几种测蛋白含量方法的比较
几种测蛋白含量方法的比较
蛋白质含量测定方法的比较及肽含量的测定(一)蛋白质测定方法的比较(原理、优缺点)蛋白质含量测定法,目前包括定氮法、双缩脲法、福林酚法(Lowry法)和紫外吸收法、考马斯亮蓝法。
其中考马斯亮蓝和福林酚法灵敏度最高,比紫外吸收法灵敏10~20倍,比双缩脲法灵敏100倍以上。
定氮法较复杂,但准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。
在选择方法时应该考虑:(1)实验测定要求的灵敏度和精确度;(2)蛋白质的性质;(3)溶液中存在的干扰物质;(4)测定花费时间。
蛋白质含量测定法,目前包括定氮法、双缩脲法、福林酚法(Lowry法)和紫外吸收法、考马斯亮蓝法。
其中考马斯亮蓝和福林酚法灵敏度最高,比紫外吸收法灵敏10~20倍,比双缩脲法灵敏100倍以上。
定氮法较复杂,但准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。
在选择方法时应该考虑:(1)实验测定要求的灵敏度和精确度;(2)蛋白质的性质;(3)溶液中存在的干扰物质;(4)测定花费时间。
1微量凯氏定氮法(GB 5009.5-2010)1.1原理样品与浓硫酸共热。
含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。
经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。
1.2操作方法样品经前处理、炭化、消化、蒸馏、滴定等主要步骤1.3特点准确度较高,适用于0.2~ 1.0mg氮,误差为±2%;操作复杂费时,整个过程需要耗时8~10h,试剂消耗量大。
,测得结果为总氮含量,包括蛋白氮和非蛋白氮含量;适用范围广,几乎所有样品均可用此方法。
2 双缩脲比色法2.1原理双缩脲法是利用蛋白质的双缩脲反应而测定蛋白质含量的方法。
因蛋白质含有两个以上的肽键,所以有双缩脲反应。
在碱性溶液中蛋白质与Cu2+形成紫红色络合物,在一定的实验条件下,未知样品溶液与标准蛋白质溶液同时反应,并于540~560nm测定,即可以通过标准蛋白质的标准曲线求出未知样品的蛋白质浓度。
蛋白质含量的测定方法及原理
蛋白质含量的测定方法及原理蛋白质是生物体内一种重要的有机化合物,具有构建细胞结构、调节生理功能等重要作用。
因此,准确测定蛋白质的含量对于生物科学研究和临床诊断具有重要意义。
本文将介绍几种常用的蛋白质含量测定方法及其原理。
一、比色法比色法是一种常用的蛋白质含量测定方法,其原理是利用蛋白质与某些特定试剂形成显色物,根据显色物的光吸收特性来测定蛋白质的含量。
1. 低里氏法低里氏法是一种经典的蛋白质含量测定方法,其原理是利用试剂双硫苏三唑酮(DTNB)与蛋白质中的半胱氨酸残基反应产生黄色的二硫苏三唑,然后通过分光光度计测定其在412nm处的吸光度,根据标准曲线计算出蛋白质的含量。
2. 伯杰法伯杰法是一种基于酪蛋白与浊度试剂金霉素的显色反应来测定蛋白质含量的方法。
酪蛋白与金霉素结合形成沉淀,通过比色法测定沉淀的光吸收度,再根据标准曲线计算出蛋白质的含量。
3. 白蛋白-酷伊斯基(BCA)法BCA法是一种常用的高灵敏度蛋白质测定方法,其原理是在碱性条件下,蛋白质与BCA试剂中的铜离子络合生成紫色的离子螯合物,通过比色法测定在562nm处的光吸收度,再根据标准曲线计算出蛋白质的含量。
二、光谱法光谱法是一种基于蛋白质在特定波长下的吸收特性来测定蛋白质含量的方法。
1. 紫外吸收法紫外吸收法根据蛋白质中的芳香族氨基酸(如酪氨酸、酪氨酸和色氨酸)在紫外光区域(200-400nm)的吸收特性来测定蛋白质含量。
通过分光光度计测定蛋白质溶液在280nm处的吸光度,再根据标准曲线计算出蛋白质的含量。
2. 近红外光谱法近红外光谱法是一种无损、非破坏性的蛋白质含量测定方法,其原理是利用蛋白质溶液在近红外光区域(700-2500nm)的吸收特性与其含量之间的关系。
通过近红外光谱仪获取蛋白质溶液的光谱图像,然后利用化学计量学方法建立标准模型,通过光谱图像预测蛋白质的含量。
三、生化分析法生化分析法是一种利用生化技术和仪器设备来测定蛋白质含量的方法。
蛋白质含量的测定方法及原理
蛋白质含量的测定方法及原理蛋白质是生物体内重要的基础结构和功能分子,其含量的测定对于生物学和医学研究具有重要意义。
目前常用的蛋白质含量测定方法主要包括生物化学法、生物物理法和免疫学法等。
下面将对这几种方法的原理进行详细介绍。
1. 生物化学法:生物化学法通过酶促反应或化学反应,将蛋白质转化成可以测定的可溶物或在一定条件下呈现特定吸光度的产物,从而测定蛋白质的含量。
常用的生物化学法有Lowry法、Bradford法和BCA法。
(1) Lowry法:Lowry法是1969年由Lowry等人开发的一种蛋白质定量方法。
该方法利用蛋白质与Folin-Ciocalteu试剂在碱性条件下发生氧化反应,生成具有最大吸收峰的蓝色产物,通过测定产物的光密度与一系列标准溶液进行比较,来确定蛋白质的含量。
(2) Bradford法:Bradford法是Bradford于1976年提出的一种测定蛋白质含量的方法。
该方法基于蛋白质与染料(Coomassie Brilliant Blue G-250)之间的特异结合,蛋白质和染料形成一个蛋白质-染料复合物,该复合物的吸光度变化与蛋白质的浓度呈正相关。
通过测定复合物的光密度与一系列标准溶液进行比较,来确定蛋白质的含量。
(3) BCA法:BCA法是一种在碱性条件下,将蛋白质还原成具有强吸收的蓝色离子的方法。
