应明确“考什么”、“考多难”、“怎样考”这三个问题。

命题通常注意试题背景,强调数学思想,注重数学应用;试题强调问题性、启发性,突出基础性;重视通性通法,淡化特殊技巧,凸显数学的问题思考;强化主干知识;关注知识点的衔接,考察创新意识。

《高考考纲》明确指出“创新意识是理性思维的高层次表现”。

因此试题都比较新颖,活泼。

所以复习中你就要加强对新题型的练习,揭示问题的本质,制造性地解决问题。

2.多从思维的高度审视知识结构高考数学试题一直注重对思维方法的考查,数学思维和方法是数学知识在更高层次上的抽象和概括。

知识是思维能力的载体,因此通过对知识的考察达到考察数学思维的目的。

你要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法。

3.换个方式看例题拓展思维空间那些看课本和课本例题一看就懂,一做题就懵的高三学生一定要看这条!不少高三学生看书和看例题,往往看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。

所以,高分高考提醒各位高三学生,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。

经过上面的训练,自己的思维空间扩展了,看问题也全面了。

如果把题目的来源搞清了,在题后加上几个批注,说明此题的“题眼”及巧妙之处,收益将更大。

2016高考数学冲刺有效的提分方法

2016高考数学冲刺有效的提分方法

2016年高考数学冲刺有效的提分方法
高考数学冲刺时,哪些方法可以做到有效提分?最好的方法就是了解自己的长处短处,找到自己的短板,集中发力。

当然好方法也是必须有的。

盘点一下那些数学备考的好方法:
限时强化训练,全真模拟训练。

除了强化知识,还要学会非智力因素在考试中的应用,适当的懂得放弃。

利用好错题本(或者积累本)。

要把自己常犯的错或易忽略的内容在高考之前彻底解决,给自己积极的心理暗示。

再次回归课本。

题在书外,但理都在书中。

对高考试卷进行分析就不难发现,许多题目都能在课本上找到“影子”,不少高考题就是将课本题目进行引申、拓宽和变化。

通过看课本系统梳理高中数学知识,巩固高中数学基本概念。

看课本,有三个建议,一是打乱顺序按模块阅读,二是要注意里面的小字和旁白以及后面的“阅读与思考”,三是对于基础较弱的学生,可把书后典型习题再做一遍。

调整心态,坚持,自信。

就像有人所说:自信就是相信自己能做好的,绝不逃避;相信自己做不到的,坦然面对,不要有任何愧疚;相信自己的能力是弹性的,能弹多高取决于你的信心和行动。

精心整理,仅供学习参考。

高考文科数学高分技巧有哪些

高考文科数学高分技巧有哪些

高考文科数学高分技巧有哪些高考是每个学生都必须面对的重要考试,文科数学是高考的一大难点,因此学习文科数学考试技巧是很重要的。

这篇文章将会介绍一些高考文科数学高分技巧,帮助学生在考试中取得好成绩。

1. 了解考试题型在高考中,文科数学分为数学I和数学A两个部分。

数学I主要包含代数、数、空间几何、函数、数列和解析几何,而数学A则重点考察概率统计和数理方法。

因此,考生应该了解每种数学题型的特点和难度级别,分配好复习时间,针对不同题型进行有针对性的练习。

2. 掌握基本知识点在考试中,基本的数学知识点是非常重要的。

首先要会找规律,这样可以更好地理解问题。

在学习过程中,要重点掌握公式、定理和定义等基本知识点,加深对它们的理解,然后积极进行练习,提高应用的能力,这样才能在考试中获得高分。

3. 善于思路拓展在做数学题时,应该尝试用多种方法来解决问题,而不是一味追求简单的方法。

如果困难,可以尝试从不同的角度和思路来解决问题,创造新的解题路径。

这样,既能够提高灵活性,也可以拓宽思路,使解题更为自由。

4. 基础硬塞面对数学试题,我们往往既会跑偏,更可能是考察某一考点没有掌握。

因为数学只有掌握了基础知识,才能学习到更高级的知识点,因此基础是非常重要的。

通过不断地基础练习,加深对基础知识点的理解和掌握,可以提高数学水平,提高解题能力。

5. 多接触历年真题历年真题是数学复习和考试时必须要接触的,建议在复习的每一个阶段,都要做一些相关的历年真题,通过历年真题的分析不仅能够对相关考点有深刻理解,还能对出题思路有更进一步的了解,更有利于掌握考试方法。

