2020年考研数学-概率论
[全]考研数学一之概率论与数理统计真题答案解析[下载全]
考研数学一之概率论与数理统计真题答案解析
2020年考研数学一选择题部分考了2道概率论与数理统计的题目,选择题第七题主要考察了事件概率的计算;选择题第8题考察了中心极限定理。
填空题部分考了1道概率论与数理统计的题目,题(14)主要考察了协方差的计算。
解答题考察了2道概率论与数理统计的题目,题(22)主要考察分布函数和正态分布的性质;题(23)主要考察了最大似然估计。
题(7)(2020年考研数学一)
分析:本题主要考察事件概率的计算和加法公式的应用。
解:由P(A-B)=P(A)-P(AB)得:
题(8)(2020年考研数学一真题)
分析:主要利用列维-林德伯格中心极限定理来解题。
解:由列维-林德伯格中心极限定理可得:
题(14)(2020年考研数学一真题)
分析:本题主要考察协方差的计算和不定积分的计算。
Cov(X,Y)=E(XY)-EX*EY 解:由题意得EX=0,
题(22)(2020年考研数学一真题)
分析:本题主要考察利用分布函数得定义来求分布函数。
解:由分布函数得定义得
题(23)(2020年考研数学一真题)
分析:本题主要考察最大似然估计得求法。
解:
总结:总的来说,2020年考研数学一概率部分还是考察考生对基础知识点的掌握程度。
2020考研概率论与数理统计公式整理(超全免费版)
否是互不影响的。
这种试验称为伯努利概型,或称为 n 重伯努利试验。
用 p 表示每次试验 A 发生的概率,则 A 发生的概率为1 p q ,用 Pn(k ) 表
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如 P(Ω/B)=1 P( B /A)=1-P(B/A) 乘法公式: P( AB) P( A)P(B / A)
(13)乘法 公式
更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有
P( A1A2 … An) P( A1)P( A2 | A1)P( A3 | A1A2) …… P( An | A1A2 … An 1) 。
(15)全概 公式
(16)贝叶 斯公式
对于 n 个事件类似。
设事件 B1, B2,, Bn 满足 1° B1, B2,, Bn 两两互不相容, P(Bi) 0(i 1,2,, n) ,
n
A Bi
2°
i1 ,
则有
P( A) P(B1)P( A | B1) P(B2)P( A | B2) P(Bn)P( A | Bn) 。
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n
考研数学备考:概率论各章节知识点梳理
考研数学备考:概率论各章节知识点梳理1500字概率论作为考研数学中的一部分,是考生备考的重点之一。
下面将对概率论的各章节知识点进行梳理,帮助考生进行复习备考。
1. 随机事件与概率概率论的基本概念是随机事件和概率。
随机事件是随机现象的结果,概率是事件发生的可能性大小。
在这一章节中,主要涉及到随机事件的定义、事件的性质、事件间的关系等内容。
2. 随机变量及其分布随机变量是随机现象的数值描述,它分为离散随机变量和连续随机变量。
这一章节主要涉及随机变量的定义、分布函数、概率密度函数等内容。
同时还包括常见的离散随机变量和连续随机变量的概率分布,如二项分布、泊松分布、正态分布等。
3. 随机事件的数学描述随机事件可以用随机变量的取值区间来表示,也可以用事件的概率来描述。
这一章节主要包括随机事件的和、差、积等概念,以及离散随机变量和连续随机变量的概率函数之间的关系。
4. 多维随机变量及其分布多维随机变量是指由多个随机变量组成的向量。
这一章节主要包括多维随机变量的定义、联合分布、边缘分布等内容。
同时还包括多维随机变量的独立性、相关性等概念。
5. 随机变量的数字特征随机变量的数字特征包括数学期望、方差、协方差等。
这一章节主要涉及到随机变量的数学期望、方差和协方差的定义、性质以及计算方法。
6. 大数定律和中心极限定理大数定律是指随着试验次数的增加,随机事件的频率趋向于事件的概率。
中心极限定理是指当随机事件的样本量足够大时,其均值的分布接近于正态分布。
这一章节主要涉及到大数定律和中心极限定理的数学表达和推导。
7. 参数估计与假设检验参数估计是根据样本数据对总体参数进行估计,假设检验是根据样本数据对总体参数是否符合某个假设进行检验。
这一章节主要包括点估计、区间估计和假设检验的概念、方法和步骤。
8. 有序与无序排列的计数问题有序排列是指考虑元素的排列顺序,无序排列是指不考虑元素的排列顺序。
这一章节主要涉及到有序与无序排列的计数问题,如排列、组合、多重集合等。
2020考研数学一考试大纲内容与要求变化-概率论
2020考研数学一考试大纲内容与要求变化-概率论——跨考教育数学教研室高杨老师章节2020年考试数学大纲考试内容和考试要求2019年考试数学大纲考试内容和考试要求变化一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,对比:无变化掌握计算有关事件概率的方法. 掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表对比:无变化示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布. 示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条对比:无变化件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布. 件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.对比:无变化2.会求随机变量函数的数学期望.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).对比:无变化六、数理统计的考试内容总体个体简单随机样本统考试内容总体个体简单随机样本统对比:无基本概念计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.变化七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计对比:无变化量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间. 量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总对比:无变化体的均值和方差的假设检验. 体的均值和方差的假设检验.作者:高杨老师来源:跨考教育。
考研数学一概率论与数理统计公式整理
(6)事件的关 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
系与运算
Ai Ai
德摩根率: i1
i1
AB A B,A B AB
(7)概率的公 理化定义
(8)古典概型
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满足下列三
个条件: 1° 0≤P(A)≤1, 2° P(Ω) =1
第 1 章 随机事件及其概率
(1)排列组合 公式
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
C
n m
m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完
(2)加法和乘 成,则这件事可由 m+n 种方法来完成。
法原理
乘法原理(两个步骤分别不能完成这件事):m×n
某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n 种方法来完
成,则这件事可由 m×n 种方法来完成。
②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C
当 B A 时,P(A-B)=P(A)-P(B)
1 / 31
当 A=Ω时,P( B )=1- P(B)
(12)条件概率 (13)乘法公式
P( AB)