BCA试剂(含有琥珀酸铜II配合物和增强剂)能与蛋白质中的酸性氨基酸残基(尤其是含有两个以上连续胺基的肽键)发生氧化还原反应,生成具有强吸收的蓝色离子。
利用光密度测定产生的蓝色离子与一系列标准溶液进行比较,即可确定蛋白质的含量。
2. 生物物理法:生物物理法是通过光学原理,利用蛋白质溶液对光的吸收、散射或旋光等性质进行测定,来间接推算蛋白质的含量。
常用的生物物理法有紫外吸收光谱法、比色法和荧光法等。
(1) 紫外吸收光谱法:紫外吸收光谱法是通过蛋白质在紫外光区域的吸收特性来测定蛋白质的含量。
蛋白质的测定方法有哪些
蛋白质的测定方法有哪些蛋白质测定是一个重要的生物化学实验,用于确定样品中蛋白质的含量和纯度。
目前常用的蛋白质测定方法主要有生物化学方法、光谱法、免疫学方法和质谱法等。
下面将详细介绍这些方法。
1. 生物化学方法:生物化学方法是一种常用的蛋白质测定方法,主要包括低里氏法、比色法和滴定法等。
低里氏法基于酵素反应测定蛋白质含量,其中最常用的是双维小麦胚芽过氧化物酶法。
比色法是通过染色剂和蛋白质的反应来测定蛋白质浓度,常用的比色剂有考马斯亮蓝G-250和布拉德福棕色R-250等。
滴定法是通过滴加蛋白质溶液的滴定剂,如硝酸银溶液和碘溶液等,来测定蛋白质的含量。
2. 光谱法:光谱法是利用蛋白质在特定波长下吸收光线的特性来测定蛋白质的含量和纯度。
UV-Vis吸收光谱法是最常用的光谱法之一,根据蛋白质在280 nm处吸收的特性来测定蛋白质浓度。
近红外光谱法也可以用于蛋白质浓度的测定,因为蛋白质的结构可以在近红外区域引起光的散射和吸收。
3. 免疫学方法:免疫学方法是利用抗体与特定蛋白质发生特异性反应来测定蛋白质的含量和纯度。
常用的免疫学方法包括酶联免疫吸附法(ELISA)、免疫印迹法(Western blotting)和免疫沉淀法等。
ELISA是一种高灵敏度的蛋白质测定方法,通过抗原与特异性抗体在单克隆板上的特异性结合来测定蛋白质的含量。
Western blotting是一种常用于检测特定蛋白质的方法,通过电泳分离蛋白质,然后用特异性抗体检测目标蛋白质。
免疫沉淀法利用特异性抗体与目标蛋白质结合,然后通过共沉淀或差速离心的方式将目标蛋白质从混合物中分离出来。
4. 质谱法:质谱法是一种高分辨率的蛋白质测定方法,主要有质谱光查法(MS)和质谱对比法(MS/MS)两种。
质谱光查法通过蛋白质在质谱仪中的分子离子质量和电荷比来确定蛋白质的分子量和浓度。
质谱对比法则是将待测蛋白质与已知质量的蛋白质进行比较,从而确定样品中蛋白质的含量和纯度。
临床常用蛋白检测方法
测定蛋白质含量的方法有凯氏定氮法、双缩脲法、考马斯亮蓝法等。
1、凯氏定氮法:准备4个50mL凯氏烧瓶并标号,向1、2号烧瓶中加入定量的蛋白质样品,另外两个烧瓶作为对照,在每个烧瓶中加入硫酸钾-硫酸铜混合物,再加入浓硫酸,将4个烧瓶放到消化架上进行消化,之后进行蒸馏。
全部蒸馏完毕后用标准盐酸滴定各烧瓶中收集的氨量,直至指示剂混合液由绿色变回淡紫红色,即为滴定终点,结算出蛋白质含量。
2、双缩脲法:是一种用于鉴定蛋白质的分析方法。
双缩脲试剂呈蓝色,是一种碱性含铜测试溶液,它由几滴1%硫酸铜,1%氢氧化钾和酒石酸钾钠制成。
3、考马斯亮蓝法:基本原理是基于蛋白质可以与考马斯亮蓝G-250定量结合。
蛋白质定量的方法
蛋白质定量的方法蛋白质是构成生物体的重要组成部分,对于理解生物体的结构和功能具有重要意义。
因此,准确测定蛋白质的含量是许多生物科学领域研究的基础。
目前,人们已经发展出了多种方法来定量蛋白质的含量。
本文将介绍几种常用的蛋白质定量方法及其原理、优缺点和应用范围。
1. 高效液相色谱法(High-performance liquid chromatography, HPLC)HPLC是一种常用的蛋白质分离和定量方法。
它利用样品中蛋白质与流动相在分离柱中的相互作用来实现分离和定量。
HPLC方法的优点是分离效果好、重复性好、能够同时检测多个样品。
但是,该方法需要相对较高的设备要求和操作技巧,对样品预处理也较为复杂,且比较耗时。
2. 比色法比色法是一种常用的定量蛋白质的方法。
其中,低里氏试剂法和双硫键试剂法是比较常用的比色法。
低里氏试剂法是通过蛋白质与龙氏试剂(碱性铜硫脲)之间的比色反应来定量蛋白质含量。
双硫键试剂法则是通过蛋白质与2,4,6-三硝基苯磺酸(TNBS)之间的比色反应来定量蛋白质含量。
比色法具有操作简单、设备要求低等优点,但是对于不同类型的蛋白质,比色反应的敏感度和选择性可能不同。
3. 显微波特光度法(Bradford法)Bradford法是一种常用的蛋白质定量方法,基于酒红素(Coomassie BrilliantBlue G-250)与蛋白质之间的相互作用产生的颜色变化。
蛋白质与酒红素结合后,溶液的吸收光谱发生变化,可测量溶液的吸光度来定量蛋白质含量。
该方法操作简单快捷,而且灵敏度较高,适用于常规蛋白质定量。
4. 聚丙烯酰胺凝胶电泳法(Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis, SDS-PAGE)SDS-PAGE是一种常用的蛋白质定量方法,可以通过电泳分离蛋白质并定量。
该方法通过将样品中的蛋白质在电场中进行分离,然后通过比色或者近红外成像等方法来定量。
测量蛋白质含量的几种方法以及优缺点
一、染料法
优点:因为它操作简单,反应时间短,染料-蛋白质颜色稳定,抗干扰性强。
缺点:对于那些与标准蛋白氨基酸组成有较大差异的蛋白质,有一定误差,因为不同的蛋白质与染料的结合是不同的,故该法适合测定与标准蛋白质氨基酸组成相近的蛋白质。
二、双缩脲(Biuret)法测定蛋白质含量