6. 多种解法尝试在考试中,应该尝试用多种方法来解决问题,而不是一味追求简单的方法。

如果困难,可以尝试从不同的角度和思路来解决问题,创造新的解题路径。

这样,既能够提高灵活性,也可以拓宽思路,使解题更为自由。

总结:高考是非常关键的考试,需要付出大量的努力和准备。

学习文科数学考试技巧,可以帮助学生在考试中更好的取得高分和优异成绩。

2016年高考新课标2文科数学及答案

2016年高考新课标2文科数学及答案

2016年普通高等学校招生全国统一考试〔新课标全国卷Ⅱ〕文科数学本试卷分第Ⅰ卷〔选择题〕和第Ⅱ卷〔非选择题〕两部分。

满分150分,考试时间120分钟。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 〔1〕已知集合{1,2,3}A =,2{|9}B x x =<,则AB =A .{2,1,0,1,2,3}--B .{2,1,0,1,2}--C .{1,2,3}D .{1,2} 〔2〕设复数z 满足i 3i z +=-,则z =A .12i -+B .12i -C .32i +D .32i -〔3〕函数sin()y A x ωϕ=+的部分图象如图所示,则A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin()6y x π=+D .2sin()3y x π=+〔4〕体积为8的正方体的顶点都在同一球面上,则该球的表面积为A .12πB .323πC .8πD .4π〔5〕设F 为抛物线2:4C y x =的焦点,曲线(0)k y k x=>与C 交于点P ,PF x⊥轴,则k =A .12B .1C .32D .2〔6〕圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =A .43-B .34-C .3D .2〔7〕右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A .20πB .24πC .28πD .32π〔8〕某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为A .710B .58C .38D .310 (9)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s =44 4A .7B .12C .17D .34〔10〕下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是A .y x =B .lg y x =C .2x y =D.y〔11〕函数()cos26cos()2f x x x π=+-的最大值为A .4B .5C .6D .7 〔12〕已知函数()()f x x ∈R 满足()(2)f x f x =-,若函数2|23|y x x =--与()y f x =图象的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1mi i x ==∑A .0B .mC .2mD .4m第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. 〔13〕已知向量(,4)m =a ,(3,2)=-b ,且a ∥b ,则m =.〔14〕若x ,y 满足约束条件10,30,30,x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩则2z x y =-的最小值为.〔15〕ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,1a =,则b =.〔16〕有三X 卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一X 卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2〞,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1〞,丙说:“我的卡片上的数字之和不是5〞,则甲的卡片上的数字是.三、解答题:解答应写出文字说明,证明过程或演算步骤. 〔17〕〔本小题满分12分〕 等差数列{}n a 中,344a a +=,576a a +=. 〔Ⅰ〕求{}n a 的通项公式;〔Ⅱ〕设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]0=,[2.6]2=..(18)〔本小题满分12分〕某险种的基本保费为a〔单位:元〕,继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:〔Ⅰ〕记A为事件:“一续保人本年度的保费不高于基本保费〞.求()P A的估计值;〔Ⅱ〕记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%〞.求()P B的估计值;〔Ⅲ〕求续保人本年度的平均保费的估计值.〔19〕〔本小题满分12分〕如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE CF =,EF 交BD 于点H ,将DEF △沿EF 折到D EF '△的位置. 〔Ⅰ〕证明:AC HD '⊥;〔Ⅱ〕若5AB =,6AC =,54AE =,22OD '=,求五棱锥D ABCFE '-的体积.(20)〔本小题满分12分〕已知函数()(1)ln(1)=+--.f x x x a x〔Ⅰ〕当4a=时,求曲线()y f xf处的切线方程;=在(1,(1))〔Ⅱ〕若当(1,)f x>,求a的取值X围.x∈+∞时,()0(21)〔本小题满分12分〕已知A 是椭圆22:143x y E +=的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA NA ⊥.〔Ⅰ〕当||||AM AN =时,求AMN △的面积; 〔Ⅱ〕当2||||AM AN =时,证明:2k <.请考生在第〔22〕、〔23〕、〔24〕题中任选一题做答,如果多做,按所做的第一题记分.〔22〕〔本小题满分10分〕选修4–1:几何证明选讲如图,在正方形ABCD 中,E ,G 分别在边DA ,DC 上〔不与端点重合〕,且DE DG =,过D 点作DF CE ⊥,垂足为F . 〔Ⅰ〕证明:B ,C ,G ,F 四点共圆;〔Ⅱ〕若1AB =,E 为DA 的中点,求四边形BCGF 的面积.〔23〕〔本小题满分10分〕选修4–4:坐标系与参数方程 在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.〔Ⅰ〕以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;〔Ⅱ〕直线l 的参数方程是cos ,sin ,x t y t αα=⎧⎨=⎩〔t 为参数〕,l 与C 交于A ,B 两点,||10AB =,求l 的斜率.〔24〕〔本小题满分10分〕选修4–5:不等式选讲 已知函数11()||||22f x x x =-++,M 为不等式()2f x <的解集.〔Ⅰ〕求M ;〔Ⅱ〕证明:当a ,b M ∈时,|||1|a b ab +<+.参考答案第Ⅰ卷一. 选择题:本大题共12小题。