定义 设 A、B 是两个事件,且 P(A)>0,则称
为事件 A 发生条件下,事件 B 发生
P( A)
P( AB)
的条件概率,记为 P(B / A)
考研数学概率论32个常考知识点
考研数学概率论32个常考知识点考研数学概率论有哪些知识点是经常考的?为大家提供考研数学概率论32个常考知识点,希望大家能好好复习,争取掌握这些知识点!考研数学概率论32个常考知识点►第一部分:随机事件和概率(1)样本空间与随机事件(2)概率的定义与性质(含古典概型、几何概型、加法公式)(3)条件概率与概率的乘法公式(4)事件之间的关系与运算(含事件的独立性)(5)全概公式与贝叶斯公式(6)伯努利概型其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,考生务必引起重视,►第二部分:随机变量及其概率分布(1)随机变量的概念及分类(2)离散型随机变量概率分布及其性质(3)连续型随机变量概率密度及其性质(4)随机变量分布函数及其性质(5)常见分布(6)随机变量函数的分布其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且熟练。
►第三部分:二维随机变量及其概率分布(1)多维随机变量的概念及分类(2)二维离散型随机变量联合概率分布及其性质(3)二维连续型随机变量联合概率密度及其性质(4)二维随机变量联合分布函数及其性质(5)二维随机变量的边缘分布和条件分布(6)随机变量的独立性(7)两个随机变量的简单函数的分布其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,务必重视!►第四部分:随机变量的数字特征(1)随机变量的数字期望的概念与性质(2)随机变量的方差的概念与性质(3)常见分布的数字期望与方差(4)随机变量矩、协方差和相关系数其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算►第五部分:大数定律和中心极限定理(1)切比雪夫不等式(2)大数定律(3)中心极限定理其中:其实本章考试的可能性不大,最多以选择填空的形式,但那也是十年前的事情了。
►第六部分:数理统计的基本概念(1)总体与样本(2)样本函数与统计量(3)样本分布函数和样本矩其中:本章还是以概念为主,清楚概念后灵活运用解决此类问题不在话下►第七部分:参数估计(1)点估计(2)估计量的优良性(3)区间估计其中:本章点估计是重点,是解答题的重灾区,一定要掌握点估计的两种解题步骤,至于(2)(3)两个可以了解下即可。
考研数学《概率论与数理统计》知识点总结
第一章 概率论的基本概念定义: 随机试验E 的每个结果样本点组成样本空间S ,S 的子集为E 的随机事件,单个样本点为基本事件. 事件关系: 1.A ⊂B ,A 发生必导致B 发生.2.A B 和事件,A ,B 至少一个发生,A B 发生. 3.A B 记AB 积事件,A ,B 同时发生,AB 发生. 4.A -B 差事件,A 发生,B 不发生,A -B 发生.5.A B=Ø,A 和B 互不相容(互斥),A 和B 不能同时发生,基本事件两两互不相容. 6.A B=S 且A B=Ø,A 和B 互为逆事件或对立事件,A 和B 中必有且仅有一个发生,记B=A S A -=. 事件运算: 交换律、结合律、分配率略.德摩根律:B A B A =,B A B A =.概率: 概率就是n 趋向无穷时的频率,记P(A).概率性质:1.P (Ø)=0.2.(有限可加性)P (A 1 A 2 … A n )=P (A 1)+P (A 2)+…+P (A n ),A i 互不相容. 3.若A ⊂B ,则P (B -A)=P (B)-P (A).4.对任意事件A ,有)A (1)A (P P -=.5.P (A B)=P (A)+P (B)-P (AB).古典概型: 即等可能概型,满足:1.S 包含有限个元素.2.每个基本事件发生的可能性相同. 等概公式: 中样本点总数中样本点数S A )A (==n k P . 超几何分布:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=n N k n D N k D p ,其中ra C r a =⎪⎪⎭⎫ ⎝⎛. 条件概率: )A ()AB ()A B (P P P =. 乘法定理:)A ()A B ()AB C ()ABC ()A ()AB ()AB (P P P P P P P ==.全概率公式: )B ()B A ()B ()B A ()B ()B A ()A (2211n n P P P P P P P +++= ,其中i B 为S 的划分. 贝叶斯公式: )A ()B ()B A ()A B (P P P P i i i =,∑==nj j j B P B A P A P 1)()()(或)()()()()()()(B P B A P B P B A P B P B A P A B P +=.独立性: 满足P (AB)=P (A)P (B),则A ,B 相互独立,简称A ,B 独立.定理一: A ,B 独立,则.P (B |A)=P (B). 定理二: A ,B 独立,则A 和B ,A 和B ,A 和B 也相互独立.(0—1)分布: k k p p k X P --==1)1(}{,k =0,1 (0<p <1).伯努利实验:实验只有两个可能的结果:A 及A .二项式分布: 记X~b (n ,p ),kn k k n p p C k X P --==)1(}{. n 重伯努利实验:独立且每次试验概率保持不变.其中A 发生k 次,即二项式分布.泊松分布: 记X~π(λ),!}{k e k X P k λλ-==, ,2,1,0=k .泊松定理: !)1(lim k e p p C k kn k knn λλ--∞→=-,其中λ=np .当20≥n ,05.0≤p 使用泊松定理近似效果颇佳.随机变量分布函数: }{)(x X P x F ≤=,+∞<<∞-x .)()(}{1221x F x F x X x P -=≤<.连续型随机变量: ⎰∞-=xt t f x F d )()(,X 为连续型随机变量,)(x f 为X 的概率密度函数,简称概率密度.概率密度性质:1.0)(≥x f ;2.1d )(=⎰+∞∞-x x f ;3.⎰=-=≤<21d )()()(}{1221x x x x f x F x F x X x P ;4.)()(x f x F =',f (x )在x 点连续;5.P {X=a }=0.均匀分布: 记X~U(a ,b );⎪⎩⎪⎨⎧<<-=其它,,01)(bx a ab x f ;⎪⎩⎪⎨⎧≥<≤--<=b x b x a a b a x a x x F ,,,10)(. 性质:对a ≤c <c +l ≤b ,有 a b l l c X c P -=+≤<}{ 指数分布:⎪⎩⎪⎨⎧>=-其它,,001)(x e x f x θθ;⎩⎨⎧>-=-其它,,001)(x e x F x θ. 无记忆性: }{}{t X P s X t s X P >=>+>. 正态分布: 记),(~2σμN X ;]2)(ex p[21)(22σμσπ--=x x f ;t t x F xd ]2)(ex p[21)(22⎰∞---=σμσπ.性质: 1.f (x )关于x =μ对称,且P {μ-h <X ≤μ}=P {μ<X ≤μ+h };2.有最大值f (μ)=(σπ2)-1. 标准正态分布:]2exp[21)(2x x -=πϕ;⎰∞--=Φxt t x d ]2ex p[21)(2π.即μ=0,σ=1时的正态分布X ~N(0,1)性质:)(1)(x x Φ-=-Φ.正态分布的线性转化: 对),(~2σμN X 有)1,0(~N X Z σμ-=;且有)(}{}{)(σμσμσμ-Φ=-≤-=≤=x x X P x X P x F .正态分布概率转化: )()(}{1221σμσμ-Φ--Φ=≤<x x x X x P ;1)(2)()(}{-Φ=-Φ-Φ=+<<-t t t t X t P σμσμ.3σ法则: P =Φ(1)-Φ(-1)=68.26%;P =Φ(2)-Φ(-2)=95.44%;P =Φ(3)-Φ(-3)=99.74%,P 多落在(μ-3σ,μ+3σ)内. 