优点:较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。
缺点:灵敏度差。
因此双缩脲法常用于快速,但并不需要十分精确的蛋白质测定。
三、酚试剂法测定血清蛋白质含量
(改良Lowry法)
优点:方法简便,灵敏度高,能够测定2~100μg的微量蛋白质。
其方法凯氏定氮法操作简便,其灵敏度比双缩脲法高100倍左右。
因此经常被用于科研与临床检验。
四、紫外吸收法
优点:灵敏度高,仪器设备简单,操作简便。
缺点:准确度不高,有的检测不可用,有限制。
五、凯氏定氮法(Kjeldahl determination)优点:可用于所有食品的蛋白质分析中,操作相对简单费用低。
结果
准确、改进后可以用于微量蛋白质的测定。
缺点:最终测定的是总有机氮而不是蛋白质氮。
精确度低于双缩脲法、试剂有腐蚀性。
六、F olin-酚试剂法(Folin-phenol
Reagent Method )
优点:灵敏度高,方便简单。
缺点:费时较长,精确控制操作时间
七、考马斯亮蓝法(Coomassie
brilliant blue staining )
优点:灵敏度高,测定快速,应用广泛,只需一种试剂,用时间短。
缺点:有较大的偏差,而且去污剂等很多试剂对其有干扰。
蛋白质含量的测定方法及原理
蛋白质含量的测定方法及原理一、紫外吸收法。
紫外吸收法是一种常用的蛋白质含量测定方法,其原理是根据蛋白质在280nm波长处的特征吸收峰来进行测定。
在实验中,首先将待测样品溶解于适量的缓冲液中,然后使用紫外可见分光光度计测定样品在280nm处的吸光值,通过标准曲线的对照,可以计算出样品中蛋白质的含量。
二、比色法。
比色法是另一种常用的蛋白质含量测定方法,其原理是利用蛋白质与某些特定试剂发生化学反应后产生显色物质,通过测定显色物质的吸光值来计算样品中蛋白质的含量。
常用的试剂包括布拉德福试剂、伯杰试剂等,不同试剂适用于不同类型的蛋白质测定。
三、BCA法。
BCA法是一种基于铜离子与蛋白质中的蛋白质酰基发生还原反应的测定方法。
其原理是将待测样品与BCA试剂混合后在60℃条件下反应,然后使用分光光度计测定产生的显色物质的吸光值,通过标准曲线计算出样品中蛋白质的含量。
四、Lowry法。
Lowry法是一种以菁蓝G与蛋白质发生化学反应产生显色物质的测定方法。
其原理是将待测样品与碱液、菁蓝G和还原剂混合后在室温下反应,然后使用分光光度计测定产生的显色物质的吸光值,通过标准曲线计算出样品中蛋白质的含量。
五、总蛋白法。
总蛋白法是一种直接测定样品中总蛋白含量的方法,其原理是将待测样品与总蛋白试剂混合后在室温下反应,然后使用分光光度计测定产生的显色物质的吸光值,通过标准曲线计算出样品中蛋白质的含量。
总结,蛋白质含量的测定方法及原理有多种,每种方法都有其适用的样品类型和测定条件,研究人员可以根据自己的实验需要选择合适的方法进行蛋白质含量的测定工作。
希望本文所介绍的内容能为相关领域的研究工作提供一定的参考价值。
四种蛋白质含量测定方法的比较研究
四种蛋白质含量测定方法的比较研究蛋白质是生物体内的重要成分,其含量的测定对于生物学、医学、食品科学等领域具有重要意义。
目前常用的蛋白质含量测定方法主要有四种,包括生物素-亲和法、BCA法、Lowry法和Bradford法。
下面将对这四种方法进行比较研究。
一、生物素-亲和法生物素-亲和法是一种基于亲和层析原理的蛋白质含量测定方法。
该方法利用生物素与亲和基团之间的非共价作用,将生物素标记的探针与目标蛋白质结合,通过洗脱和检测来测定蛋白质的含量。
该方法具有高灵敏度、高特异性和高重复性等优点,但需要使用生物素标记的试剂,成本较高。
二、BCA法BCA法是一种基于铜离子还原能力的蛋白质含量测定方法。
该方法利用蛋白质与铜离子的络合作用,还原离子中的铜离子,生成紫色络合物,通过比色法测定蛋白质的含量。
该方法具有灵敏度高、线性范围广、操作简便等优点,但受到还原剂和蛋白质成分的影响,结果易受到误差。
三、Lowry法Lowry法是一种基于蛋白质与酸性铜离子的还原反应的蛋白质含量测定方法。
该方法利用蛋白质与酸性铜离子的还原反应,生成紫色络合物,通过比色法测定蛋白质的含量。
该方法具有灵敏度高、线性范围广、重复性好等优点,但需要多个试剂的配制和操作,较为繁琐。
四、Bradford法Bradford法是一种基于染料结合的蛋白质含量测定方法。
该方法利用染料与蛋白质之间的非共价作用,形成蓝色复合物,通过比色法测定蛋白质的含量。
该方法具有灵敏度高、操作简便、适用于多种蛋白质的测定等优点,但受到盐离子和其他成分的影响,结果易受到误差。
综上所述,四种蛋白质含量测定方法各有优缺点,选择合适的方法需要根据实际需求和实验条件进行综合考虑。
蛋白质含量的测定方法
蛋白质含量的测定方法
蛋白质的含量是指在样品中蛋白质的质量或浓度。
测定蛋白质含量是许多生物学和生化实验中常用的实验方法之一,以下是一些常见的测定方法:
1. 布拉德福德法(Bradford法):该方法利用布拉德福德蛋白
质染料与蛋白质形成复合物,并产生特定的颜色,通过比色法测定颜色强度从而确定含量。
2. 低里氏法(Lowry法):该方法基于在碱性条件下,蛋白质
与碱性铜离子复合生成紫色产物的原理,通过比色法定量测定。
3. BCA法(Bicinchoninic Acid法):该方法利用BCA试剂与
蛋白质中的蛋白质产生螯合,形成紫色到蓝色的产物,并通过光度计测定吸光度从而测定含量。
4. 还原硝酸银法:该方法是通过硝酸银与蛋白质中的氨基酸中的硫原子反应产生黑色沉淀,通过沉淀的重量或者比色法测定吸光度来确定蛋白质含量。