2016高考数学提高分数的攻略总结

2016高考数学提高分数的攻略总结

2016年高考数学提高分数的攻略总结相对于语文学科的“细水长流”,数学学科的提高相对较为快速。

只要掌握较好的学习方法加之刻苦的努力,特别是利用好初三前的暑假,完全可以使你的数学成绩取得长足的进步。

在这里,我以自己切身的经验向学弟学妹们透露几条复习的“密招”,希望给大家的数学复习一点参考。

攻略一:概念记清,基础夯实。

数学≠做题,千万不要忽视最基本的概念、公理、定理和公式,特别是“不定项选择题”就要靠清晰的概念来明辨对错,如果概念不清就会感觉模棱两可,最终造成误选。

因此,要把已经学过的几本教科书中的概念整理出来,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。

攻略二:适当做题,巧做为王。

有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。

数学需要实践,需要大量做题,但要“埋下头去做题,抬起头来想题”,在做题中关注思路、方法、技巧,要“苦做”更要“巧做”。

考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且往往也不容易犯错。

攻略三:前后联系,纵横贯通。

在做题中要注重发现题与题之间的内在联系,绝不能“傻做"。

在做一道与以前相似的题目时,要会通过比较,发现规律,穿透实质,以达到“触类旁通”的境界。

特别是几何题中的辅助线添法很有规律性,在做题中要特别记牢。

攻略四:记录错题,避免再犯。

俗话说,“一朝被蛇咬,十年怕井绳”,可是同学们常会一次又一次地掉入相似甚至相同的“陷阱”里。

因此,我建议大家在平时的做题中就要及时记录错题,还要想一想为什么会错、以后要特别注意哪些地方,这样就能避免不必要的失分。

毕竟,中考当中是“分分必争”,一分也失不得。

攻略五:集中兵力,攻下弱点。

每个人都有自己的“软肋”,如果试题中涉及到你的薄弱环节,一定会成为你的最痛。

因此一定要通过短时间的专题学习,集中优势兵力打场漂亮的歼灭战,避免不平衡发展。

精心整理,仅供学习参考。

2016年北京高考数学真题及答案解析(文科)041019124436

2016年北京高考数学真题及答案解析(文科)041019124436
三、解答题(共 6 题,共 80 分.解答应写出文字说明,演算步骤或证明过程)
15.(本小题 13 分)
已知{an}是等差数列,{bn} 是等差数列,且 b2 3 , b3 9 , a1 b1 , a14 b4 .
(1)求{an}的通项公式;
(2)设 cn an bn ,求数列{cn} 的前 n 项和.
3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助 Venn 图实 施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是
数形结合思想的体现和运用.
4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可
的成绩仅相隔 1,故只能 1,5,4 进 30 秒跳绳的决赛,故选 B.
考点:统计
【名师点睛】本题将统计与实际应用结合,创新味十足,是能力立意的好题,根据表格中数据分析排名的多种可
能性,此题即是如此.列举的关键是要有序(有规律),从而确保不重不漏,另外注意条件中数据的特征.
第二部分(非选择题 共 110 分)
知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质 都是对数量积定义的考查.求解夹角与模的题目在近年高考中出现的频率很高,应熟练掌握其解法.
10.函数 f (x) x (x 2) 的最大值为_________. x 1
【答案】2 【解析】 试题分析: f (x) 1 1 1 1 2 ,即最大值为 2.
4.下列函数中,在区间 (1,1) 上为减函数的是()
A. y 1 1 x
【答案】D
B. y cos x

高考数学如何获得高分

高考数学如何获得高分

高考数学如何获得高分一、高考复习中数学思想方法教学的必要性高考试题重在考查对知识理解的准确性、深刻性,重在考查知识的综合灵活运用。

它着眼于知识点新颖巧妙的组合,试题新而不偏,活而不过难;着眼于对数学思想方法、数学能力的考查。

高考试题这种积极导向,决定了我们在教学中必须以数学思想指导知识、方法的运用,整体把握各部分知识的内在联系。

只有加强数学思想方法的教学,优化学生的思维,全面提高数学能力,才能提高学生解题水平和应试能力。

高考复习有别于新知识的教学。

它是在学生基本掌握了中学数学知识体系、具备了一定的解题经验的基础上的复课数学,也是在学生基本认识了各种数学基本方法、思维方法及数学思想的基础上的复课数学。

其目的在于深化学生对基础知识的理解,完善学生的知识结构,在综合性强的练习中进一步形成基本技能,优化思维品质,使学生在多次的练习中充分运用数学思想方法,提高数学能力。

高考复习是学生发展数学思想,熟练掌握数学方法理想的难得的教学过程。

二、高考复习中数学思想方法教学的原则1、把知识的复习与思想方法的培养同时纳入教学目的原则。

各章应有明确的数学思想方法的教学目标,教案中要精心设计思想方法的教学过程。

2、寓思想方法的教学于完善学生的知识结构之中、于教学问题的解决之中的原则。

知识是思想方法的载体,数学问题是在数学思想的指导下,运用知识、方法"加工"的对象。

皮之不存,毛将焉附?离开具体的数学活动的思想方法的教学是不可能的。

3、适当章节的强化训练与贯通复课全程的反复运用相结合的原则。

数学思想方法与数学知识的共存性、数学思想对数学活动的指导作用、被认知的思想方法只有在反复的运用中才能被真正掌握这一教学规律,都决定了成功的思想方法和教学只能是有意识的贯通复课全程的教学。

特别是有广泛应用性的数学思想的教学更是如此。

如数形结合的思想,在数学的几乎全部的知识中,处处以数学对象的直观表象及深刻精确的数量表达这两方面给人以启迪,为问题的解决提供简捷明快的途径。

提高高考文科数学成绩的策略

提高高考文科数学成绩的策略

提高高考文科数学成绩的策略提高高考文科数学成绩的策略高考文科数学提高分数有哪些策略?下面阳光网小编整理了《高考文科数学提高分数的一些策略》,方便大家参考!关于高考的更多信息,请访问阳光网。