上ɑ分位点: 对X~N(0,1),若z α满足条件P {X>z α}=α,0<α<1,则称点z α为标准正态分布的上α分位点. 常用 上ɑ分位点: 0.001 0.005 0.01 0.025 0.05 0.10 3.0902.5762.3261.9601.6451.282Y 服从自由度为1的χ2分布:设X 密度函数f X (x ),+∞<<∞-x ,若Y=X 2,则⎪⎩⎪⎨⎧≤>-+=000)]()([21)(y y y f y f y y f X XY ,,若设X ~N(0,1),则有⎪⎩⎪⎨⎧≤>=--00021)(221y y e y y f y Y ,,π定理:设X 密度函数f X (x ),设g (x )处处可导且恒有g ′(x )>0(或g ′(x )<0),则Y=g (X)是连续型随机变量,且有⎩⎨⎧<<'=其他,,0)()]([)(βαy y h y h f y f X Y h (y )是g (x )的反函数;①若+∞<<∞-x ,则α=min{g (−∞),g (+∞)},β=max{g (−∞),g (+∞)};②若f X (x )在[a ,b ]外等于零,g (x )在[a ,b ]上单调,则α=min{g (a ),g (b )},β=max{g (a ),g (b )}.使用: Y=aX +b ~N(a μ+b ,(|a |σ)2).二维随机变量的分布函数: 分布函数(联合分布函数):)}(){(),(y Y x X P y x F ≤≤= ,记作:},{y Y x X P ≤≤.),(),(),(),(},{112112222121y x F y x F y x F y x F y Y y x X x P +--=≤<≤<.F (x ,y )性质: 1.F (x ,y )是x 和y 的不减函数,即x 2>x 1时,F (x 2,y )≥F (x 1,y );y 2>y 1时,F (x ,y 2)≥F (x ,y 1).2.0≤F (x ,y )≤1且F (−∞,y )=0,F (x ,−∞)=0,F (−∞,−∞)=0,F (+∞,+∞)=1.3.F (x +0,y )=F (x ,y ),F (x ,y +0)=F (x ,y ),即F (x ,y )关于x 右连续,关于y 也右连续.4.对于任意的(x 1,y 1),(x 2,y 2),x 2>x 1,y 2>y 1,有P {x 1<X ≤x 2,y 1<Y ≤y 2}≥0.离散型(X ,Y ):0≥ij p ,111=∑∑∞=∞=ij j i p ,ij yy x x p y x F i i ∑∑=≤≤),(.连续型(X ,Y ):v u v u f y x F y xd d ),(),(⎰⎰∞-∞-=.f (x ,y )性质:1.f (x ,y )≥0.2.1),(d d ),(=∞∞=⎰⎰∞∞-∞∞-F y x y x f .3.y x y x f G Y X P G⎰⎰=∈d d ),(}),{(.4.若f (x ,y )在点(x ,y )连续,则有),(),(2y x f yx y x F =∂∂∂. n 维: n 维随机变量及其分布函数是在二维基础上的拓展,性质和二维类似. 边缘分布: F x (x ),F y (y )依次称为二维随机变量(X ,Y )关于X 和Y 的边缘分布函数,F X (x )=F (x ,∞),F Y (y )=F (∞,y ).离散型: *i p 和j p *分别为(X ,Y )关于X 和Y 的边缘分布律,记}{1i ij j i x X P p p ==∑=∞=*,}{1j ij i j y Y P p p ==∑=∞=*. 连续型:)(x f X ,)(y f Y 为(X ,Y )关于X 和Y 的边缘密度函数,记⎰∞∞-=y y x f x f X d ),()(,⎰∞∞-=x y x f y f Y d ),()(. 二维正态分布:]})())((2)([)1(21exp{121),(2222212121212221σμσσμμρσμρρσπσ-+-------=y y x x y x f . 记(X ,Y )~N (μ1,μ2,σ12,σ22,ρ)]2)(exp[21)(21211σμσπ--=x x f X ,∞<<∞-x .]2)(exp[21)(22222σμσπ--=y y f Y ,∞<<∞-y . 离散型条件分布律: jij j j i j i p p y Y P y Y x X P y Y x X P *=======}{},{}{. *=======i ij i j i i j p p x X P y Y x X P x X y Y P }{},{}{.连续型条件分布:条件概率密度:)(),()(y f y x f y x f Y Y X =|| 条件分布函数:x y f y x f y Y x X P y x F xY Y X d )(),(}{)(⎰∞-==≤=||| )(),()(x f y x f x y f X X Y =||y x f y x f x X y Y P x y F yX X Y d )(),(}{)(⎰∞-==≤=||| 含义:当0→ε时,)|(d )|(}|{||y x F x y x f y Y y x X P Y X xY X =≈+≤<≤⎰∞-ε.均匀分布: 若⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x Ay x f ,则称(X ,Y)在G 上服从均匀分布. 独立定义:若P {X ≤x ,Y ≤y }=P {X ≤x }P {Y ≤y },即F (x ,y )=F x (x )F y (y ),则称随机变量X 和Y 是相互独立的. 独立条件或可等价为:连续型:f (x ,y )=f x (x )f y (y );离散型:P {X =x i ,Y =y j }=P {X =x i }P {Y =y j }.正态独立: 对于二维正态随机变量(X ,Y ),X 和Y 相互对立的充要条件是:参数ρ=0.n 维延伸: 上述概念可推广至n 维随机变量,要注意的是边缘函数或边缘密度也是多元(1~n -1元)的.定理:设(X 1,X 2,…,X m )和(Y 1,Y 2,…,Y n )相互独立,则X i 和Y j 相互独立.又若h ,g 是连续函数,则h (X 1,X 2,…,X m )和g (Y 1,Y 2,…,Y n )相互独立.Z=X+Y 分布: 若连续型(X ,Y )概率密度为f (x ,y ),则Z=X+Y 为连续型且其概率密度为⎰∞∞-+-=y y y z f z f Y X d ),()(或⎰∞∞-+-=x x z x f z f Y X d ),()(.f X 和f Y 的卷积公式:记⎰∞∞-+-==y y f y z f z f f f Y X Y X Y X d )()()(*⎰∞∞--=x x z f x f Y X d )()(,其中除继上述条件,且X 和Y相互独立,边缘密度分别为f X (x )和f Y (y ).正态卷积:若X 和Y 相互独立且X ~N (μ1,σ12),记Y ~N (μ2,σ22),则对Z=X+Y 有Z ~N (μ1+μ2,σ12+σ22).1.上述结论可推广至n 个独立正态随机变量.2.有限个独立正态随机变量的线性组合仍服从正态分布. 伽马分布:记),(~θαΓX ,0>α,0>θ.⎪⎩⎪⎨⎧>Γ=--其他,,00)(1)(1x e x x f x θαααθ,其中⎰+∞--=Γ01d )(t e t t αα.若X 和Y 独立且X ~Γ(α,θ),记Y ~Γ(β,θ),则有X+Y~Γ(α+β,θ).可推广到n 个独立Γ分布变量之和.XY Z =: ⎰∞∞-=x xz x f x z f X Y d ),()(,若X 和Y 相互独立,则有⎰∞∞-=x xz f x f x z f Y X X Y d )()()(.XYZ =分布: ⎰∞∞-=x xzx f x z f XY d ),(1)(,若X 和Y 相互独立,则有⎰∞∞-=x x z f x f x z f Y X XY d )()(1)(. 大小分布:若X 和Y 相互独立,且有M =max{X ,Y }及N =min{X ,Y },则M 的分布函数:F max (z )=F X (z )F Y (z ),N 的分布函数:F min (z )=1-[1-F X (z )][1-F Y (z )],以上结果可推广到n 个独立随机变量的情况.