5. 紫外吸收法:蛋白质具有特定的紫外吸收峰,在特定波长下进行测定,可以通过比较样品吸光度与标准曲线来计算蛋白质含量。
以上只是一些常见的测定方法,根据具体需要和实验条件的不同,可以选择适合的方法进行蛋白质含量的测定。
蛋白质含量的测定方法及原理
蛋白质含量的测定方法及原理蛋白质是生命体内重要的营养成分,对于人体健康和生物学研究具有重要意义。
因此,准确测定蛋白质含量是很多领域的研究人员和实验室工作者所关注的问题。
本文将介绍蛋白质含量的测定方法及其原理,希望能为相关领域的研究工作提供一些帮助。
一、Lowry法。
Lowry法是一种常用的蛋白质含量测定方法,其原理是在碱性条件下,蛋白质与铜离子和碱性液体中的酚反应生成蓝色络合物,通过比色法测定蓝色产物的光密度来确定蛋白质的含量。
这种方法的优点是灵敏度高,适用于各种类型的蛋白质样品,但需要注意的是,在实际操作中需要严格控制试剂的浓度和反应时间,以确保测定结果的准确性。
二、Bradford法。
Bradford法是另一种常用的蛋白质含量测定方法,其原理是蛋白质与考马斯亮蓝G-250染料结合后,会导致染料的吸收峰发生位移,从而使得溶液的吸光度发生变化。
通过比色法测定吸光度的变化来确定蛋白质的含量。
这种方法的优点是操作简便,灵敏度高,适用于多种类型的蛋白质样品,但需要注意的是,不同蛋白质对染料的结合能力有所差异,因此在测定时需要选择合适的标准蛋白质来建立标准曲线,以确保测定结果的准确性。
三、BCA法。
BCA法是一种基于铜离子与蛋白质的碱性氨基酸在碱性条件下发生还原反应的蛋白质含量测定方法。
其原理是在碱性条件下,蛋白质中的酚和醛基与铜离子和BCA试剂中的蛋白质发生还原反应生成紫色络合物,通过比色法测定紫色产物的光密度来确定蛋白质的含量。
这种方法的优点是对于一些干扰物质的耐受性较好,适用于多种类型的蛋白质样品,但需要注意的是,测定条件的严格控制对结果的准确性至关重要。
总结。
蛋白质含量的测定方法有很多种,每种方法都有其特点和适用范围。
在选择测定方法时,需要根据样品的特点和实验条件来进行选择,并严格控制测定过程中的各项操作,以确保获得准确可靠的测定结果。
希望本文介绍的内容能够对相关领域的研究工作提供一些帮助,同时也希望研究人员能够根据实际情况选择合适的方法进行蛋白质含量的测定工作。
常见的蛋白检测方法
常见的蛋白检测方法蛋白质是生物体内基本的组成部分,对于研究生物体的生理、病理过程具有重要意义。
因此,准确、快速地测量蛋白质的含量和活性是生物学研究的基础之一。
本文将介绍几种常见的蛋白检测方法,包括光度法、比色法、核酸杂交、免疫层析、质谱法以及流式细胞术。
一、光度法光度法是一种常见且简单的蛋白检测方法。
通过测量可见光或紫外光通过溶液时的吸光度来确定蛋白质的浓度。
这种方法的原理是蛋白质分子中存在芳香族氨基酸(如色氨酸和酪氨酸)能够吸收紫外光。
常用的测定波长是280纳米,此时酪氨酸和色氨酸对紫外光的吸收最大。
光度法需要注意的问题是,其他物质可能会干扰吸光度的测定,因此需要选择适当的波长和合适的标准曲线进行校正。
二、比色法比色法也是一种常见的蛋白检测方法。
它利用蛋白质与某些特定化学试剂反应,生成有颜色的复合物,然后根据复合物的光吸收特性来确定蛋白质的浓度。
常用的比色试剂有Bradford试剂、Lowry试剂和BCA试剂等。
这些试剂能与蛋白质反应产生蓝色或紫色的复合物,在适当的波长下测量其光吸收度,从而得出蛋白质的浓度。
比色法的优点是灵敏度高,适用范围广,但也存在可能受到其他溶液成分的干扰的问题。
三、核酸杂交核酸杂交是一种常用的蛋白检测方法,特别适用于检测蛋白质与核酸的相互作用。
这种方法基于DNA和RNA的互补配对原理,可以通过与特定的DNA或RNA探针杂交,来检测特定蛋白质的存在。
常见的核酸杂交方法有Northern blotting和Southern blotting等。
这些方法需要先将样品中的蛋白质转化为核酸序列,然后与互补的DNA或RNA序列进行杂交,通过检测杂交物的存在来确定蛋白质的浓度。
四、免疫层析免疫层析是一种常用的蛋白检测方法,利用抗体与蛋白质的特异性结合来实现检测。
这种方法需要先制备对目标蛋白质具有特异性的抗体,然后将样品与这种抗体进行反应,形成抗原-抗体复合物。
通过抗原-抗体复合物的特定结构来检测蛋白质的存在。
比较常用的几种蛋白质测定方法的优缺点
比较常用的几种蛋白质测定方法的优缺点引言蛋白质是生物体中重要的组成成分之一,也是许多生物学和生化学研究的重要对象。
因此,准确测定蛋白质的含量对于研究生物学和医学等领域具有重要意义。
随着科技的进步,出现了许多不同的蛋白质测定方法,每种方法都具有其独特的优缺点。
本文将对常用的几种蛋白质测定方法进行比较,探讨它们的优缺点。
1. Bradford法Bradford法是常用且经典的蛋白质测定方法之一。
该方法利用染料共价结合蛋白质,形成染色复合物。
该染色复合物与蛋白质浓度呈线性关系,可以通过比色测定来确定蛋白质的含量。
Bradford法具有简单、快速、操作方便的优点,可以测定低至微克级别的蛋白质含量。
然而,Bradford法对于某些化合物的干扰较为敏感,且结果受蛋白质组成的影响较大。
2. BCA法BCA法是一种基于铜离子和蛋白质的还原反应的蛋白质测定方法。
该方法通过还原剂将蛋白质中的两个或四个近似残基之间的硫键断裂,生成含有可溶性铜离子的蛋白质。
铜离子与特定染料在碱性条件下形成染色复合物,可通过光密度测定来确定蛋白质的含量。
BCA法具有灵敏度高、结果稳定、重复性好的优点,并且能够有效抵抗一些常见的干扰物质。
然而,BCA法对于某些还原剂和胶体含量较高的样品可能存在一定的干扰。