提高分数的策略——咬住选择题不放松选择题是中低年级题相对集中的地方。

一般8道选择题中有7道左右容易得分,也就是35分左右容易拿到。

部分学生考试不及格的主要原因之一是没有足够重视选择题,选择题做得不好,分数低。

选择题的解法有直接法、特殊化法、排除法、数形结合法、替代测验法、概念辨析法、逻辑分析法、逆向思维法、综合运用法等。

在做选择题时,要根据具体题目采用合适的方法。

选择题是学生易成绩的重要组成部分。

许多数学成绩较低的学生在选择题中占很大比例。

选择题的成败关系到全局。

所以在平时的学习中,要注意掌握基础知识、基本技能和数学思维方法,加强选择题的训练,在解题的速度和准确性上多下功夫,尽量巧妙的解决,千万不要小题大做,争取在选择题上多得分数。

注意“准”“巧”“快”。

提高分数的策略二:多注意填空题。

很多学生在考试中填空题往往会严重失分。

原因是对基础和基本功掌握不够,计算能力差,计算错误等。

填空题一般有5~6道容易题。

在做填空题的时候,要把握好这些题,并在此基础上尝试做难度较大的题。

填空的时候也要注意不要小题大做。

如果遇到太复杂太费时间的难题,可以选择放弃。

最好用节省下来的时间来解决下面的问题。

讲究“准”“巧”“快”“精”“活”。

一般解决填空题的方法有:直接解法、特殊化、数形结合等。

提高分数的策略3。

把握答题中的前三大题。

1.高考答题中的三角题是一道容易题,是中低数学成绩学生的主要得分点。

高考三角解法题主要考查以下三个方面:(1)纯三角问题,主要利用三角函数的基本概念、公式、图像和性质来解题;(2)解决斜三角形问题,主要用正弦定理和余弦定理来解决;(3)矢量与三角形的相交主要是利用矢量积、垂直、平行和三角函数的知识来解决。

2.高考答案题中的概率题是易题,往往数字可以一一列出,并考查经典概率或几何概率。

高考文科数学知识点

高考文科数学知识点

高考文科数学知识点【导语】在高考复习进程中,文科的学生要怎样做好数学知识点的复习准备呢?下面是作者收集整理的高考文科数学知识点以供大家学习。

高考文科数学知识点:导数一、综述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)运用问题(初等方法常常技能性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特点,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引发注意。

二、知识整合1.导数概念的知道。

2.利用导数判别可导函数的极值的方法及求一些实际问题的值与最小值。

复合函数的求导法则是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

3.要能正确求导,必须做到以下两点:(1)熟练掌控各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

高考文科数学知识点:不等式不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的运用。

因此不等式运用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的增进作用。

在解决问题时,要根据题设与结论的结构特点、内在联系、挑选适当的解决方案,终究归结为不等式的求解或证明。

不等式的运用范畴十分广泛,它始终贯串在全部中学数学当中。

诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的肯定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,终究都可归结为不等式的求解或证明。

2016年高考数学试题分析

2016年高考数学试题分析

2016年高考改卷心得体会河南漯河市数学教研室张勇刚一、新课标卷1整体评价(文科)分析整张试卷,今年高考全国卷文科数学考查的题目顺序、知识点、题型很常规,较于往年没有很大的变化,当然,总体要比往年稍难点,第19题概率统计题情境新颖,容易出错。

题目难度分布合理,从易到难,下面我们来具体分析一下整张考卷。

1、选择题部分:基础题1、2、3、4、8、9题,中等难度的题5、6、7、10、11,难题12题。

总体来讲基本沿袭了以往新课标的出题模式和难易程度,知识模块上加强了对于函数的考察,三角函数,解三角形,导数单调性等典型题型都体现在选择题部分,这些题型都是我们平时在模拟练习时重点练习的题目,所以学生相对还是比较好拿分的。

选择题在立体几何部分,对于学生的空间想象力提出后了更高的要求,第7题和第11题都是立体几何部分,需要同学准确的画出几何体识别出线面角的关系,是解题的关键,也是文科学生薄弱的部分。

需要我们在今后的教学中加强这部分的练习。

这次考试在运算的准确度对学生提出更高的要求,出题人设置了不少的陷阱等待学生去注意,也是拿到理想分数的关键。

2、填空题部分:基础题主要是13-14题,中等难度题主要是15、16。

总体来讲难度和选择题的难度基本一致,第15题考核的是必修2的直线与圆部分,通过垂径定理求解圆的面积,是本章的基本题型但是由于题干中含有参数,导致很多同学不敢下手,第16题考核是线性规划的截距类,需要认真审题,挖掘出题目的不等关系,确定目标函数。

这是我们在平时的练习中忽略的一点,也是很多同学容易错误的点。

3、解答题部分:基础题17、18题第1问,20,21题第1问,选做题23,24,中等难度的题18题第2问,19题,难题20和21题第2问。

第17题与前几年一样考察的数列基本量的运算,难度不大,只要公式记忆准确,拿满分还是没有问题的。

第18题立体几何考核的投影问题,不是我们平时模拟练习的平行垂直的证明,但是只要知道投影的本质是线面垂直,我们通过线面垂直的判断和正棱锥的定义即可得证。

2016年高考全国Ⅰ文科数学试题及答案(word解析版)