第四章 随机变量的数字特征数学期望: 简称期望或均值,记为E (X );离散型:k k k p x X E ∑=∞=1)(.连续型:⎰∞∞-=x x xf X E d )()(.定理: 设Y 是随机变量X 的函数:Y =g (X )(g 是连续函数).1.若X 是离散型,且分布律为P {X =x k }=p k ,则: k k k p x g Y E )()(1∑=∞=.2.若X 是连续型,概率密度为f (x ),则:⎰∞∞-=x x f x g Y E d )()()(.定理推广: 设Z 是随机变量X ,Y 的函数:Z =g (X ,Y )(g 是连续函数).1.离散型:分布律为P {X =x i ,Y =y j }=p ij ,则:ij j i i j p y x g Z E ),()(11∑∑=∞=∞=. 2.连续型:⎰⎰∞∞-∞∞-=y x y x f y x g Z E d d ),(),()(期望性质:设C 是常数,X 和Y是随机变量,则:1.E (C )=C .2.E (CX )=CE (X ).3.E (X +Y )=E (X )+E (Y ). 4.又若X 和Y 相互独立的,则E (XY )=E (X )E (Y ).方差:记D (X )或Var(X ),D (X )=V ar(X )=E {[X -E (X )]2}.标准差(均方差): 记为σ(X ),σ(X )= .通式:22)]([)()(X E X E X D -=. k k k p X E x X D 21)]([)(-∑=∞=,⎰∞∞--=x x f x E x X D d )()]([)(2.标准化变量: 记σμ-=x X *,其中μ=)(X E ,2)(σ=X D ,*X 称为X 的标准化变量. 0)(*=X E ,1)(*=X D .方差性质: 设C 是常数,X 和Y 是随机变量,则: 1.D (C )=0. 2.D (CX )=C 2D (X ),D (X +C )=D (X ).3.D (X +Y )=D (X )+D (Y )+2E {(X -E (X ))(Y -E (Y ))},若X ,Y 相互独立D (X +Y )=D (X )+D (Y ).4.D (X )=0的充要条件是P {X =E (X )}=1.正态线性变换: 若),(~2i i i N X σμ,i C 是不全为0的常数,则),(~22112211i i n i i i n i n n C C N X C X C X C σμ∑∑+++== .切比雪夫不等式: 22}{εσεμ≤≥-X P 或221}{εσεμ-≥<-X P ,其中)(X E =μ,)(2X D =σ,ε为任意正数.协方差:记)]}()][({[),Cov(Y E Y X E X E Y X --=.X 和Y的相关系数:)()(),Cov(Y D X D Y X XY =ρ.D (X +Y )=D (X )+D (Y )+2Cov(X ,Y ),Cov(X ,Y )=E (XY )-E (X )E (Y ).性质: 1.Cov(aX ,bY )=ab Cov(X ,Y ),a ,b 是常数.2.Cov(X 1+X 2,Y )=Cov(X 1,Y )+Cov(X 2,Y ). 系数性质:令e =E [(Y -(a +bX ))2],则e 取最小值时有)()1(]))([(2200min Y D X b a Y E e XY ρ-=+-=,其中)()(00X E b Y E a -=,)(),Cov(0X D Y X b =.1.|ρXY |≤1.2.|ρXY |=1的充要条件是:存在常数a ,b 使P {Y =a +bX }=1.|ρXY |越大e 越小X 和Y 线性关系越明显,当|ρXY |=1时,Y =a +bX ;反之亦然,当ρXY =0时,X 和Y 不相关. X 和Y 相互对立,则X 和Y 不相关;但X 和Y 不相关,X 和Y 不一定相互独立. 定义: k 阶矩(k 阶原点矩):E (X k ). n 维随机变量X i的协方差矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n c c c c c c c c c212222111211C ,),Cov(j i ij X X c ==E {[X i -E (X i )][X j -E (X j )]}. k +l 阶混合矩:E (X k Y l).k 阶中心矩:E {[X -E (X )] k }.k +l 阶混合中心矩:E {[X -E (X )]k [Y -E (Y )]l }.)(x Dn 维正态分布:)}()(21ex p{det)2(1),,,(1T221μXCμXC---=-nnxxxfπ,T21T21),,,(),,,(nnxxxμμμ==μX.性质:1.n维正态随机变量(X1,X2,…,X n)的每一个分量X i (i=1,2,…,n)都是正态随机变量,反之,亦成立.2.n维随机变量(X1,X2,…,X n)服从n维正态分布的充要条件是X1,X2,…,X n的任意线性组合l1X1+l2X2+…+l n X n服从一维正态分布(其中l1,l2,…,l n不全为零).3.若(X1,X2,…,X n)服从n维正态分布,且Y1,Y2,…,Y k是X j (j=1,2,…,n)的线性函数,则(Y1,Y2,…,Y k)也服从多维正态分布.4.若(X1,X2,…,X n)服从n维正态分布,则“X i 相互独立”和“X i 两两不相关”等价.弱大数定理:若X1,X2,…是相互独立并服从同一分布的随机变量序列,且E(X k)=μ,则对任意ε>0有11lim1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμknknXnP或→μPX,knkXnX11=∑=.定义:Y1,Y2,…,Y n ,…是一个随机变量序列,a是一个常数.若对任意ε>0,有1}|{|lim=<-∞→εaYPnn则称序列Y1,Y2,…,Yn,…依概率收敛于a.记aY Pn−→−伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或0lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,X n ,…相互独立并服从同一分布,且E(X k)=μ,D(X k)=σ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(X k)=σk2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.第六章样本及抽样分布定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1 样本k阶中心矩:kinikXXnB)(11-∑==,k≥2~ 近似的min Q1 M Q3 max经验分布函数: )(1)(x S nx F n =,∞<<∞-x . )(x S 表示F 的一个样本X 1,X 2,…,X n 中不大于x 的随机变量的个数.自由度为n 的χ2分布:记χ2~χ2(n ),222212n X X X +++= χ,其中X 1,X 2,…,X n 是来自总体N (0,1)的样本.E (χ2 )=n ,D (χ2 )=2n .χ12+χ22~χ2(n 1+n 2).⎪⎩⎪⎨⎧>Γ=--其他,,00)2(21)(2122y e x n y f y n n .χ2分布的分位点:对于0<α<1,满足αχχαχα==>⎰∞y y f n P n )(222d )()}({,则称)(2n αχ为)(2n χ的上α分位点. 当n 充分大时(n >40),22)12(21)(-+≈n z n ααχ,其中αz 是标准正态分布的上α分位点. 自由度为n 的t 分布: 记t ~t (n ),nY Xt /=, 其中X~N (0,1),Y~χ2(n ),X ,Y 相互独立.2)1(2)1(]2[]2)1([)(+-+Γ+Γ=n n t n n n t h π h (t )图形关于t =0对称;当n 充分大时,t 分布近似于N (0,1)分布.t 分布的分位点:对于0<α<1,满足ααα==>⎰∞t t h n t t P n t )(d )()}({,则称)(n t α为)(n t 的上α分位点.