3. Lowry法Lowry法是一种经典的蛋白质测定方法,也是Bradford法的改进版。
该方法利用酸性条件下染料与蛋白质产生复合物,并在碱性条件下产生显色反应。
Lowry法具有较高的测定灵敏性和较宽的测定范围,能够测定低至纳克级别的蛋白质含量。
然而,Lowry法操作相对较为复杂,需要多个步骤,花费的时间较长。
此外,该方法对于一些离子存在较高的样品可能存在干扰。
4. UV吸收法UV吸收法是一种简单、快速的蛋白质测定方法。
该方法利用蛋白质中特定的氨基酸在紫外光区域的特定波长下吸收光线,可以测定蛋白质的含量。
UV吸收法具有操作简便、测定时间短、无需使用染料的优点,并且对于大多数蛋白质都适用。
测定蛋白质含量的方法和原理
测定蛋白质含量的方法和原理蛋白质是生物体内最为重要的有机分子之一,对于了解生物体的结构和功能至关重要。
因此,准确、精确地测定蛋白质含量是生物化学研究中的关键一步。
本文将介绍常用的测定蛋白质含量的方法和其原理。
一、低里德伯法(Lowry法)低里德伯法是测定蛋白质含量的常用方法之一。
其原理基于酚在碱性条件下与蛋白质发生反应,在存在重铬酸钾的条件下生成一种带有吸收峰的蓝色化合物。
这种蓝色化合物在750 nm波长处有最大的吸光度,其吸光度与蛋白质含量呈线性关系。
二、比色法比色法是测定蛋白质含量的常用方法之一。
常用的比色剂有布拉德福法和加伦氏法。
布拉德福法主要原理是根据蛋白质中含有的酪氨酸、酪氨酸衍生物等组分在碱性条件下与染料结合,形成有色产物,利用比色计测定产物的吸光度从而测定蛋白质的含量。
三、BCA法BCA法是一种基于铜离子的氧化还原反应的方法。
其原理是在碱性条件下,蛋白质中的蛋白质-联没有的二瓣基色团(BCA)与四氢呋喃(THF)结合,生成紫色的螯合物。
这种紫色螯合物的吸光度与蛋白质的含量成正比,可以通过比色计测定吸光度值来确定蛋白质含量。
四、荧光法荧光法是一种基于蛋白质与荧光染料之间的相互作用的测定方法。
常用的荧光染料有吖啶橙、铜铁磺胺二异硫氰酸盐(Ferrozine)等。
这些荧光染料在特定的pH值和溶液中与蛋白质发生作用,产生荧光信号。
利用荧光光谱仪测定荧光强度,通过标准曲线得出蛋白质的含量。
五、生物传感器法生物传感器法是利用生物传感器对蛋白质的特异性识别和反应进行测定的方法。
常用的生物传感器包括酶传感器、抗体传感器等。
这些传感器可以通过与蛋白质结合形成复合物或发生反应,产生信号。
利用信号的强度可以测定蛋白质的含量。
六、尿素与氨基酸分析法尿素与氨基酸分析法是通过测定蛋白质降解产生的尿素和游离氨基酸来推测蛋白质的含量。
该方法基于蛋白质降解后,其氨基酸经氧化反应生成尿素,通过检测尿素或游离氨基酸的浓度来间接测定蛋白质含量。
蛋白质定量方法的比较与优缺点分析
蛋白质定量方法的比较与优缺点分析蛋白质定量是生物学研究中非常重要的一项技术。
通过定量分析蛋白质,可以揭示许多生物学问题和生物化学反应机理。
但是,不同的蛋白定量方法有各自的优缺点,因此,选择适合的蛋白质定量方法是非常重要的。
下面,我们将分别介绍蛋白质定量的几种常见方法,并比较它们的优缺点。
1. Bradford法Bradford法是一种常用的蛋白质定量方法。
它是通过将一种特殊的染色剂Bradford与蛋白质结合,然后利用比色法来定量蛋白的含量。
Bradford法使用简单,快速,且具有较高的灵敏度。
但是,这种方法对于蛋白质的种类和质量要求较高,因此,在使用Bradford法进行蛋白质定量之前,需要进行标准曲线的制备和检测。
同时,Bradford法不太适用于含有一些干扰物质的样品。
2. BCA法BCA法是通过还原剂将蛋白质上的铜离子还原成铜离子,并在还原过程中与一种染色剂Bicinchoninic Acid(BCA)发生反应,然后根据比色法进行测定蛋白质含量的一种常见方法。
BCA法有较高的灵敏度,适用于不同种类的蛋白质。
但是,这种方法对于蛋白质的样品有较高的要求,同时也需要进行标准曲线的制备和测定。
3. Lowry法Lowry法是一种蛋白质定量的经典方法。
这种方法首先将蛋白质与碱式铜离子形成蛋白质和铜络合物,然后使用Folin-Ciocalteu试剂进行比色法测定蛋白质含量。
Lowry法在测定种类和样品方面都非常广泛。
但是,这种方法操作步骤较多,比较繁琐,同时与其他方法比较,这种方法的灵敏度较低。
4. UV-Vis吸收光谱定量法UV-Vis吸收光谱定量法是通过测定蛋白质在波长280nm处的吸收光谱,从而进行蛋白质定量的一种方法。
这种方法具有灵敏度较高,且对蛋白质的种类没有特殊要求的特点。
但是,这种方法只适用于含有色氨酸或苯丙氨酸等芳香族氨基酸的蛋白质。
在比较以上几种方法的优缺点后,我们可以得出结论:选择适合的蛋白质定量方法需要我们综合考虑所测蛋白质的种类和质量,实验室设备,操作步骤等因素。
测定蛋白质含量的方法有哪些
测定蛋白质含量的方法有哪些测定蛋白质含量是生物化学实验中常见的一项工作,目的在于确定给定样品中蛋白质的含量。
这样的测定对于许多领域的研究和应用都是至关重要的,包括分子生物学、生物医学研究、食品科学和营养学等。
蛋白质含量的测定方法根据原理和技术的不同可以分为多种类型,下面将详细介绍其中常用的方法。
1. 低里斯法(Lowry法):这是一种常用的测定蛋白质含量的光度法。
在这个方法中,样品中的蛋白质与Folin-Ciocalteu试剂中的碱性铜离子形成络合物,这些络合物在碱性条件下在750 nm附近吸收光线。
通过与蛋白质浓度相关的标准曲线进行比较,可以确定样品中蛋白质的含量。
2. BCA法(双异硫氰酸铜法):BCA法也是一种常用的光度法,它与低里斯法原理类似。