2016年高考全国Ⅰ文科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(全国Ⅰ)数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2016年全国Ⅰ,文1,5分】设集合{}1,3,5,7A =,{}25B x x =≤≤,则A B = ( )(A ){}1,3 (B ){}3,5 (C ){}5,7 (D ){}1,7【答案】B【解析】集合A 和集合B 公共元素有3,5,所以{}3,5A B = ,所以A B 中有2个元素,故选B .【点评】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.(2)【2016年全国Ⅰ,文2,5分】设()()12i i a ++的实部与虚部相等,其中a 为实数,则a =( )(A )3- (B )2- (C )2 (D )3【答案】A【解析】()()()12i i 212i a a a ++=-++,由已知,得212a a -=+,解得3a =-,故选A .【点评】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题.高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性.(3)【2016年全国Ⅰ,文3,5分】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )(A )13(B )12 (C )23 (D )56 【答案】A【解析】将4中颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为23,故选A . 【点评】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举.(4)【2016年全国Ⅰ,文4,5分】ABC ∆的内角A B C 、、的对边分别为a b c 、、.已知a =2c =,2cos 3A =,则b =( )(A (B (C )2 (D )3【答案】D 【解析】由余弦定理得2254223b b =+-⨯⨯⨯,解得3b =(13b =-舍去),故选D . 【点评】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b .运算失误是基础题失分的主要原因,请考生切记!(5)【2016年全国Ⅰ,文5,5分】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) (A )13(B )12 (C )23 (D )34 【答案】B【解析】如图,由题意得在椭圆中,OF c =,OB b =,11242OD b b =⨯=,在Rt OFB ∆中,OF OB BF OD ⨯=⨯,且222a b c =+,代入解得22a 4c =,所以椭圆得离心率得1e 2=,故选B . 【点评】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a ,c的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .(6)【2016年全国Ⅰ,文6,5分】若将函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图像向右平移14个周期后,所得图像对应的函 数为( )(A )2sin 24y x π⎛⎫=+ ⎪⎝⎭ (B )2sin 23y x π⎛⎫=+ ⎪⎝⎭ (C )2sin 24y x π⎛⎫=- ⎪⎝⎭ (D )2sin 23y x π⎛⎫=- ⎪⎝⎭ 【答案】D 【解析】函数=2sin(2+)6y x π的周期为π,将函数=2sin(2+)6y x π的图像向右平移14个周期即4π个单位,所得函数为=2sin 2()+2sin 2463y x x πππ⎡⎤⎛⎫-=- ⎪⎢⎥⎣⎦⎝⎭,故选D . 【点评】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减“,二是平移多少个单位是对x 而言的,不用忘记乘以系数.(7)【2016年全国Ⅰ,文7,5分】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条 相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π(B )18π (C )20π (D )28π【答案】A 【解析】该几何体为球体,从球心挖掉整个球的18(如右图所示),故34728383r ππ=,解得2r =, 2271431784S r r πππ∴=⋅+⋅=,故选A . 【点评】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.(8)【2016年全国Ⅰ,文8,5分】若0a b >>,01c <<,则( ) (A )log log a b c c < (B )log log c c a b < (C )c c a b < (D )a b c c >【答案】B【解析】由01c <<可知log c y x =是减函数,又0a b >>,所以log log c c a b <.故选B .本题也可以用特殊值代入验证,故选B .【点评】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数单调性进行比较,若底数不同,可考虑利用中间量进行比较.(9)【2016年全国Ⅰ,文9,5分】函数22xy x e =-在[]2,2-的图像大致为( ) (A )(B )(C )(D )【答案】D【解析】解法一(排除法):2()2x f x x e =- 为偶函数,且2(2)887.40.6f e =-≈-=,故选D . 解法二:2()2xf x x e =- 为偶函数,当0x >时,'()4x f x x e =-,作4y x =与x y e =(如 图),故存在实数0(0,1)x ∈,使得'0()0f x =,且0(0,)x x ∈时,'0()0f x <,0(,2)x x ∈时,'0()0f x >,()f x ∴在0(0,)x 上递减,在0(,2)x 上递增,故选D .【点评】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项.(10)【2016年全国Ⅰ,文10,5分】执行右面的程序框图,如果输入的0,1,1x y n ===,则输出,x y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x =【答案】C【解析】第一次循环:0,1,2x y n ===,第二次循环:1,2,32x y n ===,第三次循环: 3,6,32x y n ===,此时满足条件2236x y +≥,循环结束,3,62x y ==,满足 4y x =,故选C .【点评】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,求解此类问题一般是把人看作计算机,按照程序逐步列出运行结果.(11)【2016年全国Ⅰ,文11,5分】平面α过正方体1111ABCD A B C D -的顶点A ,11//CB D α平面,ABCD m α= 平面,11ABB A n α= 平面,则m ,n 所成角的正弦值为( )(A (B (C (D )13 【答案】A【解析】如图,设平面11CB D 平面ABCD m '=,平面11CB D 11ABB A n '=,因为α∥平面11CB D ,所以m m '∥,n n '∥,则,m n 所成的角.延长AD ,过1D 作11D E B C ∥,连接CE ,11B D ,则CE 为m ',同理11B F 为n ',而BD CE ∥,111B F A B ∥,则,m n ''所成的角即为1A B ,BD所成的角即为60︒,故,m n 故选A . 【点评】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.