由h (t )对称性可知t 1-α(n )=-t α(n ).当n >45时,t α(n )≈z α,z α是标准正态分布的上α分位点.自由度为(n 1,n 2)的F 分布:记F ~F (n 1,n 2),21n V n U F =,其中U~χ2(n 1),V~χ2(n 2),X ,Y 相互独立.1/F ~F (n 2,n 1)⎪⎩⎪⎨⎧>+ΓΓ+Γ=+-其他,,00]1)[2()2()](2)([)(2)(21211)2(221212111x n y n n n y n n n n y n n n n ψF 分布的分位点:对于0<α<1,满足αψαα==>⎰∞y y n n F F P n n F ),(2121d )()},({,则称),(21n n F α为),(21n n F 的上α分位点.重要性质:F 1-α(n 1,n 2)=1/F α(n 1,n 2).定理一: 设X 1,X 2,…,X n 是来自N (μ,σ2)的样本,则有),(~2n N X σμ,其中X 是样本均值.定理二:设X 1,X 2,…,X n 是来自N (μ,σ2)的样本,样本均值和样本方差分别记为 X ,2S ,则有1.)1(~)1(222--n S n χσ;2.X 和2S 相互独立.定理三:设X 1,X 2,…,X n 是来自N (μ,σ2)的样本,样本均值和样本方差分别记为X ,2S ,则有)1(~--n t nS X μ.定理四:设X 1,X 2,…,X n 1 和Y 1,Y 2,…,Y n 2分别是来自N (μ1,σ12)和N (μ2,σ22)的样本,且相互独立.设这两个样本的样本均值和样本方差分别记为 X ,Y ,21S ,22S ,则有1.)1,1(~2122212221--n n F S S σσ.2.当σ12=σ22=σ2时,)2(~)()(21121121-++-----n n t n n S Y X w μμ,其中2)1()1(212222112-+-+-=n n S n S n S w,2w w S S =. 第七章 参数估计定义: 估计量:),,,(ˆ21n X X X θ,估计值:),,,(ˆ21nx x x θ,统称为估计. 矩估计法:令)(ll X E =μ=li n i l X n A 11=∑=(k l ,,2,1 =)(k 为未知数个数)联立方程组,求出估计θˆ. 设总体X 均值μ及方差σ2都存在,则有 X A ==1ˆμ,212212122)(11ˆX X nX X n A A in i i n i -∑=-∑=-===σ. 最大似然估计法:似然函数:离散:);()(1θθi n i x p L =∏=或连续:);()(1θθi ni x f L =∏=,)(θL 化简可去掉和θ无关的因式项.θˆ即为)(θL 最大值,可由方程当多个未知参数θ1,θ1,…,θk 时:可由方程组0)(d d =θθL 或0)(ln d d =θθL 求得. 0d d =L iθ或0ln d d=L i θ(k i ,,2,1 =)求得. 最大似然估计的不变性:若u =u (θ)有单值反函数θ=θ(u ),则有)ˆ(ˆθu u=,其中θˆ为最大似然估计. 截尾样本取样: 定时截尾样本:抽样n 件产品,固定时间段t 0内记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ≤t 0)和失效产品数量. 定数截尾样本:抽样n 件产品,固定失效产品数量数量m 记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ).结尾样本最大似然估计: 定数截尾样本:设产品寿命服从指数分布X~e (θ),θ即产品平均寿命.产品t i 时失效概率P {t =t i }≈f (t i )d t i ,寿命超过t m 的概率θm t m et t F -=>}{,则)(}){()(1i mi mn m mnt P t t F C L =-∏>=θ,化简得)(1)(m t s m e L ---=θθθ,由0)(ln d d =θθL 得:mt s m )(ˆ=θ,其中s (t m )=t 1+t 2+…+t m +(n -m )t m ,称为实验总时间. 定时截尾样本:和定数结尾样本讨论类似有s (t 0)=t 1+t 2+…+t m +(n -m )t 0,)(01)(t s m e L ---=θθθ,mt s )(ˆ0=θ,. 无偏性: 估计量),,,(ˆ21nX X X θ的)ˆ(θE 存在且θθ=)ˆ(E ,则称θˆ是θ的无偏估计量. 有效性:),,,(ˆ211n X X X θ和),,,(ˆ212n X X X θ都是θ的无偏估计量,若)ˆ()ˆ(21θθD D ≤,则1ˆθ较2ˆθ有效. 相合性: 设),,,(ˆ21nX X X θθ的估计量,若对于任意0>ε有1}|ˆ{|lim =<-∞→εθθP n ,则称θˆ是θ的相合估计量. 置信区间:αθθθ-≥<<1)},,,(),,,({2121n n X X X X X X P ,θ和θ分别为置信下限和置信上限,则),(θθ是θ的一个置信水平为α-1置信区间,α-1称为置信水平,10<<α.正态样本置信区间: 设X 1,X 2,…,X n 是来自总体X ~N (μ,σ2)的样本,则有μ的置信区间:枢轴量W W 分布 a ,b 不等式 置信水平 置信区间)1,0(~N n X σμ-⇒ασμα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-12z n X P ⇒)(2ασz n X ± 其中z α/2为上α分位点θ置信区间的求解: 1.先求枢轴量:即函数W =W (X 1,X 2,…,X n ;θ),且函数W 的分布不依赖未知参数. 如上讨论标注2.对于给定置信水平α-1,定出两常数a ,b 使P {a <W <b }=α-1,从而得到置信区间. (0-1)分布p 的区间估计:样本容量n >50时,⇒--∞→)1,0(~)1()(lim N p np np X n n {}⇒-≈<--αα1)1()(2z p np np X n P0)2()(222222<++-+X n p z X n p z n αα⇒若令22αz n a +=,)2(22αz X n b +-=,2X n c =,则有置信区间(a ac b b 2)4(2---,a ac b b 2)4(2-+-).单侧置信区间:若αθθ-≥>1}{P 或αθθ-≥<1}{P ,称(θ,∞)或(∞-,θ)是θ的置信水平为α-1的单侧置信区间.待估 其他 枢轴量W 的分布置信区间单侧置信限一个正态总体μσ2已知)1,0(~N nX Z σμ-=)(2ασz nX ±ασμz nX +=,ασμz nX -=μσ2未知 )1(~--=n t nS X t μ⎪⎭⎫ ⎝⎛±2αt n S X αμt n S X +=,αμt nSX -=σ2μ未知)1(~)1(2222--=n S n χσχ⎪⎪⎭⎫ ⎝⎛---2212222)1(,)1(ααχχS n S n 2122)1(αχσ--=S n ,222)1(αχσS n -=两个正态总体μ1-μ2σ12,σ22已知)1,0(~)(22212121N n n Y X Z σσμμ+---=⎪⎪⎭⎫ ⎝⎛+±-2221212n n z Y X σσα2221212122212121n n z Y X n n z Y X σσμμσσμμαα+--=-++-=-μ1-μ2 σ12=σ22=σ2 未知)2(~)()(21121121-++---=--n n t n n S Y X t w μμ2)1()1(212222112-+-+-=n n Sn S n S w()12112--+±-nn S tY X wα2w w S S =121121121121----+--=-++-=-n n S t Y X n n S t Y X w w ααμμμμσ12/σ22μ1,μ2未知)1,1(~2122212221--=n n F S S F σσ⎪⎪⎭⎫ ⎝⎛-212221222211,1ααF S S F S S ασσ-=1222122211F S S ,ασσF S S 122212221=1122第八章 假设实验定义: H 0:原假设或零假设,为理想结果假设;H 1:备择假设,原假设被拒绝后可供选择的假设. 