在这个方法中,蛋白质的还原性氨基酸(主要是赖氨酸、组氨酸和半胱氨酸)与BCA试剂中的铜离子反应生成紫色的络合物,这些络合物在560 nm 处吸收光线。
通过与蛋白质浓度相关的标准曲线进行比较,可以确定样品中蛋白质的含量。
3. 线性校正法(Coomassie蓝法):这也是一种常用的光度法。
在这个方法中,蛋白质与Coomassie Brilliant Blue G-250试剂反应生成蓝色络合物,这些络合物在595 nm处吸收光线。
通过与蛋白质浓度相关的标准曲线进行比较,可以确定样品中蛋白质的含量。
4. 尿素法:这是一种测定总蛋白质含量的化学方法。
在尿素法中,样品中的蛋白质与硝酸铜溶液反应生成紫色络合物,测定其吸光度从而计算蛋白质的含量。
5. Biuret法:这是一种经典的测定蛋白质含量的光度法。
这个方法利用了蛋白质中的肽键和某些氨基酸(特别是赖氨酸和组氨酸)与碱性铜离子形成紫色络合物的性质。
测定络合物的吸光度从而计算蛋白质的含量。
6. Kjeldahl法:这是一种测定总氮含量的化学方法,因为蛋白质中含有氮元素,所以可以通过测定氮含量来推算蛋白质的含量。
这个方法需要将样品中的蛋白质进行分解、提取和转化,最终测定氮含量,并换算为蛋白质含量。
简述四种测定蛋白质含量的方法及其原理
简述四种测定蛋白质含量的方法及其
原理
蛋白质是生命活动中不可缺少的重要物质,因此测定蛋白质含量对于生命科学研究和医学诊断等领域具有重要的意义。
目前,常用的测定蛋白质含量的方法有四种:浊度法、酶测定法、比色法和免疫测定法。
下面我们将简述这四种方法的原理和基本流程。
1.浊度法
浊度法是利用蛋白质的吸光度特性测定蛋白质含量的方法。
该方法的基本原理是,蛋白质具有较强的吸光性,在紫外到可见光谱范围内均有吸光度。
因此,在适当的光谱范围内测定样品的吸光度,就可以推算出蛋白质的含量。
浊度法的基本流程是:将样品加入溶剂,在适当的光谱范围内测定样品的吸光度,然后按照蛋白质吸光度与蛋白质浓度之间的关系计算出蛋白质的浓度。
2.酶测定法
酶测定法是利用蛋白质所含的氨基酸的特性测定蛋白质含量的方法。
该方法的基本原理是,蛋白质所含的氨基酸中有一类叫做可氧化氨基酸,如组氨酸、苯丙氨酸。
3.硫氰酸法:这种方法利用蛋白质中的硫氰酸氨基酸,将其与特定的试剂反应,产生的反应产物再与染料反应,通过测量吸收光的强度来测定蛋白质含量。
4.光度法:这种方法利用蛋白质与染料反应,产生的反应产物吸收特定波长的光,再通过测量吸收光的强度来测定蛋白质含量。
测量蛋白质含量的方法
测量蛋白质含量的方法
测量蛋白质含量的常用方法有以下几种:
1. 线性尺度(光密度法):使用紫外光谱仪或近红外光谱仪测量蛋白质溶液在特定波长下的吸光度,根据吸光度与蛋白质浓度之间的线性关系来计算蛋白质含量。
2. 琼脂糖凝胶电泳:将蛋白质样品加入琼脂糖凝胶孔中,通过电场作用使蛋白质迁移,根据迁移距离和蛋白质标准品的迁移距离进行比较,计算蛋白质含量。
3. BC Assay:利用蛋白质与染料(如Bradford染料)的结合来测量蛋白质含量,通过比色法将标准蛋白质溶液和待测蛋白质溶液的吸光度进行比较,计算蛋白质含量。
4. BCA Assay:利用蛋白质与染料(如BCA染料)的还原反应来测量蛋白质含量,通过比色法将标准蛋白质溶液和待测蛋白质溶液的吸光度进行比较,计算蛋白质含量。
5. 钛试剂法:利用蛋白质中的酪氨酸与钛试剂在酸性条件下发生反应生成紫色络合物,通过比色法测量络合物的吸光度来计算蛋白质含量。
以上方法各有优缺点,选择适合的方法需要根据实验目的、样品特性和实验条件等因素综合考虑。
食品中蛋白质的测定方法
食品中蛋白质的测定方法一、生物化学方法生物化学法是通过测定蛋白质分解产物或检测蛋白质与一些化学试剂的反应来测定食品中蛋白质的含量。
常用的生物化学方法包括碱溶液提取法、伯努利法、生物素试验法等。
1.碱溶液提取法:该方法通过将食品样品用强碱溶液处理,使蛋白质变为溶液中的游离氮,然后用酸中和,从而测定蛋白质的含量。
这种方法操作简便、结果准确,但可能会引入一些误差。
2. 伯努利法:该方法是利用吸收波长处于280nm左右的多肽链或多肽链片段来测定蛋白质含量。
通过测定吸收光的强度来推算出蛋白质的浓度。
这种方法适用于含多肽链的样品。
3.生物素试验法:该方法是利用生物素与标记有酶的抗生素分子相结合,来测定蛋白质的含量。
这种方法非常灵敏,且测定结果稳定可靠。
二、光谱法光谱法是一种利用分子在特定波长下对光的吸收或散射来测定蛋白质含量的方法。
常用的光谱法有紫外-可见光光谱法和红外光谱法。
1. 紫外-可见光光谱法:该方法是利用蛋白质分子中芳香族化合物的吸收峰来测定蛋白质的含量。
其中,279nm波长的吸收峰对应着蛋白质的特征吸收峰。
通过测量吸光度来计算蛋白质的含量。
2.红外光谱法:该方法通过检测蛋白质分子中的功能基团振动特征来测定蛋白质的含量。
红外光谱法可以提供蛋白质的结构信息,且操作简便。
三、色度法色度法是一种利用颜色反应来测定蛋白质含量的方法。
常用的色度法包括比色法、光度法和电色谱法等。
1. 比色法:该方法是利用食品样品与其中一种试剂作用后的颜色反应来测定蛋白质的含量。
常用的试剂有布莱特试剂、Lowry试剂和比显色法等。
2. 光度法:该方法是利用针对蛋白质的特定试剂发生的光谱变化来测定蛋白质的含量。
常用的试剂有Coomassie蓝试剂,通过与蛋白质结合产生颜色反应,再通过测量吸光度来计算蛋白质的含量。
3.电色谱法:该方法是利用蛋白质的分子电荷特性来测定蛋白质的含量。
通过测定蛋白质在电场中的迁移速率来计算蛋白质含量。