(12)【2016年全国Ⅰ,文12,5分】若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是( )(A )[]1,1- (B )11,3⎡⎤-⎢⎥⎣⎦ (C )11,33⎡⎤-⎢⎥⎣⎦ (D )11,3⎡⎤--⎢⎥⎣⎦ 【答案】C【解析】()21cos2cos 03f x x a x '=-+≥对x ∈R 恒成立,故()2212cos 1cos 03x a x --+≥,245cos cos 033a x x -+≥恒成立,即245033at t -+≥对[]1,1t ∈-恒成立,构造()24533f t at t =-+,开口向下的二次函数()f t 的最小值的可能值为端点值,故只需保证()()11031103f t f t ⎧-=-≥⎪⎪⎨⎪-=+≥⎪⎩,解得1133t -≤≤,故选C . 【点评】本题把导数与三角函数结合在一起进行考查,有所创新,求解关键是把函数单调性转化为不等式恒成立,再进一步转化为二次函数在闭区间上的最值问题,注意与三角函数值域或最值有关的问题,要注意弦函数的有界性. 第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分(13)【2016年全国Ⅰ,文13,5分】设向量(),1x x =+a ,()1,2=b ,且⊥a b ,则x = .【答案】23-【解析】由题意,20,2(1)0,3x x x ⋅=++=∴=-a b . 【点评】全国卷中向量大多以客观题形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若()()1122,,,x y x y ==a b ,则1122x y x y ⋅=+a b .(14)【2016年全国Ⅰ,文14,5分】已知θ是第四象限角,且3sin 45πθ⎛⎫+= ⎪⎝⎭,则tan 4πθ⎛⎫-= ⎪⎝⎭ . 【答案】43- 【解析】由题意sin sin 442θθπ⎡ππ⎤⎛⎫⎛⎫+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦3cos 45θπ⎛⎫=-= ⎪⎝⎭,因为2222k k θ3ππ+<<π+π()k ∈Z ,所以722444k k θ5ππππ+<-<π+()k ∈Z ,从而4sin 45θπ⎛⎫-=- ⎪⎝⎭,因此4tan 43θπ⎛⎫-=- ⎪⎝⎭.故填43-. 【点评】三角函数求值,若涉及到开方运算,要注意根式前正负号的取舍,同时要注意角的灵活变换.(15)【2016年全国Ⅰ,文15,5分】设直线2y x a =+与圆22220C x y ay +--=:相交于A ,B 两点,若AB =,则圆C 的面积为 .【答案】4π【解析】有题意直线即为20x y a -+=,圆的标准方程为()2222x y a a +-=+,所以圆心到直线的距离d =,所以AB ==2224a r +==,所以244S r ππ==. 【点评】注意在求圆心坐标、半径、弦长时常用圆的几何性质,如圆的半径r 、弦长l 、圆心到弦的距离d 之间的关系:2222l r d ⎛⎫=+ ⎪⎝⎭在求圆的方程时常常用到. (16)【2016年全国Ⅰ,文16,5分】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【答案】216000【解析】设生产产品A 、产品B 分别为x 、y 件,利润之和为z 元, 那么 1.50.5150,0.390,53600,0,0.x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩①目标函数2100900z x y =+.①等价于3300,103900,53600,0,0.x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩ ②作出二元一次不等式组②表示的平面区域(如图),即可行域将2100900z x y =+变形得73900z y x =-+,平行直线73y x =-,当直线73900z y x =-+经过点M 时,z取得最大值.解方程组10390053600x y x y +=⎧⎨+=⎩,得M 的坐标()60,100.所以当60x =,100y =时,max 210060900100216000z =⨯+⨯=.故生产产品A 、产品B 的利润之和的最大值为216000元.【点评】线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合.本题运算量较大,失分的一个主要原因是运算失误.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2016年全国Ⅰ,文17,12分】已知{}n a 是公差为3的等差数列,数列{}n b满足11b =,213b =,11n n n n a b b nb +++=.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和.解:(1)由已知1221a b b b +=,11b =,213b =,得12a =,所以数列{}n a 是首项为2,公差为3的等差数列,通项公式为31n a n =-.(2)由(1)和11n n n n a b b nb +++= ,得13n n b b +=,因此{}n b 是首项为1,公比为13的等比数列.记{}n b 的前n 项和为n S ,则111()313122313nn n S --==-⨯-. 【点评】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.(18)【2016年全国Ⅰ,文18,12分】如图,在已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (1)证明G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积. 解:(1)因为P 在平面ABC 内的正投影为D ,所以.AB PD ⊥因为D 在平面PAB 内的正 投影为E ,所以.AB DE ⊥所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得, PA PB =,从而G 是AB 的中点. (2)在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,PB PC ⊥,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故2.3CD CG =由题设可得PC ⊥平面PAB ,DE ⊥平面PAB , 所以//DE PC ,因此21,.33PE PG DE PC ==由已知,正三棱锥的侧面是直角三角形且6PA =,可得2,DE PE == 在等腰直角三角形EFP 中,可得 2.EF PF ==所以四面体PDEF 的体积114222323V =⨯⨯⨯⨯=. 【点评】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.(19)【2016年全国Ⅰ,文19,12分】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数.(1)若19n =,求y 与x 的函数解析式;(2)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求的n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买PA B D C GE19个还是20个易损零件?解:(1)当19x ≤时,3800y =;当19x >时,()3800500195005700y x x =+-=-,所以y 与x 的函数解析式为()3800,195005700,19x y x x x ≤⎧=∈⎨->⎩Ν. (2)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故n 的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为1(400090450010)4050100⨯+⨯=.