第Ⅰ类错误:H 0实际为真时,却拒绝H 0.第Ⅱ类错误:H 0实际为假时,却接受H 0.显著性检验:只对犯第第Ⅰ类错误的概率加以控制,而不考虑第Ⅱ类错误的概率的检验.P {当H 0为真拒绝H 0}≤α,α称为显著水平.拒绝域:取值拒绝H 0.临界点:拒绝域边界.双边假设检验:H 0:θ=θ0,H 1:θ≠θ0.右边检验:H 0:θ≤θ0,H 1:θ>θ0.左边检验:H 0:θ≥θ0,H 1:θ<θ0.正态总体均值、方差的检验法(显著性水平为α)原假设H 0备择假设H 1检验统计量 拒绝域 1 σ2已知μ≤μ0μ>μ0 n X Z σμ0-=z ≥z α μ≥μ0 μ<μ0 z ≤-z α μ=μ0 μ≠μ0 |z |≥z α/2 2 σ2未知μ≤μ0μ>μ0 nS X t 0μ-=t ≥t α(n -1) μ≥μ0 μ<μ0 t ≤-t α(n -1) μ=μ0 μ≠μ0 |t |≥t α/2(n -1)3σ1,σ2已知μ1-μ2≤δμ1-μ2>δ 222121n n Y X Z σσδ+--=z ≥z αμ1-μ2≥δ μ1-μ2<δ z ≤-z α μ1-μ2=δ μ1-μ2≠δ |z |≥z α/24 σ12=σ22 =σ2未知μ1-μ2≤δμ1-μ2>δ 1211--+--=n n S Y X t w δ2)1()1(212222112-+-+-=n n S n S n S wt ≥t α(n 1+n 2-2) μ1-μ2≥δ μ1-μ2<δ t ≤-t α(n 1+n 2-2) μ1-μ2=δ μ1-μ2≠δ |t |≥t α/2(n 1+n 2-2) 5 μ未知σ2≤σ02σ2>σ02 2022)1(σχSn -=χ2≥χα2(n -1)σ2≥σ02 σ2<σ02 χ2≤χ21-α(n -1)σ2=σ02σ2≠σ02χ2≥χ2α/2(n -1)或χ2≤χ21-α/2(n -1)6 μ1,μ2未知σ12≤σ22σ12>σ222221SSF=F≥Fα(n1-1,n2-1) σ12≥σ22σ12<σ22F≤F1-α(n1-1,n2-1)σ12=σ22σ12≠σ22F≥Fα/2(n1-1,n2-1)或F≤F1-α/2(n1-1,n2-1)7 成对数据μD≤0 μD>0nSDtD-=t≥tα(n-1) μD≥0 μD<0 t≤-tα(n-1)μD=0 μD≠0 |t|≥tα-2(n-1)检验方法选择:主要是逐对比较法(成对数据)跟两个正态总体均值差的检验的区别,如上表即7跟3、4的区别,成对数据指两样本X和Y之间存在一一对应关系,而3和4一般指X和Y相互对立,但针对同一实体.关系:置信区间和假设检验之间的关系:未知参数的置信水平为1-α的置信区间和显著水平为α的接受域相同.定义:施行特征函数(OC函数):β(θ)=Pθ(接受H0).功效函数:1-β(θ).功效:当θ*∈H1时,1-β(θ*)的值.。
2020年考研数一考纲
2020年考研数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学 约56%线性代数 约22%概率论与数理统计 约22%四、试卷题型结构单选题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L ’Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle )定理、拉格朗日(Lagrange )中值定理和泰勒(Taylor )定理,了解并会用柯西(Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz )公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分的关系 格林(Green )公式 平面曲线积分与路径无关的条件 二元函数全微分的原函数 两类曲面积分的概念、性质及计算 两类曲面积分的关系 高斯(Gauss )公式 斯托克斯(Stokes )公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p 级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 函数的傅里叶(Fourier )系数与傅里叶级数 狄利克雷(Dirichlet )定理 函数在[,]l l 上的傅里叶级数 函数在[0,]l 上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握x e ,sin x ,cos x ,ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[,]l l -上的函数展开为傅里叶级数,会将定义在[0,]l 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli )方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Euler )方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:()(),(,)n y f x y f x y '''==和(,)y f y y '''=.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念n维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解n维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes )公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤-∞<<+∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson )分布()P λ及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ 、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为,0,()0,0.x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布221212(),,N μμσσρ;;的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev )不等式 切比雪夫大数定律 伯努利(Bernoulli )大数定律 辛钦(Khinchine )大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace )定理 列维-林德伯格(Levy-Lindberg )定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 2χ分布 t 分布 F 分布 分位数 正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为 2211()1ni i S X X n ==--∑ 2.了解2χ分布、t 分布和F 分布的概念及性质,了解上侧α分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.。
【最全2020】考研数学(概率统计)知识点_8-13
③对于随机变量 X 与 Y,如果有 E( X kY l ) 存在,则称之为 X 与 Y 的 k+l 阶混合原点矩,记为 ukl ,即
lim
n→∞
P⎜⎜⎝⎛
µ n
−
p
≥ ε ⎟⎟⎠⎞
=
0.
这就以严格的数学形式描述了频率的稳定性。
ukl = E[(X − E( X ))k (Y − E(Y ))].
五. 大数定律和中心极限定理 1、切比雪夫不等式
∑ M k
=
1 n
n i =1
xik , k
= 1,2,Λ
.
∑ M k′
=
1 n
n i =1
(xi
− x) k , k = 2,3,Λ .
(二阶中心矩
C
k n
P
k
(1
−
p) n−k
→
λk k!
e −λ
其中 k=0,1,2,…,n,…。
六. 数理统计的基本概念
(n → ∞).