综上所述,食品中蛋白质的测定方法较多,可以根据不同的食品样品和测定目的选择合适的方法,以获取准确的样品中蛋白质含量信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白质含量测定方法的比较及肽含量的测定(一)蛋白质测定方法的比较(原理、优缺点)蛋白质含量测定法,目前包括定氮法、双缩脲法、福林酚法(Lowry 法)和紫外吸收法、考马斯亮蓝法。
其中考马斯亮蓝和福林酚法灵敏度最高,比紫外吸收法灵敏10~20 倍,比双缩脲法灵敏100倍以上。
定氮法较复杂,但准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。
在选择方法时应该考虑:(1)实验测定要求的灵敏度和精确度;(2)蛋白质的性质;(3)溶液中存在的干扰物质;(4)测定花费时间。
蛋白质含量测定法,目前包括定氮法、双缩脲法、福林酚法(Lowry 法)和紫外吸收法、考马斯亮蓝法。
其中考马斯亮蓝和福林酚法灵敏度最高,比紫外吸收法灵敏10~20 倍,比双缩脲法灵敏100倍以上。
定氮法较复杂,但准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。
在选择方法时应该考虑:(1)实验测定要求的灵敏度和精确度;(2)蛋白质的性质;(3)溶液中存在的干扰物质;(4)测定花费时间。
1 微量凯氏定氮法(GB 5009.5-2010)1.1原理样品与浓硫酸共热。
含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。
经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。
1.2操作方法样品经前处理、炭化、消化、蒸馏、滴定等主要步骤1.3特点准确度较高,适用于0.2~ I.Omg氮,误差为土2%;操作复杂费时,整个过程需要耗时8~10h,试剂消耗量大。
,测得结果为总氮含量,包括蛋白氮和非蛋白氮含量;适用范围广,几乎所有样品均可用此方法。
2双缩脲比色法2.1 原理双缩脲法是利用蛋白质的双缩脲反应而测定蛋白质含量的方法。
因蛋白质含有两个以上的肽键,所以有双缩脲反应。
在碱性溶液中蛋白质与Cu2+形成紫红色络合物,在一定的实验条件下,未知样品溶液与标准蛋白质溶液同时反应,并于540~560nm 测定,即可以通过标准蛋白质的标准曲线求出未知样品的蛋白质浓度。
其颜色的深浅与蛋白质的浓度成正比,而与蛋白质的分子量及氨基酸成分无关。
2.2操作方法标准蛋白溶液或样液直接加双缩脲试剂反应30min,即可测定。
先绘制标准曲线,再测定样品2.3特点灵敏度低1〜20mg , 20~30分钟操作简便、呈色稳定性好、试剂单一;测定结果与蛋白质的浓度成正比,而与蛋白质的分子量及氨基酸成分无关;灵敏度不高,约为1mg,双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。
3福林酚法(Lowry 法)3.1原理蛋白质在碱性溶液中其肽键与Cu2+螯合,形成蛋白质一铜复合物,此复合物使酚试剂的磷钼酸还原,产生蓝色化合物,在一定条件下,利用蓝色深浅与蛋白质浓度的线性关系作标准曲线并测定样品中蛋白质的浓度。
该化合物在750nm有最大吸收峰。
3.2操作方法测定依次加福林酚甲液、乙液后可见光度计750nm测定;先绘制标准曲线、再测定样品。
3.3特点试剂配制略麻烦,但试剂可长期保存;测定灵敏度高,约5mg ,测定时间约40〜60 分钟,操作简便;操作要严格计时;颜色深浅随不同蛋白质变化测定结果受待测样品蛋白中肽键存在形式及含量的影响)4紫外吸收法4.1原理蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。
吸收高峰在280nm 处,其吸光度(即光密度值)与蛋白质含量成正比。
此外,蛋白质溶液在238nm 的光吸收值与肽键含量成正比。
利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。
4.2操作方法直接上紫外分光光度计测定,需绘制标准曲线4.3特点灵敏度50〜100mg , 5〜10分钟完成,操作十分简便,但结果受样品蛋白品种影响大。
5考马斯亮蓝法5.1 原理考马斯亮蓝在一定蛋白质浓度范围内,蛋白质和染料结合符合比尔定律,因此可以通过测定染料在595nm处光吸收的增加量得到与其结合的蛋白质量。
5.2操作方法直接加考马斯亮蓝试剂反应5min后即可测定;先绘制标准曲线,再测定样品。
5.3特点灵敏度高,约为1〜5mg (比Lowry法灵敏4倍),测定时间5〜15分钟,操作简便、迅速、干扰物质少、重线性好,但要求样品颜色为无色或浅色,灵敏度高。
(二)蛋白含量的测定方法及步骤1 微量凯氏定氮法(GB 5009.5-2010)1.1 试剂硫酸铜、硫酸钾、硫酸、2%硼酸溶液、混合指示液(1 份0.1%甲基红乙醇溶液与5 份0.1%溴甲酚绿乙醇溶液临用时混合;或2 份0.1%甲基红乙醇溶液与1 份0.1%次甲基蓝乙醇溶液临用时混合)、40%氢氧化钠溶液、0.1mol/L 盐酸标准溶液。
1.2 仪器消化架、吸量管、量筒、微量滴定装置、锥形瓶、容量瓶、定氮蒸馏装置1.3 分析步骤:1.3.1 消化精密称取固体样品0.2~2g,半固态2~5g,液体样品10~20mL (约相当于30~40mg 氮)于干燥洁净的凯氏烧瓶,加入6g 无水K2SO4,0.2g CuSO4,20mLH2SO4。
瓶口放一小漏斗,先小火加热待泡沫停止后加大火(330~400C),直到溶液澄清透明,再继续加热0.5h~1h。
冷却后加水定容100mL(数次冲洗,使样品溶液全部移入容量瓶)1.3.2 蒸馏将2%硼酸溶液10mL放入100mL三角瓶中(接收瓶),加入甲基红混和指示剂2~3 滴,此时为紫红色,将冷凝管尖端浸入液面下。