比较两个平均数可知,购买1台机器的同时应购买19个易损零件. 【点评】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.(20)【2016年全国Ⅰ,文20,12分】在直角坐标系xOy 中,直线():0l y t t =≠交y 轴于点M ,交抛物线2:2(0)C y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(1)求OH ON; (2)除H 以外,直线M H 与C 是否有其它公共点?说明理由.解:(1)由已知得()0,M t ,2,2t P t p ⎛⎫ ⎪⎝⎭.又N 为M 关于点P 的对称点,故2,t N t p ⎛⎫ ⎪⎝⎭,ON 的方程为2y px =,整理得2220px t x -=,解得10x =,222t x p =,因此22,2t H t p ⎛⎫ ⎪⎝⎭.所以N 为OH 的中点,即2OH ON =. (2)直线M H 与C 除H 以外没有其它公共点.理由如下:直线M H 的方程为2p y t x t-=,即2()t x y t p =-. 代入22y px =得22440y ty t -+=,解得122y y t ==,即直线M H 与C 只有一个公共点,所以除H 以外 直线M H 与C 没有其它公共点.【点评】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成;解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题.其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.(21)【2016年全国Ⅰ,文21,12分】已知函数()()()22e 1x f x x a x =-+-.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.解:(1)()()()()()'12112x x f x x e a x x e a =-+-=-+.(i) 设0a ≥,则当(),1x ∈-∞时,()'0f x <;当()1,x ∈+∞时,()'0f x >.所以在(),1-∞单调递减,在()1,+∞单调递增.(ii) 设0a <,由()'0f x =得1x =或()ln 2x a =-. ①若2e a =-,则()()()'1xf x x e e =--,所以()f x 在(),-∞+∞单调递增. ②若2e a >-,则()ln 21a -<,故当()()(),ln 21,x a ∈-∞-+∞ 时,()'0f x >;当()()ln 2,1x a ∈-时, ()'0f x <,所以()f x 在()()(),ln 2,1,a -∞-+∞单调递增,在()()ln 2,1a -单调递减. ③若2e a <-,则()ln 21a ->,故当()()(),1ln 2,x a ∈-∞-+∞ 时,()'0f x >,当()()1,ln 2x a ∈-时, ()'0f x <,所以()f x 在()()(),1,ln 2,a -∞-+∞单调递增,在()()1,ln 2a -单调递减.(2)(i) 设0a >,则由(1)知,()f x 在(),1-∞单调递减,在()1,+∞单调递增.又()1f e =-,()2f a =,取b 满足0b <且ln 22b a <,则()()()23321022a f b b a b a b b ⎛⎫>-+-=-> ⎪⎝⎭,所以()f x 有两个零点. (ii)设0a =,则()()2x f x x e =-,所以()f x 有一个零点.(iii)设0a <,若2e a ≥-,则由(1)知,()f x 在()1,+∞单调递增.又当1x ≤时,()0f x <,故()f x 不 存在两个零点;若2e a <-,则由(1)知,()f x 在()()1,ln 2a -单调递增,在()()ln 2,a -+∞单调递增.又 当1x ≤时,()0f x <,故()f x 不存在两个零点.综上,a 的取值范围为()0,+∞.【点评】本题第一问是用导数研究函数单调性,对含有参数的函数单调性的确定,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简;第二问是求参数取值范围,由于这类问题常涉及到导数、函数、不等式等知识,越来越受到高考命题者的青睐,解决此类问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.(22)【2016年全国Ⅰ,文22,10分】(选修4-1:几何证明选讲)如图,OAB ∆是等腰三角形,120AOB ∠=︒.以O 为圆心,12OA 为半径作圆. (1)证明:直线AB 与O 相切;(2)点C ,D 在⊙O 上,且A B C D ,,,四点共圆,证明://AB CD .解:(1)设E 是AB 的中点,连接OE ,因为OA OB =,120AOB ∠=︒,所以OE AB ⊥,60AOE ∠=︒.在Rt AOE ∆中,12OE AO =,即O 到直线AB 的距离等于圆O 的半 径,所以直线AB 与O e 相切. (2)因为2OA OD =,所以O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上,所以'OO AB ⊥.同理可证,'OO CD ⊥.所以//AB CD .【点评】近几年几何证明题多以圆为载体命制,在证明时要抓好“长度关系”与“角度关系的转化”,熟悉相关定理与性质.该部分内容命题点有:平行线分线段成比例定理;三角形的相似与性质;四点共圆;圆内接四边形的性质与判定;切割线定理.(23)【2016年全国Ⅰ,文23,10分】(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (1)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(2)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .解:(1)cos 1sin x a t y a t =⎧⎨=+⎩(t 均为参数),∴()2221x y a +-= ① ∴1C 为以()01,为圆心,a 为半径的圆.方程为 222210x y y a +-+-=∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程.(2)24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+= ,,224x y x ∴+=,即()2224x y -+= ② 3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C①-②得:24210x y a -+-=,即为3C ,∴210a -=,∴1a =.【点评】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式及应用.(24)【2016年全国Ⅰ,文24】(本小题满分10分)(选修4-5:不等式选讲)已知函数()123f x x x =+--.(1)在答题卡题图中画出()y f x =的图像;O D C B A E O'D C O BA(2)求不等式()1f x >的解集.解:(1)4,13()12332,1234,2x x f x x x x x x x ⎧⎪-<-⎪⎪=+--=--≤<⎨⎪⎪-+≥⎪⎩,如图所示: (2)①当1x <-时,()41f x x =->,解得3x <或5x >,1x ∴<-; ②当312x -≤<时,()321f x x =->,解得13x <或1x >, 113x ∴-≤<或312x <<; ③当32x ≥时,()41f x x =-+>,解得3x <或5x >,332x ∴≤<或5x >. 综上可知,不等式()1f x >的解集为()()1,1,35,3⎛⎫-∞+∞ ⎪⎝⎭ . 【点评】不等式证明选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写出集合形式.。