∑ S
*2
=
1 n
n
(Xi
或者简写成: X − σ/
µ n
⎯⎯n→⎯∞ → N (0,1)
此定理也称为独立同分布的中心极限定理。
(2)棣莫弗-拉普拉斯定理 设随机变量 X1,…Xn 均为具有参数 n, p(0<p<1)的二项
分布,则对于任意实数 x,有
∫ = lim P⎪⎨⎧ X n − np ≤ x⎪⎬⎫ = 1
x −t2
体中的每一个单元称为样品(或个体)。在以后的讨论中,
我们总是把总体看成一个具有分布的随机变量(或随机
向量)。
(2)样本函数与统计量
设 x1 , x2 ,Λ , xn 为总体的一个样本,称
考研数学概率论总结(强烈推荐)
考研数学概率论部分重难点总结概率论是考研数学必须全得的分数,其实概率论也是考验数学三驾马车中最简单的一门,代数是最难的一门,因此,学好概率论是考验数学的必须部分。
下面进行总结1.1概率这门课的特点与线性代数一样,概率也比高数容易,花同样的时间复习概率也更为划算。
但与线代一样,概率也常常被忽视,有时甚至被忽略。
一般的数学考研参考书是按高数、线代、概率的顺序安排的,概率被放在最后,复习完高数和线代以后有可能时间所剩无多;而且因为前两部分分别占60%和20的分值,复习完以后多少会有点满足心理;这些因素都可能影响到概率的复习。
概率这门课如果有难点就应该是“记忆量大”。
在高数部分,公式、定理和性质虽然有很多,但其中相当大一部分都比较简单,还有很多可以借助理解来记忆;在线代部分,需要记忆的公式定理少,而需要通过推导相互联系来理解记忆的多,所以记忆量也不构成难点;但是在概率中,由大量的概念、公式、性质和定理需要记清楚,而且若靠推导来记这些点的话,不但难度大耗时多而且没有更多的用处(因为概率部分考试时对公式定理的内在推导过程及联系并没有什么要求,一般不会在更深的层次上出题)。
记得当初看到陈文灯复习指南概率部分第二章《随机变量及其分布》、第三章《随机变量的数字特征》中在每章开始列出的那些大表格时,感觉其中必然会有很多内容是超纲的、不用细看;但后来复习时才发现,可以省略不看的内容少之又少,由大量的内容需要记忆。
所以对于概率部分相当多的内容都只能先死记硬背,然后通过足量做题再来牢固掌握,走一条“在记忆的基础上理解”的路。
记牢公式性质,同时保证足够的习题量,考试时概率部分20%的分值基本上就不难拿到了。
1.2概率第一章《随机事件和概率》本章内容在历年真题中都有涉及,难度一般不大。
虽然对于本章中的古典概型可以出很难的题目,但大纲的要求并不高,考试时难题很少。
填空、选择常考关于事件概率运算的题目,大多围绕形如)()(BAPABP=、)|()|(ABPABP=、)(CBAP++这样的式子利用各种概率运算公式求解;其它内容如全概率公式和贝叶斯公式在小题中和大题中都有可能考到。
2020考研数学复习:概率论部分核心
2020考研数学复习:概率论部分核心内容和典型题型汇总2020考研数学复习:概率论部分核心内容和典型题型汇总今天对概率论与数理统计这么学科中的核心内容和典型题型做出一个总结,帮助小伙伴们在复习中抓住主要矛盾,从而提高复习效率。
►第一章随机事件和概率一、本章的重点内容:四个关系:包含,相等,互斥,对立;五个运算:并,交,差;四个运算律:交换律,结合律,分配律,对偶律(德摩根律);概率的基本性质:非负性,规范性,有限可加性,逆概率公式;五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式;条件概率;利用独立性进行概率计算;重xx概型的计算.近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。
二、常见典型题型:1.随机事件的关系运算;2.求随机事件的概率;3.综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式.►第二章随机变量及其分布一、本章的重点内容:随机变量及其分布函数的概念和性质(充要条件);分布xx和概率密度的性质(充要条件);八大常见的分布:0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用;会计算与随机变量相联系的任一事件的概率;随机变量简单函数的概率分布.近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布.二、常见典型题型:1.求一维随机变量的分布律、分布密度或分布函数;2.一个函数为某一随机变量的分布函数或分布律或分布密度的判定;3.反求或判定分布中的参数;4.求一维随机变量在某一区间的概率;5.求一维随机变量函的分布.►第三章二维随机变量及其分布一、本章的重点内容:二维随机变量及其分布的概念和性质,边缘分布,边缘密度,条件分布和条件密度,随机变量的独立性及不相关性,一些常见分布:二维均匀分布,二维正态分布,几个随机变量的简单函数的分布.本章是概率论重点部分之一!应着重对待。
2020考研概率论第一章考试重点回顾:随机事件与概率
2020考研概率论第一章考试重点回顾:随机
事件与概率
第一章随机事件与概率
本章需要掌握概率统计的基本概念,公式。
其主要内容是概率的基本计算,以及五大公式的熟练应用,加法公式、乘法公式、条件概率公式、全概率公式以及贝叶斯公式。
1.本章的重点内容:
四个关系:包含,相等,互斥,对立﹔五个运算:并,交,差﹔四个运算律:交换律,结合律,分配律,对偶律(德摩根律)﹔概率的基本性质:非负性,规范性,有限可加性,逆概率公式﹔五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式﹔·条件概率﹔利用独立性进行概率计算﹔·重伯努利概型的计算。
近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。
2.常见典型题型:
随机事件的关系运算﹔求随机事件的概率﹔综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式。
2024考研数学概率论重要考点总结
2024考研数学概率论重要考点总结概率论是数学的一个分支,研究随机现象的规律性和统计属性。
在2024年的考研数学中,概率论是一个重要的考点。
下面将总结一些2024考研数学概率论的重要考点。
1. 概率基本概念:- 随机试验和随机事件:随机试验是在相同条件下重复进行的试验,随机事件是随机试验可能出现的结果。
- 样本空间和事件:样本空间是随机试验所有可能结果的集合,事件是样本空间的子集。
- 概率和概率公理:概率是事件发生的可能性大小的度量,满足非负性、规范性和可列可加性的概率公理。
- 概率的性质:互斥事件的概率、必然事件和不可能事件的概率。
2. 条件概率和乘法公式:- 条件概率:条件概率是在已知某些信息的条件下,某个事件发生的概率。
- 独立事件:两个事件A和B相互独立,就是指事件A的发生与否不会对事件B的发生产生影响。
- 乘法公式:乘法公式是计算多个事件同时发生的概率的方法。
3. 全概率公式和贝叶斯公式:- 全概率公式:全概率公式是用来计算一个事件发生的概率的方法,通过将事件拆分为一系列互斥事件的并集来计算。
- 贝叶斯公式:贝叶斯公式是由全概率公式推导而来的,它可以根据已知的条件概率来计算逆条件概率。
4. 随机变量和概率分布:- 随机变量:随机变量是描述随机试验结果的数值函数。
- 离散随机变量和连续随机变量:离散随机变量的取值是有限的或可列的,连续随机变量的取值是无限的。
- 概率质量函数和概率密度函数:概率质量函数是描述离散随机变量概率分布的函数,概率密度函数是描述连续随机变量概率分布的函数。
- 期望和方差:期望是描述随机变量平均取值的指标,方差是描述随机变量取值的离散程度的指标。
5. 常见概率分布:- 二项分布:描述n次独立重复试验中成功次数的概率分布。
- 泊松分布:描述单位时间或单位空间内随机事件发生次数的概率分布。
- 正态分布:具有钟形曲线的概率分布,应用广泛。
6. 大数定律和中心极限定理:- 大数定律:大数定律指出,随着随机试验次数的增加,其结果的平均值趋近于数学期望。
2020考研数学:概率论核心考点与常见题型(上)
2020考研数学:概率论核心考点与常见题型(上)众所周知,考研过程中数学是必须攻克的一大难关,那么,考研数学复习怎么才能够达到高效率复习呢?,今天带来的是“2020考研数学:概率论核心考点与常见题型(上)”大家一起来看看吧!2020考研数学:概率论核心考点与常见题型(上)以下是2020考研数学:概率论核心考点与常见题型(上)的具体内容:一、随机变量及其分布在考试中,该考点所占比重很大,每年分值在12分左右。
►核心考点:I、分布函数、分布律、概率密度的相关性质;II、联合分布、边缘分布与条件分布的计算;III、随机变量函数的分布以及随机变量独立性的判断;IV、常见分布的相关性质;以上考点中,要重点掌握边缘分布以及条件分布的定义与相关的计算公式、随机变量函数的分布,在历年考研数学中考查力度还是相当大的。
求解过程中重在理解分布函数的定义,尤其涉及到随机变量范围的讨论时,避免失误,各位考研君一定要多加注意!►常考题型:I、有关分布函数、分布律、概率密度的相关性质的考察;II、离散型或连续型随机变量边缘分布、条件分布的计算;III、求解随机变量函数的分布。
二、数字特征考研中对数字特征的考察,频率也是很高的,在考试中,此考点一般与随机变量结合出题,每年的平均分值大概也在8分左右,所以考研的小伙伴更是不能忽视呦!►核心考点:I、随机变量以及随机变量函数的期望、方差相关计算公式;II、数字特征的常用性质、常见分布的数字特征及运用;III、二维随机变量协方差、相关系数的计算及其性质;IV、独立性与不相关性的讨论;►常考题型:I、直接考察数字特征的计算;II、考察数字特征的常用性质;对于该高频考点,公式多,记忆量大,所以要把相关的公式以及性质进行有效记忆,避免出现公式错用、混用的情况。
在考研中该考点与考点1经常结合出题,构成考研数学概率中的一道大题,各位考研君一定要提高警惕!三、参数估计参数估计是数理统计的重要内容,也是考试的重点,考研中对此考点的考查方式多以大题为主。
【精编】2020考研大纲-数一
的正弦级数和余弦级数. 考试要求 1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的
必要条件. 2.掌握几何级数与 p 级数的收敛与发散的条件. 3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法. 4.掌握交错级数的莱布尼茨判别法. 5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系. 6.了解函数项级数的收敛域及和函数的概念. 7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.