蒸馏装置中的水蒸气发生器装水2/3,加入数粒玻璃珠,加甲基红乙醇溶液数滴及数毫升硫酸,以保持水呈酸性,加热煮沸水蒸气发生器内的水并保持沸腾。
准确吸取2.0 mL〜10.0 mL试样处理液由小玻杯注入反应室,以10 mL水洗涤小玻杯并使之流入反应室内,随后塞紧棒状玻塞。
将10.0 mL 氢氧化钠溶液倒入小玻杯,提起玻塞使其缓缓流入反应室,立即将玻塞盖紧,并加水于小玻杯以防漏气。
夹紧螺旋夹,开始蒸馏。
蒸馏10 min 后移动蒸馏液接收瓶,液面离开冷凝管下端,再蒸馏1 min。
然后用少量水冲洗冷凝管下端外部,取下蒸馏液接收瓶。
1.3.3 滴定馏出液用标准HCl 溶液滴定,直到蓝绿色变为淡紫色。
并将滴定结果用空白试验校正。
1.3.4 计算:蛋白质(%)= (V i-V2)x CX 0.0140X FX 100/m V3X 100%V i—样品滴定时消耗的标准HCI溶液体积(mL)V2—空白滴定时消耗的标准HCI溶液体积(mL)C—标准HCI溶液的摩尔浓度(mol/L )0.0140- 1mL 1moI/IL HCI 相当于0.0140g氮F—氮换算成蛋白质的系数,一般食物为 6.25m-试样的质量(g)V3—测定时吸取消化液的体积(mL)2 双缩脲法2.1 试剂(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(BSA)或标准酪蛋白,配制成10mg/mL的标准蛋白溶液,可用BSA浓度1mg/ml的A280nm为0.66来校正其纯度。
如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。
牛血清清蛋白用H2O 或0.9%NaCI配制,酪蛋白用0.05moI/L NaOH配制。
(2)双缩脲试剂:称取 1.50g硫酸铜(CuSO4.5H2O )和6.0g酒石酸钾钠(KNaC4H4O6.4H2O),用500mL水溶解,在搅拌下加入300mL 10% NaOH溶液, 用水稀释到1L,贮存于塑料瓶中(或内壁涂以石蜡的瓶中)。
此试剂可长期保存。
若贮存瓶中有黑色沉淀出现,则需要重新配制。
2.2器材可见光分光光度计、试管15支、旋涡混合器等。
2.3操作方法2.3.1标准曲线的测定:取7支试管,分别加入0, 0.2, 0.4,0.6, 0.8, 1.0mL的10mg/mL标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。
充分摇匀后,在室温( 20~25 °C)下放置分钟,于540nm处进行比色测定。
用未加蛋白质溶液的第一支试管作为空白对照液。
以蛋白质的含量为横坐标,光吸收值为纵坐标绘制标准曲线。
图1双缩脲法测定蛋白质标准曲线3福林酚法(Lowry法) 3.1试剂3.1.1试剂甲:50份A与1份B混合,即为试剂甲A 液:10g NQCO3, 2g NaOH 和0.25g酒石酸钾钠(KNaC q H q Oe/H z O)。
溶解于500 mL 蒸馏水中。
B液:0.5g硫酸铜(CuSO4?5O)溶解于100mL蒸馏水中。
3.1.2试剂乙:在2 L 磨口回流瓶中,加入100g 钨酸钠(Na2WO4?2H2O),25g 钼酸钠(Na2MoO4?2HO)及700 mL蒸馏水,再加50 mL85%磷酸,100 mL浓盐酸,充分混合,接上回流管,以小火回流10 小时,回流结束时,加入150g 硫酸锂(Li2SO4),50 mL蒸馏水及数滴液体溴,开口继续沸腾15分钟,以便驱除过量的溴。
冷却后溶液呈黄色(如仍呈绿色,须再重复滴加液体溴的步骤)。
稀释至1L,过滤,滤液置于棕色试剂瓶中保存。
使用时用标准NaOH滴定,酚酞作指示剂,然后适当稀释,约加水1 倍,使最终的酸浓度为1mol/L 左右。
3.1.3标准蛋白质溶液(250 g/nL):精确称取结晶牛血清清蛋白,溶于蒸馏水再定容。
3.2仪器可见光分光光度计、旋涡混合器、秒表、试管3.3分析步骤3.3.1 标准曲线的测定:取7支大试管,分别加入0,0.1,0.2,0.4,0.6,0.8,1.0 毫升标准蛋白质溶液(浓度为250pg/mL )。
用水补足到1.0毫升,然后每支试管加入5 mL试剂甲,在旋涡混合器上迅速混合,于室温(20〜25 C)放置10分钟。
再逐管加入0.5 mL 试剂乙,同样立即混匀。
这一步混合速度要快,否则会使显色程度减弱。
然后在室温下放置10分钟,以未加蛋白质溶液的第一支试管作为空白对照,于750nm 处测定各管中溶液的吸光度值。
以蛋白质浓度为横坐标, 吸光度值为纵坐标,绘制出标准曲线图2福林酚法测定蛋白质标准曲线4紫外吸收法4.1分析步骤4.1.1绘制标准曲线取八只试管分别加入 0 ml 、0.5 ml 、1.0 ml 、1.5 ml 、2.0 ml 、2.5 ml 、3.0 ml 、4mL 的1mg/mL 牛血清蛋白标准溶液,加水至 4 mL ,在280nm 条件下测定其吸 光值y = 1.1611x - 0.1694 R = 0.9787蛋白浓度(mg )mnuoA554 53 52 5150 o o o o o 50100 浓度(|5©/mL ) 200 250 300紫外法 ■ ............. O8 6 4 2 a a a a值光吸0.6 0.8 1.2 y = 0.0019xR 2 = 0.9889 0.4图3 紫外法测定蛋白质标准曲线5 考马斯亮蓝法5.1 试剂5.1.11mg/mL牛血清蛋白标准储备液:精密称取0.1g牛血清蛋白标准品用蒸馏水定容于100mL 容量瓶。