关于高考数学答题技巧有哪些

关于高考数学答题技巧有哪些

关于高考数学答题技巧有哪些从这个意义上,数学属于形式科学,而不是自然科学。

不同的数学家和哲学家对数学的准确范围和定义有一系列的看法。

下面我为大家带来高考数学答题技巧有哪些,盼望大家喜爱!高考数学答题技巧专题一、三角变换与三角函数的性质问题1、解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。

2、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h 的性质,写出结果。

④(反思):反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

专题二、解三角形问题1、解题路线图(1)①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2)①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即依据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应留意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

专题三、数列的通项、求和问题1、解题路线图①先求某一项,或者找到数列的关系式。

②求通项公式。

③求数列和通式。

2、构建答题模板①找递推:依据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:依据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定(方法):依据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

⑤再反思:反思回顾,查看关键点、易错点及解题规范。

专题四、利用空间向量求角问题1、解题路线图①建立坐标系,并用坐标来表示向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考复习的重点一是要掌握所有的知识点,二就是要大量的做题,查字典数学网的编辑就为各位考生带来了解决高考数学四大捷径使文科数学高分对于大部分考生来说,数学满分也许是永难企及的美梦,然而不够完美的148分却能拉近你我的距离。

如果平凡的我能够做到,你也一定没问题。

我身在牛班,却不是牛人。

同班同学里做题比我快的有之,钻题比我深的有之,然而高考考场上比我分高的却少之又少。

如果说我有什么特别之处,那就在于我是个地道的懒人。

因为懒,我不愿苦苦挣扎于题海;因为懒,我总是拼命地寻找捷径。

事实证明,数学是门可以走捷径的学科,不会偷懒的学生是与高分无缘的。

偷懒也有一定的方法,下面我就和大家分享一下我的偷懒真经。

捷径一少题海多精题偷懒的第一要任就在于减少复习的负荷量。

数学最大的负荷是永无止境的题海。

开学伊始,我便整理出一个大体的概念框架,并利用已有的做题经验对应框架进行知识点筛选,删除要求低的和已掌握的,突出重点和难点。

这样在第一轮复习大家都埋头做题之时,我便早早地跳出了题海。

省下时间只是手段,把精力花在研究精题上才是目的。

我最大限度地利用了两大类精题:一类是涵盖了多项考点的母题,一类是同一题型中频率较高的错题。

经验表明,对这两类题的反复研究和提炼大大提升了我学习数学的效率,为短期内成绩攀升打下坚实基础。

捷径二少抄书多翻译文科数学的一大特色,就在于你可以通过有效的总结来代替无尽的习题。

总结并不代表一味地抄公式抄概念,而应该用自己的语言和做题经验归纳出针对自身的解题技巧,这也就是我所谓的翻译。

事实上,高三一年我花在总结上的工夫与做题相比有过之而无不及。

从总结中萃取出的一本针对性极强的翻译小册子最终成为我数学攻坚的不二法宝。

捷径三少动手多动脑高三的任务很重,文科每天的作业量足以把手写到抽筋。

为了偷懒,我在动笔做题之前总先浏览一遍题干,遇到会做的题绝不浪费笔墨,遇到相同类型的题也只综合起来做个思路比较即可(当然前提是计算和格式能过关)。

这个习惯不仅为我省去了大量无意义的劳动,更让我获得了从更高层次上审视题目的机会,从而加强了对许多考点的纵深理解。

捷径四少粗心多自信粗心大意是大家在数学学习中难以绕过的一大障碍,然而粗心只是表象,追本溯源仍是不够熟练。

不熟练并不意味一定要用题海来补救,惯于偷懒的我选择了用翻译来解决问题。

审题不细的现象背后,或许是忘了分母不能为零,或许是记不清反三角函数的定义域。

总之,导致粗心的原因无非几类,稍作总结便可悉数在握。

心态的调整亦无需花费额外的精力。

我所采取的措施是在临考一个月时找来近三年的高考试题,在规定的时间内细做一遍,并将答案写在卷上。

抄答案的过程有利于对格式和细节进行查缺补漏。

由于大多数的试题都在一轮轮复习中零星地遇到过,因而三套试卷整体感觉偏易,从而可以达到降低高考恐惧感,增强自信心的目的。

数学是文科制胜的关键,捷径是数学制胜的法宝。

我的四少四多捷径法的核心就在于极强的自我针对性。

只要找对路,你的高三旅程一定能迎来真正的鸟语花香。

以上就是查字典数学网的编辑为各位考生带来的解决高考数学四大捷径使文科数学高分,希望给各位考生带来帮助。

相关文档
最新文档