二、一元函数微分学
考试内容 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函 数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微 分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹 凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径. 考试要求
考试要求
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极 限之间的关系. 6.掌握极限的性质及四则运算法则. 7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方 法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极 限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、 最大值和最小值定理、介值定理),并会应用这些性质.
考研数学概率论重点知识点
考研数学概率论重点知识点考研数学中的概率论是一门重要的学科,对于考生来说,掌握重点知识点是取得好成绩的关键。
以下是对概率论中一些重点知识点的详细阐述。
一、随机事件与概率随机事件是概率论中最基本的概念之一。
在一定条件下,可能出现也可能不出现的事件称为随机事件。
而概率则是衡量随机事件发生可能性大小的数量指标。
古典概型是一种常见的概率模型,其特点是试验结果的有限性和等可能性。
在计算古典概型的概率时,需要先确定样本空间中基本事件的总数,以及所关注事件包含的基本事件数,然后用后者除以前者即可得到概率。
几何概型则是另一类重要的概率模型,适用于试验结果具有无限性和等可能性的情况。
通常需要通过计算相关区域的面积、体积等几何度量来确定概率。
条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。
其计算公式为 P(B|A) = P(AB) / P(A) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。
全概率公式和贝叶斯公式是解决复杂概率问题的有力工具。
全概率公式用于将一个复杂事件的概率分解为多个简单事件概率的加权和;贝叶斯公式则是在已知结果的情况下,反推导致该结果的各种原因的概率。
二、随机变量及其分布随机变量是将随机试验的结果数量化的变量。
常见的随机变量有离散型随机变量和连续型随机变量。
离散型随机变量的概率分布可以用分布律来描述,常见的离散型分布有二项分布、泊松分布等。
二项分布适用于独立重复试验中,成功次数的概率分布;泊松分布则常用于描述在一定时间或空间内稀有事件发生的次数。
连续型随机变量的概率分布用概率密度函数来描述,其性质包括非负性和规范性。
常见的连续型分布有正态分布、均匀分布、指数分布等。
正态分布在概率论和统计学中具有极其重要的地位,许多实际问题中的随机变量都近似服从正态分布。
三、多维随机变量及其分布多维随机变量是指同时考虑两个或两个以上的随机变量。
联合分布函数可以完整地描述多维随机变量的概率分布情况。
2020年考研数学三考试范围
2020年考研数学三考试范围展开全文第1部分微积分第1章函数、极限、连续一、函数1.函数的概念设数集,则称映射为定义在D上的函数,简记为,其中x称为自变量,y称为因变量,D称为定义域.记作,即.函数值的全体所构成的集合称为函数的值域,记作或,即.2.函数的表示法表格法、图形法、解析法(公式法)二、函数的性质1.有界性(1)上界:若,对,有,则称函数在I上有上界,而称为函数在I上的一个上界.(2)下界:若,对有,则称函数在I上有下界,而称为函数在I上的一个下界.(3)有界:若对,,总有,则称在I上有界.2.单调性(1)单调递增:当时,.(2)单调递减:当时,.3.周期性(1)定义:(为正数).(2)最小正周期:函数所有周期中最小的周期称为最小正周期.4.奇偶性的定义域关于原点对称,则:(1)偶函数:,图形关于轴对称.(2)奇函数:,图形关于原点对称.三、特殊函数1.复合函数形如的函数称为复合函数.复合函数要注意其定义域.2.分段函数对于自变量的不同取值范围,对应法则用不同式子来表示的函数称为分段函数.3.反函数(1)定义设函数是单射,则它存在逆映射,映射称为函数的反函数.(2)性质①当在D上是单调递增函数,在上也是单调递增函数;②当在D上是单调递减函数,在上也是单调递减函数;③的图像和的图像关于直线对称.4.隐函数如果变量满足一个方程,在一定条件下,当取区间I任一值时,相应地总有满足该方程的唯一的存在,则称方程在区间I确定了一个隐函数.四、初等函数1.基本初等函数的性质和图像(1)幂函数①表达式:;②定义域:使有意义的全体实数构成的集合;③单调性:a.当n>0时,图象过点(0,0)和(1,1),在区间上是增函数;b.当n<0时,图象过点(1,1),在区间上是减函数.(2)指数函数①表达式:;②定义域:R;③值域:;④过定点:(0,1);⑤单调性:a.当时,在R单调递增;b.当时,在R上单调递减.⑥图像图1-1 指数函数图像(3)对数函数①表达式:;②定义域:;③值域:R;④过定点:(1,0);⑤当时,;⑥单调性:a.当时,是上的增函数;第1部分微积分第1章函数、极限、连续第2章一元函数微分学第3章一元函数积分学第4章多元函数微积分学第5章无穷级数第6章常微分方程与差分方程第2部分线性代数第1章行列式第2章矩阵第3章向量第4章线性方程组第5章矩阵的特征值和特征向量第6章二次型第3部分概率论与数理统计第1章随机事件和概率第2章随机变量及其分布第3章多维随机变量的分布第4章随机变量的数字特征第5章大数定律和中心极限定理第6章数理统计的基本概念第7章参数估计。